
9. Edge Graphs and Eccentricity Sequences

Many authors discovered edge graphs independently and gave it a different name, for ex-
ample, interchange graph by Ore [177], derivative by Sabidussi [231], derived graphs by
Beineke [18], edge-to-vertex dual by Seshu and Reed [233], covering graph by Kasteleyn
[127] and adjoint by Menon [159].

9.1 Edge Graphs

Definition: Let G(V, E) be a graph with V = {v1, v2, . . ., vn} and E = {e1, e2, . . . , em}.
The edge graph L(G) of G has the vertex set E and two vertices ei and e j are adjacent in
L(G) if and only if the corresponding edges ei and e j of G are adjacent in G. For example,
in Figure 9.1, L(G) is the edge graph of G. A graph G is an edge graph if it is isomorphic
to the edge graph L(H) of some graph H.

Fig. 9.1
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Since isolated vertices do not contribute anything to the study of edge graphs, we assume
that the graphs contain no isolated vertices. Besides this, the graphs under consideration
will be without loops. We have the following observations about edge graphs.

1. A graph G is connected if and only if L(G) is connected.

2. If H is a subgraph of G, then L(H) is a subgraph of L(G).

3. The edges incident at a vertex of G form a maximal complete subgraph of L(G).

4. In G, if e = uv is an edge, then the degree of e in L(G) is the number of edges of G

adjacent to e in G. Clearly, dL(G)(e) = dG(u)+dG(v)−2.

5. For n > 1, Ln(G) = L(Ln−1(G)) and L0(G) = G.

The following result determines the number of edges in an edge graph.
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The following observation is immediate.

Theorem 9.2 The edge graph of a graph G is a path if and only if G is a path.

Proof Let G be a graph with n vertices. Assume G is a path Pn. Then L(G) is the path Pn−1

with n−1 vertices.
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Conversely, let L(G) be a path. Then no vertex of G has degree greater than two. For, if G

has a vertex v of degree greater than two, the edges incident to v form a complete subgraph
of L(G) with at least three vertices. Therefore G is either a cycle or a path. But G cannot be
a cycle, since the edge graph of a cycle is a cycle. q

We now have the following stronger result.

Theorem 9.3 A connected graph is isomorphic to its edge graph if and only if it is a
cycle.

Proof Let G be a connected graph with n vertices, m edges and with degree sequence
[di]

n
1
. Let L(G) be the edge graph of G. The number of vertices in L(G) is m. The number of
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Clearly, L(G) is connected and L(Cn) = Cn.

Conversely, let G ∼= L(G).

Then G and L(G) have the same number of vertices and edges.

So, n = m and m =
1

2

(

n

∑
i=1

d2

i

)

−m.

Therefore, n = m and
n

∑
i=1

d2

i = 4m.

Thus, variance

{[di]}=
1

n

n

∑
i=1

d2

i −

(

1

n

n

∑
i=1

di

)2



Because Var =
1

N
∑

i

fix
2

i −

(

1

N
∑

i

fixi

)2

and we have fi = 1





=
1

n
4m−

1

n2
(2m)2 =

4m

m
−

4m2

m2
= 4−4 = 0.

Therefore the di’s are equal and G is regular of degree d, say.
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So nd = 2m implies that d =
2m

n
=

2m

m
= 2.

Thus G is a 2-regular connected graph, that is, Cn. q

The next result is about the isomorphism of edge graphs.

Theorem 9.4 If the graphs G1 and G2 are isomorphic, then L(G1) and L(G2) are also
isomorphic.

Proof Assume (φ , θ ) to be an isomorphism of G1 onto G2. Then θ is a bijection of
E(G1) onto E(G2). We show that θ is an isomorphism of L(G1) to L(G2) by showing that θ
preserves adjacency. Let ei and e j be two adjacent vertices of L(G1). So there exists a vertex
v of G1 incident to both ei and e j , and therefore φ (v) is a vertex incident to both θ (ei) and
θ (e j). Thus θ (ei) and θ (e j) are adjacent vertices in L(G2).

Let θ (ei) and θ (e j) be adjacent vertices in L(G2). Then they are adjacent edges in G2 and
therefore there exists a vertex v′ of G2 incident to both θ (ei) and θ (e j). Then φ−1(v′) is a
vertex of G1 incident to both ei and e j, and thus ei and e j are adjacent vertices of L(G1).

Therefore ei and e j are adjacent vertices of L(G1) if and only if θ (ei) and θ (e j) are
adjacent vertices of L(G2). Hence θ is an isomorphism of L(G1) onto L(G2). q

The converse of Theorem 9.4 is not true. To see this, consider the graphs K1, 3 and K3

whose edge graphs are K3. But K1, 3 is not isomorphic to K3, since there is a vertex of degree
three in K1, 3 while there is no such vertex in K3. However, it was shown by Whitney [265]
that the converse holds unless one is K1, 3 and the other is K3. The proof of this result is due
to Jung [123].

Theorem 9.5 Let G and G′ be connected graphs with isomorphic edge graphs. Then G

and G′ are isomorphic unless one is K3 and the other is K1, 3.

Proof First suppose that n(G) and n(G′) are less than or equal to 4. A necessary condi-
tion for L(G) and L(G′) to be isomorphic is that m(G) = m(G′). The only nonisomorphic
connected graphs on at most four vertices are those shown in Figure 9.2.

Fig. 9.2
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In Figure 9.2, graphs G4, G5 and G6 are the three graphs having three edges each. We
know that G4 and G6 have isomorphic edge graphs, namely K3. The edge graph of G5 is a
path of length 2 and hence L(G5) cannot be isomorphic to L(G4) or L(G6). Further, G7 and
G8 are the only two graphs in the list having four edges each.

Clearly, L(G8) ∼= G8 and L(G7) is isomorphic to G9. Thus the edge graphs of G7 and G8

are not isomorphic. No two of the remaining graphs have the same number of edges. Hence
the only non-isomorphic graphs with at most four vertices having isomorphic edge graphs
are G4 and G6.

Now suppose that either G or G′, say G, has at least five vertices and that L(G) and L(G′)
are isomorphic under an isomorphism φ1. So φ1 is a bijection from the edge set of G onto
the edge set of G′.

We now prove that φ1 transforms an induced K1, 3 subgraph of G onto a K1, 3 subgraph of
G′. Let e1 = uv1, e2 = uv2 and e3 = uv3 be the edges of an induced K1, 3 subgraph of G. As G

has at least five vertices and is connected, there exists an edge e adjacent to only one or all
three of edges e1, e2 and e3, as illustrated in Figure 9.3.

Fig. 9.3

Clearly, φ1(e1), φ1(e2) and φ1(e3) form either a K1, 3 subgraph or a triangle in G′. If φ1(e1),
φ1(e2) and φ1(e3) form a triangle in G′, φ1(e) can be adjacent to precisely two of φ1(e1),
φ1(e2) and φ1(e3) (since L(G′) is simple), whereas φ1(e) must be adjacent to only one or all
the three. This contradiction shows that {φ1(e1), φ1(e2), φ1(e3)} is not a triangle in G′ and
therefore forms a K1, 3 in G′.

It is clear that a similar result holds as well for φ−1

1
, since it is an isomorphism on L(G′)

onto L(G).
Let S(u) denote the star subgraph of G formed by the edges of G incident at a vertex u of

G. We show that φ1 maps S(u) onto the unique star subgraph S(u′) of G′.

i. First suppose the degree of u is at least 2. Let f1 and f2 be any two edges incident at u.
The edges φ1( f1) and φ1( f2) of G′ have an end vertex u′ in common. If f is any other
edge of G incident with u, then φ1( f ) is incident with u′, and conversely, for every
edge f ′ of G′ incident with u′, φ−1

1
( f ′) is incident with u. Thus S(u) in G is mapped to

S(u′) in G′.

ii. Let the degree of u be 1 and e = uv be the unique edge incident with u. As G is
connected and n(G) ≥ 5, degree of v must be at least 2 in G, and therefore, by (i), S(v)
is mapped to a star S(v′) in G′. Also φ1(uv) = u′v′ for some u′ ∈V (G′). If the degree of
u′ is greater than 1, by (i), the star at u′ in G′ is transformed by φ−1

1
either to the star

at u in G or to the star at v in G. But as the star at v in G is mapped to the star at v′ in
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G′ by φ1, φ−1

1
should map the star at u′ to the star at u only. As φ−1

1
is 1−1, this means

that deg u ≥ 2, a contradiction. Therefore, deg u′ = 1 and so S(u) in G is mapped to
S(u′) in G′.

Define φ : V (G) → V (G′) by setting φ (u) = u′ if φ1(S(u)) = S(u′). Since S(u) = S(v) only
when u = v (G 6= K2, G′ 6= K2), φ is 1−1. φ is also onto since, for v′ in G′, φ−1

1
(S(v′)) = S(v) for

some v∈V (G), and by the definition of φ , φ (v) = v′. Finally, if uv is an edge of G, then φ1(uv)
belongs to both S(u′) and S(v′), where φ1 (S(u)) = S(u′) and φ1 (S(v)) = S(v′). This means
u′v′ is an edge of G′. But u′ = φ (u) and v′ = φ (v). Consequently, φ (u) φ (v) is an edge of G′.
If u and v are nonadjacent in G, φ (u) φ (v) must be nonadjacent in G′. Otherwise, φ (u) φ (v)
belongs to both S(φ (u)) and S(φ (v)) and hence φ−1

1
(φ (u)φ (v)) = uv ∈ E(G), a contradiction.

Thus G and G′ are isomorphic under φ . q

The following result shows that K1, 3 is not an edge graph and thus K1, 3 is of great
significance in studying edge graphs as will be seen in further discussions.

Lemma 9.1 The star K1, 3 is not an edge graph.

Proof Assume that K1, 3 is an edge graph. Then K1, 3 = L(H) for some graph H. Since
K1, 3 has four vertices, therefore H has four edges. Also H is connected. All the connected
graphs with four edges are given in Figure 9.4.

Fig. 9.4

H is neither graph (a) nor (b), because L(C4) = C4 and L(K1,3 + x) = K4 − x. These are
shown in Figure 9.5.

Fig. 9.5

Thus H is one of the three trees as given in (c), (d) and (e). But the edge graphs of these
trees are the path P4, the graphs K3. K2 and K4, given in Figure 9.6.
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Fig. 9.6

This shows that H is none of the trees (c), (d) or (e). Hence it follows that K1, 3 is not an
edge graph. q

Now, we proceed to give a characterisation of edge graphs which is due to Krausz [140].

Theorem 9.6 (Krausz) A graph G is the edge graph of some graph if and only if the
edges of G can be partitioned into cliques such that no vertex appears in more than two
cliques.

Proof

Necessity Let G be an edge graph of a graph H. Assume without loss of generality that H

has no isolated vertices. Then the edges in the star K1, 3 at each vertex of H induce a clique
of G and every edge of H belongs to the stars of exactly two vertices of H, therefore no
vertex of G is in more than two of these cliques.

Sufficiency Let the edges of G be partitioned into the cliques S1, S2, . . ., Sk such that no
vertex of G belongs to more than two of these cliques. We construct H such that L(H) = G.
As isolated vertices of G become isolated edges of H, therefore assume δ (G) ≥ 1. Let v1,
v2, . . ., v` be the vertices of G (if any) that appear in exactly one of Si. The vertices of H

correspond to the set S = {S1, S2, . . ., Sk, {v1}, {v2}, . . . , {v`}}, with one vertex for each
member of S. Any two of these vertices are adjacent whenever their corresponding sets
intersect. Each vertex of G appears in exactly two sets in S and no two vertices appear in
the same pair of sets. Thus H is a simple graph with one edge for each vertex of G. If
vertices are adjacent in G, they appear together in some Si and the corresponding edges of
H share the vertex corresponding to Si. Hence, G = L(H). q

Krausz characterisation of edge graphs is close to the definition. Since it characterises
edge graphs by the existence of a special edge partition, it does not directly give an effi-
cient test. This has been improved by Van Rooij and Wilf [227] by describing the structural
criterion for a graph to be an edge graph. Before we take the Van Rooij and Wilf charac-
terisation, we have the following definition.

Definition: An induced subgraph is a subgraph which is maximal on its vertex set. A
triangle T of a graph G is said to be odd, if there is a vertex of G adjacent to an odd number
of vertices of T , otherwise T is said to be even. That is, T is odd if |V(T )∩N(v)| is odd, for
some v ∈V(G), and T is even if |V(T )∩N(v)| is even, for every v ∈V (G). An induced copy
of K4 − e is a double triangle and clearly has two triangles with a common edge.



Graph Theory 241

The following is the Van Rooij and Wilf characterisation.

Theorem 9.7 A graph G is the edge graph of some graph if and only if G does not
contain an induced subgraph K1, 3 and no double triangle of G has two odd triangles.

Proof

Necessity Let G = L(H). Clearly, G does not contain an induced subgraph K1, 3, since
K1, 3 itself is not an edge graph. Now we observe that the vertices of a double triangle in G

correspond to the edges of a K1, 3 + e in H. In particular, one of these double triangles in G

is generated by a triangle in H. Obviously a triangle in G generated by a triangle in H is
even, since an edge incident to a triangle in H intersects exactly two edges of the triangle
in H (Fig. 9.7).

Fig. 9.7

Sufficiency Let G not contain an induced subgraph K1, 3 and let no double triangle of G

have two odd triangles. Assume G is connected, for otherwise, we apply the construction
to each component. In case G is K1, 3−free and has a double triangle with both triangles
even, then G is one of the graphs given in Figure 9.8.

Fig. 9.8

Thus we consider the case when every double triangle of G has exactly one odd triangle.
To prove the result, it suffices by Theorem 9.6, to partition E(G) into cliques that cover
each vertex at most twice. Now, let S1, S2, . . ., Sk be the maximal cliques of G that are not
even triangles and let T1, T2, . . . , T` be the edges that belong to one even triangle and no
odd triangle. We claim that B = {Si}∪{Tj} partitions E(G) into cliques using each vertex at
most twice.

Now, every edge appears in a maximal clique, but every triangle in a clique with more
than three vertices is odd. Therefore Tj is not in any clique Si. Also Si and Si′ have no
common edge, because G has no double triangles with both triangles odd. Thus the cliques
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in B are edge-disjoint. If e∈ E(G), then e belongs to some Si unless the only maximal clique
containing e is an even triangle. In this case e is a Tj, since the double triangles do not have
both triangles even (Fig. 9.9).

Fig. 9.9

We now show that each v ∈ G appears at most twice in B. Assume v belongs to B1, B2,
B3 ∈ B. Edge-disjointness implies that v has neighbours x, y, z with each belonging to only
one of B1, B2, B3. Since G has no induced K1,3, assume that xy is an edge. Now by edge-
disjointness, the triangle vxy does not belong to a member of B. Therefore vxy is an even
triangle. Thus z has exactly one other edge to vxy, say zx, while zy is not an edge. But now
the same argument shows that zvx is an even triangle and we have a double triangle with
both triangles even. This contradicts our supposition and hence each v ∈ G appears at most
twice in B. q

The next characterisation due to Beineke [149] displays those subgraphs which are
not present in edge graphs. These subgraphs other than K1, 3 are vertex-minimal K1, 3-free
graphs containing a double triangle with both triangles odd. Each such graph has a double
triangle and one or two additional vertices that make the triangles odd by having one or
three neighbours in the triangle.

Theorem 9.8 A graph G is an edge graph of some graph if and only if G does not contain
an induced subgraph of any one of the graphs in Figure 9.10.

Fig. 9.10
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Proof

Necessity Let G be the edge graph of some graph H so that G = L(H). Then by Theorem
9.6, the edges of G can be partitioned into cliques such that every vertex appears in at most
two cliques. We observe that none of these nine graphs have such a partition. Since every
induced subgraph of an edge graph is itself an edge graph, G does not contain an induced
subgraph of any one of the nine graphs, in Figure 9.10.

Sufficiency Let G not contain an induced subgraph of any one of these nine graphs. We
prove that no double triangle of G has two odd triangles. Assume to the contrary that G has
a double triangle both of which are odd. Let these triangles be abc and abd with c and d non
adjacent. We discuss two cases, one in which there is a vertex v adjacent to an odd number
of vertices of both odd triangles and second when there is no such vertex.

Case 1 Assume there is a vertex v which is adjacent to an odd number of vertices in each
of the triangles abc and abd. Now two possibilities arise; either v is adjacent to exactly one
vertex of each of these triangles, or it is adjacent to more than one vertex of one of them.
If v is adjacent to exactly one vertex of each of these triangles, then either v is adjacent to a

or b giving G1, or to both c and d giving G2. If v is adjacent to more than one vertex of one
of the triangles, then v is adjacent to all four vertices of the two triangles, giving G3 as an
induced subgraph of G (Fig. 9.11).

Fig. 9.11

Case 2 Now, let there be no vertex adjacent to an odd number of vertices of both triangles.
Assume that the vertex u is adjacent to an odd number of vertices of triangle abc and
the vertex v is adjacent to an odd number of vertices of triangle abd. We consider three
subcases.

Case 2.1 u is adjacent to exactly one vertex of abc and v is adjacent to exactly one vertex
of abd.

Case 2.2 One of u or v is adjacent to all three vertices of its triangle and the other to only
one vertex of its triangle.

Case 2.3 u is adjacent to all three vertices of abc and v is adjacent to all three vertices of
abd.

We observe that if u or v is adjacent to a or b, then it is also adjacent to c or to d, since
otherwise G1 is an induced subgraph. Also, neither u nor v is adjacent to both c and d, since
otherwise G2 or G3 is induced.
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Case 2.1 Let uc, vd ∈ G. Then for uv ∈ G, G4 is induced, and for uv /∈ G, G7 is induced.
Now, let ub, vd ∈ G. Then it follows from the above observations that ud ∈ G while vc /∈ G.
Therefore for uv /∈ G, the vertices a, d, u, v induce G1 and for uv ∈ G, the vertices a, b, c, d,
u, v induce G8. Next, let ub, va ∈ G, then clearly ud, vc ∈ G. So, when uv /∈ G, G8 is induced,
and when uv ∈ G, G2 is induced. Finally, let ub, vb ∈ G, then again ud, vc ∈ G. Therefore,
when uv ∈ G, G9 is induced, and when uv /∈ G, G1 is induced (Fig. 9.12, Case 2.1).

Case 2.2 Let ua, ub, uc ∈ G. If ud ∈ G, then G3 is induced. Take ud /∈ G. Then either vd ∈ G

or vb ∈ G. If vd ∈ G, then for uv ∈ G, G2 is induced, and for uv /∈ G, G5 is induced. If vb ∈ G,
then G3 or G1 is induced depending on whether or not v is adjacent to both c and u (Fig.
9.12, Case 2.2).

Case 2.3 If ud, vc or uv ∈ G, then G3 is induced. The only other possibility gives G6 (Fig.
9.12, Case 2.3). q

(Case 2.1)

(Case 2.2)
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(Case 2.3)

Fig. 9.12

The following result due to Chartrand [53] characterises the edge graphs of a tree.

Theorem 9.9 (Chartrand [53]) A graph is the edge graph of a tree if and only if it is a
connected block graph in which each cut vertex is on exactly two blocks.

Proof

Necessity Let T be any tree and let G = L(T ). Then G is also B(T ) since the edges and
blocks of a tree coincide. Each cut vertex w of G corresponds to a bridge uv of T and is on
exactly those two blocks of G which correspond to the stars at u and v.

Sufficiency Let G be a block graph in which each cut vertex is on exactly two blocks.
Since each block of a block graph is complete, there exists a graph H such that L(H) = G,
by Theorem 9.6. If G = K3, we can take H = K1, 3. If G is any other block graph, then we
show that H is a tree. Assume H is not a tree, so that it contains a cycle. If H is itself a cycle,
then by Theorem 9.3, L(H) = H, but the only cycle which is a block graph is K3, a case not
under consideration. Thus H properly contains a cycle, implying that H has a cycle Z and
an edge e adjacent to two edges of Z, but not adjacent to some edge f in Z. The vertices e

and f of L(H) lie on a cycle of L(H) and they are not adjacent. This contradicts the fact that
L(H) is a block graph. Hence H is a tree. q

Consider the block graph G of Figure 9.13(a) in which each cut vertex lies on just two
blocks. Figure 9.13(b) shows the tree T of which G is the edge graph, is constructed by first
forming the block graph B(G) and then adding new vertices for the non-cut vertices of G,
and the edges joining each block with its non-cut vertices.

The edge graphs of complete graphs were independently characterised by Chang [47]
and Hoffman [116, 117], while the edge graphs of complete bipartite graphs were charac-
terised by Moon [163] and Hoffman [118].

Fig. 9.13
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9.2 Edge Graphs and Traversability

In this section, we study Eulerian and Hamiltonian property in edge graphs. We start with
the following result.

Theorem 9.10 If G is Eulerian, then L(G) is both Eulerian and Hamiltonian.

Proof Let G be Eulerian and let {e1, e2, . . ., em} be the edge sequence of an Euler line in
G. Let the edge ei in G be represented by the vertex vi in L(G), 1 ≤ i ≤ m. Then v1v2 . . .vmv1

is a Hamiltonian cycle of L(G). Now, if e = uiu j ∈ E(G) and the vertex v in L(G) represents
the edge e, then dL(G)(v) = dG(ui)+dG(u j)−2, which is obviously even and greater than or
equal to two, since both dG(ui) and dG(u j) are even (and ≥ 2). Thus in L(G) every vertex is
of even degree (≥ 2). Hence L(G) is Eulerian. q

The converse of Theorem 9.11 is not true. To see this, consider the graph G shown in
Figure 9.14. Clearly L(G) is both Eulerian and Hamiltonian, but G is not Eulerian.

Fig. 9.14

Definition: A dominating walk of a graph G is a closed walk W in G (which can be just
a single vertex) such that every edge of G not in W is incident with W . For example, the
walk v1 v2 v3 v4 in the graph of Figure 9.15 is a dominating walk.

Fig. 9.15

The following characterisation of graphs that contain Hamiltonian edge graphs is due to
Harary and Nash-Williams [108].
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Theorem 9.11 The edge graph of a graph G with at least three edges is Hamiltonian if
and only if G has a dominating walk.

Proof Let W be a dominating walk of G which is represented by the edge sequence
{e1, e2, . . . , ek}. Let e1 and e2 be incident at v1. Replace the subsequence {e1, e2} by the
sequence {e1, e11, e12, . . ., e1r1

, e2}, where e11, e12, . . ., e1r1
are the edges other than e1

and e2 incident at v1. Continuing this process for all subsequences {ei, ei+1}, 1 ≤ i ≤ k with
ek+1 = e1, we obtain a sequence of edges e1e11e12 . . .e1r1

e2e21e22 . . .e2r2
e3 . . .ekek1ek2 . . .ekrk

e1.
This clearly gives the Hamiltonian cycle u1u11u12 . . .u1r1

u2u21u22 . . .u2r2
u3 . . .ukuk1uk2 . . .ukrk

u1 in L(G), with u1 being the vertex of L(G) that corresponds to the edge e1 of G, and so on.
Conversely, let L(G) contain a Hamiltonian cycle C = u1 u2 . . .um u1 and let ei be the edge

of G corresponding to the vertex ui of L(G). Let W0 be the edge sequence e1 e2 . . .em e1. We
delete edges from W0 in succession in the following way. If ei e j ek are the first three distinct
consecutive edges of W0 that have a common vertex, then delete e j, and let W ′

0
= W0 − e j =

e1e2 . . .eiek . . .eme1. Now starting with W ′
0
, apply the same process as is applied in W, to get

W0. Continue in this way, till no such three consecutive edges exist. Clearly, the resulting
subsequence of W0 is a dominating walk or a pair of adjacent edges incident at a vertex,
say v0. In the later case, all the edges of G are incident at v0 and hence v0 is the dominating
walk of G. q

The following results are simple consequences of Theorem 9.11.

Corollary 9.1 The edge graph of a Hamiltonian graph is Hamiltonian.

Proof Let G be a Hamiltonian graph with Hamiltonian cycle C. Then C is a dominating
walk of G, and hence, L(G) is Hamiltonian. q

We note that the converse of Corollary 9.1 is not true in general. To see this, consider
the graph G as shown in Figure 9.16. Clearly L(G) is Hamiltonian but G is not.

Fig. 9.16

Corollary 9.2 If G is a connected graph and each edge of G belongs to a triangle, then
L(G) is Hamiltonian.

Proof This follows from Theorem 9.11. q
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The following result is due to Chartrand and Wall [55].

Theorem 9.12 If G is connected and δ (G) ≥ 3, then
L2 (G) is Hamiltonian.

Proof Since δ (G) ≥ 3, each vertex of L(G) belongs to a clique of size at least three
and hence each edge of L(G) belongs to a triangle. Then the result follows by applying
Corollary 9.2. q

The next result is due to Nebesky [170].

Theorem 9.13 If G is a connected graph with at least three vertices, then L(G2) is Hamil-
tonian.

Proof Since G is a connected graph with at least three vertices, every edge of G2 belongs
to a triangle. Hence by Corollary 9.2, L(G2) is Hamiltonian. q

Theorem 9.14 Let G be a connected graph in which every edge belongs to a triangle.
If e1 and e2 are edges of G such that G−{e1,e2} is connected, then there exists a spanning
walk of G with e1 and e2 as its initial and terminal edges.

Proof Consider the longest walk W of G with e1 and e2 as its initial and terminal edges.
Then proceed as in Theorem 9.11. q

The following result is due to Jaeger [121].

Theorem 9.15 The edge graph of a 4-connected graph is Hamiltonian.

Proof Let G be a 4-edge connected graph. By Theorem 9.11, it suffices to show that G

contains a spanning Eulerian subgraph.
Now, G contains two edge-disjoint spanning trees T1 and T2. Let S be the set of vertices

of odd degree in T1. Then |S| is even. Let |S|= 2k, k ≥ 1. By Theorem 9.12, there exists a set
of k pairwise edge-disjoint paths {P1, P2, . . ., Pk} in T2 with the property stated in Theorem
9.12. Then G0 = T1U (P1 ∪P2∪ . . .∪Pk) is a connected spanning subgraph of G in which each
vertex is of even degree. Hence G0 is a spanning Eulerian subgraph of G. q

Let every edge in a graph G be subdivided and let S(G) be the subdivision graph. If the
graph obtained from G by inserting n new vertices of degree two into every edge of G be
denoted by Sn(G) and taking S(G) = S1(G), we define Ln(G) = L(Sn−1(G)). We see that in
general Ln(G) � Ln(G) (Fig. 9.17).
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Fig. 9.17

An improvement of Theorem 9.13 is seen in the following result of Harary and Nash-
Williams [108].

Theorem 9.16 A sufficient condition for L2(G) to be Hamiltonian is that G be Hamilto-
nian and a necessary condition is that L(G) be Hamiltonian.

Now, we have the following consequence.

Corollary 9.3 A graph G is Eulerian if and only if L3(G) is Hamiltonian.

The following result is due to Chartrand [48].

Theorem 9.17 If G is a non-trivial connected graph with n vertices which is not a path,
then Lk(G) is Hamiltonian for all k ≥ n−3.

9.3 Total Graphs

Let G(V, E) be a graph. The total graph T (G) of G has vertex set V ∪E and two vertices of
T (G) are adjacent if and only if one of the following is true.

i. the vertices are vi, v j ∈V and viv j is an edge in E.

ii. one vertex is v ∈V and the other e ∈ E and the edge e of G is incident with the vertex
v of G.

iii. the edges are ei, e j ∈ E and the edges ei and e j have a vertex in common in G.

Example The total graph of a graph G is shown in Figure 9.18.

Fig. 9.18
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It can be seen that G and L(G) are induced subgraphs of T (G) and that the remaining
edges of T (G) form a graph homeomorphic to G.

9.4 Eccentricity Sequences and Sets

The concept of eccentricity has been introduced in chapter 1 and has been further discussed
in chapter 4. Now, we study eccentricity sequences in graphs.

Definition: A positive sequence [ei]
n
1

is called an eccentricity sequence if it is an eccen-
tricity sequence of some graph. The graph is said to realise the sequence. A set of positive
integers is called an eccentricity set if it is an eccentricity set of some graph. The graph is
said to realise the set. (The set of distinct eccentricities in a graph is called the eccentricity
set of that graph.)

When eccentricity set is written in the increasing order {e1, e2, . . ., ek} with e1 < e2 <
. . . < ek, the eccentricity sequence is then expressed as [e

n1

1
, e

n2

2
, . . . , e

nk

k ], where n1, n2, . . .,
nk are respectively the number of occurrences of e1, e2, . . ., ek, the sequence n1, n2, . . ., nk is
called the eccentricity frequency sequence of the graph.

Here it can be noted that e1 = r (radius) and ek = d (diameter) of the graph.
Therefore, r ≤ d ≤ 2r gives e1 ≤ ek ≤ 2e1, which is a necessary condition for a positive

sequence to be an eccentricity sequence.

Now, we have the following observation.

Theorem 9.18 If uv is an edge of a connected graph G, then |e(u)− e(v)| ≤ 1.

Proof Let w be an eccentric vertex of u (i.e., w is the farthest vertex from u). Then by the
triangle inequality for the metric d (distance), we have

d(u, w) ≤ d(u, v)+d(v, w)

so that e(u) ≤ d(u, v)+d(v, w). (9.18.1)

But u and v are adjacent, therefore d(u,v) = 1.

Also, e(v) ≥ d(v,w) so that d(v,w)≤ e(v).

Thus, from (9.18.1) we have

e(u) ≤ 1 +d(v, w) so that e(u) ≤ 1 + e(v).

Therefore, e(u)− e(v) ≤ 1. (9.18.2)

Similarly, by considering an eccentric vertex of v, we have
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e(v)− e(u) ≤ 1. (9.18.3)

From (9.18.2) and (9.18.3) it follows that

|e(u)− e(v)| ≤ 1. q

Note The above result shows that the eccentricities of two adjacent vertices are either
equal or differ by 1 as |e(u)− e(v)| ≤ 1 gives |e(u)− e(v)| = 0 or |e(u)− e(v)| = 1.

An important consequence of Theorem 9.18 is as follows.

Corollary 9.4 If u0 u1 u2 . . .um is a path in a connected graph and e(u0) < e(um) and k is
any integer such that e(u0) < k < e(um), then there exists an integer j (0 ≤ j ≤ m) such that
e(u j) = k.

Proof We know the difference of eccentricities of any two adjacent vertices along the
path u0 u1 u2 . . .um is always less or equal to 1. Therefore every integer between e(u0) and
e(um) occurs as the eccentricity of some vertex in this path. This can also be seen in the
following way.

Assume, e(u0) < e(u1) < . . . < e(u j−1),

and let j = 1 +max{i : e(ui) < k}, that is, j−1 = max{i : e(ui) < k}.

Thus, e(u j−1) < k.

Therefore, |e(u j)− e(u j−1)| ≤ 1 gives

e(u j) ≤ e(u j−1)+1 < k+1,

so that e(u j) ≤ k. (9.4.1)

But by the choice of j, we have e(u j) ≥ k. (9.4.2)

Hence from (9.4.1) and (9.4.2), we get e(u j) = k. q

The following necessary condition for a positive sequence to be an eccentricity sequence
is due to Lesniak [146].

Theorem 9.19 (Lesniak) If a non decreasing sequence [ei]
n
1

of positive integers is an
eccentric sequence then

i. 2e1 ≤ n,

ii. en ≤ min{n−1,2e1} and

iii. for every integer k such that e1 < k ≤ en, there exists an integer i (2 ≤ i ≤ n−1) such
that ei = ei+1 = k.
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Proof

i. Let the vertices of G be labelled as v1, v2, . . .,vn such that e(vi) = ei. Then G has a
spanning tree T which preserves the distance from v1. This gives

eG(v1) = eT (v1) and eG(vi) ≤ eT (vi),

for 2 ≤ i ≤ n (since removal of edges cannot reduce distances)

Thus, if [a1, a2, . . ., an] is the eccentricity sequence of T , we have a1 = e1. So it is
enough to prove that 2a1 ≤ n. We prove this for any tree T .

Now let T be any tree with eccentricity sequence [a1, a2, . . . , an].

If n = 2, then a1 = a2 = 1, and the result is true. So assume n ≥ 3.

Let u be a central vertex of T . Then e(u) = a1. Also u is a cut vertex of T .

Suppose a1 = e(u) ≥
n +1

2
. [2a1 ≥ n +1]

Since an eccentric vertex u of u should lie in a component of T −u, there is at least

one component C of T −u with |V(C)| ≥
n +1

2
.

Now, let v be the vertex adjacent to u in C. Then for any vertex w in C, we have
d(v, w) = d(u, w)−1. So, d(v, w) < e(u), because d(u, w) ≤ e(u) and so
d(u, w)−1 < e(u).

For every vertex w in V (T )−V (C), we have d(v, w)−d(u, w) = 1,

so that d(v, w) = d(u, w)+1.

Total vertices in T is n, |V(C)| ≥
n +1

2
, therefore number of vertices in V(T )−V (C)

≤ n−

(

n +1

2

)

=
n−1

2
.

That is, |V(T )−V(C)| ≤
n−1

2
. Therefore, d(u, w) ≤

n−1

2
−1 =

n−3

2
.

Thus, d(v, w) ≤
n−3

2
+1 =

n−1

2
. So, d(v,w) < e(u).

Hence for all vertices w, we have d(v,w) < e(u), and thus e(v) < e(u), so that e(v) <
a1, which is a contradiction as a1 is the least eccentricity of a vertex of T . Thus,
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a1 ≥
n +1

2
is wrong and so, a1 ≤

n

2
.

ii. The maximum distance possible in an n−vertex graph is n− 1. So, en ≤ n− 1. Also,
en ≤ 2e1, [r ≤ d ≤ 2r, and here d = en, r = e1]. Hence, en ≤ min{(n−1),2e1}.

iii. We have to prove that each integer between e1 and en (en inclusive) occurs at least
twice in the sequence. Let u1 be the central vertex and uk be the peripheral vertex of
G. Then e(u1) = e1 and e(uk) = en. Since G is connected, there exists a u1 − uk path.
Now by Corollary 9.4, if k is any integer between e1 and ek, there exists a vertex u j in
this path with e(u j) = k. This gives the existence of a vertex whose eccentricity is k.

If e(w) > e1, we show there is a vertex u other than w such that e(u) = e(w). Let w be
an eccentric vertex of w, that is, d(w,w) = e(w) = k, say. As we have assumed that u1

is the central vertex of G, let P = u1 . . .um(um = w) be a u1−w distance path in G. Since
e(u1) = e1 < e(w) = d(w,w) ≤ e(w), applying Corollary 9.4, there is a vertex u j in this
path such that e(u j) = k. But d(w, u j) ≤ m−1 = d(u1,w) ≤ e(u1) = e1 < e(w) = d(w,w).
Therefore, d(w, u j) < d(w w). Thus, u j 6= w and the result is proved. q

The following characterisation of eccentricity sequences of trees is again due to Lesniak
[146].

Theorem 9.20 (Lesniak) A non-decreasing sequence [ei]
n
1

of positive integers is the
eccentric sequence of a tree if and only if

i. For each integer k with e1 < k ≤ en, we have

ei = ei+1 = k, for some i, 2 ≤ i ≤ n−1,

ii. Either e1 =
en

2
and e1 6= e2, or e1 =

en +1

2
, e1 = e2 and e2 6= e3.

Proof

Necessity Let the nondecreasing sequence [ei]
n
1

of positive integers be the eccentric se-
quence of a tree. Then (i) follows from condition (iii) of the previous result.

Let r be the radius and d the diameter of the tree, so that e1 = r and en = d. Since a tree
is either unicentral or bicentral, we have d = 2r for unicentral,

and d = 2r−1 for bicentral.
In case the tree is unicentral, then the eccentricity of the center v1 is e1 and e1 6= e2.

Thus, en = 2e1 which implies that e1 =
en

2
and e1 6= e2.

In case the tree is bicentral, then e1 = e2 and d = 2r − 1 gives en = 2e
1
− 1, so that

e1 =
en +1

2
with e2 6= e3.

Sufficiency Let the nondecreasing sequence [ei]
n
1

of positive integers satisfy conditions
(i) and (ii). We construct a tree with eccentric sequence [ei]

n
1

in the following way.
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Let P be a path of length en = d. Then eccentric sequence of P is

S1 =
d

2
,

(

d

2
+1

)2

,

(

d

2
+2

)2

, . . .,

(

d

2
+

d

2

)2

, if d is even,

or S2 =

(

d +1

2

)2

,

(

d +1

2
+1

)2

, . . .,

(

d +1

2
+

d +1

2
−1

)2

, if d is odd,

that is, S1 = r, (r +1)2, (r +2)2, . . ., (r + r)2, where r =
d

2
,

or S2 = r2, (r +1)2, (r +2)2, . . ., (r + r−1)2, where r =
d +1

2
,

where powers denote repetition of eccentricity.
Let the given sequence [ei]

n
1

be written in power notation π = ri1(r + 1)i2 . . .dik , where
i1 = 1 or 2, according as d is even or odd. If i j > 2 for any j, 1 < j ≤ k, we attach i j−2 vertices
to any vertex with eccentricity r + j−2 in the path P. This does not alter the eccentricities
of the vertices of P and the resulting tree T has eccentric sequence [ei]

n
1
. q

Example Construct a tree with eccentric sequence [42, 54, 63, 74].
First draw a path P say u0 u1u2 u3 u4 u5 u6 u7 of length 7. Then the eccentricities of these

vertices are 7, 6, 5, 4, 4, 5, 6, 7.

Fig. 9.19

To get two more vertices of eccentricities 5, attach a new vertex each to u3 and u4. Let
these new vertices be u8 and u9. (Here i2 = 4 > 2, and i2 −2 = 4−2 = 2). So 2 vertices one
each are attached to the vertices of eccentricities r + j−2 = r +2−2 = 4 +2−2 = 4, i.e., u3

and u4). Now i3 = 3 > 2 and i3−2 = 3−2 = 1. So one vertex is to be attached to the vertex of
eccentricity r + j−2 = 4 +3−2 = 5, i.e., the vertex u2 or u8 or u9 or u5. Let this new vertex
u10 be attached to u9 say. Now i4 = 4 > 2 and i4 −2 = 4−2 = 2. So two new vertices are to
be attached, one each among the vertices with eccentricities r+ j−2 = 4+4−2 = 6, i.e., to
the vertices u1, u6, u10. Let these new vertices be u11 attached to u10 and u12 attached to u1.
The resulting tree is shown in Figure 9.19.

Remark Clearly, there are many trees realising this eccentric sequence.
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Neighbourhood Let v be any vertex of a connected graph G. The ith neighbourhood of
v denoted by Ni(v) is the set of all those vertices in V whose distance from v is i.

i.e., Ni(v) = {u ∈V : d(v, u) = i}.

We denote N1(v) by N(v) and call it the neighbourhood of v.

Example Consider the graph in Figure 9.20.

We have N1(v) = N(v) = {u1, u2, u3, u4, u5, u6}.

Fig. 9.20

We have the following observations.

Lemma 9.2 Any two vertices with the same neighbourhood in a graph have the same
eccentricity.

Proof Let u and v be two vertices with the same neighbourhood. So N(u) = N(v). There-
fore the path lengths from u and v to the other vertices of the graph are equal. Clearly, u

and v are not adjacent. q

Lemma 9.3 If u and v are adjacent in G and N(u)−{v} = N(v)−{u}, then u and v have
the same eccentricity in G.

Proof Let G be a graph in which uv = e and N(u)−{v}= N(v)−{u}.
Let H = G− e. Then u and v are not adjacent in H so that u and v have the same neigh-

bourhood in H.
Therefore, e(u|H) = e(v|H) where (e(u|H) means eccentricity of vertex u in graph H). If

e(u|G) = 1, then e(v|G) = 1 also. If not, then e(u|G) = e(u|H) = e(v|H) = e(v|G). q

Definition: Let v be a vertex of a graph G and let H be a graph obtained from G− v by
adding edge to each vertex of a new graph Kp (or Kp) to every vertex of G− v to which v

was adjacent in G. Then H is said to be obtained from G by replacing v by Kp (or Kp). This
operation is illustrated in Figure 9.21.
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Fig. 9.21

The operation of replacing v in G by Kp is called multiplication of the vertex in G. The
operation of replacing v in G by Kp is called the linked multiplication of v in G. Lesniak
observed that multiplication or linked multiplication of one or more vertices of a graph is
an operation preserving the eccentricity set of the graph.

Lemma 9.4 If H is the graph obtained by replacing a vertex v of a graph G with diameter
greater than one, by a Kp or Kp (for any positive integer p), then G and H have the same
eccentricity sets.

Proof Since v and any vertex of Kp have the same neighbourhood in H,

e(u|H) = e(v|G), for every u ∈ Kp.

For replacement by Kp, we have for any two adjacent vertices ui and u j in Kp,

N(ui)−{u j} = N(u j)−{ui}.

Therefore, e(ui|H) = e(u j|H). So, e(v|H) = e(u|G), for every u ∈ Kp.

Thus, e(u|H) = e(v|G), for every u ∈ Kp (Kp) and obviously

e(w|H) = e(w|G), for all other vertices. q

The above result is illustrated in Figure 9.22, where we choose K2 and K2

Fig. 9.22

The next gives the necessary and sufficient conditions for an eccentricity sequence of a
graph, due to Lesniak [146].
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Theorem 9.21 (Lesniak) A nondecreasing sequence of positive integers [e
r1

1
,e

r2

2
, ..., e

rk

k ]
is an eccentricity sequence if and only if some of its subsequence [e

s1

1
, e

s2

2
, . . . , e

sk

k ] with
si ≤ ri and no si = 0 for 1 ≤ i ≤ k, is an eccentricity sequence.

Proof

Necessity Since every sequence is its own subsequence, necessity follows.

Sufficiency Let [es1

1
,e

s2

2
, ...,e

sk

k
] be the eccentricity sequence of a graph G. Let vi be a vertex

of G with e(vi) = ei,1 ≤ i ≤ k. Let n1 = r1 − s1 +1 so that r1 = n1 + s1 −1.

Now let G1 be obtained from G by replacing v1 by Kn1
or Kn1

. Then every one of the
vertices of this Kn1

or Kn1
has eccentricity e(v1 |G) and the eccentricities of the vertices of G

are unaltered in G1. Thus G1 has eccentricity sequence [er1

1
, e

s2

2
, . . ., e

sk

k
].

Let G2 be obtained from G1 by replacing v2 by Kn2
or Kn2

. Then by similar argument, G2

has eccentricity sequence [er1

1
, e

r2

2
, . . ., e

sk

k ].
Proceeding in this way, by successively replacing v3, v4, . . .,vk by Kn3

(Kn3
), Kn4

(Kn4
),

. . .,Knk
(Knk

), we get a graph Gk with eccentricity sequence [e
r1

1
, e

r2

2
, . . ., e

rk

k ]. q

Remarks

1. It is assumed that ek > 1.

2. The construction of Gk is not unique.

3. This result keeps unsolved the problem of characterising minimal eccentricity se-
quences, that is, those eccentricity sequences which have no proper eccentric subse-
quences.

The next result characterises eccentricity sets and is due to Behzad and Simpson [17].

Theorem 9.22 A non-empty set S = {e1,e2, . . .,ek} of positive integers arranged in in-
creasing order is an eccentricity set if and only if k ≤ e1 +1 and ei+1 = ei +1 for 1≤ i≤ k−1.

Proof

Necessity Let S be an eccentricity set. Then by (iii) of Theorem 4.24, ei+1 = ei + 1 for
each i, 1 ≤ i ≤ k−1. This gives ek = e1 + k−1. Since ek ≤ 2e1, we get k ≤ e1 +1.

Sufficiency If e1 = 1, then k = 1 or 2 and S = {1} or {1,2}. In this case, K2 and K1,n realise
the sets.

For e1 > 1, let G be the graph obtained by identifying a vertex of a cycle C2e1
with an

end vertex of a path Pk. Let e1 −k+1 = d. Then d ≥ 0, and the eccentricity sequence of G is
easily verified to be [e2d+1

1
, (e1 +1)3, (e1 +2)3, . . ., (e1 + k−2)3, (e1 + k−1)3]. Hence S is the

eccentricity set. q
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9.5 Distance Degree Regular and Distance Regular Graphs

Let G be a connected graph and let v be any vertex of G. Let e be the eccentricity of
vertex v and N j(v) be the jth neighbourhood of v. Assume, n j(v) =

∣

∣N j(v)
∣

∣, for 0 ≤ j ≤
e. The sequence D(G, v) = [n0(v), n1(v), . . ., ne(v)] is called the distance degree sequence
(DDS) of v in G. If all the vertices of G have the same distance degree sequence D(G) =
[n0, n1, . . ., nd ], then G is said to be distance degree regular.

If G is not distance degree regular, the n vectors D(G, vi), 1 ≤ i ≤ n, arranged lexico-
graphically in an array with variable row sizes is called the distance degree array of G

(DDA(G)).
The distance of vertex v is defined by

D(v) =
e(v)

∑
j=1

n j(v).

Let Di be the distance of the vertex vi. The sequence DS(G) = [D1, D2, . . ., Dn] in non-
decreasing order is called the distance sequence of the graph.

A vertex v with minimum distance D(v) is called a median of G and the subgraph induced
by the set M of median vertices of G is called the median subgraph of G.

Clearly, if G is distance degree regular, then all vertices in G have the same eccentricity,
and G is a self-centered graph. Also, n0 = 1 and n1 = |N1(v)| for every v ∈ G, so that G is
n1-regular.

Randic [214] conjectured that two trees are isomorphic if and only if they have same
DDA and Slater [187] disproved this giving the counter example as shown in Figure 9.23.

Fig. 9.23
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Definition: Let G be a connected graph with diameter d and let k = b0, b1, . . . , bd−1;
l = c1, c2, . . ., cd be 2d non-negative integers. Then G is said to be distance regular (DR) if
for every pair of vertices u, v in G with d(u, v) = j, we have, (i) the number of vertices in
N j−1(v) adjacent to u is c j, 1 ≤ j ≤ d and (ii) the number of vertices in N j+1(v) adjacent to u

is b j, 0 ≤ j ≤ d −1.
The sequence [b0, b1, . . ., bd−1, c1, c2, . . . , cd] is called the intersection array of G.
Clearly, DR graphs are k-regular and self-centered. The examples of distance regular

graphs are Kn, Kn, n and the cubes Qn.
A graph G is said to be strongly regular (SR) with parameters (n, k, λ , µ) if it is a k-

regular graph of order n in which every pair of adjacent vertices are mutually adjacent to λ
vertices and every pair of non-adjacent vertices are mutually adjacent to µ vertices.

The Petersen graph is strongly regular with parameters (10, 3, 0, 1), that is n = 10, k = 3,
λ = 0, µ = 1 (Fig. 9.24).

Fig. 9.24

9.6 Isometry

The concept of isometry as in Chartrand and Stewart [52] is as follows.
Let G1 and G2 be connected graphs with vertex sets V1 and V2 respectively. Then G2 is

said to be isometric from G1 if for each v ∈V1, there is a one-one map φv : V1 →V2 such that
φv preserves distances from v, that is dG2

(u,v) = dG1
(φv(v),φv(u)) for every u ∈V1.

Two graphs G1 and G2 are said to be isometric if they are isometric from each other.

Example Consider the graphs shown in Figure 9.25, we have

φ1 = φ4 = φ5 (1 → a, 2 → b, 3 → c, 4 → d, 5 → e),

φ2 = (2 → e, 1 → a, 3 → d, 4 → c, 5 → b), φ3 = (3 → e, 4 → a, 2 → d, 1 → b, 5 → c).

Here G2 is isometric from G1.
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Fig. 9.25

Remarks Isometry between graphs as defined above does not imply isomorphism (Fig.
9.26). A pair of isometric graphs may even have same degree sequence and yet be non-
isomorphic (Fig. 9.27).

Fig. 9.26

Fig. 9.27

We now have the following results.

Theorem 9.23 If G1 and G2 are k-regular graphs of order n, where k ≥ n−1/2, then G1

and G2 are isometric.

Proof Since G1 is a k-regular graph with k ≥ n−1/2, d(G1) ≤ 2.
Let u ∈V (G1) and v ∈V (G2) be any two vertices and define

φu : V (G1) →V (G2) by φu(u) = v.

For i = 1, 2, . . ., k, let ui ∈ N1(u) and vi ∈ N1(v) and define φu(ui) = vi.
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For i = k+1, . . ., n−1, let ui ∈ N2(u) and vi ∈ N2(v) and again let φu(ui) = vi.

The neighbourhoods are in the appropriate graphs. Then φu is an isometry of G2 from
G1 at u. Since u and v are arbitrary, it is easily seen that G2 is isometric from G1, and G1 is
isometric from G2. q

Theorem 9.24 A necessary condition for two graphs to be isometric is that they have
the same degree set and the same eccentricity set.

Proof Let G1 = (V1, E1) and G2 = (V2, E2) be isometric graphs. As G2 is isometric from
G1, let φv be the one-one mapping from V(G1) to V(G2). Therefore, d(v|G1) = d(Φv(v)|G2).
Also φv has the property of preserving distance, therefore e(v|G1) = e(φv(v)|G2). So the
eccentricity set of G1 is included in the eccentricity set of G2.

Again, as G1 is isometric from G2, therefore, the degree set and eccentricity set of G2 are
included respectively in the degree set and eccentricity set of G1.

Hence the degree sets are equal in G1 and G2 and the eccentricity sets are equal in G1

and G2. q

9.7 Exercises

1. Show that the edge graph of K1, n is Kn.

2. Show that the edge graph of K5 is the complement of the Petersen graph.

3. Show that if L(G) is connected and regular, then either G is regular or G is a bipartite
graph in which vertices of the same partite set have the same degree.

4. If G is k-edge-connected, then prove that L(G) is k-connected and (2k − 2)-edge-
connected.

5. Show that the graph L2(G) is Hamiltonian if and only if G has a closed spanning walk.

6. Show that the graph L2(G) is Hamiltonian if and only if there is a closed walk in G

which includes at least one vertex incident with each edge of G.

7. Prove that T (Kn) ∼= L(Kn+1).

8. If G is Hamiltonian, then prove that T (G) is Hamiltonian.

9. If G is Eulerian, then prove that T (G) is both Eulerian and Hamiltonian.

10. Prove that T (G) of every nontrivial connected graph G contains a spanning Eulerian
subgraph.

11. Show that the edge graph of a graph G has a Hamiltonian path if and only if G has a
walk W such that every edge of G not in W is incident with W .
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12. If G is any connected graph with δ (G) ≥ 4, then prove that L2(G) is Hamiltonian-
connected.

13. Construct graphs with eccentricity sequence

[2, 33, 43].

14. If G is a connected graph with diameter 3 and e(u|G) = 3, then show that e(u|G) = 2.

15. If [e1, e2, . . ., en] with en < 2e1 − 1 is an eccentricity sequence, then show that each
central vertex lies on a cycle.

16. If [ei]
n
1

is the eccentricity sequence of an (n, m) graph, show that

m ≤
1

2

(

n2 −
n

∑
i=1

ei

)

.

17. For a distance regular graph, prove the following

a. If 1 ≤ i ≤
1

2d
, then bi ≥ ci.

b. If 1 ≤ i ≤
1

d −1
, then b1 ≥ ci.

c. c2 ≥ k−2b1.


