
7. Colourings

Colouring is one of the important branches of graph theory and has attracted the attention
of almost all graph theorists, mainly because of the four colour theorem, the details of
which can be seen in Chapter 12.

7.1 Vertex colouring

A vertex colouring (or simply colouring) of a graph G is a labelling f : V(G) → {1, 2, . . .};
the labels called colours, such that no two adjacent vertices get the same colour and each
vertex gets one colour. A k-colouring of a graph G consists of k different colours and G is
then called k-colourable. A 2-colourable and a 3-colourable graph are shown in Figure 7.1.
It follows from this definition that the k-colouring of a graph G(V, E) partitions the vertex
set V into k independent sets V1, V2, . . . , Vk such that V = V1 ∪V2 ∪ . . .∪Vk. The independent
sets V1, V2, . . . , Vk are called the colour classes and the function f : V(G) → {1, 2, . . . , k}
such that f (v) = i for v ∈Vi, 1 ≤ i ≤ k, is called the colour function.

Fig. 7.1
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The minimum number k for which there is a k-colouring of the graph is called the chromatic
number (chromatic index) of G and is denoted by χ(G). If χ(G) = k, the graph G is said to
be k-chromatic.

We observe that colouring any one of the components in a disconnected graph does
not affect the colouring of its other components. Also, parallel edges can be replaced by
single edges, since it does not affect the adjacencies of the vertices. Thus, for colouring
considerations, we opt only for simple connected graphs.

The following observations are the immediate consequences of the definitions intro-
duced above.

1. A graph is 1-chromatic if and only if it is totally disconnected.

2. A graph having at least one edge is at least 2-chromatic (bichromatic).

3. A graph G having n vertices has χ(G) ≤ n.

4. If H is subgraph of a graph G, then χ(H) ≤ χ(G).

5. A complete graph with n vertices is n-chromatic, because all its vertices are adjacent.
So, χ(Kn) = n and χ(Kn) = 1. Therefore we see that a graph containing a complete
graph of r vertices is at least r-chromatic. For example, every graph containing a
triangle is at least 3-chromatic.

6. A cycle of length n ≥ 3 is 2-chromatic if n is even and 3-chromatic if n is odd. To see
this, let the vertices of the cycle be labelled 1, 2, . . ., n, and assign one colour to odd
vertices and another to even. If n is even, no adjacent vertices get the same colour,
if n is odd, the nth vertex and the first vertex are adjacent and have the same colour,
therefore need the third colour for colouring.

7. If G1,G2, . . .,Gr are the components of a disconnected graph G, then

χ(G) = max
1≤i≤r

χ(Gi).

We note that trees with greater or equal to two vertices are bichromatic as is seen in the
following result.

Theorem 7.1 Every tree with n ≥ 2 vertices is 2-chromatic.

Proof Let T be a tree with n ≥ 2 vertices. Consider any vertex v of T and assume T to
be rooted at vertex v (Fig. 7.2). Assign colour 1 to v. Then assign colour 2 to all vertices
which are adjacent to v. Let v1,v2, . . .,vr be the vertices which have been assigned colour
2. Now assign colour 1 to all the vertices which are adjacent to v1,v2, . . .,vr. Continue this
process till every vertex in T has been assigned the colour. We observe that in T all vertices
at odd distances from v have colour 2, and v and vertices at even distances from v have
colour 1. Therefore along any path in T , the vertices are of alternating colours. Since there
is one and only one path between any two vertices in a tree, no two adjacent vertices have
the same colour. Thus T is coloured with two colours. Hence T is 2-chromatic. q
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Fig. 7.2

The converse of the above theorem is not true, i. e., every 2-chromatic graph need not
be a tree. To see this, consider the graph shown in Figure 7.3. Clearly, G is 2-chromatic,
but is not a tree.

Fig. 7.3

The next result due to Konig [134] characterises 2-chromatic graphs.

Theorem 7.2 (Konig) A graph is bicolourable (2-chromatic) if and only if it has no odd
cycles.

Proof Let G be a connected graph with cycles of only even length and let T be a spanning
tree in G. Then, by Theorem 7.1, T can be coloured with two colours. Now add the chords
to T one by one. As G contains cycles of even length only, the end vertices of every chord
get different colours of T . Thus G is coloured with two colours and hence is 2-chromatic.
Conversely, let G be bicolourable, that is, 2-chromatic. We prove G has even cycles only.
Assume to the contrary that G has an odd cycle. Then by observation (6), G is 3-chromatic,
a contradiction. Hence G has no odd cycles. q

Corollary 7.1 For a graph G, χ(G) ≥ 3 if and only if G has an odd cycle.

The following result is yet another characterisation of 2-chromatic graphs.

Theorem 7.3 A nonempty graph G is bicolourable if and only if G is bipartite.
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Proof Let G be a bipartite graph. Then its vertex set V can be partitioned into two
nonempty disjoint sets V1 and V2 such that V = V1 ∪V2. Now assigning colour 1 to all ver-
tices in V1 and colour 2 to all vertices in V2 gives a 2-colouring of G. Since G is nonempty,
χ(G) = 2.

Conversely, let G be bicolourable, that is, G has a 2-colouring. Denote by V1 the set of
all those vertices coloured 1 and by V2 the set of all those vertices coloured 2. Then no two
vertices in V1 are adjacent and no two vertices in V2 are adjacent. Thus any edge in G joins
a vertex in V1 and a vertex in V2. Hence G is bipartite with bipartition V = V1 ∪V2. q

7.2 Critical Graphs

If G is a k-chromatic graph and χ(G−v) = k−1 for every vertex v in G, then G is called a k-
critical graph. A 4-critical graph is shown in Figure 7.4. If G is k-chromatic, but χ(G−e) =
k−1 for each edge e of G, then G is called k-edge-critical graph, or k-minimal. A graph G

is said to be contraction critical or con-critical if χ(H) < χ(G) for every proper contraction
H of G. A graph G is said to be critical if χ(H) < χ(G) for every proper subgraph H of G.

Fig. 7.4

We have the following observations.

1. Every critical or minimal graph is connected.

2. Every connected k-chromatic graph contains a critical or minimal k-chromatic graph.

3. χ(G) = max {χ(B) : B is a block of G}.

4. The only 1-critical or 1-minimal graph is K1, the only 2-critical or 2-minimal graph
is K2 and the only 3-critical or 3-minimal graphs are C2n+1,n ≥ 1, that is, odd cycles.

The following result due to Dirac [66] describes some of the important properties of a
k-critical graph.

Theorem 7.4 If G is a k-critical graph, then

a. G is connected,
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b. δ (G) ≥ k−1,

c. G has no pair of subgraphs G1 and G2 for which G = G1∪G2, and G1∩G2 is a complete
graph,

d. G− v is connected for every vertex v of G, provided k > 1.

Proof

a. Assume G is not connected. Since χ(G) = k, by observation 7, there is a component
G1 of G such that χ(G1) = k. If v is any vertex of G which is not in G1, then G1 is a
component of the subgraph G− v. Therefore, χ(G− v) = χ(G1) = k. This contradicts
the fact that G is k-critical. Hence G is connected.

b. Let v be a vertex of G so that d(v) < k− 1. Since G is k-critical, the subgraph G− v

has a (k− 1)-colouring. As v has at most k− 2 neighbours, these neighbours use at
most k−2 colours in this (k−1)-colouring of G− v . Now, colour v with the unused
colour and this gives a (k−1)-colouring of G. This contradicts the given assumption
that χ(G) = k. Hence every vertex v has degree at least k−1.

c. Let G = G1 ∪G2, where G1 and G2 are subgraphs with G1 ∩G2 = Kt . Since G is k-
critical, therefore G1 and G2 both have chromatic number at most k − 1. Consider
a (k− 1)-colouring of G1 and a (k− 1)-colouring of G2. As G1 ∩G2 is complete, in
the overlap, every vertex in G1 ∩G2 has a different colour (in each of the (k− 1)-
colourings). This implies that colours in the (k−1)-colouring of G2 can be rearranged
such that it assigns the same colour to each vertex in G1 ∩G2, as is given by the
colouring of G1. Combining the two colourings then produces a (k−1)-colouring of
all of G. This is impossible, since χ(G) = k. Thus no subgraphs of the type G1 and G2

exist.

d. Assume G− v is disconnected, for some vertex v of G. Then G− v has a subgraph H1

and H2 with H1 ∪H2 = G− v and H1 ∩H2 = Φ. Let G1 and G2 be the subgraphs of G,
where G1 is induced by H1 and v, while G2 is induced by H2 and v. Then G = G1 ∪G2

and G1 ∩G2 = K1 (with K1 as a single vertex). This contradicts (c) and thus G− v is
connected. q

Let S = {u, v} be a 2-vertex cut of a critical k-chromatic graph G. Since no separating
set of a critical graph is a complete graph, therefore uv is not an edge of G. Let Gi be the
S-component of G. Gi is said to be of type 1 if every (k−1) colouring of Gi assigns the same
colour to u and v, Gi is of type 2 if every (k−1)-colouring of Gi assigns different colours to
u and v, and Gi is of type 3 if some (k−1)-colouring of Gi assigns same colour to u and v,
while some other (k−1)-colouring assigns different colours to u and v.

The following characterisation of k-critical graphs with a 2-vertex cut is due to Dirac.

Theorem 7.5 If G is a minimal k-chromatic graph with a 2-vertex cut S = {u, v}, then (i)
G = G1 ∪G2, where Gi is the S-component of type i, i = 1, 2 and (ii) both G+uv and G : uv

are k-minimal.
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Proof Let G be a minimal k-chromatic graph with a 2-vertex cut S = {u, v}. So the
S-components of G are (k−1)-colourable. If there is no set of (k−1)-colourings of the S-
components all of which agree on S, then G is (k−1)-colourable. Therefore there is a type
1 S-component G1 and a type 2 S-component G2. Then G1 ∪G2 is not (k− 1)-colourable.
Since G is k-critical, there is no third S-component G3. Hence, G = G1 ∪G2.

Let H1 = G1 +uv and H2 = G2 : uv. We prove that H2 is k-minimal. Since G2 is of type 2,
therefore every (k−1)-colouring of G2 assigns different colours to u and v. As u and v are
identified to a single vertex, say w in H2, so a k-colouring is necessary to colour H2, that
is, H2 is k-chromatic. We further prove that χ(H2 − e) = k−1 for any edge of H2. Any such
edge e can be considered to belong to G and in the (k−1)-colouring of G− e, u and v get
the same colour, since they can be considered to belong to G1 which is a subgraph of G−e.
The restriction of such a colouring of G− e to H2 − e (with u and v identified as w with the
common colour of u and v) is a (k−1)-colouring of H2 − e. This proves the result.

That H1 is minimal, can be proved in a similar manner. q

Theorem 7.6 Every k-chromatic graph can be contracted into a con-critical chromatic
graph.

Proof Let G be a k-chromatic graph and let the edge e of G be contracted. Then a colour-
ing of G can be used to give a colouring of G|e except that, possibly the vertex formed
by the contraction may be assigned an extra colour. Thus, χ(G|e) ≤ χ(G)+1. On the other
hand, a colouring of G|e can be used to get a colouring for G by using an extra colour
for one of the end vertices of e. Therefore, χ(G) ≤ χ(G|e)+ 1. Thus the contraction of an
edge changes the chromatic number by at most one. Sometimes contraction of an edge
may increase the chromatic number, but by repeated contractions, the number of edges and
therefore the chromatic number gets reduced. Clearly, the connected graph can be con-
tracted to a single vertex whose chromatic number is one. In between, a stage arises where
the chromatic number of the graph is the same as the original, but the contraction of any
edge reduces the chromatic number by one. q

As noted earlier, every connected k− chromatic graph contains a critical or minimal k-
chromatic graph. To see this, we observe that if G is not k-critical, then χ(G− v) = k, for
some vertex v of G. If G− v is k−critical, then this is the required subgraph. If not, then
G−{v,w} = (G− v)−w has chromatic number k, for some vertex w in G− v. If this new
subgraph is k-critical, then again this is the required subgraph. If not, we continue this
vertex deletion procedure, and we will clearly get a k-critical subgraph.

We have the following immediate observation.

Theorem 7.7 Any k-chromatic graph has at least k vertices of degree at least k−1 each.

Proof Let G be a k-chromatic graph and let H be a k-critical subgraph of G. Then, by
Theorem 7.4 (b), every vertex of H has degree at least k−1 in H and hence in G. Since H

is k-chromatic, H has at least k vertices. This completes the proof. q
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We note that there is no easy characterisation of graphs with chromatic number greater
or equal to three. The graph vertex - colouring problem is a standard NP-complete problem
and no good algorithm for finding χ(G) has been discovered for the class of all graphs,
though for some special classes of graphs polynomial time algorithms have been found.
There are various results which give upper bounds for the chromatic number of an arbitrary
graph G, provided the degrees of all the vertices of G are known. The first of these is due
to Szekeres and Wilf [237].

Theorem 7.8 Let G be a graph and k = max{δ (G′) : G′ is a subgraph of G}. Then χ(G) =
k−1.

Proof Let H be a k-minimal subgraph of G. Then H is a subgraph of G and therefore
δ (H) ≤ k. Using Theorem 7.4, we have, δ (H) ≥ χ(H)−1 = χ(G)−1. Thus, χ(G) ≤ δ (H)+
1 = k+1. q

The next result is due to Welsh and Powell [262] and its proof is due to Bondy [32].

Theorem 7.9 Let G b a graph with degree sequence [di]
n
1

such that d1 ≥ d2 ≥ . . . ≥ dn.
Then, χ(G) ≤ max{min{i, di +1}}.

Proof Let G be k-chromatic. Then, by Theorem 7.8, G has at least k vertices of degree at
least k−1. Therefore, dk ≥ k−1 and max {min {i, di +1}} ≥ min {k, dk +1} = k = χ(G).

q

We have the following upper bounds for chromatic number.

Theorem 7.10 For any graph G, χ(G) ≤4(G)+1.

Proof Let G be any graph with n vertices. To prove the result, we induct on n. For n =
1,G = K1 and χ(G) = 1 and 4(G) = 0. Therefore the result is true for n = 1.

Assume that the result is true for all graphs with n−1 vertices and therefore by induction
hypothesis, χ(G)≤4(G−v)+1. This shows that G−v can be coloured by using 4(G−v)+1

colours. Since 4(G) is the maximum degree of a vertex in G, vertex v has at most 4(G)
neighbours in G. Thus these neighbours use up at most 4(G) colours in the colouring of
G− v.

If 4(G) = 4(G− v), then there is at least one colour not used by v’s neighbours and that
can be used to colour v giving a 4(G)+1 colouring for G.

In case 4(G) 6= 4(G− v), then 4(G− v) < 4(G). Therefore, using a new colour for v,
we have a 4(G− v)+2 colouring of G and clearly, 4(G− v)+2 ≤4(G)+1. Hence in both
cases, it follows that χ(G) ≤4(G)+1. q

Remarks

1. Clearly, Theorem 7.10 is a simple consequence of Theorem 7.7. This is because if G

is k− chromatic, then Theorem 7.4 gives 4≥ k−1, that is, χ ≤4+1.

2. The equality in Theorem 7.10 holds if G = C2n+1, n ≥ 1 and if G = Km.
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7.3 Brook’s Theorem

Greedy colouring algorithm: The greedy colouring with respect to a vertex ordering
v1, v2, . . . , vn of V (G) is obtained by colouring vertices in the order v1, v2, . . . , vn assigning
to vi the smallest − indexed colour not already used on its lower − indexed neighbours.
This is reported in West [263].

The following recolouring technique as noted in Clark and Holton [60] is due to Kempe
[128].

Kempe Chain argument: Let G be a graph with a colouring using at least two different
colours represented by i and j. Let H(i, j) denote the subgraph of G induced by all the
vertices of G coloured either i or j and let K be a connected component of the subgraph
H(i, j). If we interchange the colours i and j on the vertices of K and keep the colours
of all other vertices of G unchanged, then we get a new colouring of G, which uses the
same colours with which we started. This subgraph K is called a Kempe chain and the
recolouring technique is called the Kempe chain argument (Fig. 7.5).

Fig. 7.5

The following result due to Brooks [39] is an improvement of the bounds obtained in
Theorem 7.10. We give two proofs of Brooks theorem, the first given by Lovasz [150] uses
greedy colouring, and the second proof uses Kempe chain argument.

Theorem 7.11 (Brooks) If G is a connected graph which is neither complete nor an odd
cycle, then χ(G) ≤4(G).

Proof Let G be a connected graph with vertex set V = {v1, v2, . . ., vn} which is neither a
complete graph, nor an odd cycle and let 4 = k. Since G is a complete graph for k = 1 and
G is an odd cycle or a bipartite graph for k = 2, let k ≥ 3.
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Assume G is not k-regular. Then there exists a vertex say v = vn such that d(v) < k. Since
G is connected, we form a spanning tree of G starting from vn and whose vertices are
arranged in the order vn, vn−1, . . . , v1 (Fig. 7.6).

Fig. 7.6

Clearly, each vertex vi other than vn in the resulting order vn, vn−1, . . . , v1 has a higher
indexed neighbour along the path to vn in the tree. Therefore each vertex vi has atmost k−1

lower indexed neighbours and the greedy colouring needs at most k colours (Fig. 7.7).

Fig. 7.7

Now, let G be k-regular. Assume G has a cut vertex say x and let G′ be a subgraph
containing a component of G− x together with the edges of G− x to x. Clearly, d(x|G′) < k.
Therefore, by using the above argument, we have a k-colouring of G′. By making use of
the permutations of the colours, it can be seen that this is true for all such subgraphs. Thus
G is k-colourable.

Now, let G be 2-connected. We claim that G has an induced 3-vertex path, with vertices
say v1, vn, v2 in order, such that G−{v1, v2} is connected.

To prove the claim, let x be any vertex of G. If k(G− x) ≥ 2, let v1 be x and let v2 be a
vertex with distance two from x, which clearly exists, as G is regular and not a complete
graph. If k(G−x) = 1, then x has a neighbour in every end block of G−x, since G has no cut
vertex. Let v1 and v2 be the neighbours of x in two such blocks. Clearly v1 and v2 are non
adjacent. Also, since blocks have no cut vertices, G−{x, v1, v2} is connected. As k ≥ 3, so
G−{v1, v2} is connected and we let x = vn, proving the claim.

Now arrange the vertices of a spanning tree of G−{v1, v2} as v3, v4, . . . , vn. As before,
each vertex before n has atmost k−1 lower indexed neighbours. The greedy colouring uses
at most k−1 colours on neighbours of vn, since v1 and v2 get the same colour.

Second Proof (Using Kempe chain argument) Let G be a connected graph with n

vertices which is neither complete nor an odd cycle. Let 4(G) = k. For k = 1, G is complete
and for k = 2, G is an odd cycle or a bipartite graph. Therefore, assume k ≥ 3.
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We induct on n. Since k ≥ 3, the induction starts from n = 4. As G is not complete, then
for n = 4, G is one of the graphs given in Figure 7.8.

Fig. 7.8

Clearly, for each such graph, the chromatic index is at most three.
Now, let n ≥ 5, and assume the result to be true for all graphs with fewer than n vertices.
If G has a vertex v of degree less than k, then it follows from Theorem 7.10 that G can

be coloured by k colours, since the neighbours of v use up atmost k−1 colours. Therefore
the result is true in this case.

Now assume that degree of every vertex of G is k, that is, G is k-regular. We show that G

has a k-colouring.
Let v be any vertex of G. Then by induction hypothesis, the subgraph G − v has a k-

colouring. If the neighbours of v in G do not use all the k colours in the k-colouring of
G− v, then any unused colour is assigned to v giving a k-colouring of G. Assume that the k

neighbours of v are assigned all the k colours in the k-colouring of G−v. Let the neighbours
of v be v1, v2, . . ., vk which are coloured by the colours 1, 2, . . . ,k respectively.

Let the Kempe chains Hvi
(i, j) and Hv j

(i, j) containing the neighbours vi and v j be dif-
ferent. That is, vi and v j are in different components of the subgraph H(i, j) induced by
the colours i and j. Therefore, using Kempe chain argument, the colours in Hvi

(i, j) are
interchanged to give a k-colouring of G− v, where now vi has been assigned the colour j.
This implies that the neighbours of v use less than k colours and the unused colour assigned
to v gives a k-colouring of G.

Now assume that for each i and j, the neighbours vi and v j are in the same Kempe
chain, which is briefly denoted by H. If the degree of vi in H is greater than one, then vi

is adjacent to at least two vertices coloured j. Therefore there is a third colour, say `, not
used in colouring the neighbours of vi. Recolour vi by ` and then colour v by i, giving the
k-colouring of G. Assume that vi and v j both are of degree one in H. Let P be a path from
vi to v j in H and let there be a vertex in P with degree at least three in H (Fig. 7.9). Let u

be the first such vertex and coloured i. (If u is coloured j, the same argument is used as in
case of i). Then at least three neighbours of u are coloured j and therefore there is a colour,
say `, not used by these neighbours. Recolour u by ` and interchange colours i and j on the
vertices of P from vi upto u, excluding u. So we get a colouring of G− v, where vi and v j

are now both coloured j. This allows v to be coloured by i.

Fig. 7.9



Graph Theory 173

Let all the vertices on a path vi to v j, excluding the end vertices vi and v j, be of degree
two in H. Clearly H contains a single path from vi to v j .

Let all the Kempe chains be paths. Let H and K be such chains corresponding to vi, v j

and vi, v` respectively, with j 6= `. Let w 6= vi be a vertex present in both the chains (Fig.
7.10). Then w is coloured i, has two neighbours coloured j and two neighbours coloured
`. Therefore there is a fourth colour, say s, not used by the neighbours of w. Now colour w

by s, and interchange colours ` and i on the vertices of K beyond w upto and including v`,
we get a colouring of G− v, where vi and v` are now both coloured i. This allows v to be
coloured by `.

Fig. 7.10

Thus assume that two such Kempe chains meet only at their common end vertex vi.
Let vi and v j be two neighbours of v which are nonadjacent and let x be the vertex

coloured j, adjacent to vi on the Kempe chain H from vi to v j . With ` 6= j, let K denote the
Kempe chain from vi to v j. Then by the Kempe chain argument, we interchange the colours
in K, without changing the colours of the other vertices. This results in vi coloured `, and v`

coloured i. Since x is adjacent to vi, it is in the Kempe chain for colours ` and j. However,it
is also the Kempe chain for colours i and j. This contradicts the assumption that Kempe
chains have at most one vertex in common, the end vertex. This contradiction implies that
any two vi and v j are adjacent. In other words, all neighbours of v are also neighbours of
each other. This shows that G is the complete graph Kk, a contradiction to the hypothesis
of G. q

Definition: In the depth first search tree (DFS), a search tree T is used to represent the
edge examination process. In DFS a new adjacent vertex is selected, which is incident
with the first edge incident with v. In other words, in DFS we leavev as quickly as possible,
examining only one of its incident edges and replacing v by a new vertex, which is adjacent
to v.

The following result is due to Chartrand and Kronk [51].

Theorem 7.12 Let G be a connected graph every depth-first search tree of which is a
Hamiltonian path. Then G is a cycle, a complete graph, or a complete bipartite graph Kn, n.
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Proof Let P be a Hamiltonian path of G, with origin u. Because the path P−u extends to
a Hamiltonian path of G, the path P extends to a Hamiltonian cycle C of G.

When C has no chord, G = C is a cycle. So let uv be a chord of C. Then u−v− is one
too, because u−CvuC−1v− is a Hamiltonian path of G, likewise, u−v− is a chord of C (where
u− denotes the successor of u on C and u−− is the successor of u−). And if the length of
uCv is at least four, uv and u−v− are also chords of C, in view of the Hamiltonian path
u−−Cv−u−C−1v−u−uv and the fact that u−v− = (u−)−v−.

When C has a chord uw of length two, let v = u−(= w−). Then vw− ∈ E. Moreover, if
vw− ∈ E, then vw−(−1) ∈ E in view of the Hamiltonian path w−(−1)CuwCw−v. It follows that
v is adjacent to every vertex of G. But then G is complete, because u−w− is a chord of length
two for all i. If C has no chord of length two, every chord of C is odd, moreover, every odd
chord must be present. Thus, G = Kn, n, where |V(G)| = 2n. q

The following is the third proof of Brook’s theorem which is due to Bondy [35].

Bondy’s Proof Suppose first that G is not regular. Let u be a vertex of degree δ and let T

be a search tree of G rooted at u. Colour the vertices with the colours 1, 2, . . ., 4 according
to the greedy heuristic, selecting at each step a pendent vertex of the subtree of T induced
by the vertices not yet coloured, assigning to it the smallest available colour and ending
with the root u of T . When each vertex v different from x is coloured, it is adjacent (in T )
to at least one uncoloured vertex and so is adjacent to at most d(v)− 1 < 4− 1 coloured
vertices. It is therefore assigning one of the colours 1, 2, . . ., 4, because d(u) = δ ≤4−1.
The greedy heuristic therefore produces a 4-colouring of G.

Now, let G be regular. If G has a cut vertex u, then G = G1 ∪G2, where G1 and G2 are
connected and G1 ∩ G2 = {u}. Because the degree of u in G is less than 4(G), neither
subgraph of G is regular, so χ(G)≤4(Gi) =4(G), i = 1,2 and χ(G) = max{χ(G1), χ(G2)} ≤
4(G). Therefore we assume that G is 2-connected.

If every depth- first search tree of G is a Hamiltonian path, then G is a cycle, a complete
graph, or a complete bipartite graph Kn, n, by Theorem 7.12. Since by hypothesis, G is
neither an odd cycle nor a complete graph, χ(G) = 2 ≤ 4(G). Suppose then, that T is a
depth-first search tree of G, but not a path. Let u be a vertex of T with at least two children,
v and w. Because G is 2-connected, both G− v and G−w are connected. Thus there are
proper descendants of v and w, each of which is joined to an ancestor of u, and it follows
that G−{v, w} is connected. Consider a search tree T with root u in G. By colouring v and
w with colour 1 and then the vertices of T by the greedy heuristic as above, ending with the
root u, we obtain a 4-colouring of G. q

Brooks theorem and the observation that in a graph G containing Kn as a subgraph,
χ(G) ≥ n, provide estimates for the chromatic number. For instance, in Figure 7.11(a) for
the graph G1, 4(G1) = 8 and G1 has K4 as a subgraph. Therefore, 4 ≤ χ(G1) ≤ 8. It can be
easily seen that χ(G1) = 4. Similarly for G2 in Fig. 7.11(b) known as the Birkhoff diamond,
4(G2) = 5 and G2 has K3 as a subgraph. So, 3 ≤ χ(G2) = 5. In fact, χ(G2) = 4.

Independent set: A set of vertices in a graph G is independent if no two of them
are adjacent. The largest number of vertices in such a set is called the vertex indepen-
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dence numberindependence number of G and is denoted by α0(G) or α0. Analogously, an
independent set of edges of G has no two of its edges adjacent and the maximum cardi-
nality of such a set is the edge independence number α1(G) or α1. For the complete graph

Kn, α0 = 1, α1 =
[n

2

]

. In the graph of Figure 7.12, α0(G) = 2 and α1(G) = 3.

Fig. 7.11

Fig. 7.12

A lower bound, noted in Berge [22] and Ore [178] and an upper bound by Harary and
Hedetniemi [106] involve the vertex independent number α0 of a graph.

Theorem 7.13 For any graph G,
n

χ(G)
≤ n

αo
≤ χ(G) ≤ n−αo +1.

Proof If χ(G) = k, then V can be partitioned into k colour classes V1, V2, . . . , Vk, each of
which is an independent set of vertices.

If |Vi| = ni, then every ni ≤ αo, so that n = ∑ni ≤ kαo . This proves the middle inequality.
Now, let S be a maximal independent set containing αo vertices. Clearly, χ(G − S) ≥

χ(G)−1.
As G− S has n−αo vertices, χ(G − S) ≤ n−αo, and χ(G) ≤ χ(G− S)+ 1 ≤ n−αo + 1,

proving the last inequality.
As G has a complete subgraph of order αo(G),

χ(G) ≥ αo(G), or
n

χ(G)
≤ n

αo(G)
, proving the first inequality. q
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The following result due to Nordhaus and Gaddum [172] gives the bounds on the sum
and product of the chromatic numbers of a graph and its complement.

Theorem 7.14 For any graph of order n,

2
√

n ≤ χ + χ ≤ n +1, (7.14.1)

and n ≤ χχ ≤
(

n +1

2

)2

, (7.14.2)

where χ = χ(G) and χ = χ(G).

Proof Evidently from Theorem 7.13, we have

χ χ ≥ n. (7.14.3)

Since the arithmetic mean is greater than or equal to the geometric mean,

χ + χ

2
≥

√

χ χ. (7.14.4)

Combining (7.14.3) and (7.14.4), we get
χ + χ

2
≥ n.

Therefore the left inequalities of (7.14.1) and (7.14.2) are proved.
Now, let d1 ≥ d2 ≥ . . .≥ dn be the degree sequence of G. Then d1 ≥ d2 ≥ . . .≥ dn, where

di = n−1−dn+1−i, is the degree sequence of G. Then by using Theorem 7.9, we have

χ(G)+ χ(G) ≤ max
i

min{di +1, i}+max
i

min{n−dn+1−i, i}

= max
i

min{di +1, i}+(n +1)−min
i

max{dn+1−i +1,n +1− i}

= max
i

min{di +1, i}+(n +1)−min
j

max{d j +1, j}.

Thus, χ(G)+ χ(G) ≤ n +1.

Also,
χ(G)+ χ(G)

2
≥

√

χ χ. Therefore,
√

χχ ≤ χ + χ

2
≤ n +1

2
. Thus, χχ ≤

(

n +1

2

)2

.

Second Proof Let G be k-chromatic and let v1, v2, . . ., vk be the colour classes of G,
where |Vi| = ni Then Σni = n and max ni ≥ n/k. Since each Vi induces a complete subgraph
of G, χ ≥ max ni ≥ n/k, so that χχ ≥ n. As the geometric mean of two positive numbers is
always less or equal to their arithmetic mean, it follows that χ + χ ≥ 2

√
n.
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To prove χ + χ ≤ n + 1, we induct on n. Clearly, the equality holds for n = 1. We as-
sume that χ(G) + χ(G) ≤ n for all graphs G having fewer than n vertices. Let H and H

be complementary graphs with n vertices and let v be a vertex of H. Then G = H − v and
G = H − v are complementary graphs with n− 1 vertices. Let the degree of v in H be d,
so that degree of v in H is n− d − 1. Clearly, χ(H) ≤ χ(G)+ 1 and χ(H) ≤ χ(G)+ 1. If ei-
ther χ(H) < χ(G)+ 1 or χ(H) < χ (G) + 1, then χ(H)+ χ(H) ≤ n + 1. If χ(H) = χ(G)+ 1

and χ(H) = χ(G)+1 , then the removal of v from H, producing G, decreases the chromatic
number, so that d ≥ χ(G). Similarly, n−d−1 ≥ χ(G). Thus, χ(G)+χ (G)≤ n−1. Therefore
we always have χ(H)+ χ(H) ≤ n +1. Applying now the inequality 4χχ ≤ (χ + χ)2, we get

χχ ≤
(

n +1

2

)2

. q

We now have the following result.

Theorem 7.15 If a connected k-chromatic graph has exactly one vertex of degree ex-
ceeding k−1, then it is minimal.

Proof Let G be a connected k-chromatic graph having exactly one vertex of degree ex-
ceeding k−1. Let e be any edge of G. Then δ (G−e) ≤ k−2 (otherwise, G will have at least
two vertices of degree exceeding k−1).

For every induced subgraph H of G− e, we have δ (H) ≤ k− 2. Thus, by Theorem 7.7,
χ(G− e) ≤ k−1 and hence χ(G− e) ≤ k−1. Since e is arbitrary, therefore G is minimal. q

We observe from Theorem 7.4(b) that the number of edges m of a k-critical graph is at
least n(k−1)/2. Dirac extended this to the inequality 2m ≥ n(k +1)−2 for a (k +1)-critical
graph, the proof of which can be found in Bollobas [29].

7.4 Edge colouring

An edge colouring of a nonempty graph G is a labelling f : E(G) →{1, 2, . . .}; the labels are
called colours, such that adjacent edges are assigned different colours. A k-edge colouring
of G is a colouring of G which consists of k different colours and in this case G is said to
be k-edge colourable.

The definition implies that the k-edge colouring of a graph G(V, E) partitions the edge
set E into k independent sets E1, E2, . . ., Ek such that E = E1 ∪E2∪ . . .∪Ek. The independent
sets Ei,1≤ i ≤ k are called the colour classes and the function f : E(G) →{1, 2, . . ., k} such
that f (e) = i, for each e ∈Ei, 1 ≤ i ≤ k, is called the colour function. The minimum number k

for which there is a k-colouring of G is called the edge chromatic umber (or edge chromatic
index) and is denoted by χ ′(G).

We have the following observations.

1. If H is a subgraph of a graph G, then χ ′(H) ≤ χ ′(G).

2. For any graph G, χ ′(G) ≥4(G).
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If v is any vertex of G with d(v) = 4(G), then the 4(G) edges incident with v have a
different colour in any edge colouring of G.

3. χ ′(Cn) =

{

2, if n is even ,
3, if n is odd .

The following is a recolouring technique for edge colouring, called Kempe chain argument.

Let G be a graph with an edge colouring using at least two different colours say i and j.
Let H(i, j) represent the subgraph of G induced by all the edges coloured either i or j. Let
K be a connected component of the subgraph H(i, j). It can be easily verified that K is
a path whose edges are alternately coloured by i and j. If the colours on these edges are
interchanged and the colours on all other edges of G are kept unchanged, the result is a new
colouring of G, using the same initial colours. The component K is called Kempe chain and
this recolouring method is called the Kempe chain argument.

Definition: Let i be a colour used in the edge colouring of a graph G. If there is an edge
coloured i incident at the vertex v of G, we say i is present at v, and if there is no edge
coloured i at v, we say i is absent from v.

The following result is due to Konig [136].

Theorem 7.16 (Konig) For a nonempty bipartite graph G, χ ′(G) = 4(G).

Proof The proof is by induction on the number of edges of G. If G has only one edge,
the result is trivial.

Let G have more than one edge and assume that the result is true for all nonempty
bipartite graphs having fewer edges than G. Since 4(G) ≤ χ ′(G), it is enough to prove that
G has a 4(G)-edge colouring. We let 4(G) = k. Let e = uvbe an edge of G. Then G− e is
bipartite with less edges than G. Therefore, by induction hypothesis, G− e has a 4(G− e)-
edge colouring. Since 4(G−e)≤4(G) = k,G−e has a k-colouring. We show that the same
k colours are used to colour G.

As d(u)≤ k in G and the edge e is uncoloured, there is at least one of the k colours absent
from u. Similarly, at least one of these colours is absent from v.

If one of the colours absent at u and v is same, we use this to colour e and we get a k-edge
colouring of G.

Now take the case of a colour i present at u, but absent from v and a colour j present at
v, but absent from u.

Let K be the Kempe chain containing u in the subgraph H(i, j) induced by the edges
coloured i or j. We claim that v does not belong to the Kempe chain K.

For if v belongs to K, then there is a path P in K from u to v. Since u and v are adjacent,
they do not belong to the same bipartition subset of the bipartite graph G and therefore the
length of the path P is odd. As the colour i is present at u, the first edge of P is coloured
i. Since the edges of P are alternately coloured i and j, and P is of odd length, therefore
the last edge of P, which is incident at v, is also coloured i. This is a contradiction, as i is
absent from v, proving our claim.
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Using Kempe chain argument on K, the interchanging of colours now makes i absent
from u and does not affect the colours of the edges incident at v. Therefore i is absent from
both u and v in this new edge colouring and colouring edge e by i gives a k-edge colouring
of G. q

The next result gives edge chromatic number of complete graphs.

Theorem 7.17 If G = Kn is a complete graph with n vertices, n ≥ 2, then

χ ′ (G) =

{

n−1, i f n is even ,
n, i f n is odd .

Proof Let G = Kn be a complete graph with n vertices.
Assume n is odd. Draw G so that its vertices form a regular polygon. Clearly, there are n

edges of equal length on the boundary of the polygon. Colour the edges along the boundary
using a different colour for each edge. Now, each of the remaining internal edges of G is
parallel to exactly one edge on the boundary. Each such edge is coloured with the same
colour as the boundary edge. So two edges have the same colour if they are parallel and
therefore we have the edge colouring of G. Since it uses n colours, we have shown that
χ ′(G) ≤ n.

Let G have an (n − 1)-colouring. From the definition of an edge colouring, the edges
of one particular colour form a matching in G (set of independent edges). Since n is odd,
therefore the maximum possible number of these is (n− 1)/2. This implies that there are
atmost (n−1)(n−1)/2 edges in G. This is a contradiction, as Kn has n(n−1)/2 edges. Thus
G does not have an (n−1) colouring. Hence, χ ′(G) = n.

Now, let n be even, and let v be any vertex of G. Clearly G− v is complete with n− 1

vertices. Since n−1 is odd, G− v has an (n−1)-colouring. With this colouring, there is a
colour absent from each vertex and different vertices having different absentees. Reform G

from G− v by joining each vertex w of G− v to v by an edge and colour each such edge by
the colour absent from w. This gives an (n−1)-colouring of G and therefore χ ′(G) = n−1.

q

The above result is illustrated by taking K5 and K6 in Figure 7.13.

Fig. 7.13
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Since 4(G) = n−1 in a complete graph, Theorem 7.17 shows that χ ′(Kn) is either 4(G)
or 4(G)+ 1. The next result obtained by Vizing [258] and independently by Gupta [94]
gives the tight bounds for edge chromatic number of a simple graph.

Theorem 7.18 (Vizing) For any graph G,4(G)≤ χ ′(G) ≤4(G)+1.

Proof Let G be a simple graph, we always have 4(G) = χ ′(G).
To prove χ ′(G)≤4(G)+1, we use induction on the number of edges of G. Let 4(G) = k.

If G has only one edge, then k = 1 = χ ′(G). Therefore assume that G has more than one edge
and that the result is true for all graphs having fewer edges than G.

Let e = v1v2 be an edge of G. Then by induction hypothesis the subgraph G− e has
(k+1)-edge colouring and let the colours used be 1, 2, . . ., k+1.

Since d(v1)≤ k and d(v2)≤ k, out of these k+1 colours at least one colour is absent from
v1 and at least one colour is absent from v2. If there is a common colour absent from both
v1 and v2, then we use this to colour e and get a (k + 1)-colouring of G. Therefore in this
case, χ ′(G) ≤ k+1.

We now assume that there is a colour, say 1, absent from v1 but present at v2 and there
is a colour, say 2, absent from v2 but present at v1. We start from v1 and v2 and construct a
sequence of distinct vertices v1,v2, . . .,v j, where each vi for i ≥ 2 is adjacent to v1. Let v1v3

be coloured 2. This v3 exists, because 2 is present at v1. We observe that not all the k + 1

colours are present at v3 and assume that the colour 3 is absent from v3. But the colour 3 is
present at v1 and choose the vertex v4 so that v1v4 is coloured 3. Continuing in this way, we
choose a new colour i absent from vi but present at v1, so that v1vi+1 is the edge coloured i.
In this way, we get a sequence of vertices v1,v2,v3, . . .,v j−1,v j such that

a. vi is adjacent to v1 for each i > 1,

b. the colour i is absent from each i = 1,2, . . ., j−1 and

c. the edge v1vi+1 is coloured i for each i = 1, 2, . . ., j−1.

This is illustrated in Figure 7.14.

Fig. 7.14
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As d(v1) ≤ k, (a) implies that such a sequence has at most k +1 terms, that is, j ≤ k +1.
Assume that v1, v2, . . . , v j is a longest such sequence, that is, the sequence for which it is
not possible to find a new colour j, absent from v j, together with a new neighbour v j+1 of
v1 such that v1v j+1 is coloured j.

We first assume that for some colour j absent from v j there is no edge of that colour
present at v1. We colour the edge e = v1v2 by colour 2 and then recolour the edges v1v j by
colour i, for i = 3, . . . , j−1. Since i was absent from vi, for each i = 2, . . . , j−1, this gives a
(k +1)-colouring of the subgraph G− v1v j . Now as the colour j is absent from both v j and
v1, recolour v1v j by the colour j. This gives a (k+1)-colouring of G (Fig. 7.15).

Fig. 7.15

Now assume that whenever j is absent from v j, j is present at v1. If v j+1 is a new
neighbour of v1 so that v1v j+1 is coloured by j, then we have extended our sequence to
v1, v2, . . ., v j, v j+1 which is a contradiction to the assumption that v1, v2, . . ., v j is the
longest sequence. Thus one of the edges v1v3, . . . , v1v j−1 is to be coloured by j, say v1v`,
with 3 ≤ ` ≤ j−1. Now colour e = v1v2 by 2, and for i = 3, . . ., `−1, recolour each of the
edges v1vi by i while unaltering the colours of the edges v1vi, for i = `+1, . . . , j. Removing
the colour j from v1v`, we have a (k+1)-colouring of the edge deleted subgraph G− v1v`.

Let H(1, j) represent the subgraph of G induced by the edges coloured 1 or j in this
partial colouring of G. Since the degree of every vertex in H(1, j) is either 1 or 2, each
component of H(1, j) is either a path or a cycle. As 1 is absent from v1 and j is absent from
both v j and v`, it follows that all these three vertices do not belong to the same connected
component of H(1, j). Therefore, if K and L represent the corresponding Kempe chains
containing v j and v` respectively, then either v1 /∈K or v1 /∈ L. Let v1 /∈ L. Then interchanging
the colours of L, the Kempe chain argument gives a (k +1)-colouring of G− v1v` in which
1 is missing from both v1 and v`. Colouring v1v` by 1 gives a (k+1)-colouring of G.

Now, let v1 /∈ K. Colour the edge v1v` by `, recolour the edges v1vi by i, for i = `, . . .,
j−1, and remove the colour j − 1 from v1v j. Then, from the definition of the sequence
v1, v2, . . . , v j, we get a (k+1)-colouring of G−v1v j without affecting two coloured subgraph
H(1, j). Using Kempe chain argument to interchange the colours of K, we obtain a (k+1)-
colouring of G− v1v j in which 1 is absent from both v1 and v j . Therefore, again colouring
v1v j by 1 gives (k+1)-colouring of G. q
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The following result is due to Vizing [259] and Alavi and Behzad [2].

Theorem 7.19 Let G be a graph of order n and let G be the complement of G. Then

a. n−1 ≤ χ ′(G)+ χ ′(G) ≤ 2(n−1),

0 ≤ χ ′(G)χ ′(G) ≤ (n−1)2, for even n,

b. n ≤ χ ′(G)+ χ ′(G) ≤ 2n−3,

0 ≤ χ ′(G)χ ′(G) ≤ (n−1)(n−2), for odd n.

Further, the bounds are the best possible for every positive integer n(n 6= 2).

Proof Let G be a graph of order n and let G be the complement of G. Clearly,

4(G) ≥ n−1−4(G), so that 4(G)+4(G) ≥ n−1.

Therefore, combining with χ ′(G) ≥4(G), we get

χ ′(G)+ χ ′(G) ≥ n−1.

b. If n is odd, we have χ ′(G)+ χ ′(G) ≥ n, since χ ′(G) + χ ′(G) < n implies χ ′(Kn) < n,
which is a contradiction.

Obviously, χ ′(G)χ ′(G) ≥ 0. It can be seen that the lower bounds are attained in
complete graphs Kn.

We now prove that χ ′(G)+ χ ′(G) ≤ 2n−3 and χ ′(G)χ ′(G) ≤ (n−1)(n−2).

Clearly, for n = 1, 3, the inequalities χ ′(G)+χ ′(G)≤ 2n−3 are true. So, let n≥ 5.
If 4(G)+4(G) ≤ 2n−5, then by Vizing’s theorem, we get χ ′(G)+ χ ′(G) ≤ 2n−3.

Otherwise, we have the following cases.

i. 4(G)= n−1 and 4(G)= n−2. So G has a pendant vertex v. Then 4(G−v)≥ n−2

and χ ′(G− v) ≥ n− 2. But χ ′(G− v) ≤ χ ′(Kn−1) = n− 2. Therefore, χ ′(G− v) =
n−2. Thus, χ ′(G) = n−1.

As G is the disjoint union of an isolated vertex and a subgraph of Kn−1,
χ ′(G) = n−2. Hence, χ ′(G)+ χ ′(G) = 2n−3.

ii. 4(G) = n−2 and 4(G) = n−2. Again, G has a pendant vertex v and as before,
χ(G−v) ≤ n−2 and χ(G) = n−2. Similarly, χ(G) = n−2. Thus, χ ′(G)+χ ′(G) =
2n−4 < 2n−3.

iii. 4(G) = n−1 and 4(G) = n−3. In this case, G has a vertex v of degree two and
so χ ′(G− v) = n−2.
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Let vu and vw be the edges incident with v in G, with d(u) = n−1. In (n−2)-
edge colouring of G−v, change the colour i of an edge uu′(u′ 6= w) to a new colour
n−1, and now colour vu by i and vw by n−1. This gives an (n−1)-colouring of
G. Now, by Vizing’s theorem, χ ′(G) ≤ n−2.

Together, we get χ ′(G)+ χ ′(G) ≤ 2n−3. Since χ′(G)+ χ ′(G) ≤ 2n−3, clearly
we have χ ′(G)χ ′(G) ≤ (n−1)(n−2). We observe that in graph K1,n−1, the upper
bounds are attained.

a. Let n be even. Then χ ′(G)+ χ ′(G) ≥ n−1. Also, χ ′(G)χ ′(G) ≥ 0.
The lower bounds are attained for complete graphs.
To get the upper bounds, since G and G are subgraphs of Kn and χ ′(Kn) = n−1 for

all even n, χ ′(G)+χ(G) ≤ 2(n−1) and χ ′(G)χ ′(G) ≤ (n−1)2. These upper bounds are
attained in the complete bipartite graphs K1,n−1,n 6= 2. q

7.5 Region Colouring (Map Colouring)

A region colouring of a planar graph is a labeling of its regions f : R(G) → {1, 2, . . .}; the
labels called colours, such that no two adjacent regions get the same colour. A k-region
colouring of a planar graph G consists of k different colours and G is then called k-region
colourable. From the definition, it follows that the k-region colouring of a planar graph
G partitions the region set R into k independent sets R1, R2, . . . , Rk, so that R = R1 ∪ R2 ∪
. . .∪Rk. The independent sets are called the colour classes, and the function f : R(G) →
{1, 2, . . ., k} such that f (r) = i, for each r ∈ Ri, 1 ≤ i ≤ k, is called the colour function.
The minimum number k for which there is a k-region colouring of the planar graph G

is called the region-chromatic number of G, and is denoted by χ ′′(G). The colouring of
regions is also called map colouring, because of the fact that in an atlas different countries
are coloured such that countries with common boundaries are shown in different colours.

The four colour problem: Any map on a plane surface (or a sphere) can be coloured
with at most four colours so that no two adjacent regions have the same colour.

Now coming to the origin of the four colour problem, there have been reports that Mo-
bius was familiar with the problem in 1840. But the problem was introduced in 1852 by
Francis Guthrie, student of Augustus DeMorgan and the problem first appeared in a letter
(October 23, 1852) from DeMorgan to Sir William Hamilton. DeMorgan continued the dis-
cussion of the problem with other mathematicians and in the years that followed attempts
were made to prove or disprove the problem by top mathematical minds of the world. In
1878, Cayley announced the problem to the London Mathematical Society, and in 1879,
Alfred Kempe announced that he had found a proof. An error in Kempe’s proof was dis-
covered by P. J. Heawood in 1890. Kempe’s idea was based on the alternating paths and
Heawood used this idea to prove that five colours are sufficient. Kempe’s argument did not
prove the four colour problem, but did contain several ideas which formed the foundation
for many later attempts at the proof, including the successful attempts by Appel and Haken.
In 1976, K. Appel and W. Haken [5, 6, 7] with the help of J. Koch established what is now
called four colour theorem. Their proof made use of large scale computers (using over
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1000 hours of computer time) and this is the first time in the history of mathematics that
a mathematical proof depended upon the external factor of the availability of a large scale
computing facility. Though the Appel-Haken proof is accepted as valid, mathematicians
are still in search of alternative proof. Robertson, Sanders, Seymour and Thomas [225]
have given a short and clever proof, but their proof still requires a number of computer
calculations. Saaty [230] presents thirteen colourful variations of four colour problem.

In the year 2000, Ashay Dharwadkar [64] has given a new proof of the four colour
theorem, which will be discussed in details in Chapter 14.

The following observations are immediate from the definitions introduced above.

1. A planar graph is k-vertex colourable or k-region colourable if and only if its compo-
nents have this property.

2. A planar graph is k-vertex colourable or k-region colourable if and only if its blocks
have this property.

These observations imply that for studying vertex colourings or region colourings, it
suffices to consider the graph to be a block.

Theorem 7.20

a. A planar graph G is k-region colourable if and only if its dual G is k-vertex colourable.

b. If G is a plane connected graph without loops, then G has a k-vertex colouring if and
only if its dual G∗ has a k-region colouring.

Proof

a. Let the regions and edges of G be respectively denoted by r1, . . . , rt and e1, . . . , em. Let
the vertices of G∗ be r∗

1
, . . ., r∗t and edges be e∗

1
, . . ., e∗m. Then the vertices and edges of

G∗ are in one-to-one correspondence with the regions and edges of G, and two vertices
r∗ and s∗ in G∗ are joined by an edge e∗ if and only if the corresponding regions r and
s in G have the corresponding edge e as a common edge on their boundary.

Let G be k-region colourable. We colour the vertices in G∗ such that each vertex in
G∗ gets the same colour as assigned to the region r in G. Since the vertices r∗ and s∗

are only adjacent in G∗ if the corresponding regions r and s are adjacent in G, G∗ is
k-vertex colourable.

Conversely, let G∗ be k-vertex colourable. Now colour the regions of G such that
the region r in G gets the samecolour as the vertex r∗ in G∗. This gives a k-region
colouring of G, since the regions r and s are adjacent in G only if the corresponding
vertices r∗ and s∗ are adjacent in G∗.

b. Since G has no loops its dual G∗ has no bridges, and therefore G∗ is planar. Thus by
(a), G∗ is k-region colourable if and only if the double dual G∗∗ is k-vertex colourable.
Since G is connected, G is isomorphic to G∗∗ and hence the result follows. q
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Remarks A graph has a dual if and only if it is planar and this implies that colouring
the regions of a planar graph G is equivalent to colouring the vertices of its dual G∗ and
vice versa. It also follows from Theorem 7.17 that if G∗ is the dual of the planar graph G,
then χ(G) = χ ′′(G∗) and χ(G∗) = χ ′′(G). These observations give the dual form of the four
colour problem which states that, every planar graph is 4-vertex colourable.

Since loops and multiple edges are not allowed in vertex colourings, it may be assumed
that no two regions have more than one boundary edge in common, for region colouring of
a planar graph

As every triangulation is a planar graph (in fact, a maximal planar graph) and every
planar graph is a subgraph of a triangulation, the four colour problem is true if and only if
every triangulation is 4-colourable.

The following result shows that a planar graph is 6-colourable.

Theorem 7.21 Every planar graph is 6-colourable.

Proof Let G be a planar graph and H be the dual of G. Then it is sufficient to prove that
H has a vertex colouring of at most 6 colours. More generally, we prove that any graph H

is 6-colourable.
To prove the result, we use induction on n, the order of H. The result is trivial if H has

at most six vertices. So assume n ≥ 7.
Let all planar graphs with fewer than n vertices be 6-colourable. Obviously, H has a

vertex, say v, so that d(v) ≤ 5. Therefore v has at most five neighbours in H and these
neighbours evidently need at most five colours for colouring. The vertex deleted subgraph
H − v is planar with n− 1 vertices and therefore by induction hypothesis is 6-colourable.
Since at most five colours are used for colouring the neighbours of v, therefore assigning v
the sixth colour not used by the its neighbours gives the 6-colouring of H. q

The following result is a consequence of Theorem 7.20.

Theorem 7.22 A planar graph G is 2-colourable if and only if it is an Euler graph.

Proof Let G be a planar graph which is 2-colourable. Then, if G∗ is the geometric dual
of G, we have χ(G∗) = 2. Therefore G∗ is bipartite and thus G∗∗ (the dual of G∗) is an Euler
graph. Since G and G∗∗ are isomorphic, therefore G is an Euler graph.

Conversely, let G be an Euler graph. Then its double dual G∗∗ is an Euler graph and thus
G∗ is bipartite. Therefore, χ(G∗) = 2 and hence the planar graph G is 2-colourable. q

The next result due to Heawood [113] is called five colour theorem and Heawood used
the Kempe chain argument in proving it.

Theorem 7.23 (Heawood) Every planar graph is 5-colourable.

Proof Let G be a planar graph with n vertices. We use induction on n, the order of G. The
result is obvious for n ≤ 5. So, let n ≥ 6. Assume the result to be true for all planar graphs
with fewer than n vertices.



186 Colourings

Let G′ be the graph obtained from G by deleting the vertex v and removing all the edges
incident with v. The graph G′ with order n−1 is clearly planar and by induction hypothesis
is 5-colourable. Let the colours used to colour G′ be c1, c2, c3, c4, c5.

We know for a planar graph with n ≥ 6 vertices, there exists a vertex, say v, such that
d(v) ≤ 5. Thus v has atmost five neighbours in G and all of these neighbours are the already
coloured vertices in G′.

If in G′ less than five colours are used to colour these neighbours, then the 5-colouring
of G is obtained by using the colouring for G′ on all vertices, and by colouring v with the
colour not used to colour the neighbours of v (Fig. 7.16).

Let all the five colours be used in G′, to colour the neighbours of v. This implies that
there are exactly five neighbours of v, say u1, u2, u3, u4 and u5. Assume without loss of
generality that ui is coloured with ci, for each i, 1 ≤ i ≤ 5.

Fig. 7.16

Consider all the vertices of G′ that are coloured with colour c1 and c3. If u1 and u3 are in
different components of the Kempe subgraph H(c1, c3) induced by those vertices coloured
c1 and c3, then using the Kempe chain argument to interchange the colours c1 and c3 in the
component containing u1 leaves c1 unused on the set {u1, u2, u3, u4, u5}. We colour v by c1

to get a 5-colouring of G.
Finally, if u1 and u3 are in the same component of H(c1, c3), and u2 and u4 are in the

same component of H(c2, c4), then the c1 − c3 Kempe chain from u1 to u3 crosses the c2 −
c4 Kempe chain from u2 to u4. This is impossible as the triangulation is a plane graph
(Fig. 7.17). q

Fig. 7.17
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The following result is due to Grunbaum [91].

Theorem 7.24 Every planar graph with fewer than four triangles is 3-colourable.

The next result due to Grotzsch [90] immediately follows from Theorem 7.24.

Theorem 7.25 Every planar graph without triangles is 3-colourable.

While making various attempts to solve the four colour problem, the problem got trans-
lated into several equivalent conjectures and sometimes conjectures were made which im-
plied the four colour problem. The details of several such conjectures can be found in Saaty
[229] and Saaty and Kainen [230]. Finch and Sachs [78] proved that every planar graph
with at most 21 triangles is 4-colourable. Ore and Stemple [179] showed that all planar
graphs with upto 39 regions are 4-colourable.

The following result is one such equivalence.

Theorem 7.26 Every planar graph is four colourable if and only if every cubic bridgeless
planar graph is 4-colourable.

Proof We observe that every planar graph is four colourable if and only if every bridge-
less planar graph (without cut edges) is four colourable. This is because if G has a bridge
e and G′ is obtained from G by contracting e, then χ ′′(G′) = χ ′′(G) (as the elementary con-
traction of identifying the end vertices of a bridge affects neither the number of regions in
the planar graph nor the adjacency of any of the regions).

We now prove that every bridgeless planar graph is 4-colourable if and only if every cu-
bic bridgeless planar graph is 4-colourable. If every bridgeless planar graph is 4-colourable,
then evidently every cubic bridgeless planar graph is 4-colourable.

Conversely, let all cubic bridgeless planar graphs be 4-colourable. Let G be a bridgeless
planar graph. We obtain G′ from G by performing the following operations. In case G has
a vertex v of degree two, let xv and yv be the edges incident with v. Subdivide xv at u and
yv at w. Take two new vertices a and b and add the edges au,aw,bu,bw and ab. Now remove
v (and uv and uw). In doing so, we have replaced v by a K4 − e and we see that each new
vertex has degree three (Fig. 7.18).

Fig. 7.18

If G has a vertex v so that d(v) ≥ 4, let vx1, vx2 , . . ., vxd be the edges incident with v.
Subdivide each vxi producing a new vertex vi, for 1 ≤ i ≤ d. We then remove v and add the



188 Colourings

new edges v1v2, v2v3, . . ., vd−1vd , vdv1. Here we have replaced v by Cd and again the degree
of each new vertex is three (Fig. 7.19).

In both cases the graph G′ formed is a bridgeless cubic graph. If these K4 − e and Cd

introduced are contracted, we get the original graph G. Hence G is 4-colourable, since we
have assumed that G′ is 4-colourable. q

Fig. 7.19

The next result is due to Tait [238] and the details can also be found in Bondy and
Chvatal [36] and Bollobas [29].

Theorem 7.27 (Tait) Every planar graph G is 4-colourable if and only if χ ′(G) = 3, for
every bridgeless cubic planar graph G.

Proof As seen in Theorem 7.26, the statement that every planar graph is 4-colourable is
equivalent to the statement that every cubic bridgeless planar graph is 4-colourable. There-
fore, to prove the result, we prove that a cubic bridgeless planar graph G is 4-colourable if
and only if χ ′(G) = 3.

Now assume that G is a bridgeless cubic planar graph which is 4-colourable. For the
set of colours we choose the elements of the Klein four group Q = {c0, c1, c2, c3}, where
addition in Q is defined by ci + ci = c0 and c1 + c2 = c3, with c0 being the identity element.
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Now, define the colour of an edge to be the sum of the colours of two distinct regions
which are incident with that edge. We see that the edges are coloured with elements of the
set {c1, c2, c3} and that no two adjacent edges get the same colour. Hence, χ ′(G) = 3.

Conversely, let G be a bridgeless cubic planar graph with χ ′(G) = 3 and colour its edges
with the three non-zero elements of Q. Consider a region, say R0, and give the colour c0 to
it. Let R be any other region of G and let C be any curve in the plane joining the interior of
R0 with the interior of R, so that C does not pass through a vertex of G. Then the colour of
R is defined to be the sum of the colours of those edges which intersect C.

That the colours of the regions are well defined follows from the fact that the sum of the
colours of the edges which intersect any simple closed curve not passing through a vertex
of G is c0. Suppose S is such a curve and assume q1, q2, . . ., qn to be the colours of the
edges which intersect S. Also assume r1, r2, . . ., rm be the colours of those edges interior
to S. If c(v) denotes the sum of the colours of the three edges incident with v, then we see
that c(v) = c0. Thus, for all vertices v interior to S, we have ∑c(v) = c0. While on the other
hand, we have ∑c(v) = q1 + q2 + . . .+ qn + 2(r1 + r2 + . . .+ rm) = q1 + q2 + . . .+ qn as every
element of Q is self-inverse. Thus, q1 +q2 + . . ..+qn = co. Hence we get the 4-colouring of
the regions of G and the colours used are c0, c1, c2, c3. q

Remarks Because of Theorem 7.27, a three colouring of the edges of a cubic graph is
called a Tait colouring.

In an attempt to solve the four colour problem, Tait considered edge colourings of
bridgeless cubic planar graphs and proved that every such graph is 3-edge colourable.
In 1880, Tait tried to give a proof of the four colour problem by using Theorem 7.27 and
based on the wrong assumption that any bridgeless cubic planar graph is Hamiltonian. A
counter example called the Tuttle graph to Tait’s assumption was given by Tutte in 1946
and is shown in Figure 7.20.

Fig. 7.20
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7.6 Heawood Map-Colouring Theorem

Let Sp be the orientable surface of genus p, so that Sp is topologically equivalent to a sphere
with p handles. The chromatic number of Sp, denoted by χ(Sp), is the maximum chromatic
number among all graphs which can be embedded on Sp. The surface So is clearly the
sphere. The four colour problem states that χ(S0) = 4.

Definition: The genus γ(G) of a graph is the minimum number of handles which must
be added to a sphere so that G can be imbedded on the resulting surface. Clearly, γ(G) = 0

if and only if G is planar. Further, for a polyhedron, n−m+ f = 2−2γ.
For n ≥ 3, the genus of the complete graph Kn is

γ(Kn) =
(n−3)(n−4)

12
.

The following inequality is due to Heawood [113].

Theorem 7.28 The chromatic number of the orientable surface of positive genus p has
the upper bound

χ(Sp) ≤
7 +

√
1 +48p

2
, p > 0.

Proof Let G be an (n, m) graph embedded on Sp. Since any graph can be augmented to
a triangulation of the same genus by adding edges without reducing χ, we assume G to
be a triangulation. Let d′ be the average degree of the vertices of G. Then n, m and f (the
number of regions) are related by the equations

d′n = 2m = 3 f .

Solving for m and f in terms of n and using Euler’s equation n−m+ f = 2−2γ, we get

d′ =
12(p−1)

n
+6. (7.28.1)

As d′ ≤ n−1, this gives n−1 ≥ 12(p−1)

n
+6.

Solving for n and taking the positive square root, we obtain n ≥ 7 +
√

1 +48p

2
.

Let H(p) =
7 +

√
1 +48p

2
. Then we show that H(p) colours are sufficient to colour the

vertices of G. If n = H(p), obviously we have sufficient colours. In case n > H(p), we
substitute H(p) for n in (7.28.1) and obtain
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d′ <
12(p−1)

H(p)
+6 = H(p)−1.

Therefore, when n > H(p), there is a vertex v of degree at most H(p)− 2. Identify v

and any adjacent vertex by an elementary contraction to obtain a new graph G′. If n′ =
n− 1 = H(p), then G′ can be coloured in H(p) colours. If n′ > H(p), repeat the argument
and evidently we get an H(p) colourable graph. It is then easy to see that the colouring of
this graph induces a colouring of the preceding one in H(p) colours, and so forth, so that G

itself is H(p)−colourable. Hence the result follows. q

The next result is called Heawood map colouring theorem, the proof of which is due to
Ringel and Youngs [223].

Theorem 7.29 (Heawood map-colouring theorem) For every positive integer p, the
chromatic number of the orientable surface of genus p is given by

χ(Sp)=
7 +

√
1 +48p

2
, p > 0.

Proof Let G be an (n, m) graph embedded on Sp. Then,

χ(Sp) ≤
7 +

√
1 +48p

2
, p > 0.

Now, if the complete graph Kn is embedded in Sp, then

p ≥ γ(Kn) =
(n−3)(n−4)

12
. (7.29.1)

Setting n to be the largest integer satisfying (7.29.1), we have

(n−3)(n−4)

12
≤ p ≤

[

(n−2)(n−3)

12

]

−1 <
(n−2)(n−3)

12
.

Solving for n, we get

5 +
√

1 +48p

2
< n ≤ 7 +

√
1 +48p

2

Thus, n =
7 +

√
1 +48p

2
.

Since χ(Kn) = n, we have found a graph with genus p and chromatic number equal to
H(p). This shows that H(p) is a lower bound for χ(Sp), completing the proof. q
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7.7 Uniquely Colourable Graph

A graph G(V, E) is said to be uniquely k-vertex-colourable (or uniquely k-colourable) if
there is a unique k-part partition of the vertex set V into independent subsets. That is, in
the uniquely k-colouring of a graph G, every k-colouring of G induces the same partition
of V . The graph of Figure 7.21(a) is uniquely 3-colourable, since every 3-colouring of G

has the partition {v1}, {v2, v4}, {v3, v5}. The graph of the Figure 7.21(b) is not uniquely
3-colourable. A pentagon is not uniquely 3-colourable, as five different partitions of its
vertex set are possible.

Fig. 7.21

We observe that the empty graphs Kn are the only uniquely 1-colourable graphs and the
connected bipartite graphs are the only uniquely 2-colourable graphs. We note that unique
k-colourability is not defined for k > n. Further, we see that Kn is uniquely n-colourable.
These observations imply to assume 3 ≤ k ≤ n, for studying uniquely k-colourable graphs.

We have the following observation.

Theorem 7.30 If G is uniquely k-colourable, then δ (G) ≥ k−1.

Proof Let G be a uniquely k-colourable graph. Then every vertex v of G is adjacent to at
least one vertex of every colour different from that assigned to v. For otherwise, a different
k-colouring of G is obtained by recolouring v. This implies that d(v) ≥ k−1, for every v. q

Corollary 7.2 If G is a uniquely k-colourable graph with n vertices and m edges, then
2m ≥ n(k−1).

The next result, due to Cartwright and Harary [45], gives a necessary condition for a
graph to be uniquely colourable.

Theorem 7.31 The subgraph induced by the union of any two colour classes in a k-
colouring of a uniquely k-colourable graph is connected.
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Proof Let G be a uniquely k-colourable graph. Let C1 and C2 be two classes in the k-
colouring of the graph G. Assume the subgraph S of G induced by C1 ∪C2 to be discon-
nected, and let S1 and S2 be components of S. Then each of S1 and S2 contain vertices of
both C1 and C2. Now interchanging the colour of the vertices in C1 ∩S1 by the colour of the
vertices in C2∩ S1 gives a different k-colouring of G. This contradicts the hypothesis that G

is uniquely k-colourable. Hence S is connected. q

The converse of Theorem 7.31 is not true. To see this, consider the 3-chromatic graph G
of Fig. 7.21(b). The graph G has the property that in any 3-colouring, the subgraph induced
by the union of any 2 colour classes is connected. But G is not uniquely colourable. It
follows from Theorem 7.30 that every uniquely k-colourable graph, k ≥ 2, is connected.

The following stronger result is due to Chartrand and Geller [49].

Theorem 7.32 Any uniquely k-colourable graph is (k−1)-connected.

Proof Let G be a uniquely k-colourable graph. In case G is Kk, then it is (k−1)-connected.
Now assume G to be an incomplete graph which is not (k−1)−connected. Therefore there
exists a set U of k− 2 vertices whose removal disconnects G. Then in any k-colouring of
G, there are at least two distinct colours, say c1 and c2, not assigned to any vertex of U .
By Theorem 7.30, a vertex coloured c1 is connected to any vertex coloured c2 by a path
all of whose vertices are coloured c1 or c2. Therefore the set of vertices of G coloured
c1 or c2 lies within the same component of G−U , say G1. Another k-colouring of G can
thus be obtained by taking any vertex of G−U which is not in G1 and recolouring it with
either c1 or c2. This contradicts the hypothesis that G is uniquely k-colourable. Hence G is
(k−1)-connected. q

Corollary 7.3 In any k-colouring of uniquely k-colouring graph, the subgraph induced
by the union of any h colour classes, 2 ≤ h ≤ k, is (h−1)-connected.

The following result due to Bollobas [30] gives a sufficient lower bound for uniquely
colourable graphs.

Theorem 7.33 If G is a k-colourable graph of order n(k ≥ 2) with δ (G) > n(3k−5)/(3k−
2), then G is uniquely k-colourable.

The following result is due to Harary, Hedetniemi and Robinson [107].

Theorem 7.34 For all k ≥ 3, there is a uniquely k-colourable graph which contains no
subgraph isomorphic to Kk.

Clearly, a graph is uniquely 1-colourable if and only if it is 1-colourable, that is, totally
disconnected. Also, a graph is uniquely 2-colourable if and only if G is 2-chromatic and
connected.

The converse of Theorem 7.36 is not true. This is because a uniquely 3-colourable planar
graph may have more than one region which is not a triangle, as shown in Figure 7.22.
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Fig. 7.22 Uniquely 3-colourable planar graph

Theorem 7.35 If G is a uniquely 3-colourable planar graph with at least four vertices,
then G contains at least two triangles.

Theorem 7.36 Every uniquely 4-colourable planar graph is maximal planar.

Proof Let a 4-colouring be given to uniquely 4-colourable planar graph G with the colour
classes denoted by Vi,1 ≤ i ≤ 4, where |Vi|= ni. Since the subgraph induced by Vi ∪V j, i 6= j,
is connected, G has at least ∑(ni + n j − 1) edges, 1 ≤ i < j < 4. Clearly, ∑(ni + n j − 1) =
n1 +n2 −1+n1 +n3 −1+n1 +n4 −1+n2 +n3 −1+n2 +n4 −1+n3 +n4 −1 = 3(n1 +n2 +n3 +
n4)−6 = 3n−6. Therefore, m ≥ 3n−6. Hence G is maximal planar. q

The next result for uniquely 5-colourable graphs is due to Hedetniemi [114].

Theorem 7.37 No planar graph is uniquely 5-colourable.

Theorem 7.38 A necessary and sufficient condition that a connected planar graph is 4-
colourable is that G be the sum of three subgraphs G1,G2 and G3 such that for each vertex
v, the number of edges of each Gi incident with v are all even or odd.

The following equivalence is due to Whitney [264].

Theorem 7.39 The four colour problem holds if and only if every Hamiltonian planar
graph is 4-colourable.

7.8 Hajos Conjecture

Hajos [97] made the following conjecture.
If a graph is k-chromatic, then it contains a subdivision of Kk.

When k = 1, or 2, the conjecture trivially holds. As for k = 3, every chromatic graph contains
an odd cycle which is a subdivision of K3, therefore proving the validity of the conjecture.
The validity of the conjecture for k = 4, as noted in Parthasarthy [180] is due to Dirac [66].

Theorem 7.40 Hajos conjecture is true for k = 4.
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Proof Assume without loss of generality that G is a 4-minimal graph. So G is a block
and δ = 3. In case n = 4, G is K4 and the result is obvious. Therefore assume n ≥ 5. We
induct on n.

Let G have a 2-vertex cut S = {u, v}. Then by Theorem 7.5, G = G1 ∪G2, where G1 is
of type 1, and G2 is of type 2 and G1 +uv is 4-minimal. By induction hypothesis, G1 +uv

contains a subdivision of K4. Here we replace uv by a u− v path P in G2 and so G1 ∪P

contains a subdivision of K4. Thus G also contains a subdivision of K4. Now, let G be 3-
connected. Since δ (G) ≥ 3, therefore it has a cycle C of length at least 4. If u and v are any
two non-consecutive vertices on C, then G−{u, v} is still connected and therefore there
exist vertices x, y on C, and an x− y path P in G−{u, v}. Similarly, there exists a u− v path
Q in G−{x, y}. If P and Q have no vertices in common, then C∪P∪Q is a subdivision of
K4 in G. Otherwise, let w be the first vertex of P on Q, then C∪Pxw ∪Q is a subdivision of
K4 in G.

Hence in all cases G contains a subdivision of K4. q

For k ≥ 5, Hajos conjecture implies four colour problem. This is because if G is a planar
graph which is not colourable by 4 colours, its chromatic number is at least 5 and thus
contains a subdivision of K5, and so cannot be planar, a contradiction. The four colour
theorem implies that a 5-chromatic graph contains a homeomorph of K5 or K3,3. For k = 5,
Hajos conjecture makes the stronger assertion that it contains a homeomorph of K5. For
k = 5, or 6, the conjecture has not been settled, but for k = 7, it is disproved by Catlin. The
counter example of Catlin is the graph H = L(3C5)−{v1 ,v2}, where 3C5 is the multigraph
obtained from C5 by replacing each edge by three edges, L represents the edge graph, and
v1 and v2 are any two non-adjacent vertices of L(3C5) (Fig. 7.23).

Fig. 7.23
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The largest integer for which a given graph G contains a TKn is called the subdivision
number (or topological clique number or Hajos number) of G and is denoted by tw(G).
With this, Hajos conjecture is equivalent to tw(G) ≥ χ(G). In the above example, we see
that H contains a K6 and from any vertex outside this K6 there are no six internally disjoint
paths to the vertices of the K6. Therefore, tw(H) = 6. A maximum independent set of H has

cardinality two, so that χ(H) ≥
[

13

2

]

= 7 and a 7-colouring of H is shown in the Fig. 7.23.

Thus, χ(H) = 7 and hence H is a counter example for Hajos conjecture. We now observe
that if G is a counter example for Hajos conjecture for k, then G+ v is a counter example
for Hajos conjecture for k+1. This can be seen from the fact that tw(G+v) = tw(G)+1 and
χ(G + v) = χ(G)+ 1. Hence Hajos conjecture is false for all k = 7. Erdos and Fajtlowicz
[72] proved that almost every graph is a counter example to Hajos conjecture. Bollobas
and Catlin [31] proved that tw(G) is approximately 2

√
n for n-vertex graphs.

The following conjecture involving contractions is due to Hadwiger [95].

Hadwiger’s conjecture [95] Every k-chromatic graph contains Kk as a subcontraction.

Hadwiger’s conjecture is trivially true for k = 1. Since 2-chromatic graphs are the bipar-
tite graphs and 3-chromatic graphs contain an odd cycle, contractible to K3, the conjecture
is true for k = 2 and 3. Dirac [66] proved the conjecture for k = 4. For k = 5, this conjecture
states that every 5-chromatic graph is contractible to K5 and therefore every such graph
is non-planar. Thus Hadwiger’s conjecture for k = 5 implies the four colour problem. The
converse of this is given by Wagner.

7.9 Exercises

1. Prove that χ(G) = 4(G)+1 if and only if G is either a complete graph or a cycle of
odd length.

2. Show that if G contains exactly one odd cycle, then χ(G) = 3.

3. If G is a graph in which any pair of odd cycles have a common vertex, then prove that
χ(G) ≤ 5.

4. Find the chromatic number of the Peterson graph and the Birkhoff Diamond.

5. Determine the chromatic number of the graphs in Figure 7.24.
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Fig. 7.24

6. If G is k-regular, prove that χ(G) ≥ n

n− k
.

7. If G is connected and m ≤ n, show that χ(G) ≤ 3.

8. Prove that the 3-critical graphs are the odd cycles C2n+1.

9. Prove that the wheel W2n−1 is a 4-critical graph for each n ≥ 2.

10. Prove that the wheel W2n is a 4-critical graph for each n ≥ 2.

11. Prove that the Peterson graph has edge chromatic number 4.

12. If m(G) is the number of edges in a longest path of G, prove that χ(G) ≤ 1 +m(G).

13. Show that if G is 3-regular Hamiltonian graph, then χ ′(G) = 3.

14. Show that a triangulation with a vertex of degree 2 or 3 can be coloured with five
colours.

15. Prove that for every k ≥ 1 there is a k-chromatic graph Mk with no triangle subgraphs.
(Mycielski, 1955).

16. If G is a graph in which no set of four vertices induces P4 as a subgraph, then prove
that χ(G) = cl(G) (Seinsche, 1974).

17. Obtain proofs of Theorems 2.24 and 2.25.

18. Show that a uniquely 3-colourable graph contains three Hamiltonian cycles.


