
5. Connectivity

In a connected graph there is at least one path between every pair of its vertices. If in a
graph, it happens that by deleting a vertex, or by removing an edge, or performing both,
the graph becomes disconnected, we can say that such vertices or edges hold the whole
graph, or in other words have the property of destroying the connectedness of a graph. For
example, consider a communication network which is modelled as the graph G shown in
Figure 5.1, where vertices correspond to communication centers and the edges represent
communication channels. Clearly, deletion of vertex v results in the breakdown of the com-
munication. This implies that in the above communication network, the center represented
by vertex v has the property of destroying the communication system and thus commu-
nication network depends on the connectivity. We start this chapter with the following
definitions.

Fig. 5.1

5.1 Basic Concepts

Cut vertex: Let G be a graph with k(G) components. A vertex v of G is called a cut
vertex of G if k(G− v) > k(G). For example, in the graph of Figure 5.2, the vertices u and
v are cut vertices.

Cut edge: An edge e of a graph G is said to be a cut edge if k(G−e) > k(G). In the graph
of Figure 5.2, e and f are cut edges.
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Fig. 5.2

The following observations are the immediate consequences of the definitions intro-
duced above.

1. Removal of a vertex may increase the number of components in a graph by at least
one, while removal of an edge may increase the number of components by at most
one.

2. The end vertices of a cut edge are cut vertices if their degree is more than one.

3. Every non-pendant vertex of a tree is a cut vertex.

We now give the first result which characterises cut vertices.

Theorem 5.1 If G(V, E) is a connected graph, then v is a cut vertex if there exist vertices
u, w ∈V −{v} such that every u−w path in G passes through v.

Proof Let G(V, E) be a connected graph and let v be the cut vertex of G. Then G − v

is disconnected. Let G1, G2, . . . , Gk be the components of G− v. Let U = V(G1) and W =
k
⋃

i=2

V (Gi) . Also, let u ∈ U and w ∈ W , and to be definite, let w ∈ V(Gi), i 6= 1. If there is a

u−w path P in G not passing through v, then P connects u and w in G− v also. Therefore
G1∪Gi is a single component in G−v, contradicting our assumption. Thus every u−w path
in G passes through v.

Conversely, let there be vertices u, w ∈ V −{v} such that every u−w path in G passes
through v. Then there is no u−w path in G − v. Therefore u and w belong to different
components of G− v. Thus G− v is disconnected and v is a cut vertex of G. q

The following result characterises cut edges.

Theorem 5.2 For a connected graph G, the following statements are equivalent.

i. e is a cut edge of G.

ii. If e = ab, there is a partition of the edge subset E −{e} as E1 ∪E2 with a ∈V (< E1 >)
and b ∈V(< E2 >) such that for any u ∈V (< E1 >) and any w ∈V (< E2 >), every u−w

path contains e.
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iii. There exist vertices u and w such that every u−w path in G contains e.

iv. e is not a cycle edge of G.

Proof (i) ⇒ (ii). Let e be a cut edge of G. So G− e is disconnected. Let G1 and G2 be
two components of G− e and E1 = E(G1) and E2 = E(G2). If u ∈V (G1) and w ∈ v(G2) exist
such that there is a u−w path P in G which does not contain e, then u and w are connected
in G− e by the path P. This implies that G1 ∪G2, that is, G− e is connected, contradicting
the hypothesis. This proves (ii).
(ii) ⇒ (iii). Obvious.
(iii) ⇒ (iv). Suppose e lies on a cycle C. Then C− e gives an a−b path Q not containing e.
With vertices u and w following the condition given in (iii), let P be any u−w path. Without
loss of generality, assume that a and b occur in that order in P. Let u0 and w0 be the first
and last vertices that P has in common with C (the possibility of these coinciding with a, b,
u or w is not ruled out). Then Pu, uo

∪ Qu0, w0
∪ Pw0, w is a u−w path P′ of G which does not

contain e, contradicting (iii). (See Figure 5.3(a), where broken curves represent path Q and
thick curves represent path P.)

Fig. 5.3(a)

(iv) ⇒ (i). Let e be not a cyclic edge of G. We have to prove that e is a cut edge of G, that
is, G−e is disconnected. Assume G−e is connected. Then there is an a−b path P in G−e.
But then P∪ e is a cycle containing e, which contradicts (iv). q

Block: A block is a connected graph which does not have any cut edge. We observe that
a block does not have any cut edge. The graph K2 = ({a, b}, e) does not have a cut vertex
and hence is a block. However, e is a cut edge in this case. We call K2 a trivial block. All
other blocks are non-trivial.

Separable graph: A connected graph with at least one cut vertex is called a separable
graph. A block of a graph G is a maximal graph fH of G such that H is a block. That is, H

has no cut vertex, but for any v ∈V (G)−V(H), 〈V(H)∪{v}〉 is either a disconnected graph
or a separable graph.

The next result characterises blocks.

Theorem 5.3 For a connected graph G, the following are equivalent.

i. G is a non-trivial block.
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ii. Any two vertices of G lie on a cycle.

iii. Given any vertex u and any edge vw, there is a cycle of G containing both.

iv. Given any pair of edges e = uv and e′ = u′v′, there is a cycle of G containing both.

v. Given any pair of vertices u and u′ and any edge e = vw, there is a u− u′ path of G

containing e.

Proof

a. (i) ⇒ (ii). The proof is by induction on the distance between the vertices. If d(u, v) =
1, then uv is an edge, and since G is a block, uv is not a cut edge. Hence uv is a cyclic
edge, and so u and v lie on a cycle. Now, for the induction hypothesis, we assume
that if u is any vertex, then any vertex v′ at a distance at most k−1 from u lies on a
cycle with u.

Let v be a vertex at a distance k from u. We prove that u and v lie on a cycle. Let P

be a shortest u−v path and v′ the nearest vertex on P from u. By induction hypothesis
there is a cycle C containing u and v′. Since v′ is not a cut vertex of G, there is a u− v

path Q not passing through v′. Let z be the last vertex from u that Q has in common
with C. Then Cuv′ ∪ {v′v}∪ Qvz ∪ Czu is a cycle of G containing u and v. (Here Cuv′ is
the uv′ segment of C not containing z, and Czu is the zu segment of C not containing v′)
(Fig. 5.3(b)).

Fig. 5.3(b)

b. (ii) ⇒ (i). Let any two vertices of G lie on a cycle. We prove that G is a non-trivial
block, that is, G has no cut vertex. Assume to the contrary that G has a cut vertex
u. Then there are vertices v and w such that every v−w path passes through u. But
then there is no cycle containing v and w, which is a contradiction. Thus G has no cut
vertex.

c. (ii) ⇒ (iii). Let any two vertices of G lie on a cycle. Let vertex u and edge vw be
given. So by (b), G is a block and therefore vw is not a cut edge.

Let C be a cycle containing vw. If C contains u, the proof is complete. If not, by
(ii), there is a cycle Z containing u and v. Taking any orientation of Z, let x and y be
the first and last vertices from u that Z has in common with C. Then the u−x segment
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of Z, the x−y segment of C containing vw and the y−u segment of Z constitute a cycle
of G containing u and vw.

d. (iii) ⇒ (ii). Let u and v be any two vertices. Since v cannot be an isolated vertex,
there is an edge vw. By (iii) there is a cycle containing u and vw (Fig. 5.4).

Fig. 5.4

e. (iii) ⇒ (iv). Let uv and u′ v′ be the given edges. By (iii) there is a cycle C through
u containing u′v′. If it passes through v, then the u− v segment of C containing u′v′

and the edge vu constitute a cycle as required. If not, then as the earlier implications
show that G is a block, u is not a cut vertex, and hence there is a v−v′ path P in G not
passing through u (Fig. 5.5).

Fig. 5.5

Let w be the first vertex from v that P has in common with C. Then v−w segment of
P, the w− u segment of C containing u′v′ and the edge uv constitute a cycle of G as
desired (Fig. 5.6).

Fig. 5.6

f. (iv) ⇒ (iii). This can be proved as in (d).

g. (iv) ⇒ (v). Let u and u′ be the vertices and vw the given edge. If uv′ is also an edge,
then there is nothing to prove. If not, since u is not an isolated vertex, there is an edge
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uv1 and by (iv) there is a cycle C containing uv1 and vw. By previous implications, G

is a block and hence u is not a cut vertex. Therefore there is a u′w path P not passing
through u. Let x be the first vertex from u′ that P has in common with C. Then the
u′x segment of P and the xu segment of C containing vw constitute a path as desired
(Fig. 5.7).

Fig. 5.7

h. (v) ⇒ (iv). Obvious. q

Remark Property (iv) of the above theorem can be used to define an equivalence relation
on the edge set E of a graph G by e ∼ f if and only if e and f lie on a common cycle in G.
The equivalence classes are simply the blocks of G and the edge set E is partitioned into
blocks. These blocks are joined at cut vertices, two blocks having at most one vertex in
common.

5.2 Block−Cut Vertex Tree

Let B be the set of blocks and C be the set of cut vertices of a separable graph G. Construct a
graph H with vertex set B∪C in which adjacencies are defined as follows: ci ∈C is adjacent
to b j ∈ B if and only if the block b j of G contains the cut vertex ci of G. The bipartite graph
H constructed above is called the block-cut vertex tree of G.

Example Consider the graph in Figure 5.8. The blocks are b1 =< 1, 2 >, b2 =< 2, 3, 4 >,
b3 = < 2, 5, 6, 7 >, b4 = < 7, 8, 9, 10, 11 >, b5 = < 8, 12, 13, 14, 15 >, b6 = < 10, 16 >,
b7 = < 10, 17, 18 > and cut vertices are c1 = 2, c2 = 7, c3 = 8, c4 = 10.

Fig. 5.8
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End block: A block of a graph G containing only one cut vertex is called an end block
of G.

We have the following result on blocks.

Theorem 5.4 Every separable graph has at least one cut vertex and therefore has at least
two end blocks.

Proof A separable graph G has at least one cut vertex and therefore has at least two
blocks. Thus its block-cut vertex tree T has at least three vertices. Now, for any separable
graph the end blocks correspond to the pendant vertices of its block-cut vertex tree. Also,
any tree with at least two vertices has two vertices of degree one. Thus the block-cut vertex
tree T has at least two pendant vertices. Hence G has at least two end-blocks. q

The next result is due to Harary and Norman [109].

Theorem 5.5 The center of any connected graph G lies on a block of G.

Proof If not, let B1, B2 be blocks of G containing central vertices. If b1, b2 are the vertices
of the block-cut vertex tree T of G corresponding to B1 and B2, then there is at least one
vertex c in the unique b1 −b2 path of T , corresponding to a cut-vertex c of G. So there are
two components G1 and G2 of G− c such that B1 − c ⊆ G1 and B2 − c ⊆ G2. Let c̄ be an
eccentric vertex of c in G and P be a c− c̄ path of G having length e(c). Then at least one
of the components G1 and G2, say G2, contains no vertex of P. Let s be a central vertex in
G2 and Q be a shortest s− c path in G. Then Q ∪ P is clearly an s− c̄ path in G and thus
d(s, c̄) = d(s, c)+e(c). Therefore e(s) > e(c), contradicting the fact that s is a central vertex.
Thus the center of G lies in a single block. Hence the center of any connected graph G lies
on a block of G. q

Definition: If G is a separable graph and c a cut-vertex of G, then a maximal connected
subgraph of G containing c in which c is not a cut-vertex is called a branch of G at c. The
induced subgraph 〈C〉 on the central vertices of G is called the central graph of G. If G has
a unique central vertex c, then G is said to be a unicentric graph. The unique block B of G

to which the center c of G belongs is called the central block of G. This is unambiguously
defined except when G is unicentric and the unique central vertex is a cut-vertex of G.
When B = 〈C〉 = G, then G is called a self-centered graph. If the unique central vertex c of
G is a cut-vertex of G, the unique block of any of the branches of G at c in which c has an
eccentric vertex c̄ may be taken as the chosen central block of G.

We note that the central graph of a tree is either K1 or K2. Buckley, Miller and Slater [53]
have studied graphs with specified central graphs. The following result is atributed to
Hedetniemi and is reported in Parthasarathy [180].

Theorem 5.6 For any graph H there exists a graph G with 4 more vertices such that H is
the central graph of G.
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Proof Take two new vertices v and w, and join each to every vertex of H. Take two other
vertices x and y, join x to v, and y to w. Then in the resulting graph G, e(x) = e(y) = 4, e(v) =
e(w) = 3 and e(u) = 2, for every vertex u ∈V (H). Thus H is an induced subgraph of G and
the central graph of G. q

5.3 Connectivity Parameters

Assume that a graph does not get disconnected by deleting a single vertex, or by removing
a single edge. A natural question then arises: what is the minimum number of vertices or
edges required to disconnect a graph? This and other related questions are answered in this
section. Before proceeding, we have the following definitions.

Definition: Let G = (V, E) be a graph. A subset S of V ∪ E is called a disconnecting set
of the graph G if k(G−S) > k(G), or G−S is the trivial graph.

If a disconnecting set S is a subset of V , it is called a vertex cut of G, and if it is a subset
of E it is called an edge cut of G. If a disconnecting set S contains vertices and edges it is
called a mixed cut.

Example For the graph shown in Figure 5.9, S = {3, e3} is a mixed cut, S = {3} is a
vertex cut and S = {e1, e3} is an edge cut.

Fig. 5.9

A mixed cut/vertex cut/edge cut S is minimal if no proper subset of S has the same
property as S. A mixed cut/vertex cut/edge cut S is minimum if it has least cardinality
among all such minimal sets. A minimal vertex cut is called a knot and a minimum vertex
cut is called a clot. The cardinality of a clot is called the vertex-connectivity number, or
clot number of the graph G and is denoted by κ(G).

A minimal edge cut is called a bond and a minimum edge cut is called a band. The
cardinality of a band is called the edge-connectivity number, or band number of the graph
G, and is denoted by λ (G).

The minimum cardinality of a mixed set is denoted by σ(G).

Let S be a disconnected set of the graph G(V, E). Let vertices s and t be in the same
component of G, but in different components of G−S. Then S is called an s− t separating
set in G. Minimal s− t separating vertex cut is called an s− t knot, and the minimum s− t

separating vertex cut is called an s− t clot. Minimal s− t separating edge cut is called an
s−t bond, and the minimum s−t separating edge cut is called an s−t band. The cardinality
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of an s− t clot is called the s− t clot number and is denoted by κ(s, t), and the cardinality
of an s− t band, called the s− t band number, is denoted by λ (s, t). The cardinality of a
minimum s− t separating mixed cut is denoted by σ(s, t).

The following result gives vertex connectivity of complete graphs and an upper bound
for non-complete graphs.

Theorem 5.7 κ(Kn) = n−1. If G is incomplete, then κ(G) ≤ n−2.

Proof

i. Clearly, Kn is a connected graph with n vertices. Deletion of a vertex v1 keeps the
graph G− v1 connected. Clearly, G− v1 has n−1 vertices. Deleting one more vertex,
say v2 from G− v1, gives a graph G−{v1, v2}, which is again connected. Continuing
this process, we observe that deleting any number of ertices i, 1 ≤ i ≤ n−1 does not
disconnect the graph, but deleting exactly n−1 vertices gives a trivial graph with one
vertex. Thus, κ(Kn) = n−1.

ii. Let G be an incomplete graph with n vertices. Then there are at least two vertices,
say vi and v j which are not adjacent. If there is exactly one edge viv j missing, then
deleting the n−2 vertices other than vi and v j disconnects the graph. So in this case
κ(G) = n−2. If there are more edges missing, then clearly κ(G) < n−2 (Fig. 5.10).
Hence, κ(G) ≤ n−2. q

Fig. 5.10

The following result is obvious.

Theorem 5.8 κ(G) min
s, t∈v
st /∈E

κ(s, t), λ (G) = min
s, t∈v

λ (s, t), σ(G) = min
s, t∈v

σ(s, t).

Cut of a graph: Let G(V, E) be a graph and let A be any non-empty sub-set of the vertex
set V . Let Ā = V −A. The set of all edges with one end in A and the other end in Ā, denoted
by [A, Ā] is called a cut of G. The concept of a cut of a graph is intermediate between that
of an edge cut and a bond.

We note that every cut is an edge cut, but the converse is not true. Consider the graph in
Figure 5.11. Here F = {e1, e2, e3, e4, e5} is an edge cut, but F is not a cut.
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Fig. 5.11

Also, every bond is a cut, but the converse is not true. This is illustrated by the graph in
Figure 5.12. Let A = {1, 2, 3, 4}. Then Ā = {5, 6, 7, 8}. So [A, Ā] = {e1, e2, e3, e4}. Here
[A, Ā] is a cut but not a bond.

Fig. 5.12

Theorem 5.9 Every minimal cut is a bond and every bond is a minimal cut.

Proof Let G(V, E) be a graph and let C = [A, Ā] be a cut of G. Assume C to be a minimal
cut. Then no subset of the edges of C is a cut and this implies that G−C has only two
components 〈A〉 and

〈

Ā
〉

. Therefore C is a bond.

Conversely, let F be a bond. Then G−F has only two components, say C1 and C2. Then
F = [V1, V2], with V2 = V̄1. Thus F is a cut and hence a minimal cut. q

Theorem 5.10 Every cut is a disjoint union of minimal cuts.

Proof Let G(V, E) be a graph and let C = [A, Ā] be a cut of G. Let C be not a minimal cut.
Then at least one of 〈A〉, or

〈

Ā
〉

has more than one component.

Assume C1, C2, . . ., Cr to be the components of 〈A〉 and C′
1
, C′

2
, . . ., C′

s be the components
of

〈

Ā
〉

. (Clearly, at least one of r and s is greater than one.) Let Ci be coalesced to vertices
ci, 1 ≤ i ≤ r and C′

i be coalesced to vertices c′i, 1 ≤ i ≤ s, and let H be the simple coalescence
thus obtained. Obviously in H, there are no edges of the form cic j and c′ic

′
j , i 6= j. Thus H is

a bipartite graph (because there are edges cic
′
j in H) (Fig. 5.13).
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Fig. 5.13

If we can partition the edge set of H into a disjoint union of bonds of H, the edges of G

corresponding to these bonds will be disjoint bonds of G whose union is C. To achieve
such a partition of E(H), we first take the cut edges of H as members of the partition and
let F be the set of such cut edges. For the remaining members of the partition, we take the
stars at the remaining (non-isolated) vertices ci (or c′i). This gives the required partition and
hence the result follows. q

Illustration Consider the graph of Figure 5.14. Partition of E(H) is {e1}∪{e2}∪{e3, e4}
∪{e5, e6}. e1 is a cut edge, e2 is a cut edge, {e3, e4} form the star K1, 2 and {e5, e6} form the
star K1, 2.

Fig. 5.14

Remark Though the equivalence of minimal edge cuts and minimal cuts is brought out
by Theorem 5.10, there is an essential difference between edge cuts and cuts as already
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mentioned. To emphasise this, we observe that Theorem 5.10 cannot be generalised to
state that every edge cut is a disjoint union of bonds. The example in Figure 5.11 illustrates
this point.

Since it is enough to consider connected graphs for discussing connectivity concepts, in
what follows, we shall assume that graphs are connected, unless stated otherwise.

The following results are reported by Harary and Frisck [105].

Theorem 5.11 In a connected graph G(V, E), if st /∈ E, then κ(s, t) ≤ σ(s, t).

Proof Let G(V, E) be a connected graph, and s, t be vertices in V such that st /∈ E. Let
κ(s, t) be the cardinality of the minimum s− t separating vertex cut (s− t clot). Let σ(s, t)
be the cardinality of a minimum s− t separating mixed cut. We prove that from any mixed
s− t separating set, we can get an s− t separating vertex cut with no more elements.

Let S be a minimum mixed s− t separating set. If i j is an edge in S, then both i and j

cannot coincide with s and t , since st /∈ E.

If i = s, add i to S, and remove from S all edges with i as an end vertex. If i 6= s, add j to
S and remove from S all edges with j as an end vertex. The resulting, possibly mixed set is
clearly an s− t separating set with no more elements than S.

We repeat this process and remove all edges from S and obtain a vertex cut S′ with atmost
|S| elements.

Since κ̇(s, t) ≤ |S′| ≤ |S| = σ(s, t), we have κ(s, t) ≤ σ(s, t). q

Corollary In a connected graph G(V, E), if st /∈ E, then κ(s, t) ≤ λ (s, t).

Note If st ∈ E, then κ(s, t) is not defined.

Theorem 5.12 For any graph G, σ(G) = κ(G).

Proof

Case (i) When G = Kn, then κ(G) = n−1 and λ (G) = n−1.
Let S be a minimum mixed disconnecting set of G and let S = T ∪F, where T ⊆V , F ⊆ E,

and |T | = n1, |F| = m1. Then G−T is Kn−n1
. Therefore, |F | ≥ λ (Kn−n1−1) = n−n1 −1. Thus,

m1 ≥ n−n1−1. So, σ = |S|= m1 +n1 ≥ n−n1−1 +n1 = n−1. Therefore, σ ≥ n−1 = κ.
Also, σ ≤ κ. Hence, σ = κ.

Case (ii) When G is incomplete, then clearly σ ≤ κ. We have to prove that σ = κ when
G is complete. If possible, let there be a minimum s− t separating mixed set S = M∪{st}
with σ = |S| < κ. Now, M can be replaced by a set of vertices T (a subset of the vertex set
of the induced subgraph 〈M〉) to provide a vertex cut of G∗ = G−st with cardinality at most
|M|.

Let C1 and C2 be the components of G− S to which s and t respectively belong. Let
there be another component C3 of G−S and let v be a vertex of C3. Then T ∪{s} is a v− t

separating vertex cut of G. But then |T ∪{s}| ≤ |S| < κ, a contradiction (Fig. 5.15).
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Fig. 5.15

Thus C1 and C2 are the only components of G−S. Also, if u ∈V(C1), and u 6= s, then T ∪{s}
is a u− t separating vertex cut of G, again leading to a contradiction. Thus C1 = {s}, and
similarly C2 = {t}. So G has |V(M)|+ 2 vertices, and is incomplete. Therefore κ(G) ≤
n−2 = |V(M)|+2−2 = |V(M)|< κ implying κ(G) < κ, a contradiction. Thus σ̇ 6< κ. Hence
σ = κ. q

The following inequalities are due to Whitney [265].

Theorem 5.13 (Whitney) For any graph G, κ(G) ≤ λ (G) ≤ δ (G).

Proof We first prove λ (G) ≤ δ (G).
If G has no edges, then λ = 0 and δ = 0. If G has edges, then we get a disconnected

graph, when all edges incident with a vertex of minimum degree are removed. Thus, in
either case, λ (G) ≤ δ (G).

We now prove κ(G) ≤ λ (G). For this, we consider the various cases. If G = Kn, then
κ(G) = λ (G) = n− 1. Now let G be an incomplete graph. In case G is disconnected or
trivial, then obviously κ = λ = 0.

If G is disconnected and has a cut edge (bridge) x, then λ = 1. In this case, κ = 1, since
either G has a cut vertex incident with x, or G is K2.

Finally, let G have λ ≥ 2 edges whose removal disconnects it. Clearly, the removal of
λ −1 of these edges produces a graph with a cut edge (bridge) x = uv. For each of these λ −1

edges, select an incident vertex different from u or v. The removal of these vertices also
removes the λ − 1 edges and quite possibly more. If the resulting graph is disconnected,
then κ < λ . If not, x is a cut edge (bridge) and hence the removal of u or v will result in
either a disconnected or a trivial graph, so that κ ≤ λ in every case. q

Illustration We illustrate this by the graph shown in Figure 5.16. Here κ = 2, λ = 3 and
δ = 4.
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Fig. 5.16

Theorem 5.14 For any v ∈V and any e ∈ E of a graph G(V, E), κ(G)−1 ≤ κ(G− v) and
λ (G)−1 < λ (G− e) ≤ λ (G).

Proof We observe that the removal of a vertex or an edge from a graph can bring down
κ or λ by at most one, and that while κ may be increased by the removal of a vertex, λ
cannot be increased by the removal of an edge. q

Theorem 5.15 For any three integers r, s, t with 0 < r ≤ s ≤ t , there is a graph G with
κ = r, λ = s and δ = t .

Proof Take two disjoint copies of Kt+1. Let A be a set of r vertices in one of them and
B be a set of s vertices in the other. Join the vertices of A and B by s edges utilising all the
vertices of B and all the vertices of A. Since A is a vertex cut and the set of these s edges is
an edge cut of the resulting graph G, it is clear that κ(G) = r and λ (G) = s. Also, there is at
least one vertex which is not in A∪B, and it has degree t , so that δ (G) = t . q

Illustration Let r = 1, s = 2, t = 3. Take two copies of K4. Here κ(G) = 1, λ (G) = 2,
δ (G) = 3 (Fig. 5.17).

Fig. 5.17

Theorem 5.16 For a graph, δ ≥
n

2
ensures λ = δ .

Proof Let G be a graph with δ ≥
n

2
. Let λ < δ . Let F be a set of λ edges disconnecting

G. Let C1 and C2 be the components of G−F , and A1 and A2 be the end vertices of F in C1

and C2, respectively.
Suppose |A1| = r, |A2| = s and also V (C1) = A1. Then each vertex of C1 is adjacent with

at least one edge of F . So the number m1 of edges in C1 satisfies the inequality
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m1 ≥
1

2
(rδ −λ ) >

1

2
(rδ −δ ), since λ < δ by assumption.

Therefore, m1 >
1

2
(r−1)δ >

1

2
(r−1)r, since r ≤ |F| = λ < δ .

But a graph on n vertices cannot have more than
1

2
r(r−1) edges. Thus, |V(C1)| > |A1|.

Similarly, V (C2) > |A2|. Thus each of C1 and C2 contains at least δ +1 vertices.

Therefore, n = |V(G)| ≥ 2(δ +1) ≥ 2(
n

2
+1) = n +2 or n ≥ n+2, which is a contradiction.

Hence λ < δ is not possible. So λ = δ . q

5.4 Menger’s Theorem

Harary [104] listed eighteen variations of Menger’s theorem including those for digraphs.
Clearly, all these are equivalent and one can be obtained from the other. Several proofs of
the various forms of Menger’s theorems have appeared, for example, in Dirac [67], Ford
and Fulkerson [81], Lovasz [150], McCuaig [156], Menger [158], Nash-Williams and Tutte
[169], O’Neil [173], Pym [213] and Wilson [269].

Let u and v be two distinct vertices of a connected graph G. Two paths joining u and v

are called disjoint (vertex disjoint) if they have no vertices other than u and v (and hence
no edges) in common. The maximum number of such paths between u and v is denoted by
p(u, v). If the graph G is to be specified, it is denoted by p(u, v|G).

The following is the vertex form of Menger’s theorem. The proof is due to Nash-
Williams [9] and Tutte [169].

Theorem 5.17 (Menger-vertex form) The minimum number of vertices separating
two non-adjacent vertices s and t is equal to the maximum number of disjoint s− t paths,
that is, for any pair of non-adjacent vertices s and t , the clot number equals the maximum
number of disjoint s− t paths. That is, κ(s, t) = p(s, t), for every pair s, t ∈V with st /∈ E.

Proof Let G(V, E) be a graph with |E|= m. We use induction on m, the number of edges.
The result is obvious for a graph with m = 1 or m = 2. Assume that the result is true for
all graphs with less than m edges. Let the result be not true for the graph G with m edges.
Then we have

p(s, t|G) < κ(s, t|G) = q (say), (5.17.1)

as for any graph, we obviously have p(s, t) ≤ κ(s, t).
Let e = uv be an edge of G. The deletion graph G1 = G− e, and the contraction graph

G2 = G|e have less number of edges than G. Therefore, by induction hypothesis, we have

p(s, t|G1) = κ(s, t|G1) and p(s, t|G2) = κ(s, t|G2). (5.17.2)
Let I be an (s, t)− clot in G1 and J′ be an (s, t)− clot in G2. Then we have
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|I|= κ(s, t|G1) = p(s, t|G1) ≤ p(s, t|G) < q and

|J′| = κ(s, t|G2) = p(s, t|G2) ≤ p(s, t|G) < q, by using (5.17.2) and (5.17.1).

So |J′| < q and therefore |J′| ≤ q−1.

Now to J′ there corresponds an (s− t) vertex cut J of G such that |J| ≤ |J′|+1, since, by
elementary contraction, κ(s, t) can be decreased by at most one, and this decrease actually
occurs when e ∈ E(〈J〉).

Thus, |J| ≤ |J′|+1 ≤ q−1 +1 = q,

that is, |J| ≤ q. (5.17.3)

Since J is an (s, t) vertex cut in G, κ(s, t) ≤ |J|, q ≤ |J|.

Thus, q ≤ |J| ≤ q, so that |J|= q.

Therefore, |I|< q and |J| = q and u, v ∈ J by (5.17.3). (5.17.4)

Let

Hs = {w ∈ I ∪ J : there exists an s−w path in G, vertex-disjoint from I ∪ J−{w}} and

Ht = {w ∈ I∪ J : there exists a t −w path in G, vertex-disjoint from I ∪ J−{w}}.
Clearly, Hs and Ht are (s− t) separating vertex cuts in G. Therefore,

|Hs| ≥ q and |Ht | ≥ q. (5.17.5)

Obviously, Hs ∪Ht ⊆ I∪ J.
We claim that Hs ∩Ht ⊆ I ∪ J. For this, let w ∈ Hs ∩Ht . Then there exists an s−w path

P1 and w− t path P2 in G vertex disjoint from I ∪ J−{w}. So P1 ∪P2 contains a path, say P.
If e ∈ P then we have u, v ∈ V (P)∩ J ⊆ {w}, which is impossible. Therefore e /∈ P and so
P ⊆ G− e. Since I is an (s, t) separator in G− e and J is an separator in G, P has a vertex
common with I and also with J. So w ∈ I ∩ J. Thus, Hs ∩Ht ⊆ I ∩ J.

Combining (5.17.4) and (5.17.5), and the above observation, we have

q +q ≤ |Hs|+ |Ht| = |Hs ∪Ht|+ |Hs∩Ht | ≤ |I∪ J|+ |I∩ J|

= |I|+ |J|< q +q,

which is a contradiction.

Thus (5.17.1) is not true, and therefore, we have

κ(s, t|G) = p(s, t|G). q
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Definition: Two paths joining u and v are said to be edge-disjoint if they have no edges
in common. The maximum number of edge-disjoint paths between u and v is denoted by
l(u, v).

The following is the edge form of Menger’s theorem and the proof is adopted from
Wilson [196].

Theorem 5.18 (Menger-edge form) For any pair of vertices s and t of a graph G, the
minimum number of edges separating s and t equals the maximum number of edge-disjoint
paths joining s and t , that is, λ (s, t) = l(s, t) for every pair s, t ∈V .

Proof Let G(V, E) be a graph and let |E| = m. We use induction on the number of edges
m of G. For m = 1, 2, the result is obvious. Assume the result to be true for all graphs with
fewer than m edges. Let λ (s, t) = k. We have two cases to consider.

Case (i) Suppose G has an (s− t) band F such that not all edges of F are incident with s,
nor all edges of F are incident with t . Then G−F consists of two non-trivial components
C1 and C2 with s ∈ C1 and t ∈ C2. Let G1 be the graph obtained from G by contracting the
edges of C1, and G2 be a graph obtained from G by contracting the edges of C2. Therefore,

G1 = G||E(C1) and G2 = G||E(C2).

Since G1 and G2 have less edges than G, the induction hypothesis applies to them. Also,
the edges corresponding to F provide an (s− t) band in G1 and G2, so that λ (s, t|G1) = k

and λ (s, t|G2) = k. Thus, by induction hypothesis, there are k edge-disjoint paths joining s

and t in G1, and there are k edge-disjoint paths joining s and t in G2. Thus l(s, t|G1) = k and
l(s, t|G2) = k.

The section of the path of the k edge-disjoint paths joining s and t in G2 which are in
C1 and the section of the paths of the k edge-disjoint paths joining s and t in G1 which are
in C2 can now be combined to get k− edge disjoint paths between s and t in G. Hence
l(s, t|G) = k.

Case (ii) Every (s− t) band of G is such that either all its edges are incident with s, or all
its edges are incident with t .

If G has an edge e which is not in any (s− t) band of G, then λ (s, t|G− e) = λ (s, t|G) =
k. Since the induction hypothesis is applicable to G − e, there are k edge-disjoint paths
between s and t in G− e and thus in G. Hence l(s, t|G) = k.

Now, assume that every edge of G is in at least one (s− t) band of G. Then every s− t

path P of G is either a single edge or a pair of edges. Any such path P can therefore contain
at most one edge of any (s− t) band. Then G−E(P) = G1 is a graph with λ (s, t|G1) = κ −1.

Appling induction hypothesis, we have l(s, t|G1) = κ − 1. Together with P, we get
l(s, t|G) = k. q

Definition: A graph G is said to be n-(vertex) connected if κ(G) ≥ n and n-(edge) con-
nected if λ (G) ≥ n. Thus a separable graph (κ = 1) is 1-connected and not 2-connected. A
separable graph without cut edges is only 1-edge connected.
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5.5 Some Properties of a Bond

We give some properties of a bond (bond is also called a cut-set). The first property follows.

Theorem 5.19 Every bond in a connected graph G connects at least one branch of every
spanning tree of G.

Proof Let G be a connected graph and T be a spanning tree of G. Let S be an arbitrary
bond in G. Clearly, there are edges which are common in S and T . For, if there is no edge
of S which is also in T , then removal of the bond S from G will not disconnect the graph, as
G−S contains T and is therefore connected. Thus S and T have at least one common edge.

q

Theorem 5.20 In a connected graph G, any minimal set of edges containing at least one
branch of every spanning tree of G is a bond.

Proof Let G be a connected graph and let Q be a minimal set of edges containing at least
one branch of every spanning tree of G.

Consider G−Q, the subgraph that remains after removing the edges in Q from G. Since
G−Q contains no spanning tree of G, therefore G−Q is disconnected (one component of
which may just consist of an isolated vertex). Also, since Q is a minimal set of edges with
this property, therefore any edge e from Q returned to G−Q creates at least one spanning
tree. Thus the subgraph G−Q + e is a connected graph. Therefore Q is a minimal set of
edges whose removal from G disconnects G. This, by definition, is a bond. q

Theorem 5.21 Every cycle has an even number of edges in common with any bond.

Proof Let G be a graph and let S be a bond of G. Let the removal of S partition the
vertices of G into two mutually disjoint subsets V1 and V2. Consider a cycle C in G (Fig.
5.18).

Fig. 5.18
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If all the vertices in C are entirely within vertex set V1 (or V2), then the number of edges
common to S and C is zero, which is an even number. If, on the other hand, some vertices
in C are in V1 and some in V2, we traverse back and forth between the sets V1 and V2 as we
traverse the cycle. Because of the closed nature of a cycle, the number of edges between V1

and V2 must be even. And, since every edge in S has one end in V1 and other in V2, and no
other edge in G has the property of separating sets V1 and V2, the number of edges common
to S and C is even. q

5.6 Fundamental Bonds

Consider a spanning tree T of a connected graph G. Take any branch b in T . Since {b} is a
bond in T , therefore {b} partitions all vertices of T into two disjoint sets, one at each end
of b. Consider the same partition of vertices in G and the bond S in G that corresponds to
this partition. Bond S will contain only one branch b of T and the rest (if any) of the edges
in S are chords with respect to T . Such a bond S containing exactly one branch of a tree T

is called a fundamental bond with respect to T .

Theorem 5.22 The ring sum of any two bonds is either a third bond, or an edge-disjoint
union of bonds.

Proof Let G be a connected graph, and S1 and S2 be two bonds. Let V1 and V2 be the
unique and disjoint partitioning of the vertex set V of G corresponding to S1. Let V3 and V4

be the partitioning corresponding to S2.
Clearly, V1 ∪V2 = V, V1 ∩V2 = ϕ, V3 ∪V4 = V and V3 ∩V4 = ϕ (Fig. 5.19(a) and (b)).
Now, let (V1 ∩V4)∪ (V2 ∩V3) = V5 and (V1 ∩V3)∪ (V2 ∩V4) = V6.
Clearly, V5 = V1 ⊕V3 and V6 = V2 ⊕V3 (Fig. 5.19(c)).
The ring sum of two bonds S1 ⊕S2 consists only of edges that join vertices in V5 to those

in V6. Also, there are no edges outside S1 ⊕S2 that joins vertices in V5 to those in V6. Thus
the set of edges S1 ⊕ S2 produces a partitioning of V into V5 and V6 such that V5 ∪V6 = V

and V5 ∩V6 = ϕ. Hence S1 ⊕S2 is a bond if the subgraphs containing V5 and V6 each remain
connected after S1 ⊕S2 is removed from G. Otherwise, S1 ⊕S2 is an edge disjoint union of
bonds. q
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Fig. 5.19

Example Consider the graph in Figure 5.20. Here {d, e, f }⊕{ f , g, h} = {d, e, g, h}
is a bond, {a, b}⊕{b, c, e, f } = {a, c, e, f } is another bond and {d, e, g, h}⊕{ f , g, k} =
{d, e, f , h, k} = {d, e, f } ∪ {h, k} an edge disjoint union of bonds.

Fig. 5.20

Theorem 5.23 With respect to a given spanning tree T , a chord ci that determines a
fundamental cycle C occurs in every fundamental bond associated with the branches in C

and in no other.

Proof Let G be a connected graph and T be a spanning tree of G. Let ci be a chord with
respect to T and let the fundamental cycle made by ci be called C, consisting of k branches
b1, b2, . . . , bk in addition to the chord ci. So C = {ci, b1, b2, . . ., ck} is a fundamental cycle
with respect to T .

Now every branch of any spanning tree has a fundamental bond associated with it. So
let S1 be the fundamental bond associated with b1, consisting of q chords in addition to the
branch b1. Thus, S1 = {b1, c1, c2, . . ., cq} is a fundamental bond with respect to T .

We know there are even number of edges common to C and S1. Clearly, b1 is in both C

and S1. So there is exactly one more edge which is in both C and S1. Obviously, the edge ci

in C can possibly be in S1. Thus ci is one of the chords c1, c2, . . ., cq.
The same argument holds for fundamental bonds associated with b2, b3, . . ., bk. Thus

the chord ci is contained in every fundamental bond associated with branches in C.
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Now we show that the chord ci is not in any other fundamental bond S′ with respect to
T , besides those associated with b1, b2, . . ., bk. Let this be possible. Then since none of
the branches in C are in S′, there is only one edge ci common to S′ and C, which gives a
contradiction to the fact that there are even number of edges common to a fundamental
bond and a cycle. q

Example In the graph of Figure 5.20, consider the spanning tree {b, c, e, h, k}. The
fundamental cycle made by the chord f is C = { f , e, h, k}. The three fundamental bonds
determined by the three branches e, h and k are as follows: (i) determined by e is {d, e, f },
(ii) determined by h is { f , g, h} and (iii) determined by k is { f , g, k}. Clearly, chord f

occurs in each of these three fundamental bonds and there is no other fundamental bond
that contains f .

Theorem 5.24 With respect to a given spanning tree T , a branch bi that determines a
fundamental bond S is contained in every fundamental cycle associated with the chords in
S, and in no others.

Proof Let G be a connected graph and T be a spanning tree in G. Let the fundamental
bond determined by a branch bi be S = {bi, c1, c2, . . ., cp}.

Let C1 be the fundamental cycle determined by chord c1, so that

C1 = {c1, b1, b2, . . ., bq}.

We know that S and C1 have even number of edges in common. One common edge is
obviously c1. Thus the second common edge should be bi, so that bi is also in C1. Therefore
bi is one of the branches b1, b2, . . ., bq.

The same is true for the fundamental cycles made by the chords c2, c3, . . ., cp.
Now assume that bi occurs in a fundamental cycle Cp+1 made by a chord other than

c1, c2, . . ., cp . Since none of the chords c1, c2, . . ., cp is in Cp+1, there is only one edge bi

common to a cycle Cp+1 and the bond S, which is not possible. Hence the result follows.
q

Example Consider the graph of Figure 5.20. Consider the branch e of spanning tree
{b, c, e, h, k}. The fundamental bond determined by e is {e, d, f }. The two fundamental
cycles determined by chords d and f are respectively {d, c, e} and { f , e, h, k}. Clearly,
branch e is contained in both these fundamental cycles and none of the remaining three
fundamental cycles contains branch e.

Theorem 5.25 Let A, B be two disjoint vertex subsets of a graph G and let any vertex
subset of G which meets every A−B path in G have at least k vertices. Then there are k

vertex disjoint A−B paths in G.

Proof Let G be a graph and let A and B be two disjoint vertex subsets of G. Let S be any
vertex subset of G which meets every A−B path in G and let |S| ≥ k.
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Take two new vertices s and t , and join s by an edge to each vertex of A, and join t by an
edge to each vertex of B. Let G′ be the resulting graph, and in G′ we have κ(s, t) ≥ k.

Hence by Menger’s theorem, there are k vertex disjoint paths between s and t in G′.
Omitting the edges incident with s and t in these paths, we get k vertex-disjoint A−B paths
in G. q

Definition: A graph G is k-connected if κ(G) = k, and G is k-edge connected if λ (G) =
k. A k-connected (k-edge connected) graph is r-connected (r-edge 1-connected) for each
r, 0 ≤ r ≤ k− 1. Clearly, a separable graph (κ = 1) is connected and not 2-connected. A
separable graph without cut edge is 2-edge connected. A separable graph with cut edges is
only 1-connected.

The following result is due to Whitney [265].

Theorem 5.26 A graph G with at least three vertices is 2-connected if and only if any
two vertices of G are connected by at least two internally disjoint paths.

Proof Let G be 2-connected so that G contains no cut vertex. Let u and v be two distinct
vertices of G. To prove the result, we induct on d(u, v).

If d(u, v) = 1, let e = uv. Since G is 2-connected and n(G) ≥ 3, therefore e cannot be a
cut edge of G. For, if e is a cut edge, then at least one of u and v is a cut vertex. Now, by
Theorem 5.2, e belongs to a cycle C in G. Then C−e is a u−v path in G, internally disjoint
from the path uv.

Assume any two vertices x and y of G, such that d(x, y) = t −1, t ≥ 2, are joined by two
internally disjoint x−y paths in G. Let d(u, v) = t and let P be a u−v path of length t , and w

be the vertex before v on P. Then d(u, w) = t −1. Therefore, by induction hypothesis, there
are two internally disjoint u−w paths, say P1 and P2, in G. Since G has no cut vertex, G−w

is connected and therefore there exists a u− v path Q in G−w. Clearly, Q is a u− v path in
G not containing w. Suppose x is the vertex of Q such that x− v section of Q contains only
the vertex x in common with P1 ∪P2 (Fig. 5.21). Assume x belongs to P1. Then the union
of the u− x section of P1 and x− v section of Q together with P2 ∪ {wv} are two internally
disjoint u− v paths in G.

Conversely, assume any two distinct vertices of G are connected by at least two internally
disjoint paths. Then G is connected. Also, G has no cut vertex. For, if v is a cut vertex of
G, then there exist vertices u and w such that every u−w path contains v, contradicting the
hypothesis. Thus G is 2-connected. q

The following property of 3-connected graphs is given in Thomassen [241] and is at-
tributed to Barnette and Grunbaum [14] and Titov [243].

Theorem 5.27 If G is a 3-connected graph with at least five vertices, then G has an edge
e such that G− e is a subdivision of a 3-connected graph.

Proof Since G is 3-connected, δ ≥ 3, and so by Menger’s theorem, G has a subdivision
of K4.
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Fig. 5.21

Let H be a proper subgraph of G which is a subdivision of a 3-connected graph, and let
H have maximum possible number of edges. If H is a 3-connected spanning subgraph of
G, then by the maximality of H, G has an edge e such that H = G− e is a subgraph of G

with the desired property.
Now, let H be 3-connected but not spanning (Fig. 5.22). Then there is a vertex v ∈

V(G)−V(H), so that there are three v−V(H) paths, say P1, P2 and P3 which have only
vertex v in common. Let the other end vertices of these paths in V (H) be v1, v2 and v3. If
v1v2 = e ∈ E(H), then H + P1 + P2 − e is a subdivision of a 3-connected graph. Otherwise,
H + P1 + P2 is a subdivision of a 3-connected graph. In both cases the maximality of H

is contradicted.

Fig. 5.22

Let H be not 3-connected. Then H has a suspended path P of length at least 2. Let u

and v be the end vertices of P. Since G is 3-connected, G−{u, v} has a path P′ joining
an internal vertex w of P to a vertex in V (H)−V (P). But then H ∪P′ is a subdivision of a
3-connected graph. By the choice of H, H ∪P′ = G and P′ consists of a single edge e′. q
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The following property of 3-connected graphs is attributed to Thomassan [241].

Theorem 5.28 If G is a 3-connected graph with at least five vertices, then G has an edge
e such that G|e is 3-connected.

Proof Let G be a 3-connected graph with at least five vertices. Let e = uv be an edge of
G such that G|e is not 3-connected. Then G|e is 2-connected.

Let {x, y} be a vertex cut of G|e and let z be the vertex into which x and y have been
coalesced. Assume both x and y are different from z. Then G|e−{x, y} is a graph obtained
by contracting an edge of the connected graph G−{x, y}. This implies that G|e−{x, y} is
connected, which is a contradiction. Thus one of x and y coincides with z. Renaming the
other as w, we see that G has a vertex cut {u, v, w}.

Let G1 be the smallest component of G−{u, v, w}. Since G is 3-connected, G1 is joined
to w by an edge e1 = wx1. If G|e1 is not 3-connected, by a similar argument, there is a vertex
y1 such that G−{w, x1, y1}= G2 is disconnected. But then the smallest component of G2 is
a proper subgraph of G1.

Continuing in this way, we reach a stage when the smallest sub-graph is a single vertex
and the edge f joining it to the previous vertex cut is such that G| f is a 3-connected graph.

q

Illustration We illustrate this in Figure 5.23, where graph G is 3-connected having ver-
tex cut {u, v, w}. G|e is 2-connected with vertex cut {z, w} and G|e1 is 3-connected. In
G−{u, v, w}, we observe that the smallest subgraph is a single vertex.

Fig. 5.23

5.7 Block Graphs and Cut Vertex Graphs

The block graph B(G) of a graph G is a graph whose vertices are the blocks of G and two
of these vertices are adjacent whenever the corresponding blocks contain a common cut
vertex of G. The cut vertex graph C(G) of a graph G has vertices as cut vertices of G and
two such vertices are adjacent if the cut vertices of G to which they belong lie on a common
block (Fig. 5.24).
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Fig. 5.24

The following characterisation of block graphs is due to Harary [103].

Theorem 5.29 A graph H is the block graph of some graph if and only if every block
of H is complete.

Proof Let H = B(G) and assume there is a block Hi of H which is not complete. Then
there are two vertices in Hi which are non-adjacent and lie on a shortest common cycle Z

of length at least 4. But the union of the blocks of G corresponding to the vertices of Hi

which lie on Z is then connected and has no cut vertex, so it itself is contained in a block,
contradicting the maximality property of a block of a graph.

Conversely, let H be a given graph in which every block is complete. Form B(H), and
then form a new graph G by adding to each vertex Hi of B(H) a number of end edges equal
to the number of vertices of the block Hi which are not cut vertices of H. Then it is easy to
see that B(G) is isomorphic to H. q

1-isomorphism A separable graph consists of two or more non-separable subgraphs,
and each of the largest non-separable subgraph is a block. The graph in Figure 5.25 has
five blocks and three cut vertices u, v and w. We note that a non-separable connected graph
consists of just one block.

Fig. 5.25
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Now, compare the disconnected graphs of Figure 5.26 with the graph of Figure 5.25.
Clearly, these two graphs are not isomorphic, as they do not have the same number of ver-
tices. Evidently, the blocks of the graph of Figure 5.25 are isomorphic to the components
of the graph of Figure 5.26. We call such graphs 1-isomorphic.

Fig. 5.26

These observations lead to the following definition.

Definition: Two graphs G1 and G2 are said to be 1-isomorphic if they become isomor-
phic to each other under repeated application of the following operation.

Operation 1 Split a cut vertex into two vertices to produce two disjoint subgraphs.
This definition implies that two non-separable graphs are 1-isomorphic if and only if

they are isomorphic.

Two 1-isomorphic graphs have the following property.

Theorem 5.30 If G1 and G2 are 1-isomorphic graphs, then rank G1 = rank G2 and nullity
G1 = nullity G2.

Proof Under operation 1, whenever a cut vertex in a graph G is split into two vertices,
the number of components in G increases by one. Therefore, rank G = number of vertices
in G-number of components in G remains invariant under operation 1.

Since no edges are destroyed or new edges created by operation 1, two 1-isomorphic
graphs have the same number of edges. Two graphs with same rank, and same number of
edges have the same nullity, since nullity = number of edges−rank. q

Suppose the two vertices x and y belonging to different components of the graph in
Figure 5.26 are superimposed, then the graph obtained is shown in Figure 5.27. Clearly,
the graph in Figure 5.27 is 1-isomorphic to the graph in Figure 5.26. Also, since the blocks
of the graph in Figure 5.27 are isomorphic to the blocks of the graph in Figure 5.25, these
two graphs are 1-isomorphic. Hence the three graphs in Figures 5.25, 5.26 and 5.27 are
1-isomorphic.
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Fig. 5.27

We have seen that a graph G1 is 1-isomorphic to a graph G2 if the blocks of G1 are
isomorphic to the blocks of G2. Since a non-separable graph is a block, 1-isomorphism
for non-separable graphs is same as isomorphism. For separable graphs, obviously 1-
isomorphism is different from isomorphism. In fact, graphs that are isomorphic are also
1-isomorphic, but the converse need not be true.

2-isomorphism In a 2-connected graph G, let x and y be a pair of vertices whose re-
moval from G, leaves the remaining graph disconnected. That is, G consists of a subgraph
H and its complement H̄ such that H and H̄ have exactly two vertices x and y, in common.
Now, we perform the following operation on G.

Operation 2 Split the vertex x into x1 and x2, and the vertex y into y1 and y2 such that G

is split into H and H̄. Let vertices x1 and y1 go with H, and x2 and y2 with H̄. Now, rejoin
the graphs H and H̄ by merging x1 with y2 and x2 with y1. Clearly, edges whose end vertices
are x and y in G can go with H or H̄, without affecting the final graph.

Two graphs are said to be 2-isomorphic if they become isomorphic after undergoing
operation 1, or operation 2, or both any number of times. For example, Figure 5.28 shows
how the two graphs in (a) and (d) are 2-isomorphic.

Fig. 5.28
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It follows from the definition that isomorphic graphs are always 1-isomorphic and 1-
isomorphic graphs are always 2-isomorphic. But 2-isomorphic graphs are not necessar-
ily 1-isomorphic and 1-isomorphic graphs are not necessarily isomorphic. However, for
graphs with three or more connectivity, isomorphism, 1-isomorphism and 2-isomorphism
are same.

Clearly, no edges or vertices are created or destroyed under operation 2. So the rank and
nullity of a graph remain unchanged under operation 2. Therefore the 2-isomorphic graphs
are equal in rank and equal in nullity.

Cycle correspondence: Two graphs G1 and G2 are said to have a cycle correspondence
if there is a one-one correspondence between the edges of G1 and G2, and a one-one cor-
respondence between the cycles of G1 and G2, such that a cycle in G1 formed by certain
edges of G1 has a corresponding cycle in G2 formed by the corresponding edges of G2, and
vice versa. Clearly, isomorphic graphs have cycle correspondence. Since in a separable
graph G, every cycle is confined to a particular block, every cycle in G retains its edges as
G undergoes operation 1. Thus 1-isomorphic graphs have cycle correspondence.

The following result for 2-isomorphic graphs is due to Whitney [266].

Theorem 5.31 Two graphs are 2-isomorphic if and only if they have cycle correspon-
dence.

5.8 Exercises

1. Prove that a vertex v of a tree is a cut vertex if and only if d(v) > 1.

2. Prove that a unicentric graph need not be separable.

3. Prove that a graph H is the block-cut vertex graph of some graph G if and only if it is
a tree in which the distance between any two end vertices is even.

4. Prove that a unicentric graph need not have d = 2r.

5. Prove that a non-separable graph with at least two edges has nullity greater than zero.

6. Prove that a non-separable graph of nullity one is a cycle and its converse.

7. If v is a cut vertex of a simple connected graph G, prove that v is not a cut vertex of Ḡ.

8. Prove that a connected k-regular bipartite graph is 2-connected.

9. Show that a simple connected graph with at least three vertices is a path if and only
if it has exactly two vertices that are not cut vertices.

10. If b(v) denotes the number of blocks of a simple connected graph G containing vertex
v, prove that the number of blocks b(G) of G is given by

b(G) = 1 + ∑
v∈V(G)

(b(v)−1).
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11. Prove that if a graph G is k-connected or k-edge-connected, then m ≥
nk

2
.

12. Prove that a connected graph with at least two vertices contains at least two vertices
that are not cut vertices.

13. Prove that a 3-regular connected graph has a cut vertex if and only if it has a cut edge.

14. Prove that the connectivity and edge connectivity of a cubic graph are equal.

15. Prove that a graph with at least three vertices is 2-connected if and only if any two
vertices of G lie on a common cycle.

16. Prove that a graph is 2-connected if and only if for every pair of disjoint connected
subgraphs G1 and G2, there exist two internally disjoint paths P1 and P2 of G between
G1 and G2.

17. In a 2-connected graph G, prove that any two longest cycles have at least two vertices
in common.

18. Prove that a connected graph G is 3-connected if and only if every edge of G is the
exact intersection of the edge sets of two cycles of G.

19. Prove that a connected graph is Eulerian if and only if each of its blocks is Eulerian.

20. Prove that a connected graph is Eulerian if and only if each of its edge cuts has an
even number of edges.


