
14. Score Structure in Digraphs

Landau [145] associated with each tournament an ordered sequence of non-negative inte-
gers, its score structure, formed by listing the vertex outdegrees in non-decreasing order.
Since then the concept of score structure has been extended to various other classes of di-
graphs, namely oriented graphs and semicomplete graphs.The score structure property has
been used in the study of some structural properties of digraphs.

14.1 Score Sequences in Tournaments

Definition: In a tournament T , the score s(vi), or simply si of a vertex vi is the number
of arcs directed away from vi and the score sequence S(T ) is formed by listing the vertex

scores in non-decreasing order. Clearly, 0 ≤ si ≤
n(n−1)

2
. Further, no two scores can be zero

and no two scores can be n−1 . Tournament score sequences have also been called score
structures [145], score vectors [165] and score lists [29].

One interpretation of a tournament is as a competition where n participants play each
other once in a match that cannot end in a tie and score one point for each win. Player v

is represented in the tournament by vertex v and an arc from u to v means that u defeats
v. Then player v obtains a total of d+

v points in the competition and the vertex scores can
be ordered to obtain the score sequence of the tournament. We use u → v to denote the
both, an arc from u to v and the fact that u dominates v. A result of Ryser [227] states
that an n-tournament can be obtained from any other having the same score sequence by a
sequence of arc reversals of 3-cycles.

Now, we give the characterisation of score sequences of tournaments which is due to
Landau [145].This result has attracted quite a bit of attention as nearly a dozen differ-
ent proofs appear in the literature.Early proofs tested the readers patience with special
choices of subscripts,but eventually such gymnastics were replaced by more elegant argu-
ments.Many of the existing proofs are discussed in a survey by Reid [221] and the proof
we give here is due to Thomassen [242]. Further, two new proofs can be found in [89].

Theorem 14.1 (Landau) A sequence of non-negative integers S = [si]
n
1

in non-decreasing
order is a score sequence of a tournament if and only if for each subset I ⊆ [n]= {1, 2, . . ., n},



404 Score Structure in Digraphs

∑
i∈I

si ≥

(

|I|
2

)

, (14.1.1)

with equality when |I|= n.

Because of the monotonicity assumption s1 ≤ s2 ≤ . . . ≤ sn, the inequalities (14.1.1),
known as the Landau inequalities, are equivalent to

k

∑
i=1

si ≥

(

k

2

)

,

for 1 ≤ k ≤ n, with equality for k = n.

Proof

Necessity If a sequence of non-negative integers [si]
n
1

in the non-decreasing order is the
score sequence of an n-tournament T , then the sum of the first k scores in the sequence
counts exactly one each arc in the subtournamnent W induced by {v1, v2, . . ., vk} plus each

arc from W to T −W . Therefore the sum is at least k(k−1)
2

, the number of arcs in W. Also,
since the sum of the scores of the vertices counts each arc of the tournament exactly once,

the sum of the scores is the total number of arcs, that is,
n(n−1)

2
.

Sufficiency (Thomassen) Let n be the smallest integer for which there is a non-decreasing
sequence S of non-negative integers satisfying Landau’s conditions (14.1.2), but for which
there is no n-tournament with score sequence S. Among all such S, pick one for which s1

is as small as possible.
First consider the case where for some k < n,

k

∑
i=1

si =

(

k

2

)

.

By the minimality of n, the sequence S1 = [s1, s2, . . ., sk] is the score sequence of some
tournament T1. Further,

m

∑
i=1

(sk+i− k) =
m+k

∑
i=1

si −

(

k

2

)

−mk ≥

(

m+ k

2

)

−

(

k

2

)

−mk =

(

m

2

)

,

for each m, 1 ≤m ≤ n−k, with the equality when m = n−k. Therefore, by the minimality of
n, the sequence S2 = [sk+1−k, sk+2−k, . . . , sn −k] is the score sequence of some tournament
T2. By forming the disjoint union of T1 and T2, and adding all arcs from T2 to T1, we obtain
a tournament with score sequence S.

Now, consider the case where each inequality in 14.1.2 is strict when k < n (in particular
s1 > 0). Then the sequence S3 = [s1 − 1, s2, . . . , sn−1, sn + 1] satisfies (14.1.2) and by the
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minimality of s1, S3 is the score sequence of some tournament T3. Let u and v be the
vertices with scores sn + 1 and s1 − 1 respectively. Since the score of u is larger than that
of v, T3 has a path P from u to v of length ≤ 2. By reversing the arcs of P, we obtain a
tournament with score sequence S, a contradiction. q

Landau’s theorem is the tournament analog of the Erdos-Gallai theorem for graphical
sequences. A tournament analog of the Havel-Hakimi theorem for graphical sequences is
the following result, the proof of which can be found in Reid and Beineke [218].

Theorem 14.2 A non-decreasing sequence [si]
n
1

of non-negative integers, n ≥ 2, is the
score sequence of an n-tournament if and only if the new sequence

[s1, s2, . . . , sm, sm+1 −1, . . . , sn−1 −1]

where m = sn, when arranged in non-decreasing order, is the score sequence of some (n−1)-
tournament.

Definition: A tournament is strongly connected or strong if for every two vertices u and
v there is a path from u to v and a path from v to u. A strong component of a tournament is
a maximal strong subtournament.

The following extension of Theorem 14.1, characterises strong components. The proof
is straightforward and consequently omitted.

Theorem 14.3 A non-decreasing sequence [si]
n
1

of non-negative integers is the score
sequence of a strong n-tournament if and only if

k

∑
i=1

si >

(

k

2

)

, 1 ≤ k ≤ n, and
n

∑
i=1

si =

(

n

2

)

.

We have the following observation from Theorem 14.3. Let S = [si]
n
1

be a score sequence

of an n-tournament T with vertex set V = {1, 2, . . ., n}. Let
p

∑
i=1

si =

(

p

2

)

,
q

∑
i=1

si =

(

q

2

)

and
k

∑
i=1

si >

(

k

2

)

, for p +1 ≤ k ≤ q−1, where 0 ≤ p < q ≤ n.

Then the subtournament induced by {p+1, . . ., q} is a strong component of T with score
sequence [sp+1 − p, sp+2 − p, . . ., sq − p].

We say that S is strong if T is strong and the strong components of S are the score
sequences of the strong components of T . Theorem 14.3 shows that the strong components
of S are determined by the successive values of k for which

k

∑
i=1

si =

(

k

2

)

,

that is, the successive values of k for which equality holds in condition (14.1.2).
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For example, consider the score sequence

S = [1, 1, 1, 4, 4, 5, 5, 7, 9, 9, 10, 11, 11],

k

∑
i=1

si =

(

k

2

)

for k = 3, 7, 8, and 13.

Therefore the strong components of S are, in ascending order,

[1, 1, 1], [1, 1, 2, 2], [0], and [1, 1, 2, 3, 3].

The next result due to Brualdi and Shen [40] shows that the score sequence of an n-
tournament satisfies inequalities (14.4.1) below, which are individually stronger than the
inequalities (14.1.1), although collectively the two sets of inequalities are equivalent.

Theorem 14.4 (Brualdi and Shen) A sequence S = [si]
n
1

of non-negative integers in
non-decreasing order is a score sequence of a tournament if and only if for every subset
I ⊆ [n],

∑
i∈I

si ≥
1

2
∑
i∈I

(i−1)+
1

2

(

|I|
2

)

, (14.4.1)

with equality when |I|= n.

Proof The sufficiency (14.4.1) imply the inequalities (14.1.1).

We prove that the score sequence S of a tournament satisfies (14.4.1). For any subset I ⊆ [n],
define

f (I) = ∑
i∈I

si −
1

2
∑
i∈I

(i−1)−
1

2

(

|I|
2

)

.

Choose I firstly to have f (I) minimum and secondly to have |I| minimum.

Claim that I = {i : 1 ≤ i ≤ |I|}.

Otherwise, there exists i /∈ I and j ∈ I such that j = i +1. Then si ≤ s j. Since

s j −
1

2
( j + |I|−2)= f (I)− f (I−{ j}) <0

and si −
1

2
(i + |I|−1)= f (I∪{i})− f (I)≥ 0,
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1

2
(i + |I|−1)≤ si ≤ s j <

1

2
( j + |I|−2)=

1

2
(i + |I|−1),

which is a contradiction. This proves the claim.

Thus, f (I) =
|I|

∑
i=1

si −
1

2

|I|

∑
i=1

(i−1)−
1

2

(

|I|
2

)

=
|I|

∑
i=1

si −

(

|I|
2

)

≥ 0,

where the inequality follows from 14.1. By the choice of the subset I, Theorem 14.4
follows. q

Remark Clearly, the equality can occur often in (14.4.1). For example, equality holds
for regular tournaments of odd order n (with score sequence

[

n−1

2
, . . ., n−1

2

]

), whenever
|I| = k, and I = {n− k+1, . . . ,n}.

Further, Theorem 14.4 is best possible in the sense that, for any real ∈> 0, the inequality

∑
i∈I

si ≥

(

1

2
+ ∈

)

∑
i∈I

(i−1)+

(

1

2
− ∈

)(

|I|
2

)

fails for some I and some tournaments (for example, regular tournaments).

The following set of upper bounds for ∑
i∈I

si is equivalent to the set of lower bounds for

∑
i∈I

si in Theorem 14.4.

Corollary 14.1 A sequence S = [si]
n
1

of non-negative integers in non-decreasing order is a
score sequence of a tournament if and only if for any subset I ⊆ [n],

∑
i∈I

si ≤
1

2
∑
i∈I

(i−1)+
1

4
|I| (2n−|I|−1),

with equality when |I| = n.

Proof Let J = [n]− I. Then,

∑
i∈I

si =
1

2
∑
i∈I

(i−1)+
1

4
|I| (2n−|I|−1),

with equality when |I|= n, if and only if

∑
i∈J

si =
(n

2

)

−∑
i∈I

si ≥
1

2
∑
i∈J

(i−1)+
1

2

(

|J|

2

)

,

with equality when |J| = n. Therefore Corollary 14.1 follows from Theorem 14.4. q
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Corollary 14.2 If S = [si]
n
1

is a score sequence of a tournament, then for each i, i−1

2
≤ si ≤

n+i−2

2
.

Proof Choose I = {i}. Then the result follows immediately from Theorem 14.4 and
Corollary 14.1. q

The next result by Brualdi and Shen [40] shows that when equality occurs in the inequal-
ities (14.4.1), there are implications concerning the strong connectedness and regularity of
every tournament with score sequence S. For any integers r and s with r ≤ s, [r, s] denotes
the set of all integers between r and s.

Theorem 14.5 If S = [si]
n
1

is a tournament score sequence and if

∑
i∈I

si =
1

2
∑
i∈I

(i−1)+
1

2

(

|I|

2

)

for some I ⊆ [n], then one of the following holds.

i. I = [1, |I|] and
|I|

∑
i=1

si =

(

|I|

2

)

.

ii. I = [t, t + |I|−1] for some t, 2 ≤ t ≤ n−|I|+1,

t+|I|−1

∑
i=1

si =

(

t + |I|−1

2

)

and si = (t + |I|−2)/2, for all i ≤ t + |I|−1.

iii. I = [1, r]∪ [r + t, t + |I| − 1] , for some r and t such that 1 ≤ r ≤ |I|− 1 and 2 ≤ t ≤
n−|I|+1,

t+|I|−1

∑
i=1

si =

(

t + |I|−1

2

)

and si = (r + t + |I|−2)/2 for all i, r +1 ≤ i ≤ t + |I|−1.

Remark Conditions (i), (ii) and (iii) of Theorem 14.5 are equivalent to the assertion that
every tournament with the score sequence S has one of the three structures shown in Figure
14.1. The notation Tr is used to denote a subtournament on r vertices and the double arrows
mean that all the arcs between the two parts go in that direction.
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Fig. 14.1

The next result due to Bjelica [26] gives a criterion for score segments and subsequences
with arbitrary positions of scores.

Theorem 14.6 If [ti]
m
1

is a sequence of non-negative integers in non-decreasing order and
[si]

n
1

is a score sequence of an n-tournament T with m < n, then the following properties are
equivalent.

i.
j

∑
i=1

ti ≥

(

j

2

)

, 1 ≤ j ≤ m,

ii. t j = s j, 1 ≤ j ≤ m, for some T ,
iii. t j = sk+ j, 1 ≤ j ≤ m, for some T and k,
iv. t j = sk j

, 1 ≤ j ≤ m, for some T and k1 < k2 < . . . < km.

The following result due to Bjelica and Lakic [27] gives the conditions for a set of integers
to be the subset of scores with prescribed positions in some score sequence.

Denote b(x) =

(

x

2

)

, X(k) =
k

∑
i=1

xi.

Theorem 14.7 Let 0 ≤ t1 ≤ t2 ≤ . . .≤ tm and 0 < k1 < k2 < . . . < km be two sequences of
integers. Then there exists an n-tournament T with score sequence s1 ≤ s2 ≤ . . .≤ sn such
that t j = sk j

, 1 ≤ j ≤ m, if and only if

j

∑
i=1

(ki − ki−1)ti ≥

(

k j

2

)

, 1 ≤ j ≤ m, k0 = 0. (14.7.1)

The size of the tournament can be km if and only if in (14.7.1) the equality holds for j = m.

Proof

Necessity If, for some tournament, we have t j = sk j
, where 1 ≤ j ≤ m, then monotonicity

of the score sequence and the Landau theorem give
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j

∑
i=1

(ki − ki−1)ti

j

∑
i=1

(ki − ki−1)Ski
≥

k j

∑
i=1

Si ≥

(

k j

2

)

, 1 ≤ j ≤ m.

Sufficiency Let some sequences t and k satisfy (14.7.1). Define the sequence u1 ≤ u2 ≤
. . .≤ ukm

which includes the sequence t as subsequence uk = t j, k j−1 < k < k j, 1 ≤ j ≤m, and
we prove that it satisfies property (i) from Theorem 14.6. In the following minorisation,
we apply piecewise linearity of U , inequalities (14.7.1) and convexity of binomial function

bU(k) = U(k j−1)+(k− k j−1)tk j
= U(k j−1)+(k− k j−1)

U(k j)−U(k j−1)
k j−k j−1

=
k j − k

k j − k j−1

U(k j−1)+
k− k j−1

k j − k j−1

U(k j)

≥
k j − k

k j − k j−1

b(k j−1)+
k− k j−1

k j − k j−1

b(k j)

≥ b

(

k j − k

k j − k j−1

k j−1 +
k− k j−1

k j − k j−1

k j

)

= b(k).

By property (ii) from Theorem 14.6, there exists an n-tournament T with beginning score
segment u. Hence scores from the sequence t appear on the prescribed positions k. q

14.2 Frequency Sets in Tournaments

Definition: The number of times that a particular score occurs in a score sequence
of a tournament is called the frequency of that score. A set of distinct positive integers
F = { f1, f2, . . . , fk} is a frequency set if there exists a tournament T such that the set of
frequencies of the scores in T is exactly F. Note that in such a case T has order at least
f1 + f2 + . . .+ fk. For example, the reversal of the orientation of three vertex disjoint arcs in
a regular 7-tournament results in a 7-tournament with score sequence [2, 2 , 2, 3, 4, 4, 4]
and frequency set F = {1, 3}.

Define N(F) to be the smallest m such that there exists a tournament on m vertices with

frequency set F . Clearly, N( f1, f2, . . ., fn)≥
n

∑
i=1

fi. An almost regular tournament is an even

order tournament in which the scores of the vertices are all as nearly equal as possible.
We have the following observations due to Alspach and Reid [3].

Lemma 14.1 If f1 < f2 < . . . < fn, n ≥ 2, are positive integers, fk is odd, and N( f1, f2, . . .,

fk−1, fk+1, . . ., fn) =

(

n

∑
i=1

fi

)

− fk, then

N( f1, f2, . . ., fn) =

(

n

∑
i=1

fi

)

.
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Proof Let R be a tournament on

(

n

∑
i=1

fi

)

− fk vertices with frequency set { f1, f2, . . .,

fk−1, fk+1, . . ., fn}. Let Q be a regular tournament on fk vertices. Let T be the tournament
obtained from disjoint copies of Q and R and in which every vertex of Q dominates every

vertex of R. It is clear that T has

(

n

∑
i=1

fi

)

vertices and frequency set { f1, f2, . . ., f n}. q

Lemma 14.2 Let R be a regular tournament of order r and let Q1, Q2, . . ., Qk be almost
regular tournaments of orders q1 < q2 < . . . < qk. Then there exists a tournament T of

order r +
k

∑
i=1

qi containing disjoint copies of R, Q1, Q2, . . .,Qk as subtournaments such that

< R∪Qi > is regular of order r+qi and each vertex of Qi dominates each vertex of Q j when
i > j.

The following constructive criterion due to Alspach and Reid [3] shows that every set F

of positive integers is the frequency set of some tournament and determines the least order
N(F) of such a tournament. The proof is omitted as it is lengthy and can be found in [3].

Theorem 14.8 Let f1 < f2 < . . . < fn be positive integers, at least one of which is odd.
Then

N( f1, f2, . . . , fn) =
n

∑
i=1

fi (14.8.1)

unless either

i. n = 2, f1 6≡ f2 ( mod 2 ), gcd { f1, f2} = 1, and f2 6= 2, in which case N( f1, f2) = 2 f1 + f2

(14.8.2)

or

ii. n = 2, f1 = 1, f2 = 2, in which case

N(1, 2) = 5. (14.8.3)

Definition: Given the set of even integers F = { f1, f2, . . ., fn}, e(F) denotes the largest
power of 2 that divides every fi, i.e., e(F) = 2m if 2m/ fi, i = 1, 2, . . .,n, but 2m+1 × f j for
some j.

Lemma 14.3: If T is a tournament with r vertices and frequency set { f1, f2, . . . , fn}, then
for each k ≥ 1 there is a tournament with kr vertices and frequency set {k f1, k f2, . . ., k fn}.

Proof For each i, 1 ≤ i ≤ k, let Ti be a copy of T with vertices ui1, ui2, . . ., uir. Ori-
ent the arcs between Ti and Tj, i < j, so that uik exactly dominates the r/2 vertices u j,k+1,
u j, k+2, . . .,u j, (k+r)/2 where the second subscripts are interpreted modulo r. Every vertex
has had its scores increased by r(k − 1)/2 and since we started with k copies of T , the
resulting tournament has kr vertices and frequency set {k f1, k f2, . . ., k fn}. q
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The following result is also due to Alspach and Reid [3].

Theorem 14.9 Let f1 < f2 < . . . < fn be even positive integers, let e( f1, f2, . . ., fn) = 2m

and let fi = 2mki, 1 ≤ i ≤ n. Then

i. if an even number of the k′is is odd, then

N( f1, f2, . . ., fn) =
n

∑
i=1

fi and

ii. if an odd number of the k′is is odd and j is the smallest index for which ki is odd, then

N( f1, f2, . . ., fn) = f j +
n

∑
i=1

fi.

Proof Since 2m is the highest power of 2 which is a factor of all the f ′i s, at least one of
the k′is is odd. Hence, in case (i) there are at least two odd k′is and n ≥ 2. By Theorem 14.8,

there is a tournament T on
n

∑
i=1

ki vertices with frequency set {k1, k2, . . .,kn}. By Lemma

14.3 with k = 2m, there is a tournament on
n

∑
i=1

fi vertices and frequency set { f1, f2, . . ., fn}.

This proves (i).

Now, consider Case (ii) with (k1, k2) 6= (1, 2). First, we show that N( f1, f2, . . . , fn) =
n

∑
i=1

fi

is impossible. Let αi be the score occurring with frequency fi. Then

n

∑
i=1

αi fi =

(

f1 + f2 + ...+ fn

2

)

=
( f1 + f2 + ...+ fn)( f1 + f2 + ...+ fn−1)

2
.

Clearly, the left hand side is divisible by 2m, while the right hand side is not. Thus,

N( f1, f2, . . . , fn) >
n

∑
i=1

fi. Also, N( f1, f2, . . ., fn) > fk +
n

∑
i=1

fi, for k < j, because of the same

problem regarding divisibility by 2m. Thus,

N( f1, f2, . . ., fn) ≥ f j +
n

∑
i=1

fi.

If n ≥ 3, by Theorem 14.8, there is a tournament on
n

∑
i=1

ki vertices with frequency set K =

{k1, k2, . . ., kn}. As k j is odd, by Lemma 14.3 there is a tournament on k j +
n

∑
i=1

ki vertices

with frequency set K. If n = 2 and k1 is odd, there is a tournament on k1 + k1 + k2 vertices
with frequency set K (use Lemma 14.1 if gcd{k1, k2} > 1). If k1 is even and k2 is odd,
again there is a tournament with k1 + k2 + k2 vertices and frequency set K by application of
Theorem 14.8 and Lemma 14.1 if gcd {k1, k2} > 1, or by Lemma 14.2 if gcd {k1, k2} = 1.
In case n = 1 and k1 is odd, then an almost regular tournament of order 2k1 has frequency
set F . In all of the above cases employ Lemma 14.3 with k = 2m to obtain the result in (ii).
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Finally, let F = {2m, 2m+1},m ≥ 1. As above, N(2m, 2m+1) ≥ 2m+2. Any tournament
with 2m scores of 2m+1 − 2, 2m scores of 2m+1 + 2 and 2m+1 scores of 2m+1 shows that
N(2m, 2m+1) = 2m+2 as required in (ii). q

14.3 Score Sets in Tournaments

Definition: The set of distinct scores in a tournament T is called the score set of T .
It is easy to see that every singleton set {k}, k ≥ 0, is a score set. Reid [217] showed that

a nonempty set S of non-negative integers is a score set whenever |S| = 1, 2, 3 or whenever
S is either an arithmetic or geometric progression. Reid conjectured that any nonempty set
S of non-negative integers is a score set. Hager [96] proved the conjecture for |S| = 4, 5.
This problem proved to be more resistant than that of frequency set discussed above.

If the set {x1, x2, . . ., xk} is the score set of some n-tournament T , then there are multi-
plicities m1,m2, . . . ,mk (positive integers) such that xi occurs as a score exactly mi times in
T . These mi are not necessarily distinct, so they are not the frequencies discussed above.
Therefore, by Landau’s Theorem, {x1, x2, . . . ,xk} is the score set of some n-tournament T

if and only if there exist positive integers m1, m2, . . .,mk such that

j

∑
i=1

mixi ≥





j

∑
i=1

mi

2



, for 1 ≤ j ≤ k, with equality for j = k.

Consequently, the connection to tournaments is removed, and Reid’s conjecture be-
comes strictly an arithmetical supposition. Yan [271] proved the conjecture by pure arith-
metical analysis.

Pirzada and Naikoo [200] proved by construction that if s1, s2, . . . , sp are p non-
negative integers with s1 < s2 < . . . < sp, then there exists a tournament with score set

S =

{

s1,
2

∑
i=1

si, . . .,
p

∑
i=1

si

}

. More results on score sets in tournaments can be found in [197,

198, 200]. Also, the reconstruction of complete tournament can be seen in [119, 120]. The
concept of scores in hyper tournament can be found in Zhou et.at [272]. The literature on
kings in tournaments can be found in [130, 131, 132, 133, 155, 182, 184, 219, 220].

14.4 Lexicographic Enumeration and Tournament
Construction

Definition: Let [si]
n
1

be any sequence of integers. The (transitive) deviation sequence of
[si]

n
1

is defined to be the sequence [d(i)] = [si − i + 1] and d(i) is called the deviation of si.
It is easy to see that [si]

n
1

is non-decreasing if and only if d(i)−d(i +1) ≤ 1 for each i < n.

Also, for each k = 1, 2, . . .,n,
k

∑
i=1

d(i) =
k

∑
i=1

si −

(

k

2

)

. From this, it follows that a sequence
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[si]
n
1

of non-negative integers in non-decreasing order is a score sequence if and only if its

deviation sequence [d(i)]n
1

satisfies
k

∑
i=1

d(i) ≥ 0 for k = 1, 2, . . ., n with equality for k = n.

Let [si]
n
1

and [s′i]
n
1

be score sequences of length n. Then, say that [si]
n
1

precedes [s′i]
n
1

if there
exists a positive integer k ≤ n such that si = s′i for each 1 ≤ i ≤ k and sk < s′k . They are equal
if equality holds for all i. In symbols, [si] ≤ [s′i] means [si] proceeds [s′i]. Further, [s′i] is
the successor of [si] if they are distinct; [si] ≤ [s′i] and [s′i] ≤ [s′′i ] whenever [si] ≤ [s′′i ]. An
enumeration of all score sequences of a given length with the property that the successor of
any score sequence follows it immediately in the list is called a exicographic enumeration.
Clearly, [0,1,2, . . . , n−1] is not the successor of any score sequence of length n and thus it
is always the first in the lexicographic enumeration. Also, [si] has no successor if and only
if sn − s1 ≤ 1.

If we know the first sequence in a lexicographic enumeration, then we can complete the
work provided we know how to get the successor of any given sequence. The following
algorithm due to Gervacio [85] gives the successor [s′i] of [si], if it exists.

Algorithm

1. Determine the maximum k such that sn − sk ≥ 2.

2. Let s′i = si for all i < k.

3. Let s′k = sk +1.

4. Let s′j = sk +1 until
j

∑
i=1

s′i <
(

j
2

)

.

5. Let t be the minimum j such that
j

∑
i=1

s′i <
(

j
2

)

, set s′t =
(

t
2

)

−
t−1

∑
i=1

s′i.

6. Let s′i = i−1 for all i, t < i ≤ n.

Constructing a tournament: One method of constructing a tournament with a given
score sequence can be found in [16]. The method we give here is due to Gervacio [85].
First, we have the following observations.

Lemma 14.4 Let [si]
n
1

be a score sequence with deviation sequence [d(i)].

a. If max {d(i)} = M > 0, then for each 1 ≤ k ≤ M, there exists a vertex u such that
d(u) = k.

b. If min {d(i)} = m < 0, then for each −1 ≥ k ≥ m, there exists a vertex u such that
d(u) = k.
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Proof

a. Clearly, the result is true for k = M. Now, we show that it is true for all 1 ≤ k ≤ M by
induction on k. Assume the result to be true for k+1, i. e., there exists a vertex u such
that d(u) = k + 1. Since d(n) ≤ 0, there exists t > u such that d(u) = d(t) > d(t + 1).
Since d(t) ≤ d(t +1)+1,d(t +1) = d(u)−1 = k. Hence (a) holds.

b. This can be proved by using the argument as in (a).

Lemma 14.5 Let [si]
n
1

be a score sequence with deviation sequence [d(i)]. If c is the
number of negative terms, then c ≥ max{d(i)}.

Proof Let p = max {d(i)}. If p = 0, then c = 0 and the result holds. For p > 0, we have
the following cases.

Case 1 There exists a vertex k such that d(k) < 0 and |d(k)| ≥ p. By Lemma 14.4, c ≥
|d(k)| ≥ p.

Case 2 For each non-negative deviation d(k), |d(k)|< p.

Let q = max{|d(i)| : d(i)< 0} and let c < p. Then using Lemma 14.4, ∑
d(i)<0

|d(i)| ≤ 1 +2 + . . .+q

+(p−q)q. But ∑
d(i)<0

|d(i)| = ∑
d(i)>0

|d(i)|, and by Lemma 14.4, ∑
d(i)>0

|d(i)| ≥ 1 +2 + . . .+ p.

Hence,
q(q +1)

2 +(p−q)q
>

p(p +1)

2
.

This gives the quadratic inequality p2−(2q−1)+q(q−1)< 0 and this implies that q−1 <
p < q, which is absurd, since p and q are integers. Hence, c ≥ p. q

Now, we describe and validate the above algorithm.

Construction algorithm

Let [si]
n
1

be a score sequence with deviation sequence [d(i)]n
1
. First take n vertices arranged

horizontally and labelled 1,2, . . ., n from left to right.

Step 1 Subdivide [d(i)] into maximal non-increasing segments and denote by p the num-
ber of segments in the subdivision. Let ni be the number of negative deviations in the ith
segment, counting from left to right.

Step 2 Let j be the last integer such that d( j) > 0. If no such j exists, go to step 6. Else,
determine the least integer q such that ∑

i≤q

ni ≥ d( j). For each i in the segments to the left of

the qth segment such that d(i) < 0, let d′(i) = d(i)+1 and draw the arc ji.

Step 3 Let σ = d( j)− ∑
i<q

ni and choose a smallest (negatively largest) deviations d(i) in

the qth segment. For each such d(i), let d′(i) = d(i)+1 and draw the arc ji. Let d′( j) = 0.
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Step 4 For all other deviations d(i) not changed in the preceding steps, let d′(i) = d(i).

Step 5 If [d′(i)] 6= [0], go to step 1 using [d′(i)] in place of [d(i)].

Step 6 Whenever u < v and there is no arc between u and v, draw the arc vu.

Step 7 The resulting digraph is a tournament with score sequence [si]
n
1
.

Now, we analyse the algorithm to verify its validity. Clearly, step 1 can always be carried
out. Step 2 can be done in view of Lemma 14.5. Step 3 can be implemented because of
step 2. Obviously, step 4 can be done, and after this step, [d′(i)] satisfies d′(i)−d′(i+1) ≤ 1

for all 1 ≤ i ≤ n. Let D be the digraph formed when [d′(i)] = [0]. Then for each vertex i in
D,

d+
i (D) =

{

d(i), i f d(i) ≥ 0

0 , i f d(i) < 0

and d−
i (D) =

{

d(i), i f d(i) ≥ 0

−d(i), i f d(i) < 0

Let T be the tournament formed after step 6 and let i be any vertex of T . If d(i) ≥ 0, then
si = d+

i = d+
i (D)+ i− 1 = si. If d(i) < 0, then d−

i = d−
i (D)+ n− i = −d(i)+ n− i , and thus

si = d+
i = (n−1)−d−

i = d(i)+ i−1 = si .

Example Let [si] = [1, 1, 2, 2]. Then [d(i)] = [1, 0, 0, −1].
The resulting digraph after using above algorithm upto [d′(i)] = [0] is shown in Figure

14.2. To get the tournament, add all arcs i j (i > j).

Fig. 14.2
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14.5 Simple Score Sequences in Tournaments

Definition: A score sequence is simple (uniquely realisable) if it belongs to exactly one
tournament. Every score sequence of tournaments with fewer than five vertices is simple,
but the score sequence [1, 2, 3, 3, 3] is not simple, since the tournaments in Figure 14.3 are
not isomorphic.

Fig. 14.3

We have the following observations.

Lemma 14.6 A score sequence S is simple if and only if every strong component of S is
simple.

The following result due to Avery [8] gives a condition for determining simple score
sequence in tournaments.

Theorem 14.10 (Avery) A strong score sequence is simple if it is one of [0], [1, 1, 1],
[1, 1, 2, 2] or [2, 2, 2, 2, 2].

Fig. 14.4

Corollary 14.3 The score sequence S is simple if and only if every strong component of
S is one of [0], [1, 1, 1] , [1, 1, 2, 2] or [2, 2, 2, 2, 2].

Hence it is possible to decide whether a given score sequence S is simple by using
Theorem 14.10 to determine the strong components of S and then applying Corollary 14.3.

Let s(n) denote the number of simple score sequences of order n. It is easy to show that
s(n) satisfies the following recurrence relation, which can be used to evaluate s(n).
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Theorem 14.11 s(n) = s(n−1)+s(n−3)+s(n−4)+ s(n−5), where s(k) = 0 if k < 0, and
s(0) = 1.

14.6 Score Sequences of Self-Converse Tournaments

We know, the converse of an n-tournament Tn is the tournament T ′
n obtained by reversing

the orientation of all the arcs in Tn. A tournament is called self-converse if Tn
∼= T ′

n . The
transitive tournaments are examples of self-converse tournaments.

The following characterisation of score sequences of self-converse tournaments is due
to Eplett [71].

Theorem 14.12 (Eplett) A score sequence [si]
n
1

is the score sequence of a self-converse
tournament if and only if

si + sn+1−i = n−1, (14.12.1)

for 1 ≤ i ≤ n .

14.7 Score Sequences of Bipartite Tournaments

A bipartite tournament T is an orientation of a complete bipartite graph. Clearly, the vertex
set of T is the union of two disjoint nonempty sets X and Y , and arc set of T comprises
exactly one of the pairs (x, y) or (y, x) for each x ∈ X and each y ∈ Y . If the orders of X and
Y are m and n respectively, T is said to be an m×n bipartite tournament.

A bipartite tournament may be used to represent competition between two teams and
each player competes against everyone on the opposing team. The score sv of vertex v is
the number of vertices it dominates and for a bipartite tournament there is a pair of score
sequences, one sequence for each set. For example, the bipartite tournament in Figure 14.5
has sequence [4, 3, 2, 0] and [2, 2, 2, 1].

Fig. 14.5
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Definition A bipartite tournament is reducible if there is a nonempty proper subset of
its vertex set to which there are no arcs from the other vertices, otherwise irreducible. A
component is a maximal irreducible sub-bipartite tournament. A non-trival component
contains at least two vertices one from each partite set.

A bipartite tournament is consistent if it contains no directed cycles. It can be easily
seen that a bipartite tournament is consistent if and only if, for v and w in the same partite
set, v dominates every vertex which w dominates if its score is at least that of w.

The converse of a bipartite tournament is obtained by reversing the direction of all its
arcs and a bipartite tournament is self-converse if it is isomorphic to its converse.

Now, assume that the partite sets of bipartite tournaments have a fixed ordering with X

first and Y second. Then a given bipartite tournament T has associated with it two bipartite
graphs (on the same sets of vertices) in a natural way, one graph containing those edges
corresponding to the arcs directed from X to Y , the other from Y to X . For example, two
graphs of the bipartite tournament T are shown in Figure 14.6. The two graphs are relative
complements as bipartite graphs.

Fig. 14.6

Clearly, the pairs of score sequences of bipartite tournaments and pairs of degree sequences
of bipartite graphs are equivalent.

Lemma 14.7 Let A = [a1, . . ., am] and B = [b1, . . ., bn] be sequences of integers and let
A = [n−a1, . . .,n−am] and B = [m−b1, . . . ,m−bn]. Then the following are equivalent.

1. A and B are the score sequences of a bipartite tournament.

2. A and B are the score sequences of a bipartite tournament.

3. A and B are the score sequences of a bipartite graph.

4. A and B are the score sequences of a bipartite graph.

The following observation can be easily established.

Lemma 14.8 If v and v′ are vertices in the same partite set of a bipartite tournament
T , if sv ≤ s′v, and if there is a vertex w which is dominated by v and which dominates v′,
then there is another vertex w′ which is dominated by v′ and which dominates v, that is,
v → w → v′ → w′ → v is a 4-cycle.

The following result is due to Gale [84].
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Theorem 14.13 (Gale) If A = [a1, . . .,am] and B = [b1, . . .,bn] are sequences of non-
negative integers in non−decreasing order, then A and B are the score sequences of some bi-
partite tournament if and only if the sequences A′ = [a1, . . .,am−1] and B′ = [b1, . . . ,bam,bam+1−
1, . . .,bn−1] are.

Proof First assume that A′ and B′ are the score sequences of a bipartite tournament T ′.
To the first partite set of T ′, add a new vertex v with arcs directed from it to vertices (in
the second set) with scores b1, . . ., bam , and to it from the others. The result is a bipartite
tournament with score sequences A and B.

For the converse, it is sufficient to show that if A and B are the score sequences of a
bipartite tournament, then in one realisation, a vertex (in the first set) of score am dominates
vertices of scores b1, . . . ,bam. Among the bipartite tournament realisations of A and B, let
T be the one in which a vertex x of score am is such that the sum S of the scores of the

vertices it dominates is as small as possible. Let S >
am

∑
j=1

b j. Then there exist vertices y and

y′ such that x → y′, y → x and sy < s′y. By Lemma 14.8, T has a 4-cycle x → y′ → x′ → y → x,
and if its arcs are reversed, the result is a bipartite tournament with the same sequences,
but in which score sum of the vertices dominated by x is less than before. Since the sum
was assumed to be minimised, the result follows. q

Theorem 14.3 gives a natural construction for a canonical tournament T ∗(A,B) from a
given pair of score sequences A and B. The only point which needs clarification is getting B′

into non-decreasing order, i.e., we must specify dominance when a vertex vi must dominate
some but not all vertices y with a particular score. This is done by forming B′ as follows. Let
h and k denote the smallest and largest integers j for which b j = bam . Let A′ = [a1, . . .,am−1],
and B′ = [b′

1
, . . . ,b′n] with

b′j =

{

b j, f or 1 ≤ j < h and h + k−am ≤ j ≤ k,
b j −1 , otherwise

This reduction and the resulting construction is illustrated by the following example,
starting with sequences A = [1, 1, 3, 5, 5] and B = [1, 1, 2, 3, 4, 4] .

A = [1, 1, 3, 5, 5] B = [1, 1, 2, 3, 4, 4]

A1 = [1, 1, 3, 5] B1 = [1, 1, 2, 3, 3, 4]

(x5 dominates y1,y2,y3,y4,y6)

A2 = [1, 1, 3] B2 = [1, 1, 2, 3, 3, 3]

(x4 dominates y1,y2,y3,y4,y5)

A3 = [1, 1] B3 = [1, 1, 2, 2, 2, 2]

(x3 dominates y1,y2,y3)



Graph Theory 421

A4 = [1] B4 = [0, 1, 1, 1, 1, 1]

(x2 dominates y2)

A5 = ϕ B5 = [0, 0, 0, 0, 0, 0]

(x1 dominates y1)

Figure 14.7 shows the X to Y arcs resulting from this construction.

Fig. 14.7

A canonical tournament T ∗(A,B) has the following special property. In the subtourna-
ment T ∗

r, n induced by {x1, . . ., xr} and Y , if x∗r → y∗i and y∗j → x∗r , then sy∗i
≤ sy∗j

, that is, bi ≤ b j.

The next result is due to Beineke and Moon [20].

Theorem 14.14 If two bipartite tournaments have the same score sequences, then each
can be transformed into the other by successively reversing the arcs of 4-cycles.

It can be noted that Theorem 14.14 does not imply that all bipartite tournaments with
given score sequences have the same number of 4-cycles (they need not), although the
corresponding statement does hold for 3-cycles in tournaments.

The next result first established by Moon [162] and then in the present form by Beineke
and Moon [20] gives a simple criterion for determining whether a pair of sequences are
realisable as scores.

Theorem 14.15 (Moon) A pair of sequences A and B of non-negative integers in non-
decreasing order are the score sequences of some bipartite tournament if and only if

k

∑
i=1

ai +
l

∑
j=1

b j ≥ kl

for 1 ≤ k ≤ m and 1 ≤ l ≤ n, with equality when k = m and l = n.
Further more, the bipartite tournament is irreducible if and only if the inequality is strict

except when k = m, and l = n.

Proof In any bipartite tournament T , the combined scores of any collection of k vertices
from the first set and l from the second must be at least kl, so that the inequalities certainly
hold. Further, if T irreducible, the inequality is strict unless k = m and l = n.
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Sufficiency If A and B satisfy the inequalities, we show that A′ and B′ satisfy the in-
equalities reordered as in construction of 14.13. It is easily seen that A′ and B′ are then in
non-decreasing order, and further, their combined sum is

m−1

∑
1

a′i +
h

∑
1

b′j = mn−am− (n−am) = (m−1)n.

For a fixed value of k(1 ≤ k ≤m−1), assume there is a value of l for which the inequality
does not hold. And let h denote the least such that

k

∑
1

a′i +
h

∑
1

b′j < kh ..

It follows from the minimality of h that b′h < k, whence bh ≤ k. Now, let p and q be
the least and greatest values of j for which b j = bam and set r = max (h, q). Since the
first p−1 values of b jwere unchanged, we have h ≥ p and thus bh = . . . = br. Finally, let s
denote the number of j ≤ h such that b′j = b j−1

. If h ≤ q, then s ≤ q−am, and if h > q, then
s = (h−q)+(q−am) = h−am. In either case, am + s ≤ r. Therefore,

k+1

∑
1

ai +
r

∑
1

b j =
k

∑
1

a′i +
h

∑
1

b′j +
r

∑
h+1

b j +ak+1 + s < kh +(r−h)bh +am + s

≤ kh +(r−h)k+ r < (k+1)r,

which is a contradiction. Therefore A′ and B′ satisfy the inequalities, as required.
It is easily seen that if the strict inequalities hold for A and B, no realisation can be

reducible, completing the proof. q

The next criterion derived by Ryser [227] in the context of (0, 1)-matrices with pre-
scribed row and column sums is equivalent to prescribed degrees in bipartite graphs.

Theorem 14.16 If A and B are sequences of non-negative integers with A in non-increasing
order, then A and B are the score sequences of some bipartite tournament if and only if

k

∑
1

ai ≤
n

∑
1

min(k,m−b j)

for 1 ≤ k ≤ m, with equality when k = m. Further, the bipartite tournament is irreducible if
and only if the inequality, is strict for all k < m and 0 < b j < m for all j ≤ n.

Remarks In general, one need not check the inequalities for all values of h and k, but
only for those for which the next value in the sequence is different. Thus in order to show
that [5, 5, 5, 3, 3, 2, 2] and [6, 5, 4, 1, 1, 0] belong to a bipartite tournament, we need to
check the inequalities in Theorem 14.16 for k = 3, 5, and 7 only.
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Theorem 14.17 If A = [ai]
m
1

and B = [b j]
n
1

are non-decreasing integer sequences with
0 ≤ ai ≤ n and 0 ≤ b j ≤ m, and are such that

a. Am +Bn = mn and

b. Ar +Bs ≥ rs, whenever ar < ar+1 and bs < bs+1.

Then (A,B) is realisable.

(Note that for a sequence L = [xi]
p
1
,Lq =

q

∑
i=1

xi for 1 ≤ q ≤ p and L0 = 0).

Proof We show that the inequality

Ak +Bx ≥ kx (4.17.1)

holds for all 1 ≤ k ≤ m and 1 ≤ x ≤ n. If this is not the case for some k and x, let q and s

be the smallest, and r and t be the largest indices such that aq+1 = ak = ar and bs+1 = bx =
bt(q, s = 0). Now, Ar +Bx < kx. Claim that at least one of Ak +Bs < ks and Ak +Bt < kt holds.
For otherwise, (x−s)bx < k(x−s) and (t−x)bx > k(t −x) which is impossible. Thus assume
(i) Ak +Bs < ks.

Now, by hypothesis, (ii) Aq + Bs ≥ qs and (iii) Ar + Bs ≥ rs (observe that if r = m, then
Am +Bn = mn and 0 ≤ b j ≤ m together imply (iii). Then (i) and (ii) give (k−q)ak < (k−q)s,
while (i) and (iii) give (r − k)ak > (r − k)s. These again lead to a contradiction. The case
Ak +Bt < kt can similarly be treated. q

The following result can be obtained from Theorem 14.16.

Corollary 14.4 If C = [c1, . . .,cm] and D = [d1, . . .,dn] be two non-increasing sequences
having equal sum, then the following are equivalent.

i.
k

∑
1

ci ≤
n

∑
1

min(k, d j), for k = 1, . . ., m.

ii.
x

∑
1

d j ≤
m

∑
1

min(x, ci), for x = 1, . . ., n.

Now, different bipartite tournaments can have the same score sequences and they can differ
only within irreducible components. That is, they must have the same numbers of com-
ponents the same numbers of vertices within components, the same scores within com-
ponents, and the same dominance between components. The general procedure here is
to find a dominating component (a component is called dominating if it has no incoming
arcs), delete its vertices and repeat. While an ordinary tournament has precisely one dom-
inating component, the situation in the bipartite case is slightly different. It is described in
the following result [19] and is a direct consequence of Theorem 14.15.

Theorem 14.18 Let A = [a1, . . ., am] and B = [b1, . . ., bn] be score sequences (in non-
decreasing order) of a reducible m×n bipartite tournament.
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i. If am = n or bn = m, then there is a corresponding trivial dominating component,
consisting of one vertex which dominates all the vertices in the other partite set.

ii. Otherwise, if k and x are the largest indices with k < m and x < n such that
k

∑
i=1

ai +

x

∑
j=1

b j < kx, then the non-trivial dominating component consists of all the vertices in

the two partite sets with scores exceeding ak and bk respectively.

The following results can be found in [11].

Theorem 14.19 If A = [ai]
m
1

and B = [b j]
n
1

are realisable pair of score sequences with
0 < ai < n and 0 < b j < m and if |ai −ak| ≤ 1 for any i, k = 1, 2, . . ., m, then any bipartite
tournament with score sequences A and B is irreducible.

Proof Assume T is a reducible bipartite tournament on partite sets X and Y with score
sequences A and B respectively. Since 0 < ai < n and 0 < b j < m, T has at least two non
trivial components, say C and C′, with C being the dominating one. If xi ∈ C ∩ X and
xk ∈ C′ ∩X , then xi dominates all the vertices in Y dominated by xk. Also, there exists
y j ∈ C∩Y and yl ∈ C′ ∩Y such that xi → y j → xk and xi → yl → xk. Thus, ai = score (xi) ≥
score (xk) + 2 = ak + 2. This contradicts the hypothesis, and the result follows. q

Theorem 14.20 Let A = [ai]
m
1

(in non-decreasing order) and B = [bn] be sequences such
that (A,B) is realisable. Let ak,ax be two entries in A with ak > 0 and ax < n. Define a new
sequence A′ = [a′i]

m
1

as follows.

a′k = ak −1, a′x = ax +1

and a′i = ai, for i 6= k,x. Then (A′, B) is realisable.

Proof: It follows immediately from Theorem 14.17. q

Theorem 14.21 If (A,B) is irreducible, i. e., (A, B) is realisable and all its realisation are
irreducible, and if A′ is obtained from A by adding 1 to some entry and B′ is obtained from
B by subtracting 1 from some entry, then (A′,B′) is realisable.

14.8 Uniquely Realisable (Simple) Pairs of Score
Sequences

If (A, B) is realisable, let T denote a realisation on partite sets X and Y . If a pair (A,B) is
realisable and all its realisations are isomorphic, then (A, B) is called uniquely realisable.

The following observations can be found in [11].
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Lemma 14.9 Let (A, B) be uniquely realisable. For any entry ai in A and b j in B, let Xi

and Y j be the subsets of X and Y consisting of vertices of scores ai and b j respectively. Then
any cycle in T contains the same number of arcs from Xi to Y j as from Y j to Xi.

Proof If this were not the case for some cycle Z, then reversal of the arcs of Z would
produce an (A,B) realisation non-isomorphic to T .

Lemma 14.10 If (A,B) is irreducible and uniquely realisable, then A or B is constant.

Proof If neither A nor B is constant, let X1 be the set of vertices of minimum score in X and
let X2 = X −X1, and similarly define Y1 and Y2. Since T is irreducible, every arc is contained
in a cycle. Thus by Lemma 14.9, none of the four subtournaments T (Xi, Yi), i, j = 1, 2 is
unanimous, i. e., has all its arcs directed from one partite set to the other.

Choose a vertex x1 in X1 of minimum score in T (X1,Y1). Then x1 dominates some y2 ∈Y2.
Consider two cases depending on whether or not y2 dominates some vertex in X2.

Case (i) Every vertex in X2 dominates y2. Let uv be an arc from Y1 to X2. Since score
(y2) > score(u) in T , there exists an x ∈ X1 such that y2 → x → u (Fig. 14.8).

Fig. 14.8

But then x → u → v → y2 → x is a cycle which violates Lemma 14.9.

Case (ii) Some vertex x2 ∈ X2 is dominated by y2. By the choice of x1, there exists y1 ∈ Y1

such that y1 → x1. If x2 → y1, we again get a 4-cycle which has one arc from Y1 to X1, but
no arcs in the other direction. So assume y1 → x2 (Fig. 14.9). Since score (y2) > score
(y1) in T , there exists an x ∈ X1 with y2 → x → y1. If x ∈ X2, we again get a forbidden cycle
x1 → y2 → x → y1 → x1. Thus x ∈ X1. Likewise, there exists y ∈ Y1 with x2 → y → x. But then
x1 → y2 → x2 → y → x → y1 → x1 is a 6-cycle which violates Lemma 14.9.

Since all the possibilities have been exhausted, the result follows. q
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Fig. 14.9

Remarks We note that if in a realisable pair (A, B), one of the sequences has all entries
as 1’s (the sequence is constantly 1), then (A,B) is uniquely realisable. This is illustrated
in Figure 14.10, where A = [1,1, . . ., 1] and B = [b1, b2, . . ..,bn] and only X to Y arcs are
shown.

Fig. 14.10

Now onwards assume that none of the sequences A, B, A and B is constantly 1. Hence the
following observations [232] can be easily proved.

Lemma 14.11 If (A, B) is irreducible and uniquely realisable, then A or B is non-constant.

Lemma 14.12 With A and B as above, the sequence B has precisely two distinct values.

Lemma 14.13 If (A,B) is irreducible, uniquely realisable and if A = [am] , 2 ≤ a ≤ n−2,
and B = [br, cs], 1≤ b < c ≤ m−1, and r, s > 0, r + s = n, then r = 1 or s = 1.

Remarks It has been shown that if (A,B) is irreducible, uniquely realisable, then one of
the sequences (or its dual) consists entirely of 1’s, or one of the sequences is constant and
the other has exactly two distinct values, one of which appears precisely once.

The following result due to Bagga and Beineke [11] gives necessary and sufficient con-
ditions for unique realisability in the irreducible case.

Theorem 14.22 (Bagga and Beineke) An irreducible pair (A,B) of score sequences is
uniquely realisable if and only if one of the following holds.
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I. (without loss of generality) A = [1m] and B is arbitrary,

I′. the dual of (I), that is, A = [(n−1)m] and B is arbitrary,

II. (without loss of generality) A = [1m−1, a] and B = [bn],

II′. the dual of II,

III. (without loss of generality) A = [1, am−1] and B = [2n],

III′. the dual of III.

Proof The sufficiency of (I) has already been noted in the remarks before Lemma 14.11
where Figure 14.10 shows the unique realisation. Now, let T be a realisation of A = [1m−1,a]
and B = [bn] on partite sets X = {x1, x2, . . ., xm} and Y = {y1, y2, . . . , yn} respectively. If
(say) xm has score a and it dominates (say) y1,y2, . . . ,yn, then T − xm has score sequences
A1 = [1m−1] and B1 = [(b− 1)n−a, ba]. Thus by (I), (A1, B1) is uniquely realisable. The
unique realisability of (A,B) follows. This proves the sufficiency of (II). The proof of (III)
is similar and the dual cases follow by the remarks before Lemma 14.11.

For proving necessity, induct on m+n. Since (A,B) is irreducible, so m,n ≥ 2. If (say) m

= 2, then B = [1n], and the result follows. Now, assume the result holds for all irreducible
and uniquely realisable pairs of score sequences with combined length less than m+n, and
consider such a pair (A,B) with |A| = m and |B| = n(m,n ≥ 3).

Assume A and B are not of the type (I) or (I′). Then by the remarks after Lemma 14.13,
we have, without loss of generality, A = [am] and B = [bn−1,c], with 1 < a < n−1,1 ≤ b,c ≤
m−1 and b 6= c.

If y is the vertex of score c in a realisation T of (A, B), then T − y has score sequences
A1 = [(a−1)m−c,ac] and B1 = [bn−1]. Now, the unique realisability of (A, B) implies that of
(A1,B1). Also, by Theorem 14.19, (A1, B1) is irreducible. Thus, by the induction hypothesis,
A1 and B1 belong to one of the six given types. Consider these cases one by one.

i. If B1 = [1n−1], then B = [1n−1,c], so that A and B are of type (II).

ii. If B1 = [(m−1)n−1], then A and B belong to (II′).

iii. If B1 = [bn−1] and A1 = [1m−1, a], then c = 1 and a = 2, so that A = [2m] and B = [1,bn−1].
This is of type (III).

iv. If B1 = [bn−1] and A1 = [d, (n−2)m−1], we get A and B of type (III′).

v. If B1 = [2n−1] and A1 = [1, am−1], then b = 2, a = 2 and c = m−1. Thus, A = [2m] and
B = [2n−1, m−1]. Using Moon’s theorem, we get 2m+2(n−1)+(m−1)= mn, so that
m = 2n−3

n−3
. It follows that n = 6 and m = 3. But then A and B are both constant, a

contradiction. Therefore this case is not possible.

vi. The possibility of B1 = [(m−2)n−1] and A1 = [am−1, n−2] follows by duality.
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This exhausts all the possibilities and hence by induction, the result is completely proved.
q

Now, assume that (A, B) is a realisable pair and Q1, Q2, . . ., Qp are the irreducible com-
ponents of a realisation T of (A, B). Also, let Qk has score sequences Ak and Bk, 1 ≤ k ≤ p.
Then (A, B) is uniquely realisable if and only if (Ak, Bk) is uniquely realisable for all k.

14.9 Score Sequences of Oriented Graphs

An oriented graph is a digraph with no symmetric pairs of directed arcs and with no loops.
Avery [233] extended the concept of score structure to all oriented graphs.

Definition: Let D be an oriented graph with vertex set V = {1, 2, . . . , n}, and let d+(v)
and d−(v) be the outdegree and indegree respectively of vertex v. Then the score of vertex
v denoted by av is defined as av = n−1 +d+(v)−d−(v) with 0 ≤ av ≤ 2n−2. The sequence
of scores is called the score list, and A = [a1,a2, . . . , an] arranged in non-decreasing order is
called the score sequence of D.

Any oriented graph can be interpreted as the result of a round robin competition in which
ties (draws) are allowed, that is, the participants play each other once, with an arc from u

to v if and only if u defeats v. A player receives two points for each win and one point for
each tie, as is frequently the case in sports such as soccer, ice hockey and cricket. With this
scoring system , player v obtains a total of av points. An arc from u to v denoted by u → v

is written as u(1−0)v, and u(0−0)v means that neither u → v nor v → u.

Definition: A triple in an oriented graph is an induced subdigraph with three vertices.
A cyclic triple is an intransitive triple of the form u → v → w → u. Any triple can be of the
form u(x1 − x2)v(y1 − y2)w(z1 − z2)u, where 0 ≤ xi, yi, zi ≤ 1 with 0 ≤ ∑xi, ∑ yi, ∑zi ≤ 1.

The following result [9] extends a result of Ryser [234] which showed that if two tour-
naments have the same score structure, then each can be transformed to the other by suc-
cessively reversing the arcs of appropriate cyclic triples.

Theorem 14.23 Let D and D′ be two oriented graphs with the same score sequence.
Then D can be transformed to D′ by successively transforming appropriate triples in one of
the following ways.

Either (a) by changing a cyclic triple u(1−0)v(1−0)w(1−0)u to a transitive triple u(0−
0)v(0−0)w(0−0)u, which has the same score sequence, or vice versa.

or (b) by changing an intransitive triple u(1− 0)v(1− 0)w(0− 0)u to a transitive triple
u(0−0)v(0−0)w(0−1)u, which has the same score sequence, or vice versa.

The following result due to Avery [9] gives a constructive condition for a non-negative
sequence in non-decreasing order to be a score sequence of some oriented graph. A short
proof of this result is due to Pirzada et. al. [199].
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Theorem 14.24 (Avery) A sequence of non-negative integers in non-decreasing order
is the score sequence of an oriented graph if and only if

k

∑
i=1

ai ≥ k(k−1)

for 1 ≤ k ≤ n, with equality for k = n .

The following result can be found in [9].

Theorem 14.25 Among all oriented graphs with a given score sequence, those with the
fewest arcs are transitive.

Proof Let A be a score sequence and let D be a realisation of A that is not transitive.
Then D has an intransitive triple. There are two types of intransitive triples, a cyclic triple,
which can be transformed by operation (a) of Theorem 14.23 to a triple with the same
score sequence and three arcs fewer, and a triple u(1− 0)v(1− 0)w(0− 0)u, which can be
transformed by operation (b) of Theorem 14.23 to a triple with the same score sequence
and one arc fewer. So in either case, we obtain a realisation of A with fewer arcs. q

The next result [9] provides a useful recursive test of whether a given sequence of non-
negative integers is the score list of an oriented graph. We note that a transmitter is a vertex
with indegree zero.

Theorem 14.26 Let A be a sequence of n integers between 0 and 2n−2 inclusive and let
A′ be obtained from A by deleting the greatest entry 2n−2−r say, and reducing each of the
greatest r remaining entries in A by one. Then A is a score list if and only if A′ is a score
list.

Proof Clearly, in a transitive oriented graph, any vertex of greatest score is a transmitter.
Let A′ be a score list of some oriented graph D′. Then an oriented graph D with score list

A can be obtained by adding a transmitter that is adjacent to just those vertices of whose
scores are not reduced in going from A to A′.

For the converse, we show that there is an oriented graph with score list A in which
a transmitter v with score 2n− 2− r is adjacent to the (other) n− 1− r vertices with least
scores. By Theorem 14.25, there is a transitive oriented graph D with score list A, in which
a vertex v with greatest score 2n−2− r is a transmitter. Let U be the set of r vertices, apart
from v, with the greatest scores in A, and let W be the set V −{v∪U}.

Let v be adjacent in D to vertices u1,u2, . . .,uk of U . Then there are exactly k vertices,
say w1,w2, . . .,wk of W not adjacent from v. Now, ui cannot be adjacent to wi, since D is
transitive. Neither can wi be adjacent to ui, since taken together with the transitivity of
D this implies that the score of wi is greater than the score of ui, which is contrary to the
assumption. Thus wi(0−0)ui for all i.

Now, transforming all triples v(1−0)ui(0−0)wi(0−0)v to triples v(0−0)ui(0−1)wi(0−
1)v, the vertex scores remain unchanged. This forms an (not necessarily transitive) oriented
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graph D1 with score list A in which the transmitter v is adjacent to all vertices of W and none
of U , as required. q

Theorem 14.26 provides an algorithm for determining whether a given non-decreasing
sequence A of non-negative integers is a score sequence, and for constructing a corre-
sponding oriented graph. At each stage, we form A′ according to Theorem 14.26, such that
scores of A′ are also non-decreasing. If an = 2n−2− r, this means deleting an and reducing
the r greatest remaining entries by one each to form A′ = |a′

1
, a′

2
, . . ., a′n−1

| while ensuring
that this is also non-decreasing. Arcs of an oriented graph are defined by n → v if and only
if a′v = av. If this procedure is applied recursively, then first it tests whether A is a score
sequence and if A is a score sequence, an oriented graph ∆(A) with score sequence A is
constructed.

Example Let n = 5, A = [2, 4, 4, 4, 6].

Stage A B Arcs of ∆(A)
1 [2, 4, 4, 4, 6] [2, 3, 3, 4] 5 → 4, 5 →1
2 [2, 3, 3, 4] [2, 2, 2] 4 → 1
3 [2, 2, 2] [1, 1]
4 [1, 1] [0]

Thus A is a score sequence.

We have the following observations [9] about ∆(A).

Theorem 14.27 The oriented graph ∆(A) is transitive for any score sequence A.

Theorem 14.28 There is no oriented graph with score sequence A which has fewer arcs
than ∆(A).

One more method of constructing oriented graph with a given score sequence can be
found in Pirzada [188].

The following is an equivalent statement of Theorem 14.24. A sequence of non-negative
integers A = [ai]

n
1

in non-decreasing order is a score sequence of an oriented graph if and
only if for each subset I ⊆ [n] = {1, 2, . . ., n}

∑
i∈I

ai ≥ 2

(

|I|
2

)

with equality for |I|= n.

The following inequalities for scores in oriented graphs can be found in [235].

Theorem 14.29 A sequence A = [ai]
n
1

of non-negative integers in non-decreasing order
is a score sequence of an oriented graph if and only if for every subset I = [n],
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∑
i∈I

ai ≥∑
i∈I

(i−1)+

(

|I|

2

)

with equality when I = [n]

Theorem 14.30 A sequence A = [ai]
n
1

of non-negative integers in non-decreasing order
is a score sequence if and only if for any subset I ⊆ [n],

∑
i∈I

ai ≤∑
i∈I

(i−1)+
1

2
|I|(2n−|I|−1),

with equality for I = [n].

Theorem 14.31 If A = [ai]
n
1

is a score sequence of an oriented graph, then for each i,
i−1 ≤ ai ≤ n + i−2.

A necessary condition for a score sequence in oriented graphs to be self-converse, can
be found in [192].

14.10 Score Sets in Oriented Graphs

Definition: The set A of distinct scores of vertices in an oriented graph D is called the
score set of D.

Definition: A digraph D is diregular if d+
v = d−

v = k holds for each vertex v in D. In case
of an oriented graph D with n vertices, av = n− 1 + d+

v − d−
v , for each vertex v in D, and

when d+
v = d−

v = k (say), then av = n−1 + k− k = n−1 for each v in oriented graph D. Thus
an oriented graph D with n vertices is diregular if av = n−1, for all v in D.

Now, we have the following result, the proof of which is obvious.

Lemma 14.14 The number of vertices in an oriented graph with at least two distinct
scores does not exceed its largest score.

The following result is given by Pirzada and Naikoo [196].

Theorem 14.32 (a) (Pirzada and Naikoo) Let A = {a, ad, ad2, . . . , adn}, where a and
d are positive integers with a > 0 and d > 1. Then there exists an oriented graph D with
score set A, except for a = 1, d = 2, n > 0 and for a = 1, d = 3, n > 0.

Proof We induct on n. For n = 0, there is a positive integer a > 0, so that a +1 > 0. Let
D be a diregular oriented graph having a +1 vertices. Then av = a +1−1 = a, for all v ∈ D.
Therefore score set of D is A = {a}. This proves the result for n = 0. If n = 1, then there are
positive integers a and d with a > 0 and d > 1, and for a = 1, d 6= 2, 3.
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Now, three cases arise: (I) a > 1, d > 2, (II) a > 1, d = 2 and (III) a = 1, d > 3.

(I) Let a > 1, d > 2. Therefore, a + 1 > 0. Let D1 be a diregular oriented graph having
a +1 vertices. Then av = a +1−1 = a, for all v ∈ D1.

Now, ad−2|V(D1)|+1 = ad2(a+1)+1 = ad−2a−1 ≥ 3a−2a−1 = a−1 > 0, as d ≥ 3

and a > 1. That is, ad −2|V(D1)|+1 > 0. Let D2 be a diregular oriented graph having
ad − 2|V(D1)|+ 1 vertices. Then au = ad − 2|V(D1)|+ 1− 1 = ad − 2|V(D1)|, for all
u ∈ D2.

Let there be an arc from every vertex of D2 to each vertex of D1, so that we get an
oriented graph D (which includes D1 to D2 together with all the new arcs from D2 and
D1) having |V(D1)|+ |V(D2)| = a + 1 + ad− 2|V(D1)|+ 1 = a + 1 + ad− 2(a + 1)+ 1 =
ad −a vertices with av = a, for all v ∈ D1, and au = ad −2|V(D1)|+2|V(D1)| = ad, for
all u ∈ D2. Therefore score set of D is A = {a, ad}.

(II) Assume a > 1, d = 2. First take a = 2, d = 2. Then ad = 4 > 0. Let D be an oriented
graph having ad = 4 vertices, say, v1,v2,v3, and v4 in which v1 → v3 and v2 → v4, so
that av1

= av2
= 2+4−2 = 4 = ad, and av3

= a44
−2 = 2 = a. Therefore D is an oriented

graph having ad vertices with score set A = {a, ad}.

Now, take a > 2, d = 2. Let D1 be a diregular oriented graph having 2 vertices, say v1

and v2. Then avi
= 2−1 = 1 for all vi ∈ D1, where 1 ≤ i ≤ 2.

Again, a > 2 or a−2 > 0. Let D2 be a diregular oriented graph having a−2 vertices,
say v3, v4, . . ., va. Then av j

= a−2−1 = a−3, for all v j ∈ D2, where 3 ≤ j ≤ a.

Let there be an arc from every vertex of D2 to each vertex of D1, so that we get an
oriented graph D3 (which includes D1 and D2 together with all the new arcs from D2

to D1) having 2 +a−2 = a vertices with avi
= 1, for all vi ∈ D1, where 1 ≤ i ≤ 2, and

av j
= a−3 +2(2) = a +1, for all v j ∈ D2, where 3 ≤ j ≤ a.

Again, a > 2 > 0. Let D4 be a diregular oriented graph having a vertices, say w1, w2, . . .,
wa. Then awk

= a−1, for all wk ∈ D4, where 1 ≤ k ≤ a.

Let there be a arcs from a distinct vertices of D4 to a distinct vertices of D3 (wq → vq,
for all q = 1,2, . . . , a), so that we get an oriented graph D (which includes D3 and D4

together with all the new arcs from D4 to D3) having a + a = 2a = ad vertices with
avi

= 1 +a−1 = a, for all vi ∈ D3, where 1 ≤ i ≤ 2,= a +1 +a−1 = 2a, for all v j ∈ D3,
where 3 ≤ j ≤ a, and awk

= a−1 +2(1)+a−1 = 2a, for all wk ∈ D4, where 1 ≤ k ≤ a.
Therefore score set of D is A = {a,2a}= {a,ad}.

(III) Finally, let a = 1, d > 3. Therefore, a + 1 > 0. Let D1 be a diregular oriented graph
having a +1 vertices. Then av = a +1−1 = a, for all v ∈ D1.

Now, ad −2|V(D1)|+1 = ad−2(a +1)+1 = ad −2a−1 ≥ 4a−2a−1 = 2a−1 > 0, as
d ≥ 4 and a = 1, i.e., ad−2|V(D1)|+1 > 0. Then as in (I), we have an oriented graph
D having ad −a vertices with score set A = {a,ad}.

Hence in all these cases, we get an oriented graph D with score set A = {a,ad}. This
shows that the result is also true for n = 1.
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Assume the result to be true for all p ≥ 1. We show that the result is true for p + 1.

Let a and d be positive integers with a > 0 and d > 1, and for a = 1, d 6= 2, 3. Therefore
by induction hypothesis, there exists an oriented graph D1 having |V(D1)| vertices
with score set {a, ad, ad2, . . ., adp}.

Once again, we have either (I) a > 1, d > 2, or (II) a > 1, d = 2, or (III) a = 1, d > 3.
Obviously, for d > 1, in all the above possibilities, adp+1 ≥ 2adp, and the score set of
D1, namely, {a, ad, ad2, . . ., adp} has at least two distinct scores for p ≤ 1. Therefore
by Lemma 14.14, |V(D1)| ≤ adp. Hence, adp+1 ≥ 2|V(D1)|, or adp+1−2|V(D1)|+1 > 0.

Let D2 be a diregular oriented graph having adp+1 −2|V(D1)|+1 vertices. Then av =
adp+1 −2|V(D1)|+1−1 = adp+1 −2|V(D1)|, for all v ∈ D2.

Let there be an arc from every vertex of D2 to each vertex of D1, so that we get an
oriented graph D (which includes D1 and D2 together with all the new arcs from D2

to D1) having |V(D1)|+ |V(D2)| vertices with a,ad,ad2, . . ., adp as the scores of the
vertices of D1, and av = adp+1 −2|V (D1)|+2|V (D1)| = adp+1, for all v ∈ D2. Therefore
score set of D is A = {a, ad, ad2, . . . , adp, adp+1}, proving the result for p +1. Hence
the result follows. q

That no oriented graph exists when either a = 1, d = 2, n > 0 or a = 1, d = 3, n > 0, is
proved in the following theorem.

Theorem 14.32 (b) There exists no oriented graph with score set A = {a, ad, ad2, . . ., adn},
n > 0, when either (i) a = 1, d = 2, or (ii) a = 1, d = 3.

We now have the following result [201].

Theorem 14.32 (c) If a1,a2, . . . ,an are n non-negative integers with a1 < a2 < . . . < an.
Then there exists an oriented graph D with score set A = {a′

1
, a′

2
, . . ., a′n}, where

a′i =

{

ai−1 +ai +1, f or i > 1,
ai , f or i = 1.

Remarks

1. From Theorem 14.32 ( c ), it follows that every singleton set of non-negative integers
is a score set of some oriented graph.

2. As we have shown in Theorem 14.32(b), i. e., the sets {1, 2, 22, . . ., 2n} and {1, 3, 32, . . .,
3n} cannot be the score sets of any oriented graph for n > 0. It follows, therefore, that
the above results cannot be generalised to conclude that any set of non-negative inte-
gers forms the score set of some oriented graph. However, there can be other special
classes of non-negative integers which can form the score set of an oriented graph,
and the problem needs further investigations.

Pirzada and Naikoo [195] have obtained some results on degree frequencies in oriented
graphs. More results on scores, score sets and kings in oriented graphs can be seen in [199,
201, 203, 207].
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14.11 Uniquely Realisable (Simple) Score
Sequences in Oriented Graphs

An oriented graph D is reducible if it is possible to partition its vertices into two nonempty
sets V1 and V2 in such a way that there is an arc from every vertex of V2 to each vertex of
V1. Let D1 and D2 be induced digraphs having vertex sets V1 and V2 respectively. Then D

consists of D1 and D2 and arcs from every vertex of D2 to each vertex of D1. We write D =
[D1, D2]. If this is not possible, then the oriented graph D is irreducible. Let D1,D2, . . .,Dk

be irreducible oriented graphs with disjoint vertex sets. Then D = [D1, D2, . . .,Dk] denotes
the oriented graph having all arcs of Di, 1 ≤ i ≤ k and there are arcs from every vertex of D j

to each vertex of Di, 1 ≤ i < j ≤ k. Here D1,D2, . . .,Dk are called irreducible components of
D. Such a decomposition is called as irreducible component decomposition of D, which is
unique.

Definition: A score sequence A is said to be irreducible if all the oriented graphs D with
score sequence A are irreducible.

In case of ordinary tournaments, the score sequence used to decide whether a tournament
T having score sequence S, is strong or not. This is not true in case of oriented graphs. For
example, the oriented graphs D1 and D2 in Figure 14.11, both have score sequence [2, 2, 2]
but D1 is strong and D2 is not.

Fig. 14.11

The following result due to Pirzada [186] characterises irreducible oriented graphs.

Theorem 14.33 Let D be an oriented graph having score sequence. Then D is irreducible
if and only if, for k = 1, 2, . . . , n−1

k

∑
i=1

ai ≥ k(k−1) (14.33.1)

and
k

∑
i=1

ai = n(n−1) (14.33.2)

Proof Suppose D is an irreducible oriented graph having score sequence [ai]
n
1
. Condition

(14.33.2) holds since Theorem 14.24 has already established it for any oriented graph. To
verify inequalities (14.33.1) we observe that for any integer k < n, the subdigraph induced
by any set of k vertices has a sum of scores k(k−1). Since D is irreducible, there must be
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an arc from at least one of these vertices to one of the other n−k vertices, or there is no arc
from these k vertices to other n− k vertices. Thus, for 1 ≤ k ≤ n−1

k

∑
i=1

ai > k(k−1).

For the converse, suppose conditions (14.33.1) and (14.33.2) hold, we know by Theorem
14.24 that there exists an oriented graph D with these scores. Assume that such an oriented
graph D is irreducible. Let D = [D1,D2, . . .,Dk] be the irreducible component decomposition
of D. If m is the number of vertices in D1, then m < n, and the following equation holds,

k

∑
i=1

ai = m(m−1),

which is a contradiction. This proves the converse part. q

The following result due to Pirzada [186] can be proved easily.

Theorem 14.34 Let D be an oriented graph with score sequence A = [ai]
n
1
. Suppose that

k

∑
i=1

ai = p(p− 1),
q

∑
i=1

ai = q(q− 1) and for p + 1 ≤ k ≤ q− 1, where 0 ≤ p < q ≤ n. Then the

subdigraph induced by the vertices vp+1 ,vp+2, . . ., vq is an irreducible component of D with
score sequence [ap+1 −2p, . . ., aq −2p].

Now, A is irreducible if D is irreducible and the irreducible components of A are the score
sequences of the irreducible components of D. Theorem 14.34 shows that the irreducible
components of A are determined by the successive values of k for which

k

∑
i=1

ai = k(k−1), 1 ≤ k ≤ n. (14.33.3)

We illustrate it with the following example.
Let A = [1, 2, 3, 8, 8, 8, 13, 13]. Equation (14.33.3) is satisfied for k = 3, 6, 8. Thus

irreducible components of S are [1, 2, 3], [2, 2, 2] and [1, 1] in ascending order.

Definition: A score sequence is simple if it belongs to exactly one oriented graph. We
characterise simple score sequences of oriented graphs. First we have the following obser-
vation.

Lemma 14.15 The score sequence A of an oriented graph is simple if and only if every
irreducible component of A is simple.

The following result due to Pirzada [186] determines which irreducible score sequences
are simple.
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Theorem 14.35 (S. Pirzada) Let A be an irreducible score sequence. Then A is simple
if and only if it is one of [0], or [1, 1].

Proof Suppose A is an irreducible score sequence and let D be an oriented graph having
score sequence A. We have three cases to consider. (1) D has n ≥ 3 vertices, (2) D has two
vertices, (3) D has one vertex.

Case (1) D has n ≥ 3 vertices. Since A is irreducible, there exist vertices u,v and w such
that D has a cyclic triple u(1− 0)v(1− 0)w(1− 0)u; or an intransitive triple u(1− 0)v(1−
0)w(0−0)u; or a transitive triple u(0−0)v(0−0)w(0−1)u; or a transitive triple u(0−0)v(0−
0)w(0−0).

Now, if D contains the cyclic triple u(1− 0)v(1− 0)w(1− 0)u, it can be changed to the
transitive triple u(0− 0)v(0− 0)w(0− 0)u to form an oriented graph with the same score
sequence, or vice versa. So the number of arcs in D and D′ is different. If D contains
the intransitive triple u(1− 0)v(1− 0)w(0− 0)u, we can transform it to the transitive triple
u(0− 0)v(0− 0)w(0− 0)u, to form an oriented graph having the same score sequence, or
vice versa. Here also the number of arcs in D and D′ is different. Since in every case the
number of arcs in D and is not same, D is D′ not isomorphic to D′ . Thus A is not simple.

Case (2) D has two vertices. Then A = [1, 1] is the only irreducible score sequence and it
belongs to exactly one oriented graph, namely u(0−0)v.

Case (3) D has just one vertex. Then A = [0] which is obviously simple.
Hence [0] and [1, 1] are the only irreducible score sequences that are simple. q

Corollary 14.5 The score sequence A is simple if and only if every irreducible compo-
nent of A is one of [0], or [1, 1].

14.12 Score Sequences in Oriented Bipartite Graphs

An oriented bipartite graph is the result of assigning a direction to each edge of a simple
bipartite graph. Let X = {x1, x2, . . ., xm} and Y = {y1, y2, . . .,yn} be the partite sets of an
oriented bipartite graph D. For any vertex u in D, let d+(u) and d−(u) be the outdegree and
indegree respectively. Define ax = n+d+(x)−d−(x) and by = m+d+(y)−d−(y) as the scores
of x in X and y in Y respectively. Clearly, 0 ≤ ax ≤ 2n and 0 ≤ by ≤ 2m. Then the sequences
A = [ai]

m
1

and B = [b j]
n
1

in non-decreasing order are called a pair of score sequences of D.
An arc from x to y, that is, x → y is denoted by x(1− 0), and x(0− 0) means neither x → y

nor y → x.

Definition: A tetra in an oriented bipartite graph is an induced subdigraph with two
vertices from each partite set. Define tetras of the form x(1− 0)y(1− 0)x′(1− 0)y′(1− 0)x
and x(1−0)y(1−0)x′(1−0)y′(0−0)x to be of α -type, and all other tetras to be of β -type.
An oriented bipartite graph is said to be of α -type or β -type according as all of its tetras
are of α -type or β -type respectively (Fig. 14.12).
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Fig. 14.12

We have the following simple observation.

Theorem 14.36 Among all oriented bipartite graphs with a given pair of score se-
quences, those with the fewest arcs are of β -type.

Proof Let (A, B) be a given pair of score lists and let D be a realisation of (A, B) that is
not β -type. Then D has a tetra of α-type: x(1−0)y(1−0)x′(1−0)y′(1−0)x or x(1−0)y(1−
0)x′(1−0)y′(0−0)x. Since x(1−0)y(1−0)x′(1−0)y′(1−0)x can be changed to x(0−0)y(0−
0)x′(0−0)y′(0−0)x with the same score sequences and four arcs fewer , and x(1−0)y(1−
0)x′(1−0)y′(0−0)x can be changed to x(0−0)y(0−0)x′(0−0)y′(0−1)x with the same score
sequences and two arcs fewer, so in either case we can obtain a realisation of (A, B) with
fewer arcs. q

A transmitter is a vertex with indegree zero. In a β -type oriented bipartite graph with
score sequences A = [a1, a2, . . .,am] and B = [b1,b2, . . .,bn] either the vertex with score am,
or the vertex with score bn, or both may act as transmitter.

The next result due to Pirzada, Merajudin and Yin Jianhua [194] provides a useful re-
cursive test to find whether a pair of lists is realisable.

Theorem 14.37 Suppose A = [a1, a2, . . ., am] and B = [b1, b2, . . .,bn] be two sequences
of non-negative integers in nondecreasing order. Let A′ be obtained from A by deleting
one entry am and B′ be obtained from B by reducing 2n−am greatest entries of B by 1 each
provided am ≥ n and bn ≤ 2m− 1. Then A and B are the score sequences of some oriented
bipartite graph if and only if A′ and B′ are also score sequences of some oriented bipartite
graph.

Theorem 14.37 provides an algorithm for determining whether a given pair of sequences
(A, B) of non-negative integers in nondecreasing order is a pair of score sequences and for
constructing a corresponding oriented bipartite graph. Suppose A = [a1, a2, . . ., am] and
B = [b1, b2, . . . , bn] be a pair of score sequences of an oriented bipartite graph with parts
X = {x1,x2, . . .,xm} and Y = {y1,y2, . . . , yn}, where am ≥ n, bn ≤ 2m − 1. Deleting am and
reducing 2n− am greatest entries of B by 1 each to form B′ = [b′

1
, b′

2
, . . . , b′n].. Then arcs

are defined by xm → y j for which b j = b′j. Now, if at least one of the conditions am ≥ n or
bn ≤ 2m− 1 does not hold, then we delete bn (obviously bn ≥ m, am ≤ 2n− 1) and reduce
2m− bn greatest entries of A by 1 each to form A = [a′

1
, a′

2
, . . ., a′m]. In this case arcs are
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defined by yn → xi for which ai = a′i. If this method is applied successively, then it tests
whether (A,B) is a pair of score sequences and an oriented bipartite graph ∆(A, B) with
score sequences (A,B) is constructed.

We can interpret this algorithm in the following way. Let A = [a1, a2, . . ., am] and B =
[b1, b2, . . ., bn] be a pair of score sequences of an oriented bipartite graph, where am ≥
n, bn ≤ 2m−1. Let p and q denote the smallest and largest integers j for which b j = bam−n.
Let A′[a1, a2, . . . , am−1] as before and let then B′ = [b′

1
, b′

2
, . . ., b′n], then

b′j =

{

b j, f or 1 ≤ j ≤ p−1 and p +q− (am−n) ≤ j ≤ q,
b j −1, otherwise.

We illustrate this reduction and the resulting construction with the following example,
beginning with lists A1 and B1. The oriented bipartite graph constructed is shown in Figure
14.13.

A1 = [4, 4, 5] B1 = [1, 1, 4, 5] x3 → y2

A2 = [4, 4] B2 = [0, 1, 3, 4] y4 → x1,x2

A3 = [4, 4] B3 = [0, 1, 3] x2 → y1

A4 = [4] B4 = [0, 0, 2] y3 → x1

A5 = [4] B5 = [0, 0] x1 → y1,y2

Fig. 14.13

Let Di be the oriented bipartite graphs with disjoint parts Xi and Yi for 1 ≤ i ≤ t . Let X =
U t

i=1
Xi and Y =U t

i=1
Yi. Clearly, D = [D1,D2, . . . , Dt ] denotes the oriented bipartite graph with

parts X and Y , obtained from Di for 1 ≤ i ≤ t such that the arcs of D are the arcs of Di and
each vertex of Y j is adjacent to every vertex of Xi for j < i and each vertex of Xi is adjacent
to every vertex of Y j for i < j.

The next result [194] gives a criterion for determining whether a pair of sequences are
realisable as scores.

Theorem 14.38 Let A = [a1, a2, . . ., am] and B = [b1, b2, . . ., bn] be a pair of non-negative
integers in non-decreasing order. Then A and B are scores sequences of some oriented
bipartite graph if and only if

k

∑
i=1

ai +
t

∑
j=1

b j ≥ 2kl (14.3.1)
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for 1 ≤ k ≤ m and 1 ≤ l ≤ n, with equality when k = m and l = n.

The characterisation of scores of oriented tripartite graphs can be found in [190] and
scores (marks) in other types of digraphs can be found in [188, 196, 191].

14.13 Score Sequences of Semi Complete Digraphs

Definition: A semi complete digraph is a digraph with no directed loops and at least
one arc between every pair of distinct vertices. Clearly, a tournament is a semi complete
digraph in which there is exactly one arc between every pair of distinct vertices. Therefore
every semi complete digraph contains at least one tournament on the same vertex set and is
contained in the complete symmetric digraph on the same vertex set. The score of a vertex
v in a semi complete digraph D is the outdegree of v.

The following result is due to Reid and Zhang [222].

Theorem 14.39 A sequence of non-negative integers S = [si]
n
1

in non-decreasing order is
a score sequence of some semi complete digraph of order n if and only if

k

∑
i=1

≥

(

k

2

)

and sk ≤ n−1, (14.39.1)

for all k,1 ≤ k ≤ n.

Proof

Necessity If S is a score sequence of some semi complete digraph D of order n, then
any k vertices of D induce a semi complete digraph of order k which, in turn, contains a
tournament W of order k. Therefore the sum of the scores in D of these k vertices is at least
the sum of their scores in W which is the total number of arcs in W,

(

k
2

)

. Also, a vertex

of D can dominate at most all of the other vertices, so no score in S can exceed n−1. Thus
the conditions (14.39.1) are necessary.

We require the following result for proving sufficiency.

Lemma 14.16 If S = [si]
n
1
,n ≥ 1, is a sequence of integers in non-decreasing order satis-

fying (14.39.1), then there exists a tournament T with score sequence s′ = [s′i]
n
1
, such that

s′i ≤ si for 1 ≤ i ≤ n.

Proof Define an order � on all non-decreasing sequences of integers satisfying (14.39.1)
(thus including all sequences satisfying conditions (14.1.2)) as follows. If B = [b1, b2, . . . , bn]
and m is the smallest index for which bm = bn ( = max {bi : 1 ≤ i ≤ n}), then B (strictly) cov-
ers the sequence A = [a1, a2, . . ., an], where A and B are identical such that am = bm−1. Note
that if m > 1, then bm−1 < bm = bm+1 = . . .= bn and if m = 1, then b1 = b2 = . . .= bn ≥ (n−1)/2.
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Also, if B covers A, then
n

∑
i=1

ai =

(

n

∑
i=1

bi

)

−1 .

This implies, by Landau’s theorem, that if S satisfies (14.39.1), then S is the score se-
quence for some tournament if and only if S covers no sequence satisfying (14.39.1). And,
if B is not the score sequence for any tournament, then B covers exactly one sequence satis-
fying (14.39.1). For two non-decreasing sequences of integers X and Y satisfying (14.39.1),
define X � Y if either X = Y, or there is a sequence X0 = X ,X1,X2, . . . ,X j−1,X j = Y of non-
decreasing sequences of integers each satisfying conditions (14.39.1) such that Xi covers
Xi−1,1 ≤ i ≤ j.

Now, let S = [si]
n
1

be a sequence of integers in non-decreasing order satisfying conditions

(14.39.1). Induct on the integer e(S)≡

(

n

∑
i=1

si

)

−
(

n
2

)

. If e(S) = 0, then by Landau’s theorem,

S itself is a score sequence for some tournament T . If e(S) > 0, then by the remarks above,
S covers exactly one sequence Z = [z1, z2, . . ., zn] satisfying (14.39.1), such that zi ≤ si,

for 1 ≤ i ≤ n, and e(Z) =

(

n

∑
i=1

Zi

)

−
(

n
2

)

=

(

n

∑
i=1

si

)

−
(

n
2

)

− 1 = e(s)− 1. By the induction

hypothesis applied to Z, there is a score sequence S′ = [s′i]
n
1

for some tournament T such that
s′i ≤ zi, for 1 ≤ i ≤ n. By the transitivity of ≤, we have s′i ≤ si, for 1 ≤ i ≤ n, so and T suffice
for S, as required. q

Sufficiency of Theorem 14.39 Let S = [si]
n
1
, n ≥ 1, be a sequence of integers in non-

decreasing order, satisfying conditions (14.39.1). By Lemma 14.16, there is a tournament
T of order n with score sequence S′, where S′ � S In T denote the vertex with score s′i by
vi, 1 ≤ i ≤ n. Since vi has indegree n−1− s′i ≥ n−1− si , arcs can be added from vi to any
n− 1− si vertices in the inset of vi in T so as to produce a semi complete digraph D with
score sequence S.

14.15 Exercises

1. Prove that any n-tournament can be obtained from any other having the same scores
by a sequence of arc reversals of 3-cycles.

2. If an n-tournament has every score si satisfying,1

4
(n−1)≤ si ≤

3

4
(n−1) then show that

it is irreducible.

3. Construct a proof for Theorem 14.2, and 14.6.

4. If S = {a, a + d, a + d + e}, where a,d,e are non-negative integers and de > 0, and if
(d, e) = g, d = a and e ≤ a + d − d/2g + (1/2), then prove S is a score set of some
tournament.

5. Prove that every set of three non-negative integers is a score set of some tournament.

6. If a,b,c,d are four non-negative integers with bcd > 0, prove that there exists a tour-
nament T with score set S = {a,a +b,a +b+ c,a+b + c+d}.

7. Construct a proof of Theorem 14.11.
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8. Prove Lemma 14.7 and Lemma 14.8.

9. Construct a proof of Theorem 14.14.

10. Construct a proof of Theorem 14.16.

11. Construct proofs of Theorem 14.18 and 14.21.

12. If T is a bipartite tournament with score sequences and satisfying A = [ai]
m
1

and B =
[b j]

n
1

satisfying n/4 < ai < 3n/4 for 1 ≤ i ≤ m, and m/4 < b j < 3m/4 for 1 ≤ j ≤ n, then
prove that T is irreducible.

13. Construct proofs of Theorem 14.37 and Theorem 14.38.


