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Introduction

We consider the classical bin packing problem [2, 5, 9]: a collection of
unit-capacity bins and pieces (a list of sizes) is given, and the pieces are to
be packed into the bins (the sizes of the pieces do not exceed 1). The problem
of minimizing the number of required binsis NP-complete [5, 7], therefore
approximation algorithms, as FF, BF, NF, FFD, BFD, NFD [1, 2, 5] have
been analysed with the objective of characterizing worst-case performance re-
lative to optimal packing.

Let A(L) denote the number of required bins for an algorithm A and
a list of real sizes L, let p denote the set of all real lists, and let L, denote
the minimal number of bins. Some worst-case results are suinmarized in the
following assertions.

Assertion 1 [6]. For every L€p
NF(L)=2Ly+1
and for every positive integer n there exists a list P for which
P,=n and NFP)=2P,—2. 0O
Assertion 2 [2, 5, 8]. For every L€y,

17
FF(LYy<—L,+1
(L)=15F
and for every integer number n there exists a list Q for which

Q, =n and FF(Q)E%QO—&

Assertion 3 [5, 7, 9]. For every Leo,

BF(L)S-I%LO +2
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and for every positive infeger nthere exists a list R for which
17
R,=n and BF(R)‘:»]«ORO—S. o

Assertion 4 [2, 5, 8]. For every L€o,

FFD(L)= g—LO+4

and for every positive integer n there exists a list S for which

Sy = n and FFD(S)zlng(,—Q. 0

Assertion 5 [2, 5, 8]. Forevery L€o,

BFD(L)= ~'9-‘ L,+4

and for every positive integer n there exists a list T for which

T,=n and BFD(T)Z—IQI-SO—Q. O

Assertion 6 [1]. For every Lcp
NFD(L)=yLy+3
and for every positive integer n and positive e there exists a list U for which

U, =n and NFDU)=(y—e¢)U,,
where

v = i—’ a, =1, 6, =aa+1), i=12,...(y=1,691). 0

1. Performance of algorithms for binary data

In the memory of computers, data are stored as finite binary fractions.
Therefore we investigate the performance of algorithms in the case of bi-
nary data.

To illustrate this let us consider a simple example. Let B; denote the
i-th bin and let the sum of the sizes of pieces in B, be denoted by h; and
called the level of B;. Let » denote the set of algorithms which yield a packing
where the sum of the levels of arbitrary two consecutive bins is larger than
1. Of course, all the mentioned algorithms belong to ».

Let 8, = {u, 2u, 3u, ..., 2ku}, where u = 2-% k=0. Then the set f,
consists of the binary fractions of the interval (0, 1] representable by using k
digits.
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Theorem 1. For cvery A€y and Léo we have A(L)y=2L,—1 and for
every positive integer n there exist Ce€y and M¢€o, for which My = n, C(M) =
= 2M,—1 and every size in M belongs to f3,,, where m = [log, n].

Proof. a) A(L)=2L,—1 is a consequence of Theorem 5 (this inequality
also is mentioned in [3]).

b) LetM_(t,,.. ty), where ¢ = n+2m t, = 1fori =24, ..., 2n
and t; = 1/2m for the remaining cases. Then MO = n+1 and NF(M) =
= 2/1+l i.e. NF(M) = 2M— 1. Of course, the sizes belong to 8,,. 0O

Now we consider another example, where the worst lists require only a
fixed number of digits.

Let u denote the set of lists having an optimal packing into s=1 bins
in such a way that q,, b, ¢;¢ B, with a,+b,+¢; = 1, 1/2<a;<2/3, 1/3<b,<
<1/2, 1/T<¢;<1/6. The following theorem shows that the lists in Garey
and Johnson’s book [5] are the worst possible, and the same worst case is
obtainable by using a few of digits.

Theorem 2 [6]. For every Nep we have FF(N)=[5/3 N,], and for every
positive integer number n there exists an Meu, for which M, = n, FF(M) =
= BF(M) = [5/3 M,] and the sizes of the picces in M belong to 8,. [

Proof. Let M = (s, ..., S, My, ..., m o by ooy L), wheres; = 20/128
m; = 43/128, [, = 65/128, j =1, ..., Because of s;+m; +l =1 we
have My, = n. It is easy to compute that FF(M) = BF(M) [5/3 MO].
For example, if n = 6r, then the small pieces s, ..., s, occupy r bins, the

medium elements 3r bins and the large ones 6r bins. Due to 128 = 27 the
sizes belong to f,.
b) Let us consider the packing of the list N generated by FF. Let ¢ =

= max {j|B; contains at least one small element}. We call By, ..., B,
1sj=sFF(N)

low bins, the remaining ones, B,.,, ..., Bpg), — highbins. Let X denote
the number of large piecesin the low bms and Y the number of medium pieces
in the same bins. If Ny=5, then we hdve the following cases: 1) X =0,
Y =0;02) X =0, V=N, 03) X=0, 0<Y<N,; b4) 0<X<N,; b5)
X = N,.

b1) Every large and medium piece is in the high bins. By, ..., Bq_1
contain at least 6 small elements each, and B, contains at least 5 ones. The
large and medium pieces occupy the maximal number of bins if every large
one occupy one bin, and every pair of medium pieces occupy a whole bin,
therefore

FF(N)=Ny+[Ny/2]+[(No—5)/6]+ 1=5/3 N,.

To prove the second inequality we distingueshed six subcases according
to N==06r+j(r=0;j=0,1, ..., 5).

b2) All the large pieces are in the high bins, and the medium pieces are
in the low bins. The bins B,, ..., B,_, contain at least 6 small pieces each
(or one medium piece instead of three small ones) and B, contains at least
3 small pieces, so that

FF(N)Y=Ny+ 1+ [(Ny+3N,—3)/6]=5/3 N,.
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b3) Every large element is in the high bins, the medium pieces are dis-
tributed between the low and high bins, B, contains at least four small
pieces (each mediwm element can replece three small elements) so that

FF(N)=No+1+[(No— Y)[2]+ [(N,+3Y - 4)/6]=5/3 N,.

b4) Now, the large pieces being distributed, B, contains at least three
small pieces. Each large piece can replace 4 small ones, so that

FF(N)=(N—X)+ 1+ [(No— Y)/2]4 [(No+4X +3Y —3)/6]=5/3 N,.

b5) The high bins do not contain large pieces. One medium piece can
occupy one high bin, and B, contains at least one small piece. Therefore

FF(N)=[(Ny— Y)/2]+ 1+ [(No+4Ny+3Y —1)/6]=5/3 N,.

c) If N, = 4, then we consider the casesq =1, ..., F.
F F

If g=3, then h;>5[6, h,>5[6, and > h;=2(F —2). Then from >' h; = 4
i=3 i=1
it follows F=<6.

If ¢ = 1, then B, has to contain the small pieces and a medium (or large)
one too. The remaining pieces can fit at most 5 bins, therefore F <6.

If ¢ = 2, then B, and B, contain all the small pieces and at least 3 me-
dium (or large) ones too — the remaining pieces can fit at most 4 bins,
therefore F=6.

d) If Ny=3, then we use Theorem 1.

All cases are considered. Because FF(N) is an integer, FF(N)=5/3 N,
implies FF(N)=[5/3 Ny,]. O

We remark that some simplification of the original proof is due to S. O.
Botchkov, a student of Moscow State University.

The following theorem shows that there are even binary fraction examp-
les for FF and BF which are worse than the ones known sofar.

Theorem 3 [10]. For every positive integer n there exists an L€p, for
which Ly = n, FF(L) = BF(L) = [17/10 L,] and the sizes in L belong to

:3n+15' a .
In the proof, L is constructed as follows. Let Q = (s, - .., S,,, My, - -+,
my, L, ..., I), where s; = 1/6+e+ (1) 2-5-1-2-10-n"m = [[3—e+

(=128 [, = 1/242710-n (1/6+¢€)€(1/6, 1/64+2-15-1), (1/6+¢)€
E€fisem i =1, ..., n. We get L from Q, using some rearrengement of the
small and in some subcases of the medium pieces.

We remark that using another construction in the proof of the theorem,
we can replace f,, 5 by B8, where h = nj2+45.

From this theorem, for example, we get a negative answer to a con-
jecture [8] that for L,>20, FF(L)<17/10 L, and BF(L)<17/10 L,.

We can realize the worst known performance of FFD and BFD using
only 6 digits.

Theorem 4. For every positive integer n there exists an L¢g, for which
Ly = n, FFD(L) = BFD(L) = [11/9 L] and the sizes belong to 8,. O
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Proof. Let n = 3m+j, O=<j=<2, m=2. Suppose 2m+j optimal bins
contain pieces with sizes 33/64, 17/64, 14/64, and m optimal bins contain
pieces with sizes 78/64, 18/64, 14/64, 14/64. For example in the case n = 9s
in FFD- and BFD-packings we have 6s bins with 33/64, 78/64, 2s bins
with 77/64, 17/64, 17/64, and 3s bins with 74/64, 14]64, 14/64, 14/64. The
remaining cases are similar. 7}

For NFD the known worst performance values [1] in Assertion 6 are
also obtainable by using binary fractions (the number of required digits
depends on L, and ¢).

2. Dependence of performance on data accuracy

In this section we give the tight worst-case bound for a class of bin
packing algorithms as a functions of data accuracy.

Theorem 5. For every Acv and M€,
A(M)=2[M,/(1+27%) ] +sign (My/(1+27) = [Mo/(1+27¥)]) = f(Mq, k),

and there exists an element C€v (for example, NF ) such that for every positive
integer n there exists N € g, for which Ny = nand C(N) = f(Ny, k). 0O

Proof. ) In this case the sum of the levels of neighbouring bins is grea-
ter than or equal to 1+2-%, therefore A(M)=f(M,, k) = 2s+d, where
s = [Myf(1+279)], d = sign (M/(1+2-%)— [M(1+2-¥)]).

b) If No/(1+2-%) is integer, then s = Ny/(1+2-¥), In this case d = 0
and s = No/(1-+2-F) = 2kN/(2k+ 1) = 2K(N,/(2k+ 1)), that is N,/(2¥+1)
an integer and s is divisible by 2.

Let now N = (f,, ..., t,,), where t, = 2-% if i = 1,3, ..., 2s—1, and
t,=1,ifi = 2,4, ..., 2s. In this case we have NF(N) = 25, N, = s+5/2¥,
hence 2s = NF(N) = 2[N,/(1 +2-%)].

If No/(1+2- “) is not an integer, then s = [NO/(1+2 K] and d = 1.
Let now N = (f, ..., ty,,), Where t, =2k if i =1, 3, ..., 2s—1, and
t,=1,ifi =2,4,...,25and t,,, = N o—S(1+2-%). In this case NF(N)
= 23+1 N, = s+[s/2"], hence 2s+1 = NF(N) = 2[N,/(1+2-%]+1. O

Of course, for a fixed N, we have

lim f(N,, k) = 2N,—1

k—
(here even equality holds for k=k,(N,)). Therefore it is easy to get Theorem
1 as a corollary of Theorem 5.

Suppose, for example, that kK = 4 and N, = 17p. Then from Theorem 5
it follows that

ANY=2(17p/(142-1%)) = 32p = 2N,—2/17 N,.

If, as in the computer BESM—6 [11], we have k = 47, then let N, =
= (247+ 1)g. For these data from Theorem 5 we obtain the inequality

A(N)=2N, - 2/(2+ 1) N,.

6 ANNALES Sectio Computatorica — Tomus V.
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Comparing this result with the estimation in Theorem 1, we can conclude
that the inaccuracy of big computers has only a weak influence on the tight
worst-case bounds of the algorithm NF. Using similar constructions as in
the proof of Theorem 3 and 4, we can draw the same conclusion for the
remaining bin packing algorithms, too.
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