A SIMPLE PROOF OF THE INEQUALITY $FFD(L) \leq \frac{11}{9} OPT(L) + 1, \quad \forall L$ FOR THE FFD BIN-PACKING ALGORITHM^{*†}

YUE MINYI[‡] (越民义)

(Institute of Applied Mathematics, Academia Sinica, Beijing) (Forschungsinstitut für Diskrete Mathematik, Bonn)

Abstract

The first fit decreasing (FFD) heuristic algorithm is one of the most famous and most studied methods for an approximative solution of the bin-packing problem. For a list L, let OPT(L) denote the minimal number of bins into which L can be packed, and let FFD(L) denote the number of bins used by FFD. Johnson^[1] showed that for every list L, FFD(L) $\leq 11/9$ OPT(L) + 4. His proof required more than 100 pages. Later, Baker^[2] gave a much shorter and simpler proof for FFD(L) $\leq 11/9$ OPT(L)+3. His proof required 22 pages. In this paper, we give a proof for FFD(L) $\leq 11/9$ OPT(L)+1. The proof is much simpler than the previous ones.

In bin-packing, a list L of pieces, i.e. numbers in the range (0, 1], are to be packed into bins, each of which has a capacity 1, and the goal is to minimize the number of bins used. The minimal number of bins into which L can be packed is denoted by OPT(L) for the list L. The first-fit-decreasing (FFD) algorithm first sorts the list into a non-increasing order and then processes the pieces in that order by placing each piece into the first bin into which it fits. More precisely, suppose the sorted pieces are $p_1 \ge p_2 \ge \cdots \ge p_n$, where p_i denotes the piece and its size as well, and that the bins are indexed as B_1, B_2, \cdots , FFD processes the pieces in the order p_1, p_2, \cdots, p_n . For $1 \le i \le n$, if j is the least k such that B_k holds a total of amount $\le 1 - p_i$ when p_i is to be packed, then FFD places p_i in B_j . For a list L, let FFD(L) denote the number of bins used by FFD. Johnson^[1] showed that for every list L, FFD(L) $\le \frac{11}{9}$ OPT(L)+4. Unfortunately, his proof required more than 100 pages. Later, Baker^[2] gave a much shorter and simpler proof for FFD(L) $\le \frac{11}{9}$ OPT(L)+3. However, Baker's proof required still 22 pages and is rather complicated. In this paper, we

^{*}Received March 20, 1991.

[†]In Commemoration of the 15th Anniversary of the Acta Mathematicae Applicatae Sinica.

[‡]This work was done when the author visited the Forschungsinstitut für Diskrete Mathematik of Universität Bonn during the period from September to December, 1990. Supported by Sonderforshungsbereich 303 (DFG).

give a proof for

$$FFD(L) \leq \frac{11}{9}OPT(L) + 1.$$
(1)

Since it is easy to show that there exist examples (L) for which $FFD(L) \ge \frac{11}{9}OPT(L) + \frac{5}{9}$, our result seems to arrive at the final stage.

For a given list L, let P and P^{*} denote the FFD packing and an optimal packing of L respectively. Let G be the set of pieces in L with size $> \frac{1}{2}$. A piece in G is denoted also by G. A bin containing a G is called a G-bin. For a bin $B = \{(G, \cdot, \cdot), (G, *, *)\}$, where (G, \cdot, \cdot) and (G, *, *) are bins containing G in the FFD packing and OPT packing respectively, we denote (G, \cdot, \cdot) by B-P and (G, *, *) by $B-P^*$. Sometimes we use p(B, i, P) and $p(B, i, P^*)$ for the *i*th piece in B - P and $B - P^*$ respectively. Let x be the least piece of L. The size of a piece x_i is also denoted by x_i if no confusion can be made. A G-bin is called a G-ij-bin if B - P contains *i* pieces and $B - P^*$ contains *j* pieces in total. Our proof is based on a combination of the weighting function method and the minimal counter-example method. Such a combination has been used by many authors such as Coffman et al^[3] and Yue^[4]. For a piece p we give it a "weight" $w(p) \leq p$. w(p) is called a weighting function. With a given w, we divide all the pieces of L into classes. Denote $R_i = \{y|w(y) = w_i\}$, which is called a region of w, or simply region *i*. Pieces belonging to R_i are denoted by x_i , if no confusion arises. E.g., we use $\{G, x_3, x_3\}$ for a bin with its 2nd and 3rd pieces belonging to R_3 , though these two pieces may have different sizes. Generally, $x_i > x_j$ if i < j. We write $w(x_i + x_j)$ for $w(x_i) + w(x_j)$ for simplicity.

In the following we assume that L is a minimal counter-example to (1), i.e., for this L,

$$FFD(L) > \frac{11}{9}OPT(L) + 1$$
(2)

holds, and that any list L' satisfying (2) must have $|L'| \ge |L|$. By definition, we can assume that the last FFD bin of L consists of the piece x only.

Lemma 1. Every optimal bin contains at least 3 pieces.

Proof. Let (y, y') be an optimal bin with $y \ge y'$. Let $B = (y, y^0, \cdot)$ be the FFD-bin, into which y falls. If $y^0 \ge y'$, we delete all pieces in B from the list L. Let $L' = L \setminus B$. Evidently, the FFD packing for L' is identical to those for L except that the bin B will be missing. So we have FFD(L')=FFD(L)-1. As for OPT(L), we put y' in the place occupied originally by y^0 after the deletion of B. We have $OPT(L') \le OPT(L)-1$. Thus we have $FFD(L')=FFD(L)-1 > \frac{11}{9}(OPT(L)-1)+1 \ge \frac{11}{9}OPT(L')+1$. L cannot be a minimal counter-example to (1). If $y^0 < y'$, by the FFD rule, y' must have been put into an FFD-bin $B' = (z, y', \cdot)$ with $z \ge y$ before y^0 was put into B. Deleting all the pieces in B' from L and applying the same argument as above, we have the same conclusion.

Lemma 2. Let B' be a G-23-bin such that the sum of the two least pieces in $B' - P^*$ has a size $\geq \frac{1}{2}(1-x)$. Then for any G-23-bin B with $p(B,2,P) \leq \frac{1}{2}(1-x)$, we have $p(B',2,P) > p(B,2,P^*)$.

Proof. Let $B = \{(G_0, \bar{x}), (G_0, x', x'')\}, B' = \{(G, x_0), (G, x'_0, x''_0)\}$. Suppose $x_0 \le x'$. Then we have $\bar{x} > x_0$ and $G_0 < G$, otherwise B' cannot be a G-23-bin. By the FFD rule, we have $\bar{x} + G > 1$. Thus we have $\frac{1}{2}(1-x) \ge \bar{x} > x'_0 + x''_0$. This is impossible.

As we said above, L is a minimal counter-example to (1). Our aim is to prove that this statement cannot be true and therefore no counter-example exists. Our proof is divided into 3 cases according to whether

(a) $\frac{1}{4} < x \le \frac{1}{3}$, (b) $\frac{1}{5} < x \le \frac{1}{4}$, (c) $\frac{2}{11} < x \le \frac{1}{5}$. When $x < \frac{2}{11}$ or $x > \frac{1}{3}$, the truth of (1) follows from Lemma 1 and simple calculations. For a given L, let w(L) be the total weight of L. Our aim is to establish the inequalities

$$(1-x)FFD(L) \leq w(L) + A \leq \frac{11}{9}(1-x)OPT(L) + a, \qquad (3)$$

where A and a are two constants, $a \le 1-x$. If every FFD bin has a weight $\ge 1-x$ and every OPT bin has a weight $\le \frac{11}{9}(1-x)$, we set A = a = 0 and achieve our goal. Unfortunately, there is an FFD G-23-bin whose weight may be < 1-x. Let $B = \{(G, y), (G, y', y'')\}$ be a G-23-bin. If G+y > 1-x and w(G+y) < 1-x, we call d = 1-x-w(G+y) the shortage of the FFD G-bin B, or simply, the shortage of y, and y is called a piece with shortage. Notice that such a y arises only in G-23-bins. A piece p is called a regular piece if FFD packs it into a B_i at a time when all higher-numbered bins are empty, otherwise p is a fallback piece. A bin is a k-bin if it contains exactly k pieces in it.

Lemma 3. Suppose $i \ge 2, x_i$ and x_{i+l} (l > 0) are pieces with shortage, $B = \{(G, x_i), (G, x_j, x_k)\}$ and $B' = \{(G', x_{i+l}), (G', x_p, x_q)\}$, where $x_p + x_q \ge \frac{1}{2}(1-x)$ in Case (c) (the condition is unnecessary, if $i \ge 4$). Then we have $x_j < x_{i+l}$ and $j \ge i+l$, and both x_j and x_k cannot be pieces with shortage, and

$$w(G + x_j + x_k) + (1 - x - w(G + x_i)) = 1 - x + w(x_k) - (w(x_i) - w(x_j)).$$

Proof. By the FFD rule, we must have $G \ge G'$, otherwise $G' + x_i > 1$ and $x_i > x_p + x_q$. This is impossible since $i \ge 2$ (and $x_p + x_q \ge \frac{1}{2}(1-x)$ in Case (c)). Since $G' + x_{i+l} > 1-x$, we have $x_j < x_{i+l}$ and $j \ge i+l$. Notice that the truth of the equality in the Lemma needs no assumption.

If x_i is a piece with shortage, and

$$1-x+w(x_k)-w((x_i)-w(x_j)) \leq \begin{cases} 1-\frac{1}{45}-\frac{11}{9}\Delta & \text{ in Case (b)} \\ 1-\frac{11}{9}\Delta & \text{ in Case (c)} \end{cases}$$

we say that the piece x_i can be balanced by itself. The empty space(s) in the optimal bin(s) where a quantity equal to the shortage of x_i will be put is called the balance of the shortage of x_i .

Case (a). $\frac{1}{4} < x \le \frac{1}{3}, x = \frac{1}{4} + \Delta, 0 < \Delta \le \frac{1}{12}$.

In this case the weighting function is defined as the following table:

line	typical piece	R _i	w(p)	total weight of B
0	G	$\left(\frac{1}{2},1\right]$		
1	x_1	$\left(\frac{1-x}{2},\frac{1}{2}\right]$	$\frac{3}{8}-\frac{\Delta}{2}$	$=\frac{3}{4}-\Delta$
2	· <i>x</i> 2	$\left[x,\frac{1-x}{2}\right]$	$\frac{1}{4} - \frac{\Delta}{3}$	$=\frac{3}{4}-\Delta$

Table 1

Since $G+2x_2 > 1$, we cannot have a G-3-bin. Thus by Lemma 1, for a minimal counterexample, there is no G-bin at all. Evidently, as an optimal bin, there are at most four example, there is no G-bin at all. Evidently, as an optimal bin, there are at most four possibilities: (x_1, x_1) , (x_1, x_2) , (x_1, x_2, x_2) and (x_2, x_2, x_2) . Among them only (x_1, x_2, x_2) needs to be considered. Since $w(x_1 + x_2 + x_2) = \frac{3}{8} - \frac{\Delta}{2} + \frac{1}{2} - \frac{2}{3}\Delta = \frac{7}{8} - \frac{7}{6}\Delta < \frac{11}{9}(\frac{3}{4} - \Delta)$, every optimal bin has a weight $< \frac{11}{9}(\frac{3}{4} - \Delta)$. There may be an FFD bin $B = \{x_1, x_2\}$, which has a weight $\geq \frac{3}{8} - \frac{\Delta}{2} + \frac{1}{4} - \frac{\Delta}{3} = \frac{3}{4} - \Delta - (\frac{1}{8} - \frac{\Delta}{6})$. The last FFD bin has a weight $\frac{1}{4} - \frac{\Delta}{3} = \frac{3}{4} - \Delta - (\frac{1}{2} - \frac{2}{3}\Delta)$. Since $\frac{1}{8} - \frac{\Delta}{6} + \frac{1}{2} - \frac{2}{3}\Delta = \frac{5}{8} - \frac{5}{6}\Delta < \frac{3}{4} - \Delta$, we have (3) with A = 0 and $a = \frac{5}{8} - \frac{5}{6}\Delta$. Case (b). $\frac{1}{5} < x \leq \frac{1}{4}$. Let y be the smallest regular piece in $(\frac{1-x}{3}, \frac{1}{3}]$ if such a piece exists, and $\frac{1}{3}$ otherwise. Define a weighting function by Table 2 below.

$$x = \frac{1}{5} + \Delta, \ 0 < \Delta \le \frac{1}{20}, \ \theta = \frac{5}{4}\Delta, \ \delta = \frac{1}{45} - \frac{\Delta}{36}, \ \theta + \delta = \frac{1}{45} + \frac{11}{9}\Delta$$

line	typical piece	R _i	w(p)	type	total weight of a bin
0	G	$\left(\frac{1}{2}, 1-x\right]$	$G-\delta$		
1	x_1	$\left(\frac{1-x}{2},\frac{1}{2}\right]$	$\frac{2}{5}-\frac{\Delta}{2}$	(<i>r</i> , <i>r</i>)	$=\frac{4}{5}-\Delta$
2	<i>x</i> ₂	$\left(\frac{1-y}{2},\frac{1-x}{2}\right]$	$\frac{1-y}{2}-\frac{5}{12}\Delta$	$(r,r,f), f \in I$	$> \frac{4}{5} - \Delta$
3	<i>x</i> 3	$\left(\frac{1}{3},\frac{1-y}{2}\right]$	$\frac{13}{45}-\frac{13}{36}\Delta$	(r, r, f)	$> \frac{4}{5} - \Delta$
4	<i>x</i> 4	$\left(\frac{1-x}{3},\frac{1}{3}\right]$	$\frac{4}{15} - \frac{\Delta}{3}$	(r, r, r)	$=\frac{4}{5}-\Delta$
5	x_5	$\left[x,\frac{1-x}{3}\right]$	$\frac{1}{5} - \frac{\Delta}{4}$	(r,r,r,r)	$=\frac{4}{5}-\Delta$

Table 2

Table 3

							Τs	Σs
T4	II.	x_4	x4	x_4	x_4	x_5		
			<u> </u>		T .	7.	x_5	x_5
x 3	I4	<i>x</i> 3	24	23	14	12	X.	x_5
x_1	\boldsymbol{x}_1	x_2	x_2	x_3	x_4	x_2		
		L					1 IA	1 24

It is a simple calculation to verify that only x_3, x_4 and x_5 can be pieces with shortage. If both x'_4 and x'_5 are pieces with shortage, then the bin B containing x'_4 must be one of the forms $B' = \{(G, x'_4), (G, x_5, x_5)\}$. For, suppose $B = \{(G, x'_4), (G, x_4, x_5)\}$ and suppose $B' = \{(G', x'_5), (G', x_5, x_5)\}$ be the bin into which x'_5 falls. By the FFD rule, we have $B' = \{(G', x_5), (G, x_5, x_5)\}$ be the bin into which x_5 tails. By the FFD rule, we have $G \ge G'$. But then B' cannot be a G-23-bin. Since $w(G + x_5 + x_5) + (1 - x - w(G + x'_4)) = 1 - \theta - (\frac{1}{15} - \frac{\Delta}{12}) < 1 - \theta - \delta$, the bin $B - P^*$ has enough space for holding the shortage of x_4 . Thus in the optimal bins (x_5, x_5, x_4, x_4) and (x_5, x_5, x_5, x_4) , we consider x_4 or x_5 only, not both. Since $G + 2x_4 > \frac{1}{2} + \frac{2}{3}(1 - x) \ge 1$, the possible G-3-bins can only be $(G, x_2, x_5), (G, x_3, x_5), (G, x_4, x_5)$ and (G, x_5, x_5) . Since $G + x_2 + x_5$ and $G + x_3 + x_5$ have sizes > 1, (G, x_4, x_5) and (G, x_5, x_5) are the only possibilities. Thus we have

Lemma 4. If bin B - P of $B = \{(G, x_i), (G, x', x'')\}$ is a bin with shortage, then x' must be an x_4 or an x_5 and x'' be an x_5 and

$$w(G + x' + x'') + 1 - x - w(G + x_i) = 1 - \theta - (w(x_i) - w(x')).$$

Corollary.

- (i) $w(G + x_4 + x^{''}) + (1 x w(G + x_3)) = 1 \theta \delta$. (ii) $w(G + x_4 + x^{''}) + (1 x w(G + x_4)) = 1 \theta \delta + \delta$. (iii) $w(G + x_5 + x^{''}) + (1 x w(G + x_5)) = 1 \theta \delta + \delta$.

If an x_i (i = 4, 5) is a piece with shortage, since $2x > \frac{1}{2}(1-x)$, by Lemma 2, this piece falls either into a bin of form $B = \{(G, x_1), (G, x_i, x_5)\}$ or into a non-G-bin. In the former case, since $w(G + x_1) \ge \frac{1}{2} - \delta + \frac{2}{5} - \frac{\Delta}{2} = \frac{4}{5} - \Delta + \frac{1}{10} - \delta + \frac{\Delta}{2} > \frac{4}{5} - \Delta + 2\delta$, we subtract 2δ from w(L) to keep the weight of $B - P \ge \frac{4}{5} - \Delta$ and reduce the weight of $B - P^*$ to a quantity $\le 1 - \theta - \delta - 2\delta$. Since $w(G) = G - \delta$ and every optimal G-bin must contain an x_5 , every optimal G-bin has a weight $\leq 1 - \delta - \theta$.

Now we are going to consider the non-G-bin.

$$w(x_1 + x_2 + x_5) = \frac{2}{5} - \frac{\Delta}{2} + \frac{1 - y}{2} - \frac{5}{12}\Delta + \frac{1}{5} - \frac{\Delta}{4} = \frac{11}{10} - \frac{y}{2} - \frac{7}{6}\Delta$$
$$= 1 - \theta - \delta - \left(\frac{y}{2} - \frac{11}{90} - \frac{\Delta}{18}\right).$$
(1')

Since $x_1 + x_2 + x_5 \le 1$, we have $x_5 \le x + \frac{1}{2}(y - x)$. Let $B = \{(G, x_5), (G, x'_5, x''_5)\}$ be the bin into which x_5 falls. We have $G > 1 - \frac{3x+y}{2}$, since $G + \frac{1}{2}(y + x) \ge G + x_5 > 1 - x$. Since $2x \ge \frac{1}{2}(1 - x) > x_2$, x_2 must fall into a G-bin $B' = \{(G', x_2), (G', \cdot, \cdot)\}$ with $G' \ge G$ by the FFD rule. Thus we have

$$w(G'+x_2) \ge 1-\delta - rac{3x+y}{2} + rac{1-y}{2} - rac{5}{12}\Delta$$

= $rac{6}{5} - y - \delta - rac{23}{12}\Delta = rac{4}{5} - \Delta + \left(rac{2}{5} - y - \delta - rac{11}{12}\Delta
ight).$

Since $\left(\frac{2}{5}-y-\delta-\frac{11}{12}\Delta\right)+\left(\frac{y}{2}-\frac{11}{90}-\frac{\Delta}{18}\right)=\frac{5}{18}-\frac{y}{2}-\frac{39}{36}\Delta-\delta\geq\frac{1}{9}-\frac{35}{36}\Delta-\delta>\delta$, the two bins (G', x_2) and (x_1, x_2, x_5) can provide enough space for the shortage δ of bin (G, x_5) shown in Corollary (iii) of Lemma 4.

$$w(x_1 + x_3 + x_4) = \frac{2}{5} + \frac{5}{9} - \left(\frac{1}{2} + \frac{13}{36} + \frac{1}{3}\right) \Delta = 1 - \theta - \delta - \delta.$$
 (2')

By Corollary (i) of Lemma 4, x_3 can be balanced by itself, and only x_4 is to be considered. From Corollary (ii) above, bins (G, x_4, x'') and (x_1, x_3, x_4) together have enough space for the shortage x_4 .

$$w(x_1 + x_4 + x_4) = \frac{2}{5} - \frac{\Delta}{2} + \frac{8}{15} - \frac{2}{3}\Delta = \frac{14}{15} - \frac{7}{6}\Delta = 1 - \theta - \delta - 2\delta, \qquad (3')$$

$$w(x_4 + x_4 + x_4) = \frac{4}{5} - \Delta = 1 - \theta - \delta - 8\delta, \qquad (4')$$

$$w(x_2 + x_2 + x_5) = 1 - y - \frac{5}{6}\Delta + \frac{1}{5} - \frac{\Delta}{4} \le 1 - \theta - \delta - \delta, \qquad (5')$$

$$w(x_4 + x_4 + x_5 + x_5) = \frac{8}{15} - \frac{2}{3}\Delta + \frac{2}{5} - \frac{\Delta}{2} = 1 - \theta - \delta - 2\delta, \tag{6'}$$

$$w(x_4 + x_5 + x_5 + x_5) = \frac{13}{15} - \frac{13}{12}\Delta = 1 - \theta - \delta - 3\delta.$$
 (7)

Thus we have

Lemma 5. For every bin (G, x_4) (or (G, x_5)) with shortage we can identify a place from an optimal G-bin or/and an optimal non-G-bin which is enough for holding its shortage.

	generic piece	Ri	w(p)	type	total weight
0	G	$\left(\frac{1}{2},1-2x\right]$	$G-\delta$	(r, f)	
1	x_1	$\left(\frac{1-x}{2},\frac{1}{2}\right]$	$\frac{9}{22}-\frac{\Delta}{2}$	(<i>r</i> , <i>r</i>)	$=\frac{9}{11}-\Delta$
2	<i>x</i> ₂	$\left(\frac{1-z}{2},\frac{1-x}{2}\right]$	$\frac{7}{22}-\frac{5}{12}\Delta$	$(r, r, f), f \in I$	$> \frac{9}{11} - \Delta$
3	x_3	$\left(\frac{1}{3},\frac{1-z}{2}\right]$	$\frac{7}{22} - \frac{7}{18}\Delta$	(r, r, f)	$=\frac{9}{11}-\Delta$
4	x_4	$\left(\frac{1-x}{3},\frac{1}{3}\right]$	$\frac{3}{11} - \frac{\Delta}{3}$	(<i>r</i> , <i>r</i> , <i>r</i>)	$=\frac{9}{11}-\Delta$
5	x_5	$\left(\frac{1-z}{3},\frac{1-x}{3}\right]$	$\frac{1}{4}-\frac{11}{36}\Delta$	$(r,r,r,f), f \in I$	$> \frac{9}{11} - \Delta$
6	x_6	$\left(z,\frac{1-z}{3}\right]$	$\frac{9}{44}-\frac{\Delta}{4}$	(r, r, r, r)	$=\frac{9}{11}-\Delta$
7	x_7	[x, z) I	$\frac{2}{11}-\frac{2}{9}\Delta$	(r, r, r, r, r)	$=\frac{10}{11}-\frac{10}{9}\Delta$

Table 4

Let A be the sum of all shortages in the FFD G-bins (Some modifications should be made if there are some pieces with shortage falling into optimal G-bins. In such cases, certain quantity, $\dot{a} \delta$ or $\frac{y}{2} - \frac{11}{90} - \frac{\Delta}{18}$, as the case may be, should be subtracted from w(L) for each such a piece.) Adding A to the total weight w(L) of the given list L, every FFD G-bin has a weight $\geq \frac{4}{5} - \Delta$ and the weight of every OPT bin is still kept within the bound $1 - \theta - \delta = \frac{11}{9}(\frac{4}{5} - \Delta)$. Considering that the last FFD bin has a weight $= \frac{1}{5} - \frac{\Delta}{4} = \frac{4}{5} - \Delta - (\frac{3}{5} - \frac{3}{4}\Delta)$ and that there may be two bins in the FFD packing, namely the bin between regions 1 and 2 and the bin between regions 4 and 5, which may have shortages, the former one (x_1, x_2) has a weight $\frac{2}{5} - \frac{\Delta}{2} + \frac{1-y}{2} - \frac{5}{12}\Delta = \frac{4}{5} - \Delta + \frac{1}{10} - \frac{y}{2} + \frac{\Delta}{12}$, and the latter one $((x_4, x_4, x_5)$ or $(x_4, x_5, x_5))$

has a weight $\geq \frac{10}{15} - \frac{5}{6}\Delta = \frac{4}{5} - \Delta - \frac{2}{15} + \frac{\Delta}{6}$. We have

$$\left(\frac{4}{5}-\Delta\right) \operatorname{FFD}(L) - \frac{3}{5} + \frac{3}{4}\Delta + \frac{1}{10} - \frac{y}{2} + \frac{\Delta}{12} - \frac{2}{15} + \frac{\Delta}{6}$$
$$\leq w(L) + A \leq \frac{11}{9} \left(\frac{4}{5} - \Delta\right) \operatorname{OPT}(L),$$

or

No.4

$$FFD(L) \leq \frac{11}{9}OPT(L) + 1,$$

which contradicts our assumption (2). Thus no counter-example exists. **Case (c).** $\frac{2}{11} < x \le \frac{1}{5}$. Let z be the smallest regular piece in $(\frac{1-x}{4}, \frac{1}{4}]$ if such a piece exists, $\frac{1}{4}$ otherwise. Let $x = \frac{2}{11} + \Delta$, $0 < \Delta \le \frac{1}{55}$, $\delta = \frac{11}{9}\Delta$, $\phi = \frac{1}{44} - \frac{\Delta}{36}$. The weighting function and the possible optimal bins hard to deal with are given below.

#	worst cases of possible	total weight of a bin
	combinations in a bin	$= 1 - \delta - p$ with p
1	$x_1 x_2 x_7$	$> 2\phi + \delta$
2	$x_1x_4x_4$	$= 2\phi$
3	$x_1 x_3 x_5$	$=\phi$
4	$x_2 x_3 x_4$	$= 2\phi$
5	$x_1 x_6 x_7 x_7$	$=\phi$
6	$x_2 x_5 x_7 x_7$	$> 2\phi$
7	$x_2 x_6 x_6 x_7$	$= 3\phi$
8	$x_3 x_4 x_6 x_7$	$=\phi$
9	$x_3 x_6 x_6 x_6$	$= 3\phi$
10	$x_4x_4x_6x_6$	$= 2\phi$
11	$x_4 x_5 x_5 x_7$	$> \phi$
12	$x_4 x_5 x_6 x_6$	$\geq 2\phi$
13	$x_6 x_6 x_6 x_7 x_7$	$=\phi^{*)}$
14	$x_6 x_6 x_7 x_7 x_7$	$=2\phi$

Table 5

*) For this bin we want to show that among the three $x_6's$ there is at most one requiring an empty space. For, as it is easily seen, if an x_6 with shortage falls into a bin $B = \{(G, x_6), (G, x_6', x_7)\}$, this x_6 can be balanced by itself. Thus we consider only those x_6 which fall into a bin of form $B = \{(G, x_6), (G, x_6', x_6')\}$. In this case, $G \le 1-2z$. From $G+x_6 > 1-x$, we have $x_6 > 2z-x$. If there are two such x_6 in $\{x_6, x_6, x_7, x_7\}$, we would have $x_6 + x_6 + x_7 + x_7 \ge 4z - 2x + z + 2x = 5z > 1$.

Lemma 6.

(i) For a given L, if both x_4 and x_6 (or x_7) are pieces with shortage, x_4 can be balanced by itself. The statement is true also for x_5 and x_7 .

(ii) If both x_4 and x_5 are pieces with shortage, then x_4 can be balanced by itself and $x_5 > \frac{1-x}{3} - \delta$.

(iii) If both x_5 and x_6 are pieces with shortage, then x_5 can be balanced by itself and $x_6 > \frac{1-x}{3} - \delta$.

Proof.

(i) Assume that both x_4 and x_6 are pieces with shortage. Let

$$B_1 = \{(G_1, x_4), (G_1, y_1, y_2)\}$$
 and $B_2 = \{(G_2, x_6), (G_2, x', x')\}$

be the G-bins into which x_4 and x_6 fall respectively.

From Lemma 3, y_1 and y_2 must be an x_6 or an $x_7(y_1 \ge y_2)$ and both y_1 and y_2 cannot be pieces with shortage. From $1-x-w(G_1+x_4)+w(G_1+y_1+y_2) \le 1-x+\frac{9}{22}-\frac{\Delta}{2}-\frac{3}{11}+\frac{\Delta}{3}=$ $1-2\phi-\delta$ and $1-x-w(G+x_6)+w(G+2x_6)=1-\delta+\phi$, we see that x_4 and x_6 can be balanced by themselves. Similarly, for x_7 , we have $1-x-w(G_1+x_4)+w(G_1+y_1+y_2)=1-4\phi-\delta$. (ii) Let $B = \{(G, x_4), (G, x_j, x_k)\}$ and $B' = \{(G, x_5), (G, x_p, x_q)\}$ be the bins into which

 x_4 and x_5 fall. From Lemma 3, we have $j \ge 5$ and

$$w(G + x_j + x_k) + (1 - x - w(G + x_4))$$

= 1 - x + w(x_k) - (w(x_4) - w(x_j))
 $\leq 1 - x + w(x_6) - w(x_4) + w(x_5)$
= 1 - x + $\frac{9}{44} - \frac{\Delta}{4} - \left(\frac{3}{11} - \frac{\Delta}{3} - \frac{1}{4} + \frac{11}{36}\Delta\right)$
= 1 - δ .

The inequality $x_5 > \frac{1-x}{3} - \delta$ can be derived directly from $G - \delta + \frac{1-x}{3} < 1 - x$ and $G' + x_5 > 1 - x$.

(iii) The proof is quite the same as (ii).

In the following we will show that all the pieces x_5 with shortage and all the pieces x_7 with shortage can be in aggregation balanced by themselves.

Lemma 6 shows that for the pieces with shortage we can assume that all of them either came from R_4 or from R_5 or from R_6 or from R_7 , but not from any two of them. Our scheme is as follows. We divide all pieces with shortage into groups. For each group we find its total shortage, α say. We add α to w(L) to make every FFD bin in this group have a weight $\frac{9}{11} - \Delta$. From this process, the corresponding OPT bins obtain an amount α . For some group, these OPT bins have not so large a space to hold α that the weight of each bin does not exceed $1 - \delta$. For such a case we find out the quantity of the supernumery, β say. Suppose the group has m bins in total. For each $\frac{\beta}{m}$ we want to identify an optimal bin such that if an x_i with shortage falls into it, it can provide enough space for this x_i and the quantity $\frac{\beta}{m}$. (a) Now assume first that some $x'_4 s$ are pieces with shortage. For an FFD G-23-bin

(a) Now assume first that some x'_4s are pieces with shortage. For an FFD G-23-bin (G, x_4) , its OPT bin can only be one of (G, x_4, x_6) , (G, x_4, x_7) , (G, x_5, x_6) , (G, x_5, x_7) , (G, x_6, x_6) and (G, x_6, x_7) . By Lemma 3 (with k = 7), only bins with no x_7 in it need to be considered. Let

 $A_1 = \{B \in G | B = \{(G, x_4), (G, x'_4, x_6)\}, x_4 \text{ in } (G, x_4) \text{ is a piece with shortage}\}.$

Let $A'_1 = \sum w(G + x_4)$ and $A''_1 = \sum w(G + x'_4 + x_6)$, where the sums are taken over bins in A_1 . Evidently, $A''_1 = A'_1 + (\frac{9}{44} - \frac{\Delta}{4})|A_1|$. Let $A'_1 = (\frac{9}{11} - \Delta)|A_1| - \alpha$. α is the total shortage of set A_1 . (The α will be used later. Needless to say, its value varies with the given set.) Then

$$A_1'' = \left(\frac{9}{11} - \Delta\right) |A_1| - \alpha + \left(\frac{9}{44} - \frac{\Delta}{4}\right) |A_1|$$
$$= (1 - \delta) |A_1| - \alpha + \left(\frac{1}{44} - \frac{\Delta}{36}\right) |A_1|.$$

When we add α to the total weight $w(A_1)$ of all bins in $|A_1|$, we can make the weight of every FFD bin in A_1 up to $\frac{9}{11} - \Delta$. However, from this process, the corresponding OPT

328

bins in A_1 have a total supernumerary $(\frac{1}{44} - \frac{\Delta}{36})|A_1|$. Later we will show that, for each x_4 with shortage, the optimal bin containing it will provide a space $(\frac{1}{44} - \frac{\Delta}{36})$ for it.

Similarly, for the sets $A_2 = \{B \in G | B = \{(G, x_4), (G, x_5, x_6)\}\}$ and $A_3 = \{B \in G | B = \{(G, x_4), (G, x_6, x_6)\}\}$, where the x_4 in bin (G, x_4) is a piece with shortage, we have

$$A_{2}^{''} = (1 - \delta)|A_{2}| - \alpha - \frac{\Delta}{36}|A_{2}|,$$

$$A_{3}^{''} = (1 - \delta)|A_{3}| - \alpha - \left(\frac{1}{22} - \frac{1}{18}\Delta\right)|A_{3}|.$$

In these cases, bins in each set can be, in aggregation, balanced by themselves.

(b) Assume that some of the x_5 's are pieces with shortage. From $G + x_5 > 1 - x$, we have $G > \frac{2}{3}(1-x)$ and $G + \frac{1-z}{3} + z \ge 1 + \frac{2}{3}(z-x) > 1$. Therefore, no combination (G, x_5, x_6) is possible. Only bins of form $\{(G, x_5), (G, x_6, x_6)\}$ need to be considered. As before, let

 $A_4 = \{B \in G | B = \{(G, x_5), (G, x_6, x_6)\}, x_5 \text{ is a piece with shortage}\},\$

we have

$$A_4^{''} = (1 - \delta)|A_4| - \alpha - \left(\frac{1}{44} - \frac{11}{18}\Delta\right)|A_4|.$$

(c) Assume that some of the x_6 's are pieces with shortage. Let

 $A_5 = \{B \in G | B = \{(G, x_6), (G, y, y')\}, \text{ where the } x_6's \text{ are pieces with shortage } \}.$

Since $G + x_6 > 1 - x$, y and y' can be x_6 or x_7 only. By Lemma 3, we only consider $B = \{(G, x_6), (G, x_6, x_6)\}$. For this case, we have directly

$$A_5^{''} = (1 - \delta)|A_5| - lpha + \left(rac{1}{44} - rac{\Delta}{36}
ight)|A_5|.$$

(d) Assume that some of the x'_7 s are pieces with shortage. Let

$$A_6 = \{B \in G | B = \{(G, x_7), (G, x_7, x_7)\}, \text{ the } x_7 \text{ in}(G, x_7) \text{ is a piece with shortage}\}$$

By a simple calculation, we have

$$A_6'' = (1-\delta)|A_6| - \alpha$$

From what we proved above what we want to do is to provide every x_4 (or x_6) with shortage with a space of size $\geq \frac{1}{44} - \frac{\Delta}{36}$.

(e) From Lemma 2, if a piece x_i with shortage does not fall into a non-G-bin, it must fall into (i) a bin of form $B = \{(G, x_1), (G, \cdot, \cdot)\}$ or (ii) a G-33-bin, or (iii) a bin $B = \{(G, x_j), (G, x_i, \cdot)\}$ with $j \ge 2$ and $y + y' < \frac{1}{2}(1-x)$, where $B' = \{(G', x_i), (G', y, y')\}$ is the bin from which x_i comes.

(i,a) Assume that x_4 falls into a bin $B = \{(G, x_1), (G, x_4, y)\}$. From Lemma 6, we need not consider whether y is a piece with shortage or not. Since $x_4 + x_5 > \frac{1}{2}$, we consider the case $y = x_6$ only. In this case, the total weight of bins (G, x_1) and (G', x_4) is

$$\geq w \left(G + \frac{9}{22} - \frac{\Delta}{2} + G' + \frac{1-x}{3} \right) > 1 - 2\delta + \frac{15}{22} - \frac{5}{6}\Delta > 2 \left(\frac{9}{11} - \Delta \right).$$

(i,b) Assume that x_6 falls into a bin $B = \{(G, x_1), (G, x_6, y)\}$. Since $w(G + x_1) > \frac{1}{2} - \delta + \frac{9}{22} - \frac{\Delta}{2} = \frac{9}{11} - \Delta + \frac{1}{11} - \delta + \frac{\Delta}{2} > \frac{9}{11} - \Delta + 3(\frac{1}{44} - \frac{\Delta}{36})$, the shortage of x_6 and the shortage of y, if y is a piece with shortage, can be balanced by B.

(ii,a) Assume that x_4 falls into a G-33-bin $B = \{(G, x', x''), (G, x_4, y)\}$. Since $w(G + 2x_7) > \frac{1}{2} - \delta + \frac{4}{11} - \frac{4}{9}\Delta = \frac{9}{11} - \Delta + \frac{1}{22} - \delta + \frac{5}{9}\Delta > \frac{9}{11} - \Delta + (\frac{1}{44} - \frac{\Delta}{36})$, the shortage of x_4 can be balanced by B - P.

(ii,b) Assume that x_6 falls into a G-33-bin $B = \{(G, x', x''), (G, x_6, y)\}$. In this case, y may be a piece x_6 with shortage. Since

$$w(G+2x_7) = G-\delta + \frac{4}{11} - \frac{4}{9}\Delta = \frac{9}{11} - \Delta + \left(G - \frac{5}{11} - \delta + \frac{5}{9}\Delta\right)$$

and

$$w(G+2x_6) = G-\delta + \frac{9}{22} - \frac{\Delta}{2} = 1-\delta - \left(\frac{13}{22} - G + \frac{\Delta}{2}\right)$$

we have, if $G < \frac{13}{22} + \frac{\Delta}{2}$, the sum of the superfluity of B - P and the empty space of $B - P^*$

$$\geq \left(G - \frac{5}{11} - \delta + \frac{5}{9}\Delta\right) + \left(\frac{13}{22} - G + \frac{\Delta}{2}\right) = \frac{3}{22} - \delta + \frac{19}{18}\Delta > 2\left(\frac{1}{44} - \frac{\Delta}{36}\right);$$

If $G \ge \frac{13}{22} + \frac{\Delta}{2}$, the superfluity of B - P

$$\geq \left(G-\frac{5}{11}-\delta+\frac{5}{9}\Delta\right)>2\left(\frac{1}{44}-\frac{\Delta}{36}\right).$$

In either case the shortages of x_6 and y can be balaned by B.

(iii) Assume x_i (i = 4 or 6) falls into a *G*-bin $B = \{(G, x_j), (G, x_i, \cdot)\}$ with $j \ge 2$, and $B' = \{(G, x_i), (G, x', x'')\}$ is the bin from which x_i comes. By Lemma 2, we have $x' + x'' \le \frac{1}{2}(1-x)$. Thus we have $x'' = x_7$ and $x' = x_6$ or x_7 . By Lemma 3 (with k = 7), x_i can be balanced by themselves.

(f) Now we consider x_3 . By the definition of the weighting function, it may happen that $w(G + x_3) < 1 - x$. This happens only when $G < \frac{1}{2} + \delta - \frac{11}{18}\Delta$. In such a case, the maximal shortage is $\delta - \frac{11}{18}\Delta$. It is easy to check that for the optimal bin of such a G, the only possible combinations are (G, x_5, x_6) , (G, x_6, x_6) and (G, x_6, x_7) . In either case, its weight is $\leq 1 - \delta - 2\delta$.

Now we want to consider those pieces with shortage which fall into some non-G-bins. The possible worst combinations for an optimal non-G-bin and the corresponding total weights are listed in Table 5. From Cases (a)-(d) considered above and Lemma 6, we consider x_6 's and x_4 's only. Notice that, for a given list L, among x_4 and x_6 only one type can be pieces with shortage. From Table 5, we see that all optimal non-G-bins can provide enough room for the pieces with shortage which fall into it.

Let A be the sum of all shortages. (Modifications should be made for the special cases mentioned above. E.g., in Case (ii,b), what we add to A is not the shortage of x_6 , but this shortage minus the superfluity of B - P). In the definition of the weighting function, there may be three bins: the bin B_1 between R_1 and R_2 , B_2 between R_4 and R_5 , and B_3 between R_6 and R_7 , in which pieces come from different regions. E.g., B_1 may contain an x_1 and an x_2 , etc. For B_1, B_2 and B_3 , we define the weight of each piece in them equal to its size and call them irrgular pieces. If B_i has i + 1 pieces in it, we define the weight of each piece as those given in Table 4. There are at most 9 irregular pieces in total. When an irregular piece falls into an optimal bin, this bin may have a weight $1 = 1 - \delta + \delta$. Noticing that the last FFD-bin contains a piece, x, only, its weight $= \frac{2}{11} - \frac{2}{9}\Delta = \frac{9}{11} - \Delta - \frac{7}{11} + \frac{7}{9}\Delta$. There may be a bin B_0 between R_3 and R_4 , $B_0 = \{x_3, x_4, x_i\}$, $i \in \{4, 5, 6\}$, which may have a weight $\frac{9}{11} - \Delta - \phi$, if i = 6. For B_0 , if $x_3 + x_4 \ge 1 - x - z + 3\delta$, we define the weight of each piece in B_0 as its size. If $x_3 + x_4 < 1 - x - z + 3\delta$, we have $x_3 + x_4 \le \frac{2}{3}$, so that *i* can be 4 or 5. If no x_4 or x_5 exists, there is no B_2 . We define the weight of each item in $B_0 = \{x_3, x_4, x_6\}$ as those given in Table 4, so that $w(x_3 + x_4 + x_6) = \frac{9}{11} - \Delta - \phi$. Thus we have

$$\left(\frac{9}{11} - \Delta\right) \operatorname{FFD}(L) - \frac{7}{11} + \frac{7}{9}\Delta$$

$$\leq w(L) + A \leq (1 - \delta) \operatorname{OPT}(L) + 6\delta + \begin{cases} 3\delta, & \text{if } B_2 \text{ exists }, \\ \phi, & \text{otherwise }. \end{cases}$$
(4)

If B_2 does not exist, (4) becomes

$$\left(\frac{9}{11}-\Delta\right)$$
 FFD $(L) \leq (1-\delta)$ OPT $(L) + 6\delta + \phi + \frac{7}{11} - \frac{7}{9}\Delta.$

It is easy to verify that $6\delta + \phi + \frac{7}{11} - \frac{7}{9}\Delta \leq \frac{9}{11} - \Delta$. Thus we have (1). Now we assume B_2 , and therefore x_4 exists.

In the following we want to show that, if B_1 exists (otherwise we can omit 2δ from the righthand side of (4)), either we have a surplus δ on the lefthand side of (4), or we can omit a δ from the righthand side of (4). If $B_1 = \{x_1, x_2\}$, it means x_2 exists. From Table 5, we see that all optimal bins containing an x_2 has a room $\geq \delta$. So we can take one δ from the 9δ and put it into the optimal bin containing x_2 , and then the righthand side of (4) becomes $(1 - \delta)OPT(L) + 8\delta$. Let $B_1 = \{x_1, x_3\}$ or $\{x_1, x_4, \cdot\}$. For this x_1 , we assume that the bin (x_1, x_4, x_4) is a possible combination in the OPT packing, otherwise every optimal bin containing x_1 , has a room $\geq \delta$. Thus we have $x_1 \leq 1 - \frac{2}{3}(1 - x) = \frac{5}{11} + \frac{2}{3}\Delta$. When it is the turn of x_1 to be processed in the FFD packing, there are two possibilities: (i) no G left, i.e. all FFD G-bins are of form (G, x'_1) which has a weight $> \frac{9}{11} - \Delta + \delta$, or (ii) all pieces G left are too large so that $G + x_1 > 1$, and therefore $G \geq \frac{6}{11} - \frac{2}{3}\Delta$. Thus we have $w(G + x_3) \geq \frac{9}{11} - \Delta + \delta$, $\forall x_3$. If no x_3 exists, we have $B_1 = \{x_1, x'_4, x_i\}$, $i \in \{4, 5, 6, 7\}$, since $x'_4 + x \leq \frac{2}{3}(1 - x) \leq x_4 + x_4$. In this case we define the weight of each piece in B_1 as those given in Table 4, It makes B_1 have a total weight $> \frac{9}{11} - \Delta + \delta$. Thus our assertion has been proved. And therefore (4) becomes

$$\left(\frac{9}{11}-\Delta\right)$$
 FFD $(L)-\frac{7}{11}+\frac{7}{9}\Delta \leq (1-\delta)$ OPT $(L)+8\delta$

From this (1) follows immediately since $\frac{7}{11} - \frac{7}{9}\Delta + 8\delta \leq \frac{9}{11} - \Delta$. Thus no counter-example to (1) exists.

References

- D.S. Johnson: Near-Optimal Bin-Packing Algorithms. Doctoral thesis, M.I.T., Cambridge, Mass., 1973.
- [2] B.S. Baker: A New Proof for the First-Fit Decreasing Bin-Packing Algorithm, J. Algorithms, 6 (1985), 49-70.
- [3] E.G. Coffman Jr., M.R. Garey and D.S. Johnson: An Application of Bin-Packing to Multiprocessor Scheduling, SIAM J. Comput. 7 (1987), 1-17.
- [4] Minyi Yue: On the Exact Upper Bound for the Multifit Processor Scheduling Algorithm, Operations Research in China (ed. Minyi Yue), 233-260, Ann. Oper. Res., 24 (1990).