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A SIMPLE PROOF OF THE INEQUALITY 

FFD ( L ) < 9  OPT (L)+ 1 VL 

FOR THE FFD BIN-PACKING ALGORITHM** 

YUE MINYI$ ( ~ ~ )  

(Institute of Applied Mathematics, Academia Sinica, Beifi'ng) 

(Forschtmqsinstitut far Diskrete Mathernatil~ Bonn ) 

A b s t r a c t  

The first fit decreasing (FFD) heuristic algorithm is one of the most famous and most 

studied methods for an approximative solution of the bin-packing problem. For a list L, let 

O P T ( L )  denote the minimal number of bins into which L can be packed, and let FFD(L)  

denote the number of bins used by FFD. Johnson Ill showed that for every list L, F F D ( L )  _~ 

l l / 9 O P T ( L )  -F 4. His proof required more than 100 pages. Later, Baker [2] gave a much shorter 

and simpler proof for FFD(L)  < l l / 9 O P T ( L ) + 3 .  His proof required 22 pages. In this paper, 

we give a proof for FFD(L)  _~ l l / 9 O P T ( L ) + I .  The proof is much simpler than the previous 

ones. 

In bin-packing, a list L of pieces, i.e. numbers in the range (0, 1], are to be packed 
into bins, each of which has a capacity 1, and the goal is to minimize the number of bins 
used. The minimal number of bins into which L can be packed is denoted by OPT(L) for 
the list L. The first-fit-decreasing (FFD) algorithm first sorts the list into a non-increasing 
order and then processes the pieces in that order by placing each piece into the first bin 
into which it fits. More precisely, suppose the sorted pieces are Pl > P2 > "'" > P,,, where 
pi denotes the piece and its size as well, and that the bins are indexed as B1, B2 , ' - - ,  FFD 
processes the pieces in the order pl, p 2 , " " ,  p,~. For 1 < i < n, if 3" is the least k such that 
Bk holds a total of amount < 1 -  p~ when pi is to be packed, then FFD places pi in By. 
For a list L, let FFD(L) denote the number of bins used by FFD. Johnson 111 showed that 
for every list L, FFD(L)< !0!OPT(L)+4. Unfortunately, his proof required more than 100 

pages. Later, Baker[ 21 gave a much shorter and simpler proof for FFD(L)_< ~-OPT(L)+3.  
However, Baker's proof required still 22 pages and is rather complicated. In this paper, we 
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give a proof for 

FFD(L)_ 9OPT(L) + 1. (1} 

11OPT(L)+5  Since it is easy to show that there exist examples (L) for which FFD(L)_> -6" 9'  

our result seems to arrive at the final stage. 
For a given list L, let P and P* denote the FFD packing and an optimal packing of L 

respectively. Let G be the set of pieces in L with sise > ~. A piece in G is denoted also by 
G. A bin containing a G is called a G-bin. For a bin B = {(G,-, .  ), (G, ,, ,)}, where (G, . , .  ) 
and {G, ,, ,) are bins containing G in the FFD packing and OPT packing respectively, we 
denote (G,., .) by B-P and (G, ,, ,) by B-P'. Sometimes we use PCB, i,P) and p(B,i,P*) 
for the ith piece in B- P and B- P* respectively. Let x be the least piece of L. The size 
of a piece z~ is also denoted by z~ if no confusion can be made. A G-bin is called a G-i]-bin 
if B- P contains i pieces and B- P* contains ] pieces in total. Our proof is based on a 
combination of the weighting function method and the minimal counter-example method. 
Such a combination has been used by many authors such as Coffman et al[a] and Yue[4]. For 
a piece p we give it a ~weight ~ w(p) _< p. w(p) is'caUed a we{ghting function. With a given 
to, we divide all the pieces of L into classes. Denote R~ = (ylw(y) = wi}, which is called a 
region of w, or simply region i. Pieces belonging to R~ are denoted by z~, if no confusion 
arises. E.g., we use {G, za,za} for a bin with its 2nd and 3rd pieces belonging to R3, though 
the~  two pieces may have different sizes. Generally, z~ > zj if i < ]. We write w(z~ + zi) 
for w(=,} + to(x~-) for simplicity. 

In the following we assume that L is a minimal counter-example to (1), i.e., for this L, 

FFD(L) > ~-~IoPT(L) + 1. (2) 

holds, and that any list L' satisfying (2) must have IL'[ > ILl. By definition, we can assume 
that the last FFD bin of L consists of the piece z only. 

L e m m a  1. Every optimal bin contains at least 3 pieces. 
Proof. Let (y, y') be an optimal bin with y >_ y'. Let B = (y, y 0 .  } be the FFD-bin, 

into which y fans. If yO _> y,, we delete all pieces in B from the list L. Let L' = L\B.  
Evidently, the FFD packing for U is identical to those for L except that the bin B will 
be missing. So we have FFDCU)=FFD(L)-I .  As for OPT(L}, we put y' in the place 
occupied originally by yO after the deletion of B. We have OPT(L I) _< OPT(L)-1. Thus we 
have FFD(L')=FFD(L)-I > ~(OPT(L)-I)+I > ~ OPT(L')+I. L cannot be a minimal 
counter-example to (1). If y0 < y,, by the FFD rule, y' must have been put into an FFD-bin 
B' = (z, y',. ) with z >_ y before yO was put into B. Deleting all the pieces in B' from L 
and applying the same argument as above, we have the same conclusion. 

Lemma 2. Let B' be a G-23-bin such that the sum of the two least pieces in B' - P* 
has a size >_ ½(I- z). Then for any G-23-bin B with p(B, 2, P) < ½(1 - x), we have 
p(B',2, P) > p(B, 2, P*). 

It X o #  J Sl ~ ~ n# • • Proof. Let B = {(G0,~),CGo z', )} {(G, zo),CG, z' o z0) } Suppose Zo < z' 
Then we have ~ > z0 and Go < G, otherwise B' cannot be a G-23-bin. By the FFD rule, 

#i 
we have ~ + G > 1. Thus we have ½(1 - z) >_ • > z~ + z o . This is impossible. 

As we said above, L is a minimal counter-example to (1). Our aim is to prove that this 
statement cannot be true and therefore no counter-example exists. Our proof is divided into 
3 cases according to whether 

1 
Ca) ¼ <x<_  
(b) < • < " 

1 (c) < _< 
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i the truth of (1) follows from Lemma 1 and simple calculations. W h e n x <  i ~ ° r x >  ~, 
For a given L, let w(L) be the total weight of L. Our aim is to establish the inequalities 

II 
(1 - z)FFD(L)  _<_ w(L) + A <_ v(l- z ) O P T ( L ) +  a, (3) 

where A and a are two constants, a _ 1 -  z. If every FFD bin has a weight > 1 - z  and every 
O P T  bin has a weight < ~ ( 1 -  z), we set A = a = 0 and achieve our goal. Unfortunately, 

there is an FED G-23-bin whose weight may be < 1 -  z. Let B = {(G, y), (G, y~, y")} be a 
G-23-bin. If G + y  > 1 - x  and w(G+y)  < l - x ,  we call d = 1 - x - w ( G + y )  the shortage of 
the FFD G-bin B, or simply, the shortage of y, and y is called a piece with shortage. Notice 
that  such a y arises only in G-23-bins. A piece p is called a regular piece if FFD packs it 
into a Bi at a time when all higher-numbered bins are empty, otherwise p is a fullback piece. 
A bin is a k-bin if it contains exactly k pieces in it. 

L e m m a  8. Suppose i _> 2, xi and z,+t (l > 0) are pieces with shortage, B = 
i z) ill Case {(C,x,},(G, zy, xk)} and B'= {(C',z,+,),(C',zp, Zq)}, where xp + zq _> ~{i- 

(c) {the condition is unnecessary, if i > 4}. Then w~ have z~. < z,+, ana y _> i + t, ana both 
x i and xk cannot be pieces with shortage, and 

w(G + zy + xk) + (1 - z -  w(G + xi)) = 1 - z +  w(zk) - (w(zi) - w(zy)). 

Proof. By the FFD rule, we must have G _> G', otherwise G' + x~ > I and xi > xp + zq. 
I This is impossible since i _>_ 2 {and zp + Zq >__ ~(1 - z) in Case (c)). Since G' + z~+t > 1 - z, 

we have xy < zi+t and 3" _ i + I. Notice that the truth of the equality in the Lemma needs 
no assumption. 

If xi is a piece with shortage, and 

I 1 11 
1 A in Case (b) 

i - = + ,,,(=,~) - ,~((=,) - ,,,(~i)) < 4 5  9 

- 11 
I -  --~-A in Case (c) 

we say that  the piece xi can be balanced by itself. The empty space(s) in the optimal bin(s) 
where a quanti ty equal to the shortage of xi will be put is called the balance of the shortage 
of zi. 
Case(a) ¼<z<½ z=¼+n,o<n< I -  

" - -  ) - -  1 2 "  

In this case the Weighting function is defined as the following table: 

Table 1 

line typical piece 

0 G 

1 xi 

2 'X 2 

P~ w(p) total weight d B 

Ii] 

2 ' 8 2 4 

[ l-x] 1 A 3 A 
x ' '  2 ....... 4 3 = 4  
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Since G+ 2z2 ~, I, we cannot have a G-3-bin. Thus by Lemma I, for a minimal counter- 
example, there is no G-bin at all. Evidently, as an optimal bin, there axe at most four 
possibilities: (z1,zl), (z1,z2), (zl, z2, z2)and (z2, z2, z2). Among them only (z~,z2, z2) 

_~) need~ to b~ considered. Sm¢~ ~(~ + ~ + ~) = i - ~ + ½ - ~a = ~ - ~a < ~(~ , 
every optimal bin has a weight < _~(3_ A). There may be an FFD bin B = {z1,z2), 

3_ _ ~ +I a _ A -(~ - ~). The last FFD bin has a weight which has a weight _> s ~" ~-~= 

4 3 "--~ ~ 1 ~"  A - -  0 and  a 
Case (b). ~ < z <: ; .  Let y be the smallest regular piece in (~-~, ~]if" such a piece exists, 

x otherwise. Define a weighting function by Table 2 below. and 

1 1 5 1 A 1 11 
z = - + A ,  0 < A < - -  0 = - A ,  6 =  0 + 6 = - - + - - A .  

5 - 20'  4 45 36 '  45 9 

line typical 
piece 

0 G 

1 z l  

2 x2 

3 z3 

4 z4 

5 z s  

T a b l e  2 

e~ 

' x] (~,I- 

l_x] 
2 ' 2 

1 l-y] 

3' 2 

I 
. . . . . . . . . . . . .  

w(p) 

G - 5  

2 A 

5 2 

1 - y  5 

2 12 

13 13 

A 

45 36 

4 A 

15 3 

1 A 

5 4 

type 

r ,  r )  

(r , ,- ,/),  f ~ x 

(r,r,f) 

(r~ r, r) 

rj r, r, r) 

total weight 
of a bin 

4 
----  m m A 

5 

4 
> - - - A  

5 

4 
> A 

5 

4 
= A 

5 

4 = 
5 

,,x4 ..... 

T a b l e  3 

X4 X4 X4 Z4 X4 

Z4 Z3 Z4 Z3 X4 

X 1 X2 X2 X3 Z4 . . . . .  

Z5 = X5 2:5 

x2 k i J 
X4 X5 

2;2 ' .,r., ,r. 
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It is a simple calculation to verify that  only z3, z4 and xs can be pieces with shortage. 
If both z~ and x~ are pieces with shortage, then the bin B containing x~ must be one of 
th~ forms B ' =  {(V, ,~) ,  (V , ,~ , ,~} } .  For, ,uppo,~ B = {(a, .~),  ( a , . , , . ~ ) }  ~.d suppose 
B'  = {(G' ,x~),  (G',xs,  zs)} be the bin into which z~ falls. By the FFD rule, we have 
G >_ G'. But  then S '  cannot be a G-23-bin. Since w(G + xs + :r.s) + (1 - z - w(G.÷ x~)) = 

- ~ -  { ~ -  ~ )  < 1 -  ~ - ~ ,  ~ ,  ~in S -  P" ~ ,noug~ , p ~  for ~ o ~ m ,  ~ ,  ,~or~ge  
of , , .  T~us m ~ ,  o p ~ l  bin, ( . ~ , . ~ , . , , . , )  and ( .~ , .~ , .~ , . , ) ,  ~ ¢on~id~r .~ or .~ 
only, no~ S o ~ .  Sin¢~ a + 2 , ,  > ½ + ] ( 1 -  ,}  > 1, ~ po,~iSl~ V-3-bm, ¢~n only Se 
(a , -~,-~) ,  (a , -~ , .~) ,  ( a , . , , . ~ )  ~n~ (~, .~,.~). Sin¢~ a + , ~  + ,~ ~n~ a + ,3 + -~ ~ . ~  
sizes > 1, (G, x4, xs) and (G, xs, xs) are the only possibilities. Thus we have 

L e m m a  4. If bin B - P of B = {(G, x,), (G, x', z")} is a bin with shortage, then z' 
must  be an z4 or ah xs and z" be an zs and 

w(G W x' ÷ x") ÷ 1 -  x -  w(G + xi) = 1 - 8 - Cw(x,) - w(x')). 

Corollary. 

(i) w(G + x4 + x") + (I - z - w(G + z3)) = 1 - 0 - 6 

(ii) w ( a + x 4 + x " ) + ( 1 - x - w ( a + x 4 ) ) - -  1 - 0 - 5 + 6 .  
(iii) w(G + xs + z") + ( 1 -  x -  w(G + zs)) = l - O - 6 + 6. 
If an z~(i = 4, 5) is a piece with shortage, since 2x > ½ ( 1 -  x), by Lemma 2, this piece 

falls either into a bin of form S = {(G, z , ) ,  (G , z , , x s ) }  or into a non-G-bin. In the former 
1 2 4__ A 4 case. ~i.¢e ~(V + ,,) >_ ~ - 6 + ~ - ~ = ~ ,', + ~ - 6 + ~- > ~ - a + 26. ,,,~ ..birder 

4 _ A and reduce the weight of B -  P* to a 25 from w(L) to keep the weight of B -  P >_ g 
quanti ty ~ 1 - 0 - 6 - 26. Since w(G) = G -  6 and every optimal G-bin must contain an 
xs, every opt imal  G-bin has a weight < 1 - 6 - 8. 

Now we are going to consider the non-G-bin. 

w ( x 1 + x 2 + z s ) =  2 A 1 - y  5 A +  1 
~ - ~ +  2 - I-~ 5 

= 1 -  ° - 6 - ( y2 9oI ~ lsA ) " 

= 11 y 7 A 
4 10 2 6 

(1') 

le 
Since xl + x2 + x5 _< 1, we have zs _< x + ½ ( y -  x). Let B = {(G, zs),  (G,x's, zs)  } be 

1 x ) > G  > l - x .  the bin into which xs falls. We have G > 1 -  3z+y since G + 5(Y + + xs 
Since 2z >_ ~(1 - z) > z2, x2 must fall into a G-bin B'  = { (G', x2), (G ' , . ,  • )} with G' _> G 
by the FFD rule. Thus we have 

3x + l - y  5 w(G'+x2) > I-6 y ~ A 
- 2 2 12 

6 4 (2 - 2 3 A =  A +  - y - g -  . 
- ~ - y - 5 -  1"-2 5 -  5 12 ] 

2 I I  I I  A 5 35  Since ( g -  y - 6 -  2 9o Is 18 2 _ 6 -  ~-~A- 6 > 6, the two bins r ~ )  + (~ ) = - -  ~ -  ~ a - 6  > ' 

(V', z2) and (xl ,  x2, xs) can provide enough space for the shortage 5 of bin (G, zs) shown 
in Corollary (iii) of Lemma 4. 

= 1 - e - 6 - 6 .  (2') 

By Corollary (i) of Lemma 4, x3 can be balanced by itself, and only x4 is to be considered. 
From Corollary (ii) above, bins (V, z4 ) and (x, x3 x4) together have enough space for 
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t he  s h o r t a g e  z4. 

w(zz -I- z4 -I- z4) = 5"2 _ "2"A + ~'8 _ 3"2 A = I"514 _ 6"7 A = 1 - 0 -- 6 -- 26, (3') 

4 
W(Z4 + Z4 + Z4) = ~ - A = 1 -  0 -  6- 85, (4') 

5 1 A < 1 - 0 - 6 - 6 ,  (5') + + = 1 - y -  + - ¥ _ 

8 2 2 A 
to(z4 + =:4 + zs -t- z5) = 1-5 - ~ A  + ~ - ~- ---- 1 - 0 - 5 - 25, (6') 

13 13 
to(=:, + zs + zs + zs) = 1-5 - 1-2 A = 1 - 0 - 6 - 36. (7') 

Thus we have  

Lemma 5. For every bin (G, z4) (or (G, zs)) with shortage we can identify a place 
from an optimal G-bin or/and an optimal non-G-bin which is enough for holding its shortage. 

T a b l e  4 

generic piece 

0 G 

1 Z 1 

2 z2 

3 Z3 

4 z4 

5 zs  

6 x6 

7 z7 

(:L-= 1] 
2 ' 2  

( 1 - z  l - z ]  

2 ' 2 

G - 5  

9 A 

22 2 

7 5 A 
22 12 

1 l--z] 

3' 2 

3 ' 

3 ' 3 

z, 1 -  z 

[Z~ Z) 

I 

7 7 A  
22 is 

3 A 

11 3 

1 11 

4 36 

9 A 

44 4 

2 2 

11 9 

type 

(,,f) 

(r~ r) 

( r , r , f ) , f  E I 

f )  

9 

11 

9 > 
11 

9 

11 

(r~ rj r) 

{r,r,r, f ) ,  f E f 

(rj r~ r~ r) 

rj r~ rj r~ r) 

total weight 

A 

A 

A 

9 

11 

9 
>---A 

11 

9 
= A 

11 

10 10 
11 9 

Let A be the sum of all shortages in the FFD G-bins {Some modifications should be 
made if there are some pieces with shortage falling into optimal G-bins. In such cases, certain 

R 11 A quantity, ~ 6 or 2 9o Is, as the case may be, should be subtrad:ted from to{L} for each such 
a piece.} Adding A to the totM weight to(L} of the given list L, every FFD G-bin has a weight 
> ~-A and the weight of every OPT bin is still kept within the bound 1-0-6 -- ~(~- A). 

A 3 Considering that the last FFD bin has a weight - ~ - ~- -- ~ - A- (K - ~ A) and that there 
may be two bins in the FFD packing, namely the bin between regions 1 and 2 and the bin 
between regions 4 and 5, which may have shortages, the former one (z1,z2) has a weight 
2 A 1-u x _ ~  = 4 1 ~+ A 
s 2 + 2 - E - A + i-5 -- 2 i"~, and  the  l a t t e r  one  ((z4, z4, zs)  or  (z4, z5, zs) )  
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10 ,S 

o r  

4 ) 3 3 A 1 
- i x  F F D ( L ) - ~ + 4  -t 1 0  

1 1 ( 5  ) < _ w ( L )  + A ___ -~- - A OPT(L),  

y A 2 A 

2 12 15 6 

l l o P T ( L )  + 1, FFD(L) < 

which contradicts our assumption (2). Thus no counter-example exists. 
1 Case (c). ~ < z _< ~. Let z be the smallest regular piece in (L~, i] if such a piece exists, 

1_. otherwise. Let 2; = x3Z + A, 0 < A < 1 ,  5 = _!~A, ~b = 1 t~ The weighting function 
4 --- 44 36 " 
and the possible optimal bins hard to deal with are given below. 

Table  5 

# worst cases of possible 
combinations in a bin 

total weight of a bin 
= 1 - 5 - p w i t h p  

. . . .  > " 2 ¢ + 5  2;12;22;7 

2;12;4 2;4 - -  2¢ 
2312;3 2;5 

4 2;22;32; 4 

= ¢  
= 2 ¢  

5 2; 12;62;72;7 
. . . . . . . .  

= ¢  
> 2¢ ...... X22;SX72;7 

2;22;62;62;7 = 3¢ 
8 z32;42;62;7 

cj 2;3 2;6 2;6 2;6 

1 0  2;42;42;62;6 

i'i " 2;4xs2;s2;v 
12 2; 4 2; s 2; 6 2; 6 

13 2; 6 2; 6 2; 6 2; ~ 2; ~ 

14 2;e 2;6 2;7 2;72;7 

= ¢  
= 3 ¢  

= 2 ¢  
>¢ 
>2¢ 
=¢*) 
= 2¢ 

*) For this bin we want to show that among the three z~s there is at most one requiring an empty 

space. For, as it is easily seen, if an x6 with shortage falls into a bin S - { (G, x6), (G, x~, zT)}, 

this x6 can be balanced by itself. Thus we consider only those 2;6 which fall into a bin of form B = 
II 

two such x 6 in {z6, z6, x6, XT, x7} , we would have x 6 +2;6-~-z6~xT~'2;7 > 4z--22;+z+22; -- 5z > 1. 

L e n a  6. 
(i) For a given L, if both x4 and z6 (or z7) are pieces with shortage, x4 can be balanced 

by itself. The statement is true also for zs and z7. 
(ii) If both z4 and zs are pieces with shortage, then z4 can be balanced by itself and 

xs > ~ - - 5 .  
(iii) If both x5 and x6 are pieces with shortage, then x5 can be balanced by itself and 

x6> ~ - - 5 .  
P r o o f .  

(i) Assume that both z4 and x6 are pieces with shortage. Let 

j X t' 
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be the G-bins into which x4 and z6 fall respectively. 
From Lemma 3, Yl and Y2 must be an z6 or an z7(Yl >_ Y2) and both yl and Y2 cannot 

bep ieceswi thshor t age .  F r o m l - z - w ( G l + z 4 ) + t o ( G l + y l + y 2 )  < l - z 4  9 zx :3 ~.~ = --  22 2 11 
1 - 2 ~ b - 6  and 1-x-w(G.-I-ze)+w(G+2z6) = 1-6+~b, we see that  z4 and x6 can be balanced 
by themselves. Similarly, for zr,  we have 1 - z -  w(G1 + z4) + w{G~ + yx + y2) = 1 - 4 ¢ -  6. 

(ii) Let B =  {(G, z4),(G, zy, zk)} and B '  = {(G, zs) , (G,  zp, Zq)} be the bins into which 
z4 and z5 fa l l .  From Lemma 3, we have j > 5 and 

w ( a +  xj + zk) + (1 - x -  w ( a  + z4)) 
=1 - z + w(zk) - (to(z,) - w(zy)) 
<1 - z + wCzB) - w(z4) + to(zs)  

9 A / 3  A 1 
= l - z - t  44 4 ~11 3 4 

= 1 - 6 .  

11) 

The inequality xs > L ~  _ 6 can be derived directly from G - 6 + L ~  < 1 - z and 
G ' + x s >  1 - x .  

(iii) The proof is quite the same as (ii). 
In the following we will show that  all the pieces z5 with shortage and all the pieces x7 

with shortage can be in aggregation balanced by themselves. 
Lemma 6 shows that  for the pieces with shortage we can assume that  all of them either 

came from R4 or from R5 or from P~ or from R7, but not from any two of them. Our 
scheme is as follows. We divide all pieces with shortage into groups. For each group we find 
its total  shortage, a say. We add a to w(L) to make every FFD bin in this group have a 
weight ~ -  A. From this process, the corresponding OPT bins obtain an amount a.  For 
some group, these OPT bins have not so large a space to hold a that  the weight of each 
bin does not exceed 1 -  6. For such a case we find out the quanti ty of the supernumery,/3 
say. Suppose the group has rn bins in total. For each ~ we want to identify an optimal bin 

15rb 

such tha t  if an xi with shortage falls into it, it can provide enough space for this xi and the 
quanti ty ~ .  

(a) Now assume first that  some z~s are pieces with shortage. For an FFD G-23-bin 
(G, Z4), its OPT  bin can only be one of (G, z4, z~), (G, z , ,  xr}, (G, zs, z6), (G, zs, xr) ,  
(G, ze, z6) and (G, z6, x7). By Lemma 3 (with k = 7), only bins with no x7 in it need to be 
considered. Let 

A~ = {B e GIB = ((a,~,), (a, ~ ,  ~)},~,  m (a,~,) ~ ~ piece with shortage}. 
II 

Let A~ - ~ w(G + x4) and A 1 - ~ w(G -{- z~ + ze), where the sums are taken over bins in 
0t I 

Ax. Evidently, A 1 = A 1 + (  9 ~ - T)IAll .  Let A 1 = (1)T - A ) [ A l l -  c~. a is the total  shortage 
of set A1. (The c~ will be used later. Needless to say, its value varies with the given set.) 
Then 

A1 = - . A  l A l ] . - o ~ +  44  

(I t~) [AI[. 
- ( 1 - 6 )  lAiI-c~+ 44 36 

When we add a to the total weight w(Ax) of all bins in JAil, we can make the weight of 
every FFD bin in A1 up to ~ -  A. However, from this process, the corresponding O P T  
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bins in A1 have a total supernumerary (4~ -  )la l. Later we will show that ,  for each Z 4 

with shortage, the optimal bin containing it win provide a space ( ~  - 3~) for it. 
Similarly, for the sets A2 = {B e G[B = {(G, x4),(G, xs,x6)}} and A3 = {S  e GIB - 

{(G, x4),(G, x6,x6)}}, where the x4 in bin (G, x4) is a piece with shortage, we have 

,, A 
A 2 - ( 1 -  6 ) [A2 l -  ~ -  ~[A21, 

,, ( 1  1 A )  IA31 

In these cases, bins in each set can be, in aggregation, balanced by themselves. 
(b) Assume that  some of the xh's are pieces with shortage. From G + x5 > 1 -  x, we 

have G > ~ ( 1 - x )  and G+L~-~+z > l + ~ ( z - x )  > 1. Therefore, nocombination(G, xh, x6) 
is possible. Only bins of form {(G, xs), (G, x6,x6)} need to be considered. As before, let 

A4 = {B e G]B = {(G, xs), (G, x6, x6)},xs is a piece with shortage}, 

we have 
,, ( 1 11 

A 4 = ( 1 - 5 ) ! A 4  I - a -  44 18 - -  -- - - A ]  IA41 

(c) Assume that some of the x6's axe pieces with shortage. Let 

As = {B e GIB = {(G, x6),(G,y,y')}, .where the x6's axe pieces with shortage }. 

Since G + x 6  > 1 - x , y  and y' can be x6 or x7 only. By Lemma 3, we only consider 
B -  {(G, x6),(G, x6,x6)}. For this case, we have directly 

,, (1 
A 5 = ( 1 - 5 ) [ A 5  i - a +  44 IA i. 

(d) Assume that some of the x~s are pieces with shortage. Let 

A6 = {B e GIB = {(G, zT), (G, xT, zT)}, the x7 inCG, x7) is a piece with shortage}. 

By a simple calculation, we have 

e t  

From what we proved above what we want to do is to provide every x4 (or x6) with shortage 
1 A 

with a space of size >_ 44 36" 
(e) From Lemma 2, if a piece xi with shortage does not fall into a non-G-bin, it must 

fall into (i) a bin of form B = {(G, x l ) , (G , . ,  .)} or {ii) a G-33-bin, or {iii) a bin B = 
{(G, xy),(G,x, , .)} with ] >_ 2 and y + y '  < ½ ( 1 - x ) ,  where S ' =  {(G' ,x ,) , (G' ,y ,y ' )}  is 
the bin from which xd comes. 

(i,a) Assume that  xa falls into a bin S = {(G, xl),(G, x4,y)}. From Lemma 6, we need 
not consider whether y is a piece with shortage or not. Since x4 + xs > ~, we consider the 
case y = x6 only. In this case, the total weight of bins (G, xl) and (G',x4) is 

9 A G' 
>_w G-~ 22 2 ~ + 

i x )  5 
:3 ...... > 1 - - 2 5 + - ~ - - ~ A : > 2  - - A  . 
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(i,b) Assume that z6 fal~ into a bin B - {(O, zl),(G, z6,9)}. Since w(G ÷ zl) > 
1 6+ ° - - gg), the shortage of z6 and the 2 22 2 
shortage of 9, if Y is a piece with shortage, can be balanced by B. 

(ii, a) Assume that z4 falls into a G-33-bin B = {(G,z',z"),(G, z4, y)}. Since to(G + 
2z¢) > 2 I- -- 6 -I" i~1 - o4-A = 1-~ - A ÷ 1 _ 6 -I- o s- A > I-~ - A ÷ ( 1  _ 3As ), the sho r tage  of  z4 
can be balanced by B- P. 

(ii, b) Assume that z6 fails into a G-33-bin S = {(G,z', ), (G, z6 9)}. In this case, y 
may be a piece zo with shortage. Since 

( s) 4 4 9 5 5 +  A 
t o ( G + 2 z ¢ ) - - O - - 5 + ~ - ~ - ~ A =  ~ - - A ÷  G 11 

and 

w(o + zx6) = G- 6 4 
9 A 

22 2 
: 1 - / / - (  13--22-G÷ 2A--') ' 

13 we have, if G < ~ + ~-, the sum of the superfluity of B- P and the empty space of B- P* 

A) 19 114 A) 3 5+ A>2 
G + - 22 1-8 36 

IfG> 13 _ ~ + ~-, the superfluity of B- P 

5 5 +  > 2  
> G 11 9 44 36 " 

In either case the shortages of ¢0 and !/can be balaned by B. 
(iii) Assume ¢i (~ = 4 or 6) falls into a G-bin B - {(G, zj-), (G,z~, .)} with ] __ 2, 

X" and B' - {(G,z~), ( G , ¢ ' , ) }  is the bin from which zi comes. By Lemma 2, we have 
I I  . . ~  ~ • 

¢ ' ÷  .<. 21-(1- z). Thus we have x" ¢, and z' :co or z¢ By Lemma 3 (with k - 7), z, 
can be balanced by themselves. 

(f) Now we consider z3. By the definition of the weighting function, it may happen 
that tu(G + ¢3) < 1 -  z. This happens only when G < ½ + 5 _  igA.11 In such a case, the 

11 It is easy to check that for the optimal bin of such a G, the maximal shortage is 5 -  ~ A .  
only possible combinations are (G, ze, zo), (G, ¢0, zo) and (G, z6, zT). In either case, its 
Weight is _. 1 -  5 - 25. 

Now we want to consider those pieces with shortage which fall into some non-G-bins. 
The possible worst combinations for an optimal non-G-bin and the corresponding total 
weights are listed in Table 5. From Cases (a)-(d) :on id r d ~bo~ ~nd Lemma 6, we 
consider ze's and z4's only. Notice that, for a given list L, among z4 and ze only one type 
can be pieces with shortage. From Table 5, we see that all optimal non-G-bins can provide 
enough room for the pieces with shortage which fall into it. 

Let A be the sum of all shortages. (Modifications should be made for the special cases 
mentioned above. E.g., in Case (ii, b), what we add to A is not the shortage of z6, but this 
shortage minus the superfluity of B -  P). In the definition of the weighting function, there 
may be three bins" the bin Bz between R1 and R2, B2 between R4 and Re, and B3 between 
Re and R¢, in which pieces come from different regions. E.g., B1 may contain an Zl and 
an z2, etc. For B1,B2 and B3, we define the weight of each piece in them equal to its size 
and caU them irrgular pieces. If B~ has ~ + 1  pieces in it, we define the weight of each piece 
as those given in Table 4. There are at most 9 irregular pieces in total. When an irregular 
piece falls into an optimal bin, this bin may have a weight 1 - 1 - 5 + 5. Noticing that the 
last FFD-bin contains a piece, z, only, its weight - ~ - ~A - ~ - A -  ~ + ~A. 
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There may be a bin B0 between R3 and R, ,  Bo = {z3, z4,zi}, i e {4,5,0}, which may 
have a weight ~ - A - ¢, if i = 6. For Bo, if z3 + z4 _ 1 - z -  z + 36, we define the weight 
of each piece in B0 as its size. If za + x4 < 1 -  x -  z + 36, we have x3 + z4 _ ~, so that  i 
can be 4 or 5. If no x4 or xs exists, there is no B2. We define the weight of each item in 
Bo = {zz, z4, z6} as those given in Table 4, so tha t  w(z3 + z4 + z6) = ~ - A ¢ .  Thus 
we have 

7 7 

36, if B2 exis ts ,  (4) 
<w(L) + A <__ (1 - 6)OPT(L)  + 66 + ¢, otherwise.  

If B2 does not exist, {4} becomes 

/ 7 7A.  
1-1-9 A FFD(L) _< (1 - 6 )OPT(L)  + 66 + ¢ -t . . . .  11 9 

7 A < ~ - A Thus we have (1). Now we assume B2, It is easy to verify that 66+  ¢ +  1-~- 6 - 
and therefore x4 exists. 

In the following we want to show that,  if B1 exists (otherwise we can omit 26 from the 
r ighthand side of (4)), either we have a surplus 6 on the lefthand side of (4), or we can omit 
a 6 from the righthand side of (4). If B1 = {x~,x2}, it means x2 exists. From Table 5, 
we see that  all optimal bins containing an x2 has a room >_ 6. So we can take one 6 from 
the 96 and put it into the optimal bin containing x2, and then the r{ghthand side of (4) 
becomes ( 1 -  6)OPT(L)+86. Let B1 = {xl ,za} or {x l ,x4 , .  }. For this z l ,  we assume that  
the bin (xl,  z4, x4) is a possible combination in the O PT  packing, otherwise every optimal 

2 - x )  = ~ + S  bin containing z l ,  has a room >_ 6. Thus we have zl _< 1 -  ~(1 2A. When 
it is the turn of zl  to be processed in the FFD packing, there are two possibilities: (i) no 
G left, i.e. all FED G-bins are of form (G, z~) which has a weight > ~ - A + 5, or (ii) all 
pieces G left are too large so that  G + xl > 1, and therefore G _ 1~ - ]A .  Thus we have 
w(G + x3) _> 1-~ - A + 5, Vx3. If no x3 exists, we have B1 = {xl, x~,x,}, i e {4,5,6,7},  
since x~ + x <2~(1 - x) < x4 + z4. In this case we define the weight of each piece in B1 as 
those given in Table 4, It makes B1 have a total  weight > 1)y - A + 6. Thus our assertion 
has been proved. And therefore (4) becomes 

9 A )  FFD(L) - 7 7A  < (1 - 6 ) O P T ( L ) +  86. 
H -  i i  + 9 

From this (1) follows immediately since ~ - ~A + 86 < ~ - A. Thus no counter-example 
to {1) exists. 
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