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A SIMPLE PROOF OF THE INEQUALITY
FFD (L)< L OPT (L) +1, VL
FOR THE FFD BIN-PACKING ALGORITHM:t

Yue MINYTF (&R )

(Institute of Applied Mathematics, Academia Sinica, Beifing)
(Forachungn'mtitut fir Diskrete Mathematik, Bonn )

Abstract

The first fit decreasing (FFD) heuristic algorithm is one of the most famous and most
studied methods for an approximative solution of the bin-packing problem. For a list L, let
OPT(L) denote the minimal number of bins into which L can be packed, and let FFD(L)
denote the number of bins used by FFD. Johnson“] showed that for every list L, FFD(L) <
11/90PT(L) + 4. His proof required more than 100 pages. Later, Bakerl?l gave a much shorter
and simpler proof for FFD(L) < 11/9OPT(L)+3. His proof required 22 pages. In this paper,
we give a proof for FFD(L) < 11/9 OPT(L)+1. The proof is much simpler than the previous

ones.

In bin-packing, a list L of pieces, i.e. numbers in the range (0, 1], are to be packed
into bins, each of which has a capacity 1, and the goal is to minimize the number of bins
used. The minimal number of bins into which L can be packed is denoted by OPT(L) for
the list L. The first-fit-decreasing (FFD) algorithm first sorts the list into a non-increasing
order and then processes the pieces in that order by placing each piece into the first bin
into which it fits. More precisely, suppose the sorted pieces are p; > pz > --- > p,, where
p; denotes the piece and its size as well, and that the bins are indexed as B, Bz, -+, FFD
processes the pieces in the order p;,pz, - ,pn. For 1 <1 < n, if 5 is the least k such that
By holds a total of amount < 1 — p; when p; is to be packed, then FFD places p; in B;.
For a list L, let FFD(L) denote the number of bins used by FFD. Johnson!! showed that
for every list L, FFD(L)< 19—10PT(L)+4. Unfortunately, his proof required more than 100
pages. Later, Baker!? gave a much shorter and simpler proof for FFD(L)< XOPT(L)+3.
However, Baker’s proof required still 22 pages and is rather complicated. In this paper, we
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give a proof for
FFD(L) < %OPT(L) +1. (1)

Since it is easy to show that there exist examples (L) for which FFD(L)> %OPT(L)-%—%,

our result seems to arrive at the final stage.

For a given list L, let P and P* denote the FFD packing and an optimal packing of L
respectively. Let G be the set of pieces in L with size > % A piece in G is denoted also by
G. A bin containing a G is called a G-bin. For a bin B = {(G, -, -), (G, %, »)}, where (G, -, -)
and (G, *, *) are bins containing G in the FFD packing and OPT packing respectively, we
denote (G, -, ) by B—P and (G, #,*) by B— P*. Sometimes we use p(B, 1, P) and p(B,1, P*)
for the ith piece in B — P and B — P* respectively. Let z be the least piece of L. The size
of a piece z; is also denoted by z; if no confusion can be made. A G-bin is called a G-z7-bin
if B — P contains ¢ pieces and B — P* contains ; pieces in total. Our proof is based on a
combination of the weighting function method and the minimal counter-example method.
Such a combination has been used by many authors such as Coffman et all®l and Yuel4l. For
a piece p we give it a “weight” w(p) < p. w(p) is called a weighting function. With a given
w, we divide all the pieces of L into classes. Denote R; = {y|w(y) = w;}, which is called a
region of w, or simply region i. Pieces belonging to R; are denoted by z;, if no confusion
arises. E.g., we use {G, 23,3} for a bin with its 2nd and 3rd pieces belonging to R3, though
these two pieces may have different sizes. Generally, z; > z; if 1 < 5. We write w(z; + z;)
for w(z;) + w(z;) for simplicity.

In the following we assume that L is a minimal counter-example to (1), i.e., for this L,

FFD(L) > Lgl-OPT(L) +1 @)

holds, and that any list L’ satisfying (2) miust have |L’| > |L|. By definition, we can assume
that the last FFD bin of L consists of the piece z only.

Lemma 1. Every optimal bin contains at least 3 pieces.

Proof. Let (y,y’) be an optimal bin with y > y’. Let B = (y,4°, -) be the FFD-bin,
into which y falls. If y° > y’, we delete all pieces in B from the list L. Let L' = L\B.
Evidently, the FFD packing for L' is identical to those for L except that the bin B will
be missing. So we have FFD(L')=FFD(L)-1. As for OPT(L), we put y’ in the place
occupied originally by y° after the deletion of B. We have OPT(L’) < OPT(L)-1. Thus we
have FFD(L')=FFD(L)-1 > 3(OPT(L)-1)+1 > 4 OPT(L')+1. L cannot be a minimal
counter-example to (1). If y° <y, by the FFD rule, y’ must have been put into an FFD-bin
B' = (2,y, -) with z > y before y° was put into B. Deleting all the pieces in B’ from L
and applying the same argument as above, we have the same conclusion.

Lemma 2. Let B’ be a G-23-bin such that the sum of the two least pieces in B — P*
has a size > (1 — z). Then for any G-23-bin B with p(B,2,P) < }(1 — z), we have
p(B',2, P) > p(B, 2, P*).

Proof. Let B = {(Go,2),(Go,',z")}, B' = {(G,0),(G, =y, 7,)}- Suppose zo < z'.
Then we have £ > zg and Gy < G, otherwise B’ cannot be a G-23-bin. By the FFD rule,
we have 2 + G > 1. Thus we have 3(1-z) > 2>z, + zo. This is impossible.

As we said above, L is a minimal counter-example to (1). Our aim is to prove that this
statement cannot be true and therefore no counter-example exists. Our proof is divided into
3 cases according to whether

(&) §<z< 3,

(b) g<z< i,

(c) <z<t.
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When z < & or z > 1, the truth of (1) follows from Lemma 1 and simple calculations.

For a given L, let w(L) be the total weight of L. Our aim is to establish the inequalities
(1~ 2)FFD(L) < w(L) + A < 5 (1= 2)OPT(L) +a, (3)

where A and a are two constants, a < 1—z. If every FFD bin has a weight > 1—z and every
OPT bin has a weight < 19—1(1 — z), we set A =a =0 and achieve our goal. Unfortunately,
there is an FFD G-23-bin whose weight may be < 1 — z. Let B = {(G, ), (G, ¥, y')} bea
G-23-bin. f G+y > 1—z and w(G+y) < 1—1z, we calld = 1—z— w(G +y) the shortage of
the FFD G-bin B, or simply, the shortage of y, and y is called a piece with shortage. Notice
that such a y arises only in G-23-bins. A piece p is called a regular piece if FFD packs it
into a B; at a time when all higher-numbered bins are empty, otherwise p is a fallback piece.
A bin is a k-bin if it contains exactly k pieces in it.

Lemma 3. Suppose ¢ > 2,z; and z,4; (I > 0) are pieces with shortage, B =
{(G, %), (G,zj,2x)} and B' = {(G', zi+1), (G', Zp, Zq)}, Where z, + 24 > 3(1 — z) in Case
(c) (the condition is unnecessary, if ¢ > 4). Then we have z; < z;4; and 5 > ¢ +1, and both
z; and z cannot be pieces with shortage, and

w(G+z;+z) + (1 -z - w(G+z)) =1-z+ w(zx) — (w(z:) — w(zy))-

Proof. By the FFD rule, we must have G > G’, otherwise G’ +z; > 1 and z; > z,+z,.
This is impossible since ¢ > 2 (and z, + z, > (1 — z) in Case (c)). Since G’ + z;41 > 1~ 1z,
we have z; < z;4; and 7 > ¢ + l. Notice that the truth of the equality in the Lemma needs
no assumption.

If z; is a piece with shortage, and

l—i—-HA in Case (b)
1- z + wlz) — w((zs) — w(s;)) < oo
1- —Q—A in Case (c)

we say that the piece z; can be balanced by itself. The empty space(s) in the optimal bin(s)
where a quantity equal to the shortage of z; will be put is called the balance of the shortage
of zi.
Case (a). 1<z<iz=1+A,0<8< 4.

In this case the weighting function is defined as the following table:

Table 1
line | typical piece R; w(p) potal weight of B
oo | e
SR (L] [
) PR [ [ S




324 ACTA MATHEMATICAE APPLICATAE SINICA Vol.7

Since G+2z5 > 1, we cannot have a G-3-bin. Thus by Lemma 1, for a minimal counter-
example, there is no G-bin at all. Evidently, as an optimal bin, there are at most four
possibilities: (z;,z1), (z1,22), (21,22, 22) and (zg,zg,zg) Among them only (zl,zg,zg)
needs to be considered. Since w(z; + z2 + z2) = g - -2- + - - -A = - - ZA < (3 —4),
every optimal bin has a wexght < &3 -4). There ma.y be an FFD bm B = {zl,zg}
which has a weight > 3 -4 +1 -2 =3 - A — (1 - £). The last FFD bin has awelght

1-4=3_A4 (———A) Since %—%—+%—-§A=% 2A < 3 - A, we have (3) with
A=0anda=3%- —
Case (b). <=z < 1 . Let y be the smallest regular piece in (13%, 3] if such a piece exists,

and 1 otherwxse Deﬁne a weighting function by Table 2 below.

1 1 5 1 A 1 11
=z A’O< <—)0=_;6=_"‘—“0 §=— —A.
z=5t 253 e 5 3% 't TEty
Table 2
line typical R; w(p) type total weight
piece of a bin
1
o| @ (5, 1- z] G-§

1-z 1 2 A 4
a2y 2t Sta
T D) 573 (r,7) 5

l-y 1-zjjll—-y 5 4
-1 I >--A
2 z2 ( 2 ) 2 2 12 (r,r,f),fe 5
11-y 13 13 4
3 (") _] — - —=A y >-=-A
s 3' 2 45 36 (r.r, f) 5
1-z 1 4 A 4
4 T4 (——3 ,5] E——é— (r,r,r) = g —A
1-z 1 A 4
5 zs [z, 3 ] -1 (ryryr,7) =-5-—A
I
Table 3
Ts | Zs
Ty Ty Ty T4 Ty| T4 | Ts s .
T3 T4 Zz3 T4 T3 | T4 | T2 P Zs

Z z k1)) ) T3 | T4 Z2

T4 T4
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It is a simple calculation to verify that only z3,z4 and z5 can be pieces with shortage.
If both z§ and zi are pieces with shortage, then the bin B containing z}, must be one of
the forms B' = {(G, z}), (G, zs,z5)}. For, suppose B = {(G, z}), (G, z4,25)} and suppose
= {(G', z5), (G', z5,25)} be the bin into which z§ falls. By the FFD rule, we have
G > G" But then B’ cannot be a G-23-bin. Since w(G + z5 + z5) + (1 — z — w(G + z})) =
1-60- (1—5- 12) < 1-6 —§, the bin B — P* has enough space for holding the shortage
of z4. Thus in the optimal bms (1:5,::5,:54,:1:4) and (zs,zs, Zs, z4), We consider z4 or zg
only, not both. Since G + 2z, > 1 + 2(1 — z) > 1, the possible G-3-bins can only be
(G z2,25), (G, 3, 25), (G, z4,7s) and (G zs,zs). Since G + z2 + z5 and G + z3 + z5 have
sizes > 1, (G, z4,z5) and (G, 75, z5) are the only p0551b111t1es Thus we have
Lemma 4. Ifbin B- P of B ={(G,z),(G,7,z ")} is a bin with shortage, then z'

must be an z, or ah z5 and = be an z5 and
wG+z' +z )+1-z—w(G+z)=1-0— (w(z:) — w(z')).

Corollary.

(i) w(G+z4+2z )t(1-z—w(G+z3))=1-0-6.

(i1) w(G+x4+a: )+(1—z—w(G+z4))— 1-0-6+6.

(ii)) w(G +z5 + = )+(1-—z—w(G’+a:5)) =1-6-6+6.

If an z;(z = 4,5) is a piece with shortage, since 2z > (1 — z), by Lemma 2, this piece
falls either into a bin of form B = {(G, z,), (G, zi, zs)} or into a non-G-bin. In the former
case, since w(G+ 1) > 1 -6+2-4 = %—A+E §+% >%- A+26, we subtract
26 from w(L) to keep the weight of B— P > £ — A and reduce the weight of B — P* to a
quantity < 1 -6 — § — 26. Since w(G) = G — § and every optimal G-bin must contain an
zs, every optimal G-bin has a weight <1 —§ — 4.

Now we are going to consider the non-G-bin.

2 A 1-y 5 1 A 11 y 7
wmtstn) =g - g+ - 5AY5 T 0 2 760
Y 11 A )
=1-0-6-(Z-=-= 1
1 (2 90 18) (1)

Since z; + 22 + 25 < 1, we have 75 < z + > ( - z). Let B = {(G, z5), (G, =5, zg)} be
the bin into which z5 falls. We have G > 1 — 3’—;1 since G+ i(y+z)>G+z5>1—-1z.
Since 2z > %(1 — z) > z,, z must fall into a G-bin B’ = {(G', 22) (@, -, )} withG'> G
by the FFD rule. Thus we have

2 2 12
6 23 4 2 11
= y—b-SA=--A+(Z—y-5-=A
5 12° 5 +(5 y 12 >
Since (2-y—6-HA)+(§-B-8)=2-L-BA-5>1-BA-§> 5, the two bins

(G',z2) and (Il,ig, z5) can provide enough space for the shortage § of bin (G, z5) shown
in Corollary (iii) of Lemma 4.

2 5 1 13 1
w($1+23+$4)=g+§—< +£+ )A=1—0-—5—6. (27

By Corollary (i) of Lemma 4, z3 can be ba.la.nced by itself, and only z4 is to be considered.
From Corollary (ii) above, bins (G, z4,z ) and (z,,z3,z4) together have enough space for -
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the shortage z4.

w(z1+z4+z4)=§—%+-18—5—§-A=%—%A=1—0—6—28, (3)
w(:1:4+z4+z4)=-:—-A=1—0—6—86, (4)
w(z2+zg+z5)=1—y—g-A+-51-—-%31—0—5—5, (5”)
w(z4+z4+::5+:c5)=-1-85——-§-A+§—-§-=1—0—6—26, (6)
w(z4+::5+:1:5+a:5)=g——-;—gA:l,—ﬂ—-&—%‘. ()

Thus we have
Lemma 5. For every bin (G, z4) (or (G, zs)) with shortage we can identify a place
from an optimal G-bin or/and an optimal non-G-bin which is enough for holding its shortage.

Table 4
eneric piece R; w(p) type total weight
° ¢ (%* 1-2] | G-¢ (r, f)

1-z 1 9 A 9

1 z3 (—2 ,5] 2 2 (r,r) ._H__A
1-2 1-2z7|7 5 9

2 i ( 2 ' 2 ]E‘ﬁA (nrf).fel | >3-4
11-2 7 . 9

: s (5 2 ] 73 ~ 1A (r,r, f) =g-A
1-z 1 3 A 9

! o ( 3 5] 13 (rimr) =-A
1-z1-2z7(|1 11 9

’ e ( 3 ' 3 ] 1 %6l (nnnf)fell > -A

6 e (z, L:f] —9— - é (T, T, 7‘) = ‘9‘ - A
3 4 4 11

2 _2 10 10

7 1 o = — — —

z7 [z,Iz) 1 34 (r,r,rr,7) 1S

Let A be the sum of all shortages in the FFD G-bins (Some modifications should be

made if there are some pieces with shortage falling into optimal G-bins. In such cases, certain
quantity, a § or ¥— %-— IAE’ as the case may be, should be subtragted from w(L) for each such
a piece.) Adding A to the total weight w(L) of the given list L, every FFD G-bin has a weight
> %—-A and the weight of every OPT bin is still kept within the bound 1-0—-6 = 131- %—A).
Considering that the last FFD bin has a weight = 1 — 4 = 2 — A— (£ - 2A) and that there
may be two bins in the FFD packing, namely the bin between regions 1 and 2 and the bin
between regions 4 and 5, which may have shortages, the former one (z;,z2) has a weight

1—
% - %— + 354 -~ %A =$-A+ -1-15- -1+ %, and the latter one ((z4, 24, z5) or (z4, 25, z5))
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hasaweightZ%—%A=§—A—f—5+%.Weha.ve
4 3 3 1 y A 2 A
(5 A)FFD(L)_5+ZA+E_2+I2 E+6

<w(l)+A4< 19—1 (g - A) OPT(L),
or

FFD(L) < %OPT(L) +1,

which contradicts our assumption (2). Thus no counter-example exists.

Case (c). & <z < L. Let z be the smallest regular piece in (172, ;] if such a piece exists,
1 otherwise. Let z= 2 + A, 0< A< &, 6§ = LA, ¢ = &y — & The weighting function
and the possible optimal bins hard to deal with are given below.

Table 5
# [worst cases of possible total weight of a bin
combinations in abin | =1 -6 —p with p
1 T1ZToZ7 >24+6
2 T1ZT4%4 = 2¢
3 T1Z3%Zs =¢
4 T2L3T4 =2¢
5 T1Z6Z7Z7 =¢
6 T2ZT5Z7T7 > 2¢
7 T2Z6Z6TT =3¢
8 T3T4T6TT =¢
9 T3ZgZTgZe =3¢
10 T4ZT4T6Ze = 2¢
11 T4TsTsZ7 > ¢
12 T4Z5ZT6Z6 2 2¢
13 TeT6ZT6ZTT7ZT = ¢*)
14 ZTgTegZ7ZT7T7 = 2¢

") For this bin we want to show that among the three ng there is at most one requiring an empty
space. For, as it is easily seen, if an Zg with shortage falls into a bin B = {(G, zs), (G, z§,z7)}
this Tg can be balanced by itself. Thus we consider only those Zg which fall into a bin of form B =
{(G, zg), (G, zg, Ig)} In this case, G < 1—22. From G+zg > 1—z, we have g > 22—z. If there are
two such Zg in {Zg, Zs, Ze, T7, Z7}, we would have T +Zg+Zs+Z7+Z7 > 42—22+2+2z =52 > 1.

Lemma 6.

(i) For a given L, if both z4 and zg (or z7) are pieces with shortage , z4 can be balanced
by itself. The statement is true also for zs and z7.

(i) If both z4 and z5 are pieces with shortage, then z4 can be balanced by itself and
Zg > 1;‘ -6.

(iii) If both z5 and zg are pieces with shortage, then zs can be balanced by itself and
Zg > 1-3-: - 4.

Proof.

(i) Assume that both z4 and zg are pieces with shortage. Let

Bl = {(01)34)) (Glyyl: y2)} and B2 = {(Gz, zﬁ)y (G2)zl) Z")}
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be the G-bins into which z4 and z¢ fall respectively.

From Lemma 3, y; and y; must be an zg or an z7(y; > y2) and both y; and y, cannot
be pieces with shortage. From 1—z—w(G1+24)+w(Gi1+y1+y2) < 1-z+ 5 -5 — %-{-%— =
1-2¢—6 and 1-z—w(G+zg) +w(G+2z¢) = 1—6+¢, we see that z4 and zg can be balanced
by themselves. Similarly, for z7, we have 1 —z— w(G +24) + w(G1 +y1 +y2) = 1— 44— 6.

(ii) Let B = {(G, z4), (G, z;,zx)} and B' = {(G, z5), (G, zp, z4) } be the bins into which
z4 and z5 fall . From Lemma 3, we have 7 > 5 and

w(G+ zj +zk) + (1 - z — w(G + z4))
=1 -z + w(zx) — (w(z4) — w(z;))
<1 -z + w(zg) — w(z4) + w(zs)

Lol 2 A (3 a1
=TT ET 1

=1-4.

The inequality zs > 152 — 6 can be derived directly from G — 6 + 23532 < 1— z and
G +z5>1-1z.

(iti) The proof is quite the same as (ii).

In the following we will show that all the pieces z5 with shortage and all the pieces z7
with shortage can be in aggregation balanced by themselves.

Lemma 6 shows that for the pieces with shortage we can assume that all of them either
came from R4 or from Rs or from R or from R, but not from any two of them. Our
scheme is as follows. We divide all pieces with shortage into groups. For each group we find
its total shortage, a say. We add a to w(L) to make every FFD bin in this group have a
weight Tgi' — A. From this process, the corresponding OPT bins obtain an amount a. For
some group, these OPT bins have not so large a space to hold a that the weight of each
bin does not exceed 1 — §. For such a case we find out the quantity of the supernumery, #
say. Suppose the group has m bins in total. For each % we want to identify an optimal bin
such that if an z; with shortage falls into it, it can provide enough space for this z; and the
quantity ;‘9;

(a) Now assume first that some zjs are pieces with shortage. For an FFD G-23-bin
(G, z4), its OPT bin can only be one of (G,z4,26), (G,zs,27), (G,2s,26), (G,zs,27),
(G, z6,26) and (G, z¢,z7). By Lemma 3 (with k = 7), only bins with no z7 in it need to be
considered. Let

A, = {B€G|B={(G,z4),(G,z},26)},z4 in (G,z4) is a piece with shortage}.
Let A} = 3 w(G + z4) and A} = Y w(G + 7, + z¢), where the sums are taken over bins in
A,. Evidently, A} = A} + (& - §)|A1]- Let A} = (% — A)|A1| - a. o is the total shortage

of set A;. (The a will be used later. Needless to say, its value varies with the given set.)

Then

" 9 g A
A= (ﬁ —A) |A1] — e+ (ZZ - j{)tlAll

1 A
—(1-—5) |A1|-a+ (ZZ_ -3—6) IAII

When we add a to the total weight w(A;) of all bins in |A,|, we can make the weight of
every FFD bin in A; up to -121- — A. However, from this process, the corresponding OPT
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bins in A; have a total supernumerary (3 — &)|A;|. Later we will show that, for each z,
with shortage, the optimal bin containing it will provide a space (4 — &) for it.
Similarly, for the sets A; = {B € G|B = {(G, z4),(G, z5,26)}} and A3 = {B€ G|B =

{(G,z4), (G, z6,26)}}, where the z4 in bin (G, z4) is a piece with shortage, we have
n A
Az = (1= 6)|A2| — @ — o4,

" 1 1
A =(1-06)|A3|—a— | = — =4 ) |45].
= (-0l - = (5 - 52 1o
In these cases, bins in each set can be, in aggregation, balanced by themselves.
(b) Assume that some of the z5's are pieces with shortage. From G + z5 > 1 — z, we
have G > 2(1—z) and G+ 152 +2z > 1+ 2(z—z) > 1. Therefore, no combination(G, zs, zs)
is possible. Only bins of form {(G, zs), (G, zs, z¢)} need to be considered. As before, let

Ay ={B€G|B={(G,zs),(G, z6,%6)}, zs5 is a piece with shortage},

we have
" 1 11
A, =(1- -—a—|— - — I

(c) Assume that some of the zg’s are pieces with shortage. Let
As = {B€G|B={(G,zs),(G,v,y')}, where the z4's are pieces with shortage }.

Since G+ z¢ > 1 — z,y and y' can be z¢ or z7 only. By Lemma 3, we only consider
B = {(G, z6), (G, 76, z6) }. For this case, we have directly

" 1 A
Ag = (1—- 5)|A5| - a+ (ZZ - %) ‘A5|.

(d) Assume that some of the z%s are pieces with shortage. Let
As = {B € G|B = {(G, z7), (G, 71, 27)}, the z7 in(G, z7) is a piece with shortage}.
By a simple calculation, we have
A:sl = (1-6)|4e| — o

From what we proved above what we want to do is to provide every z4(or zg) with shortage
with a space of size > 741—4 - :,,A—G.

(e) From Lemma 2, if a piece z; with shortage does not fall into a non-G-bin, it must
fall into (i) a bin of form B = {(G,z;),(G, -, -) } or (ii) a G-33-bin, or (iii) a bin B =
{(G: .’5,‘), (G’ Zi, )} with 7 > 2 and y +y' < %(1 - z)’ where B' = {(G', z;), (G’ry)y')} is
the bin from which z; comes.

(i,2) Assume that z4 falls into a bin B = {(G, z1), (G, z4,y)}. From Lemma 6, we need
not consider whether y is a piece with shortage or not. Since z4 + z5 > %, we consider the
case y = z¢g only. In this case, the total weight of bins (G, z;) and (G, z4) is

9 A l1—-z 15 5 9
> _— = = - — - —_— .
_w(G-&-22 2+G+ 3 )>1 2z$+22 6A>2<11 A)
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(i,b) Assume that zg falls into a bin B = {(G, zl) (G Zg,y)}. Since w(G + z;) >
1-6+%-4%= %—A+—-—5+ > 2 — A+3(4 — &), the shortage of z¢ and the
shorta.ge of y, if y is a piece with shortage, ca.n be balanced by B

(u,a.) Assume that z4 fa.lls into a G-33-bin B = {(G o,z ) (G, x;,y)} Since w(G +
2z7) > L -6+ 4 -3A=2-A+%-6+3A>F A+(44 &), the shortage of z4
can be ba.lanced by B P

(ii,b) Assume that zg falls into a G-33-bin B = {(G,z',z"), (G, ze,y)}. In this case, y

may be a piece zg with shortage. Since

4 9 5
w(G +227) =G - 5+H——A—H—A+(G—1—1-—6+ A)

and

w(G + 2z¢) =G — 5+%—-§——1—5—(E-G+é),

we have, if G < 13 s+ 5 A , the sum of the superfluity of B — P and the empty space of B — P*

5 13 A 3 1 A
2 (o-boseia) s (B-ce ) ot sv Bana(L-2),

G2+ 4, the superfluity of B — P

5 1 A
(c,- H—5+-A) (zz g)
In either case the shortages of g and y can be balaned by B.

(ili) Assume z; (: = 4 or 6) falls into a G-bin B = {(G, z;), (G, z:, -)} with 5 > 2,
and B' = {(G,z),(G,=’ ,z )} is the bin from which z; comes. By Lemma 2, we have
g4z < 1(1—z). Thus we have z =z7 and ' = zg or z7. By Lemma 3 (with k = 7), =
can be balanced by themselves.

(f) Now we consider z3. By the definition of the weighting function, it may happen
that w(G + z3) < 1 — z. This happens only when G < ; +6 - i;A In such a case, the
maximal shortage is § — 18A It is easy to check that for the optimal bin of such a G, the
only possible combinations are (G, zs, z6), (G, Zs,zs) and (G,z¢,z7). In either case, its
weight is <1 - 6§ — 26.

Now we want to consider those pieces with shortage which fall into some non-G-bins.
The possible worst combinations for an optimal non-G-bin and the corresponding total
weights are listed in Table 5. From Cases (a)-(d) considered above and Lemma 6, we
consider zg’s and z4's only. Notice that, for a given list L, among z4 and zg only one type
can be pieces with shortage. From Table 5, we see that all optimal non-G-bins can provide
enough room for the pieces with shortage which fall into it.

Let A be the sum of all shortages. (Modifications should be made for the special cases
mentioned above. E.g., in Case (ii,b), what we add to A is not the shortage of z, but this
shortage minus the superfluity of B — P). In the definition of the weighting function, there
may be three bins: the bin B; between R; and R;, Bz between R4 and Rs, and B3 between
Rg and Ry, in which pieces come from different regions. E.g., B; may contain an z; and
an z,, etc. For By, B; and Bj, we define the weight of each piece in them equal to its size
and call them irrgular pieces. If B; has ¢ +1 pieces in it, we define the weight of each piece
as those given in Table 4. There are at most 9 irregular pieces in total. When an irregular
piece falls into an optimal bin, this bin may have a welght 1= 1 —-6+6. Notlcmg that the
last FFD-bin contains a piece, z, only, its weight = — - -A ==-A- 7A
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There may be a bin By between R3 and Ry, By = {z3, z4,2;}, ¢ € {4, 5,6}, which may
have a weight 19—1 —A—¢,ift=6. For By, if 23+ 24 > 1 — z— z+ 36, we define the weight
of each piece in By as its size. If z3 + 74 < 1 — z — z + 36, we have z3 + z4 < %, so that ¢
can be 4 or 5. If no z4 or z5 exists, there is no B;. We define the weight. of each item in
By = {z3,%4, %} as those given in Table 4, so that w(z3 + z4 +26) = == — A — ¢ . Thus
we have

(19—1 - A) FFD(L) - = + 34
35, if B; exists, (4)

@, otherwise .

<w(L)+ A< (1-6)OPT(L) + 66 + {
If B, does not exist, (4) becomes
9 7
(H - A) FFD(L) < (1- §)OPT(L) + 66 + ¢+ - — §A

It is easy to verify that 66 + ¢+ &= — ZA < % — A. Thus we have (1). Now we assume By,
and therefore z4 exists.

In the following we want to show that, if B, exists (otherwise we can omit 2§ from the
righthand side of (4)), either we have a surplus § on the lefthand side of (4), or we can omit
a 6 from the righthand side of (4). If B; = {z;,z2}, it means z, exists. From Table 5,
we see that all optimal bins containing an z; has a room > §. So we can take one § from
the 96 and put it into the optimal bin containing zz, and then the righthand side of (4)
becomes (1 — 5)OPT(L)+85 Let By = {z1,z3} or {z1,z4, - }. For this z;, we assume that
the bin (z;, z4, z4) is a possible combination in the OPT packing, otherwise every optimal
bin containing z;, has a room > §. Thus we have z; < 1 — g—(l -z) = % + %A. When
it is the turn of z; to be processed in the FFD packing, there are two possibilities: (i} no
G left, ie. all FFD G-bins are of form (G, z}) which has a weight > & — A+6, or (i) all
pieces G left are too large so that G + z; > 1, and therefore G > & — 2A. Thus we have
w(G + :ra) > — — A+ 6, Vz3. If no z3 exists, we have B; = {xl,z4,a:‘}, 1 € {4,5,6,7},
since a:4 +z < $(1—z) < 24 + z4. In this case we define the weight of each piece in B; as
those given in Table 4, It makes B; have a total weight > —- — A + §. Thus our assertion
has been proved. And therefore (4) becomes

9 7 7
R - A< - .
(11 A) FFD(L) - 17 + 5A < (1~ 6)OPT(L) + 85

From this (1) follows immediately since ;5 — ZA + 86 < % — A. Thus no counter-example
to (1) exists.
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