A SIMPLE PROOF OF THE INEQUALITY

$\operatorname{FFD}(L) \leq \frac{11}{9} \mathrm{OPT}(L)+1, \quad \forall L$
 FOR THE FFD BIN－PACKING ALGORITHM ${ }^{\bullet}$

Yue Minyi ${ }^{\ddagger}$（越民义）
（Institute of Applied Mathematics，Academia Sinica，Beijing）
（Forschungsinstitut für Diskrete Mathematik，Bonn）

Abstract

The first fit decreasing（FFD）heuristic algorithm is one of the most famous and most studied methods for an approximative solution of the bin－packing problem．For a list L ，let $\operatorname{OPT}(L)$ denote the minimal number of bins into which L can be packed，and let $\operatorname{FFD}(L)$ denote the number of bins used by FFD．Johnson ${ }^{[1]}$ showed that for every list $L, \operatorname{FFD}(L) \leq$ $11 / 90 \mathrm{PT}(L)+4$ ．His proof required more than 100 pages．Later，Baker ${ }^{[2]}$ gave a much shorter and simpler proof for $\operatorname{FFD}(L) \leq 11 / 9 \mathrm{OPT}(L)+3$ ．His proof required 22 pages．In this paper， we give a proof for $\operatorname{FFD}(L) \leq 11 / 9 \mathrm{OPT}(L)+1$ ．The proof is much simpler than the previous ones．

In bin－packing，a list L of pieces，i．e．numbers in the range $(0,1]$ ，are to be packed into bins，each of which has a capacity 1 ，and the goal is to minimize the number of bins used．The minimal number of bins into which L can be packed is denoted by OPT（L）for the list L ．The first－fit－decreasing（FFD）algorithm first sorts the list into a non－increasing order and then processes the pieces in that order by placing each piece into the first bin into which it fits．More precisely，suppose the sorted pieces are $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$ ，where p_{i} denotes the piece and its size as well，and that the bins are indexed as B_{1}, B_{2}, \cdots, FFD processes the pieces in the order $p_{1}, p_{2}, \cdots, p_{n}$ ．For $1 \leq i \leq n$ ，if j is the least k such that B_{k} holds a total of amount $\leq 1-p_{i}$ when p_{i} is to be packed，then FFD places p_{i} in B_{j} ． For a list L ，let $\operatorname{FFD}(L)$ denote the number of bins used by FFD．Johnson ${ }^{[1]}$ showed that for every list $L, \operatorname{FFD}(L) \leq \frac{11}{9} \mathrm{OPT}(L)+4$ ．Unfortunately，his proof required more than 100 pages．Later，Baker ${ }^{[2]}$ gave a much shorter and simpler proof for $\operatorname{FFD}(L) \leq \frac{11}{9} \mathrm{OPT}(L)+3$ ． However，Baker＇s proof required still 22 pages and is rather complicated．In this paper，we

[^0]give a proof for
\[

$$
\begin{equation*}
\operatorname{FFD}(L) \leq \frac{11}{9} \mathrm{OPT}(L)+1 \tag{1}
\end{equation*}
$$

\]

Since it is easy to show that there exist examples (L) for which $\operatorname{FFD}(L) \geq \frac{11}{9} \operatorname{OPT}(L)+\frac{5}{9}$, our result seems to arrive at the final stage.

For a given list L, let P and P^{*} denote the FFD packing and an optimal packing of L respectively. Let G be the set of pieces in L with size $>\frac{1}{2}$. A piece in G is denoted also by G. A bin containing a G is called a G-bin. For a bin $B=\{(G, \cdot, \cdot),(G, *, *)\}$, where (G, \cdot, \cdot) and ($G, *, *$) are bins containing G in the FFD packing and OPT packing respectively, we denote (G, \cdots,) by $B-P$ and $(G, *, *)$ by $B-P^{*}$. Sometimes we use $p(B, i, P)$ and $p\left(B, i, P^{*}\right)$ for the i th piece in $B-P$ and $B-P^{*}$ respectively. Let x be the least piece of L. The size of a piece x_{i} is also denoted by x_{i} if no confusion can be made. A G-bin is called a G - $i j$-bin if $B-P$ contains i pieces and $B-P^{*}$ contains j pieces in total. Our proof is based on a combination of the weighting function method and the minimal counter-example method. Such a combination has been used by many authors such as Coffman et al ${ }^{[3]}$ and Yue ${ }^{[4]}$. For a piece p we give it a "weight" $w(p) \leq p . w(p)$ is called a weighting function. With a given w, we divide all the pieces of L into classes. Denote $R_{i}=\left\{y \mid w(y)=w_{i}\right\}$, which is called a region of \dot{w}, or simply region i. Pieces belonging to R_{i} are denoted by x_{i}, if no confusion arises. E.g., we use $\left\{G, x_{3}, x_{3}\right\}$ for a bin with its 2 nd and 3 rd pieces belonging to R_{3}, though these two pieces may have different sizes. Generally, $x_{i}>x_{j}$ if $i<j$. We write $w\left(x_{i}+x_{j}\right)$ for $w\left(x_{i}\right)+w\left(x_{j}\right)$ for simplicity.

In the following we assume that L is a minimal counter-example to (1), i.e., for this L,

$$
\begin{equation*}
\operatorname{FFD}(L)>\frac{11}{9} \mathrm{OPT}(\mathrm{~L})+1 \tag{2}
\end{equation*}
$$

holds, and that any list L^{\prime} satisfying (2) must have $\left|L^{\prime}\right| \geq|L|$. By definition, we can assume that the last FFD bin of L consists of the piece x only.

Lemma 1. Every optimal bin contains at least 3 pieces.
Proof. Let $\left(y, y^{\prime}\right)$ be an optimal bin with $y \geq y^{\prime}$. Let $B=\left(y, y^{0}, \cdot\right)$ be the FFD-bin, into which y falls. If $y^{0} \geq y^{\prime}$, we delete all pieces in B from the list L. Let $L^{\prime}=L \backslash B$. Evidently, the FFD packing for L^{\prime} is identical to those for L except that the bin B will be missing. So we have $\operatorname{FFD}\left(L^{\prime}\right)=\operatorname{FFD}(L)-1$. As for $\operatorname{OPT}(L)$, we put y^{\prime} in the place occupied originally by y^{0} after the deletion of B. We have $\operatorname{OPT}\left(L^{\prime}\right) \leq \operatorname{OPT}(L)-1$. Thus we have $\operatorname{FFD}\left(L^{\prime}\right)=\operatorname{FFD}(L)-1>\frac{11}{9}(\operatorname{OPT}(L)-1)+1 \geq \frac{11}{9} \operatorname{OPT}\left(L^{\prime}\right)+1 . L$ cannot be a minimal counter-example to (1). If $y^{0}<y^{\prime}$, by the FFD rule, y^{\prime} must have been put into an FFD-bin $B^{\prime}=\left(z, y^{\prime}, \cdot\right)$ with $z \geq y$ before y^{0} was put into B. Deleting all the pieces in B^{\prime} from L and applying the same argument as above, we have the same conclusion.

Lemma 2. Let B^{\prime} be a $G-23$-bin such that the sum of the two least pieces in $B^{\prime}-P^{*}$ has a size $\geq \frac{1}{2}(1-x)$. Then for any G-23-bin B with $p(B, 2, P) \leq \frac{1}{2}(1-x)$, we have $p\left(B^{\prime}, 2, P\right)>p\left(B, 2, P^{*}\right)$.

Proof. Let $B=\left\{\left(G_{0}, \bar{x}\right),\left(G_{0}, x^{\prime}, x^{\prime \prime}\right)\right\}, B^{\prime}=\left\{\left(G, x_{0}\right),\left(G, x_{0}^{\prime}, x_{0}^{\prime \prime}\right)\right\}$. Suppose $x_{0} \leq x^{\prime}$. Then we have $\bar{x}>x_{0}$ and $G_{0}<G$, otherwise B^{\prime} cannot be a $G-23$-bin. By the FFD rule, we have $\bar{x}+G>1$. Thus we have $\frac{1}{2}(1-x) \geq \bar{x}>x_{0}^{\prime}+x_{0}^{\prime \prime}$. This is impossible.

As we said above, L is a minimal counter-example to (1). Our aim is to prove that this statement cannot be true and therefore no counter-example exists. Our proof is divided into 3 cases according to whether
(a) $\frac{1}{4}<x \leq \frac{1}{3}$,
(b) $\frac{1}{5}<x \leq \frac{1}{4}$,
(c) $\frac{2}{11}<x \leq \frac{1}{5}$.

When $x<\frac{2}{11}$ or $x>\frac{1}{3}$, the truth of (1) follows from Lemma 1 and simple calculations. For a given L, let $w(L)$ be the total weight of L. Our aim is to establish the inequalities

$$
\begin{equation*}
(1-x) \mathrm{FFD}(L) \leq w(L)+A \leq \frac{11}{9}(1-x) \mathrm{OPT}(L)+a \tag{3}
\end{equation*}
$$

where A and a are two constants, $a \leq 1-x$. If every FFD bin has a weight $\geq 1-x$ and every OPT bin has a weight $\leq \frac{11}{9}(1-x)$, we set $A=a=0$ and achieve our goal. Unfortunately, there is an FFD G-23-bin whose weight may be $<1-x$. Let $B=\left\{(G, y),\left(G, y^{\prime}, y^{\prime \prime}\right)\right\}$ be a G-23-bin. If $G+y>1-x$ and $w(G+y)<1-x$, we call $d=1-x-w(G+y)$ the shortage of the FFD G-bin B, or simply, the shortage of y, and y is called a piece with shortage. Notice that such a y arises only in G-23-bins. A piece p is called a regular piece if FFD packs it into a B_{i} at a time when all higher-numbered bins are empty, otherwise p is a fallback piece. A bin is a k-bin if it contains exactly k pieces in it.

Lemma 3. Suppose $i \geq 2, x_{i}$ and $x_{i+l}(l>0)$ are pieces with shortage, $B=$ $\left\{\left(G, x_{i}\right),\left(G, x_{j}, x_{k}\right)\right\}$ and $B^{\prime}=\left\{\left(G^{\prime}, x_{i+l}\right),\left(G^{\prime}, x_{p}, x_{q}\right)\right\}$, where $x_{p}+x_{q} \geq \frac{1}{2}(1-x)$ in Case (c) (the condition is unnecessary, if $i \geq 4$). Then we have $x_{j}<x_{i+l}$ and $j \geq i+l$, and both x_{j} and x_{k} cannot be pieces with shortage, and

$$
w\left(G+x_{j}+x_{k}\right)+\left(1-x-w\left(G+x_{i}\right)\right)=1-x+w\left(x_{k}\right)-\left(w\left(x_{i}\right)-w\left(x_{j}\right)\right) .
$$

Proof. By the FFD rule, we must have $G \geq G^{\prime}$, otherwise $G^{\prime}+x_{i}>1$ and $x_{i}>x_{p}+x_{q}$. This is impossible since $i \geq 2$ (and $x_{p}+x_{q} \geq \frac{1}{2}(1-x)$ in Case (c)). Since $G^{\prime}+x_{i+l}>1-x$, we have $x_{j}<x_{i+l}$ and $j \geq i+l$. Notice that the truth of the equality in the Lemma needs no assumption.

If x_{i} is a piece with shortage, and

$$
1-x+w\left(x_{k}\right)-w\left(\left(x_{i}\right)-w\left(x_{j}\right)\right) \leq \begin{cases}1-\frac{1}{45}-\frac{11}{9} \Delta & \text { in Case (b) } \\ 1-\frac{11}{9} \Delta & \text { in Case (c) }\end{cases}
$$

we say that the piece x_{i} can be balanced by itself. The empty space(s) in the optimal bin(s) where a quantity equal to the shortage of x_{i} will be put is called the balance of the shortage of x_{i}.
Case (a). $\frac{1}{4}<x \leq \frac{1}{3}, x=\frac{1}{4}+\Delta, 0<\Delta \leq \frac{1}{12}$.
In this case the weighting function is defined as the following table:
Table 1

line	typical piece	R_{i}	$w(p)$	total weight of B
0	G	$\left(\frac{1}{2}, 1\right]$		
1	x_{1}	$\left(\frac{1-x}{2}, \frac{1}{2}\right]$	$\frac{3}{8}-\frac{\Delta}{2}$	$=\frac{3}{4}-\Delta$
2	x_{2}	$\left[x, \frac{1-x}{2}\right]$	$\frac{1}{4}-\frac{\Delta}{3}$	$=\frac{3}{4}-\Delta$

Since $G+2 x_{2}>1$, we cannot have a G-3-bin. Thus by Lemma 1 , for a minimal counterexample, there is no G-bin at all. Evidently, as an optimal bin, there are at most four possibilities: $\left(x_{1}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}, x_{2}\right)$ and $\left(x_{2}, x_{2}, x_{2}\right)$. Among them only $\left(x_{1}, x_{2}, x_{2}\right)$ needs to be considered. Since $w\left(x_{1}+x_{2}+x_{2}\right)=\frac{3}{8}-\frac{\Delta}{2}+\frac{1}{2}-\frac{2}{3} \Delta=\frac{7}{8}-\frac{7}{6} \Delta<\frac{11}{9}\left(\frac{3}{4}-\Delta\right)$, every optimal bin has a weight $<\frac{11}{9}\left(\frac{3}{4}-\Delta\right)$. There may be an FFD bin $B=\left\{x_{1}, x_{2}\right\}$, which has a weight $\geq \frac{3}{8}-\frac{\Delta}{2}+\frac{1}{4}-\frac{\Delta}{3}=\frac{3}{4}-\Delta-\left(\frac{1}{8}-\frac{\Delta}{6}\right)$. The last FFD bin has a weight $\frac{1}{4}-\frac{\Delta}{3}=\frac{3}{4}-\Delta-\left(\frac{1}{2}-\frac{2}{3} \Delta\right)$. Since $\frac{1}{8}-\frac{\Delta}{6}+\frac{1}{2}-\frac{2}{3} \Delta=\frac{5}{8}-\frac{5}{6} \Delta<\frac{3}{4}-\Delta$, we have (3) with $A=0$ and $a=\frac{5}{8}-\frac{5}{6} \Delta$.
Case (b). $\frac{1}{5}<x \leq \frac{1}{4}$. Let y be the smallest regular piece in $\left(\frac{1-x}{3}, \frac{1}{3}\right]$ if such a piece exists, and $\frac{1}{3}$ otherwise. Define a weighting function by Table 2 below.

$$
x=\frac{1}{5}+\Delta, 0<\Delta \leq \frac{1}{20}, \theta=\frac{5}{4} \Delta, \delta=\frac{1}{45}-\frac{\Delta}{36}, \theta+\delta=\frac{1}{45}+\frac{11}{9} \Delta .
$$

Table 2

linetypical piece	R_{i}	$w(p)$	type	total weight of a bin	
0	G	$\left(\frac{1}{2}, 1-x\right]$	$G-\delta$		
1	x_{1}	$\left(\frac{1-x}{2}, \frac{1}{2}\right]$	$\frac{2}{5}-\frac{\Delta}{2}$	(r, r)	$=\frac{4}{5}-\Delta$
2	x_{2}	$\left(\frac{1-y}{2}, \frac{1-x}{2}\right]$	$\frac{1-y}{2}-\frac{5}{12} \Delta$	$(r, r, f), f \in I$	$>\frac{4}{5}-\Delta$
3	x_{3}	$\left(\frac{1}{3}, \frac{1-y}{2}\right]$	$\frac{13}{45}-\frac{13}{36} \Delta$	(r, r, f)	$>\frac{4}{5}-\Delta$
4	x_{4}	$\left(\frac{1-x}{3}, \frac{1}{3}\right]$	$\frac{4}{15}-\frac{\Delta}{3}$	(r, r, r)	$=\frac{4}{5}-\Delta$
5	x_{5}	$\left[x, \frac{1-x}{3}\right]$	$\frac{1}{5}-\frac{\Delta}{4}$	(r, r, r, r)	$=\frac{4}{5}-\Delta$

Table 3

| x_{4} | x_{4} | x_{4} | x_{4} | x_{4} | x_{4} | x_{5} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x_{3} | x_{4} | x_{3} | x_{4} | x_{3} | x_{4} | x_{5} | |
| x_{1} | x_{1} | x_{2} | x_{2} | x_{3} | x_{4} | x_{2} | x_{5} |
| x_{4} | x_{5} | | | | | | |
| x_{4} | x_{4} | | | | | | |

It is a simple calculation to verify that only x_{3}, x_{4} and x_{5} can be pieces with shortage. If both x_{4}^{\prime} and x_{5}^{\prime} are pieces with shortage, then the bin B containing x_{4}^{\prime} must be one of the forms $B^{\prime}=\left\{\left(G, x_{4}^{\prime}\right),\left(G, x_{5}, x_{5}\right)\right\}$. For, suppose $B=\left\{\left(G, x_{4}^{\prime}\right),\left(G, x_{4}, x_{5}\right)\right\}$ and suppose $B^{\prime}=\left\{\left(G^{\prime}, x_{5}^{\prime}\right),\left(G^{\prime}, x_{5}, x_{5}\right)\right\}$ be the bin into which x_{5}^{\prime} falls. By the FFD rule, we have $G \geq G^{\prime}$. But then B^{\prime} cannot be a G-23-bin. Since $w\left(G+x_{5}+x_{5}\right)+\left(1-x-w\left(G+x_{4}^{\prime}\right)\right)=$ $1-\theta-\left(\frac{1}{15}-\frac{\Delta}{12}\right)<1-\theta-\delta$, the Bin $B-P^{*}$ has enough space for holding the shortage of x_{4}. Thus in the optimal bins $\left(x_{5}^{\prime}, x_{5}, x_{4}, x_{4}\right)$ and ($x_{5}, x_{5}, x_{5}, x_{4}$), we consider x_{4} or x_{5} only, not both. Since $G+2 x_{4}>\frac{1}{2}+\frac{2}{3}(1-x) \geq 1$, the possible G-3-bins can only be $\left(G, x_{2}, x_{5}\right),\left(G, x_{3}, x_{5}\right),\left(G, x_{4}, x_{5}\right)$ and $\left(G, x_{5}, x_{5}\right)$. Since $G+x_{2}+x_{5}$ and $G+x_{3}+x_{5}$ have sizes $>1,\left(G, x_{4}, x_{5}\right)$ and $\left(G, x_{5}, x_{5}\right)$ are the only possibilities. Thus we have

Lemma 4. If bin $B-P$ of $B=\left\{\left(G, x_{i}\right),\left(G, x^{\prime}, x^{\prime \prime}\right)\right\}$ is a bin with shortage, then x^{\prime} must be an x_{4} or ah x_{5} and $x^{\prime \prime}$ be an x_{5} and

$$
w\left(G+x^{\prime}+x^{\prime \prime}\right)+1-x-w\left(G+x_{i}\right)=1-\theta-\left(w\left(x_{i}\right)-w\left(x^{\prime}\right)\right)
$$

Corollary.

(i) $w\left(G+x_{4}+x^{\prime \prime}\right)+\left(1-x-w\left(G+x_{3}\right)\right)=1-\theta-\delta$.
(ii) $w\left(G+x_{4}+x^{\prime \prime}\right)+\left(1-x-w\left(G+x_{4}\right)\right)=1-\theta-\delta+\delta$.
(iii) $w\left(G+x_{5}+x^{\prime \prime}\right)+\left(1-x-w\left(G+x_{5}\right)\right)=1-\theta-\delta+\delta$.

If an $x_{i}(i=4,5)$ is a piece with shortage, since $2 x>\frac{1}{2}(1-x)$, by Lemma 2 , this piece falls either into a bin of form $B=\left\{\left(G, x_{1}\right),\left(G, x_{i}, x_{5}\right)\right\}$ or into a non- G-bin. In the former case, since $w\left(G+x_{1}\right) \geq \frac{1}{2}-\delta+\frac{2}{5}-\frac{\Delta}{2}=\frac{4}{5}-\Delta+\frac{1}{10}-\delta+\frac{\Delta}{2}>\frac{4}{5}-\Delta+2 \delta$, we subtract 2δ from $w(L)$ to keep the weight of $B^{2}-P^{5} \geq \frac{4}{5}-\Delta_{\text {and }}$ reduce the weight of $B-P^{*}$ to a quantity $\leq 1-\theta-\delta-2 \delta$. Since $w(G)=G-\delta$ and every optimal G-bin must contain an x_{5}, every optimal G-bin has a weight $\leq 1-\delta-\theta$.

Now we are going to consider the non- G-bin.

$$
\begin{align*}
w\left(x_{1}+x_{2}+x_{5}\right) & =\frac{2}{5}-\frac{\Delta}{2}+\frac{1-y}{2}-\frac{5}{12} \Delta+\frac{1}{5}-\frac{\Delta}{4}=\frac{11}{10}-\frac{y}{2}-\frac{7}{6} \Delta \\
& =1-\theta-\delta-\left(\frac{y}{2}-\frac{11}{90}-\frac{\Delta}{18}\right) .
\end{align*}
$$

Since $x_{1}+x_{2}+x_{5} \leq 1$, we have $x_{5} \leq x+\frac{1}{2}(y-x)$. Let $B=\left\{\left(G, x_{5}\right),\left(G, x_{5}^{\prime}, x_{5}^{\prime \prime}\right)\right\}$ be the bin into which x_{5} falls. We have $G>1-\frac{3 x+y}{2}$, since $G+\frac{1}{2}(y+x) \geq G+x_{5}>1-x$. Since $2 x \geq \frac{1}{2}(1-x)>x_{2}, x_{2}$ must fall into a G-bin $B^{\prime}=\left\{\left(G^{\prime}, x_{2}\right),\left(G^{\prime}, \cdot, \cdot\right)\right\}$ with $G^{\prime} \geq G$ by the FFD rule. Thus we have

$$
\begin{aligned}
w\left(G^{\prime}+x_{2}\right) & \geq 1-\delta-\frac{3 x+y}{2}+\frac{1-y}{2}-\frac{5}{12} \Delta \\
& =\frac{6}{5}-y-\delta-\frac{23}{12} \Delta=\frac{4}{5}-\Delta+\left(\frac{2}{5}-y-\delta-\frac{11}{12} \Delta\right) .
\end{aligned}
$$

Since $\left(\frac{2}{5}-y-\delta-\frac{11}{12} \Delta\right)+\left(\frac{y}{2}-\frac{11}{90}-\frac{\Delta}{18}\right)=\frac{5}{18}-\frac{y}{2}-\frac{35}{36} \Delta-\delta \geq \frac{1}{9}-\frac{35}{36} \Delta-\delta>\delta$, the two bins (G^{\prime}, x_{2}) and (x_{1}, x_{2}, x_{5}) can provide enough space for the shortage δ of bin (G, x_{5}) shown in Corollary (iii) of Lemma 4.

$$
w\left(x_{1}+x_{3}+x_{4}\right)=\frac{2}{5}+\frac{5}{9}-\left(\frac{1}{2}+\frac{13}{36}+\frac{1}{3}\right) \Delta=1-\theta-\delta-\delta .
$$

By Corollary (i) of Lemma 4, x_{3} can be balanced by itself, and only x_{4} is to be considered. From Corollary (ii) above, bins ($G, x_{4}, x^{\prime \prime}$) and (x_{1}, x_{3}, x_{4}) together have enough space for
the shortage x_{4}.

$$
\begin{align*}
w\left(x_{1}+x_{4}+x_{4}\right) & =\frac{2}{5}-\frac{\Delta}{2}+\frac{8}{15}-\frac{2}{3} \Delta=\frac{14}{15}-\frac{7}{6} \Delta=1-\theta-\delta-2 \delta, \\
w\left(x_{4}+x_{4}+x_{4}\right) & =\frac{4}{5}-\Delta=1-\theta-\delta-8 \delta, \\
w\left(x_{2}+x_{2}+x_{5}\right) & =1-y-\frac{5}{6} \Delta+\frac{1}{5}-\frac{\Delta}{4} \leq 1-\theta-\delta-\delta, \\
w\left(x_{4}+x_{4}+x_{5}+x_{5}\right) & =\frac{8}{15}-\frac{2}{3} \Delta+\frac{2}{5}-\frac{\Delta}{2}=1-\theta-\delta-2 \delta, \\
w\left(x_{4}+x_{5}+x_{5}+x_{5}\right) & =\frac{13}{15}-\frac{13}{12} \Delta=1-\theta-\delta-3 \delta .
\end{align*}
$$

Thus we have

Lemma 5. For every bin (G, x_{4}) (or (G, x_{5})) with shortage we can identify a place from an optimal G-bin or/and an optimal non- G-bin which is enough for holding its shortage.

Table 4

	generic piece	R_{i}	$w(p)$	type	total weight
0	G	$\left(\frac{1}{2}, 1-2 x\right]$	$G-\delta$	(r, f)	
1	x_{1}	$\left(\frac{1-x}{2}, \frac{1}{2}\right]$	$\frac{9}{22}-\frac{\Delta}{2}$	(r, r)	$=\frac{9}{11}-\Delta$
2	x_{2}	$\left(\frac{1-z}{2}, \frac{1-x}{2}\right]$	$\frac{7}{22}-\frac{5}{12} \Delta$	$(r, r, f), f \in I$	$>\frac{9}{11}-\Delta$
3	x_{3}	$\left(\frac{1}{3}, \frac{1-z}{2}\right]$	$\frac{7}{22}-\frac{7}{18} \Delta$	(r, r, f)	$=\frac{9}{11}-\Delta$
4	x_{4}	$\left(\frac{1-x}{3}, \frac{1}{3}\right]$	$\frac{3}{11}-\frac{\Delta}{3}$	(r, r, r)	$=\frac{9}{11}-\Delta$
5	x_{5}	$\left(\frac{1-z}{3}, \frac{1-x}{3}\right]$	$\frac{1}{4}-\frac{11}{36} \Delta$	$(r, r, r, f), f \in I$	$>\frac{9}{11}-\Delta$
6	x_{6}	$\left(z, \frac{1-z}{3}\right]$	$\frac{9}{44}-\frac{\Delta}{4}$	(r, r, r, r)	$=\frac{9}{11}-\Delta$
7	x_{7}	$[x, z)$	$\frac{2}{11}-\frac{2}{9} \Delta$	(r, r, r, r, r)	$=\frac{10}{11}-\frac{10}{9} \Delta$

Let A be the sum of all shortages in the FFD G-bins (Some modifications should be made if there are some pieces with shortage falling into optimal G-bins. In such cases, certain quantity, a δ or $\frac{y}{2}-\frac{11}{90}-\frac{\Delta}{18}$, as the case may be, should be subtracted from $w(L)$ for each such a piece.) Adding A to the total weight $w(L)$ of the given list L, every FFD G-bin has a weight $\geq \frac{4}{5}-\Delta$ and the weight of every OPT bin is still kept within the bound $1-\theta-\delta=\frac{11}{9}\left(\frac{4}{5}-\Delta\right)$. Considering that the last FFD bin has a weight $=\frac{1}{5}-\frac{\Delta}{4}=\frac{4}{5}-\Delta-\left(\frac{3}{5}-\frac{3}{4} \Delta\right)$ and that there may be two bins in the FFD packing, namely the bin between regions 1 and 2 and the bin between regions 4 and 5 , which may have shortages, the former one (x_{1}, x_{2}) has a weight $\frac{2}{5}-\frac{\Delta}{2}+\frac{1-y}{2}-\frac{5}{12} \Delta=\frac{4}{5}-\Delta+\frac{1}{10}-\frac{y}{2}+\frac{\Delta}{12}$, and the latter one $\left(\left(x_{4}, x_{4}, x_{5}\right)\right.$ or $\left(x_{4}, x_{5}, x_{5}\right)$)
has a weight $\geq \frac{10}{15}-\frac{5}{6} \Delta=\frac{4}{5}-\Delta-\frac{2}{15}+\frac{\Delta}{6}$. We have

$$
\begin{aligned}
& \quad\left(\frac{4}{5}-\Delta\right) \operatorname{FFD}(L)-\frac{3}{5}+\frac{3}{4} \Delta+\frac{1}{10}-\frac{y}{2}+\frac{\Delta}{12}-\frac{2}{15}+\frac{\Delta}{6} \\
& \leq w(L)+A \leq \frac{11}{9}\left(\frac{4}{5}-\Delta\right) \operatorname{OPT}(L),
\end{aligned}
$$

or

$$
\operatorname{FFD}(L) \leq \frac{11}{9} \mathrm{OPT}(L)+1,
$$

which contradicts our assumption (2). Thus no counter-example exists.
Case (c). $\frac{2}{11}<x \leq \frac{1}{5}$. Let z be the smallest regular piece in $\left(\frac{1-x}{4}, \frac{1}{4}\right)$ if such a piece exists, $\frac{1}{4}$ otherwise. Let $x=\frac{2}{11}+\Delta, 0<\Delta \leq \frac{1}{55}, \delta=\frac{11}{9} \Delta, \phi=\frac{1}{44}-\frac{\Delta}{36}$. The weighting function and the possible optimal bins hard to deal with are given below.

Table 5

$\#$	worst cases of possible combinations in a bin	total weight of a bin $=1-\delta-p$ with p
1	$x_{1} x_{2} x_{7}$	$>2 \phi+\delta$
2	$x_{1} x_{4} x_{4}$	$=2 \phi$
3	$x_{1} x_{3} x_{5}$	$=\phi$
4	$x_{2} x_{3} x_{4}$	$=2 \phi$
5	$x_{1} x_{6} x_{7} x_{7}$	$=\phi$
6	$x_{2} x_{5} x_{7} x_{7}$	$>2 \phi$
7	$x_{2} x_{6} x_{6} x_{7}$	$=3 \phi$
8	$x_{3} x_{4} x_{6} x_{7}$	$=\phi$
9	$x_{3} x_{6} x_{6} x_{6}$	$=3 \phi$
10	$x_{4} x_{4} x_{6} x_{6}$	$=2 \phi$
11	$x_{4} x_{5} x_{5} x_{7}$	$>\phi$
12	$x_{4} x_{5} x_{6} x_{6}$	$\geq 2 \phi$
13	$x_{6} x_{6} x_{6} x_{7} x_{7}$	$=\phi *)$
14	$x_{6} x_{6} x_{7} x_{7} x_{7}$	$=2 \phi$

*) For this bin we want to show that among the three $x_{6}^{\prime} s$ there is at most one requiring an empty space. For, as it is easily seen, if an x_{6} with shortage falls into a bin $B=\left\{\left(G, x_{6}\right),\left(G, x_{6}^{\prime}, x_{7}\right)\right\}$, this x_{6} can be balanced by itself. Thus we consider only those x_{6} which fall into a bin of form $B=$ $\left\{\left(G, x_{6}\right),\left(G, x_{6}^{\prime}, x_{6}^{\prime \prime}\right)\right\}$. In this case, $G \leq 1-2 z$. From $G+x_{6}>1-x$, we have $x_{6}>2 z-x$. If there are two such x_{6} in $\left\{x_{6}, x_{6}, x_{6}, x_{7}, x_{7}\right\}$, we would have $x_{6}+x_{6}+x_{6}+x_{7}+x_{7} \geq 4 z-2 x+z+2 x=5 z>1$.

Lemma 6.

(i) For a given L, if both x_{4} and x_{6} (or x_{7}) are pieces with shortage, x_{4} can be balanced by itself. The statement is true also for x_{5} and x_{7}.
(ii) If both x_{4} and x_{5} are pieces with shortage, then x_{4} can be balanced by itself and $x_{5}>\frac{1-z}{3}-\delta$.
(iii) If both x_{5} and x_{6} are pieces with shortage, then x_{5} can be balanced by itself and $x_{6}>\frac{1-z}{3}-\delta$.

Proof.
(i) Assume that both x_{4} and x_{6} are pieces with shortage. Let

$$
B_{1}=\left\{\left(G_{1}, x_{4}\right),\left(G_{1}, y_{1}, y_{2}\right)\right\} \text { and } B_{2}=\left\{\left(G_{2}, x_{6}\right),\left(G_{2}, x^{\prime}, x^{\prime \prime}\right)\right\}
$$

be the G-bins into which x_{4} and x_{6} fall respectively.
From Lemma 3, y_{1} and y_{2} must be an x_{6} or an $x_{7}\left(y_{1} \geq y_{2}\right)$ and both y_{1} and y_{2} cannot be pieces with shortage. From $1-x-w\left(G_{1}+x_{4}\right)+w\left(G_{1}+y_{1}+y_{2}\right) \leq 1-x+\frac{9}{22}-\frac{\Delta}{2}-\frac{3}{11}+\frac{\Delta}{3}=$ $1-2 \phi-\delta$ and $1-x-w\left(G+x_{6}\right)+w\left(G+2 x_{6}\right)=1-\delta+\phi$, we see that x_{4} and x_{6} can be balanced by themselves. Similarly, for x_{7}, we have $1-x-w\left(G_{1}+x_{4}\right)+w\left(G_{1}+y_{1}+y_{2}\right)=1-4 \phi-\delta$.
(ii) Let $B=\left\{\left(G, x_{4}\right),\left(G, x_{j}, x_{k}\right)\right\}$ and $B^{\prime}=\left\{\left(G, x_{5}\right),\left(G, x_{p}, x_{q}\right)\right\}$ be the bins into which x_{4} and x_{5} fall . From Lemma 3, we have $j \geq 5$ and

$$
\begin{aligned}
& w\left(G+x_{j}+x_{k}\right)+\left(1-x-w\left(G+x_{4}\right)\right) \\
= & 1-x+w\left(x_{k}\right)-\left(w\left(x_{4}\right)-w\left(x_{j}\right)\right) \\
\leq & 1-x+w\left(x_{6}\right)-w\left(x_{4}\right)+w\left(x_{5}\right) \\
= & 1-x+\frac{9}{44}-\frac{\Delta}{4}-\left(\frac{3}{11}-\frac{\Delta}{3}-\frac{1}{4}+\frac{11}{36} \Delta\right) \\
= & 1-\delta .
\end{aligned}
$$

The inequality $x_{5}>\frac{1-x}{3}-\delta$ can be derived directly from $G-\delta+\frac{1-x}{3}<1-x$ and $G^{\prime}+x_{5}>1-x$.
(iii) The proof is quite the same as (ii).

In the following we will show that all the pieces x_{5} with shortage and all the pieces x_{7} with shortage can be in aggregation balanced by themselves.

Lemma 6 shows that for the pieces with shortage we can assume that all of them either came from R_{4} or from R_{5} or from R_{6} or from R_{7}, but not from any two of them. Our scheme is as follows. We divide all pieces with shortage into groups. For each group we find its total shortage, α say. We add α to $w(L)$ to make every FFD bin in this group have a weight $\frac{9}{11}-\Delta$. From this process, the corresponding OPT bins obtain an amount α. For some group, these OPT bins have not so large a space to hold α that the weight of each bin does not exceed $1-\delta$. For such a case we find out the quantity of the supernumery, β say. Suppose the group has m bins in total. For each $\frac{\beta}{m}$ we want to identify an optimal bin such that if an x_{i} with shortage falls into it, it can provide enough space for this x_{i} and the quantity $\frac{\beta}{m}$.
(a) Now assume first that some $x_{4}^{\prime} s$ are pieces with shortage. For an FFD G-23-bin $\left(G, x_{4}\right)$, its OPT bin can only be one of $\left(G, x_{4}, x_{6}\right),\left(G, x_{4}, x_{7}\right),\left(G, x_{5}, x_{6}\right),\left(G, x_{5}, x_{7}\right)$, $\left(G, x_{6}, x_{6}\right)$ and $\left(G, x_{6}, x_{7}\right)$. By Lemma 3 (with $k=7$), only bins with no x_{7} in it need to be considered. Let

$$
A_{1}=\left\{B \in G \mid B=\left\{\left(G, x_{4}\right),\left(G, x_{4}^{\prime}, x_{6}\right)\right\}, x_{4} \text { in }\left(G, x_{4}\right) \text { is a piece with shortage }\right\}
$$

Let $A_{1}^{\prime}=\sum w\left(G_{\prime \prime}+x_{4}\right)$ and $A_{1}^{\prime \prime}=\sum w\left(G+x_{4}^{\prime}+x_{6}\right)$, where the sums are taken over bins in A_{1}. Evidently, $A_{1}^{\prime \prime}=A_{1}^{\prime}+\left(\frac{9}{44}-\frac{\Delta}{4}\right)\left|A_{1}\right|$. Let $A_{1}^{\prime}=\left(\frac{9}{11}-\Delta\right)\left|A_{1}\right|-\alpha . \alpha$ is the total shortage of set A_{1}. (The α will be used later. Needless to say, its value varies with the given set.) Then

$$
\begin{aligned}
A_{1}^{\prime \prime} & =\left(\frac{9}{11}-\Delta\right)\left|A_{1}\right|-\alpha+\left(\frac{9}{44}-\frac{\Delta}{4}\right)\left|A_{1}\right| \\
& =(1-\delta)\left|A_{1}\right|-\alpha+\left(\frac{1}{44}-\frac{\Delta}{36}\right)\left|A_{1}\right|
\end{aligned}
$$

When we add α to the total weight $w\left(A_{1}\right)$ of all bins in $\left|A_{1}\right|$, we can make the weight of every FFD bin in A_{1} up to $\frac{9}{11}-\Delta$. However, from this process, the corresponding OPT
bins in A_{1} have a total supernumerary $\left(\frac{1}{44}-\frac{\Delta}{36}\right)\left|A_{1}\right|$. Later we will show that, for each x_{4} with shortage, the optimal bin containing it will provide a space $\left(\frac{1}{44}-\frac{\Delta}{36}\right)$ for it.

Similarly, for the sets $A_{2}=\left\{B \in G \mid B=\left\{\left(G, x_{4}\right),\left(G, x_{5}, x_{6}\right)\right\}\right\}$ and $A_{3}=\{B \in G \mid B=$ $\left.\left\{\left(G, x_{4}\right),\left(G, x_{6}, x_{6}\right)\right\}\right\}$, where the x_{4} in bin $\left(G, x_{4}\right)$ is a piece with shortage, we have

$$
\begin{gathered}
A_{2}^{\prime \prime}=(1-\delta)\left|A_{2}\right|-\alpha-\frac{\Delta}{36}\left|A_{2}\right| \\
A_{3}^{\prime \prime}=(1-\delta)\left|A_{3}\right|-\alpha-\left(\frac{1}{22}-\frac{1}{18} \Delta\right)\left|A_{3}\right| .
\end{gathered}
$$

In these cases, bins in each set can be, in aggregation, balanced by themselves.
(b) Assume that some of the x_{5} 's are pieces with shortage. From $G+x_{5}>1-x$, we have $G>\frac{2}{3}(1-x)$ and $G+\frac{1-z}{3}+z \geq 1+\frac{2}{3}(z-x)>1$. Therefore, no combination $\left(G, x_{5}, x_{6}\right)$ is possible. Only bins of form $\left\{\left(G, x_{5}\right),\left(G, x_{6}, x_{6}\right)\right\}$ need to be considered. As before, let

$$
A_{4}=\left\{B \in G \mid B=\left\{\left(G, x_{5}\right),\left(G, x_{6}, x_{6}\right)\right\}, x_{5} \text { is a piece with shortage }\right\}
$$

we have

$$
A_{4}^{\prime \prime}=(1-\delta)\left|A_{4}\right|-\alpha-\left(\frac{1}{44}-\frac{11}{18} \Delta\right)\left|A_{4}\right|
$$

(c) Assume that some of the x_{6} 's are pieces with shortage. Let
$A_{5}=\left\{B \in G \mid B=\left\{\left(G, x_{6}\right),\left(G, y, y^{\prime}\right)\right\}\right.$, where the $x_{6}{ }^{\prime} s$ are pieces with shortage $\}$.
Since $G+x_{6}>1-x, y$ and y^{\prime} can be x_{6} or x_{7} only. By Lemma 3 , we only consider $B=\left\{\left(G, x_{6}\right),\left(G, x_{6}, x_{6}\right)\right\}$. For this case, we have directly

$$
A_{5}^{\prime \prime}=(1-\delta)\left|A_{5}\right|-\alpha+\left(\frac{1}{44}-\frac{\Delta}{36}\right)\left|A_{5}\right|
$$

(d) Assume that some of the x_{7}^{\prime} s are pieces with shortage. Let

$$
A_{6}=\left\{B \in G \mid B=\left\{\left(G, x_{7}\right),\left(G, x_{7}, x_{7}\right)\right\}, \text { the } x_{7} \operatorname{in}\left(G, x_{7}\right) \text { is a piece with shortage }\right\}
$$

By a simple calculation, we have

$$
A_{6}^{\prime \prime}=(1-\delta)\left|A_{6}\right|-\alpha
$$

From what we proved above what we want to do is to provide every x_{4} (or x_{6}) with shortage with a space of size $\geq \frac{1}{44}-\frac{\Delta}{36}$.
(e) From Lemma 2, if a piece x_{i} with shortage does not fall into a non- G-bin, it must fall into (i) a bin of form $B=\left\{\left(G, x_{1}\right),(G, \cdot, \cdot)\right\}$ or (ii) a G-33-bin, or (iii) a bin $B=$ $\left\{\left(G, x_{j}\right),\left(G, x_{i}, \cdot\right)\right\}$ with $j \geq 2$ and $y+y^{\prime}<\frac{1}{2}(1-x)$, where $B^{\prime}=\left\{\left(G^{\prime}, x_{i}\right),\left(G^{\prime}, y, y^{\prime}\right)\right\}$ is the bin from which x_{i} comes.
(i, a) Assume that x_{4} falls into a bin $B=\left\{\left(G, x_{1}\right),\left(G, x_{4}, y\right)\right\}$. From Lemma 6, we need not consider whether y is a piece with shortage or not. Since $x_{4}+x_{5}>\frac{1}{2}$, we consider the case $y=x_{6}$ only. In this case, the total weight of bins $\left(G, x_{1}\right)$ and $\left(G^{\prime}, x_{4}\right)$ is

$$
\geq w\left(G+\frac{9}{22}-\frac{\Delta}{2}+G^{\prime}+\frac{1-x}{3}\right)>1-2 \delta+\frac{15}{22}-\frac{5}{6} \Delta>2\left(\frac{9}{11}-\Delta\right)
$$

(i,b) Assume that x_{6} falls into a bin $B=\left\{\left(G, x_{1}\right),\left(G, x_{6}, y\right)\right\}$. Since $w\left(G+x_{1}\right)>$ $\frac{1}{2}-\delta+\frac{9}{22}-\frac{\Delta}{2}=\frac{9}{11}-\Delta+\frac{1}{11}-\delta+\frac{\Delta}{2}>\frac{9}{11}-\Delta+3\left(\frac{1}{44}-\frac{\Delta}{36}\right)$, the shortage of x_{6} and the shortage of y, if y is a piece with shortage, can be balanced by B.
(ii,a) Assume that x_{4} falls into a G-33-bin $B=\left\{\left(G, x^{\prime}, x^{\prime \prime}\right),\left(G, x_{4}, y\right)\right\}$. Since $w(G+$ $2 x_{7}$) $>\frac{1}{2}-\delta+\frac{4}{11}-\frac{4}{9} \Delta=\frac{9}{11}-\Delta+\frac{1}{22}-\delta+\frac{5}{9} \Delta>\frac{9}{11}-\Delta+\left(\frac{1}{44}-\frac{\Delta}{36}\right)$, the shortage of x_{4} can be balanced by $B-P$.
(ii,b) Assume that x_{6} falls into a G-33-bin $B=\left\{\left(G, x^{\prime}, x^{\prime \prime}\right),\left(G, x_{6}, y\right)\right\}$. In this case, y may be a piece x_{6} with shortage. Since

$$
w\left(G+2 x_{7}\right)=G-\delta+\frac{4}{11}-\frac{4}{9} \Delta=\frac{9}{11}-\Delta+\left(G-\frac{5}{11}-\delta+\frac{5}{9} \Delta\right)
$$

and

$$
w\left(G+2 x_{6}\right)=G-\delta+\frac{9}{22}-\frac{\Delta}{2}=1-\delta-\left(\frac{13}{22}-G+\frac{\Delta}{2}\right)
$$

we have, if $G<\frac{13}{22}+\frac{\Delta}{2}$, the sum of the superfluity of $B-P$ and the empty space of $B-P^{*}$

$$
\geq\left(G-\frac{5}{11}-\delta+\frac{5}{9} \Delta\right)+\left(\frac{13}{22}-G+\frac{\Delta}{2}\right)=\frac{3}{22}-\delta+\frac{19}{18} \Delta>2\left(\frac{1}{44}-\frac{\Delta}{36}\right)
$$

If $G \geq \frac{13}{22}+\frac{\Delta}{2}$, the superfluity of $B-P$

$$
\geq\left(G-\frac{5}{11}-\delta+\frac{5}{9} \Delta\right)>2\left(\frac{1}{44}-\frac{\Delta}{36}\right)
$$

In either case the shortages of x_{6} and y can be balaned by B.
(iii) Assume $x_{i}\left(i=4\right.$ or 6) falls into a G-bin $B=\left\{\left(G, x_{j}\right),\left(G, x_{i}, \cdot\right)\right\}$ with $j \geq 2$, and $B^{\prime}=\left\{\left(G, x_{i}\right),\left(G, x^{\prime}, x^{\prime \prime}\right)\right\}$ is the bin from which x_{i} comes. By Lemma 2, we have $x^{\prime}+x^{\prime \prime} \leqslant \frac{1}{2}(1-x)$. Thus we have $x^{\prime \prime}=x_{7}$ and $x^{\prime}=x_{6}$ or x_{7}. By Lemma 3 (with $k=7$), x_{i} can be balanced by themselves.
(f) Now we consider x_{3}. By the definition of the weighting function, it may happen that $w\left(G+x_{3}\right)<1-x$. This happens only when $G<\frac{1}{2}+\delta-\frac{11}{18} \Delta$. In such a case, the maximal shortage is $\delta-\frac{11}{18} \Delta$. It is easy to check that for the optimal bin of such a G, the only possible combinations are (G, x_{5}, x_{6}), (G, x_{6}, x_{6}) and (G, x_{6}, x_{7}). In either case, its weight is $\leq 1-\delta-2 \delta$.

Now we want to consider those pieces with shortage which fall into some non- G-bins. The possible worst combinations for an optimal non- G-bin and the corresponding total weights are listed in Table 5. From Cases (a)-(d) considered above and Lemma 6, we consider x_{6} 's and x_{4} 's only. Notice that, for a given list L, among x_{4} and x_{6} only one type can be pieces with shortage. From Table 5, we see that all optimal non- G-bins can provide enough room for the pieces with shortage which fall into it.

Let A be the sum of all shortages. (Modifications should be made for the special cases mentioned above. E.g., in Case (ii,b), what we add to A is not the shortage of x_{6}, but this shortage minus the superfluity of $B-P$). In the definition of the weighting function, there may be three bins: the bin B_{1} between R_{1} and R_{2}, B_{2} between R_{4} and R_{5}, and B_{3} between R_{6} and R_{7}, in which pieces come from different regions. E.g., B_{1} may contain an x_{1} and an x_{2}, etc. For B_{1}, B_{2} and B_{3}, we define the weight of each piece in them equal to its size and call them irrgular pieces. If B_{i} has $i+1$ pieces in it, we define the weight of each piece as those given in Table 4. There are at most 9 irregular pieces in total. When an irregular piece falls into an optimal bin, this bin may have a weight $1=1-\delta+\delta$. Noticing that the last FFD-bin contains a piece, x, only, its weight $=\frac{2}{11}-\frac{2}{9} \Delta=\frac{9}{11}-\Delta-\frac{7}{11}+\frac{7}{9} \Delta$.

There may be a bin B_{0} between R_{3} and $R_{4}, B_{0}=\left\{x_{3}, x_{4}, x_{i}\right\}, i \in\{4,5,6\}$, which may have a weight $\frac{9}{11}-\Delta-\phi$, if $i=6$. For B_{0}, if $x_{3}+x_{4} \geq 1-x-z+3 \delta$, we define the weight of each piece in B_{0} as its size. If $x_{3}+x_{4}<1-x-z+3 \delta$, we have $x_{3}+x_{4} \leq \frac{2}{3}$, so that i can be 4 or 5 . If no x_{4} or x_{5} exists, there is no B_{2}. We define the weight of each item in $B_{0}=\left\{x_{3}, x_{4}, x_{6}\right\}$ as those given in Table 4, so that $w\left(x_{3}+x_{4}+x_{6}\right)=\frac{9}{11}-\Delta-\phi$. Thus we have

$$
\begin{align*}
& \quad\left(\frac{9}{11}-\Delta\right) \operatorname{FFD}(L)-\frac{7}{11}+\frac{7}{9} \Delta \tag{4}\\
& \leq w(L)+A \leq(1-\delta) \operatorname{OPT}(L)+6 \delta+ \begin{cases}3 \delta, & \text { if } B_{2} \text { exists } \\
\phi, & \text { otherwise }\end{cases}
\end{align*}
$$

If B_{2} does not exist, (4) becomes

$$
\left(\frac{9}{11}-\Delta\right) \operatorname{FFD}(L) \leq(1-\delta) \mathrm{OPT}(L)+6 \delta+\phi+\frac{7}{11}-\frac{7}{9} \Delta .
$$

It is easy to verify that $6 \delta+\phi+\frac{7}{11}-\frac{7}{9} \Delta \leq \frac{9}{11}-\Delta$. Thus we have (1). Now we assume B_{2}, and therefore x_{4} exists.

In the following we want to show that, if B_{1} exists (otherwise we can omit 2δ from the righthand side of (4)), either we have a surplus δ on the lefthand side of (4), or we can omit a δ from the righthand side of (4). If $B_{1}=\left\{x_{1}, x_{2}\right\}$, it means x_{2} exists. From Table 5, we see that all optimal bins containing an x_{2} has a room $\geq \delta$. So we can take one δ from the 9δ and put it into the optimal bin containing x_{2}, and then the righthand side of (4) becomes $(1-\delta) \mathrm{OPT}(L)+8 \delta$. Let $B_{1}=\left\{x_{1}, x_{3}\right\}$ or $\left\{x_{1}, x_{4}, \cdot\right\}$. For this x_{1}, we assume that the bin (x_{1}, x_{4}, x_{4}) is a possible combination in the OPT packing, otherwise every optimal bin containing x_{1}, has a room $\geq \delta$. Thus we have $x_{1} \leq 1-\frac{2}{3}(1-x)=\frac{5}{11}+\frac{2}{3} \Delta$. When it is the turn of x_{1} to be processed in the FFD packing, there are two possibilities: (i) no G left, i.e. all FFD G-bins are of form (G, x_{1}^{\prime}) which has a weight $>\frac{9}{11}-\Delta+\delta$, or (ii) all pieces G left are too large so that $G+x_{1}>1$, and therefore $G \geq \frac{6}{11}-\frac{2}{3} \Delta$. Thus we have $w\left(G+x_{3}\right) \geq \frac{9}{17}-\Delta+\delta, \forall x_{3}$. If no x_{3} exists, we have $B_{1}=\left\{x_{1}, x_{4}^{\prime}, x_{i}\right\}, i \in\{4,5,6,7\}$, since $x_{4}^{\prime}+x \leq \frac{2}{3}(1-x) \leq x_{4}+x_{4}$. In this case we define the weight of each piece in B_{1} as those given in Table 4, It makes B_{1} have a total weight $>\frac{9}{11}-\Delta+\delta$. Thus our assertion has been proved. And therefore (4) becomes

$$
\left(\frac{9}{11}-\Delta\right) \mathrm{FFD}(L)-\frac{7}{11}+\frac{7}{9} \Delta \leq(1-\delta) \mathrm{OPT}(L)+8 \delta
$$

From this (1) follows immediately since $\frac{7}{11}-\frac{7}{9} \Delta+8 \delta \leq \frac{9}{11}-\Delta$. Thus no counter-example to (1) exists.

References

[1] D.S. Johnson: Near-Optimal Bin-Packing Algorithms. Doctoral thesis, M.I.T., Cambridge, Mass., 1973.
[2] B.S. Baker: A New Proof for the First-Fit Decreasing Bin-Packing Algorithm, J. Algorithms, 6 (1985), 49-70.
[3] E.G. Coffman Jr., M.R. Garey and D.S. Johnson: An Application of Bin-Packing to Multiprocessor Scheduling, SIAM J. Comput, 7 (1987), 1-17.
[4] Minyi Yue: On the Exact Upper Bound for the Multifit Processor Scheduling Algorithm, Operations Research in China (ed. Minyi Yue), 233-260, Ann. Oper. Res., 24 (1990).

[^0]: ＊Received March 20， 1991.
 $\dagger_{\text {In Commemoration of the } 15 \text { th Anniversary of the Acta Mathematicae Applicatae Sinica．}}$
 \ddagger^{\dagger} This work was done when the author visited the Fcrschungsinstitut für Diskrete Mathematik of Universität Bonn during the period from September to December，1990．Supported by Sonderforshungsbereich 303 （DFG）．

