
New Worst-case Results for the Bin-Packing Problem 
David Simchi-Levi 

Department of Industrial Engineering and Operations Research, Columbia University, 
New York, New York 10027 

and 
Department of Industrial Engineering and Management Sciences, 

Northwestern University, Evanston, Illinois 60208-31 19 

In this note we consider the familiar bin-packing problem and provide new worst-case 
results for a number of classical heuristics. We show that the first-fit and best-fit heuristics 
have an absolute performance ratio of no more than 1.75, and first-fit decreasing and 
best-fit decreasing heuristics have an absolute performance ratio of 1.5. The latter is the 
best possible absolute performance ratio for the bin-packing problem, unless P = N P .  
0 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

The bin-packing problem can be stated as follows: given a list of n real numbers L = 
( w l ,  w2, . . . , w,,), where we call wi E (0, 11 the size of item i ,  the problem is to assign 
each item to a bin such that the sum of the item sizes in a bin does not exceed 1, while 
minimizing the number of bins used. For simplicity, we also use L as a set, but this 
should cause no confusion. In this case, we write i E L to mean wi E L .  

The bin-packing problem belongs to the class of NP-hard problems, and therefore the 
existence of a polynomial time algorithm to solve the problem optimally is unlikely. As 
a result, since the early 1970s much research has been conducted on heuristics that solve 
the problem to near optimality. An excellent survey of the research on this problem is 
available in Coffman, Garey, and Johnson [2]. 

This note is concerned with the performance of the first-fit (FF), best-fit (BF), first- 
fit decreasing (FFD), and best-fit decreasing (BFD) heuristics developed and analyzed 
by Johnson et al. [5].  The heuristic FF assigns items to bins according to the order they 
appear in the list without using any knowledge of subsequent items in the list. It can be 
described as follows: Place item 1 in bin 1. Suppose we are packing item j ,  place item 
j in the lowest indexed bin whose current content does not exceed 1 - wj. The BF 
heuristic is similar to FF except that it places item j in the bin whose current content is 
the largest but does not exceed 1 - wj. In contrast to these heuristics, FFD first sorts 
the items in nonincreasing order of their size and then performs FF. Similarly, BFD first 
sorts the items in nonincreasing order of their size and then performs BF. 

Let bH(L)  be the number of bins produced by a heuristic H on list L .  Similarly, let 
b*(L)  be the minimum number of bins required to pack the items in list L ;  that is, b*(L) 
is the optimal solution to the bin-packing problem defined on list L. 

Naval Research Logistics, Vol. 41, 579-585 (1994) 
Copyright 0 1994 by John Wiley & Sons, Inc. CCC 0894-069X/94/040579-07 



580 Naval Research Logistics, Vol. 41 (1994) 

The best bounds on the performance of FF and BF heuristics are given in Garey, 
Graham, Johnson, and Yao [3], where they show that 

and 

bFF(L) 5 

bBF(L) 5 

Currently, the best bounds on the performance of FFD and BFD heuristics have been 
obtained by Baker [l], who shows that 

bFFD(L) 11 3 
5-+- 

b*(L) 9 b*(L)  

and 

bBFD(L) 11 3 
5 - + -  

b*(L) 9 b*(L)* 

Johnson et al. [5] provide examples of instances with arbitrarily large values of b*(L) 
such that the ratios bFF(L)/b*(L) and bBF(L)/b*(L)  approach 8, and bFFD(L)/b*(L) and 
bBFD(L)Ib*(L) approach 9 .  Thus, the asymptotic performance ratio of the FF and BF 
heuristics is 8, and FFD and BFD heuristics have an asymptotic performance ratio of 
Y. That is, the maximum deviation from optimality for all lists that are sufficiently large 
is no more than 6 times the minimal number of bins in the case of FF and BF, and 3 in 
the case of FFD and BFD. 

In this article, however, we are interested in the so-called absolute performance ratio 
of these heuristics. This performance measure is defined as follows: For any heuristic 
H ,  the absolute performance ratio RH is given by 

Thus, the absolute performance ratio for a heuristic H gives, for all possible lists, the 
heuristic solution’s maximum deviation from optimality. 

Let XF be either FF or BF and let XFD be either FFD or BFD. We prove the following. 

THEOREM 1.1: For all lists L ,  

bxF(L) 
b*(L) 1’75 

and 

I 1.5.  bXFD(L) 
b*(L) 
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Garey and Johnson [4, p. 1281 point out that it is easy to construct examples in which 
an optimal solution uses 2 bins, and FFD uses 3 bins. The same holds for BFD. Similarly, 
Johnson et al. give examples in which an optimal solution uses 10 bins while FF and BF 
use 17 bins. Thus, the absolute performance ratio for FFD and BFD is exactly 1.5, and 
it is at least 1.7 but no more than 1.75 for FF and BF. 

Observe that these new worst-case results are better than those already known for 
instances of the bin-packing problem in which the optimal number of bins is not too 
large. That is, the new worst-case bounds for FF and BF are tighter when the number 
of bins in an optimal solution is no more than 13, and they are sharper in the case of 
FFD and BFD when the optimal number of bins is no more than 9. In all of the above 
cases, i.e., even when b*(L)  is small, the bin-packing problem is still difficult. This is 
true because the 2-partition problem, which is known to be NP-complete (see [4]) can 
be polynomially reduced to the problem of deciding whether or not it is possible to pack 
all the items in two bins. This also implies that no polynomial-time heuristic has an 
absolute performance ratio smaller than 1.5 for the bin-packing problem, unless P = 
N P .  This is obvious, because such a heuristic could be used to solve the 2-partition in 
polynomial time. Thus, we conclude that both the FFD and BFD heuristics have the 
best possible absolute performance ratios for the bin-packing problem, among all 
polynomial-time heuristics. 

We now define the following terms which will be used throughout the article: An item 
is called large (small) if its size is greater than 4 (no more than t ) .  Similarly, define a 
bin to be of Type I if it has only small items, and a bin is of Type I1 if it is not a Type 
I bin; that is, it has at least one large item in it. 

Finally, we recall some definitions used throughout the bin-packing literature. Call a 
bin feasible if the sum of the item sizes in the bin does not exceed 1. An item is said to 
fit in a bin if the bin resulting from the insertion of this item is a feasible bin. In addition, 
a bin is said to be opened when an item is placed in a bin that was previously empty. 

The article is organized as follows. In Section 2, we prove the worst-case results for 
FF and BF, and in Section 3 we establish the absolute performance ratios for FFD and 
BFD. 

2. FIRST-FIT AND BEST-FIT 

The proof of the worst-case bounds for FF and BF heuristics is based on the following 

PROPERTY 2.1: Consider the jth bin, j 2 2, opened by XF. Any item that was 
assigned to it before it was more than half full does not fit in any bin opened by XF 
prior to bin j .  

PROOF: The property is clearly true for FF (and in fact holds for any item assigned 
to the jth bin, j 2 2, not necessarily to items assigned to it before it was more than half 
full). To prove the property for BF, suppose, by contradiction, item i was assigned to 
the jth bin before it was more than half full, and this item fits in one of the previously 
opened bins, say the kth bin. Clearly, in that case i cannot be the first item assigned to 
thejth bin, because BF would not have opened a new bin if i fits in one of the previously 
opened bins. Let the levels of bins k and j ,  just before the time item i was packed, be 
Lk and Lj and let item h be the first item in bin j .  Hence, wh < Lj < 0.5 by hypothesis. 
Because BF assigns an item to the bin where it fits with the largest content, and item i 

observation. 
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would have fit in bin k ,  we have Lj > Lk, Thus, Lk < 0.5 meaning that item h would 
have fit in bin k. a contradiction. W 

A similar property is used in Johnson et al. [5] for their proof of the asymptotic 
performance ratio of BF and FF. We use Property 2.1 to construct a lower bound on 
the optimal number of bins. For this purpose, we introduce the following procedure. 
For a given integer u,  2 5 u I bXF(L), select u bins from those produced by XF. Index 
the u bins in the order they are opened starting with index 1 and ending with index u. 
Let .Xj be the set of items assigned by XF to the jth bin before it was more than half 
full, j = 1, 2, , . . , u.  Let Sj be the set of items assigned by XF  to the j th  bin, j = 1, 
2, . . . , u.  Observe that X j  Sj for all j = 1, 2, . . . , u. 

PROCEDURE A: 

Step 1: 
Step 2: 

Let X,' = X,, i = 1, 2 ,  . . . , u .  
For i = 1 to u - 1 do begin 

Let X ;  be the nonempty set X i  with the highest index. 
If j = i Stop. 
Else, let u be the smallest item in X;. 

Set S, + S, u {u} ,  
and X; + X;\{u}. 

end. 

In view of Property 2.1 it is clear that Procedure A generates nonempty subsets S1, 
S2, . . . , S,, for some m 5 u ,  such that XwSj  w, > 1 for j = 1 ,  2, . . . , m - 1 and 
possibly for j = m. This is true because (using the definition of u,  i, and j in Procedure 
A) by Property 2.1 item u ,  originally assigned to bin j before it was more than half full, 
does not fit in any bin i with i < j .  

PROPERTY 2.2: 

PROOF: Because bins 1 ,2 ,  . . . , m - 1 generated by Procedure A are not feasible, 
we have X;=l ZIES, w, > m - 1. Note that every item in UY=m+l X ,  is moved by Procedure 
A to exactly one S,, j = 1, 2, . . . , m - 1 and possibly to S,. Thus, if S, is feasible, 
that is, no (additional) item is assigned by Procedure A to S,, then IUY=m+l X,( I m - 
1 < 2;=l XI,,, w,. If, on the other hand, an item is assigned by Procedure A to S,, then 
all the subsets S,, j = 1, 2, . . . , m, are not feasible, and therefore m = IUY,, t l  X,i < 

We are now ready to prove our result on the absolute performance ratio of the X F  
heuristic (with XF being either FF or BF). Let c be the number of large items in the 
list L.  Without loss of generality, assume bXF(L) > c, because otherwise the solution 
produced by XF is optimal. So, bxF(L) - c > 0 is the number of Type I bins produced 
by XF. We consider the two cases of c being even or odd. 

In this case we partition the bins produced by XF  into two sets. 
The first set includes only Type I bins, and the second set includes the remaining bins 
produced by XF, that is, all the Type I1 bins. Index the bins in the first set in the order 

x:y=l xlEsj w,. m 

CASE 1 (c is even): 
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they are opened, from 1 to bXF(L) - c. Let u = bxF(L) - c, and apply Procedure A 
to the set of Type I bins, producing m bins out of which at least m - 1 are not feasible. 

PROPERTY 2.3: If c is even, then 

PROOF: Combining Property 2.2 with the fact that no two large items fit in the 
same bin, we have ZiEL wi > m - 1 + c/2. On the other hand, every bin in an optimal 
solution is feasible, and therefore XiEL wi 5 6*(L) .  Hence, m + c/2  I b*(L). Because 
we applied Procedure A only to the Type I bins produced by XF, each one of these bins 
has at least two items, except possibly one, which may have only one item. Hence, 
2(bXF(L) - m - c - 1) + 1 5 IU;=m+l Xjl and therefore, using Property 2.2, 

2(bxF(L) - m - c - 1) + c/2 + 1 < wi 1. b*(L),  
E L  

or 

2(bXF(L) - m - c - 1) + c/2 + 2 5 b*(L). 

Rearranging the left-hand side gives the second lower bound. 

THEOREM 2.4: If c is even, then 

bXF(L) 5 1.75b*(L). 

PROOF: From Property 2.3 we have 2(bXF(L) - rn) - 3c/2 5 b*(L).  Hence, 

I 1.75b*(L), 

because m + c/2 is a lower bound (Property 2.3) on b*(L) and c is also a lower 
bound. 

CASE 2: (c is odd): In this case we partition the set of all bins generated by the XF 
heuristic in a slightly different way. The first set of bins, called B,, comprises all the 
Type I bins except the last Type I bin opened by XF. The second set is made up of the 
remaining bins, that is, these are all the Type I1 bins together with the Type I bin not 
included in B1. We now apply procedure A to the bins in B1 (with u = bxF(L) - c - 
l), producing m bins, out of which at least m - 1 bins are not feasible. 
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PROPERTY 2.5: If c is odd, then 

1 
2 2 2  + m + -, 2(bXF(L) - m) - 

PROOF: Take one of the Type I1 bins and match it with the only Type I bin not in 
B1;  the total weight of these two bins is more than 1. Thus, using Property 2.2, we have 
(c - 1)/2 + 1 + (m - 1) < X j E L  w; 5 b*(L) which proves the first lower bound. To 
prove the second lower bound, we use the fact that every bin in B1 has at least two items 
and therefore 2(bxF(L) - m - c - 1) 5 IUy=m+l Xi/. Using Property 2.2, we get 

c - 1  
2(bXF(L) - m - c - 1) + - + 1 < 2 w; 5 b*(L),  

2 E L  

or 

c - 1  
2 2(bXF(L) - m - c - 1) + - + 2 5 b*(L).  

Rearranging the left-hand side gives the second lower bound. 

THEOREM 2.6: If c is odd. then 

bXF(L) f 1.75b*(L) - a. 
PROOF: From Property 2.5 we have 2(bXF(L) - m) - 3c /2  - i I b*(L).  Hence, 

2 

5 1.75b*(L) - -. 1 
4 

3. FIRST-FIT DECREASING AND BEST-FIT DECREASING 

The proof of the worst-case bounds for FFD and BFD is based on Property 2.1 (which 
implies that if a bin produced by these heuristics contains no large item, then the first 
two items assigned to this bin cannot fit in any bin opened prior to it) and the fact that 
the list is ordered with all large items first. 

Recall that XFD denotes either FFD or BFD. Index the bins produced by XFD in 
the order they are opened. Let bXFD(L) = 3x + p for some integer x ,  x 2 1, and p = 
0, 1, 2. There are three cases depending on the value of p. First, suppose p is either 0 
or 1. Consider bin 2x + 1 (Le., the bin whose index j satisfies j = 2x + 1). If this bin 
contains a large item we are done, because in that case b*(L) L 2x + 1 > 3bXFD(L). 
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Otherwise, bins 2x + 1 through 3x + p must collectively contain at least 2x + 2p - 1 
small items, none of which can fit in the first 2x bins. Hence, the sum of the item sizes 
exceeds min{2x, 2x + 2p - l}, which is not smaller than 2x + p - 1, because p is 
either 0 or 1. This implies that b*(L)  2 2x + p 2 8bXFD(L). 

Similarly, suppose p = 2; that is, bXFD(L) = 3x + 2. If bin 2x + 2 contains a large 
item we are done, because in that case b*(L)  5: 2x + 2 > fbXFD(L). Otherwise, bins 
2u + 2 through 3x + 2 collectively contain at least 2x + 1 small items, none of which 
can fit in the first 2x + 1 bins, implying the sum of the item sizes exceeds 2x + 1 and 
hence b*(L) ’r 2x + 2 > 3bXFD(L). 
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