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Abstract. First Fit Decreasing is a classical bin packing algorithm: the
items are ordered into their nonincreasing order, and then in this order
the next item is always packed into the first bin where it fits. For an
instance I let FFD(I) and OPT (I) denote the number of the used bins
by algorithm FFD, and an optimal algorithm, respectively. We show in
this paper that

FFD(I) ≤ 11/9OPT (I) + 6/9, (1)

and that this bound is tight. The tight bound of the additive constant
was an open question for many years.
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1 Introduction

We can define the classical bin packing problem in the next way: There are
items with sizes y1, y2, ..., yn, which are positive real numbers, we are looking for
minimum number of unit capacity bins, so that each item is packed into exactly
one of the bins, and the sum of the sizes of the items being packed into a bin can
not be more than 1. The problem is NP -hard, and FFD (First Fit Decreasing) is
a classical bin packing algorithm: the items are ordered into their nonincreasing
order, and then in this order the next item is always placed into the first bin,
where it fits. For an instance I let FFD(I) and OPT (I) denote the number of
the used bins by algorithm FFD, and an optimal algorithm, respectively.

D.S. Johnson in his doctoral thesis in 1973 showed [5] that FFD(I) ≤
11/9OPT (I)+4. Later, B.S. Baker [2], in 1985 gave a slightly simpler proof, and
showed that the additive constant is not more than 3. Then, in 1991, Yue Minyi
[4] proved that FFD(I) ≤ 11/9OPT (I) + 1, but his proof has some problems.
It is not easy to understand, and leaves many gaps to be verified by the reader.
Later, in 1997, Li Rongheng and Yue Minyi [1] again tightened the additive con-
stant to be 7/9, but they do not prove the statement, only give a draft about
it. In that paper the authors also conjectured that the tight additive constant is
5/9. What is the least value of the additive constant was an open question for
many-many years. Now we show that

FFD(I) ≤ 11/9OPT (I) + 6/9, (2)
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and prove that this bound is already the tight one, the additive constant can not
be further decreased. We follow mainly (but not completely) the proof of [4].

Since the tight upper bound was not known previously, even the next question,
which seems to be quite trivial, could not be answered: Is there an instance I
for the problem for which OPT (I) = 5 and FFD(I) = 7 hold? In the recent
work [6] we give a short proof that there is not such instance. (From statement
(2) follows that there can not be such instance, but if we know only FFD(I) ≤
11/9OPT (I) + 1, the question can not be answered.) The next example shows
that the additive constant can not be less than 6/9: (this example is a simple
modification of that being in [3], Chapter 2, page 16). The example consists
of six fully packed optimal bins, an the items are packed by FFD into eight
bins. Then the upper bound (2) is proven to be tight, since 11/9 · 6 + 6/9 =
72/9 = 8. The example is as follows: Let B1 = {1/2 + ε, 1/4 + ε, 1/4 − 2ε}, and
B2 = {1/4 + 2ε, 1/4 + 2ε, 1/4 − 2ε, 1/4 − 2ε}. If there are 4 copies from B1 and
2 copies from B2 in the optimal packing, the number of FFD bins will be 8. We
also get the tight bound, if the number of the previous optimal bins are 6k + 4
and 3k + 2, respectively.

Can we now give (supposing that (2) really holds) for all integer m the biggest
possible number n, such that OPT (I) = m and FFD(I) = n? We need for this
purpose one more example: If there are 6k + 1 copies from B1 and 3k + 1 copies
from B2 in the optimal packing, the number of FFD bins will be 11k + 3. Then
we get the next table for the maximum possible values of n, (we denote the
difference of the n and m by d):

OPT(I)=m 1 2 3 4 5 6 7 8 9 10
FFD(I)=n 1 3 4 5 6 8 9 10 11 12

n-m=d 1 1 1 1 2 2 2 2 2
m 11 12 13 14 15 16 17 18 19
n 14 15 16 17 19 20 21 22 23
d 3 3 3 3 4 4 4 4 4
m 20 21 22 23 24 25 26 27 28
n 25 26 27 28 30 31 32 33 34
d 5 5 5 5 6 6 6 6 6

For higher values of m, n, and d the table follows in the same way.
For example, there exists such instance, for which the number of the bins in

an optimal packing is 5, and the number of bins used by FFD is 6, but this
latter value can not be bigger. Without the tight upper bound (2) and previous
examples we could not know the maximum value of n in infinite many cases.
Then now, it remained only to see the proof for the upper bound. Since the
complete detailed proof requires more than 30 pages and we have a page limit,
some details can not be treated here, but the author gladly send the manuscript
with the whole proof to the interested reader.
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2 Preliminaries

In this paper we show the next theorem:

Theorem 1. 9FFD(L) ≤ 11OPT (L) + 6.

Proof: It is trivial, that this statement is equivalent with (2), and since FFD(I)
and OPT (I) are integers, it suffices to show that there is not such instance for
which

9FFD(I) ≥ 11OPT (I) + 7 (3)

holds. Suppose to the contrary that I is a minimal counterexample, i.e. contains
minimum number of items, and (3) holds. It is trivial that then OPT (I) ≥ 2
and FFD(I) ≥ 3 must hold.

Let us denote the optimal bins as B∗
i for i = 1, ..., OPT (I), and the FFD bins

as Bi for i = 1, ..., FFD(I). The sum of the sizes of items being packed into a
bin will be denoted as Y (Bi), and Y (B∗

i ), respectively. From the minimality of
the counterexample follows that the last FFD bin contains only one, i.e. the last
item. Let this item be denoted as X . (The size of this item also will be denoted
simply as X .) Let the size of the items be yk, for k = 1, ..., n, we also denote the
items as yk. We suppose w.l.o.g. that the size of the items are nonincreasing, i.e.
y1 ≥ y2 ≥ ... ≥ yn = X .

We also use the next denotations: Let the j-th item of the i-th optimal bin be
denoted as A∗

i,j for every i = 1, ..., OPT (I), and let the j-th item of the i-th FFD
bin be denoted as Ai,j for every i = 1, ..., FFD(I). (We use different denotations
for the same items). We assume without loss of the generality that for every i
and every j1 < j2 holds that A∗

i,j1
≥ A∗

i,j2
, and A∗

i,j1
comes before A∗

i,j2
in the

nonincreasing order of the items, and similarly, follows from the FFD rule that
for every i and every j1 < j2 holds that Ai,j1 ≥ Ai,j2 , and Ai,j1 comes before
Ai,j2 in the nonincreasing order of the items. A bin is called as i-bin, if it contains
exactly i items.

Because all items fit in the optimal packing into OPT (I) optimal bins, follows
that

∑n
k=1 yk ≤ OPT (I). Note that item X does not fit into any previous FFD

bin, thus we get

Y (Bi) + X > 1, i = 1, ..., FFD(I) − 1. (4)

Lemma 1. X > FFD(I)−OPT (I)−1
FFD(I)−2 ≥ 2/11.

Proof. The second inequality is equivalent by (3). From (4) follows that Y (Bi) >
1−X for all 1 ≤ i ≤ FFD(I)−1, and X+Y (B1) > 1. Applying these inequalities
we get

OPT (I) ≥
OPT (I)∑

k=1

yk =X+Y (B1)+
FFD(I)−1∑

i=2

Y (Bi) > 1+(1 − X) (FFD(I) − 2) ,

from which the first inequality follows.
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Corollary 1. X > �11/9OPT (I)+7/9�−OPT (I)−1
�11/9OPT (I)+7/9�−2

Proof. We apply (3), the previous lemma, and the facts that FFD(I) is integer,
and the ratio FFD(I)−OPT (I)−1

FFD(I)−2 is increasing regarding FFD(I).

From now we know that each optimal or FFD bin can contain at most five items.

Definition 1. We say that bin Bi dominates the optimal bin B∗
j for some i and

j, if for every item yk being in B∗
j there exists an item yl being in Bi for which

yk ≤ yl and these items in Bi are different.

Lemma 2. There are no bins Bi and B∗
j such that Bi dominates B∗

j .

Proof. Swap one by one the items in B∗
j by items of Bi that dominate them.

Then omitting the elements of this bin we get a smaller counterexample, that is
a contradiction.

Lemma 3. Each optimal bin contains at least three items.

Proof. If an optimal bin contains one element, then by the domination lemma
we get a contradiction. Suppose that an optimal bin contains two items, Y and
Z, and Y ≥ Z. Consider the moment when Y is packed. If this item is packed
as a first item into an FFD bin, then Z fits into this bin, thus at least one more
item, not less than Z will be packed into this bin, which again contradicts to
Lemma 2. If Y is not a first item, then the first item is not less than Y , and the
second one (i.e. Y ) is not less than Z, a contradiction again.

Lemma 4. Every FFD bin but the last one contains at least two items.

Proof. Suppose that Bi contains one element, for some 1 ≤ i ≤ FFD(I)− 1, let
this item be Y . Let this item be packed into the B∗

j optimal bin, then there is an
other item in this optimal bin, say Z. Then Y + Z ≤ 1, follows that Y + X ≤ 1,
thus the last item X fits into this bin, a contradiction.

Lemma 5. X ≤ 1/4.

Proof. Suppose that X > 1/4, then every optimal bin contains at most three
items. From Lemma 3 we get that every optimal bin contains exactly three items,
thus the number of the items is 3OPT (I), and all items are less than 1/2.

Suppose that there are two consecutive bins Bi and Bj , (then j = i + 1),
and Bi contains three, and Bj contains two elements. If Ai1 + Ai2 ≥ Aj1 + Aj2,
then because Ai3 fits into the i-th bin, and Ai3 ≥ X , follows that X fits into
the j-th bin, a contradiction. Thus Ai1 + Ai2 < Aj1 + Aj2. Because Ai1 ≥ Aj1,
follows that Ai2 < Aj2. Thus Aj2 is packed before Ai2, and it did not fit into
the i-th bin, thus Ai1 + Aj2 > 1, thus at least one of them is bigger than a half,
a contradiction.

Follows that the first some FFD bins contain two items, the next FFD bins
contain three items, and the last FFD bin contains only one item. Let ni be the
number of the FFD i-bins, for i = 2, 3. Then n2 + n3 + 1 = FFD(I), and the
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number of the items is 3FFD(I) − n2 − 2. Since the sum of the sizes of any two
items is less than 1, the first 2n2 items (in the nonincreasing order) are packed
pairwise into the first n2 FFD bins, and follows that

y2n2−1 + y2n2 + X > 1. (5)

On the other hand, consider the first item in the nonincreasing order, which
is a second item in some optimal bin, i.e. consider the largest A∗

i,2 item. This
cannot be later than the (OPT (I) + 1)-th item, thus A∗

i,2 = yk2 for some k2 ≤
OPT (I) + 1. Let A∗

i,1 = yk1 and A∗
i,3 = yk3 , then k1 < k2 < k3, and

yOPT (I) + yOPT (I)+1 + X ≤ yk1 + yk2 + yk3 ≤ 1. (6)

Comparing (5) and (6) follows that OPT (I) ≥ 2n2. We get that the number of
items is

3OPT (I) = 3FFD(I) − n2 − 2 ≥ 3FFD(I) − OPT (I)/2 − 2 (7)
≥ 3 (11/9OPT (I) + 7/9) − OPT (I)/2 − 2 (8)

= 19/6OPT (I) + 1/3 > 3OPT (I), (9)

a contradiction.

At this point we already know that X must lie in interval (2/11; 1/4]. In the
remaining part of the paper we will divide our investigations into two parts, as
1/5 < X ≤ 1/4, or 2/11 < X ≤ 1/5.

Lemma 6. For the value of optimum bins holds that OPT (I) ≥ 6, and in case
X ≤ 1/5 a stronger inequality OPT (I) ≥ 10 also holds.

Proof. If 2 ≤ OPT (I) ≤ 4, then from Corollary 1 we get that X > 1/4, which
is contradiction. Reference [6] shows that in case OPT (I) = 5 follows that
FFD(I) ≤ 6, which contradicts to (3). Thus follows that OPT (I) ≥ 6. Similarly
we get that if X ≤ 1/5, then 6 ≤ OPT (I) ≤ 9 is not possible, thus OPT (I) ≥ 10.

We call a bin as open bin if there is at least one item already packed into the
bin. A bin is closed if no more item will be packed into this bin. An item which
is packed into the last opened bin called as regular item, otherwise the item
is called as a fallback item. Let A be an arbitrary regular item. We say, that
B is a further item, if it comes (in the nonincreasing order of the items) after
A, and will be packed into a later bin. An arbitrary bin is called as (A, B, C)
bin, if A, B, and C are items, and exactly these items are packed into that bin.
Similar denotations are also used if there are only two, or there are more than
three items in a bin. We often will use the next lemma from [4].

Lemma 7. Let xi be the last item in the nonincreasing order which is packed
into a (L, xi) FFD-bin, where L > 1/2. Then (i), it can be supposed that there
is not such item which has size bigger than xi and not bigger than 1 − L, (ii) if
there is another item xk with the same size as xi, then it is packed into a (L′, xk)
FFD-bin where L′ precedes L and they have equal sizes.
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Proof. Suppose to the contrary that there is an item xk for which xi < xk ≤ 1−L
holds. Let xk be the last such item. This is packed by FFD into an earlier bin,
which contains exactly one more item L′ ≥ L > 1/2. Then decrease the size
of this item to be equal to xi. Then it will be packed into the same bin, and
there will no more item be packed into this bin. This means that we get a new,
appropriate counterexample. By induction we get a counterexample which meets
property (i). Regarding (ii): If there exists an xk with the same size as xi, then
it is packed into a (L′, xk) FFD-bin, where L′ ≥ L. Suppose that L′ > L, and
let L′ be the last such item. Then we can decrease the size of L′ to be equal to
L, and we get a new counterexample again.

Lemma 8. Let xi be the last item which is packed into a (B0, xi) FFD-bin where
1−X

2 < B0 ≤ 1/2, (xi comes after B0). Then (i), each previous item with size
between 1−X

2 and 1/2 has the same size as B0, (ii) all L items greater than half
have the same size, (iii) all L > 1/2 is packed into some (L, xk) FFD-bin where
xk = xi.

Proof. The proof is similar to the previous one.

3 Case 1/5 < X ≤ 1/4

We put the items into some classes according to their sizes. The classification
used here is not the same, only similar to one used in Yue’s paper. The classes are
large, big, medium, small, quite small, and very small items, the items
being in a class are denoted as L, B, M, S, U, V , respectively. We also add some
weights to the items, as follows:

Name Class Weight Or simply
Large 1

2 < L 23/36(1 − X) 23
Big 1−X

2 < B ≤ 1
2 18/36(1 − X) 18

Medium 1
3 < M ≤ 1−X

2 15/36(1 − X) 15
Small 1−X

3 < S ≤ 1
3 12/36(1 − X) 12

qUite small 1
4 < U ≤ 1−X

3 9/36(1 − X) 9
Very small X ≤ V ≤ 1

4 9/36(1 − X) 9
The classification of the items in case 1/5 < X ≤ 1/4.

Note, that the classes are well defined, furthermore 1−X
2 < 1+X

3 < 2X holds
since X > 1/5. Note, that since every optimal bin have at least three items,
follows that L + 2X ≤ 1 holds for any L item, thus in the FFD packing an M
item fits into an L-bin, if there is not other item packed yet into the bin. We use
the denotation c1L + c2B + c3M + c4S + c5U + c6V > c7, where ci are integers
or 0 for i = 1, ..., 7, and the inequality holds substituting the sizes of any large,
big, medium, small, quite small and very small items. For example L + 2U > 1
holds, since L > 1/2 and U > 1/4.
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We denote the weight of an item Z as w(Z), and the weight of an optimal or
FFD bin as w(B∗), or w(B), respectively. We define the reserve of an optimal
bin as r(B∗) = 44/36(1 − X) − w(B∗).. When we define the weights of the
classes, we do it in such a way, that no optimal bin will have weight more than
44/36(1 − X), i.e. the reserve of all optimal bins are nonnegative, and almost
all of the optimal bins have positive reserve. (This will not be true in one case,
then we will modify the weights of the items.) Define the surplus of an FFD
bin as sur(B) = w(B) − (1 − X), if this value is nonnegative. Otherwise, let
short(B) = (1 − X)−w(B) be called as shortage, (similarly, as in Yue’s paper).
If the weight of every FFD bin was at least 1 − X , (i.e. in case when there is
not shortage, also applying that the reserve of all optimal bin is nonnegative),
we could easily get that

(1−X)FFD(I) ≤
FFD(I)∑

k=1

w (Bk) = w(I) =
OPT (I)∑

k=1

w (B∗
k) ≤ 11/9(1−X)OPT (I),

and our proof would be ready. Unfortunately, such FFD bins that has less weight
(i.e. has some shortage) may exist. But we prove that all shortage can be covered
by the reserve of the optimal bins plus the surplus of the other FFD bins, plus the
required additive constant 27/36(1−X). In this section the weight of the smallest
class will is w(V ) = w(X) = 9/36(1 − X). Thus, the shortage of the last FFD
bin, which contains only the last item X , is just (1−X)−w(X) = 27/36(1−X),
thus the additive constant just covers the shortage of the last FFD bin. For the
simplicity, we will say that the weight of a V item is 9, (and similarly in case
of other items), and the shortage of a bin containing only X is 27, (instead
than 9/36(1 − X), and 27/36(1 − X), respectively), i.e. we say simple only the
numerator of the ratio.

Let sur(I) and res(I) be the total value of the surplus and reserve of all FFD
and optimal bins, respectively, let the required additive constant 27/36(1 − X)
be denoted as rex(I), and finally let short(I) be the total value of the shortage
given by all FFD bins. Then we have

w(I) =
∑FFD(I)

k=1 w (Bk) = (1 − X)FFD(I) + sur(I) − short(I), (10)

w(I) =
∑OPT (I)

k=1 w (B∗
k) = 11/9(1 − X)OPT (I) − res(I). (11)

Suppose that
res(I) + sur(I) + rex(I) ≥ short(I) (12)

holds. Then then applying (10) and (11), we have

(1 − X)FFD(I) = w(I) − sur(I) + short(I) (13)
≤ w(I) + res(I) + rex(I) (14)

= 11/9(1 − X)OPT (I) + 27/36(1 − X), (15)

and dividing by (1 − X), and considering that 27/36 < 7/9 we get our main
result. Thus in the remained part of this section we prove (12). First, let us
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see what bins are possible, according only to the definition of the classes. First
we list all possible optimal bins, then all possible FFD bins. In the last rows r
means the reserve of the optimal bins, while s denotes the value of the surplus or
shortage of the FFD bins. If s is positive, then it means surplus, if it is negative,
for example if it is −3 , it means that the shortage of that FFD bin is three. The
value of reserve, surplus of shortage of some bin can be easily computed by the
weights of the classes. (In case of (L,U) or (L,V) FFD bins we define the weights
of the classes in some other way.)

OPT
L
B
M
S
U
V
r

1 1 1
1 1 1 1 1 1 1 1 1
1 1 1

1 1 2 1 1
1 1 1 2 1

1 1 2 1 1 1 2
0 3 3 -1 2 2 2 5 5 8 8 8

2 2 2 1 1 1 1 1 1 1 1
1 2 1 1

1 1 2 1 1
1 1 2 1 3 2

2 5 5 5 8 8 11 2 11 2 11
S
U
V
r

3 2 2 2 2 1 1 1 1 1 1
1 1 2 2 1 1 3 3 2 2 1 1
1 2 1 1 2 1 3 2 1 2 1 3 2 4 3

8 2 11 2 11 5 14 5 14 5 14 8 17 8 17 8 17 8 17

FFD
L
B
M
S
U
V
s

1 1 1 1 1
1 2 1 1

1 1
1 1

1
1

5 2 -1 0 -3 -6

1 1 1
1 1 1 1 1 1 1 1 1
1 1 1

1 1 2 1 1
1 1 1 2 1

1 1 2 1 1 1 2
8 5 5 9 6 6 6 3 3 0 0 0

2 2 2 1 1 1 1 1 1 1 1
1 2 1 1

1 1 2 1 1
1 1 2 1 3 2

6 3 3 3 0 0 -3 6 -3 6 -3
S
U
V
s

3 2 2 2 2 1 1 1 1 1 1
1 1 2 2 1 1 3 2 1
1 2 1 1 2 1 3 2 1 2 3 4 1

0 6 -3 6 -3 3 -6 3 -6 3 -6 0 0 0 0 -27

Lemma 9. There can not be other optimal, nor FFD bins.

Proof. Each optimal bin contains three or four items, and each FFD bin can
contain at least two, and at most four items. Furthermore each bin has items
with total size at most one, and each FFD has items with size more than 1 −X .
Using the next inequalities: L+2U > 1, 2B+V > 1, B+3V > 1, M+S+2V > 1,
3S + V > 1, B + U + X ≤ 1, 3U + X ≤ 1, (all of them can be shown easily), we
get that exactly the above bins are possible.
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We emphasize, that all types of the above FFD bins can not occur at the same
time! For example if there exists a (B,2S) FFD bin, then there can not be other
FFD bin which contains a big item and no large item, since then these two B
items would fit into one bin.

We use the next notation: If L is packed into (L,A) FFD bin, and (L,B,C)
optimal bin, where A, B, and C are items and L is a large item, we say that L
is packed into the {(L, A), (L, B, C)} bbin (to denote, that this is not really a
bin, but a bin-pair). The first and second part of a bbin are the FFD and the
optimal bins of item L, respectively. An arbitrary bin is denoted as (A,.) bin,
where A is a class, and the bin contains at least one item from class A, but does
not contain items from higher classes. For example, (M,.) denotes a bin, which
contain at least one M item, but does not contain L or B items.

Theorem 2. Suppose that there are not (L,U), (L,V) FFD bins, and there is
not {(L, S), (L, S, V )} bbin. Then statement (12) holds.

Proof. First suppose that there is not (B,M,S) optimal bin. Since there is not
{(L, S), (L, S, V )} bbin, follows that by every L item we get 2 reserve at least,
and the shortage caused by the (L,S) FFD bins are all covered. Also, since every
optimal not L-bin has at least 2 reserve, we have totally at least 12 reserve, since
there must be at least six optimal bins by Lemma 6. On the other hand, let us
count the possible shortage caused by not (L,S) bins. If there is (B,S) FFD bin,
then from Lemma 8 we know that there is not M item. Then it can not be (B,M)
FFD bin, and we have at most 12 shortage, since it can not be at the same time
two (S,.) FFD bins with shortage, and all shortage is covered. In the opposite
case, if there is not (B,S) FFD bin, then the total not covered shortage is at
most 3 (by a possible existing (B,M) FFD bin) plus 3 (by an (M,.) FFD bin)
plus 6 by an (S,.) FFD bin, this is altogether again 12, and it is again covered.

Now suppose that there is at least one (B,M,S) optimal bin. Then,.follows
that 1−X

2 + 1
3 + S < B + M + S ≤ 1 holds for the previous B, M, and S items,

from what we get that S < 1
6 + X

2 holds for the smallest S item. Let this smallest
S be denoted as S0. Again, since all S is greater than 1−X

3 , and all M is greater
than 1

3 , follows that there is such B item which is less than 1+X
3 . Then we

conclude the next things: (i), It can not be {(L, M), (L, S, V )} bbin, since then,
from Lemma 7 follows that all B items must be greater than the sum of these
two S and V items being in the (L,S,V) bin, thus B > 1−X

3 + X holds for all
B items, contradiction. (ii), M + S + S0 ≤ 1−X

2 + 1
3 + 1

6 + X
2 = 1 holds. From

this second property follows, that if there is (M,S,U) or (M,S,V) FFD bin, then
there is not further S item.

Now we are ready to finish the investigation of this case. We redefine the
weight of exactly those M items what are packed into (B,M,S) optimal bins as
12, let these M items be called as small M items. Then, as before we have at
least 12 reserve, since by all L items we get 2 reserve, and by all other optimal
bins we have 2 more reserve, and all shortage caused by the (L,S) or (L,M) FFD
bins are covered.
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How many shortage can cause the not L FFD bins? Let us realize, that both
M items in an (2M,U) or (2M,V) FFD bin can not be small M items, since a
small M item, plus an appropriate B item and the smallest S item fit into one
bin. Follows that by (2M,S), (2M,U) or (2M,V) FFD bins we get no shortage.
By a (B,M) or (B,S) FFD bin (they can not exist at the same time), by an (M,.)
FFD bin, and finally by an (S,.) FFD bin we can get at most 6 + 6 + 6 = 18
shortage. If there is not (B,M) nor (B,S) bin, then all shortage is covered. If
there is not (M,.) FFD bin with shortage, again, all shortage is covered, and this
is also true for the (S,.) FFD bins. Finally we can consider the next things:

Suppose that there is an (M,.) FFD bin which has no S item, then there is
not further S item, thus it can not be (S,.) bin with shortage, and all shortage is
covered. Also, we have seen that if there is (M,S,U) or (M,S,V) FFD bin, then
again, there is not further S item. Thus, if there is shortage caused by some (M,.)
bin, then the total not covered shortage is at most 6 + 6 + 0 = 12, otherwise, if
there is, again it is at most 6 + 0 + 6 = 12, and the statement is proved.

Theorem 3. If there is (L,V) or (L,U) FFD bin, or there is {(L, S), (L, S, V )}
bbin, then statement (12) also holds.

Proof. The proof can be made by case analysis. The details can not fit here, but
the author gladly send it to the interested reader.

Thus we proved that in case 1/5 < X ≤ 1/4 our statement holds. It only
remained the following case.

4 Case 2/11 < X ≤ 1/5

In this case we redefine the classes of the items and their weights, as follows:

Class Weight Or simply
1
2 < L 24

36 (1 − X) 24
1−X

2 < B1 ≤ 1
2

18
36 (1 − X) 18

3
8 − X

8 < B2 ≤ 1−X
2

16
36 (1 − X) 16

1
3 < M1 ≤ 3

8 − X
8

15
36 (1 − X) 15

1+X
4 < M2 ≤ 1

3
12
36 (1 − X) 12

1
4 < S ≤ 1+X

4
10
36 (1 − X) 10

1−X
4 < U ≤ 1

4
9
36 (1 − X) 9

X ≤ V ≤ 1−X
4

8
36 (1 − X) 8

The classification of the items in case 2/11 < X ≤ 1/5

Then the investigations are similar to that being in the previous section, but
there are more than 200 optimal, and also more than 200 possible FFD bins.
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