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a b s t r a c t

In this paper, we present improved bounds for the First Fit algorithm for the bin-packing
problem.We prove C FF (L) ≤ 17

10C
∗(L)+ 7

10 for all lists L, and the absolute performance ratio
of FF is at most 127 .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the classical one-dimensional bin-packing problem, we are given a sequence L = (a1, a2, . . . , an) of items, each with
a size in (0, 1]. We are required to pack them into a minimum number of unit-capacity bins. An excellent survey of the
research on this problem is available in [2].
The bin-packing problem was one of the earliest to use an approximation algorithm and worst case analysis. For a given

list L and algorithm A, let CA(L) denote the number of bins used when A is applied to list L, and C∗(L) denote the optimum
number of bins for a packing of L. We will omit the mention of L if there is no ambiguity. The asymptotic performance ratio
for A is defined as

inf
{
r ≥ 1| for some N > 0,

CA(L)
C∗(L)

≤ r for all Lwith C∗(L) ≥ N
}
.

The absolute performance ratio for A is defined as

inf
{
r ≥ 1

∣∣∣∣CA(L)C∗(L)
≤ r for all list L

}
.

The bin-packing problem is also one of the few combinational optimization problems forwhich the asymptotic performance
ratio and the absolute performance ratio of a given algorithm may not be the same.
For simplicity, we use ai to denote the size of item ai. The content of a bin B, which is the total size of items packed in

it, is also denoted as B, when this causes no confusion. First Fit (FF for short) and First Fit Decreasing (FFD for short) are two
fundamental algorithms for addressing bin-packing problems [6]. The FF algorithm can be described as follows: When we
are packing ai, we place it in the lowest indexed bin whose current content does not exceed 1 − ai. Otherwise, we start a
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new bin with ai as its first item. Algorithm FFD first sorts the items in non-increasing order of their sizes and then performs
FF .
In Johnson’s pioneer work, he proved that C FFD(L) ≤ 11

9 C
∗(L)+ 4 for all lists L [6]. Note that the asymptotic performance

ratio cannot be smaller than 119 [7]. Later, the additive termwas reduced to 3 by Baker [1], and 1 by Yue [11]. Recently, Dósa
further reduced it to a tight value 69 [3]. The absolute performance ratio

3
2 of FFD was obtained by Simchi-Levi [9], and it is

also tight since no polynomial time algorithm with absolute performance ratio less than 32 exists unless P = NP [5].
For the FF algorithm, Ullman proved C FF (L) ≤ 17

10C
∗(L) + 3 for all lists L [10]. Here the asymptotic performance ratio is

asymptotically tight, and there also exists such a list L that C∗(L) = 10 and C FF (L) = 17 [7]. The additive term was reduced
to 2 in [7], and 9

10 in [4]. To the author’s knowledge, no further improvement has been made since then. Simchi-Levi proved
that the absolute ratio of FF is at most 74 [9], but the bound is not tight. Though FF has a larger worst case ratio than FFD,
it can be used for the online version, where the items arrive in some order and must be packed into a bin as soon as they
arrive, without knowledge of the remaining items.
In this paper, we will give both a smaller additive term in the asymptotic performance ratio and a tighter absolute

performance ratio of FF . Section 2 gives some definitions and useful lemmas. In Section 3, we prove C FF (L) ≤ 17
10C
∗(L)+ 7

10
for all lists L. In Section 4, we prove that the absolute performance ratio of FF is at most 127 . Thus the gap between upper and
lower bounds of the absolute performance ratio decreases by more than 70%.

2. Preliminaries

We define some terminology for convenience. An item greater than 12 is called largewhile an item greater than
1
4 is called

semilarge. The number of large items is denoted as l. Note that a semilarge item also can be bigger than 12 .
Let B∗ be the set of bins used in the optimal packing, and BFF be the set of bins used by FF . If a bin B1 is opened before

another bin B2 in the procedure of FF , then we say that B1 is before B2 and B2 is after B1. When algorithm FF terminates, a
bin containing exactly one item (two items) is called an i-bin (ii-bin). A bin containing no less than two (three, four) items
is called a II-bin (III-bin, IV-bin). An item in an i-bin (ii-bin, II-bin, III-bin, IV-bin) is called an i-item (ii-item, II-item, III-item,
IV-item). Let Bi (Bii,BII,BIII,BIV) be the set of i-bins (ii-bins, II-bins, III-bins, IV-bins), and Ni (Nii, NII, NIII, NIV) be the
number of i-bins (ii-bins, II-bins, III-bins, IV-bins). Clearly,

BFF = Bi ∪BII = Bi ∪Bii ∪BIII (1)

and

C FF = Ni + NII = Ni + Nii + NIII.

Lemma 2.1. C∗ ≥ Ni.

Proof. Obviously, the total size of any two i-items exceeds 1. Otherwise, FF will not open a new bin for the item that arrived
later. Accordingly, any two of them cannot be packed in one bin in the optimal packing. Hence C∗ ≥ Ni. �

Lemma 2.2. Given an integer k ≥ 1, for any M ≥ k + 1, if there are M bins B1, B2, . . . , BM in BFF such that each of them
contains at least k items, then

∑M
i=1 Bi >

kM
k+1 .

Proof. Without loss of generality, assume Bs is before Bt for any 1 ≤ s < t ≤ M . For fixed Bs and Bt , s < t , consider k
arbitrary items at1 , at2 , . . . , atk in Bt . By FF we have Bs + atj > 1, j = 1, . . . , k. Summing the k inequalities, we get

kBs + Bt ≥ kBs +
k∑
j=1

atj > k. (2)

Wewill prove the lemma by induction onM . By (2), we have kBi+Bk+1 > k, i = 1, . . . , k. Summing the k inequalities, we
get k

∑k
i=1 Bi + kBk+1 > k

2, i.e.,
∑k+1
i=1 Bi > k. The result is true forM = k+ 1. Suppose the result is true forM = j ≥ k+ 1,

i.e.,
∑j
i=1 Bi >

kj
k+1 . By (2), we have kBi + Bj+1 > k, i = 1, . . . , j. Summing the j inequalities, we get k

∑j
i=1 Bi + jBj+1 > jk.

Combining this with the induction hypothesis, we have

j+1∑
i=1

Bi =
j
j∑
i=1
Bi + jBj+1

j
=

k
j∑
i=1
Bi + jBj+1 + (j− k)

j∑
i=1
Bi

j

>
jk+ (j− k) kjk+1

j
=
k(j+ 1)
k+ 1

.

The result is also true forM = j+ 1. The lemma is thus proved. �
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Corollary 2.1. (i) If B ⊆ BFF and |B| ≥ 2, then
∑
B∈B B >

1
2 |B|.

(ii) If B ⊆ BII and |B| ≥ 3, then
∑
B∈B B >

2
3 |B|.

(iii) If B ⊆ BIII and |B| ≥ 4, then
∑
B∈B B >

3
4 |B|.

(iv) If B ⊆ BIV and |B| ≥ 5, then
∑
B∈B B >

4
5 |B|.

3. The asymptotic performance ratio

We use the weighting function defined in [4], that is

W (x) =



6
5
x, 0 ≤ x ≤

1
6
,

9
5
x−

1
10
,
1
6
< x ≤

1
3
,

6
5
x+

1
10
,
1
3
< x ≤

1
2
,

6
5
x+

4
10
,
1
2
< x ≤ 1.

(3)

Clearly,W (x) is an increasing function and

W (x) ≥
6
5
x. (4)

Moreover,W (a) > 1 if a is a large item. The weight of bin B,W (B), is defined as the total weight of the items packed in it.

Lemma 3.1 ([4]). For every bin B,W (B) ≤ 17
10 . Moreover, if B does not contain large items, then W (B) ≤

3
2 .

LetW =
∑
a∈LW (a) be the total weight of all items. By Lemma 3.1, we have

W =
∑
a∈L

W (a) =
∑
B∈B∗

W (B) ≤
∑
B∈B∗

17
10
=
17
10
C∗. (5)

Lemma 3.2 ([4]).W > C FF − 1+
∑
B∈BFF max{0,W (B)− 1}.

Let C = {B|B ∈ BFF andW (B) < 1} and m = |C|. Label the bins in C as C1, C2, . . . , Cm such that Ci is before Cj for any
1 ≤ i < j ≤ m. For each Ci ∈ C, define αi = max{α| for some j, 1 ≤ j < i, Cj = 1− α}with α1 taken to be 0.

Lemma 3.3 ([4]). If m ≥ 2, then
∑m−1
i=1 (1−W (Ci)) ≤

6
5αm.

The main result of this section is as follows.

Theorem 3.1. For every list L, C FF (L) ≤ 17
10C
∗(L)+ 7

10 .

Proof. Suppose C FF > 17
10C
∗
+

7
10 , i.e. C

FF
≥
17
10C
∗
+
4
5 . We have the following claims.

Claim 3.1. If CFF ≥ 17
10C
∗
+
4
5 , then there does not exist any large item in II-bins.

Proof. Suppose there exists a large item b1 in a II-bin B′. Since B′ is a II-bin, it contains another item b2. If B′ ≥ 2
3 , by b1 >

1
2 ,

(3) and (4), we have

W (B′) ≥
(
6
5
b1 +

4
10

)
+
6
5
(B′ − b1) =

6
5
B′ +

4
10
≥
6
5
.

Thus W > C FF − 1 +
( 6
5 − 1

)
= C FF − 4

5 ≥
17
10C
∗ by Lemma 3.2, which contradicts (5). Therefore, B′ < 2

3 and
b2 ≤ B′ − b1 < 2

3 −
1
2 =

1
6 .

For any bin B before B′, B > 5
6 since b2 <

1
6 , soW (B) ≥

6
5B > 1 by (4). For any II-bin B after B

′, any item in B is greater
than 13 as B

′ < 2
3 . HenceW (B) ≥ 2W

( 1
3

)
= 1. For any i-bin B after B′, at most one bin does not containing large items. Recall

that B′ < 2
3 , the weight of B is at least 1 if it contains a large item, andW

( 1
3

)
otherwise. In other words, all bins except one

inBFF have weight at least 1, and the remaining one is at leastW
( 1
3

)
< 1. Therefore, by (5),

17
10
C∗ ≥ W =

∑
B∈BFF

W (B) ≥
CFF−1∑
i=1

1+W
(
1
3

)
= C FF − 1+

1
2
= C FF −

1
2
≥
17
10
C∗ +

3
10
,

which is impossible. The claim is thus proved. �

Claim 3.2. If CFF ≥ 17
10C
∗
+
4
5 , then l ≤ Ni − 1, where we recall that l is the number of large items.
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Proof. By Claim 3.1, all large items are packed in i-bins by FF . Since no two large items can be packed into the same bin, we
have l ≤ Ni. Suppose l = Ni; then any i-bin contains exactly one large item, and its weight is at least 1. That is to say, each
bin in C is a II-bin. We distinguish two cases according to the value ofm.
Case 1.m ≥ 2.
Note that αm > 1

6 . Otherwise, by the definition of αm and (4), there exists Cj ∈ C, 1 ≤ j < m, such that Cj = 1− αm and
W (Cj) ≥ 6

5Cj =
6
5 (1− αm) ≥ 1, which is a contradiction.

Since Cm is a II-bin, let b1, b2 be two items in Cm. Clearly, b1, b2 > αm. By Lemma 3.3, (4), (5) and αm > 1
6 , we have

17
10
C∗ ≥ W =

∑
B6∈C

W (B)+
m−1∑
i=1

W (Ci)+W (Cm)

=

∑
B6∈C

W (B)+
m−1∑
i=1

(1− (1−W (Ci)))+W (Cm)

≥

∑
B6=Cm

1−
m−1∑
i=1

(1−W (Ci))+W (Cm)

≥
(
C FF − 1

)
−

m−1∑
i=1

(1−W (Ci))+ (W (b1)+W (b2))

> C FF − 1−
6
5
αm +

6
5
αm +

6
5
αm

= C FF − 1+
6
5
αm > C FF −

4
5
,

which is impossible.
Case 2.m = 1.
IfW (C1) > 1

5 , then by (5),

17
10
C∗ ≥ W =

∑
B6∈C

W (B)+W (C1) > C FF − 1+
1
5
= C FF −

4
5
,

which is a contradiction. HenceW (C1) ≤ 1
5 and thus C1 ≤

1
6 . If l ≥ 1, then there exists an i-item a ≥

5
6 since Ni = l ≥ 1 and

C1 ≤ 1
6 . Note that all bins except C1 have weight at least 1. By (5),

17
10
C∗ ≥ W ≥ C FF − 2+W (a)+W (C1) > C FF − 2+W

(
5
6

)
= C FF −

3
5
,

which is a contradiction. Then we know that l = 0, but this implies that W =
∑
B∈B∗ W (B) ≤

3
2C
∗ by Lemma 3.1, and

finally yields C FF − 1 < W ≤ 3
2C
∗
≤
17
10C
∗
−
1
5 by Lemma 3.2. That is impossible as well. Then Claim 3.2 follows. �

Applying Lemma 2.1 and Claim 3.2, we obtain l ≤ C∗ − 1. In other words, there is at least one bin B′ ∈ B∗ which does
not contain any large items. By Lemmas 3.1 and 3.2,

C FF − 1 < W =
∑

B∈B∗\{B′}

W (B)+W (B′) ≤
17
10
(C∗ − 1)+

3
2
=
17
10
C∗ −

1
5
.

It follows that C FF < 17
10C
∗
+
4
5 . The proof of Theorem 3.1 is thus completed. �

4. The absolute performance ratio

In this section, we prove that the absolute performance ratio of FF is no more than 127 .

Lemma 4.1. If Ni ≤ 1 or Ni ≥ C FF − 2, then C FF ≤ 5
3C
∗.

Proof. As C FF = 1 when C∗ = 1 and 53C
∗
≥ 3 when C∗ ≥ 2, our assertion is straightforward if C∗ = 1 or C FF ≤ 3. Now

assume C∗ ≥ 2 and C FF ≥ 4.
If Ni ≤ 1, then NII = C FF − Ni ≥ 3. By Corollary 2.1, we have

C∗ ≥
∑
a∈L

a =
∑
B∈Bi

B+
∑
B∈BII

B ≥
∑
B∈BII

B >
2
3
NII =

2
3
(C FF − Ni) ≥

2
3
(C FF − 1),

i.e., 3C∗ ≥ 2C FF − 1. Recalling that C FF ≥ 4, we have C∗ ≥ 3 and thus C FF ≤ 3
2C
∗
+
1
2 ≤

5
3C
∗.



1672 B. Xia, Z. Tan / Discrete Applied Mathematics 158 (2010) 1668–1675

If Ni ≥ C FF −2, then by Lemma 2.1, C FF ≤ Ni+ 2 ≤ C∗+ 2. If C∗ = 2, then C FF = 4 and Ni = 2 since we assume C FF ≥ 4.
Consider the two i-items b1, b2 which clearly follow b1 + b2 > 1. Then∑

B∈BII

B =
∑
a∈L

a− (b1 + b2) ≤ C∗ − (b1 + b2) < 1,

which contradicts NII = C FF − Ni = 2. Hence C∗ ≥ 3 and we obtain C FF ≤ C∗ + 2 ≤ 5
3C
∗. �

Lemma 4.2. If C FF ≥ 17
10C
∗, then 4Ni ≥ 18C FF − 27C∗ − 1.

Proof. Since C FF ≥ 17
10C
∗ > 5

3C
∗, we obtain Ni ≥ 2 and NII = C FF − Ni ≥ 3 by Lemma 4.1. In view of Corollary 2.1, we have

C∗ ≥
∑
a∈L

a =
∑
B∈Bi

B+
∑
B∈BII

B >
1
2
Ni +

2
3
NII

=
1
2
Ni +

2
3
(C FF − Ni) =

2
3
C FF −

1
6
Ni. (6)

By Lemma 2.1, we further have C∗ > 2
3C
FF
−
1
6C
∗, i.e., C FF < 7

4C
∗, which is equivalent to

C FF ≤
⌈
7
4
C∗
⌉
− 1. (7)

Direct calculation shows that
⌈ 7
4C
∗
⌉
− 1 < 17

10C
∗ when C∗ ≤ 6. Hence we assume C∗ ≥ 7 in the following.

Note that (6) is equivalent to

NII = C FF − Ni > 9C FF − 12C∗ − 3Ni. (8)

If 9C FF − 12C∗ − 3Ni ≤ 2, then C FF ≤ 4
3C
∗
+
1
3Ni +

2
9 ≤

5
3C
∗
+

2
63C
∗ < 17

10C
∗ by Lemma 2.1 and C∗ ≥ 7, which contradicts

C FF ≥ 17
10C
∗. Therefore,

NII > 9C FF − 12C∗ − 3Ni ≥ 3. (9)

Claim 4.1. If CFF ≥ 17
10C
∗, then the last 9C FF − 12C∗ − 3Ni II-bins contain only semilarge items.

Proof. Suppose there exists an itemwhich is not semilarge in one of the last 9C FF − 12C∗− 3Ni II-bins. Then the content of
each of the first NII − (9C FF − 12C∗ − 3Ni) = 12C∗ − 8C FF + 2Ni II-bins is at least 34 . Combining this with Ni ≥ 2, (9) and
Corollary 2.1, we have

C∗ >
1
2
Ni +

3
4
(12C∗ − 8C FF + 2Ni)+

2
3
(9C FF − 12C∗ − 3Ni) = C∗,

which is a contradiction. �

Claim 4.2. If CFF ≥ 17
10C
∗, then all i-items are semilarge items.

Proof. Note that all the i-items are large except atmost one. If the remaining one is not semilarge, then each of the remaining
Ni − 1 i-items should be greater than 34 . Then by Corollary 2.1 and C

∗
≥ 7, we have

C∗ >
3
4
(Ni − 1)+

2
3
NII =

3
4
(Ni − 1)+

2
3
(C FF − Ni) >

2
3
C FF −

3
4
≥
2
3
C FF −

3
28
C∗,

which leads to C FF < 93
56C
∗ < 17

10C
∗. �

Claim 4.3. If CFF ≥ 17
10C
∗, then there are at most 3C∗ − 2Ni + 1 semilarge II-items.

Proof. Consider the packing of semilarge II-items in the optimal packing. Each of the Ni − 1 bins containing a large i-item
can accommodate at most one semilarge II-item. The bin containing the remaining i-item, which is semilarge by Claim 4.2,
can accommodate at most twomore semilarge II-items. Each of the remaining C∗−Ni bins can accommodate at most three
semilarge II-items. Consequently, there are at most (Ni − 1)+ 2+ 3(C∗ − Ni) = 3C∗ − 2Ni + 1 semilarge II-items. �

By Claims 4.1 and 4.3, we have 2(9C FF − 12C∗ − 3Ni) ≤ 3C∗ − 2Ni + 1, i.e. 4Ni ≥ 18C FF − 27C∗ − 1. The lemma is thus
proved. �

Lemma 4.3. If Ni = C∗, then C∗ ≥ 2Nii.
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Proof. Suppose C∗ < 2Nii. According to the pigeonhole principle, there exists a bin B∗ ∈ B∗ in which two ii-items b1 and
b2 are packed. Since any two i-items cannot be packed in one bin in the optimal packing and Ni = C∗, there exists an i-item
in B∗, say a. Since

b1 + b2 + a ≤ 1, (10)

b1 and b2 are packed in different bins by FF . Otherwise, FF will pack a, b1 and b2 together, contradicting the definition of an
i-item. Let the two bins containing b1, b2 inBFF be B1, B2 respectively, and B2 be after B1 without loss of generality. Since b1
is a ii-item, there exists another item in B1, say b′1. Since b2 is packed in a bin after B1, we have

b1 + b′1 + b2 > 1. (11)

It follows that b′1 is not in B
∗. Let a′ be the i-item which is packed in the same bin with b′1 inB∗; then

b′1 + a
′
≤ 1. (12)

Since a and a′ are both i-items,

a+ a′ > 1. (13)

Therefore, by (12), (13) and (10),

b1 + b2 + b′1 ≤ b1 + b2 + (1− a
′) < b1 + b2 + a ≤ 1,

which contradicts (11). �

Lemma 4.4. If Ni = C∗ and C FF > 12
7 C
∗, then

C FF ≤ max
{
1
9

⌊
C∗

2

⌋
+
5
3
C∗ −

1
9
,

⌊
C∗

2

⌋
+ C∗ + 3

}
.

Proof. Given C∗ ≤ 10, we get C FF ≤
⌈ 7
4C
∗
⌉
− 1 ≤ 12

7 C
∗ by (7) and direct calculation. Hence we can assume C∗ ≥ 11.

Moreover, given C FF ≤ C∗ + 7, we get C FF ≤ C∗ + 7 ≤ 12
7 C
∗ by C∗ ≥ 11. Then we can assume C FF ≥ C∗ + 8 as well.

If Nii ≤ 2, there are at least C FF − Ni − Nii ≥ C FF − C∗ − 2 ≥ 4 III-bins. By Corollary 2.1, we have

C∗ >
3
4
(C FF − C∗ − 2)+

1
2
(C∗ + 2) =

3
4
C FF −

1
4
C∗ −

1
2
,

i.e. 3C FF < 5C∗ + 2. Hence 3C FF ≤ 5C∗ + 1 and thus C FF ≤ 5
3C
∗
+
1
3 ≤

12
7 C
∗. Therefore, we only need to consider the case

when Nii ≥ 3.
If Nii ≤ C FF − C∗ − 4, then by Corollary 2.1 and Ni = C∗, we have

C∗ >
1
2
Ni +

2
3
Nii +

3
4
(C FF − Ni − Nii) =

1
2
C∗ +

2
3
Nii +

3
4
(C FF − C∗ − Nii) =

3
4
C FF −

1
4
C∗ −

1
12
Nii,

i.e. 9C FF < Nii + 15C∗. Hence 9C FF ≤ Nii + 15C∗ − 1. Applying Lemma 4.3, we obtain C FF ≤ 1
9b
C∗
2 c +

5
3C
∗
−

1
9 . If

Nii ≥ C FF − C∗ − 3, then C FF ≤ b C
∗

2 c + C
∗
+ 3 by Lemma 4.3. Combining this with the two inequalities, the lemma is thus

proved. �

Lemma 4.5. There is not such a list that

(i) C∗ = 11 and C FF = 19,
(ii) C∗ = 32 and C FF = 55,
(iii) C∗ = 39 and C FF = 67.

Proof. (i) Suppose there exists such a list. By Lemma 4.2, we have 4Ni ≥ 18C FF −27C∗−1 = 44 = 4C∗. Therefore, Ni = C∗
by Lemma 2.1 and thus Nii ≤ 5 by Lemma 4.3. According to (8), NII > 9C FF − 12C∗− 3Ni = 6 ≥ Nii+ 1. It follows that there
is at least one III-bin in the last six II-bins. Hence, there are at least 2×(6−1)+3×1 = 13 II-items in the last six II-bins, and
these items are all semilarge by Claim 4.1. On the other hand, Claim 4.3 implies that there are at most 3C∗ − 2Ni + 1 = 12
semilarge II-items, which is a contradiction.
(ii) Suppose there exists such a list. By Lemma 4.2, we have 4Ni ≥ 18C FF − 27C∗ − 1 = 125. Therefore, by Lemma 2.1,

Ni = C∗ = 32 and thus NII = C FF − Ni = 23. Label all the II-bins as B1, B2, . . . , B23, so that Bi is before Bj for any
1 ≤ i < j ≤ 23. The last 9C FF − 12C∗ − 3Ni = 15 II-bins contain only semilarge II-items by Claim 4.1, but the number of
semilarge II-items is no greater than 3C∗ − 2Ni + 1 = 33 by Claim 4.3. Then there are at most 33− 15× 2 = 3 semilarge
items packed in the first 23 − 15 = 8 II-bins. It follows that at least 8 − b 32c = 7 of the first eight II-bins contain not only
semilarge items, and at least 8 − 3 = 5 bins do not contain semilarge items. Let Bi1 , Bi2 , . . . , Bis be all the bins containing
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not only semilarge items, where i1 < i2 < · · · < it with t = 7 or 8. Choose five bins each of which does not contain any
semilarge item, say Bj1 , Bj2 , . . . , Bj5 , and j1 < j2 < · · · < j5. It is obvious that J = {j1, j2, . . . , j5} ⊆ {i1, i2, . . . , is} = I .
If j5 < it , then Bjk >

3
4 for 1 ≤ k ≤ 5 as Bit has items not greater than

1
4 in it. For 1 ≤ k ≤ 5, since Bjk does not contain

any semilarge item, it must be a IV-bin. Accordingly, by Corollary 2.1,

32 = C∗ >
5∑
k=1

Bjk +
2
3
(NII − 5)+

1
2
Ni >

4
5
× 5+

2
3
× 18+

1
2
× 32 = 32,

which is a contradiction. Hence j5 = it . Similarly to before, the Bjk , 1 ≤ k ≤ 4, which do not contain any semilarge item,
must be IV-bins since Bj5 has items not greater than

1
4 in it. In the light of t ≥ 7, there exist s1, s2 ∈ I \ J . Bs1 , Bs2 are before

Bj5 since j5 = it . If Bj5 is a III-bin, then by (2)

Bs1 + Bs2 +
5∑
k=1

Bjk =
1
3
(3Bs1 + Bj5)+

1
3
(3Bs2 + Bj5)+

1
4
(4Bj1 + Bj2)+

3
16
(4Bj2 + Bj3)

+
13
80
(4Bj3 + Bj4)+

13
240

(3Bj3 + Bj5)+
67
240

(3Bj4 + Bj5)

>
1
3
× 3+

1
3
× 3+

1
4
× 4+

3
16
× 4+

13
80
× 4+

13
240
× 3+

67
240
× 3 =

27
5
,

but that will lead us to

32 = C∗ > Bs1 + Bs2 +
5∑
k=1

Bjk +
2
3
(NII − 7)+

1
2
Ni >

27
5
+
2
3
× 16+

1
2
× 32 >

481
15
,

which is a contradiction. Therefore Bj5 must be a ii-bin, so its content is less than
1
2 since it does not contain any semilarge

items. It follows that items in a II-bin after Bj5 are all large, which causes its content to be greater than 1.
(iii) Suppose there exists such a list. By Lemma 4.2, we have 4Ni ≥ 18C FF − 27C∗ − 1 = 152 = 4C∗ − 4. We distinguish

two cases according to the value of Ni.
Case 1. Ni = C∗ = 39.
By Claims 4.1 and 4.3, the last 9C FF−12C∗−3Ni = 18 II-bins contain only semilarge items,while the number of semilarge

II-items cannot exceed 3C∗−2Ni+1 = 40.Moreover,NII = C FF−Ni = 28. Then there are atmost 40−18×2 = 4 semilarge
items in the first 28 − 18 = 10 II-bins. Therefore, at least 10 − 4 = 6 of the first ten II-bins do not contain any semilarge
items. Among these bins, the content of each of the first five bins is at least 34 , and they must be IV-bins as a consequence.
On the other hand, by Lemma 4.3, Nii ≤ 19 and thus NIII ≥ 9. Therefore, by Corollary 2.1,

39 = C∗ >
4
5
× 5+

3
4
(NIII − 5)+

2
3
Nii +

1
2
Ni ≥

4
5
× 5+

3
4
× 4+

2
3
× 19+

1
2
× 39 =

235
6
,

which is a contradiction.
Case 2. Ni = C∗ − 1 = 38.
By Claim 4.1, there are at least 9C FF − 12C∗ − 3Ni = 21 II-bins, and thus at least 42 semilarge II-items. If all the 38

i-items are large, then each bin inB∗ containing an i-item can contain at most one semilarge II-item in the optimal packing.
However, the remaining 42 − Ni = 4 semilarge II-items cannot be packed in the remaining C∗ − Ni = 1 bin. Hence there
exists an i-itemwhich is not large, but it is still semilarge by Claim 4.2. Moreover, there aren’t any large II-items. Otherwise,
there are at least 37 large i-items and one large II-item. Each of them can be packed with at most one semilarge II-item in
the optimal packing. However, the remaining 42− (37+ 1)− 1 = 3 semilarge II-items and one semilarge i-item cannot be
packed in the remaining C∗ − (37+ 1) = 1 bin, which is a contradiction. Therefore, we have l ≤ Ni − 1 = C∗ − 2. Thus by
Lemmas 3.1 and 3.2, we have

66 = C FF − 1 < W ≤
17
10
(C∗ − 2)+

3
2
× 2 =

659
10
,

which is a contradiction. �

In order to get Theorem 4.1, we also need the following lemma concerning the diophantine equation.

Lemma 4.6 ([8] Diophantine Equation). If a and b are coprime, u is an integer. The linear diophantine equation ax+ by = u has
infinitely many solutions. If the pair (x0, y0) is one integral solution, then all others are of the form

x = x0 + bv, y = y0 − av,

where v is an integer.

Theorem 4.1. For every list L, C FF (L) ≤ 12
7 C
∗(L).
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Proof. If C FF ≤ 17
10C
∗ or C∗ ≤ 10, the result clearly follows by the previous discussion. We assume C FF > 17

10C
∗ and C∗ ≥ 11

in the following. Let

31C∗ − 18C FF = u (14)

be a diophantine equation relating to C∗ and C FF , where u is an integer and

u = 31C∗ − 18C FF ≥ 27C∗ + 4Ni − 18C FF ≥ −1 (15)

by Lemmas 2.1 and 4.2. Since (7u, 12u) is a solution of (14), any integral solution of (14) can be written as{
C∗ = 7u+ 18v,
C FF = 12u+ 31v, (16)

by Lemma 4.6, where v is an integer. Taking the expressions for C∗ and C FF in Theorem 3.1, this requires

u+ 4v ≤ 7. (17)

When u ≥ 4 we get v ≤ 0 from (17), so by (16)

C FF

C∗
=
12u+ 31v
7u+ 18v

=
31
18
−

1
18(7+ 18v

u )
≤
31
18
−

1
18× 7

=
12
7
.

When u ≤ 3, due to (15) and (17), the possible pairs (u, v) are

(−1, 1), (−1, 2), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1),

and the corresponding pairs (C∗, C FF ) are

(11, 19), (29, 50), (18, 31), (7, 12), (25, 43), (14, 24), (32, 55), (21, 36), (39, 67).

Lemma 4.5 excludes the possibility of (11, 19), (32, 55), (39, 67). For the pairs of (29, 50), (18, 31), (25, 43), we have

4Ni ≥ 18C FF − 27C∗ − 1 ≥ 4C∗ − 3,

by Lemma 4.2 and direct calculation. So Ni = C∗, and thus Lemma 4.4 implies that such a list will not exist. The remaining
pairs all fulfill C FF = 12

7 C
∗. Then we complete the proof of Theorem 4.1. �

Since there exists such a list that C∗ = 10 and C FF = 17 [7], Theorem 4.1 shows that the gap between the lower and
upper bounds of the absolute performance ratio of FF is less than 0.0143.We conjecture that the absolute performance ratio
of FF is exactly 1710 , which implies that the absolute performance ratio and asymptotic performance ratio of FF are identical.
This is not common among bin-packing algorithms. To settle the conjecture, the first step is to determine whether there
exists such a list that C∗ = 7 and C FF = 12, or not.
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