
Contents

28. General Purpose Computing on Graphics Processing Units . . . 1451
28.1. The graphics pipeline model . 1453

28.1.1. GPU as the implementation of incremental image synthesis . 1455
28.2. GPGPU with the graphics pipeline model 1458

28.2.1. Output . 1458
28.2.2. Input . 1459
28.2.3. Functions and parameters . 1460

28.3. GPU as a vector processor . 1461
28.3.1. Implementing the SAXPY BLAS function 1463
28.3.2. Image filtering . 1464

28.4. Beyond vector processing . 1465
28.4.1. SIMD or MIMD . 1465
28.4.2. Reduction . 1467
28.4.3. Implementing scatter . 1468
28.4.4. Parallelism versus reuse . 1470

28.5. GPGPU programming model: CUDA and OpenCL 1472
28.6. Matrix-vector multiplication . 1472

28.6.1. Making matrix-vector multiplication more parallel 1474
28.7. Case study: computational fluid dynamics 1477

28.7.1. Eulerian solver for fluid dynamics 1479
28.7.2. Lagrangian solver for differential equations 1484

Bibliography . 1491

Subject Index . 1493

Name Index . 1496

28. General Purpose Computing on
Graphics Processing Units

GPGPU stands for General-Purpose computation on Graphics Processing Units,
also known as GPU Computing. Graphics Processing Units (GPU) are highly par-
allel, multithreaded, manycore processors capable of very high computation and data
throughput. Once specially designed for computer graphics and programmable only
through graphics APIs, today’s GPUs can be considered as general-purpose parallel
processors with the support for accessible programming interfaces and industry-
standard languages such as C.

Developers who port their applications to GPUs often achieve speedups of or-
ders of magnitude vs. optimized CPU implementations. This difference comes from
the high floating point performance and peak memory bandwidth of GPUs. This is
because the GPU is specialized for compute-intensive, highly parallel computation—
exactly what graphics rendering is about—and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow con-
trol. From the developer’s point of view this means that hardware latencies are not
hidden, they must be managed explicitly, and writing an efficient GPU program is
not possible without the knowledge of the architecture.

Another reason of discussing GPGPU computing as a specific field of computer
science is that although a GPU can be regarded as a parallel system, its architecture
is not a clean implementation of parallel computing models (see Chapter 15 of this
book titled Parallel Computations). Instead, it has the features of many different
models, like pipelines, vector or array processors, Single-Instruction Multiple-

Data (SIMD) machines, stream-processors, multi-processors connected via shared
memory, hard-wired algorithms, etc. So, when we develop solutions for this special
architecture, the ideas applicable for many different architectures should be com-
bined in creative ways.

GPUs are available as graphics cards, which must be mounted into computer sys-
tems, and a runtime software package must be available to drive the computations.
A graphics card has programmable processing units, various types of memory and
cache, and fixed-function units for special graphics tasks. The hardware operation
must be controlled by a program running on the host computer’s CPU through Ap-

plication Programming Interfaces (API). This includes uploading programs
to GPU units and feeding them with data. Programs might be written and compiled

1452 28. General Purpose Computing on Graphics Processing Units

Graphics API programming model CUDA programming model

Figure 28.1 GPU programming models for shader APIs and for CUDA. We depict here a Shader
Model 4 compatible GPU. The programmable stages of the shader API model are red, the fixed-
function stages are green.

from various programming languages, some originally designed for graphics (like
Cg [13] or HLSL [11]) and some born by the extension of generic programming
languages (like CUDA C). The programming environment also defines a program-

ming model or virtual parallel architecture that reflects how programmable and
fixed-function units are interconnected. Interestingly, different programming models
present significantly different virtual parallel architectures (Figure 28.1). Graphics
APIs provide us with the view that the GPU is a pipeline or a stream-processor
since this is natural for most of the graphics applications. CUDA [14] or OpenCL

[8], on the other hand, gives the illusion that the GPU is a collection of multipro-
cessors where every multiprocessor is a wide SIMD processor composed of scalar
units, capable of executing the same operation on different data. The number of
multiprocessors in a single GPU can range nowadays up to a few hundreds and a
single multiprocessor typically contains 8 or 16 scalar units sharing the instruction
decoder.

The total number of scalar processors is the product of the number of multi-
processors and the number of SIMD scalar processors per multiprocessor, which can
be well over a thousand. This huge number of processors can execute the same pro-
gram on different data. A single execution of the program is called the thread. A
multiprocessor executes a thread block. All processors have some fast local mem-
ory, which is only accessible to threads executed on the same processor, i.e. to a
thread block. There is also global device memory to which data can be uploaded
or downloaded from by the host program. This memory can be accessed from mul-

28.1. The graphics pipeline model 1453

tiprocessors through different caching and synchronization strategies. Compared to
the CPU, this means less transistors for caching, less cache performance in general,
but more control for the programmer to make use of the memory architecture in an
efficient way.

The above architecture favours the parallel execution of short, coherent compu-
tations on compact pieces of data. Thus, the main challenge of porting algorithms to
the GPU is that of parallelization and decomposition to independent computational
steps. GPU programs, which perform such a step when executed by the processing
units, are often called kernels or shaders, the former alludes to the parallel data
processing aspect and the latter is a legacy of the fundamental graphics task: the
simulation of light reflection at object surfaces, better known as shading.

GPU programming languages and control APIs have grown pretty similar to each
other in both capabilities and syntax, but they can still be divided into graphics
and GPGPU solutions. The two approaches can be associated with two different
programmer attitudes. While GPGPU frameworks try to add some constructs to
programming languages to prepare regular code for parallel execution, graphics APIs
extend previously very limited parallel shader programs into flexible computational
tools. This second mindset may seem obsolete or only relevant in specific graphics-
related scenarios, but in essence it is not about graphics at all: it is about the
implicit knowledge of how parallel algorithms work, inherent to the incremental
image synthesis pipeline. Therefore, we first discuss this pipeline and how the GPU
device is seen by a graphics programmer. This will not only make the purpose and
operation of device components clear, but also provides a valid and tried approach
to general purpose GPU programming, and what GPU programs should ideally
look like. Then we introduce the GPGPU approach, which abandons most of the
graphics terminology and neglects task-specific hardware elements in favour of a
higher abstraction level.

28.1. The graphics pipeline model

The graphics pipeline model provides an abstraction over the GPU hardware where
we view it as a device which performs incremental image synthesis [18] (see
Chapter 22 of this book, titled Computer Graphics of this book). Incremental image
synthesis aims to render a virtual world defined by a numerical model by transform-
ing it into linear primitives (points, lines, triangles), and rasterizing these primitives
to pixels of a discrete image. The process is composed of several algorithmic steps,
which are grouped in pipeline stages. Some of these stages are realized by dedicated
hardware components while others are implemented through programs run by GPUs.
Without going into details, let us recap the image synthesis process (Figure 28.2):

• The virtual world is a collection of model instances. The models are approxi-
mated using triangle meshes. This is called .

• In order to perform shading, the objects have to be transformed into the coordi-
nate system where the camera and lights are specified. This is either the world

space or the camera space.

1454 28. General Purpose Computing on Graphics Processing Units

Figure 28.2 Incremental image synthesis process.

• Triangle vertices are projected on-screen according to the camera settings. Where
a vertex should appear on the screen is found by applying the camera transfor-

mation, the perspective transformation, and finally the viewport trans-

formation. In camera space the camera is in the origin and looks at the −z
direction. Rays originating at the camera focus, called the eye position, and
passing through points on the window that represent the pixels of our display
form a perspective bundle. The role of perspective transformation is to convert
this perspective bundle into a parallel bundle of rays, thus to replace perspec-
tive projection by a parallel projection. After perspective transformation, the
vertices are in normalized device space where the visible volume is an axis
aligned cube defined by inequalities −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.
Parts of the geometric primitives that are outside of this volume are removed
by clipping. Normalized device space is further transformed to screen space,

where the target image resolution and position are taken into account. Points of
normalized device space coordinates x = −1, y = −1 are mapped to the lower
left corner of the viewport rectangle on the screen. Points of x = 1, y = 1 are
projected to the upper right corner. Meanwhile, the z range of −1 ≤ z ≤ 1 is
converted to [0, 1].

• In screen space every projected triangle is rasterized to a set of pixels. When an
internal pixel is filled, its properties, including the z coordinate, also called the
depth value, and shading data are computed via incremental linear interpo-
lation from the vertex data. For every pixel, a shading color is computed from
the interpolated data. The shading color of a pixel inside the projection of the
triangle might be the color interpolated from the vertex colors. Alternatively,
we can map images called textures onto the meshes. Texture images are 2D
arrays of color records. An element of the texture image is called the texel.

How the texture should be mapped onto triangle surfaces is specified by texture
coordinates assigned to every vertex.

28.1. The graphics pipeline model 1455

• Pixel colors are finally written to the frame buffer that is displayed on the
computer screen. Besides the frame buffer, we maintain a depth buffer (also
called z-buffer or depth stencil texture), containing screen space depth, which
is the z coordinate of the point whose color value is in the frame buffer. Whenever
a triangle is rasterized to a pixel, the color and the depth are overwritten only if
the new depth value is less than the depth stored in the depth buffer, meaning
the new triangle fragment is closer to the viewer. As a result, we get a rendering
of triangles correctly occluding each other in 3D. This process is commonly called
the depth buffer algorithm. The depth buffer algorithm is also an example
of a more general operation, which computes the pixel data as some function
of the new data and the data already stored at the same location. This general
operation is called merging.

28.1.1. GPU as the implementation of incremental image synthesis

The GPU architecture as presented by the graphics API is the direct implementation
of the image synthesis pipeline (left part of Figure 28.1). This pipeline is configured
by the CPU via graphics API calls, and its operation is initiated by the draw call. A
sequence of draw calls during which the configuration of the pipeline does not change
(but the inputs do) is called a pass. A single draw call operates on a sequence of
vertices, the attributes of which are stored in a vertex buffer.

Vertices are expected to be specified in modeling space with homogeneous coor-
dinates. A point of Cartesian coordinates (x, y, z) can be defined by the quadruple
of homogeneous coordinates [xw, yw, zw, w] using an arbitrary, non-zero scalar
w (for more details see Chapter 21 Computer Graphics of this book). This represen-
tation owns its name to the fact that if the elements of the quadruple are multiplied
by the same scalar, then the represented point will not change. From homogeneous
quadruple [X, Y, Z, w] the Cartesian coordinates of the same point can be obtained
by homogeneous division, that is as (X/w, Y/w, Z/w). Homogeneous coordinates
have several advantages over Cartesian coordinates. When homogeneous coordinates
are used, even parallel lines have an intersection (an ideal point,) thus the singu-
larity of the Euclidean geometry caused by parallel lines is eliminated. Homogeneous
linear transformations include perspective projection as well, which has an im-
portant role in rendering, but cannot be expressed as a linear function of Cartesian
coordinates. Most importantly, the widest class of transformations that preserve
lines and planes are those which modify homogeneous coordinates linearly.

Having set the vertex buffer, vertices defined by their coordinates and attributes
like texture coordinates or color begin their journey down the graphics pipeline,
visiting processing stages implemented by programmable shader processors or fixed-
function hardware elements. We consider these stages one-by-one.

Tessellation
If the vertices do not directly define the final triangle mesh, but they are control
points of a parametric surface or define just a coarse version of the mesh, the first
step is the development of the final mesh, which is called tessellation. As the
programmability of this stage is limited and its GPGPU potential is small, we do

1456 28. General Purpose Computing on Graphics Processing Units

not discuss this stage further but assume that the vertex buffer contains the fine
mesh that needs no tessellation.

Vertex processing
Objects must be transformed to normalized device space for clipping, which is typ-
ically executed by a homogeneous linear transformation. Additionally, GPUs may
also take the responsibility of illumination computation at the vertices of the trian-
gle mesh. These operations are executed in the vertex shader. From a more general
point of view, the vertex shader gets a single vertex at a time, modifies its attributes,
including position, color, and texture coordinates, and outputs the modified vertex.
Vertices are processed independently and in parallel.

The geometry shader
The geometry shader stage receives vertex records along with primitive information.
It may just pass them on as in the fixed-function pipeline, or spawn new vertices.
Optionally, these may be written to an output buffer, which can be used as an input
vertex buffer in a consecutive pass. A typical application of the geometry shader
is procedural modeling, when a complex model is built from a single point or a
triangle [10].

While vertex shaders have evolved from small, specialized units to general stream
processors, they have kept the one record of output for every record of input scheme.
The geometry shader, on the other hand, works on vertex shader output records
(processed vertices), and outputs a varying (but limited) number of similar records.

Clipping
The hardware keeps only those parts of the primitives that are inside an axis aligned
cube of corners (−1, −1, −1) and (1, 1, 1) in normalized device space. In homogeneous
coordinates, a point should meet the following requirements to be inside:

−w ≤ x ≤ w, −w ≤ y ≤ w, −w ≤ z ≤ w .

This formulation complies to the OpenGL [12] convention. It is valid e.g. in the
Cg language when compiling for an OpenGL vertex shader profile. The last pair of
inequalities can also be defined as 0 ≤ z ≤ w, as Direct3D assumes. This is the
case for Cg Direct3D profiles and in the HLSL standard. The difference is hidden
by compilers which map vertex shader output to what is expected by the clipping
hardware.

Clipping is executed by a fixed-function hardware of the GPU, so its operation
can neither be programmed nor modified. However, if we wish our primitives to
continue their path in further stages of the pipeline, the conditions of the clipping
must be satisfied. In GPGPU, the clipping hardware is considered as a stream

filter. If it turns out that a data element processed by vertex and geometry shader
programs needs to be discarded, vertices should be set to move the primitive out of
the clipping volume. Then the clipping hardware will delete this element from the
pipeline.

After clipping the pipeline executes , that is, it converts homogeneous coordinates
to Cartesian ones by dividing the first three homogeneous coordinates by the fourth

28.1. The graphics pipeline model 1457

(w). The points are then transformed to where the first two Cartesian coordinates
select the pixel in which this point is visible.

Rasterization with linear interpolation
The heart of the pipeline is the non-programmable rasterization stage. This is ca-
pable of converting linear primitives (triangles, line segments, points) into discrete
fragments corresponding to digital image pixels. More simply put, it draws trian-
gles if the screen coordinates of the vertices are given. Pipeline stages before the
rasterizer have to compute these vertex coordinates, stages after it have to process
the fragments to find pixel colors.

Even though the base functionality of all stages can be motivated by rasteriza-
tion, GPGPU applications do not necessarily make use of drawing triangles. Still,
the rasterizer can be seen to work as a stream expander, launching an array of frag-
ment computations for all primitive computations, only the triangles have to be set
up cleverly.

Rasterization works in screen space where the x, y coordinates of the vertices
are equal to those integer pixel coordinates where the vertices are projected. The
vertices may have additional properties, such as a z coordinate in screen space, tex-
ture coordinates and color values. When a triangle is rasterized, all those pixels are
identified which fall into the interior of the projection of the triangle. The prop-
erties of the individual pixels are obtained from the vertex properties using linear
interpolation.

Fragment shading
The fragment properties interpolated from vertex properties are used to find the
fragment color and possibly a modified depth value. The classical operation for
this includes fetching the texture memory addressed by the interpolated texture
coordinates and modulating the result with the interpolated color.

Generally, fragment shader programs get the interpolated properties of the frag-
ment and output the color and optionally modify the depth of the fragment. Like the
vertex shader, the fragment shader is also one-record-in, one-record-out type pro-
cessor. The fragment shader is associated with the target pixel, so it cannot write
its output anywhere else.

Merging
When final fragment colors are computed, they may not directly be written to the
image memory, but the output merger stage is responsible for the composition.
First, the depth test against the depth buffer is performed. Note that if the frag-
ment shader does not modify the z value, depth testing might be moved before the
execution of the fragment shader. This early z-culling might improve performance
by not processing irrelevant fragments.

Finally, the output merger blends the new fragment color with the existing pixel
color, and outputs the result. This feature could implement blending needed for
transparent surface rendering (Figure 28.3).

In GPGPU, blending is mainly useful if we need to find the sum, minimum or
maximum of results from consecutive computations without a need of reconfiguring
the pipeline between them.

1458 28. General Purpose Computing on Graphics Processing Units

Figure 28.3 Blending unit that computes the new pixel color of the frame buffer as a function of
its old color (destination) and the new fragment color (source).

28.2. GPGPU with the graphics pipeline model

In general purpose programming, we are used to concepts like input data, tempo-
rary data, output data, and functions that convert input data to temporary and
finally to output data according to their parameters. If we wish to use the GPU
as presented by a graphics API, our programming concepts should be mapped onto
the concepts of incremental image synthesis, including geometric primitives, ver-
tex/primitive/fragment processing, rasterization, texturing, merging, and final im-
age. There are many different possibilities to establish this correspondence, and their
comparative advantages also depend on the actual algorithm. Here we consider a few
general approaches that have proven to be successful in high performance computing
applications. First, we discuss how our general purpose programming concepts can
be related to GPU features.

28.2.1. Output

GPUs render images, i.e. two-dimensional arrays of pixels. The render target can
be the frame buffer that is displayed or an output texture (in the latter case, the pixel
is often referred to as a texel). In GPGPU the output is usually a texture since texels
can be stored in floating point format unlike the final frame buffer values that are
unsigned bytes. Furthermore, textures can be used later on as inputs of subsequent
computation passes, i.e. the two-dimensional output texture can be interpreted as
one or two-dimensional input texture in the next rendering pass, or as a single layer
of a three-dimensional texture. In older GPUs, a pixel was capable of storing at most
five floating point values since a color is typically identified by red, green, blue, and
opacity values, and hidden surface elimination needed a single distance value, which
is the z coordinate of the point in screen coordinates. Later, with the emergence
of multiple render targets, a pixel could be associated with several, e.g. four
textures, which means that the maximum size of an output record could grow to 17

28.2. GPGPU with the graphics pipeline model 1459

floats. In current, most advanced Shader Model 5.0 GPUs even this limitation has
been lifted, so a single pixel can store a list of varying number of values.

Which pixel is targeted by the rendering process is determined by the geometric
elements. Each primitive is transformed to screen space and its projection is raster-
ized which means that those pixels are targeted that are inside the projection. If
more than one element is sent down the pipeline, their projections may overlap, so
the pixel value is calculated multiple times. The merging unit combines these par-
tial results, it may keep only one, e.g. the fragment having minimal screen space z
coordinate if depth testing is enabled, or it may add up partial results using blending.

An important property of the render target is that it can be read directly by none
of the shader processors, and only the fragment shader processor can indirectly write
into it via the possible merging operation. Different fragment shaders are assigned
to different parts of the render target, so no synchronization problem may occur.

28.2.2. Input

In image synthesis the inputs are the geometry stream and the textures used to
color the geometry. As a triangle mesh geometry has usually no direct meaning in
a GPGPU application, we use the geometry stream only as a control mechanism to
distribute the computational load among the shader processors. The real GPGPU
input will be the data stored in textures. The texture is a one-, two- or three-
dimensional array of color data elements, which can store one, two, three or four
scalars. In the most general case, the color has red, green, blue and opacity channels.
These color values can be stored in different formats including, for example, unsigned
bytes or 32 bit floats. From the point of view of GPGPU, 32 bit floats are the most
appropriate.

A one-dimensional float texture is similar to the linear CPU memory where
the usual data structures like arrays, lists, trees etc. can be encoded. However, the
equivalence of the CPU memory and the GPU texture fails in two important aspects.
In one, the texture is poorer, in the other, it is better than the linear CPU memory.

An apparent limitation is that a texture is parallel read-only for all pro-
grammable shaders with the exception of the render target that cannot be read
by the shaders and is accessible only for the merger unit. Read-modify-write cycles,
which are common in the CPU memory, are not available in shader programs. GPU
designers had a good reason not to allow read-modify-write cycles and to classify
textures as parallel read-only and exclusive write-only. In this way, the writes do not
have to be cached and during reads caches get never invalidated.

On the other hand, the texture memory has much more addressing modes than a
linear memory, and more importantly, they are also equipped with built-in texture

filters. With the filters, a texture is not only an array of elements, but also a finite

element representation of a one-, two-, or three-dimensional spatial function (refer
to Section 28.7 to learn more of the relation between finite element representations
and textures).

For one-dimensional textures, we can use linear filtering, which means that if
the texture coordinate u points to a location in between two texels of coordinates U
and U + 1, then the hardware automatically computes a linear interpolation of the

1460 28. General Purpose Computing on Graphics Processing Units

two texel values. Let these texels be T (U) and T (U + 1). The filtered value returned
for u is then

T (u) = (1 − u∗)T (U) + u∗T (U + 1), where u∗ = u − U .

Two-dimensional textures are filtered with bi-linear filtering taking the four
texels closest to the interpolated texture coordinate pair (u, v). Let these be T (U, V),
T (U + 1, V), T (U + 1, V + 1), and T (U, V + 1). The filtered value returned for (u, v)
is then

T (U, V)u∗v∗ + T (U + 1, V)(1 − u∗)v∗ + T (U + 1, V + 1)(1 − u∗)(1 − v∗)

+T (U, V + 1)u∗(1 − v∗),

where u∗ = u − U and v∗ = v − V .
For three-dimensional textures, tri-linear filtering is implemented.

28.2.3. Functions and parameters

As the primitives flow through the pipeline, shader processors and fixed-function
elements process them, determining the final values in each pixel. The programs of
shader processors are not changed in a single rendering pass, so we can say that each
pixel is computed by the very same program. The difference of pixel colors is due
to data dependencies. So, in conclusion a GPU can be regarded as a hardware that
computes an array of records.

In the GPU, primitives are processed by a series of processors that are either
programmable or execute fixed algorithms while output pixels are produced. It means
that GPUs can also be seen as stream processors. Vertices defining primitives enter
a single virtual stream and are first processed by the vertex shader. With stream
processing terminology, the vertex shader is a mapping since it applies a function
to the vertex data and always outputs one modified vertex for each input vertex. So,
the data frequency is the same at the output as it was at the input. The geometry
shader may change the topology and inputting a single primitive, it may output
different primitives having different number of vertices. The data frequency may
decrease, when the stream operation is called reduction, or may increase, when it
is called expansion. The clipping unit may keep or remove primitives, or may even
change them if they are partially inside of the clipping volume. If we ignore partially
kept primitives, the clipping can be considered as a . By setting the coordinates of
the vertices in the vertex shader to be outside of the clipping volume, we can filter
this primitive out of the further processing steps. Rasterization converts a primitive
to possibly many fragments, so it is an expansion. The fragment shader is also a
mapping similarly to the vertex shader. Finally, merging may act as a selection,
for example, based on the z coordinate or even as an accumulation if blending is
turned on.

Shader processors get their stream data via dedicated registers, which are filled
by the shader of the preceding step. These are called varying input. On the other
hand, parameters can also be passed from the CPU. These parameters are called
uniform input since they are identical for all elements of the stream and cannot
be changed in a pass.

28.3. GPU as a vector processor 1461

full

screen

quad

rasterizer

fragment

shader

data

index

input

data

texture

output

merger

output

data

texture

fragments

Figure 28.4 GPU as a vector processor.

28.3. GPU as a vector processor

If the computation of the elements is done independently and without sharing tem-
porary results, the parallel machines are called vector processors or array proces-

sors. As in the GPU hardware the fragment shader is associated with the elements
of the output data, we use the fragment shader to evaluate output elements. Of
course, the evaluation in a given processor must also be aware which element is be-
ing computed, which is the fundamental source of data dependency (it would not
make sense to compute the very same data many times on a parallel machine). In
the fragment shader, the index of the data element is in fact the pair of the pixel
coordinates. This is available in screen space as a pair of two integers specifying the
row and the column where the pixel is located.

In the simplest, but practically the most important case, we wish to have a result
in all pixels in a single rendering pass. So we have to select a geometric primitive that
is mapped to all pixels in screen space and a single pixel is mapped only once. Such a
geometric primitive is the virtual display itself, thus we should render a rectangle or a
quadrilateral that represents the window of our virtual camera. In screen space, this
is the viewport rectangle, in clipping space, this is a square on the x, y plane and
having corners in homogeneous coordinates (−1, −1, 0, 1), (1, −1, 0, 1), (1, 1, 0, 1),
(−1, 1, 0, 1). This rectangle is also called the full screen quad and is processed by
the hardware as two triangles (Figure 28.4).

Suppose that we want to compute an output array y of dimension N from an
input array x of possibly different dimension M and a global parameter p with
function F :

yi = F (i, x, p), i = 1, . . . , N .

To set up the GPU for this computation, we assign output array y to the output
texture that is the current render target. Texture size is chosen according to the out-
put size, and the viewport is set to cover the entire render target. A two-dimensional
array of H horizontal resolution and V vertical resolution is capable of storing H ×V
elements. If H × V ≥ N, then it is up to us how horizontal and vertical resolutions
are found. However, GPUs may impose restrictions, e.g. they cannot be larger than
212 or, if we wish to use them as input textures in the next pass or compute binary
reductions, the resolutions are preferred to be powers of two. If power of two dimen-
sions are advantageous but the dimension of the array is different, we can extend

1462 28. General Purpose Computing on Graphics Processing Units

the array by additional void elements.
According to vector processing principles, different output values are computed

independently without sharing temporary results. As in the GPU hardware the frag-
ment shader is associated with the elements of the output data and can run inde-
pendently of other elements, we use the fragment shader to evaluate function F. To
find its parameters, we need to know i, i.e. which element is currently computed, and
should have an access to input array x. The simplest way is to store the input array
as an input texture (or multiple input textures if that is more convenient) since the
fragment shader can access textures.

The only responsibility of the CPU is to set the uniform parameters, specify the
viewport and send a full screen quad down the pipeline. Uniform parameters select
the input texture and define global parameter p. Assuming the OpenGL API, the
corresponding CPU program in C would look like the following:

StartVectorOperation() {
Set uniform parameters p and arrayX identifying the input texture

glViewport(0, 0, H, V); // Set horizontal and vertical resolutions, H and V
glBegin(GL_QUADS); // The next four vertices define a quad

glVertex4f(-1,-1, 0, 1); // Vertices assuming normalized device space
glVertex4f(-1, 1, 0, 1);
glVertex4f(1, 1, 0, 1);
glVertex4f(1,-1, 0, 1);

glEnd();
}

Note that this program defines the rectangle directly in normalized device space
using homogeneous coordinates passed as input parameters of the glVertex4f func-
tions. So in the pipeline we should make sure that the vertices are not transformed.

For the shader program, the varying inputs are available in dedicated registers
and outputs must also be written to dedicated registers. All of these registers are of
type float4, that is, they can hold 4 float values. The role of the register is explained
by its name. For example, the current value of the vertex position can be fetched
from the POSITION register. Similar registers can store the texture coordinates
or the color associated with this vertex.

The vertex shader gets the position of the vertex and is responsible for trans-
forming it to the normalized device space. As we directly defined the vertices in
normalized device space, the vertex shader simply copies the content of its input
POSITION register to its output POSITION register (the input and output classi-
fication is given by the in and out keywords in front of the variable names assigned
to registers):

void VertexShader(in float4 inputPos : POSITION,
out float4 outputPos : POSITION)

{
outputPos = inputPos;

}

The geometry shader should keep the rectangle as it is without changing the
vertex coordinates. As this is the default operation for the geometry shader, we do
not specify any program for it. The rectangle leaving the geometry shader goes to
the clipping stage, which keeps it since we defined our rectangle to be inside the
clipping region. Then, Cartesian coordinates are obtained from the homogeneous
ones by dividing the first three coordinates by the fourth one. As we set all fourth

28.3. GPU as a vector processor 1463

homogeneous coordinates to 1, the first three coordinates are not altered. After ho-
mogeneous division, the fixed-function stage transforms the vertices of the rectangle
to the vertices of a screen space rectangle having the x, y coordinates equal to the
corners of the viewport and the z = 0 coordinate to 0.5. Finally, this rectangle is
rasterized in screen space, so all pixels of the viewport are identified as a target, and
the fragment shader is invoked for each of them.

The fragment shader is our real computing unit. It gets the input array and
global parameter p as uniform parameters and can also find out which pixel is being
computed by reading the WPOS register:

float FragmentShaderF(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT arrayX, // input array
uniform float p // global parameter p
) : COLOR // output is interpreted as a pixel color

{
float yi = F(index, arrayX, p); // F is the function to be evaluated
return yi;

}

In this program two input parameters were declared as uniform inputs by the
uniform keyword, a float parameter p and the texture identification arrayX. The
type of the texture is samplerRECT that determines the addressing modes how a
texel can be selected. In this addressing mode, texel centers are on a two-dimensional
integer grid. Note that here we used a different syntax to express what the output of
the shader is. Instead of declaring a register as out, the output is given as a return
value and the function itself, and is assigned to the output COLOR register.

28.3.1. Implementing the SAXPY BLAS function

To show concrete examples, we first implement the level 1 functionality of the Ba-

sic Linear Algebra Subprograms (BLAS) library (http://www.netlib.org/blas/)
that evaluates vector functions of the following general form:

y = px + y,

where x and y are vectors and p is a scalar parameter. This operation is called
SAXPY in the BLAS library. Now our fragment shader inputs two textures, vector
x and the original version of vector y. One fragment shader processor computes a
single element of the output vector:

float FragmentShaderSAXPY(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT arrayX, // input array x
uniform samplerRECT arrayY, // original version of y
uniform float p // global parameter p
) : COLOR // output is interpreted as a pixel color

{
float yoldi = texRECT(arrayY, index); // yoldi = arrayY[index]
float xi = texRECT(arrayX, index); // xi = arrayX[index]
float yi = p * xi + yoldi;
return yi;

}

Note that instead of indexing an array of CPU style programming, here we fetch
the element from a texture that represents the array by the texRECT Cg function.

1464 28. General Purpose Computing on Graphics Processing Units

The first parameter of the texRECT function is the identification number of a two-
dimensional texture, which is passed from the CPU as a uniform parameter, and the
second is the texture address pointing to the texel to be selected.

Here we can observe how we can handle the limitation that a shader can only
read textures but is not allowed to write into it. In the operation, vector y is an input
and simultaneously also the output of the operation. To resolve this, we assign two
textures to vector y. One is the original vector in texture arrayY, and the other one
is the render target. While we read the original value, the new version is produced
without reading back from the render target, which would not be possible.

28.3.2. Image filtering

Another important example is the discrete convolution of two textures, an image and
a filter kernel, which is the basic operation in many image processing algorithms:

L̃(X, Y) ≈
M

∑

i=−M

M
∑

j=−M

L(X − i, Y − j)w(i, j) , (28.1)

where L̃(X, Y) is the filtered value at pixel X, Y , L(X, Y) is the original image, and
w(x, y) is the filter kernel, which spans over (2M + 1) × (2M + 1) pixels.

Now the fragment shader is responsible for the evaluation of a single output pixel
according to the input image given as texture Image and the filter kernel stored in
a smaller texture Weight. The half size of the filter kernel M is passed as a uniform
variable:

float3 FragmentShaderConvolution(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT Image, // input image
uniform samplerRECT Weight, // filter kernel
uniform float M // size of the filter kernel
) : COLOR // a pixel of the filtered image

{
float3 filtered = float3(0, 0, 0);

for(int i = -M; i <= M; i++)
for(int j = -M; j <= M; j++) {

float2 kernelIndex = float2(i, j);
float2 sourceIndex = index + kernelIndex;
filtered += texRECT(Image, sourceIndex) * texRECT(Weight, kernelIndex);

}
}
return filtered;

}

Note that this example was a linear, i.e. convolution filter, but non-linear filters
(e.g. median filtering) could be implemented similarly. In this program we applied
arithmetic operators (*, +=, =) for float2 and float3 type variables storing two
and three floats, respectively. The Cg compiler and the GPU will execute these
instructions independently on the float elements.

Note also that we did not care what happens at the edges of the image, the
texture is always fetched with the sum of the target address and the shift of the
filter kernel. A CPU implementation ignoring image boundaries would obviously be
wrong, since we would over-index the source array. However, the texture fetching

28.4. Beyond vector processing 1465

hardware implementing, for example, the texRECT function automatically solves
this problem. When the texture is initialized, we can specify what should happen if
the texture coordinate is out of its domain. Depending on the selected option, we get
the closest texel back, or a default value, or the address is interpreted in a periodic
way.

Exercises
28.3-1 Following the vector processing concept, write a pixel shader which, when a
full screen quad is rendered, quantizes the colors of an input texture to a few levels
in all three channels, achieving a cell shading effect.
28.3-2 Following the gathering data processing scheme, write a pixel shader which,
when a full screen quad is rendered, performs median filtering on an input grayscale
image, achieving dot noise reduction. The shader should fetch nine texel values from
a neighborhood of 3 × 3, outputting the fifth largest.
28.3-3 Implement an anisotropic, edge preserving low-pass image filter with the
gathering data processing scheme. In order to preserve edges, compute the Euclidean
distance of the original pixel color and the color of a neighboring pixel, and include
the neighbor in the averaging operation only when the distance is below a threshold.

28.3-4 Write a parallel Mandelbrot set rendering program by assuming that pixel
x, y corresponds to complex number c = x + iy and deciding whether or not the
zn = z2

n−1 + c iteration diverges when started from z0 = c. The divergence may
be checked by iterating n = 106 times and examining that |zn| is large enough.
Divergent points are depicted with white, non-divergent points with black.

28.4. Beyond vector processing

Imagining the GPU as a vector processor is a simple but efficient application of the
GPU hardware in general parallel processing. If the algorithm is suitable for vector
processing, then this approach is straightforward. However, some algorithms are not
good candidates for vector processing, but can still be efficiently executed by the
GPU. In this section, we review the basic approaches that can extend the vector
processing framework to make the GPU applicable for a wider range of algorithms.

28.4.1. SIMD or MIMD

Vector processors are usually SIMD machines, which means that they execute not
only the same program for different vector elements but always the very same ma-
chine instruction at a time. It means that vector operations cannot contain data
dependent conditionals or loop lengths depending on the actual data. There is only
one control sequence in a SIMD parallel program.

Of course, writing programs without if conditionals and using only constants as
loop cycle numbers are severe limitations, which significantly affects the program
structure and the ease of development. Early GPU shaders were also SIMD type
processors and placed the burden of eliminating all conditionals from the program

1466 28. General Purpose Computing on Graphics Processing Units

on the shoulder of the programmer. Current GPUs and their compilers solve this
problem automatically, thus, on the programming level, we can use conditionals and
variable length loops as if the shaders were MIMD computers. On execution level,
additional control logic makes it possible that execution paths of scalar units diverge:
in this case it is still a single instruction which is executed at a time, possibly with
some scalar units being idle. Operations of different control paths are serialized so
that all of them are completed. The overhead of serialization makes performance
strongly dependent on the coherence of execution paths, but many transistors of
control logic can be spared for more processing units.

The trick of executing all branches of conditionals with possibly disabled writes
is called predication. Suppose that our program has an if statement like

if (condition(i)) {
F();

} else {
G();

}

Depending on the data, on some processors the condition(i) may be true, while
it is false on other processors, thus our vector machine would like to execute function
F of the first branch in some processors while it should evaluate function G of the
second branch in other processors. As in SIMD there can be only one control path,
the parallel system should execute both paths and disable writes when the processor
is not in a valid path. This method converts the original program to the following
conditional free algorithm:

enableWrite = condition(i);
F();
enableWrite = !enableWrite;
G();

This version does not have conditional instructions so it can be executed by the
SIMD machine. However, the computation time will be the the sum of computation
times of the two functions.

This performance bottleneck can be attacked by decomposing the computation
into multiple passes and by the exploitation of the feature. The early z-cull compares
the z value of the fragment with the content of the depth buffer, and if it is smaller
than the stored value, the fragment shader is not called for this fragment but the
fragment processor is assigned to another data element. The early z-cull is enabled
automatically if we execute fragment programs that do not modify the fragment’s z
coordinate (this is the case in all examples discussed so far).

To exploit this feature, we decompose the computation into three passes. In the
first pass, only the condition is evaluated and the depth buffer is initialized with the
values. Recall that if the z value is not modified, our full screen quad is on the xy
plane in normalized device space, so it will be on the z = 0.5 plane in screen space.
Thus, to allow a discrimination according to the condition, we can set values in the
range (0.5, 1) if the condition is true and in (0, 0.5) if it is false.

The fragment shader of the first pass computes just the condition values and
stores them in the depth buffer:

float FragmentShaderCondition(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT Input, // input vector

28.4. Beyond vector processing 1467

) : DEPTH // the output goes to the depth buffer
{

bool condition = ComputeCondition(texRECT(Input, index));
return (condition) ? 0.8 : 0.2; // 0.8 is greater than 0.5; 0.2 is smaller than 0.5

}

Then we execute two passes for the evaluation of functions F and G, respectively.
In the first pass, the fragment shader computes F and the depth comparison is set
to pass those fragments where their z = 0.5 coordinate is less than the depth value
stored in the depth buffer. In this pass, only those fragments are evaluated where
the depth buffer has 0.8 value, i.e. where the previous condition was true. Then, in
the second pass, the fragment shader is set to compute G while the depth buffer
is turned to keep those fragments where the fragment’s depth is greater than the
stored value.

In Subsection 28.7.1 we exploit early z-culling to implement a variable length
loop in fragment processors.

28.4.2. Reduction

The vector processing principle assumes that the output is an array where elements
are obtained independently. The array should be large enough to keep every shader
processor busy. Clearly, if the array has just one or a few elements, then only one or
a few shader processors may work at a time, so we loose the advantages of parallel
processing.

In many algorithms, the final result is not a large array, but is a single value
computed from the array. Thus, the algorithm should reduce the dimension of the
output. Doing the in a single step by producing a single texel would not benefit
from the parallel architecture. Thus, reduction should also be executed in parallel,
in multiple steps. This is possible if the operation needed to compute the result from
the array is associative, which is the case for the most common operations, like sum,
average, maximum, or minimum.

Σ

Σ

Σ

Σ

Σ

Σ

Σ

in
p

u
t

d
at

a

o
u

tp
u

t
d

at
a

thread 1

thread 2

thread 3

thread 4

Figure 28.5 An example for parallel reduction that sums the elements of the input vector.

Suppose that the array is encoded by a two-dimensional texture. At a single
phase, we downsample the texture by halving its linear resolution, i.e. replacing four
neighboring texels by a single texel. The fragment shaders will compute the operation
on four texels. If the original array has 2n ×2n resolution, then n reduction steps are

1468 28. General Purpose Computing on Graphics Processing Units

needed to obtain a single 1 × 1 output value. In the following example, we compute
the sum of the elements of the input array (Figure 28.5). The CPU program renders
a full screen quad in each iteration having divided the render target resolution by
two:

Reduction() {
Set uniform parameter arrayX to identify the input texture

for(N /= 2 ; N >= 1; N /= 2) { // log_2 N iterations
glViewport(0, 0, N, N); // Set render target dimensions to hold NxN elements
glBegin(GL_QUADS); // Render a full screen quad

glVertex4f(-1,-1, 0, 1);
glVertex4f(-1, 1, 0, 1);
glVertex4f(1, 1, 0, 1);
glVertex4f(1,-1, 0, 1);

glEnd();

Copy render target to input texture arrayX
}

}

The fragment shader computes a single reduced texel from four texels as a sum-
mation in each iteration step:

float FragmentShaderSum() (
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT arrayX, // input array x
) : COLOR // output is interpreted as a pixel color

{
float sum = texRECT(arrayX, 2 * index);
sum += texRECT(arrayX, 2 * index + float2(1, 0));
sum += texRECT(arrayX, 2 * index + float2(1, 1));
sum += texRECT(arrayX, 2 * index + float2(0, 1));
return sum;

}

Note that if we exploited the bi-linear filtering feature of the texture memory,
then we could save three texture fetch operations and obtain the average in a single
step.

28.4.3. Implementing scatter

In vector processing a processor is assigned to each output value, i.e. every processor
should be aware which output element it is computing and it is not allowed to deroute
its result to somewhere else. Such a static assignment is appropriate for gathering

type computations. The general structure of gathering is that we may rely on a
dynamically selected set of input elements but the variable where the output is
stored is known a-priory:

index = ComputeIndex(); // index of the input data
y = F(x[index]);

Opposed to gathering, algorithms may have scattering characteristics, i.e. a
given input value may end up in a variable that is selected dynamically. A simple
scatter operation is:

index = ComputeIndex(); // index of the output data
y[index] = F(x);

Vector processing frameworks and our fragment shader implementation are un-
able to implement scatter since the fragment shader can only write to the pixel it

28.4. Beyond vector processing 1469

rasterizer
fragment

shaderoutput

data

index
input

data

texture

output

data

texture

vertex

shader

0 1 2 3 4 5 6 vertex buffer

input data index

Figure 28.6 Implementation of scatter.

has been assigned to.
If we wish to solve a problem having scattering type algorithm on the GPU,

we have two options. First, we can restructure the algorithm to be of gathering
type. Converting scattering type parallel algorithms to gathering type ones requires
a change of our viewpoint how we look at the problem and its solution. For example,
when integral equations or transport problems are considered, this corresponds to
the solution of the adjoint problem [19]. Secondly, we can move the index calculation
up to the pipeline and use the rasterizer to establish the dynamic correspondence
between the index and the render target (Figure 28.6).

Let us consider a famous scattering type algorithm, histogram generation.

Suppose we scan an input array x of dimension M, evaluate function F for the
elements, and calculate output array y of dimension N that stores the number of
function values that are in bins equally subdividing range (Fmin, Fmax).

A scalar implementation of histogram generation would be:

Histogram(x) {
for(int i = 0; i < M; i++) {

index = (int)((F(x[i]) - Fmin)/(Fmax - Fmin) * N); // bin
index = max(index, 0);
index = min(index, N-1);
y[index] = y[index] + 1;

}
}

We can see that the above function writes to the output array at random loca-
tions, meaning it cannot be implemented in a fragment shader which is only allowed
to write the render target at its dedicated index. The problem of scattering will be
solved by computing the index in the vertex shader but delegating the responsibility
of incrementing to the rest of the pipeline. The indices are mapped to output pix-
els by the rasterization hardware. The problem of read-modify-write cycles might be
solved by starting a new pass after each increment operation and copying the current
render target as an input texture of the next rendering pass. However, this solution
would have very poor performance and would not utilize the parallel hardware at
all. A much better solution uses the arithmetic capabilities of the merging unit.
The fragment shader generates just the increment (i.e. value 1) where the histogram
needs to be updated and gives this value to the merging unit. The merging unit, in
turn, adds the increment to the content of the render target.

1470 28. General Purpose Computing on Graphics Processing Units

The CPU program generates a point primitive for each input data element.
Additionally, it sets the render target to match the output array and also enables
the merging unit to execute add operations:

ScanInputVector() {
Set uniform parameters Fmin, Fmax, N

glDisable(GL_DEPTH_TEST); // Turn depth buffering off
glBlendFunc(GL_ONE, GL_ONE); // Blending operation: dest = source * 1 + dest * 1;
glEnable(GL_BLEND); // Enable blending

glViewport(0, 0, N, 1); // Set render target dimensions to hold N elements
glBegin(GL_POINTS); // Assign a point primitive to each input elements
for(int i = 0; i < M; i++) {

glVertex1f(x[i]); // an input element as a point primitive
}
glEnd();

}

The vertex positions in this level are not important since it turns out later where
this point will be mapped. So we use the first coordinate of the vertex to pass the
current input element x[i].

The vertex shader gets the position of the vertex currently storing the input
element, and finds the location of this point in normalized device space. First, func-
tion F is evaluated and the bin index is obtained, then we convert this index to the
[−1, 1] range since in normalized device space these will correspond to the extremes
of the viewport:

void VertexShaderHistogram(
in float inputPos : POSITION,
out float4 outputPos : POSITION,
uniform float Fmin,
uniform float Fmax,
uniform float N)

{
float xi = inputPos;
int index = (int)((F(xi) - Fmin)/(Fmax - Fmin) * N); // bin
index = max(index, 0);
index = min(index, N-1);
float nindex = 2.0 * index / N - 1.0; // normalized device space
outputPos = float4(nindex, 0, 0, 1); // set output coordinates

}

The above example is not optimized. Note that the index calculation and the
normalization could be merged together and we do not even need the size of the
output array N to execute this operation.

The fragment shader will be invoked for the pixel on which the point primitive
is mapped. It simply outputs an increment value of 1:

float FragmentShaderIncr() : COLOR // output is interpreted as a pixel color
{

return 1; // increment that is added to the render target by merging
}

28.4.4. Parallelism versus reuse

Parallel processors running independently offer a linear speed up over equivalent
scalar processor implementations. However, scalar processors may benefit from rec-
ognizing similar parts in the computation of different output values, so they can

28.4. Beyond vector processing 1471

Figure 28.7 Caustics rendering is a practical use of histogram generation. The illumination in-
tensity of the target will be proportional to the number of photons it receives (images courtesy of
Dávid Balambér).

increase their performance utilizing reuse. As parallel processors may not reuse
data generated by other processors, their comparative advantages become less at-
tractive.

GPUs are parallel systems of significant streaming capabilities, so if data that
can be reused are generated early, we can get the advantages of both independent
parallel processing and the reuse features of scalar computing.

Our main stream expander is the rasterization. Thus anything happens before
rasterization can be considered as a global computation for all those pixels that are
filled with the rasterized version of the primitive. Alternatively, the result of a pass
can be considered as an input texture in the next pass, so results obtained in the
previous pass can be reused by all threads in the next pass.

Exercises
28.4-1 Implement a parallel regula falsi equation solver for (2 − a − b)x3 + ax2 +
bx − 1 = 0 that searches for roots in [0, 1] for many different a and b parameters.
The a and b parameters are stored in a texture and the pixel shader is responsible
for iteratively solving the equation for a particular parameter pair. Terminate the
iteration when the error is below a given threshold. Take advantage of the early z-
culling hardware to prevent further refinement of the terminated iterations. Analyze
the performance gain.
28.4-2 Based on the reduction scheme, write a program which applies simple linear
tone mapping to a high dynamic range image stored in a floating-point texture. The
scaling factor should be chosen to map the maximum texel value to the value of one.
Find this maximum using iterative reduction of the texture.
28.4-3 Based on the concept of scatter, implement a caustics renderer program
(Figure 28.7). The scene includes a point light source, a glass sphere, and a diffuse
square that is visualized on the screen. Photons with random directions are generated
by the CPU and passed to the GPU as point primitives. The vertex shader traces
the photon through possible reflections or refractions and decides where the photon
will eventually hit the diffuse square. The point primitive is directed to that pixel
and the photon powers are added by additive alpha blending.
28.4-4 Based on the concept of scatter, given an array of GSM transmitter tower
coordinates, compute cell phone signal strength on a 2D grid. Assume signal strength

1472 28. General Purpose Computing on Graphics Processing Units

diminishes linearly with the distance to the nearest transmitter. Use the rasterizer
to render circular features onto a 2D render target, and set up blending to pick the
maximum.

28.5. GPGPU programming model: CUDA and
OpenCL

The Compute Unified Device Architecture (CUDA) and the interfaces pro-
vide the programmer with a programming model that is significantly different from
the graphics pipeline model (right of Figure 28.1). It presents the GPU as a col-
lection of multiprocessors where each multiprocessor contains several SIMD scalar
processors. Scalar processors have their own registers and can communicate inside
a multiprocessor via a fast shared memory. Scalar processors can read cached
textures having built-in filtering and can read or write the slow global memory. If
we wish, even read-modify-write operations can also be used. Parts of the global
memory can be declared as a texture, but from that point it becomes read-only.

Unlike in the graphics API model, the write to the global memory is not ex-
clusive and atomic add operations are available to support semaphores and data
consistency. The fixed-function elements like clipping, rasterization, and merging are
not visible in this programming model.

Comparing the GPGPU programming model to the graphics API model, we
notice that it is cleaner and simpler. In the GPGPU programming model, parallel
processors are on the same level and can access the global memory in an unrestricted
way, while in the graphics API model, processors and fixed-function hardware form
streams and write is possible only at the end of the stream. When we program
through the GPGPU model, we face less restrictions than in the graphics pipeline
model. However, care should be practiced since the graphics pipeline model for-
bids exactly those features that are not recommended to use in high performance
applications.

The art of programming the GPGPU model is an efficient decomposition of the
original algorithm to parallel threads that can run with minimum amount of data
communication and synchronization, but always keep most of the processors busy.
In the following sections we analyze a fundamental operation, the matrix-vector
multiplication, and discuss how these requirements can be met.

28.6. Matrix-vector multiplication

Computational problems are based on mathematical models and their numerical
solution. The numerical solution methods practically always rely on some kind of
linearization, resulting in algorithms that require us to solve linear systems of equa-
tions and perform matrix-vector multiplication as a core of the iterative solution.
Thus, matrix-vector multiplication is a basic operation that can be, if implemented
efficiently on the parallel architecture, the most general building block in any nu-

28.6. Matrix-vector multiplication 1473

merical algorithm. We define the basic problem to be the computation of the result
vector y from input matrix A, vectors x and b, as

y = Ax + b .

We call this the MV problem. Let N × M be the dimensions of matrix A. As every
input vector element may contribute to each of the output vector elements, a scalar
CPU implementation would contain a double loop, one loop scans the input elements
while the other the output elements. If we parallelize the algorithm by assigning
output elements to parallel threads, then we obtain a gathering type algorithm where
a thread gathers the contributions of all input elements and aggregates them to the
thread’s single output value. On the other hand, if we assigned parallel threads to
input elements, then a thread would compute the contribution of this input element
to all output elements, which would be a scatter operation. In case of gathering,
threads share only input data but their output is exclusive so no synchronization
is needed. In case of scattering, multiple threads may add their contribution to the
same output element, so atomic adds are needed, which may result in performance
degradation.

An implementation of the matrix-vector multiplication on a scalar processor
looks like the following:

void ScalarMV(int N, int M, float* y, const float* A, const float* x, const float* b)
{

for(int i=0; i<N; i++) {
float yi = b[i];
for(int j=0; j<M; j++) yi += A[i * M + j] * x[j];
y[i] = yi;

}
}

The first step of porting this algorithm to a parallel machine is to determine
what a single thread would do from this program. From the options of gathering
and scattering, we should prefer gathering since that automatically eliminates the
problems of non-exclusive write operations. In a gathering type solution, a thread
computes a single element of vector y and thus we need to start N threads. A GPU
can launch a practically unlimited number of threads that are grouped in thread
blocks. Threads of a block are assigned to the same multiprocessor. So the next
design decision is how the N threads are distributed in blocks. A multiprocessor
typically executes 32 threads in parallel, so the number of threads in a block should
be some multiple of 32. When the threads are halted because of a slow memory
access, a hardware scheduler tries to continue the processing of other threads, so it
is wise to assign more than 32 threads to a multiprocessor to always have threads
that are ready to run. However, increasing the number of threads in a single block
may also mean that at the end we have just a few blocks, i.e. our program will run
just on a few multiprocessors. Considering these, we assign 256 threads to a single
block and hope that N/256 exceeds the number of multiprocessors and thus we fully
utilize the parallel hardware.

There is a slight problem if N is not a multiple of 256. We should assign the
last elements of the vector to some processors as well, so the thread block number
should be the ceiling of N/256. As a result of this, we shall have threads that are not
associated with vector elements. It is not a problem if the extra threads can detect

1474 28. General Purpose Computing on Graphics Processing Units

it and cause no harm, e.g. they do not over-index the output array.
Similarly to the discussed vector processing model, a thread should be aware

which output element it is computing. The CUDA library provides implicit input
parameters that encode this information: blockIdx is the index of the thread block,
blockDim is the number of threads in a block, and threadIdx is the index of the
thread inside the block.

The program of the CUDA kernel computing a single element of the output
vector is now a part of a conventional CPU program:

__global__ void cudaSimpleMV(int N, int M, float* y, float* A, float* x, float* b)
{

// Determine element to process from thread and block indices
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < N) { // if the index is out of the range of the output array, skip.

float yi = b[i];
for(int j=0; j<M; j++) yi += A[i * M + j] * x[j];
y[i] = yi;

}
}

The global keyword tells the compiler that this function will run not on the
CPU but on the GPU and it may be invoked from the CPU as well. The parameters
are passed according to the normal C syntax. The only special feature is the use of
the implicit parameters to compute the identification number of this thread, which
is the index of the output array.

The kernels are started from a CPU program that sets the parameters and also
defines the number of thread blocks and the number of threads inside a block.

__host__ void run_cudaSimpleMV()
{

int threadsPerBlock = 256; // number of threads per block
int blockNum = (N + threadsPerBlock - 1)/threadsPerBlock; // number of blocks
cudaSimpleMV<<<blockNum, threadsPerBlock>>>(N, M, y, A, x, b);

}

The compiler will realize that this function runs on the CPU by reading the
host keyword. The parallel threads are started like a normal C function call with
the exception of the <blockNum, threadsPerBlock> tag, which defines how many
threads should be started and how they are distributed among the multiprocessors.

28.6.1. Making matrix-vector multiplication more parallel

So far, we assigned matrix rows to parallel threads and computed scalar product
Aix serially inside threads. If the number of matrix rows is less than the number
of parallel scalar processors, this amount of parallelization is not enough to supply
all processing units with work to do, and the execution of individual threads will be
lengthy. Reformulating the scalar product computation is a well known, but tougher
parallelization problem, as the additions cannot be executed independently, and we
require a single scalar to be written for every row of the matrix. However, parts of
the summation can be executed independently, and then the results added. This is a
classic example of . It is required that the threads whose results are to be added both
finish execution and write their results to where they are accessible for the thread
that needs to add them. Thus, we use thread synchronization and available only
for the threads of the same block.

28.6. Matrix-vector multiplication 1475

Let us assume first—unrealistically—that we can have M threads processing a
row and the shared memory can hold M floating point values. Let Q be the vector of
length M residing in shared memory. Then, every thread can compute one element
Qj as Aijxj .. Finally, elements of Q must be reduced by summation. Let us further
assume that M = 2k.. The reduction can be carried out in k steps, terminating
half of the threads, while each surviving thread adds the value in Q computed by
a terminated one to its own. The final remaining thread outputs the value to the
global memory.

#define M THE_NUMBER_OF_MATRIX_COLUMNS
__global__ void cudaReduceMV(int N, float* y, float* A, float* x, float* b)
{

int i = blockIdx.x;
int j = threadIdx.x;

__shared__ float Q[M]; // in the shader memory inside a multiprocessor

Q[j] = A[i * M + j] * x[j]; // a parallel part of matrix-vector multiplication

for(int stride = M / 2; stride > 0; stride >>= 1) // reduction
{

__syncthreads(); // wait until all other threads of the block arrive this point
if(j + stride < M)

Q[j] += Q[j + stride];
}

if(j == 0) // reduced to a single element
y[i] = Q[0] + b[i];

}

__host__ void run_cudaReduceMV()
{

cudaReduceMV<<< N, M >>>(N, y, A, x, b);
}

For practical matrix dimensions (M > 104), neither the number of possible
threads of a single multiprocessor nor the size of the shared memory is enough to
process all elements in parallel. In our next example, we use a single block of threads
with limited size to process a large matrix. First, we break the output vector into
segments of size T . Elements within such a segment are evaluated in parallel, then the
threads proceed to the next segment. Second, for every scalar product computation,
we break the vectors Ai and x into segments of length Z. We maintain a shared
vector Qt of length Z for every row being processed in parallel. We can compute the
elementwise product of the Ai and x segments in parallel, and add it to Qt. As T
rows are being processed by Z threads each, the block will consist of T × Z threads.
From one thread’s perspective this means it has to loop over y with a stride of T,
and for every such element in y, loop over Ai and x with a stride of Z. Also for
every element in y, the contents of Qt must be summed by reduction as before. The
complete kernel which works with large matrices would then be:

__global__ void cudaLargeMV(int N, int M, float* y, float* A, float* x, float* b)
{

__shared__ float Q[T * Z]; // stored in the shared memory inside a multiprocessor

int t = threadIdx.x / Z;
int z = threadIdx.x % Z;

for(int i = t; i < N; i += T)
{

1476 28. General Purpose Computing on Graphics Processing Units

Q[t * Z + z] = 0;
for(int j = z; j < M; j += Z)

Q[t * Z + z] += A[i * M + j] * x[j];

for(int stride = Z / 2; stride > 0; stride >>= 1)
{

__syncthreads();
if(z + stride < Z)

Q[t * Z + z] += Q[t * Z + z + stride];
}

if(z == 0)
y[i] = Q[t * Z + 0] + b[i];

}
}

__host__ void run_cudaLargeMV()
{

cudaReduceMV<<< 1, T*Z >>>(N, M, y, A, x, b);
}

This can easily be extended to make use of multiple thread blocks by restricting
the outer loop to only a fraction of the matrix rows based on the blockIdx parameter.

The above algorithm uses shared memory straightforwardly and allows us to
align memory access of threads through a proper choice of block sizes. However,
every element of vector x must be read once for the computation of every row. We
can improve on this if we read values of x into the shared memory and have threads
in one block operate on multiple rows of the matrix. This, however, means we can use
less shared memory per line to parallelize summation. The analysis of this trade-off
is beyond the scope of this chapter, but a block size of 64 × 8 has been proposed
in [5]. With such a strategy it is also beneficial to access matrix A as a texture, as
data access will exhibit 2D locality, supported by texture caching hardware.

Even though matrix-vector multiplication is a general mathematical formulation
for a wide range of computational problems, the arising matrices are often large, but
sparse. In case of sparse matrices, the previously introduced matrix-vector multipli-
cation algorithms will not be efficient as they explicitly compute multiplication with
zero elements. Sparse matrix representations and MV algorithms are discussed in
[1].

Exercises
28.6-1 Implement matrix-vector multiplication for large matrices in CUDA. Com-
pare results to a CPU implementation.
28.6-2 Implement an inverse iteration type Julia set renderer. The Julia set is the
attractor of the zn = z2

n−1 +c iteration where zn and c are complex numbers. Inverse
iteration starts from a fixed point of the iteration formula, and iterates the inverse
mapping, zn = ±√

zn − c by randomly selecting either
√

zn − c or −√
zn − c from

the two possibilities. Threads must use pseudo-random generators that are initialized
with different seeds. Note that CUDA has no built-in random number generator, so
implement one in the program.

28.7. Case study: computational fluid dynamics 1477

B1

B2

B3

1

1

1

function
approximation

B1

B2

B3

1

1

1

B4
1

B1

B2

B3

1

1

1

B1

B2

B3

1

1

1

Piece-wise constant Piece-wise linear Harmonic Haar wavelet

Figure 28.8 Finite element representations of functions. The texture filtering of the GPU directly
supports finite element representations using regularly placed samples in one-, two-, and three-
dimensions and interpolating with piece-wise constant and piece-wise linear basis functions.

28.7. Case study: computational fluid dynamics

Problems emerging in physics or engineering are usually described mathematically
as a set of partial differential or integral equations. As physical systems expand in
space and time, derivatives or integrals should be evaluated both in temporal and
spatial domains.

When we have to represent a value over space and time, we should use functions
having the spatial position and the time as their variables. The representation of
general functions would require infinite amount of data, so in numerical methods
we only approximate them with finite number of values. Intuitively, these values
can be imagined as the function values at discrete points and time instances. The
theory behind this is the finite element method. If we need to represent function
f(~r) with finite data, we approximate the function in the following finite series form
(Figure 28.8):

f(~r) ≈ f̃(~r) =

N
∑

i=1

fiBi(~r),

where B1(~r), . . . , BN (~r) are pre-defined basis functions and f1, . . . , fN are the
coefficients that describe f̃ .

A particularly simple finite element representation is the piece-wise linear scheme
that finds possibly regularly placed sample points ~r1, . . . , ~rN in the domain, evalu-
ates the function at these points to obtain the coefficients fi = f(~ri) and linearly
interpolates between ~ri and ~ri+1.

When the system is dynamic, solution f will be time dependent, so a new finite
element representation is needed for every time instance. We have basically two

1478 28. General Purpose Computing on Graphics Processing Units

options for this. We can set sample points ~r1, . . . , ~rN in a static way and allow only
coefficients fi to change in time. This approach is called Eulerian. On the other
hand, we can also allow the sample points to move with the evaluation of the system,
making also sample points ~ri time dependent. This is the Lagrangian approach,
where sample locations are also called particles.

Intuitive examples of Eulerian and Lagrangian discretization schemes are how
temperature and other attributes are measured in meteorology. In ground stations,
these data are measured at fixed locations. However, meteorological balloons can
also provide the same data, but from varying positions that follow the flow of the
air.

In this section we discuss a case study for GPU-based scientific computation.
The selected problem is computational fluid dynamics. Many phenomena that
can be seen in nature like smoke, cloud formation, fire, and explosion show fluid-like
behavior. Understandably, there is a need for good and fast fluid solvers both in
engineering and in computer animation.

The mathematical model of the fluid motion is given by the Navier-Stokes equa-
tion. First we introduce this partial differential equation, then discuss how GPU-
based Eulerian and Langrangian solvers can be developed for it.

A fluid with constant density and temperature can be described by its velocity
~v = (vx, vy, vz) and pressure p fields. The velocity and the pressure vary both in
space and time:

~v = ~v(~r, t), p = p(~r, t) .

Let us focus on a fluid element of unit volume that is at point ~r at time t. At an
earlier time instance t − dt, this fluid element was in ~r − ~vdt and, according to the
fundamental law of dynamics, its velocity changed according to an acceleration that
is equal to total force ~F divided by mass ρ of this unit volume fluid element:

~v(~r, t) = ~v(~r − ~vdt, t − dt) +
~F

ρ
dt .

Mass ρ of a unit volume fluid element is called the fluid density. Moving the
velocity terms to the left side and dividing the equation by dt, we can express the
substantial derivative of the velocity:

~v(~r, t) − ~v(~r − ~vdt, t − dt)

dt
=

~F

ρ
.

The total force can stem from different sources. It may be due to the pressure
differences:

~Fpressure = −~∇p = −
(

∂p

∂x
,

∂p

∂y
,

∂p

∂z

)

,

where ~∇p is the gradient of the pressure field. The minus sign indicates that the
pressure accelerates the fluid element towards the low pressure regions. Here we used
the nabla operator, which has the following form in a Cartesian coordinate system:

~∇ =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

.

28.7. Case study: computational fluid dynamics 1479

Due to friction, the fluid motion is damped. This damping depends on the vis-

cosity ν of the fluid. Highly viscous fluids like syrup stick together, while low-
viscosity fluids flow freely. The total damping force is expressed as a diffusion term
since the viscosity force is proportional to the Laplacian of the velocity field:

~Fviscosity = ν ~∇2~v = ν

(

∂2~v

∂x2
+

∂2~v

∂y2
+

∂2~v

∂z2

)

.

Finally, an external force field ~Fexternal may also act on our fluid element causing
acceleration. In the gravity field of the Earth, assuming that the vertical direction
is axis z, this external acceleration is (0, 0, −g) where g = 9.8 [m/s2].

Adding the forces together, we can obtain the Navier-Stokes equation for the
velocity of our fluid element:

ρ
~v(~r, t) − ~v(~r − ~vdt, t − dt)

dt
= −~∇p + ν ~∇2~v + ~Fexternal .

In fact, this equation is the adaptation of the fundamental law of dynamics for
fluids. If there is no external force field, the momentum of the dynamic system must
be preserved. This is why this equation is also called momentum conservation

equation.

Closed physics systems preserve not only the momentum but also the mass, so
this aspect should also be built into our fluid model. Simply put, the mass conser-
vation means that what flows into a volume must also flow out, so the divergence of
the mass flow is zero. If the fluid is incompressible, then the fluid density is constant,
thus the mass flow is proportional to the velocity field. For incompressible fluids, the
mass conservation means that the velocity field is divergence free:

~∇ · ~v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 . (28.2)

28.7.1. Eulerian solver for fluid dynamics

The Eulerian approach tracks the evolution of the velocity and pressure fields on
fixed, uniform grid points. The grid allows a simple approximation of spatial deriva-
tives by finite differences. If the grid points are in distances ∆x, ∆y, and ∆z along
the three coordinate axes and the values of scalar field p and vector field ~v at grid
point (i, j, k) are pi,j,k and ~vi,j,k, respectively, then the gradient, the divergence and
the Laplacian operators can be approximated as:

~∇p ≈
(

pi+1,j,k − pi−1,j,k

2∆x
,

pi,j+1,k − pi,j−1,k

2∆y
,

pi,j,k+1 − pi,j,k−1

2∆x

)

, (28.3)

~∇ · ~v ≈ vi+1,j,k
x − vi−1,j,k

x

2∆x
+

vi,j+1,k
y − vi,j−1,k

y

2∆y
+

vi,j,k+1
z − vi,j,k−1

z

2∆z
, (28.4)

~∇2p ≈ pi+1,j,k − 2pi,j,k + pi−1,j,k

(∆x)2
+

pi,j+1,k − 2pi,j,k + pi,j−1,k

(∆x)2

1480 28. General Purpose Computing on Graphics Processing Units

+
pi,j,k+1 − 2pi,j,k + pi,j,k−1

(∆x)2
. (28.5)

The Navier-Stokes equation and the requirement that the velocity is divergence
free define four scalar equations (the conservation of momentum is a vector equation)
with four scalar unknowns (vx, vy, vz, p). The numerical solver computes the current
fields advancing the time in discrete steps of length ∆t:

~v(~r, t) = ~v(~r − ~v∆t, t − ∆t) +
ν∆t

ρ
~∇2~v +

∆t

ρ
~Fexternal − ∆t

ρ
~∇p .

The velocity field is updated in several steps, each considering a single term on the
right side of this equation. Let us consider these steps one-by-one.

Advection
To initialize the new velocity field at point ~r, we fetch the previous field at position
~r − ~v∆t since the fluid element arriving at point ~r was there in the previous time
step [17]. This step computes advection, i.e. the phenomenon that the fluid carries
its own velocity field:

~w1(~r) = ~v(~r − ~v∆t, t − ∆t) .

Diffusion
To damp the velocity field, we could update it proportionally to a diffusion term:

~w2 = ~w1 +
ν∆t

ρ
~∇2 ~w1 .

However, this type of forward Euler integrator is numerically unstable. The rea-
son of instability is that forward methods predict the future based on the present
values, and as time passes, each simulation step adds some error, which may accu-
mulate and exceed any limit.

Unlike forward integrators, a backward method can guarantee stability. A back-
ward looking approach is stable since while predicting the future, it simultaneously
corrects the past. Thus, the total error converges to a finite value and remains
bounded. Here a backward method means that the Laplacian is obtained from the
future, yet unknown velocity field, and not from the current velocity field:

~w2 = ~w1 +
ν∆t

ρ
~∇2 ~w2 . (28.6)

At this step of the computation, the advected field ~w1 is available at the grid points,
the unknowns are the diffused velocity ~wi,j,k

2 for each of the grid points. Using (28.5)
to compute the Laplacian of the x, y, z coordinates of unknown vector field ~w2 at
grid point (i, j, k), we observe that it will be a linear function of the ~w2 velocities
in the (i, j, k) grid point and its neighbors. Thus, (28.6) is a sparse linear system of
equations:

w2 = w1 + A · w2 (28.7)

where vector w1 is the vector of the known velocities obtained by advection, w2 is

28.7. Case study: computational fluid dynamics 1481

the vector of unknown velocities of the grid points, and matrix-vector multiplication
A · w2 represents the discrete form of (ν∆t/ρ)∇2 ~w2(~r).

Such systems are primary candidates for Jacobi iteration (see Chapter 12 of
this book, titled Scientific Computation). Initially we fill vector w2 with zero and
evaluate the right side of (28.7) iteratively, moving the result of the previous step
to vector w2 of the right side. Thus, we traced back the problem to a sequence of
sparse vector-matrix multiplications. Note that matrix A needs not be stored. When
velocity field ~w2 is needed at a grid point, the neighbors are looked up and the simple
formula of (28.5) gives us the result.

Updating a value in a grid point according to its previous value and the values of
its neighbors are called image filtering. Thus, a single step of the Jacobi iteration
is equivalent to an image filtering operation, which is discussed in Section 28.3.2.

External force field
The external force accelerates the velocity field at each grid point:

~w3 = ~w2 +
∆t

ρ
~Fexternal .

Projection
So far, we calculated an updated velocity field ~w3 without considering the unknown
pressure field. In the projection step, we compute the unknown pressure field p and
update the velocity field with it:

~v(t) = ~w3 − ∆t

ρ
~∇p .

The pressure field is obtained from the requirement that the final velocity field
must be divergence free. Let us apply the divergence operator to both sides of this
equation. After this, the left side becomes zero since we aim at a divergence free
vector field for which ~∇ · ~v = 0:

0 = ~∇ ·
(

~w3 − ∆t

ρ
~∇p

)

= ~∇ · ~w3 − ∆t

ρ
~∇2p .

Assuming a regular grid where vector field ~w3 is available, searching the unknown
pressure at grid positions, and evaluating the divergence and the Laplacian with
finite differences of equations (28.4) and (28.5), respectively, we again end up with
a sparse linear system for the discrete pressure values and consequently for the
difference between the final velocity field ~v and ~w3. This system is also solved with
Jacobi iteration. Similarly to the diffusion step, the Jacobi iteration of the projection
is also a simple image filtering operation.

Eulerian simulation on the GPU
The discretized velocity and pressure fields can be conveniently stored in three-
dimensional textures, where discrete variables are defined at the centers of elemental
cubes, called voxels of a grid [6]. At each time step, the content of these data sets
should be refreshed (Figure 28.9).

1482 28. General Purpose Computing on Graphics Processing Units

Figure 28.9 A time step of the Eulerian solver updates textures encoding the velocity field.

Advection Jacobi iteration

Figure 28.10 Computation of the simulation steps by updating three-dimensional textures. Ad-
vection utilizes the texture filtering hardware. The linear equations of the viscosity damping and
projection are solved by Jacobi iteration, where a texel (i.e. voxel) is updated with the weighted sum
of its neighbors, making a single Jacobi iteration step equivalent to an image filtering operation.

The representation of the fields in textures has an important advantage when
the advection is computed. The advected field at voxel center ~ri is obtained by
copying the field value at position ~ri − ~vi∆t. Note that the computed position is
not necessarily a voxel center, but it can be between the grid points. According
to the finite element concept, this value can be generated from the finite element
representation of the data. If we assume piece-wise linear basis functions, then the
texture filtering hardware automatically solves this problem for us at no additional
computation cost.

The disadvantage of storing vector and scalar fields in three-dimensional textures
is that the GPU can only read these textures no matter whether we take the graphics
API or the GPGPU approach. The updated field must be written to the render target
in case of the graphics API approach, and to the global memory if we use a GPGPU
interface. Then, for the next simulation step, the last render target or global memory
should be declared as an input texture.

In order to avoid write collisions, we follow a gathering approach and assign
threads to each of the grid points storing output values. If GPUs fetch global data
via textures, then the new value written by a thread becomes visible when the pass or
the thread run is over, and the output is declared as an input texture for the next run.

28.7. Case study: computational fluid dynamics 1483

Figure 28.11 Flattened 3D velocity (left) and display variable (right) textures of a simulation.

Thus, the computation of the time step should be decomposed to elemental update
steps when the new output value of another grid point is needed. It means that we
have and advection pass, a sequence of Jacobi iteration passes of the diffusion step,
an external force calculation pass, and another sequence of Jacobi iteration passes
of the projection step. With a GPGPU framework, a thread may directly read the
data produced by another thread, but then synchronization is needed to make sure
that the read value is already valid, so not the old but the new value is fetched.
In such cases, synchronization points have the same role and passes or decomposed
kernels.

In case of graphics APIs, there is one additional limitation. The render target can
only be two-dimensional, thus either we flatten the layers of the three-dimensional
voxel array into a large two-dimensional texture, or update just a single layer at
a time. Flattened three-dimensional textures are shown by Figure 28.11. Once the
textures are set up, one simulation step of the volume can be done by the rendering
of a quad covering the flattened grid.

The graphics API approach has not only drawbacks but also an advantage over
the GPGPU method, when the linear systems are solved with Jacobi iteration. The
graphics API method runs the fragment shader for each grid point to update the
solution in the texel associated with the grid point. However, if the neighbor elements
of a particular grid point are negligible, we need less iteration steps than in a grid
point where the neighbor elements are significant. In a quasi-SIMD machine like
the GPU, iterating less in some of the processors is usually a bad idea. However,
the exploitation of the early z-culling hardware helps to sidestep this problem and
boosts the performance [20]. The z coordinate in the depth value is set proportionally
to the maximum element in the neighborhood and to the iteration count. This way,
as the iteration proceeds, the GPU processes less and less number of fragments,
and can concentrate on important regions. According to our measurements, this
optimization reduces the total simulation time by about 40 %.

1484 28. General Purpose Computing on Graphics Processing Units

Figure 28.12 Snapshots from an animation rendered with Eulerian fluid dynamics.

When we wish to visualize the flow, we can also assume that the flow carries a
scalar display variable with itself. The display variable is analogous with some paint
or confetti poured into the flow. The display variable is stored in a float voxel array.

Using the advection formula for display variable D, its field can also be updated
in parallel with the simulation of time step ∆t:

D(~r, t) = D(~r − ~v∆t, t − ∆t) .

At a time, the color and opacity of a point can be obtained from the display variable
using a user controlled transfer function.

We can use a 3D texture slicing rendering method to display the resulting display
variable field, which means that we place semi-transparent polygons perpendicular
to the view plane and blend them together in back to front order (Figure 28.12). The
color and the opacity of the 3D texture is the function of the 3D display variable
field.

28.7.2. Lagrangian solver for differential equations

In the Lagrangian approach, the space is discretized by identifying , i.e. following
just finite number of fluid elements. Let us denote the position and the velocity of
the ith discrete fluid element by ~ri and ~vi, respectively. We assume that all particles
represent fluid elements of the same mass m, but as the density varies in space and
will be the attribute of the particle, every particle is associated with a different
volume ∆Vi = m/ρi of the fluid. The momentum conservation equation has the
following form in this case:

d~ri

dt
= ~vi ,

m
d~vi

dt
=

(

−~∇p(~ri) + ν ~∇2~v(~ri) + ~Fexternal(~ri)
)

∆Vi . (28.8)

If particles do not get lost during the simulation, the mass is automatically conserved.
However, temporarily this mass may concentrate in smaller parts of the volume,
so the simulated fluid is not incompressible. In Lagrangian simulation, we usually

28.7. Case study: computational fluid dynamics 1485

assume compressible gas.
From the knowledge of the system at discrete points, attributes are obtained at

an arbitrary point via interpolation. Suppose we know an attribute A at the particle
locations, i.e. we have A1, . . . , AN . Attribute A is interpolated at location ~r by a
weighted sum of contributions from the particles:

A(~r) =

N
∑

i=1

Ai∆ViW (|~r − ~ri|) ,

where ∆Vi is the volume represented by the particle in point ~ri, and W (d) is a
smoothing kernel, also called radial basis function, that depends on distance
d between the particle location and the point of interest. From a different point of
view, the smoothing kernel expresses how quickly the impact of a particle diminishes
farther away. The smoothing kernel is normalized if smoothing preserves the total
amount of the attribute value, which is the case if the kernel has unit integral over
the whole volumetric domain. An example for the possible kernels is the spiky kernel

of maximum radius h:

W (d) =
15

πh6
(h − d)3, if 0 ≤ d ≤ h and zero otherwise .

For normalized kernels, the particle density at point ~rj is approximated as:

ρj = ρ(~rj) =

N
∑

i=1

mW (|~rj − ~ri|) .

As each particle has the same mass m, the volume represented by particle j is

∆Vj =
m

ρj

=
1

∑N

i=1 W (|~rj − ~ri|)
.

According to the ideal gas law, the pressure is inversely proportional to the volume
on constant temperature, thus at particle j the pressure is

pj =
k

∆Vj

,

where constant k depends on the temperature.
The pressure at an arbitrary point ~r is

p(~r) =

N
∑

i=1

pi∆ViW (|~r − ~ri|) .

The acceleration due to pressure differences requires the computation of the gradient
of the pressure field. As spatial variable ~r shows up only in the smoothing kernel,
the gradient can be computed by using the gradient of the smoothing kernel:

~∇p(~r) =

N
∑

i=1

pi∆Vi
~∇W (|~r − ~ri|) .

1486 28. General Purpose Computing on Graphics Processing Units

Thus, our first guess for the pressure force at particle j is:

~Fpressure,j = −~∇p(~rj) = −
N

∑

i=1

pi∆Vi
~∇W (|~rj − ~ri|) .

However, there is a problem here. Our approximation scheme could not guarantee
to satisfy the physical rules including symmetry of forces and consequently the con-
servation of momentum. We should make sure that the force on particle i due to
particle j is always equal to the force on particle j due to particle i. The symmetric
relation can be ensured by modifying the pressure force in the following way:

~Fpressure,j = −
N

∑

i=1

pi + pj

2
∆Vi

~∇W (|~rj − ~ri|) .

The viscosity term contains the Laplacian of the vector field, which can be
computed by using the Laplacian of the smoothing kernel:

~Fviscosity,j = ν ~∇2~v = ν

N
∑

i=1

~vi∆Vi
~∇2W (|~rj − ~ri|) .

Similarly to the pressure force, a symmetrized version is used instead that makes
the forces symmetric:

~Fviscosity,j = ν
N

∑

i=1

(~vi − ~vj)∆Vi
~∇2W (|~rj − ~ri|) .

External forces can be directly applied to particles. Particle-object collisions are
solved by reflecting the velocity component that is perpendicular to the surface.

Having computed all forces, and approximating the time derivatives of (28.8) by
finite differences, we may obtain the positions and velocities of each of the particles
in the following way:

~ri(t + ∆t) = ~ri(t) + ~vi(t)∆t ,

~vi(t + ∆t) = ~vi(t) + (~Fpressure,i + ~Fviscosity,i + ~Fexternal,i)∆Vi∆t/m .

Note that this is also a forward Euler integration scheme, which has stability
problems. Instead of this, we should use a stable version, for example, the Verlet

integration [2].
The Lagrangian approach tracks a finite number of particles where the forces

acting on them depend on the locations and actual properties of other particles.
Thus, to update a system of N particles, O(N2) interactions should be examined.
Such tasks are generally referred to as the N-body problem.

Lagrangian solver on the GPU
In a GPGPU framework, the particle attributes can be stored in the global mem-
ory as a one-dimensional array or can be fetched via one-dimensional textures. In

28.7. Case study: computational fluid dynamics 1487

Figure 28.13 Data structures stored in arrays or textures. One-dimensional float3 arrays store the
particles’ position and velocity. A one-dimensional float2 texture stores the computed density and
pressure. Finally, a two-dimensional texture identifies nearby particles for each particle.

Figure 28.14 A time step of the Lagrangian solver. The considered particle is the red one, and its
neighbors are yellow.

graphics API frameworks, particle attributes can only be represented by textures.
The advantage of reading the data via textures is only the better caching since now
we cannot utilize the texture filtering hardware. A gathering type method would
assign a thread to each of the controlled particles, and a thread would compute
the effect of other particles on its own particle. As the smoothing kernel has finite
support, only those particles can interact with the considered one, which are not
farther than the maximum radius of the smoothing filter. It is worth identifying
these particles only once, storing them in a two-dimensional texture of in the global
memory, and using this information in all subsequent kernels.

A GPGPU approach would need three one-dimensional arrays representing the
particle position, velocity, density and pressure, and a two-dimensional array for the
neighboring particles (Figure 28.13). In a graphics API approach, these are one-
or two-dimensional textures. We can run a kernel or a fragment shader for each of
the particles. In a GPGPU solution it poses no problem for the kernel to output a
complete column of the neighborhood array, but in the fragment shaders of older
GPUs the maximum size of a single fragment is limited. To solve this, we may limit
the number of considered neighbor particles to the number that can be outputted
with the available multiple render target option.

The processing of a single particle should be decomposed to passes or kernel
runs when we would like to use the already updated properties of other particles
(Figure 28.14). The first pass is the identification of the neighbors for each particles,
i.e. those other particles that are closer than the support of the smoothing kernel.
The output of this step is a two-dimensional array where columns are selected by
the index of the considered particle and the elements in this column store the index
and the distance of those particles that are close by.

1488 28. General Purpose Computing on Graphics Processing Units

Figure 28.15 Animations obtained with a Lagrangian solver rendering particles with spheres
(upper image) and generating the isosurface (lower image) [7].

The second pass calculates the density and the pressure from the number and
the distance of the nearby particles. Having finished this pass, the pressure of every
particle will be available for all threads. The third pass computes the forces from the
pressure and the velocity of nearby particles. Finally, each particle gets its updated
velocity and is moved to its new position.

Having obtained the particle positions, the system can be visualized by different
methods. For example, we can render a point or a small sphere for each particle
(upper image of Figure 28.15). Alternatively, we can splat particles onto the screen,
resulting in a rendering style similar to that of the Eulerian solver (Figure 28.12).
Finally, we can also find the surface of the fluid and compute reflections and re-
fractions here using the laws of geometric optics (lower image of Figure 28.15). The
surface of fluid is the isosurface of the density field, which is the solution of the
following implicit equation:

ρ(~r) = ρiso .

This equation can be solved for points visible in the virtual camera by ray march-

ing. We trace a ray from the eye position through the pixel and make small steps
on it. At every sample position ~rs we check whether the interpolated density ρ(~rs)
has exceeded the specified isovalue ρiso. The first step when this happens is the in-
tersection of the ray and the isosurface. The rays are continued from here into the
reflection and refraction directions. The computation of these directions also requires
the normal vector of the isosurface, which can be calculated as the gradient of the
density field.

Exercises

Notes for Chapter 28 1489

28.7-1 Implement a game-of-life in CUDA. On a two-dimensional grid of cells, every
cell is either populated of unpopulated. In every step, all cell states are re-evaluated.
For populated cells:

• Each cell with one or no neighbors dies, as if by loneliness.

• Each cell with four or more neighbors dies, as if by overpopulation.

• Each cell with two or three neighbors survives.

For unpopulated cells:

• Each cell with three neighbors becomes populated.

Store cell states in arrays accessible as textures. Always compute the next iteration
state into a different output array. Start with a random grid and display results
using the graphics API.
28.7-2 Implement a wave equation solver. The wave equation is a partial differential
equation:

∂2z

∂t2
= c2

(

∂2z

∂x2
+

∂2z

∂y2

)

,

where z(x, y, t) is the wave height above point x, y in time t, and c is the speed of
the wave.

Chapter Notes

The fixed transformation and multi-texturing hardware of GPUs became pro-
grammable vertex and fragment shaders about a decade ago. The high floating point
processing performance of GPUs has quickly created the need to use them not only
for incremental rendering but for other algorithms as well. The first GPGPU al-
gorithms were also graphics related, e.g. ray tracing or the simulation of natural
phenomena. An excellent review about the early years of GPGPU computing can
be found in [15]. Computer graphics researchers have been very enthusiastic to work
with the new hardware since its general purpose features allowed them to implement
algorithms that are conceptually different from the incremental rendering, includ-
ing the physically plausible light transport, called global illumination [18], physics
simulation of rigid body motion with accurate collision detection, fluid dynamics
etc., which made realistic simulation and rendering possible in real-time systems
and games. The GPU Gems book series [4, 9, 16] and the ShaderX (currently GPU
Pro [3]) series provide a huge collection of such methods.

Since the emergence of GPGPU platforms like CUDA and OpenCL, GPU solu-
tions have showed up in all fields of high performance computing. Online warehouses
of papers and programs are the gpgpu.org homepage and the NVIDIA homepage
[13, 14], which demonstrate the wide acceptance of this approach in many fields.
Without aiming at completeness, successful GPU applications have targeted high
performance computing tasks including simulation of all kinds of physics phenom-
ena, differential equations, tomographic reconstruction, computer vision, database
searches and compression, linear algebra, signal processing, molecular dynamics and
docking, financial informatics, virus detection, finite element methods, Monte Carlo

1490 28. General Purpose Computing on Graphics Processing Units

methods, simulation of computing machines (CNN, neural networks, quantum com-
puters), pattern matching, DNA sequence alignment, cryptography, digital hologra-
phy, quantum chemistry, etc.

To get a scalable system that is not limited by the memory of a single GPU
card, we can build GPU clusters. A single PC can be equipped with four GPUs and
the number of interconnected PCs is unlimited [21]. However, in such systems the
communication will be the bottleneck since current communication channels cannot
compete with the computing power of GPUs.

Bibliography

[1] N. Bell, M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In SC’09: Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, 1–11 pages. ACM, 2009. 1476

[2] D. Eberly. Game Physics. Morgan Kaufmann Publishers, 2004. 1486

[3] W. Engel (Ed.). GPU Pro. A K Peters, 2010. 1489

[4] F. Fernando (Ed.). GPU Gems. Addison-Wesley, 2004. 1489

[5] N. Fujimoto. Faster matrix-vector multiplication on geforce 8800gtx. In Parallel and Dis-

tributed Processing, IPDPS 2008, 1–8 pages. IEEE, 2008. 1476

[6] M. J. Harris, W. V. Baxter, T. Scheuerman, A. Lastra. Simulation of cloud dynamics on
graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, HWWS’03, 92–101 pages, 2003. Eurographics Association. 1481

[7] P. Horváth, D. Illés. Sph-based fluid simulation in distributed environment. In MIPRO 2009:
32nd International Convention on Information and Communication Technology, Electronics
and Microelectronics, 249–257 pages, 2009. 1488

[8] Khronos. OpenCL overview. 2010. http://www.khronos.org/opencl/. 1452

[9] H. (Ed.). GPU Gems. Addison-Wesley, 2008. 1489

[10] M. Magdics, G. Klár. Rule-based geometry synthesis in real-time. In W. Engel (Ed.), GPU
Pro: Advanced Rendering Techniques, 41–66 pages. A K Peters, 2010. 1456

[11] Microsoft. HLSL. 2010. http://msdn.microsoft.com/en-us/library/bb509561(v=VS.85).aspx.

1452

[12] J. Neider, T. Davis, W. Mason. The Official Guide to Learning OpenGL. Addison-Wesley,

1994. http://fly.cc.fer.hr/˜unreal/theredbook/appendixg.html. 1456

[13] NVIDIA. Cg homepage. 2010. http://developer.nvidia.com/page/cg_main.html. 1452, 1489

[14] NVIDIA. CUDA zone. 2010. http://www.nvidia.com/object/cuda_home_new.html. 1452,

1489

[15] J. D. Owens, D. Luebke, N. Govindaraju, M. J. Harris, J. Krüger, A. Lefohn, T. Purcell. A

survey of general-purpose computation on graphics hardware. Computer Graphics Forum,

26(1):80–113, 2007. 1489

[16] M. Pharr (Ed.). GPU Gems 2. Addison-Wesley, 2005. 1489

[17] J. Stam. Stable fluids. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings,
Annual Conference Series, 121–128 pages, 1999. 1480

[18] L. Szirmay-Kalos, L. Szécsi, M., Sbert. GPU-Based Techniques for Global Illumination Effects.

Morgan and Claypool Publishers, 2008. 1453, 1489

[19] L. Szirmay-Kalos B. Tóth, M. Magdics, D. Légrády, A. Penzov. Gamma photon transport on

the GPU for PET. Lecture Notes on Computer Science, 5910:433–440, 2010. 1469

http://graphics.cs.uiuc.edu/~wnbell/
http://mgarland.org/
http://www.acm.org/
http://www.focalpress.com/authors/david_h__eberly.aspx
http://www.wolfgang-engel.info/blogs/
http://www.akpeters.com/
http://www.aw.com/
http://www.mi.s.osakafu-u.ac.jp/~fujimoto/CUDA/
http://www.markmark.net/
http://www.billbaxter.com/publications/
http://www.shaderwrangler.com/
http://wwwx.cs.unc.edu/~lastra/wordpress/home-page/
http://www.eg.org/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.aw.com/
http://www.akpeters.com/
http://msdn.microsoft.com/en-us/library/bb509561(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509561(v=VS.85).aspx
http://www.woo.com/
http://www.aw.com/
http://developer.nvidia.com/page/cg_main.html
http://developer.nvidia.com/page/cg_main.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.ece.ucdavis.edu/~jowens/
http://luebke.us/
http://www.cs.unc.edu/~naga/
http://www.markmark.net/
http://wwwcg.in.tum.de/people/Krueger
http://graphics.idav.ucdavis.edu/~lefohn/
http://www-graphics.stanford.edu/~tpurcell/
http://www.wiley.com/bw/journal.asp?ref=0167-7055
http://pharr.org/matt/
http://www.aw.com/
http://www.dgp.toronto.edu/~stam/
http://www.iit.bme.hu/~szirmay/szirmay.html
http://bagira.iit.bme.hu/~szecsi/
http://ima.udg.edu/~mateu/
http://www.morganclaypool.com/
http://www.iit.bme.hu/~szirmay/szirmay.html
https://www.iit.bme.hu/munkatarsak/t$%$C3$%$B3th-bal$%$C3$%$A1zs-gy$%$C3$%$B6rgy
https://www.iit.bme.hu/munkatarsak/magdics-mil$%$C3$%$A1n

1492 Bibliography

[20] N. Tatarchuk, P. Sander, J. L. Mitchell. Early-z culling for efficient GPU-based fluid simulation.
In W. Engel (Ed.), ShaderX 5: Advanced Rendering Techniques, 553–564 pages. Charles River
Media, 2006. 1483

[21] F. Zhe, F. Qiu, A. Kaufman, S. Yoakum-Stover. GPU cluster for high performance computing.
In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC’04, 47–59 pages,
2004. IEEE Computer Society. 1490

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

http://www.cs.ust.hk/~psander/
http://www.pixelmaven.com/jason/
http://www.aw.com/
http://www.computer.org/portal/web/guest/home

Subject Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: exe for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A
accumulation, 1460

API, 1451

Application Programming Interfaces, 1451
array processors, 1461

atomic add, 1472

B
Basic Linear Algebra Subprograms, 1463

basis functions, 1477

bi-linear filtering, 1460

BLAS, 1463

blending, 1457

C
camera space, 1453

camera transformation, 1454

Cartesian coordinates, 1455

caustic renderer, 1471exe
Cg, 1452

clipping, 1454, 1456

computational fluid dynamics, 1478

Compute Unified Device Architecture, 1472

CUDA, 1452, 1472

D
depth buffer, 1455

depth buffer algorithm, 1455

depth stencil texture, 1455

depth value, 1454

divergence, 1479

draw call, 1455

E
early z-culling, 1457, 1466, 1483

Euclidean distance, 1465exe
Eulerian, 1478

Eulerian approach, 1479
Eulerian fluid dynamics, 1484fig
Eulerian integration scheme, 1486
Eulerian solver, 1482fig, 1488
expansion, 1460
eye, 1454

F
filter kernel, 1464

finite element, 1459

finite element method, 1477

flattened 3D velocity, 1483fig
fluid density, 1478

forward Euler integrator, 1480

fragments, 1457

frame buffer, 1455

full screen quad, 1461

G
gathering, 1468

global, 1474

GPGPU, 1451

GPU, 1451

gradient, 1478

H
histogram generation, 1469

HLSL, 1452

homogeneous coordinates, 1455

1494 Subject Index

homogeneous division, 1455, 1456

host, 1474

I
ideal gas law, 1485

ideal point, 1455

image filtering, 1481
in, 1462

incremental image synthesis, 1453

J
Jacobi iteration, 1481, 1482fig

Julia set renderer, 1476exe

K
kernels, 1453

L
Lagrangian, 1478

Lagrangian approach, 1484
Lagrangian simulation, 1484
Lagrangian solver, 1486, 1487, 1488fig
Laplacian, 1479

M
Mandelbrot set rendering, 1465exe
mapping, 1460
merging, 1455
momentum conservation equation, 1479

multiple render targets, 1458

N
nabla operator, 1478

Navier-Stokes equation, 1479

N-body problem, 1486

normalized device space, 1454

O
OpenCL, 1452, 1472
out, 1462
output merger, 1457

P
parallel regula falsi equation solver, 1471exe
particles, 1478, 1484
pass, 1455
perspective projection, 1455

perspective transformation„ 1454

POSITION, 1462

predication, 1466

programming model, 1452

R
radial basis function, 1485

ray marching, 1488
ray tracing, 1489

reduction, 1460, 1467, 1474

render target, 1458
reuse, 1471

S
samplerRECT, 1463

SAXPY, 1463, 1464
scattering, 1468
screen space, 1454, 1457

shaders, 1453

shared memory, 1472, 1474

SIMD, 1451

Single-Instruction Multiple-Data, 1451

smoothing kernel, 1485

spiky kernel, 1485
stream filter, 1456, 1460
stream processors, 1460

substantial derivative, 1478

T
tessellation, 1453, 1455

texel, 1454

texRECT, 1463

texture filters, 1459
textures, 1454

thread, 1452

thread block, 1452

thread synchronization, 1474

transparent surface rendering, 1457

tri-linear filtering, 1460

U
uniform, 1463

uniform input, 1460

V
varying input, 1460
vector processors, 1461

Verlet integration, 1486

vertex buffer, 1455

viewport transformation, 1454

virtual parallel architecture, 1452
viscosity, 1479

voxels, 1481

W
wave equation solver, 1489exe
world space, 1453

WPOS, 1463

Subject Index 1495

Z
z-buffer, 1455

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

B
Baxter, William V., 1491
Bell, Nathan, 1491

D
Davis, Tom, 1491
Descartes, René (Renatus Cartesianus,

1596–1650), 1455, 1456, 1462

E
Eberly, David H., 1491
Engel, Wolfgang, 1491, 1492
Euclid of Alexandria (about B.C. 300), 1455
Euler, Leonhard (1707–1783), 1478

F
Fan, Zhe, 1492
Fernando, Randima, 1491
Fujimoto, Noriyuki, 1491

G
Garland, Michael, 1491
Gaston, Maurice Julia (1893–1978), 1476
Govindaraju, Naga, 1491

H
Harris, Mark J., 1491
Horváth, Péter, 1491

I
Illés, Dávid, 1491

J
Jacobi, Carl Gustav Jakob (1804–1851), 1483

K
Kaufman, Arie, 1492
Klár, Gergely, 1491

Krüger, Jens, 1491

L
Lagrange, Joseph-Luis (1736–1813), 1478
Laplace, Pierre-Simon (1749–1827), 1479
Lastra, Anselmo, 1491
Lefohn, Aaron E., 1491
Légrády, Dávid, 1491
Luebke, David, 1491

M
Magdics, Milán, 1491
Mandelbrot, benoit (1924–2010), 1465
Mason, Woo, 1491
Mitchell, Jason L., 1492

N
Navier, Claude-Louis (1785–1836), 1479
Neider, Jackie, 1491
Nguyen, Hubert, 1491

O
Owens, John D., 1491

P
Penzov, Anton, 1491
Pharr, Matt, 1491
Purcell, Tim, 1491

Q
Qiu, Feng, 1492

S
Sander, Pedro V., 1492
Sbert, Mateu, 1491
Scheuermann, Thorsten, 1491
Stam, Jos, 1491
Stokes, George Gabriel (1819–1903), 1479

Name Index 1497

SZ
Szécsi, László, 1451, 1491
Szirmay-Kalos, László, 1451, 1491

T
Tatarchuk, Natalya, 1492
Tóth, Balázs, 1491

V
Verlet, Loup, 1486

Y
Yoakum-Stover, Suzanne, 1492

	28. General Purpose Computing on Graphics Processing Units
	28.1. The graphics pipeline model
	28.1.1. GPU as the implementation of incremental image synthesis

	28.2. GPGPU with the graphics pipeline model
	28.2.1. Output
	28.2.2. Input
	28.2.3. Functions and parameters

	28.3. GPU as a vector processor
	28.3.1. Implementing the SAXPY BLAS function
	28.3.2. Image filtering

	28.4. Beyond vector processing
	28.4.1. SIMD or MIMD
	28.4.2. Reduction
	28.4.3. Implementing scatter
	28.4.4. Parallelism versus reuse

	28.5. GPGPU programming model: CUDA and OpenCL
	28.6. Matrix-vector multiplication
	28.6.1. Making matrix-vector multiplication more parallel

	28.7. Case study: computational fluid dynamics
	28.7.1. Eulerian solver for fluid dynamics
	28.7.2. Lagrangian solver for differential equations

	Bibliography
	Subject Index
	Name Index

