
26. Complexity of Words

The complexity of words is a continuously growing field of the combinatorics of
words. Hundreds of papers are devoted to different kind of complexities. We try to
present in this chapter far from being exhaustive the basic notions and results for
finite and infinite words.

First of all we summarize the simple (classical) complexity measures, giving
formulas and algorithms for several cases. After this, generalized complexities are
treated, with different type of algorithms. We finish this chapter by presenting the
palindrome complexity.

Finally, references from a rich bibliography are given.

26.1. Simple complexity measures

In this section simple (classical) complexities, as measures of the diversity of the
subwords in finite and infinite words, are discussed. First, we present some useful
notions related to the finite and infinite words with examples. Word graphs, which
play an important role in understanding and obtaining the complexity, are presented
in detail with pertinent examples. After this, the subword complexity (as number of
subwords), with related notions, is expansively presented.

26.1.1. Finite words

Let A be a finite, nonempty set, called alphabet. Its elements are called letters or
symbols. A string a1a2 . . . an, formed by (not necessary different) elements of A,
is a word. The length of the word u = a1a2 . . . an is n, and is denoted by |u|. The
word without any element is the empty word, denoted by ε (sometimes λ). The set
of all finite words over A is denoted by A∗. We will use the following notations too:

A+ = A∗ \ {ε}, An =
{

u ∈ A∗
∣

∣ |u| = n
}

=
{

a1a2 . . . an | ai ∈ A
}

,

that is A+ is the set of all finite and nonempty words over A, whilst An is the set of
all words of length n over A. Obviously A0 = {ε}. The sets A∗ and A+ are infinite
denumerable sets.



26.1. Simple complexity measures 1301

We define in A∗ the binary operation called concatenation (shortly catena-

tion). If u = a1a2 . . . an and v = b1b2 . . . bm, then

w = uv = a1a2 . . . anb1b2 . . . bm, |w| = |u|+ |v| .

This binary operation is associative, but not commutative. Its neutral element is
ε because εu = uε = u. The set A∗ with this neutral element is a monoid. We
introduce recursively the power of a word:

• u0 = ε
• un = un−1u, if n ≥ 1.

A word is primitive if it is no power of any word, so u is primitive if

u = vn, v 6= ε ⇒ n = 1 .

For example, u = abcab is a primitive word, whilst v = abcabc = (abc)2 is not.
The word u = a1a2 . . . an is periodic if there is a value p, 1 ≤ p < n such that

ai = ai+p, for all i = 1, 2, . . . , n− p ,

and p is the period of u. The least such p is the least period of u.
The word u = abcabca is periodic with the least period p = 3.
Let us denote by (a, b) the greatest common divisor of the naturals a and b. The

following result is obvious.

Theorem 26.1 If u is periodic, and p and q are periods, then (p, q) is a period too,
provided p + q < |u|′.

The reversal (or mirror image) of the word u = a1a2 . . . an is uR =

anan−1 . . . a1. Obviously
(

uR
)R

= u. If u = uR, then u is a palindrome.

The word u is a subword (or factor) of v if there exist the words p and q such
that v = puq. If pq 6= ε, then u is a proper subword of v. If p = ε, then u is a prefix

of v, and if q = ε, then u is a suffix of v. The set of all subwords of length n of u is
denoted by Fn(u). F (u) is the set of nonempty subwords of u, so

F (u) =

|u|
⋃

n=1

Fn(u) .

For example, if u = abaab, then

F1(u) = {a, b}, F2(u) = {ab, ba, aa}, F3(u) = {aba, baa, aab},
F4(u) = {abaa, baab}, F5(u) = {abaab}.

The words u = a1a2 . . . am and v = b1b2 . . . bn are equal, if

• m = n and
• ai = bi, for i = 1, 2, . . . , n .

Theorem 26.2 (Fine–Wilf). If u and v are words of length n, respective m, and if
there are the natural numbers p and q, such that up and vq have a common prefix of
length n + m− (n, m), then u and v are powers of the same word.
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The value n + m − (n, m) in the theorem is tight. This can be illustrated by the
following example. Here the words u and v have a common prefix of length n + m−
(n, m)− 1, but u and v are not powers of the same word.

u = abaab, m = |u| = 5, u2 = abaababaab ,
v = aba, n = |v| = 3, v3 = abaabaaba .

By the theorem a common prefix of length 7 would ensure that u and v are powers
of the same word. We can see that u2 and v3 have a common prefix of length 6
(abaaba), but u and v are not powers of the same word, so the length of the common
prefix given by the theorem is tight.

26.1.2. Infinite words

Beside the finite words we consider infinite (more precisely infinite at right) words
too:

u = u1u2 . . . un . . . , where u1, u2, . . . ∈ A .

The set of infinite words over the alphabet A is denoted by Aω. If we will study
together finite and infinite words the following notation will be useful:

A∞ = A∗ ∪Aω .

The notions as subwords, prefixes, suffixes can be defined similarly for infinite words
too.

The word v ∈ A+ is a subword of u ∈ Aω if there are the words p ∈ A∗, q ∈ Aω,
such that u = pvq. If p 6= ε, then p is a prefix of u, whilst q is a suffix of u. Here
Fn(u) also represents the set of all subwords of length n of u.

Examples of infinite words over a binary alphabet:

1) The power word is defined as:

p = 010011000111 . . . 0n1n . . . = 0102120313 . . . 0n1n . . . .

It can be seen that

F1(p) = {0, 1}, F2(p) = {01, 10, 00, 11},
F3(p) = {010, 100, 001, 011, 110, 000, 111}, . . .

2) The Champernowne word is obtained by writing in binary representation
the natural numbers 0, 1, 2, 3, . . .:

c = 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 . . . .

It can be seen that

F1(p) = {0, 1}, F2(p) = {00, 01, 10, 11},
F3(p) = {000, 001, 010, 011, 100, 101, 110, 111}, . . .

3) The finite Fibonacci words can be defined recursively as:

f0 = 0, f1 = 01
fn = fn−1fn−2, if n ≥ 2.
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From this definition we obtain:
f0 = 0,
f1 = 01,
f2 = 010,
f3 = 01001,
f4 = 01001010,
f5 = 0100101001001,
f6 = 010010100100101001010.

The infinite Fibonacci word can be defined as the limit of the sequence of finite
Fibonacci words:

f = lim
n→∞

fn .

The subwords of this word are:

F1(f) = {0, 1}, F2(f) = {01, 10, 00}, F3(f) = {010, 100, 001, 101},
F4(f) = {0100, 1001, 0010, 0101, 1010}, . . . .

The name of Fibonacci words stems from the Fibonacci numbers, because the
length of finite Fibonacci words is related to the Fibonacci numbers: |fn| = Fn+2,
i.e. the length of the nth finite Fibonacci word fn is equal to the (n+2)th Fibonacci
number.

The infinite Fibonacci word has a lot of interesting properties. For example, from
the definition, we can see that it cannot contain the subword 11.

The number of 1’s in a word u will be denoted by h(u). An infinite word u is
balanced, if for arbitrary subwords x and y of the same length, we have |h(x) −
h(y)| ≤ 1, i.e.

x, y ∈ Fn(u) ⇒ |h(x)− h(y)| ≤ 1 .

Theorem 26.3 The infinite Fibonacci word f is balanced.

Theorem 26.4 Fn(f) has n + 1 elements.

If word u is concatenated by itself infinitely, then the result is denoted by uω.
The infinite word u is periodic, if there is a finite word v, such that u = vω. This

is a generalization of the finite case periodicity. The infinite word u is ultimately

periodic, if there are the words v and w, such that u = vwω.
The infinite Fibonacci word can be generated by a (homo)morphism too. Let us

define this morphism:

χ : A∗ → A∗, χ(uv) = χ(u)χ(v), ∀u, v ∈ A∗ .

Based on this definition, the function χ can be defined on letters only. A morphism
can be extended for infinite words too:

χ : Aω → Aω, χ(uv) = χ(u)χ(v), ∀u ∈ A∗, v ∈ Aω .

The finite Fibonacci word fn can be generated by the following morphism:

σ(0) = 01, σ(1) = 0 .

In this case we have the following theorem.
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Theorem 26.5 fn+1 = σ(fn) .

Proof The proof is by induction. Obviously f1 = σ(f0). Let us presume that fk =
σ(fk−1) for all k ≤ n. Because

fn+1 = fnfn−1,

by the induction hypothesis

fn+1 = σ(fn−1)σ(fn−2) = σ(fn−1fn−2) = σ(fn).

From this we obtain:

Theorem 26.6 fn = σn(0) .

The infinite Fibonacci word f is the fixed point of the morphism σ.

f = σ(f) .

26.1.3. Word graphs

Let V ⊆ Am be a set of words of length m over A, and E ⊆ AV ∩ V A. We define
a digraph, whose vertices are from V , and whose arcs from E. There is an arc from
the vertex a1a2 . . . am to the vertex b1b2 . . . bm if

a2 = b1, a3 = b2, . . . , am = bm−1 and a1a2 . . . ambm ∈ E ,

that is the last m− 1 letters in the first word are identical to the first m− 1 letters
in the second word. This arc is labelled by a1a2 . . . ambm (or a1b1 . . . bm).

De Bruijn graphs

If V = Am and E = Am+1, where A = {a1, a2, . . . an}, then the graph is called De

Bruijn graph, denoted by B(n, m).
Figures 26.1 and 26.2 illustrate De Bruijn graphs B(2, 3) and B(3, 2).
To a walk1 x1x2 . . . xm, x2x3 . . . xmxm+1, . . . , z1z2 . . . zm in the De Bruijn

graph we attach the label x1x2 . . . zm−1zm, which is obtained by maximum overlap
of the vertices of the walk. In Figure 26.1 in the graph B(2, 3) the label attached
to the walk 001, 011, 111, 110 (which is a path) is 001110. The word attached to a
Hamiltonian path (which contains all vertices of the graph) in the graph B(n, m) is
an (n, m)-type De Bruijn word. For example, words 0001110100 and 0001011100
are (2, 3)-type De Bruijn word. An (n, m)-type De Bruijn word contains all words
of length m.

A connected digraph2 is Eulerian3 if the in-degree of each vertex is equal to its
out-degree4.

1In a graph a walk is a sequence of neighbouring edges (or arcs with the same orientation). If the
edges or arcs of the walk are all different the walk is called trail, and when all vertices are different,
the walk is a path.
2A digraph (oriented graph) is connected if between every pair of vertices there is an oriented path
at least in a direction.
3A digraph is Eulerian if it contains a closed oriented trail with all arcs of the graph.
4In-degree (out-degree) of a vertex is the number of arcs which enter (leave) this vertex.
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Figure 26.1 The De Bruijn graph B(2, 3).

Figure 26.2 The De Bruijn graph B(3, 2).

Theorem 26.7 The De Bruijn graph B(n, m) is Eulerian.

Proof a) The graph is connected because between all pair of vertices x1x2 . . . xm and
z1z2 . . . zm there is an oriented path. For vertex x1x2 . . . xm there are n leaving arcs,
which enter vertices whose first m− 1 letters are x2x3 . . . xm, and the last letters in
this words are all different. Therefore, there is the path x1x2 . . . xm, x2x3 . . . xmz1,
. . . , xmz1 . . . zm−1, z1z2 . . . zm.

b) There are incoming arcs to vertex x1x2 . . . xm from vertices yx1 . . . xm−1,
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where y ∈ A (A is the alphabet of the graph, i.e. V = Am). The arcs leaving
vertex x1x2 . . . xm enter vertices x2x3 . . . xmy, where y ∈ A. Therefore, the graph is
Eulerian, because the in-degree and out-degree of each vertex are equal.

From this the following theorem is simply obtained.

Theorem 26.8 An oriented Eulerian trail of the graph B(n, m) (which contains
all arcs of graph) is a Hamiltonian path in the graph B(n, m + 1), preserving the
order.

For example, in B(2, 2) the sequence 000, 001, 010, 101, 011, 111, 110, 100 of
arcs is an Eulerian trail. At the same time these words are vertices of a Hamiltonian
path in B(2, 3).

Algorithm to generate De Bruijn words

Generating De Bruijn words is a common task with respectable number of algo-
rithms. We present here the well-known Martin algorithm. Let A = {a1, a2, . . . , an}
be an alphabet. Our goal is to generate an (n, m)-type De Bruijn word over the
alphabet A.

We begin the algorithm with the word am
1 , and add at its right end the letter ak

with the greatest possible subscript, such that the suffix of length m of the obtained
word does not duplicate a previously occurring subword of length m. Repeat this
until such a prolongation is impossible.

When we cannot continue, a De Bruijn word is obtained, with the length nm +
m − 1. In the following detailed algorithm, A is the n-letters alphabet, and B =
(b1, b2, . . .) represents the result, an (n, m)-type De Bruijn word.

Martin(A, n, m)

1 for i← 1 to m
2 do bi ← a1

3 i← m
4 repeat

5 done ← true
6 k ← n
7 while k > 1
8 do if bi−m+2bi−m+3 . . . biak 6⊂ b1b2 . . . bi B Not a subword.
9 then i← i + 1

10 bi ← ak

11 done ← false
12 exit while

13 else k ← k − 1
14 until done
15 return B B B = (b,

1b2, . . . , bnm+m+1).

Because this algorithm generates all letters of a De Bruijn word of length (nm +
m−1), and n and m are independent, its time complexity is Ω(nm). The more precise
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characterization of the running time depends on the implementation of line 8. The
repeat statement is executed nm−1 times. The while statement is executed at most
n times for each step of the repeat. The test bi−m+2bi−m+3 . . . biak 6⊂ b1b2 . . . bi can
be made in the worst case in mnm steps. So, the total number of steps is not greater
than mn2m+1, resulting a worst case bound Θ(nm+1). If we use Knuth-Morris-Pratt
string mathching algorithm, then the worst case running time is Θ(n2m).

In chapter ?? a more efficient implementation of the idea of Martin is presented.
Based on this algorithm the following theorem can be stated.

Theorem 26.9 An (n, m)-type De Bruijn word is the shortest possible among all
words containing all words of length m over an alphabet with n letters.

To generate all (n, m)-type De Bruijn words the following recursive algorithm is
given. Here A is also an alphabet with n letters, and B represents an (n, m)-type De
Bruijn word. The algorithm is called for each position i with m+1 ≤ i ≤ nm +m−1.

All-De-Bruijn(B, i, m)

1 for j ← 1 to n
2 do bi ← aj

3 if bi−m+1bi−m+2 . . . bi 6⊂ b1b2 . . . bi−1 B Not a subword.
4 then All-De-Bruijn(b, i + 1, m)
5 else if length(B) = nm + m− 1
6 then print B B A De Bruijn word.
7 exit for

The call of the procedure:

for i = 1 to m
do bi ← a1

All-De-Bruijn (B, m + 1, m).

This algorithm naturally is exponential.
In following, related to the De Bruijn graphs, the so-called De Bruijn trees will

play an important role.
A De Bruijn tree T (n, w) with the root w ∈ Am is a n-ary tree defined

recursively as follows:

i. The word w of length m over the alphabet A = {a1, a2, . . . , an} is the root of
T (n, w).
ii. If x1x2 . . . xm is a leaf in the tree T (n, w), then each word v of the form
x2x3 . . . xma1, x2x3 . . . xma2, . . . , x2x3 . . . xman will be a descendent of x1x2 . . . xm,
if in the path from root to x1x2 . . . xm the vertex v does not appears.
iii. The rule ii is applied as many as it can.

In Figure 26.3 the De Bruijn tree T (2, 010) is given.

Rauzy graphs

If the word u is infinite, and V = Fn(u), E = Fn+1(u), then the corresponding
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Figure 26.3 The De Bruijn tree T (2, 010).

Figure 26.4 Rauzy graphs for the infinite Fibonacci word.

word graph is called Rauzy graph (or subword graph). Figure 26.4 illustrates
the Rauzy graphs of the infinite Fibonacci word for n = 3 and n = 4. As we have
seen, the infinite Fibonacci word is

f = 0100101001001010010100100101001001 . . . ,

and F1(f) = {0, 1}, F2(f) = {01, 10, 00},
F3(f) = {010, 100, 001, 101}, F4(f) = {0100, 1001, 0010, 0101, 1010},
F5(f) = {01001, 10010, 00101, 01010, 10100, 00100}.

In the case of the power word p = 01001100011100001111 . . . 0n1n . . . , where
F1(p) = {0, 1}, F2(p) = {01, 10, 00, 11},
F3(p) = {010, 100, 000, 001, 011, 111, 110},
F4(p) = {0100, 1001, 0011, 0110, 1100, 1000, 0000, 0001, 0111, 1110, 1111},
the corresponding Rauzy graphs are given in Figure 26.5.
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Figure 26.5 Rauzy graphs for the power word.

As we can see in Fig, 26.4 and 26.5 there are subwords of length n which can be
continued only in a single way (by adding a letter), and there are subwords which
can be continued in two different ways (by adding two different letters). These latter
subwords are called special subwords. A subword v ∈ Fn(u) is a right special

subword, if there are at least two different letters a ∈ A, such that va ∈ Fn+1(u).
Similarly, v ∈ Fn(u) is left special subword, if there are at least two different
letters a ∈ A, such that av ∈ Fn+1(u). A subword is bispecial, if at the same time
is right and left special. For example, the special subwords in Figures 26.4 and 26.5)
are:

left special subwords: 010, 0100 (Figure 26.4),
110, 000, 111, 1110, 0001, 1111, 0011 (Figure 26.5),

right special subwords:: 010, 0010 ( Figure 26.4),
011, 000, 111, 0111, 1111, 0011 (Figure 26.5)

bispecial subwords: 010 (Figure 26.4),
000, 111, 1111, 0011 (Figure 26.5).

26.1.4. Complexity of words

The complexity of words measures the diversity of the subwords of a word. In this
regard the word aaaaa has smaller complexity then the word abcab.

We define the following complexities for a word.

1) The subword complexity or simply the complexity of a word assigns to
each n ∈ N the number of different subwords of length n. For a word u the number
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of different subwords of length n is denoted by fu(n).

fu(n) = #Fn(u), u ∈ A∞ .

If the word is finite, then fu(n) = 0, if n > |u|.
2) The maximal complexity is considered only for finite words.

C(u) = max{fu(n) | n ≥ 1, u ∈ A∗} .

If u is an infinite word, then C−
u (n) is the lower maximal complexity, respectively

C+
u (n) the upper maximal complexity.

C−
u (n) = min

i
C(uiui+1 . . . ui+n−1), C+

u (n) = max
i

C(uiui+1 . . . ui+n−1) .

3) The global maximal complexity is defined on the set An:

G(n) = max{C(u) | u ∈ An} .

4) The total complexity for a finite word is the number of all different
nonempty subwords5

K(u) =

|u|
∑

i=1

fu(i), u ∈ A∗ .

For an infinite word K−
u (n) is the lower total complexity, and K+

u (n) is the upper

total complexity:

K−
u (n) = min

i
K(uiui+1 . . . ui+n−1), K+

u (n) = max
i

K(uiui+1 . . . ui+n−1) .

5) A decomposition u = u1u2 . . . uk is called a factorization of u. If each ui

(with the possible exception of uk) is the shortest prefix of uiui+1 . . . uk which does
not occur before in u, then this factorization is called the Lempel-Ziv factorization.
The number of subwords ui in such a factorization is the Lempel-Ziv factoriza-

tion complexity of u. For example for the word u = ababaaabb the Lempel-Ziv
factorization is: u = a.b.abaa.abb. So, the Lempel-Ziv factorization complexity of u
is lz(u) = 4.

6) If in a factorization u = u1u2 . . . uk each ui is the longest possible palin-
drome, then the factorization is called a palindromic factorization, and the num-
ber of subwords ui in this is the palindromic factorization complexity. For
u = aababbabbabb = aa.babbabbab.b, so the palindromic factorization complexity of
u is pal(u) = 3.

7) The window complexity Pw is defined for infinite words only. For u =
u0u1u2 . . . un . . . the window complexity is

Pw(u, n) = #
{

uknukn+1 . . . u(k+1)n−1

∣

∣ k ≥ 0
}

.

5Sometimes the empty subword is considered too. In this case the value of total complexity is
increased by 1.
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Subword complexity

As we have seen
fu(n) = #Fn(u), ∀u ∈ A∞, n ∈ N .

fu(n) = 0, if n > |u|.
For example, in the case of u = abacab:

fu(1) = 3, fu(2) = 4, fu(3) = 4, fu(4) = 3, fu(5) = 2, fu(6) = 1 .

In Theorem 26.4 was stated that for the infinite Fibonacci word:

ff (n) = n + 1 .

In the case of the power word p = 010011 . . . 0k1k . . . the complexity is:

fp(n) =
n(n + 1)

2
+ 1 .

This can be proved if we determine the difference fp(n + 1)− fp(n), which is equal
to the number of words of length n which can be continued in two different ways to
obtain words of length n + 1. In two different ways can be extended only the words
of the form 0k1n−k (it can be followed by 1 always, and by 0 when k ≤ n− k) and
1k0n−k (it can be followed by 0 always, and by 1 when k < n − k). Considering
separately the cases when n is odd and even, we can see that:

fp(n + 1)− fp(n) = n + 1 ,

and from this we get

fp(n) = n + fp(n− 1) = n + (n− 1) + fp(n− 2) = . . .

= n + (n− 1) + . . . + 2 + fp(1) =
n(n + 1)

2
+ 1 .

In the case of the Champernowne word

c = u0u1 . . . un . . . = 0 1 10 11 100 101 110 111 1000 . . .

= 0110111001011101111000 . . . ,

the complexity is fc(n) = 2n.

Theorem 26.10 If for the infinite word u ∈ Aω there exists an n ∈ N such that
fu(n) ≤ n, then u is ultimately periodic.

Proof fu(1) ≥ 2, otherwise the word is trivial (contains just equal letters). Therefore
there is a k ≤ n, such that fu(k) = fu(k + 1). But

fu(k + 1)− fu(k) =
∑

v∈Fk(u)

(

#
{

a ∈ A | va ∈ Fk+1(u)
}

− 1
)

.

It follows that each subword v ∈ Fk(u) has only one extension to obtain va ∈
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Fk+1(u). So, if v = uiui+1 . . . ui+k−1 = ujuj+1 . . . uj+k−1, then ui+k = uj+k. Be-
cause Fk(u) is a finite set, and u is infinite, there are i and j (i < j), for which
uiui+1 . . . ui+k−1 = ujuj+1 . . . uj+k−1, but in this case ui+k = uj+k is true too.
Then from ui+1ui+2 . . . ui+k = uj+1uj+2 . . . uj+k we obtain the following equality
results: ui+k+1 = uj+k+1, therefore ui+l = uj+l is true for all l ≥ 0 values. Therefore
u is ultimately periodic.

A word u ∈ Aω is Sturmian, if fu(n) = n + 1 for all n ≥ 1.
Sturmian words are the least complexity infinite and non periodic words. The

infinite Fibonacci word is Sturmian. Because fu(1) = 2, the Sturmian words are
two-letters words.

From the Theorem 26.10 it follows that each infinite and not ultimately periodic
word has complexity at least n + 1, i.e.

u ∈ Aω, u not ultimately periodic ⇒ fu(n) ≥ n + 1 .

The equality holds for Sturmian words.
Infinite words can be characterized using the lower and upper total complexity

too.

Theorem 26.11 If an infinite word u is not ultimately periodic and n ≥ 1, then

C+
u (n) ≥

[n

2

]

+ 1, K+
u (n) ≥

[

n2

4
+ n

]

.

For the Sturmian words equality holds.

Let us denote by {x} the fractional part of x, and by bxc its integer part.
Obviously x = bxc + {x}. The composition of a function R by itself n times will
be denoted by Rn. So Rn = R ◦ R ◦ . . . ◦ R (n times). Sturmian words can be
characterized in the following way too:

Theorem 26.12 A word u = u1u2 . . . is Sturmian if and only if there exists an
irrational number α and a real number z, such that for R(x) = {x + α}

un =

{

0, if Rn(z) ∈ (0, 1− α) ,
1, if Rn(z) ∈ [1− α, 1) ,

or

un =

{

1, if Rn(z) ∈ (0, 1− α) ,
0, if Rn(z) ∈ [1− α, 1) .

In the case of the infinite Fibonacci number, these numbers are: α = z = (
√

5+1)/2.
Sturmian words can be generated by the orbit of a billiard ball inside a square

too. A billiard ball is launched under an irrational angle from a boundary point of
the square. If we consider an endless move of the ball with reflection on boundaries
and without friction, an infinite trajectory will result. We put an 0 in the word if
the ball reaches a horizontal boundary, and 1 when it reaches a vertical one. In such
a way we generate an infinite word. This can be generalized using an (s + 1)-letter
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u fu(1) fu(2) fu(3) fu(4) fu(5) fu(6) fu(7) fu(8)

00100011 2 4 5 5 4 3 2 1

00100100 2 3 3 3 3 3 2 1

00100101 2 3 4 4 4 3 2 1

00100110 2 4 5 5 4 3 2 1

00100111 2 4 5 5 4 3 2 1

00101000 2 3 5 5 4 3 2 1

00101001 2 3 4 5 4 3 2 1

00101011 2 4 4 4 4 3 2 1

01010101 2 2 2 2 2 2 2 1

11111111 1 1 1 1 1 1 1 1

Figure 26.6 Complexity of several binary words.

alphabet and an (s + 1)-dimensional hypercube. In this case the complexity is

fu(n, s + 1) =

min(n,s)
∑

i=0

n!s!

(n− i)!i!(s− i)!
.

If s = 1, then fu(n, 2) = fu(n) = n + 1, and if s = 2, then fu(n, 3) = n2 + n + 1.

Maximal complexity

For a finite word u
C(u) = max{fu(n) | n ≥ 1}

is the maximal complexity. In Figure 26.6 the values of the complexity function for
several words are given for all possible length. From this, we can see for example
that C(00100011) = 5, C(00100100) = 3 etc.

For the complexity of finite words the following interesting result is true.

Theorem 26.13 If w is a finite word, fw(n) is its complexity, then there are the
natural numbers m1 and m2 with 1 ≤ m1 ≤ m2 ≤ |w| such that

• fw(n + 1) > fw(n), for 1 ≤ n < m1,
• fw(n + 1) = fw(n), for m1 ≤ n < m2,
• fw(n + 1) = fw(n)− 1, for m2 ≤ n ≤ |w|.
From the Figure 26.6, for example, if

w = 00100011, then m1 = 3, m2 = 4,
w = 00101001, then m1 = 4, m2 = 4,
w = 00101011, then m1 = 2, m2 = 5.

Global maximal complexity

The global maximal complexity is

G(n) = max{C(u) | u ∈ An} ,
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fu(i)

u i = 1 i = 2 i = 3

000 1 1 1

001 2 2 1

010 2 2 1

011 2 2 1

100 2 2 1

101 2 2 1

110 2 2 1

111 1 1 1

Figure 26.7 Complexity of all 3-length binary words

that is the greatest (maximal) complexity in the set of all words of length n on a
given alphabet. The following problems arise:
• what is length of the subwords for which the global maximal complexity is

equal to the maximal complexity?
• how many such words exist?

Example 26.1 For the alphabet A = {0, 1} the Figure 26.7 and 26.8 contain the complexity
of all 3-length and 4-length words.

In this case of the 3-length words (Figure 26.7) the global maximal complexity is 2,
and this value is obtained for 1-length and 2-length subwords. There are 6 such words.

For 4-length words (Figure 26.8) the global maximal complexity is 3, and this value is
obtained for 2-length words. The number of such words is 8.

To solve the above two problems, the following notations will be used:

R(n) = {i ∈ {1, 2, . . . , n} | ∃u ∈ An : fu(i) = G(n)} ,

M(n) = #{u ∈ An : C(u) = G(n)} .

In the table of Figure 26.9 values of G(n), R(n), M(n) are given for length up
to 20 over on a binary alphabet.

We shall use the following result to prove some theorems on maximal complexity.

Lemma 26.14 For each k ∈ N∗, the shortest word containing all the qk words of
length k over an alphabet with q letters has qk + k − 1 letters (hence in this word
each of the qk words of length k appears only once).

Theorem 26.15 If #A = q and qk + k ≤ n ≤ qk+1 + k, then G(n) = n− k .

Proof Let us consider at first the case n = qk+1 + k, k ≥ 1.
From Lemma 26.14 we obtain the existence of a word w of length qk+1 +k which

contains all the qk+1 words of length k+1, hence fw(k+1) = qk+1. It is obvious that
fw(l) = ql < fw(k + 1) for l ∈ {1, 2, . . . , k} and fw(k + 1 + j) = qk+1− j < fw(k + 1)
for j ∈ {1, 2, . . . qk+1− 1}. Any other word of length qk+1 + k will have the maximal
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fu(i)

u i = 1 i = 2 i = 3 i = 4

0000 1 1 1 1

0001 2 2 2 1

0010 2 3 2 1

0011 2 3 2 1

0100 2 3 2 1

0101 2 2 2 1

0110 2 3 2 1

0111 2 2 2 1

1000 2 2 2 1

1001 2 3 2 1

1010 2 2 2 1

1011 2 3 2 1

1100 2 3 2 1

1101 2 3 2 1

1110 2 2 2 1

1111 1 1 1 1

Figure 26.8 Complexity of all 4-length binary words.

complexity less than or equal to C(w) = fw(k + 1), hence we have G(n) = qk+1 =
n− k.

For k ≥ 1 we consider now the values of n of the form n = qk+1 + k − r with
r ∈ {1, 2, . . . , qk+1 − qk}, hence qk + k ≤ n < qk+1 + k. If from the word w of
length qk+1 + k considered above we delete the last r letters, we obtain a word
wn of length n = qk+1 + k − r with r ∈ {1, 2, . . . , qk+1 − qk}. This word will have
fwn

(k + 1) = qk+1 − r and this value will be its maximal complexity. Indeed, it is
obvious that fwn

(k+1+j) = fwn
(k+1)−j < fwn

(k+1) for j ∈ {1, 2, . . . , n−k−1};
for l ∈ {1, 2, . . . , k} it follows that fwn

(l) ≤ ql ≤ qk ≤ qk+1 − r = fwn
(k + 1), hence

C(wn) = fwn
(k + 1) = qk+1 − r. Because it is not possible for a word of length

n = qk+1 + k − r, with r ∈ {1, 2, . . . , qk+1 − qk} to have the maximal complexity
greater than qk+1 − r, it follows that G(n) = qk+1 − r = n− k.

Theorem 26.16 If #A = q and qk + k < n < qk+1 + k + 1 then R(n) = {k + 1};
if n = qk + k then R(n) = {k, k + 1}.

Proof In the first part of the proof of Theorem 26.15, we proved for n = qk+1 + k,
k ≥ 1, the existence of a word w of length n for which G(n) = fw(k + 1) = n − k.
This means that k + 1 ∈ R(n). For the word w, as well as for any other word w′ of
length n, we have fw′(l) < fw(k+1), l 6= k+1, because of the special construction of
w, which contains all the words of length k + 1 in the most compact way. It follows
that R(n) = {k + 1}.

As in the second part of the proof of Theorem 26.15, we consider n = qk+1 +k−r
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n G(n) R(n) M(n)

1 1 1 2

2 2 1 2

3 2 1, 2 6

4 3 2 8

5 4 2 4

6 4 2, 3 36

7 5 3 42

8 6 3 48

9 7 3 40

10 8 3 16

11 8 3, 4 558

12 9 4 718

13 10 4 854

14 11 4 920

15 12 4 956

16 13 4 960

17 14 4 912

18 15 4 704

19 16 4 256

20 16 4, 5 79006

Figure 26.9 Values of G(n), R(n), and M(n).

with r ∈ {1, 2, . . . qk+1−qk} and the word wn for which G(n) = fwn
(k+1) = qk+1−r.

We have again k + 1 ∈ R(n). For l > k + 1, it is obvious that the complexity
function of wn, or of any other word of length n, is strictly less than fwn

(k + 1).
We examine now the possibility of finding a word w with fw(k + 1) = n − k for
which fw(l) = n − k for l ≤ k. We have fw(l) ≤ ql ≤ qk ≤ qk+1 − r, hence the
equality fw(l) = n− k = qk+1− r holds only for l = k and r = qk+1− qk, that is for
w = qk + k.

We show that for n = qk + k we have indeed R(n) = {k, k + 1}. If we start with
the word of length qk + k− 1 generated by the Martin’s algorithm (or with another
De Bruijn word) and add to this any letter from A, we obtain obviously a word v of
length n = qk + k, which contains all the qk words of length k and qk = n− k words
of length k + 1, hence fv(k) = fv(k + 1) = G(n).

Having in mind the Martin algorithm (or other more efficient algorithms),
words w with maximal complexity C(w) = G(n) can be easily constructed for each
n and for both situations in Theorem 26.16.

Theorem 26.17 If #A = q and qk + k ≤ n ≤ qk+1 + k then M(n) is equal to the
number of different paths of length n− k − 1 in the de Bruijn graph B(q, k + 1).

Proof From Theorems 26.15 and 26.16 it follows that the number M(n) of the
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words of length n with global maximal complexity is given by the number of words
w ∈ An with fw(k + 1) = n− k. It means that these words contain n− k subwords
of length k + 1, all of them distinct. To enumerate all of them we start successively
with each word of k + 1 letters (hence with each vertex in B(q, k + 1)) and we add
at each step, in turn, one of the symbols from A which does not duplicate a word of
length k + 1 which has already appeared. Of course, not all of the trials will finish
in a word of length n, but those which do this, are precisely paths in B(q, k + 1)
starting with each vertex in turn and having the length n − k − 1. Hence to each
word of length n with fw(k + 1) = n − k we can associate a path and only one of
length n− k− 1 starting from the vertex given by the first k + 1 letters of the initial
word; conversely, any path of length n − k − 1 will provide a word w of length n
which contains n− k distinct subwords of length k + 1.

M(n) can be expressed also as the number of vertices at level n − k − 1 in the

set
{

T (q, w)
∣

∣w ∈ Ak+1
}

of De Bruijn trees.

Theorem 26.18 If n = 2k + k − 1, then M(n) = 22k−1

.

Proof In the De Bruijn graph B(2, k) there are 22k−1−k different Hamiltonian cycles.
With each vertex of a Hamiltonian cycle a De Bruijn word begins (containing all

k-length subwords), which has maximal complexity, so M(n) = 2k ·22k−1−k = 22k−1

,
which proves the theorem.

A generalization for an alphabet with q ≥ 2 letters:

Theorem 26.19 If n = qk + k − 1, then M(n) = (q!)qk−1

.

Total complexity

The total complexity is the number of different nonempty subwords of a given
word:

K(u) =

|u|
∑

i=1

fu(i) .

The total complexity of a trivial word of length n (of the form an, n ≥ 1) is
equal to n. The total complexity of a rainbow word (with pairwise different letters)

of length n is equal to
n(n + 1)

2
.

The problem of existence of words with a given total complexity are studied in
the following theorems.

Theorem 26.20 If C is a natural number different from 1, 2 and 4, then there
exists a nontrivial word of total complexity equal to C.

Proof To prove this theorem we give the total complexity of the following k-length
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words:

K(ak−1b) = 2k − 1, for k ≥ 1 ,

K(abk−3aa) = 4k − 8, for k ≥ 4 ,

K(abcdk−3) = 4k − 6, for k ≥ 3 .

These can be proved immediately from the definition of the total complexity.
1. If C is odd then we can write C = 2k − 1 for a given k. It follows that

k = (C + 1)/2, and the word ak−1b has total complexity C.
2. If C is even, then C = 2`.

2.1. If ` = 2h, then 4k − 8 = C gives 4k − 8 = 4h, and from this k = h + 2
results. The word abk−3aa has total complexity C.

2.2. If ` = 2h + 1 then 4k − 6 = C gives 4k − 6 = 4h + 2, and from this
k = h + 2 results. The word abcdk−3 has total complexity C.

In the proof we have used more than two letters in a word only in the case of
the numbers of the form 4h + 2 (case 2.2 above). The new question is, if there exist
always nontrivial words formed only of two letters with a given total complexity.
The answer is yes anew. We must prove this only for the numbers of the form 4h+2.
If C = 4h + 2 and C ≥ 34, we use the followings:

K(abk−7abbabb) = 8k − 46, for k ≥ 10 ,

K(abk−7ababba) = 8k − 42, for k ≥ 10 .

If h = 2s, then 8k− 46 = 4h + 2 gives k = s + 6, and the word abk−7abbabb has total
complexity 4h + 2.

If h = 2s + 1, then 8k − 42 = 4h + 2 gives k = s + 6, and the word abk−7ababba
has total complexity 4h + 2. For C < 34 only 14, 26 and 30 are feasible. The word
ab4a has total complexity 14, ab6a has 26, and ab5aba 30. Easily it can be proved,
using a tree, that for 6, 10, 18 and 22 such words does not exist. Then the following
theorem is true.

Theorem 26.21 If C is a natural number different from 1, 2, 4, 6, 10, 18 and 22,
then there exists a nontrivial word formed only of two letters, with the given total
complexity C.

The existence of a word with a given length and total complexity is not always
assured, as we will prove in what follows.

In relation with the second problem a new one arises: How many words of length
n and complexity C there exist? For small n this problem can be studied exhaustively.
Let A be of n letters, and let us consider all words of length n over A. By a computer
program we have got Figure 26.10, which contains the frequency of words with given
length and total complexity.

Let |A| = n and let φn(C) denote the frequency of the words of length n over A
having a complexity C. Then we have the following easy to prove results:
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n = 2

C 2 3

φn(C) 2 2

n = 3

C 3 4 5 6

φn(C) 3 0 18 6

n = 4

C 4 5 6 7 8 9 10

φn(C) 4 0 0 36 48 144 24

n = 5

C 5 6 7 8 9 10 11 12 13 14 15

φn(C) 5 0 0 0 60 0 200 400 1140 1200 120

n = 6

C 6 7 8 9 10 11 12 13

φn(C) 6 0 0 0 0 90 0 0

C 14 15 16 17 18 19 20 21

φn(C) 300 990 270 5400 8280 19800 10800 720

Figure 26.10 Frequency of words with given total complexity

φn(C) = 0, if C < n or C >
n(n + 1)

2
,

φn(n) = n,
φn(2n− 1) = 3n(n− 1),

φn

(

n(n + 1)

2
− 1

)

=
n(n− 1)n!

2
,

φn

(

n(n + 1)

2

)

= n!

As regards the distribution of the frequency 0, the following are true:

If C = n + 1, n + 2, . . . , 2n− 2, then φn(C) = 0 .
If C = 2n, 2n + 1, . . . , 3n− 5, then φn(C) = 0 .

The question is, if there exists a value from which up to n(n+1)
2 no more 0

frequency exist. The answer is positive. Let us denote by bn the least number between
n and n(n + 1)/2 for which

φn(C) 6= 0 for all C with bn ≤ C ≤ n(n + 1)

2
.

The number bn exists for any n (in the worst case it may be equal to n(n+1)/2):

Theorem 26.22 If ` ≥ 2, 0 ≤ i ≤ `, n =
`(` + 1)

2
+ 2 + i, then

bn =
`(`2 − 1)

2
+ 3` + 2 + i(` + 1) .
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Figure 26.11 Graph for (2, 4)-subwords when n = 6.

26.2. Generalized complexity measures

As we have seen in the previous section, a contiguous part of a word (obtained by
erasing a prefix or/and a suffix) is a subword or factor. If we eliminate arbitrary
letters from a word, what is obtained is a scattered subword, sometimes called
subsequence. Special scattered subwords, in which the consecutive letters are at
distance at least d1 and at most d2 in the original word, are called (d1, d2)-subwords.
More formally we give the following definition.

Let n, d1 ≤ d2, s be positive integers, and let u = x1x2 . . . xn ∈ An be a word
over the alphabet A. The word v = xi1

xi2
. . . xis

, where
i1 ≥ 1,
d1 ≤ ij+1 − ij ≤ d2, for j = 1, 2, . . . , s− 1,
is ≤ n,

is a (d1, d2)-subword of length s of u.
For example the (2, 4)-subwords of aabcade are: a, ab, ac, aba, aa, acd, abd, aae,
abae, ace, abe, ad, b, ba, bd, bae, be, c, cd, ce, ae, d, e.

The number of different (d1, d2)-subwords of a word u is called (d1, d2)-
complexity and is denoted by Cu(d1, d2).
For example, if u = aabcade, then Cu(2, 4) = 23.

26.2.1. Rainbow words

Words with pairwise different letters are called rainbow words. The (d1, d2)-
complexity of a rainbow word of length n does not depends on what letters it
contains, and is denoted by C(n; d1, d2).

To compute the (d1, d2)-complexity of a rainbow word of length n, let us consider
the word a1a2 . . . an (if i 6= j, then ai 6= aj) and the corresponding digraph G =
(V, E), with

V =
{

a1, a2, . . . , an

}

,

E =
{

(ai, aj) | d1 ≤ j − i ≤ d2, i = 1, 2, . . . , n, j = 1, 2, . . . , n
}

.
For n = 6, d1 = 2, d2 = 4 see Figure 26.11.
The adjacency matrix A =

(

aij

)

i=1,n

j=1,n

of the graph is defined by:

aij =

{

1, if d1 ≤ j − i ≤ d2,
0, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.
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Because the graph has no directed cycles, the entry in row i and column j in Ak

(where Ak = Ak−1A, with A1 = A) will represent the number of k-length directed
paths from ai to aj . If A0 is the identity matrix (with entries equal to 1 only on the
first diagonal, and 0 otherwise), let us define the matrix R = (rij):

R = A0 + A + A2 + · · ·+ Ak, where Ak+1 = O (the null matrix).

The (d1, d2)-complexity of a rainbow word is then

C(n; d1, d2) =

n
∑

i=1

n
∑

j=1

rij .

The matrix R can be better computed using a variant of the well-known Warshall
algorithm:

Warshall(A, n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do wij ← wij + wikwkj

6 return W

From W we obtain easily R = A0 + W . The time complexity of this algorithms
is Θ(n3).

For example let us consider the graph in Figure 26.11. The corresponding adja-
cency matrix is:

A =

















0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

















.

After applying the Warshall algorithm:

W =

















0 0 1 1 2 2
0 0 0 1 1 2
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

















, R =

















1 0 1 1 2 2
0 1 0 1 1 2
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

















,

and then C(6; 2, 4) = 19, the sum of entries in R.
The Warshall algorithm combined with the Latin square method can be used

to obtain all nontrivial (with length at least 2) (d1, d2)-subwords of a given rainbow
word a1a2 . . . an of length n. Let us consider a matrix A with the elements Aij which
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n = 6 n = 7

d1

d2 1 2 3 4 5

1 21 46 58 62 63

2 - 12 17 19 20

3 - - 9 11 12

4 - - - 8 9

5 - - - - 7

d1

d2 1 2 3 4 5 6

1 28 79 110 122 126 127

2 - 16 25 30 32 33

3 - - 12 15 17 18

4 - - - 10 12 13

5 - - - - 9 10

6 - - - - - 8

Figure 26.12 (d1, d2)-complexity for rainbow words of length 6 and 7.

are set of words. Initially this matrix is defined as

Aij =

{

{aiaj}, if d1 ≤ j − i ≤ d2,
∅, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n .

If A and B are sets of words, AB will be formed by the set of concatenation of each
word from A with each word from B:

AB =
{

ab
∣

∣ a ∈ A, b ∈ B
}

.

If s = s1s2 . . . sp is a word, let us denote by ′s the word obtained from s by erasing
the first character: ′s = s2s3 . . . sp. Let us denote by ′Aij the set Aij in which we
erase from each element the first character. In this case ′A is a matrix with entries
′Aij .

Starting with the matrix A defined as before, the algorithm to obtain all non-
trivial (d1, d2)-subwords is the following:

Warshall-Latin(A, n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do if Wik 6= ∅ and Wkj 6= ∅
6 then Wij ←Wij ∪Wik

′Wkj

7 return W

The set of nontrivial (d1, d2)-subwords is
⋃

i,j∈{1,2,...,n}

Wij . The time complexity

is also Θ(n3).
For n = 7, d1 = 2, d2 = 4, the initial matrix is:
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A =

























∅ ∅ {ac} {ad} {ae} ∅ ∅
∅ ∅ ∅ {bd} {be} {bf} ∅
∅ ∅ ∅ ∅ {ce} {cf} {cg}
∅ ∅ ∅ ∅ ∅ {df} {dg}
∅ ∅ ∅ ∅ ∅ ∅ {eg}
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅

























,

and

W =





















∅ ∅ {ac} {ad} {ace, ae} {adf, acf} {aeg, aceg, adg, acg}
∅ ∅ ∅ {bd} {be} {bdf, bf} {beg, bdg}
∅ ∅ ∅ ∅ {ce} {cf} {ceg, cg}
∅ ∅ ∅ ∅ ∅ {df} {dg}
∅ ∅ ∅ ∅ ∅ ∅ {eg}
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅





















.

Counting the one-letter subwords too, we obtain C(7; 2, 4) = 30.

The case d1 = 1d1 = 1d1 = 1
In this case instead of d2 we will use d. For a rainbow word, ai,d we will denote the
number of (1, d)-subwords which finish at the position i. For i = 1, 2, . . . , n

ai,d = 1 + ai−1,d + ai−2,d + . . . + ai−d,d . (26.1)

For simplicity, let us denote C(n; 1, d) by N(n, d). The (1, d)-complexity of a
rainbow word can be obtained by the formula

N(n, d) =
n
∑

i=1

ai,d .

Because of (26.1) we can write in the case of d ≥ 2

ai,d +
1

d− 1
=

(

ai−1,d +
1

d− 1

)

+ · · ·+
(

ai−d,d +
1

d− 1

)

.

Denoting

bi,d = ai,d +
1

d− 1
, and ci,d = (d− 1)bi,d ,

we get
ci,d = ci−1,d + ci−2,d + . . . + ci−d,d ,

and the sequence ci,d is one of Fibonacci-type. For any d we have a1,d = 1 and
from this c1,d = d results. Therefore the numbers ci,d are defined by the following
recurrence equations:

cn,d = cn−1,d + cn−2,d + . . . + cn−d,d, for n > 0,
cn,d = 1, for n ≤ 0.
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These numbers can be generated by the following generating function:

Fd(z) =
∑

n≥0

cn,dzn =
1 + (d− 2)z − z2 − · · · − zd

1− 2z + zd+1

=
1 + (d− 3)z − (d− 1)z2 + zd+1

(1− z)(1− 2z + zd+1)
.

The (1, d)-complexity N(n, d) can be expressed with these numbers cn,d by the
following formula:

N(n, d) =
1

d− 1

(

n
∑

i=1

ci,d − n

)

, for d > 1 ,

and

N(n, 1) =
n(n + 1)

2
,

or

N(n, d) = N(n− 1, d) +
1

d− 1
(cn,d − 1), for d > 1, n > 1 .

If d = 2 then

F2(z) =
1− z2

1− 2z + z3
=

1 + z

1− z − z2
=

F (z)

z
+ F (z) ,

where F (z) is the generating function of the Fibonacci numbers Fn (with F0 =
0, F1 = 1). Then, from this formula we have

cn,2 = Fn+1 + Fn = Fn+2 ,

and

N(n, 2) =

n
∑

i=1

Fi+2 − n = Fn+4 − n− 3 .

Figure 26.13 contains the values of N(n, d) for k ≤ 10 and d ≤ 10.

N(n, d) = 2n − 1, for any d ≥ n− 1.

The following theorem gives the value of N(n, d) in the case n ≥ 2d− 2:

Theorem 26.23 For n ≥ 2d− 2 we have

N(n, n− d) = 2n − (d− 2) · 2d−1 − 2 .

The main step in the proof is based on the formula

N(n, n− d− 1) = N(n, n− d)− d · 2d−1 .

The value of N(n, d) can be also obtained by computing the number of sequences
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n \d 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 3 3 3 3 3 3 3 3 3 3

3 6 7 7 7 7 7 7 7 7 7

4 10 14 15 15 15 15 15 15 15 15

5 15 26 30 31 31 31 31 31 31 31

6 21 46 58 62 63 63 63 63 63 63

7 28 79 110 122 126 127 127 127 127 127

8 36 133 206 238 250 254 255 255 255 255

9 45 221 383 464 494 506 510 511 511 511

10 55 364 709 894 974 1006 1018 1022 1023 1023

Figure 26.13 The (1, d)-complexity of words of length n

of length k of 0’s and 1’s, with no more than d−1 adjacent zeros. In such a sequence
one 1 represents the presence, one 0 does the absence of a letter of the word in a
given (1, d)-subword. Let bn,d denote the number of n-length sequences of zeros and
ones, in which the first and last position is 1, and the number of adjacent zeros is at
most d− 1. Then it can be proved easily that

bn,d = bn−1,d + bn−2,d + . . . + bn−d,d , for k > 1 ,
b1,d = 1 ,
bn,d = 0, for all n ≤ 0 ,

because any such sequence of length n− i (i = 1, 2, ..., d) can be continued in order
to obtain a similar sequence of length n in only one way (by adding a sequence of
the form 0i−11 on the right). For bn,d the following formula also can be derived:

bn,d = 2bn−1,d − bn−1−d,d .

If we add one 1 or 0 at an internal position (e.g at the (n − 2)th position) of each
bn−1,d sequences, then we obtain 2bn−1,d sequences of length n, but from these,
bn−1−d,d sequences will have d adjacent zeros.

The generating function corresponding to bn,d is

Bd(z) =
∑

n≥0

bn,dzn =
z

1− z · · · − zd
=

z(1− z)

1− 2z + zd+1
.

By adding zeros on the left and/or on the right to these sequences, we can obtain
the number N(k, d), as the number of all these sequences. Thus

N(k, d) = bk,d + 2bk−1,d + 3bk−2,d + · · ·+ kb1,d .

(i zeros can be added in i + 1 ways to these sequences: 0 on the left and i on the
right, 1 on the left and i− 1 on the right, and so on).

From the above formula, the generating function corresponding to the complexi-
ties N(k, d) can be obtained as a product of the two generating functions Bd(z) and
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A(z) =
∑

n≥0 nzn = 1/(1− z)2, thus:

Nd(z) =
∑

n≥0

N(n, d)zn =
z

(1− z)(1− 2z + zd+1)
.

The case d2 = n− 1d2 = n− 1d2 = n− 1
In the sequel instead of d1 we will use d. In this case the distance between two letters
picked up to be neighbours in a subword is at least d.

Let us denote by bn,d(i) the number of (d, n − 1)-subwords which begin at the
position i in a rainbow word of length n. Using our previous example (abcdef ), we
can see that b6,2(1) = 8, b6,2(2) = 5, b6,2(3) = 3, b6,2(4) = 2, b6,2(5) = 1, and
b6,2(6) = 1.

The following formula immediately results:

bn,d(i) = 1 + bn,d(i+d) + bn,d(i+d+1) +· · ·+ bn,d(n) , (26.2)

for n > d, and 1 ≤ i ≤ n− d ,

bn,d(1) = 1 for n ≤ d .

For simplicity, C(n; d, n) will be denoted by K(n, d).
The (d, n− 1)-complexity of rainbow words can be computed by the formula:

K(n, d) =

n
∑

i=1

bn,d(i) . (26.3)

This can be expressed also as

K(n, d) =
n
∑

k=1

bk,d(1) , (26.4)

because of the formula

K(n + 1, d) = K(n, d) + bn+1,d(1) .

In the case d = 1 the complexity K(n, 1) can be computed easily: K(n, 1) =
2n − 1.

From (26.2) we get the following algorithm for the computation of bn,d(i). The
numbers bn,d(k) (k = 1, 2, . . .) for a given n and d are obtained in the array b =
(b1, b2, . . .). Initially all these elements are equal to −1. The call for the given n and
d and the desired i is:

Input (n, d, i)
for k ← 1 to n

do bk ← −1
B(n, d, i) B Array b is a global one.
Output b1, b2, . . . , bn
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n
d 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1

2 3 2 2 2 2 2 2 2 2 2 2

3 7 4 3 3 3 3 3 3 3 3 3

4 15 7 5 4 4 4 4 4 4 4 4

5 31 12 8 6 5 5 5 5 5 5 5

6 63 20 12 9 7 6 6 6 6 6 6

7 127 33 18 13 10 8 7 7 7 7 7

8 255 54 27 18 14 11 9 8 8 8 8

9 511 88 40 25 19 15 12 10 9 9 9

10 1023 143 59 35 25 20 16 13 11 10 10

11 2047 232 87 49 33 26 21 17 14 12 11

12 4095 376 128 68 44 33 27 22 18 15 13

Figure 26.14 Values of K(n, d).

The recursive algorithm is the following:

B(n, d, i)

1 p← 1
2 for k ← i + d to n
3 do if bk = −1
4 then B(n, d, k)
5 p← p + bk

6 bi ← p
7 return

This algorithm is a linear one.
If the call is B(8, 2, 1), the elements will be obtained in the following order:

b7 = 1, b8 = 1, b5 = 3, b6 = 2, b3 = 8, b4 = 5, and b1 = 21.

Lemma 26.24 bn,2(1) = Fn, where Fn is the nth Fibonacci number.

Proof Let us consider a rainbow word a1a2 . . . an and let us count all its (2, n− 1)-
subwords which begin with a2. If we change a2 for a1 in each (2, n − 1)-subword
which begin with a2, we obtain (2, n−1)-subwords too. If we add a1 in front of each
(2, n− 1)-subword which begin with a3, we obtain (2, n− 1)-subwords too. Thus

bn,2(1) = bn−1,2(1) + bn−2,2(1) .

So bn,2(1) is a Fibonacci number, and because b1,2(1) = 1, we obtain that bn,2(1) =
Fn.

Theorem 26.25 K(n, 2) = Fn+2 − 1, where Fn is the nth Fibonacci number.
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Proof From equation (26.4) and Lemma 26.24:

K(n, 2) = b1,2(1) + b2,2(1) + b3,2(1) + b4,2(1) + · · ·+ bn,2(1)

= F1 + F2 + · · ·+ Fn

= Fn+2 − 1 .

If we use the notation Mn,d = bn,d(1), because of the formula

bn,d(1) = bn−1,d(1) + bn−d,d(1) ,

a generalized middle sequence will be obtained:

Mn,d = Mn−1,d + Mn−d,d , for n ≥ d ≥ 2 , (26.5)

M0,d = 0, M1,n = 1, . . . , Md−1,d = 1 .

Let us call this sequence d-middle sequence. Because of the equality Mn,2 =
Fn, the d-middle sequence can be considered as a generalization of the Fibonacci
sequence.

Then next linear algorithm computes Mn,d, by using an array M0, M1, . . . , Md−1

to store the necessary previous elements:

Middle(n, d)

1 M0 ← 0
2 for i← 1 to d− 1
3 do Mi ← 1
4 for i← d to n
5 do Mi mod d ←M(i−1) mod d + M(i−d) mod d

6 print Mi mod d

7 return

Using the generating function Md(z) =
∑

n≥0

Mn,dzn, the following closed formula

can be obtained:
Md(z) =

z

1− z − zd
. (26.6)

This can be used to compute the sum sn,d =

n
∑

n=1

Mi,d, which is the coefficient of

zn+d in the expansion of the function

zd

1− z − zd
· 1

1− z
=

zd

1− z − zd
+

z

1− z − zd
− z

1− z
.

So sn.d = Mn+(d−1),d + Mn,d − 1 = Mn+d,d − 1. Therefore

n
∑

i=1

Mi,d = Mn+d,d − 1 . (26.7)
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Theorem 26.26 K(n, d) = Mn+d,d−1, where n > d and Mn,d is the nth elements
of d-middle sequence.

Proof The proof is similar to that in Theorem 26.25 taking into account the equation
(26.7).

Theorem 26.27 K(n, d) =
∑

k≥0

(

n− (d− 1)k

k + 1

)

, for n ≥ 2, d ≥ 1 .

Proof Let us consider the generating function G(z) =
1

1− z
= 1 + z + z2 + · · · .

Then, taking into account the equation (26.6) we obtain Md(z) = zG(z + zd) =
z + z(z + zd)+ z(z + zd)2 + · · ·+ z(z + zd)i + · · · . The general term in this expansion
is equal to

zi+1
i
∑

k=1

(

i

k

)

z(d−1)k ,

and the coefficient of zn+1 is equal to

∑

k≥0

(

n− (d− 1)k

k

)

.

The coefficient of zn+d is

Mn+d,d =
∑

k≥0

(

n + d− 1− (d− 1)k

k

)

. (26.8)

By Theorem 26.26 K(n, d) = Mn+d,d − 1, and an easy computation yields

K(n, d) =
∑

k≥0

(

n− (d− 1)k

k + 1

)

.

26.2.2. General words

The algorithm Warshall-Latin can be used for nonrainbow words too, with the
remark that repeating subwords must be eliminated. For the word aabbbaaa and
d1 = 2, d2 = 4 the result is: ab, abb, aba, abba, abaa, aa, aaa, bb, ba, bba, baa, and with
a and b we have Caabbbaaa(2, 4) = 13.

26.3. Palindrome complexity

The palindrome complexity function palw of a finite or infinite word w attaches
to each n ∈ N the number of palindrome subwords of length n in w, denoted by
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palw(n).
The total palindrome complexity of a finite word w ∈ A∗ is equal to the

number of all nonempty palindrome subwords of w, i.e.:

P (w) =

|w|
∑

n=1

palw(n) .

This is similar to the total complexity of words.

26.3.1. Palindromes in finite words

Theorem 26.28 The total palindrome complexity P (w) of any finite word w sat-
isfies P (w) ≤ |w|.

Proof We proceed by induction on the length n of the word w. For n = 1 we have
P (w) = 1.

We consider n ≥ 2 and suppose that the assertion holds for all words of length
n− 1. Let w = a1a2 . . . an be a word of length n and u = a1a2 . . . an−1 its prefix of
length n− 1. By the induction hypothesis it is true that P (u) ≤ n− 1.

If an 6= aj for each j ∈ {1, 2, . . . n− 1}, the only palindrome in w which is not in
u is an, hence P (w) = P (u) + 1 ≤ n.

If there is an index j, 1 ≤ j ≤ n − 1 such that an = aj , then P (w) > P (u) if
and only if w has suffixes which are palindromes. Let us suppose that there are at
least two such suffixes aiai+1 . . . an and ai+kai+k+1 . . . an, 1 ≤ k ≤ n− i, which are
palindromes. It follows that

ai = an = ai+k

ai+1 = an−1 = ai+k+1

· · ·
an−k = ai+k = an,

hence ai+k . . . an = ai . . . an−k. The last palindrome appears in u (because of k ≥ 1)
and has been already counted in P (u). It follows that P (w) ≤ P (u) + 1 ≤ n.

This result shows that the total number of palindromes in a word cannot be
larger than the length of that word. We examine now if there are words which are
‘poor’ in palindromes. In the next lemma we construct finite words wn of arbitrary
length n ≥ 9, which contain precisely 8 palindromes.

Let us denote by w
p

q the fractional power of the word w of length q, which is
the prefix of length p of wp.

Lemma 26.29 If wn = (001011)
n
6 , n ≥ 9, then P (wn) = 8.

Proof In wn there are the following palindromes: 0, 1, 00, 11, 010, 101, 0110, 1001.
Because 010 and 101 are situated in wn between 0 on the left and 1 on the right,
these cannot be continued to obtain any palindromes. The same is true for 1001 and
0110, which are situated between 1 on the left and 0 on the right, excepting the
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cases when 1001 is a suffix. So, there are no other palindromes in wn.

Remark 26.30 If u is a circular permutation of 001011 and n ≥ 9 then P (u
n
6 ) = 8

too. Because we can interchange 0 with 1, for any n there will be at least 12 words
of length n with total complexity equal to 8.

We shall give now, beside the upper delimitation from Theorem 26.28, lower
bounds for the number of palindromes contained in finite binary words. (In the
trivial case of a 1-letter alphabet it is obvious that, for any word w, P (w) = |w| .)
Theorem 26.31 If w is a finite word of length n on a 2-letter alphabet, then

P (w) = n, for 1 ≤ n ≤ 7 ,
7 ≤ P (w) ≤ 8, for n = 8 ,
8 ≤ P (w) ≤ n, for n ≥ 9 .

Proof Up to 8 the computation can be made by a computer program. For n ≥ 9,
Lemma 26.29 gives words vn for which P (vn) = 8. The maximum value is obtained
for words of the form an, a ∈ A, n ∈ N.

Remark 26.32 For all the short binary words (up to |w| = 7), the palindrome
complexity takes the maximum possible value given in Theorem 26.28; from the words
with |w| = 8, only four (out of 28) have P (w) = 7, namely 00110100, 00101100 and
their complemented words.

In the following lemmas we construct binary words which have a given total
palindrome complexity greater than or equal to 8.

Lemma 26.33 If uk,` = 0k10110`1 for k ≥ 2 and 1 ≤ ` ≤ k − 1, then P (uk,`) =
k + 6.

Proof In the prefix of length k of uk,` there are always k palindromes (1, . . . , 1k).
The other palindromes different from these are 1, 11, 010, 101, 0110 and 10`1 (for
` ≥ 2), respectively 101101 (for ` = 1). In each case P (uk,`) = k + 6.

Lemma 26.34 If vk,` = (0k1011)
k+`+5

k+4 for k ≥ 2 and k ≤ ` ≤ n − k − 5, then
P (vk,`) = k + 6.

Proof Since ` ≥ k, the prefix of uk,j is at least 0k10110k1, which includes the
palindromes 0, . . . , 0k, 1, 11, 010, 101, 0110 and 10k1, hence P (vk,`) ≥ k + 6. The
palindromes 010 and 101 are situated between 0 and 1, while 0110 and 10k1 are
between 1 and 0 (excepting the cases when they are suffixes), no matter how large
is `. It follows that vk,` contains no other palindromes, hence P (vk,`) = k + 6.

Remark 26.35 If k = 2, then the word v2,` is equal to w`+7, with wn defined in
Lemma 26.29.
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We can determine now precisely the image of the restriction of the palindrome
complexity function to An, n ≥ 1.

Theorem 26.36 Let A be a binary alphabet. Then

P (An) =







{

n
}

, for 1 ≤ n ≤ 7 ,
{

7, 8
}

, for n = 8 ,
{

8, . . . , n
}

, for n ≥ 9 .

Proof Having in mind the result in Theorem 26.31, we have to prove only that for
each n and i so that 8 ≤ i ≤ n, there exists always a binary word wn,i of length n
for which the total palindrome complexity is P (wn,i) = i. Let n and i be given so
that 8 ≤ i ≤ n. We denote k = i− 6 ≥ 2 and ` = n− k − 5.

If ` ≤ k− 1, we take wn,i = uk,` (from Lemma 26.33); if ` ≥ k, wn,i = vk,` (from
Lemma 26.34). It follows that |wn,i| = n and P (wn,i) = k + 6 = i.

Example 26.2 Let us consider n = 25 and i = 15. Then k = 15−6 = 9, ` = 26−15 = 11.

Because ` > k − 1, we use v9,11 = (091011)
25
13 = 09101109101, whose total palindrome

complexity is 15.

We give similar results for the case of alphabets with q ≥ 3 letters.

Theorem 26.37 If w is a finite word of length n over a q-letter (q ≥ 3) alphabet,
then

P (w) = n, for n ∈ {1, 2} ,
3 ≤ P (w) ≤ n, for n ≥ 3 .

Proof For n ∈ {1, 2} it can be checked directly. Let us consider now n ≥ 3 and a
word of length at least 3. If this is a trivial word (containing only one letter n times),
its total palindrome complexity is n ≥ 3. If in the word there appear exactly two
letters a1 and a2, it will have as palindromes those two letters and at least one of
a2

1, a2
2, a1a2a1 or a2a1a2, hence again P (w) ≥ 3. If the word contains a third letter,

then obviously P (w) ≥ 3. So, the total complexity cannot be less then 3.

Theorem 26.38 Let A be a q-letter (q ≥ 3) alphabet. Then for

P (An) =

{ {

n
}

, for 1 ≤ n ≤ 2 ,
{

3, . . . , n
}

, for n ≥ 3 .

Proof It remains to prove that for each n and i so that 3 ≤ i ≤ n, there exists always
a word wn,i of length n, for which the total palindrome complexity is P (wn,i) = i.

Such a word is wn,i = ai−3
1 (a1a2a3)

n−i+3

3 , which has i− 2 palindromes in its prefix
of length i− 2, and other two palindromes a2 and a3 in what follows.



26.3. Palindrome complexity 1333

26.3.2. Palindromes in infinite words

Sturmian words

The number of palindromes in the infinite Sturmian words is given by the following
theorem.

Theorem 26.39 If u is an infinite Sturmian word, then

palu(n) =

{

1, if n is even ,
2, if n is odd .

Power word

Let us recall the power word as being
p = 01001100011100001111 . . . 0n1n . . . .

Theorem 26.40 The palindrome complexity of the power word p is

palp(n) = 2
⌊n

3

⌋

+ 1 + ε ,

where

ε =

{

0, if n divisible by 3 ,
1, otherwise .

Proof There exist the following cases:

Case n = 3k. Palindrome subwords are:

0i13k−2i0i for i = 0, 1, . . . k ,
1i03k−2i1i for i = 0, 1, . . . k − 1, so palp(3k) = 2k + 1 .

Case n = 3k + 1. Palindrome subwords are:

0i13k+1−2i0i for i = 0, 1, . . . k ,
1i03k+1−2i1i for i = 0, 1, . . . k, so palp(3k + 1) = 2k + 2 .

Case n = 3k + 2. Palindrome subwords are:

0i13k+2−2i0i for i = 0, 1, . . . k ,
1i03k+2−2i1i for i = 0, 1, . . . k, so palp(3k + 2) = 2k + 2 .

The palindrome subwords of the power word have the following properties:
• Every palindrome subword which contains both 0’s and 1’s occurs only once in the
power word.
• If we use the notations Uiji = 0i1j0i and Viji = 1i0j1i then there are the unique
decompositions:

p = U111U121U232U242U353U363 . . . Uk,2k−1,kUk,2k,k . . . ,

p = 0V121V232V141V353V262V474V383 . . . Vk+1,2k+1,k+1Vk,2k+2,k . . . .
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Champernowne word

The Champernowne word is defined as the concatenation of consecutive binary writ-
ten natural numbers:

c = 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 . . . .

Theorem 26.41 The palindrome complexity of the Champernowne word is

palc(n) = 2b n
2

c+ε,

where

ε =

{

0, if n is even ,
1, if n is odd .

Proof Any palindrome w of length n can be continued as 0w0 and 1w1 to obtain
palindromes of length n + 2. This theorem results from the following: palc(1) = 2,
palc(2) = 2 and for n ≥ 1 we have

palc(2n + 1) = 2palc(2n− 1) ,
palc(2n + 2) = 2palc(2n) .

The following algorithm generates all palindromes up to a given length of a
Sturmian word beginning with the letter a, and generated by the morphism σ.

The idea is the following. If p is the least value for which σp(a) and σp(b) are
both of odd length (such a p always exists), we consider conjugates6 of these words,
which are palindromes (such conjugates always exists), and we define the following
morphism:

π(a) = conj
(

σp(a)
)

,

π(b) = conj
(

σp(b)
)

,
where conj(u) produces a conjugate of u, which is a palindrome.

The sequences
(

πn(a)
)

n≥0
and

(

πn(b)
)

n≥0
generate all odd length palindromes,

and the sequence
(

πn(aa)
)

n≥0
all even length palindromes.

If α is a word, then ′α′ represents the word which is obtained from α by erasing
its first and last letter. More generally, m′α′m is obtained from α by erasing its first
m and last m letters.

6If w = uv then vu is a conjugate of w.
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Sturmian-Palindromes(n)

1 if n is even
2 then n← n− 1
3 let p be the least value for which σp(a) and σp(b) are both of odd length
4 let define the morphism: π(a) = conj

(

σp(a)
)

and π(b) = conj
(

σp(b)
)

5 α← a
6 while |α| < n
7 do α← π(α)
8 m← (|α| − n)/2
9 α← m′α′m

10 β ← b
11 while |β| < n
12 do β ← π(β)
13 m← (|β| − n)/2
14 β ← m′β′m

15 repeat print α, β B Printing odd length palindromes.
16 α←′α′

17 β ←′β′

18 until α = ε and β = ε
19 γ ← aa
20 while |γ| < n + 1
21 do γ ← π(γ)
22 m← (|γ| − n− 1)/2
23 γ ← m′γ′m

24 repeat print γ B Printing even length palindromes.
25 γ ←′γ′

26 until γ = ε

Because any substitution requires no more than cn steps, where c is a constant,
the algorithm is a linear one.

In the case of the Fibonacci word the morphism σ is defined by
σ(a) = ab, σ(b) = a,

and because
σ(a) = ab, σ2(a) = aba, σ3(a) = abaab, |σ3(a)| = |abaab| = 5,
σ(b) = a, σ(b) = ab, σ3(b) = aba, |σ3(b)| = |aba| = 3,

both being odd numbers, p will be equal to 3.
The word abaab is not a palindrome, and for the morphism π we will use the

adequate conjugate ababa, which is a palindrome.
In this case the morphism π is defined by
π(a) = ababa,
π(b) = aba.

For example, if n = 14, the following are obtained:
π2(a) = ababa aba ababa aba ababa, and then α = aabaababaabaa,
π2(b) = ababa aba ababa, and β = ababaabaababa,
π3(aa) = ababaabaababaabaababaababaabaababaabaababa, and
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γ = baababaababaab.
The odd palindromes obtained are:

aabaababaabaa, ababaabaababa,
abaababaaba, babaabaabab,
baababaab, abaabaaba,
aababaa, baabaab,
ababa, aabaa,
bab, aba,
a, b,

The even palindromes obtained are:

baababaababaab,
aababaababaa,
ababaababa,
babaabab,
abaaba,
baab,
aa.

Problems

26-1 Generating function 1

Let bn,d denote the number of sequences of length n of zeros and ones, in which the
first and last position is 1, and the number of adjacent zeros is at most d− 1. Prove
that the generating function corresponding to bn,d is

Bd(z) =
∑

n≥0

bn,dzn =
z(1− z)

1− 2z + zd+1
.

Hint. See Subsection 26.2.1.)
26-2 Generating function 2

Prove that the generating function of N(n, d), the number of all (1, d)-subwords of
a rainbow word of length n, is

Nd(z) =
∑

n≥0

N(n, d)zn =
z

(1− z)(1− 2z + zd+1)

(Hint. (See Subsection 26.2.1.)
26-3 Window complexity

Compute the window complexity of the infinite Fibonacci word.
26-4 Circuits in De Bruijn graphs

Prove that in the De Bruijn graph B(q, m) there exist circuits (directed cycles) of
any length from 1 to qm.

Chapter Notes

The basic notions and results on combinatorics of words are given in Lothaire’s
[27, 28, 29] and Fogg’s books [19]. Neither Lothaire nor Fogg is a single author, they
are pseudonyms of groups of authors. A chapter on combinatorics of words written
by Choffrut and Karhumäki [11] appeared in a handbook on formal languages.

The different complexities are defined as follows: total complexity in Iványi [22],
maximal and total maximal complexity in Anisiu, Blázsik, Kása [3], (1, d)-complexity
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in Iványi [22] (called d-complexity) and used also in Kása [23]), (d, n−1)-complexity
(called super-d-complexity) in Kása [25], scattered complexity in Kása [24], factor-
ization complexity in Ilie [21] and window complexity in Cassaigne, Kaboré, Tapsoba
[10].

The power word, lower/upper maximal/total complexities are defined in Fer-
enczi, Kása [18]. In this paper a characterization of Sturmian words by upper maxi-
mal and upper total complexities (Theorem 26.11) is also given. The maximal com-
plexity of finite words is studied in Anisiu, Blázsik, Kása [3]. The total complexity
of finite words is described in Kása [23], where the results of the Theorem 26.22 is
conjectured too, and proved later by Levé and Séébold [26].

Different generalized complexity measures of words are defined and studied by
Iványi [22] and Kása [23, 25, 24].

The results on palindrome complexity are described in M.-C. Anisiu, V. Anisiu,
Kása [2] for finite words, and in Droubay, Pirillo [14] for infinite words. The algorithm
for palindrome generation in Sturmian words is from this paper too.

Applications of complexities in social sciences are given in Elzinga [16, 15], and
in biology in Troyanskaya et al. [31].

It is worth to consult other papers too, such as [4, 9, 13, 17, 30] (on complexity
problems) and [1, 5, 6, 7, 8, 12, 20] (on palindromes).
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