
24. The Branch and Bound Method

It has serious practical consequences if it is known that a combinatorial problem is
NP-complete. Then one can conclude according to the present state of science that
no simple combinatorial algorithm can be applied and only an enumerative-type
method can solve the problem in question. Enumerative methods are investigating
many cases only in a non-explicit, i.e. implicit, way. It means that huge majority
of the cases are dropped based on consequences obtained from the analysis of the
particular numerical problem. The three most important enumerative methods are
(i) implicit enumeration, (ii) dynamic programming, and (iii) branch and bound
method. This chapter is devoted to the latter one. Implicit enumeration and dynamic
programming can be applied within the family of optimization problems mainly if all
variables have discrete nature. Branch and bound method can easily handle problems
having both discrete and continuous variables. Further on the techniques of implicit
enumeration can be incorporated easily in the branch and bound frame. Branch and
bound method can be applied even in some cases of nonlinear programming.
The Branch and Bound (abbreviated further on as B&B) method is just a frame of a
large family of methods. Its substeps can be carried out in different ways depending
on the particular problem, the available software tools and the skill of the designer
of the algorithm.

Boldface letters denote vectors and matrices; calligraphic letters are used for
sets. Components of vectors are denoted by the same but non-boldface letter. Cap-
ital letters are used for matrices and the same but lower case letters denote their
elements. The columns of a matrix are denoted by the same boldface but lower case
letters.

Some formulae with their numbers are repeated several times in this chapter. The
reason is that always a complete description of optimization problems is provided.
Thus the fact that the number of a formula is repeated means that the formula is
identical to the previous one.

24.1. An example: the Knapsack Problem

In this section the branch and bound method is shown on a numerical example.
The problem is a sample of the binary knapsack problem which is one of the easiest
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problems of integer programming but it is still NP-complete. The calculations are
carried out in a brute force way to illustrate all features of B&B. More intelligent
calculations, i.e. using implicit enumeration techniques will be discussed only at the
end of the section.

24.1.1. The Knapsack Problem

There are many different knapsack problems. The first and classical one is the binary
knapsack problem. It has the following story. A tourist is planning a tour in the
mountains. He has a lot of objects which may be useful during the tour. For example
ice pick and can opener can be among the objects. We suppose that the following
conditions are satisfied.

• Each object has a positive value and a positive weight. (E.g. a balloon filled with
helium has a negative weight. See Exercises 24.1-1 and 24.1-2) The value is the
degree of contribution of the object to the success of the tour.

• The objects are independent from each other. (E.g. can and can opener are not
independent as any of them without the other one has limited value.)

• The knapsack of the tourist is strong and large enough to contain all possible
objects.

• The strength of the tourist makes possible to bring only a limited total weight.

• But within this weight limit the tourist want to achieve the maximal total value.

The following notations are used to the mathematical formulation of the prob-
lem:

n the number of objects;
j the index of the objects;
wj the weight of object j;
vj the value of object j;
b the maximal weight what the tourist can bring.

For each object j a so-called binary or zero-one decision variable, say xj , is
introduced:

xj =

{

1 if object j is present on the tour
0 if object j isn’t present on the tour.

Notice that

wjxj =

{

wj if object j is present on the tour,
0 if object j isn’t present on the tour

is the weight of the object in the knapsack.
Similarly vjxj is the value of the object on the tour. The total weight in the

knapsack is

n
∑

j=1

wjxj
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which may not exceed the weight limit. Hence the mathematical form of the problem
is

max

n
∑

j=1

vjxj (24.1)

n
∑

j=1

wjxj ≤ b (24.2)

xj = 0 or 1, j = 1, . . . , n . (24.3)

The difficulty of the problem is caused by the integrality requirement. If con-
straint (24.3) is substituted by the relaxed constraint, i.e. by

0 ≤ xj ≤ 1, j = 1, . . . , n , (24.4)

then the Problem (24.1), (24.2), and (24.4) is a linear programming problem. (24.4)
means that not only a complete object can be in the knapsack but any part of it.
Moreover it is not necessary to apply the simplex method or any other LP algorithm
to solve it as its optimal solution is described by

Theorem 24.1 Suppose that the numbers vj , wj (j = 1, . . . , n) are all positive and
moreover the index order satisfies the inequality

v1

w1
≥ v2

w2
· · · ≥ vn

wn

. (24.5)

Then there is an index p (1 ≤ p ≤ n) and an optimal solution x∗ such that

x∗
1 = x∗

2 = · · · = x∗
p−1 = 1, x∗

p+1 = x∗
p+2 = · · · = x∗

p+1 = 0 .

Notice that there is only at most one non-integer component in x∗. This property
will be used at the numerical calculations.

From the point of view of B&B the relation of the Problems (24.1), (24.2), and
(24.3) and (24.1), (24.2), and (24.4) is very important. Any feasible solution of the
first one is also feasible in the second one. But the opposite statement is not true.
In other words the set of feasible solutions of the first problem is a proper subset of
the feasible solutions of the second one. This fact has two important consequences:

• The optimal value of the Problem (24.1), (24.2), and (24.4) is an upper bound
of the optimal value of the Problem (24.1), (24.2), and (24.3).

• If the optimal solution of the Problem (24.1), (24.2), and (24.4) is feasible in the
Problem (24.1), (24.2), and (24.3) then it is the optimal solution of the latter
problem as well.

These properties are used in the course of the branch and bound method intensively.
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24.1.2. A numerical example

The basic technique of the B&B method is that it divides the set of feasible solutions
into smaller sets and tries to fathom them. The division is called branching as new
branches are created in the enumeration tree. A subset is fathomed if it can be
determined exactly if it contains an optimal solution.

To show the logic of B&B the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25
x1, x2, x3, x4, x5 = 0 or 1

(24.6)

will be solved. The course of the solution is summarized on Figure 24.1.2.
Notice that condition (24.5) is satisfied as

23

8
= 2.875 >

19

7
≈ 2.714 >

28

11
≈ 2.545 >

14

6
≈ 2.333 >

44

19
≈ 2.316 .

The set of the feasible solutions of (24.6) is denoted by F , i.e.

F = {x | 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25; x1, x2, x3, x4, x5 = 0 or 1}.

The continuous relaxation of (24.6) is

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25
0 ≤ x1, x2, x3, x4, x5 ≤ 1 .

(24.7)

The set of the feasible solutions of (24.7) is denoted by R, i.e.

R = {x | 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25; 0 ≤ x1, x2, x3, x4, x5 ≤ 1}.

Thus the difference between (24.6) and (24.7) is that the value of the variables must
be either 0 or 1 in (24.6) and on the other hand they can take any value from the
closed interval [0, 1] in the case of (24.7).

Because Problem (24.6) is difficult, (24.7) is solved instead. The optimal solution
according to Theorem 24.1 is

x∗
1 = x∗

2 = 1, x∗
3 =

10

11
, x∗

4 = x∗
5 = 0 .

As the value of x∗
3 is non-integer, the optimal value 67.54 is just an upper bound

of the optimal value of (24.6) and further analysis is needed. The value 67.54 can
be rounded down to 67 because of the integrality of the coefficients in the objective
function.

The key idea is that the sets of feasible solutions of both problems are divided
into two parts according the two possible values of x3. The variable x3 is chosen as
its value is non-integer. The importance of the choice is discussed below.

Let
F0 = F , F1 = F0 ∩ {x | x3 = 0}, F2 = F0 ∩ {x | x3 = 1}
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6
63.32

R5

7 −∞
R6

x1 = 1

5
67.127

R4

x1 = 0

x2 = 1

4
65

R3

x2 = 0

x1 = x3 = x4 = 1
x2 = x5 = 0

3
67.28

R2

x3 = 1

2
65.26

R1

x3 = 0

1
67.45

R0

Figure 24.1 The first seven steps of the solution

and

R0 = R, R1 = R0 ∩ {x | x3 = 0}, R2 = R0 ∩ {x | x3 = 1} .

Obviously

F1 ⊆ R1 and F2 ⊆ R2 .

Hence the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ R1 (24.8)
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is a relaxation of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ F1 . (24.9)

Problem (24.8) can be solved by Theorem 24.1, too, but it must be taken into
consideration that the value of x3 is 0. Thus its optimal solution is

x∗
1 = x∗

2 = 1, x∗
3 = 0, x∗

4 = 1, x∗
5 =

4

19
.

The optimal value is 65.26 which gives the upper bound 65 for the optimal value of
Problem (24.9). The other subsets of the feasible solutions are immediately investi-
gated. The optimal solution of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ R2 (24.10)

is

x∗
1 = 1, x∗

2 =
6

7
, x∗

3 = 1, x∗
4 = x∗

5 = 0

giving the value 67.28. Hence 67 is an upper bound of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ F2 . (24.11)

As the upper bound of (24.11) is higher than the upper bound of (24.9), i.e. this
branch is more promising, first it is fathomed further on. It is cut again into two
branches according to the two values of x2 as it is the non-integer variable in the
optimal solution of (24.10). Let

F3 = F2 ∩ {x | x2 = 0} ,

F4 = F2 ∩ {x | x2 = 1} ,

R3 = R2 ∩ {x | x2 = 0} ,

R4 = R2 ∩ {x | x2 = 1} .

The sets F3 and R3 are containing the feasible solution of the original problems such
that x3 is fixed to 1 and x2 is fixed to 0. In the sets F4 and R4 both variables are
fixed to 1. The optimal solution of the first relaxed problem, i.e.

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ R3

is
x∗

1 = 1, x∗
2 = 0, x∗

3 = 1, x∗
4 = 1, x∗

5 = 0 .

As it is integer it is also the optimal solution of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ F3 .
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The optimal objective function value is 65. The branch of the sets F3 and R3 is
completely fathomed, i.e. it is not possible to find a better solution in it.

The other new branch is when both x2 and x3 are fixed to 1. If the objective
function is optimized on R4 then the optimal solution is

x∗
1 =

7

8
, x∗

2 = x∗
3 = 1, x∗

4 = x∗
5 = 0 .

Applying the same technique again two branches are defined by the sets

F5 = F4 ∩ {x | x1 = 0}, F6 = F4 ∩ {x | x1 = 1},

R5 = R4 ∩ {x | x2 = 0}, R6 = R4 ∩ {x | x2 = 1} .

The optimal solution of the branch of R5 is

x∗
1 = 0, x∗

2 = x∗
3 = x∗

4 = 1, x∗
5 =

1

19
.

The optimal value is 63.32. It is strictly less than the objective function value of the
feasible solution found in the branch of R3. Therefore it cannot contain an optimal
solution. Thus its further exploration can be omitted although the best feasible
solution of the branch is still not known. The branch of R6 is infeasible as objects
1, 2, and 3 are overusing the knapsack. Traditionally this fact is denoted by using
−∞ as optimal objective function value.

At this moment there is only one branch which is still unfathomed. It is the
branch of R1. The upper bound here is 65 which is equal to the objective function
value of the found feasible solution. One can immediately conclude that this feasible
solution is optimal. If there is no need for alternative optimal solutions then the
exploration of this last branch can be abandoned and the method is finished. If
alternative optimal solutions are required then the exploration must be continued.
The non-integer variable in the optimal solution of the branch is x5. The subbranches
referred later as the 7th and 8th branches, defined by the equations x5 = 0 and
x5 = 1, give the upper bounds 56 and 61, respectively. Thus they do not contain
any optimal solution and the method is finished.

24.1.3. Properties in the calculation of the numerical example

The calculation is revisited to emphasize the general underlying logic of the method.
The same properties are used in the next section when the general frame of B&B is
discussed.

Problem (24.6) is a difficult one. Therefore the very similar but much easier
Problem (24.7) has been solved instead of (24.6). A priori it was not possible to
exclude the case that the optimal solution of (24.7) is the optimal solution of (24.6)
as well. Finally it turned out that the optimal solution of (24.7) does not satisfy
all constraints of (24.6) thus it is not optimal there. But the calculation was not
useless, because an upper bound of the optimal value of (24.6) has been obtained.
These properties are reflected in the definition of relaxation in the next section.

As the relaxation did not solved Problem (24.6) therefore it was divided into



1258 24. The Branch and Bound Method

Subproblems (24.9) and (24.11). Both subproblems have their own optimal solution
and the better one is the optimal solution of (24.6). They are still too difficult to be
solved directly, therefore relaxations were generated to both of them. These problems
are (24.8) and (24.10). The nature of (24.8) and (24.10) from mathematical point of
view is the same as of (24.7).

Notice that the union of the sets of the feasible solutions of (24.8) and (24.10)
is a proper subset of the relaxation (24.7), i.e.

R1 ∪R2 ⊂ R0 .

Moreover the two subsets have no common element, i.e.

R1 ∩R2 = ∅ .

It is true for all other cases, as well. The reason is that the branching, i.e. the
determination of the Subproblems (24.9) and (24.11) was made in a way that the
optimal solution of the relaxation, i.e. the optimal solution of (24.7), was cut off.

The branching policy also has consequences on the upper bounds. Let ν(S) be
the optimal value of the problem where the objective function is unchanged and
the set of feasible solutions is S. Using this notation the optimal objective function
values of the original and the relaxed problems are in the relation

ν(F) ≤ ν(R) .

If a subset Rk is divided into Rp and Rq then

ν(Rk) ≥ max{ν(Rp), ν(Rq)} . (24.12)

Notice that in the current Problem (24.12) is always satisfied with strict inequality

ν(R0) > max{ν(R1), ν(R2)} ,

ν(R1) > max{ν(R7), ν(R8)} ,

ν(R2) > max{ν(R3), ν(R4)} ,

ν(R4) > max{ν(R5), ν(R6)} .

(The values ν(R7) and ν(R8) were mentioned only.) If the upper bounds of a certain
quantity are compared then one can conclude that the smaller the better as it is
closer to the value to be estimated. An equation similar to (24.12) is true for the
non-relaxed problems, i.e. if Fk = Fp ∪ Fq then

ν(Fk) = max{ν(Fp), ν(Fq)} , (24.13)

but because of the difficulty of the solution of the problems, practically it is not
possible to use (24.13) for getting further information.

A subproblem is fathomed and no further investigation of it is needed if either

• its integer (non-relaxed) optimal solution is obtained, like in the case of F3, or

• it is proven to be infeasible as in the case of F6, or
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• its upper bound is not greater than the value of the best known feasible solution
(cases of F1 and F5).

If the first or third of these conditions are satisfied then all feasible solutions of the
subproblem are enumerated in an implicit way.

The subproblems which are generated in the same iteration, are represented by
two branches on the enumeration tree. They are siblings and have the same parent.
Figure 24.1 visualize the course of the calculations using the parent–child relation.

The enumeration tree is modified by constructive steps when new branches are
formed and also by reduction steps when some branches can be deleted as one of
the three above-mentioned criteria are satisfied. The method stops when no subset
remained which has to be still fathomed.

24.1.4. How to accelerate the method

As it was mentioned in the introduction of the chapter, B&B and implicit enumer-
ation can co-operate easily. Implicit enumeration uses so-called tests and obtains
consequences on the values of the variables. For example if x3 is fixed to 1 then the
knapsack inequality immediately implies that x5 must be 0, otherwise the capacity
of the tourist is overused. It is true for the whole branch 2.

On the other hand if the objective function value must be at least 65, which is
the value of the found feasible solution then it possible to conclude in branch 1 that
the fifth object must be in the knapsack, i.e. x5 must be 1, as the total value of the
remaining objects 1, 2, and 4 is only 56.

Why such consequences accelerate the algorithm? In the example there are 5
binary variables, thus the number of possible cases is 32 = 25. Both branches 1 and
2 have 16 cases. If it is possible to determine the value of a variable, then the number
of cases is halved. In the above example it means that only 8 cases remain to be
investigated in both branches. This example is a small one. But in the case of larger
problems the acceleration process is much more significant. E.g. if in a branch there
are 21 free, i.e. non-fixed, variables but it is possible to determine the value of one of
them then the investigation of 1 048 576 cases is saved. The application of the tests
needs some extra calculation, of course. Thus a good trade-off must be found.

The use of information provided by other tools is further discussed in Section
24.5.

Exercises
24.1-1 What is the suggestion of the optimal solution of a Knapsack Problem in
connection of an object having (a) negative weight and positive value, (b) positive
weight and negative value?
24.1-2 Show that an object of a knapsack problem having negative weight and
negative value can be substituted by an object having positive weight and positive
value such that the two knapsack problems are equivalent. (Hint. Use complementary
variable.)
24.1-3 Solve Problem (24.6) with a branching strategy such that an integer valued
variable is used for branching provided that such a variable exists.
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24.2. The general frame of the B&B method

The aim of this section is to give a general description of the B&B method. Particular
realizations of the general frame are discussed in later sections.

B&B is based on the notion of relaxation. It has not been defined yet. As there
are several types of relaxations the first subsection is devoted to this notion. The
general frame is discussed in the second subsection.

24.2.1. Relaxation

Relaxation is discussed in two steps. There are several techniques to define relaxation
to a particular problem. There is no rule for choosing among them. It depends on
the design of the algorithm which type serves the algorithm well. The different types
are discussed in the first part titled “Relaxations of a particular problem”. In the
course of the solution of Problem (24.6) subproblems were generated which were
still knapsack problems. They had their own relaxations which were not totally
independent from the relaxations of each other and the main problem. The expected
common properties and structure is analyzed in the second step under the title
“Relaxation of a problem class”.

Relaxations of a particular problem

The description of Problem (24.6) consists of three parts: (1) the objective function,
(2) the algebraic constraints, and (3) the requirement that the variables must be
binary. This structure is typical for optimization problems. In a general formulation
an optimization problem can be given as

max f(x) (24.14)

g(x) ≤ b (24.15)

x ∈ X . (24.16)

Relaxing the non-algebraic constraints

The underlying logic of generating relaxation (24.7) is that constraint (24.16) has
been substituted by a looser one. In the particular case it was allowed that the
variables can take any value between 0 and 1. In general (24.16) is replaced by a
requirement that the variables must belong to a set, say Y, which is larger than
X , i.e. the relation X ⊆ Y must hold. More formally the relaxation of Problem
(24.14)-(24.16) is the problem

max f(x) (24.14)

g(x) ≤ b (24.15)

x ∈ Y. (24.17)

This type of relaxation can be applied if a large amount of difficulty can be eliminated
by changing the nature of the variables.
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Relaxing the algebraic constraints

There is a similar technique such that (24.16) the inequalities (24.15) are relaxed
instead of the constraints. A natural way of this type of relaxation is the following.
Assume that there are m inequalities in (24.15). Let λi ≥ 0 (i = 1, . . . , m) be fixed
numbers. Then any x ∈ X satisfying (24.15) also satisfies the inequality

m
∑

i=1

λigi(x) ≤
m

∑

i=1

λibi . (24.18)

Then the relaxation is the optimization of the (24.14) objective function under the
conditions (24.18) and (24.16). The name of the inequality (24.18) is surrogate

constraint.

The problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

5x1 + 4x2 + 6x3 + 3x4 + 5x5 ≤ 14
2x1 − 2x2 − 3x3 + 5x4 + 6x5 ≤ 4
1x1 + 5x2 + 8x3 − 2x4 + 8x5 ≤ 7

x1, x2, x3, x4, x5 = 0 or 1

(24.19)

is a general zero-one optimization problem. If λ1 = λ2 = λ3 = 1 then the relaxation
obtained in this way is Problem (24.6). Both problems belong to NP-complete classes.
However the knapsack problem is significantly easier from practical point of view
than the general problem, thus the relaxation may have sense. Notice that in this
particular problem the optimal solution of the knapsack problem, i.e. (1,0,1,1,0),
satisfies the constraints of (24.19), thus it is also the optimal solution of the latter
problem.

Surrogate constraint is not the only option in relaxing the algebraic constraints.
A region defined by nonlinear boundary surfaces can be approximated by tangent
planes. For example if the feasible region is the unit circuit which is described by
the inequality

x2
1 + x2

2 ≤ 1

can be approximated by the square

−1 ≤ x1, x2 ≤ 1 .

If the optimal solution on the enlarged region is e.g. the point (1,1) which is not in
the original feasible region then a cut must be found which cuts it from the relaxed
region but it does not cut any part of the original feasible region. It is done e.g. by
the inequality

x1 + x2 ≤
√

2 .

A new relaxed problem is defined by the introduction of the cut. The method is
similar to one of the method relaxing of the objective function discussed below.
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Relaxing the objective function

In other cases the difficulty of the problem is caused by the objective function. If
it is possible to use an easier objective function, say h(x), but to obtain an upper
bound the condition

∀x ∈ X : h(x) ≥ f(x) (24.20)

must hold. Then the relaxation is

max h(x) (24.21)

g(x) ≤ b (24.15)

x ∈ X . (24.16)

This type of relaxation is typical if B&B is applied in (continuous) nonlinear
optimization. An important subclass of the nonlinear optimization problems is the
so-called convex programming problem. It is again a relatively easy subclass. There-
fore it is reasonable to generate a relaxation of this type if it is possible. A Problem
(24.14)-(24.16) is a convex programming problem, if X is a convex set, the functions
gi(x) (i = 1, . . . , m) are convex and the objective function f(x) is concave. Thus
the relaxation can be a convex programming problem if only the last condition is
violated. Then it is enough to find a concave function h(x) such that (24.20) is
satisfied.

For example the single variable function f(x) = 2x2 − x4 is not concave in the

interval [ −
√

3
3 ,

√
3

3 ].1 Thus if it is the objective function in an optimization problem
it might be necessary that it is substituted by a concave function h(x) such that

∀x ∈ [ −
√

3
3 ,

√
3

3 ] : f(x) ≤ h(x). It is easy to see that h(x) = 8
9 − x2 satisfies the

requirements.
Let x∗ be the optimal solution of the relaxed problem (24.21), (24.15), and

(24.16). It solves the original problem if the optimal solution has the same objective
function value in the original and relaxed problems, i.e. f(x∗) = h(x∗).

Another reason why this type of relaxation is applied that in certain cases the
objective function is not known in a closed form, however it can be determined in
any given point. It might happen even in the case if the objective function is concave.
Assume that the value of f(x) is known in the points y1, . . . , yk. If f(x) concave
then it is smooth, i.e. its gradient exists. The gradient determines a tangent plane
which is above the function. The equation of the tangent plane in point yp is2

∇(f(yp))(x− yp) = 0.

Hence in all points of the domain of the function f(x) we have that

h(x) = min {f(yp) +∇(f(yp))(x− yp) | p = 1, . . . , k} ≥ f(x).

1A continuous function is concave if its second derivative is negative. f
′′

(x) = 4 − 12x2 which is

positive in the open interval

(

−

√

3

3
,

√

3

3

)

.

2The gradient is considered being a row vector.
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Obviously the function h(x) is an approximation of function f(x).
The idea if the method is illustrated on the following numerical example. Assume

that an “unknown” concave function is to be maximized on the [0,5] closed interval.
The method can start from any point of the interval which is in the feasible region.
Let 0 be the starting point. According to the assumptions although the closed formula
of the function is not known, it is possible to determine the values of function and
its derivative. Now the values f(0) = −4 and f

′

(0) = 4 are obtained. The general
formula of the tangent line in the point (x0, f(x0)) is

y = f
′

(x0)(x− x0) + f(x0).

Hence the equation of the first tangent line is y = 4x−4 giving the first optimization
problem as

max h
h ≤ 4x− 4
x ∈ [0, 5].

As 4x − 4 is a monotone increasing function, the optimal solution is x = 5. Then
the values f(5) = −9 and f

′

(5) = −6 are provided by the method calculating the
function. The equation of the second tangent line is y = −6x + 21. Thus the second
optimization problem is

max h
h ≤ 4x− 4, h ≤ −6x + 21

x ∈ [0, 5].

As the second tangent line is a monotone decreasing function, the optimal solution
is in the intersection point of the two tangent lines giving x = 2.5. Then the values
f(2.5) = −0.25 and f

′

(2.5) = −1 are calculated and the equation of the tangent line
is y = −x + 2.25. The next optimization problem is

max h
h ≤ 4x− 4, h ≤ −6x + 21, h ≤ −x + 2.25

x ∈ [0, 5].

The optimal solution is x = 1.25. It is the intersection point of the first and third
tangent lines. Now both new intersection points are in the interval [0,5]. In general
some intersection points can be infeasible. The method goes in the same way further
on. The approximated “unknow” function is f(x) = −(x− 2)2.

The Lagrange Relaxation

Another relaxation called Lagrange relaxation. In that method both the objective
function and the constraints are modified. The underlying idea is the following. The
variables must satisfy two different types of constraints, i.e. they must satisfy both
(24.15) and (24.16). The reason that the constraints are written in two parts is that
the nature of the two sets of constraints is different. The difficulty of the problem
caused by the requirement of both constraints. It is significantly easier to satisfy only
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one type of constraints. So what about to eliminate one of them?
Assume again that the number of inequalities in (24.15) is m. Let λi ≥ 0 (i =

1, . . . , m) be fixed numbers. The Lagrange relaxation of the problem (24.14)- (24.16)
is

max f(x) +

m
∑

i=1

λi(bi − gi(x)) (24.22)

x ∈ X . (24.16)

Notice that the objective function (24.22) penalizes the violation of the constraints,
e.g. trying to use too much resources, and rewards the saving of resources. The first
set of constraints disappeared from the problem. In most of the cases the Lagrange
relaxation is a much easier one than the original problem. In what follows Problem
(24.14)- (24.16) is also denoted by (P ) and the Lagrange relaxation is referred as
(L(λ)). The notation reflects the fact that the Lagrange relaxation problem depends
on the choice of λi’s. The numbers λi’s are called Lagrange multipliers.

It is not obvious that (L(λ)) is really a relaxation of (P ). This relation is estab-
lished by

Theorem 24.2 Assume that both (P ) and (L(λ)) have optimal solutions. Then
for any nonnegative λi (i = 1, . . . , m) the inequality

ν(L(λ)) ≥ ν(P )

holds.

Proof The statement is that the optimal value of (L(λ)) is an upper bound of the
optimal value of (P ). Let x∗ be the optimal solution of (P ). It is obviously feasible
in both problems. Hence for all i the inequalities λi ≥ 0, bi ≥ gi(x

∗) hold. Thus
λi(bi − gi(x

∗)) ≥ 0 which implies that

f(x∗) ≤ f(x∗) +

m
∑

i=1

λi(bi − gi(x
∗)).

Here the right-hand side is the objective function value of a feasible solution of
(L(λ)), i.e.

ν(P ) = f(x∗) ≤ f(x∗) +

m
∑

i=1

λi(bi − gi(x
∗)) ≤ ν(L(λ)) .

There is another connection between (P ) and (L(λ)) which is also important
from the point of view of the notion of relaxation.
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Theorem 24.3 Let xL be the optimal solution of the Lagrange relaxation. If

g(xL) ≤ b (24.23)

and

m
∑

i=1

λi(bi − gi(xL)) = 0 (24.24)

then xL is an optimal solution of (P ).

Proof (24.23) means that xL is a feasible solution of (P ). For any feasible solution
x of (P ) it follows from the optimality of xL that

f(x) ≤ f(x) +
m

∑

i=1

λi(bi − gi(x)) ≤ f(xL) +
m

∑

i=1

λi(bi − gi(xL)) = f(xL) ,

i.e. xL is at least as good as x.

The importance of the conditions (24.23) and (24.24) is that they give an opti-
mality criterion, i.e. if a point generated by the Lagrange multipliers satisfies them
then it is optimal in the original problem. The meaning of (24.23) is that the optimal
solution of the Lagrange problem is feasible in the original one and the meaning of
(24.24) is that the objective function values of xL are equal in the two problems, just
as in the case of the previous relaxation. It also indicates that the optimal solutions
of the two problems are coincident in certain cases.

There is a practical necessary condition for being a useful relaxation which is
that the relaxed problem is easier to solve than the original problem. The Lagrange
relaxation has this property. It can be shown on Problem (24.19). Let λ1 = 1,
λ2 = λ3 = 3. Then the objective function (24.22) is the following

(23x1 + 19x2 + 28x3 + 14x4 + 44x5) + (14− 5x1 − x2 − 6x3 − 3x4 − 5x5)

+3(4− 2x1 − x2 + 3x3 − 5x4 − 6x5) + 3(7− x1 − 5x2 − 8x3 + 2x4 − 8x5)

= 47 + (23− 5− 6− 3)x1 + (19− 1− 3− 15)x2 + (28− 6 + 9− 24)x3

+(14− 3− 15 + 5)x4 + (44− 5− 18− 24)x5

= 47 + 9x1 + 0x2 + 7x3 + x4 − 3x5 .

The only constraint is that all variables are binary. It implies that if a coefficient is
positive in the objective function then the variable must be 1 in the optimal solution
of the Lagrange problem, and if the coefficient is negative then the variable must
be 0. As the coefficient of x2 is zero, there are two optimal solutions: (1,0,1,1,0)
and (1,1,1,1,0). The first one satisfies the optimality condition thus it is an optimal
solution. The second one is infeasible.

What is common in all relaxation?

They have three common properties.
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1. All feasible solutions are also feasible in the relaxed problem.

2. The optimal value of the relaxed problem is an upper bound of the optimal value
of the original problem.

3. There are cases when the optimal solution of the relaxed problem is also optimal
in the original one.

The last property cannot be claimed for all particular case as then the relaxed prob-
lem is only an equivalent form of the original one and needs very likely approximately
the same computational effort, i.e. it does not help too much. Hence the first two
properties are claimed in the definition of the relaxation of a particular problem.

Definition 24.4 Let f, h be two functions mapping from the n-dimensional Eu-
clidean space into the real numbers. Further on let U ,V be two subsets of the n-
dimensional Euclidean space. The problem

max{h(x) | x ∈ V} (24.25)

is a relaxation of the problem

max{f(x) | x ∈ U} (24.26)

if
(i) U ⊂ V and
(ii) it is known a priori, i.e. without solving the problems that ν(24.25) ≥ ν(24.26).

Relaxation of a problem class

No exact definition of the notion of problem class will be given. There are many
problem classes in optimization. A few examples are the knapsack problem, the
more general zero-one optimization, the traveling salesperson problem, linear pro-
gramming, convex programming, etc. In what follows problem class means only an
infinite set of problems.

One key step in the solution of (24.6) was that the problem was divided into
subproblems and even the subproblems were divided into further subproblems, and
so on.

The division must be carried out in a way such that the subproblems belong
to the same problem class. By fixing the value of a variable the knapsack problem
just becomes another knapsack problem of lesser dimension. The same is true for
almost all optimization problems, i.e. a restriction on the value of a single variable
(introducing either a lower bound, or upper bound, or an exact value) creates a new
problem in the same class. But restricting a single variable is not the only possible
way to divide a problem into subproblems. Sometimes special constraints on a set
of variables may have sense. For example it is easy to see from the first constraint
of (24.19) that at most two out of the variables x1, x3, and x5 can be 1. Thus it is
possible to divide it into two subproblems by introducing the new constraint which
is either x1 + x3 + x5 = 2, or x1 + x3 + x5 ≤ 1. The resulted problems are still in the
class of binary optimization. The same does not work in the case of the knapsack
problem as it must have only one constraint, i.e. if a second inequality is added to
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the problem then the new problem is out of the class of the knapsack problems.
The division of the problem into subproblems means that the set of feasible

solutions is divided into subsets not excluding the case that one or more of the
subsets turn out to be empty set. R5 and R6 gave such an example.

Another important feature is summarized in formula (24.12). It says that the
upper bound of the optimal value obtained from the undivided problem is at most
as accurate as the upper bound obtained from the divided problems.

Finally, the further investigation of the subset F1 could be abandoned as R1

was not giving a higher upper bound as the objective function value of the optimal
solution on R3 which lies at the same time in F3, too, i.e. the subproblem defined
on the set F3 was solved.

The definition of the relaxation of a problem class reflects the fact that relax-
ation and defining subproblems (branching) are not completely independent. In the
definition it is assumed that the branching method is a priori given.

Definition 24.5 Let P and Q be two problem classes. Class Q is a relaxation of
class P if there is a map R with the following properties.

1. R maps the problems of P into the problems of Q.

2. If a problem (P) ∈ P is mapped into (Q) ∈ Q then (Q) is a relaxation of (P) in
the sense of Definition 24.4.

3. If (P) is divided into (P1),. . .,(Pk) and these problems are mapped into
(Q1),. . .,(Qk), then the inequality

ν(Q) ≥ max{ν(Q1), . . . , ν(Qk)} (24.27)

holds.

4. There are infinite many pairs (P), (Q) such that an optimal solution of (Q) is
also optimal in (P).

24.2.2. The general frame of the B&B method

As the Reader has already certainly observed B&B divides the problem into subprob-
lems and tries to fathom each subproblem by the help of a relaxation. A subproblem
is fathomed in one of the following cases:

1. The optimal solution of the relaxed subproblem satisfies the constraints of the
unrelaxed subproblem and its relaxed and non-relaxed objective function values
are equal.

2. The infeasibility of the relaxed subproblem implies that the unrelaxed subprob-
lem is infeasible as well.

3. The upper bound provided by the relaxed subproblem is less (in the case if
alternative optimal solution are sought) or less or equal (if no alternative optimal
solution is requested) than the objective function value of the best known feasible
solution.
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The algorithm can stop if all subsets (branches) are fathomed. If nonlinear program-
ming problems are solved by B&B then the finiteness of the algorithm cannot be
always guaranteed.

In a typical iteration the algorithm executes the following steps.

• It selects a leaf of the branching tree, i.e. a subproblem not divided yet into
further subproblems.

• The subproblem is divided into further subproblems (branches) and their relax-
ations are defined.

• Each new relaxed subproblem is solved and checked if it belongs to one of the
above-mentioned cases. If so then it is fathomed and no further investigation is
needed. If not then it must be stored for further branching.

• If a new feasible solution is found which is better than the so far best one, then
even stored branches having an upper bound less than the value of the new best
feasible solution can be deleted without further investigation.

In what follows it is supposed that the relaxation satisfies definition 24.5.
The original problem to be solved is

max f(x) (24.14)

g(x) ≤ b (24.15)

x ∈ X . (24.16)

Thus the set of the feasible solutions is

F = F0 = {x | g(x) ≤ b; x ∈ X} . (24.28)

The relaxed problem satisfying the requirements of definition 24.5 is

max h(x)

k(x) ≤ b

x ∈ Y,

where X ⊆ Y and for all points of the domain of the objective functions f(x) ≤ h(x)
and for all points of the domain of the constraint functions k(x) ≤ h(x). Thus the
set of the feasible solutions of the relaxation is

R = R0 = {x | k(x) ≤ b; x ∈ Y} .

Let Fk be a previously defined subset. Suppose that it is divided into the subsets
Ft+1,. . . ,Ft+p, i.e.

Fk =

p
⋃

l=1

Ft+l .
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Let Rk and Rt+1,. . . ,Rt+p be the feasible sets of the relaxed subproblems. To satisfy
the requirement (24.27) of definition 24.5 it is assumed that

Rk ⊇
p

⋃

l=1

Rt+l .

The subproblems are identified by their sets of feasible solutions. The unfath-
omed subproblems are stored in a list. The algorithm selects a subproblem from the
list for further branching. In the formal description of the general frame of B&B the
following notations are used.

ẑ the objective function value of the best feasible solution found so far
L the list of the unfathomed subsets of feasible solutions
t the number of branches generated so far
F0 the set of all feasible solutions
r the index of the subset selected for branching
p(r) the number of branches generated from Fr

xi the optimal solution of the relaxed subproblem defined on Ri

zi the upper bound of the objective function on subset Fi

L+ Fi the operation of adding the subset Fi to the list L
L − Fi the operation of deleting the subset Fi from the list L

Note that yi = max{h(x) | x ∈ Ri}.
The frame of the algorithms can be found below. It simply describes the basic

ideas of the method and does not contain any tool of acceleration.

Branch-and-Bound

1 ẑ ← −∞
2 L ← {F0 }
3 t ← 0
4 while L 6= ∅
5 do determination of r
6 L ← L−Fr

7 determination of p(r)
8 determination of branching Fr ⊂ R1 ∪ ... ∪Rp(r)

9 for i← 1 to p(r) do

10 Ft+i ← Fr ∩Ri

11 calculation of (xt+i, zt+i)
12 if zt+i > ẑ
13 then if xt+i ∈ F
14 then ẑ ← zt+i

15 else L ← L+ Ft+i

16 t ← t + p(r)
17 for i← 1 to t do

18 if zi ≤ ẑ
19 then L ← L−Fi

20 return
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The operations in rows 5, 7, 8, and 11 depend on the particular problem class and
on the skills of the designer of the algorithm. The relaxed subproblem is solved in
row 11. A detailed example is discussed in the next section. The handling of the list
needs also careful consideration. Section 24.4 is devoted to this topic.

The loop in rows 17 and 18 can be executed in an implicit way. If the selected
subproblem in row 5 has a low upper bound, i.e. zr ≤ ẑ then the subproblem is
fathomed and a new subproblem is selected.

However the most important issue is the number of required operations includ-
ing the finiteness of the algorithm. The method is not necessarily finite. Especially
nonlinear programming has infinite versions of it. Infinite loop may occur even in the
case if the number of the feasible solutions is finite. The problem can be caused by
an incautious branching procedure. A branch can belong to an empty set. Assume
that that the branching procedure generates subsets from Fr such that one of the
subsets Ft+1, ...,Ft+p(r) is equal to Fr and the other ones are empty sets. Thus there
is an index i such that

Ft+i = Fr, Ft+1 = ... = Ft+i−1 = Ft+i+1 = ... = Ft+p(r) = ∅ . (24.29)

If the same situation is repeated at the branching of Ft+i then an infinite loop is
possible.

Assume that a zero-one optimization problem of n variables is solved by B&B
and the branching is made always according to the two values of a free variable.
Generally it is not known that how large is the number of the feasible solutions.
There are at most 2n feasible solutions as it is the number of the zero-one vectors.
After the first branching there are at most 2n−1 feasible solutions in the two first
level leaves, each. This number is halved with each branching, i.e. in a branch on
level k there are at most 2n−k feasible solutions. It implies that on level n there is
at most 2n−n = 20 = 1 feasible solution. As a matter of fact on that level there is
exactly 1 zero-one vector and it is possible to decide whether or not it is feasible.
Hence after generating all branches on level n the problem can be solved. This idea
is generalized in the following finiteness theorem. While formulating the statement
the previous notations are used.

Theorem 24.6 Assume that
(i) The set F is finite.
(ii) There is a finite set U such that the following conditions are satisfied. If a subset
F̂ is generated in the course of the branch and bound method then there is a subset
Û of U such that F̂ ⊆ Û . Furthermore if the branching procedure creates the cover
R1 ∪ . . . ∪Rp ⊇ F̂ then Û has a partitioning such that

Û = Û1 ∪ · · · ∪ Ûp, Ûi ∩ Ûj = ∅(i 6= j)

F̂ ∩ R̂j ⊆ Ûj(j = 1, . . . , p)

and moreover

1 ≤| Ûj |<| Û | (j = 1, . . . , p) . (24.30)

(iii) If a set Û belonging to set F̂ has only a single element then the relaxed subprob-
lem solves the unrelaxed subproblem as well.
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Then the Branch-and-Bound procedure stops after finite many steps. If ẑ =
−∞ then there is no feasible solution. Otherwise ẑ is equal to the optimal objective
function value.

Proof Assume that the procedure Branch-and-Bound executes infinite many
steps. As the set F is finite it follows that there is at least one subset of F say Fr

such that it defines infinite many branches implying that the situation described in
(24.29) occurs infinite many times. Hence there is an infinite sequence of indices,
say r0 = r < r1 < · · · , such that Frj+1

is created at the branching of Frj
and

Frj+1
= Frj

. On the other hand the parallel sequence of the U sets must satisfy the
inequalities

| Ur0
|>| Ur1

|> · · · ≥ 1 .

It is impossible because the Us are finite sets.
The finiteness of F implies that optimal solution exists if and only if F is

nonempty, i.e. the problem cannot be unbounded and if feasible solution exist then
the supremum of the objective function is its maximum. The initial value of ẑ is
−∞. It can be changed only in row 14 of the algorithm and if it is changed then
it equals to the objective function value of a feasible solution. Thus if there is no
feasible solution then it remains −∞. Hence if the second half of the statement is
not true, then at the end of the algorithm ẑ equal the objective function value of a
non-optimal feasible solution or it remains −∞.

Let r be the maximal index such that Fr still contains the optimal solution.
Then

zr ≥ optimal value > ẑ .

Hence it is not possible that the branch containing the optimal solution has been
deleted from the list in the loop of rows 17 and 18, as zr > ẑ. It is also sure that the
subproblem

max{f(x) | x ∈ Fr}
has not been solved, otherwise the equation zr = ẑ should hold. Then only one option
remained that Fr was selected for branching once in the course of the algorithm. The
optimal solution must be contained in one of its subsets, say Ft+i which contradicts
the assumption that Fr has the highest index among the branches containing the
optimal solution.

Remark. Notice that the binary problems mentioned above with Ûj ’s of type

Ûj = {x ∈ {0, 1}n | xk = δkj , k ∈ Ij} ,

where Ij ⊂ {1, 2, . . . , n} is the set of fixed variables and δkj ∈ {0, 1} is a fixed value,
satisfy the conditions of the theorem.

If an optimization problem contains only bounded integer variables then the sets
Us are the sets the integer vectors in certain boxes. In the case of some scheduling
problems where the optimal order of tasks is to be determined even the relaxations
have combinatorial nature because they consist of permutations. Then U = R is also
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possible. In both of the cases Condition (iii) of the theorem is fulfilled in a natural
way.

Exercises
24.2-1 Decide if the Knapsack Problem can be a relaxation of the Linear Binary
Optimization Problem in the sense of Definition 24.5. Explain your solution regard-
less that your answer is YES or NO.

24.3. Mixed integer programming with bounded
variables

Many decisions have both continuous and discrete nature. For example in the pro-
duction of electric power the discrete decision is to switch on or not an equipment.
The equipment can produce electric energy in a relatively wide range. Thus if the
first decision is to switch on then a second decision must be made on the level of
the produced energy. It is a continuous decision. The proper mathematical model of
such problems must contain both discrete and continuous variables.

This section is devoted to the mixed integer linear programming problem with
bounded integer variables. It is assumed that there are n variables and a subset of
them, say I ⊆ {1, . . . , n} must be integer. The model has m linear constraints in
equation form and each integer variable has an explicit integer upper bound. It is also
supposed that all variables must be nonnegative. More formally the mathematical
problem is as follows.

max cT x (24.31)

Ax = b (24.32)

∀ j ∈ I : xj ≤ gj (24.33)

xj ≥ 0 j = 1, . . . , n (24.34)

∀ j ∈ I : xj is integer , (24.35)

where c and x are n-dimensional vectors, A is an m×n matrix, b is an m-dimensional
vector and finally all gj (j ∈ I) is a positive integer.

In the mathematical analysis of the problem below the the explicit upper bound
constraints (24.33) will not be used. The Reader may think that they are formally
included into the other algebraic constraints (24.32).

There are technical reasons that the algebraic constraints in (24.32) are claimed
in the form of equations. Linear programming relaxation is used in the method.
The linear programming problem is solved by the simplex method which needs this
form. But generally speaking equations and inequalities can be transformed into
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one another in an equivalent way. Even in the numerical example discussed below
inequality form is used.

First a numerical example is analyzed. The course of the method is discussed
from geometric point of view. Thus some technical details remain concealed. Next
simplex method and related topics are discussed. All technical details can be de-
scribed only in the possession of them. Finally some strategic points of the algorithm
are analyzed.

24.3.1. The geometric analysis of a numerical example

The problem to be solved is

max x0 = 2x1 + x2

3x1 − 5x2 ≤ 0
3x1 + 5x2 ≤ 15

x1, x2 ≥ 0
x1, x2 is integer .

(24.36)

To obtain a relaxation the integrality constraints are omitted from the problem.
Thus a linear programming problem of two variables is obtained.

The branching is made according to a non-integer variable. Both x1 and x2 have
fractional values. To keep the number of branches as low as possible, only two new
branches are created in a step.

The numbering of the branches is as follows. The original set of feasible solutions
is No. 1. When the two new branches are generated then the branch belonging to
the smaller values of the branching variable has the smaller number. The numbers
are positive integers started at 1 and not skipping any integer. Branches having no
feasible solution are numbered, too.

The optimal solution of the relaxation is x1 = 2.5, x2 = 1.5, and the optimal
value is 13

2 as it can be seen from figure 24.2. The optimal solution is the intersection
point the lines determined by the equations

3x1 − 5x2 = 0

and
3x1 + 5x2 = 15 .

If the branching is based on variable x1 then they are defined by the inequalities

x1 ≤ 2 and x1 ≥ 3 .

Notice that the maximal value of x1 is 2.5. In the next subsection the problem is
revisited. Then this fact will be observed from the simplex tableaux. Variable x2

would create the branches

x2 ≤ 1 and x2 ≥ 2 .
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Figure 24.2 The geometry of linear programming relaxation of Problem (24.36) including the

feasible region (triangle OAB), the optimal solution (x1 = 2.5, x2 = 1.5), and the optimal level of

the objective function represented by the line 2x1 + x2 = 13

2
.

None of them is empty. Thus it is more advantageous the branch according to x1.
Geometrically it means that the set of the feasible solutions in the relaxed problem
is cut by the line x1 = 2. Thus the new set becomes the quadrangle OACD on
Figure 24.3. The optimal solution on that set is x1 = 2, x2 = 1.8. It is point C on
the figure.

Now branching is possible according only to variable x2. Branches 4 and 5 are
generated by the cuts x2 ≤ 1 and x2 ≥ 2, respectively. The feasible regions of
the relaxed problems are OHG of Branch 4, and AEF of Branch 5. The method
continues with the investigation of Branch 5. The reason will be given in the next
subsection when the quickly calculable upper bounds are discussed. On the other
hand it is obvious that the set AEF is more promising than OHG if the Reader
takes into account the position of the contour, i.e. the level line, of the objective
function on Figure 24.3. The algebraic details discussed in the next subsection serve
to realize the decisions in higher dimensions what is possible to see in 2-dimension.

Branches 6 and 7 are defined by the inequalities x1 ≤ 1 and x1 ≥ 2, respectively.
The latter one is empty again. The feasible region of Branch 6 is AIJF . The optimal
solution in this quadrangle is the Point I. Notice that there are only three integer
points in AIJF which are (0,3), (0,2), and (1,2). Thus the optimal integer solution of



24.3. Mixed integer programming with bounded variables 1275

1 2 3O

B

A

C

D

E

F

GH

I

J

1

2

3

�Branch 2 - Branch 3; EMPTY

?
Branch 4

6
Branch 5

�Branch 6

Figure 24.3 The geometry of the course of the solution. The co-ordinates of the points are:
O=(0,0), A=(0,3), B=(2.5,1.5), C=(2,1.8), D=(2,1.2), E=( 5

3
,2), F=(0,2), G=( 5

3
,1), H=(0,1),

I=(1,2.4), and J=(1,2). The feasible regions of the relaxation are as follows. Branch 1: OAB, Branch

2: OACD, Branch 3: empty set, Branch 4: OHG, Branch 5: AEF , Branch 6: AIJF , Branch 7:
empty set (not on the figure). Point J is the optimal solution.

this branch is (1,2). There is a technique which can help to leap over the continuous
optimum. In this case it reaches directly point J, i.e. the optimal integer solution of
the branch as it will be seen in the next section, too. Right now assume that the
integer optimal solution with objective function value 4 is uncovered.

At this stage of the algorithm the only unfathomed branch is Branch 4 with
feasible region OHG. Obviously the optimal solution is point G=(5

3 ,1). Its objective
function value is 13

3 . Thus it cannot contain a better feasible solution than the known
(1,2). Hence the algorithm is finished.

24.3.2. The linear programming background of the method

The first ever general method solving linear programming problems were discovered
by George Dantzig and called simplex method. There are plenty of versions of the
simplex method. The main tool of the algorithm is the so-called dual simplex method.
Although simplex method is discussed in a previous volume, the basic knowledge is
summarized here.

Any kind of simplex method is a so-called pivoting algorithm. An important
property of the pivoting algorithms is that they generate equivalent forms of the
equation system and – in the case of linear programming – the objective function.
Practically it means that the algorithm works with equations. As many variables as
many linearly independent equations exist are expressed with other variables and
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x1 = 1
x2 = 2

solution

6
4

4/3

5
5 1/3
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x1 ≤ 1

x2 ≥ 2
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4 1/3

4/5
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Figure 24.4 The course of the solution of Problem (24.36). The upper numbers in the circuits are
explained in subsection 24.3.2. They are the corrections of the previous bounds obtained from the
first pivoting step of the simplex method. The lower numbers are the (continuous) upper bounds
obtained in the branch.

further consequences are drawn from the current equivalent form of the equations.
If there are inequalities in the problem then they are reformulated by introducing

nonnegative slack variables. E.g. in case of LP-relaxation of Problem (24.36) the
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equivalent form of the problem is

max x0 = 2x1 + x2 + 0x3 + 0x4

3x1 − 5x2 + x3 + 0x4 = 0
3x1 + 5x2 + 0x3 + x4 = 15

x1, x2 x3, x4 ≥ 0 .

(24.37)

Notice that all variables appear in all equations including the objective function,
but it is allowed that some coefficients are zeros. The current version (24.37) can be
considered as a form where the variables x3 and x4 are expressed by x1 and x2 and
the expression is substituted into the objective function. If x1 = x2 = 0 then x3 = 0
and x4 = 15, thus the solution is feasible. Notice that the value of the objective
function is 0 and if it is possible to increase the value of any of x1 and x2 and
still getting a feasible solution then a better feasible solution is obtained. It is true,
because the method uses equivalent forms of the objective function. The method
obtains better feasible solution by pivoting. Let x1 and x2 be the two expressed
variables. Skipping some pivot steps the equivalent form of (24.37) is

max x0 = 0x1 + 0x2 − 7
30 x3 − 13

30 x4 + 13
2

x1 + 0x2 + 1
6 x3 + 1

6 x4 = 5
2

0x1 + x2 − 1
10 x3 + 1

10 x4 = 3
2

x1, x2 x3, x4 ≥ 0 .

(24.38)

That form has two important properties. First if x3 = x4 = 0 then x1 = 5
2 and

x2 = 3
2 , thus the solution is feasible, similarly to the previous case. Generally this

property is called primal feasibility. Secondly, the coefficients of the non-expressed
variables are negative in the objective function. It is called dual feasibility. It implies
that if any of the non-expressed variables is positive in a feasible solution then that is
worse than the current one. It is true again, because the current form of the objective
function is equivalent to the original one. Thus the current value of the objective
function which is 13

2 , is optimal.
In what follows the sign of maximization and the nonnegativity of the variables

will be omitted from the problem but they are kept in mind.
In the general case it may be assumed without loss of generality that all equations

are independent. Simplex method uses the form of the problem

max x0 = cT x (24.39)

Ax = b (24.40)

x ≥ 0 , (24.41)

where A is an m × n matrix, c and x are n-dimensional vectors, and b is an m-
dimensional vector. According to the assumption that all equations are independent,
A has m linearly independent columns. They form a basis of the m-dimensional
linear space. They also form an m × m invertible submatrix. It is denoted by B.
The inverse of B is B−1. Matrix A is partitioned into the basic and non-basic parts:
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A = (B, N) and the vectors c and x are partitioned accordingly. Hence

Ax = BxB + NxN = b .

The expression of the basic variables is identical with the multiplication of the equa-
tion by B−1 from left

B−1Ax = B−1BxB + B−1NxN = IxB + B−1NxN = B−1b,

where I is the unit matrix. Sometimes the equation is used in the form

xB = B−1b−B−1NxN . (24.42)

The objective function can be transformed into the equivalent form

cT x = cT
BxB + cT

N xN

cT
B(B−1b−B−1NxN ) + cT

N xN = cT
BB−1b + (cT

N − cT
BB−1N)xN .

Notice that the coefficients of the basic variables are zero. If the non-basic variables
are zero valued then the value of the basic variables is given by the equation

xB = B−1b .

Hence the objective function value of the basic solution is

cT x = cT
BxB + cT

N xN = cT
BB−1b + cT

N 0 = cT
BB−1b . (24.43)

Definition 24.7 A vector x is a solution of Problem (24.39)-(24.41) if it satisfies
the equation (24.40). It is a feasible solution or equivalently a primal feasible

solution if it satisfies both (24.40) and (24.41). A solution x is a basic solution

if the columns of matrix A belonging to the non-zero components of x are linearly
independent. A basic solution is a basic feasible or equivalently a basic primal

feasible solution if it is feasible. Finally a basic solution is basic dual feasible

solution if

cT
N − cT

BB−1N ≤ 0T . (24.44)

The primal feasibility of a basic feasible solution is equivalent to

B−1b ≥ 0 .

Let a1, . . . , an be the column vectors of matrix A. Further on let IB and IN be the
set of indices of the basic and non-basic variables, respectively. Then componentwise
reformulation of (24.44) is

∀ j ∈ IN : cj − cT
BB−1aj ≤ 0 .

The meaning of the dual feasibility is this. The current value of the objective function
given in (24.43) is an upper bound of the optimal value as all coefficients in the
equivalent form of the objective function is nonpositive. Thus if any feasible, i.e.
nonnegative, solution is substituted in it then value can be at most the constant
term, i.e. the current value.



24.3. Mixed integer programming with bounded variables 1279

Definition 24.8 A basic solution is OPTIMAL if it is both primal and dual fea-
sible.

It is known from the theory of linear programming that among the optimal
solutions there is always at least one basic solution. To prove this statement is
beyond the scope of the chapter.

In Problem (24.37)

A =

(

3 −5 1 0
3 5 0 1

)

b =

(

0
15

)

c =









2
1
0
0









.

If the basic variables are x1 and x2 then

B =

(

3 −5
3 5

)

B−1 =
1

30

(

5 5
−3 3

)

N =

(

1 0
0 1

)

cB =

(

2
1

)

.

Hence

cT
BB−1 = (2, 1)

1

30

(

5 5
−3 3

)

=

(

7

30
,

13

30

)

B−1b =
1

30

(

5 5
−3 3

) (

0
15

)

=

(

75/30
45/30

)

=

(

5/2
3/2

)

, B−1N = B−1 .

The last equation is true as N is the unit matrix. Finally

cT
N − cT

BB−1N = (0, 0)−
(

7

30
,

13

30

) (

1 0
0 1

)

=

(

− 7

30
, −13

30

)

.

One can conclude that this basic solution is both primal and dual feasible.
There are two types of simplex methods. Primal simplex method starts from

a primal feasible basic solution. Executing pivoting steps it goes through primal
feasible basic solutions and finally even the dual feasibility achieved. The objective
function values are monotone increasing in the primal simplex method.

The dual simplex method starts from a dual feasible basic solution it goes
through dual feasible basic solutions until even primal feasibility is achieved in the
last iteration. The objective function values are monotone decreasing in the dual
simplex method. We discuss it in details as it is the main algorithmic tool of the
method.

Each simplex method uses its own simplex tableau. Each tableau contains the
transformed equivalent forms of the equations and the objective function. In the
case of the dual simplex tableau the elements of it are derived from the form of the
equations

xB = B−1b−B−1NxN = B−1b + B−1N(−xN ) ,

where the second equation indicates that the minus sign is associated to non-basic
variables. The dual simplex tableau contains the expression of all variables by the
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negative non-basic variables including the objective function variable x0 and the
non-basic variables. For the latter ones the trivial

xj = −(−xj)

equation is included. For example the dual simplex tableau for (24.37) is provided
that the basic variables are x1 and x2 (see (24.38))

variable constant −x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1

Generally speaking the potentially non-zero coefficients of the objective function are
in the first row, the constant terms are in the first column and all other coefficients
are in the inside of the tableau. The order of the rows is never changed. On the
other hand a variable which left the basis immediately has a column instead of that
variable which entered the basis.

The elements of the dual simplex tableau are denoted by djk where k = 0 refers
to the constant term of the equation of variable xj and otherwise k ∈ IN and djk is
the coefficient of the non-basic variable −xk in the expression of the variable xj . As
x0 is the objective function variable d0k is the coefficient of −xk in the equivalent
form (24.42) of the objective function. The dual simplex tableau can be seen on
Figure 24.5.

Notice that dual feasibility means that there are nonnegative elements in the
first row of the tableau with the potential exception of its first element, i.e. with the
potential exception of the objective function value.

Without giving the proof of its correctness the pivoting procedure is this. The
aim of the pivoting is to eliminate the primal infeasibility, i.e. the negative values
of the variables, with the potential exception of the objective function value, i.e.
the elimination of the negative terms from the first column. Instead of that basic
variable xp a non-basic one will be expressed from the equation such that the negative
constant term becomes zero and the value of the new basic variable, i.e. the value
of xk, becomes positive. It is easy to see that this requirement can be satisfied only
if the new expressed variable, say xk, has a negative coefficient in the equation, i.e.
dpk < 0. After the change of the basis the row of xp must become a negative unit
vector as xp became a non-basic variable, thus its expression is

xp = −(−xp) . (24.45)

The transformation of the tableau consists of the transformations of the columns such
that the form (24.45) of the row of xp is generated. The position of the (-1) in the
row is the crossing of the row of xp and the column belonging to xk before pivoting.
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d00

?

objective function value

d0k
+

objective function coefficient

dj0
6

constant term in the equation of xj

djk
6

the coefficient of −xk in the equation of xj

Figure 24.5 The elements of the dual simplex tableau.

This column becomes the column of xp. There is another requirement claiming that
the dual feasibility must hold on. Let dj be the column of the non-basic variable xj

including d0 as the column of the constant terms. Then the formulae of the column
transformation are the followings where j is either zero or the index of a non-basic
variable different from k:

dnew
j = dold

j −
dold

pj

dold
pk

dold
k (24.46)

and

dnew
p = − 1

dold
pk

dold
k .

To maintain dual feasibility means that after the change of the basis the relation
dnew

0j ≥ 0 must hold for all non-basic indices, i.e. for all j ∈ Inew
N . It follows from

(24.46) that k must be chosen such that

k = argmax

{

dold
0j

dold
pj

| dold
pj < 0

}

. (24.47)

In the course of the branch method in the optimization of the relaxed subproblems
dual simplex method can save a lot of computation. On the other hand what is used
in the description of the method, is only the effect of one pivoting on the value of
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the objective function. According to (24.46) the new value is

dnew
00 = dold

00 −
dold

p0

dold
pk

dold
0k .

Notice that dold
p0 , dold

pk < 0 and dold
0k ≥ 0. Hence the objective function value decreases

by the nonnegative value

dold
p0

dold
pk

dold
0k . (24.48)

The formula (24.48) will be used if a new constraint is introduced at branching
and it cuts the previous optimal solution. As the new constraint has nothing to do
with the objective function, it will not destroy dual feasibility, but, of course, the
optimal solution of the relaxed problem of the branch becomes primal infeasible.

For example the inequality x1 ≤ 2 is added to the relaxation (24.37) defining a
new branch then it is used in the equation form

x1 + x5 = 2 , (24.49)

where x5 is nonnegative continuous variable. According to the simplex tableau

x1 =
5

2
+

1

6
(−x3) +

1

6
(−x4).

Hence

x5 = −1

2
− 1

6
(−x3)− 1

6
(−x4) . (24.50)

(24.49) is added to the problem in the form (24.50). Then the dual simplex tableau
is

variable constant −x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1
x5 −1/2 −1/6 −1/6

Only x5 has a negative value, thus the first pivoting must be done in its row. Rule
(24.47) selects x3 for entering the basis. Then after the first pivot step the value of
the objective function decreases by

− 1
2

− 1
6

× 7

30
=

7

10
.

If the optimal solution of the relaxed problem is not reached after the first pivoting
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variable constant −x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1
x6 −1/2 1/6 1/6

then further decrease is possible. But decrease of 0.7 is sure compared to the previous
upper bound.

Another important property of the cuts is that if it has no negative coefficient
in the form how it is added to the simplex tableau then there is no negative pivot
element, i.e. the relaxed problem is infeasible, i.e. the branch is empty. For example
the cut x1 ≥ 3 leading to an empty branch is added to the problem in the form

x1 − x6 = 3

where x6 is also a nonnegative variable. Substituting the value of x1 again the
equation is transformed to

x6 = −1

2
+

1

6
(−x3) +

1

6
(−x4) .

Hence the simplex tableau is obtained. There is a negative value at the crossing point
of the first column and the row of x6. But it is not possible to choose a pivot element
in that row, as there is no negative element of the row. It means that feasibility can
not be achieved, i.e. that branch is infeasible and thus it is completely fathomed.

24.3.3. Fast bounds on lower and upper branches

The branching is always based on a variable which should be integer but in the
current optimal solution of the linear programming relaxation it has fractional value.
If it has fractional value then its value is non-zero thus it is basic variable. Assume
that its index is p. Remember that I, IB , and IN are the index sets of the integer,
basic, and non-basic variables, respectively. Hence p ∈ I ∩IB . According to the last
simplex tableau xp is expressed by the non-basic variables as follows:

xp = dp0 +
∑

j∈IN

dpj(−xj) . (24.51)

As dp0 has fractional value

1 > fp = dp0 − bdp0c > 0 .

The branch created by the inequality

xp ≤ bdp0c (24.52)
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is called lower branch and the inequality

xp ≥ bdp0c+ 1

creates the upper branch.
Let J+ and J− be the set of indices of the nonbasic variables according to the

signs of the coefficients in (24.51), i.e.

J +(J−) = {j | j ∈ IN ; dpj > 0 (dpj < 0)} .

First the lower branch is analyzed. It follows from (24.51) that the inequality
(24.52) is equivalent to

xp − bdp0c = fp +
∑

j∈IN

dpj(−xj) ≤ 0.

Thus

s = −fp +
∑

j∈IN

(−dpj)(−xj) (24.53)

is a nonnegative variable and row (24.53) can be added to the dual simplex tableau.
It will contain the only negative element in the first column that is the optimization
in the lower branch starts by pivoting in this row. (24.53) can be reformulated
according to the signs of the coefficients as

s = −fp +
∑

j∈J +

(−dpj)(−xj) +
∑

j∈J −

(−dpj)(−xj) . (24.54)

The pivot element must be negative, thus it is one of −dpj ’s with j ∈ J+ . Hence
the first decrease (24.48) of the objective function is

Plp = min

{

d0j

dpj

fp | j ∈ J +

}

. (24.55)

In the upper branch the inequality (24.52) is equivalent to

xp − bdp0c = fp +
∑

j∈IN

dpj(−xj) ≥ 1 .

Again the nonnegative slack variable s should be introduced. Then the row which
can be added to the simplex tableau is

s = (fp − 1) +
∑

j∈J +

dpj(−xj) +
∑

j∈J −

dpj(−xj) . (24.56)

Thus the pivot element must belong to one of the indices j ∈ J− giving the value

Pup = min

{

d0j

−dpj

(1− fp) | j ∈ J−
}

. (24.57)
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Let ẑ be the upper bound on the original branch obtained by linear programming.
Then the quantities Plp and Pup define the upper bounds of the objective functions
ẑ−Plp and ẑ−Pup on the lower and upper subbranches, respectively. They are not
substituting complete optimization in the subbranches. On the other hand they are
easily computable and can give some orientation to the selection of the next branch
for further investigation (see below).

The quantities Plp and Pup can be improved, i.e. increased. The claim that the
variable s defined in (24.54) is nonnegative implies that

− fp ≥
∑

j∈J +

dpj(−xj) . (24.58)

In a similar way the nonnegativity of variable s in (24.56) implies that

fp − 1 ≥
∑

j∈J −

(−dpj)(−xj) . (24.59)

If (24.59) is multiplied by the positive number

fp

1− fp

then it gets the form

− fp ≥
∑

j∈J −

fp

1− fp

(−dpj)(−xj) . (24.60)

The inequalities (24.58) and (24.60) can be unified in the form:

− fp ≥
∑

j∈J +

dpj(−xj) +
∑

j∈J −

fp

1− fp

(−dpj)(−xj) . (24.61)

Notice that (24.61) not the sum of the two inequalities. The same negative number
stands on the left-hand side of both inequalities and is greater or equal than the
right-hand side. Then both right-hand sides must have negative value. Hence the
left-hand side is greater than their sum.

The same technique is applied to the variable x
′

p instead of xp with

x
′

p = xp +
∑

j∈I∩IN

µjxj ,

where µj ’s are integer values to be determined later. x
′

p can be expressed by the
non-basic variables as

x
′

p = dp0 +
∑

j∈I∩IN

(dpj − µj)(−xj) +
∑

j∈IN \I
dpj(−xj) .

Obviously x
′

p is an integer variable as well and its current value if the non-basic
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variables are fixed to zero is equal to the current value of dp0. Thus it is possible to

define the new branches according to the values of x
′

p. Then the inequality of type

(24.61) which is defined by x
′

p, has the form

−fp ≥
∑

j ∈ I ∩ IN

dpj − µj ≥ 0

(dpj − µj)(−xj) +
∑

j ∈ I ∩ IN

dpj − µj < 0

fp

1− fp

(µj − dpj)(−xj)

+
∑

j ∈ IN \ I
dpj > 0

dpj(−xj) +
∑

j ∈ IN \ I
dpj < 0

fp

1− fp

(−dpj)(−xj) .

The appropriate quantities P
′

lp and P
′

up are as follows:

P
′

lp = min{a, b} ,

where

a = min

{

d0j

dpj − µj

fp | j ∈ I ∩ IN , dpj − µj > 0

}

and

b = min

{

d0j

dpj

fp | j ∈ IN \ I, dpj > 0

}

further
P

′

up = min{c, d} ,

where

c = min

{

d0j(1− fp)2

(µj − dpj)fp

| j ∈ I ∩ IN , dpj − µj < 0

}

and

d = min

{

−d0j(1− fp)2

fpdpj

| j ∈ IN \ I, dpj < 0

}

.

The values of the integers must be selected in a way that the absolute values of the
coefficients are as small as possible, because the inequality cuts the greatest possible
part of the polyhedral set of the continuous relaxation in this way. (See Exercise
24.3-1.) To do so the absolute value of dpj−µj must be small. Depending on its sign
it can be either fj , or fj−1, where fj is the fractional part of dpj , i.e. fj = dpj−bdpjc.

Assume that fj > 0. If dpj + µj = fj then the term

d0jfp

fj

(24.62)

is present among the terms of the minimum of the lower branch. If dpj > 0 then it
obviously is at least as great as the term

d0jfp

dpj

,
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which appears in Plp, i.e. in the right-hand side of (24.55). If dpj < 0 then there is
a term

d0j(fp − 1)

dpj

(24.63)

is in the right-hand side of (24.57) . doj is a common multiplier in the terms (24.62)
and (24.63), therefore it can be disregarded when the terms are compared. Under
the assumption that fj ≤ fp it will be shown that

fp

fj

≥ fp − 1

dpj

.

As dpj is supposed to be negative the statement is equivalent to

dpjfp ≤ (fp − 1)fj .

Hence the inequality

(bdpjc+ fj) fp ≤ fpfj − fj

must hold. It can be reduced to

bdpjc fp ≤ −fj .

It is true as bdpjc ≤ −1 and

−1 ≤ −fj

fp

< 0 .

If dpj + µj = fj − 1 then according to (24.57) and (24.61) the term

d0j(1− fj)2

fp(1− fj)

is present among the terms of the minimum of the upper branch. In a similar way
it can be shown that if fj > fp then it is always at least as great as the term

d0j(fj − 1)

dpj

which is present in the original formula (24.57).
Thus the rule of the choice of the integers µj ’s is

µj =

{

bdpjc if fj ≤ fp ,
ddpje if fj > fp

(24.64)

24.3.4. Branching strategies

The B&B frame doesn’t have any restriction in the selection of the unfathomed
node for the next branching in row 7 of Branch-and-Bound. First two extreme
strategies are discussed with pros and cons. The same considerations have to be
taken in almost all applications of B&B. The third method is a compromise between
the two extreme ones. Finally methods more specific to the integer programming are
discussed.
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The LIFO Rule

LIFO means “Last-In-First-Out”, i.e. one of the branches generated in the last iter-
ation is selected. A general advantage of the rule is that the size of the enumeration
tree and the size of the list L remains as small as possible. In the case of the integer
programming problem the creation of the branches is based on the integer values of
the variables. Thus the number of the branches is at most gj + 1 if the branching
variable is xj . In the LIFO strategy the number of leaves is strictly less then the
number of the created branches on each level with the exemption of the deepest
level. Hence at any moment the enumeration tree may not have more than

n
∑

j=1

gj + 1

leaves.
The drawback of the strategy is that the flexibility of the enumeration is lost.

The flexibility is one of the the main advantage of B&B in solving pure integer
problems.

If the algorithm skips from one branch to another branch far away from the
first one then it is necessary to reconstruct the second branch including not only the
branching restrictions on the variables but any other information which is necessary
to the bounding procedure. In the particular algorithm the procedure determining
the bound is linear programming, more precisely a simplex method. If a new re-
striction as a linear constraint is added to the problem which cuts off the previous
optimal solution, then the simplex tableau looses the primal feasibility but the dual
feasibility still holds. Thus a dual simplex method can immediately start without
carrying out a first phase. (The purpose of the first phase which itself is a complete
optimization, is to find a primal or dual feasible basic solution depending for primal
or dual simplex method, respectively.) If the B&B method skips to another branch
then to get the new bound by the simplex method will require the execution of the
first phase, too.

A further consideration concerns to the construction of feasible solutions. Gener-
ally speaking if good feasible solutions are known in the early phase of the algorithm
then the whole procedure can be accelerated. In the current algorithm branching has
a "constructive nature". It means that the value of the branching variable becomes
more restricted therefore it either becomes integer in the further optimal solutions
in the subbranches of the branch, or it will be restricted further on. Thus it can be
expected that sooner or later a complete integer solution is constructed which might
be feasible or infeasible. On the other hand if the algorithm skips frequently in the
phase when no feasible solution is known then it is very likely that any construction
will be finished only later, i.e. the acceleration will not take place, because of the
lack of feasible solution.

If a LIFO type step is to be done and the branching variable is xp then the lower
branch should be chosen in step 7 of the algorithm, if

zr − Plp ≥ zr − Pup, i.e. Plp ≤ Pup .
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The maximal bound

The other extreme strategy is that the branch having the maximal bound is selected
in each iteration. The idea is simple and clear: it is the most promising branch
therefore it worth to explore it.

Unfortunately the idea is not completely true. The bounds of the higher level
branches are not accurate enough. This phenomenon has been discussed during the
analysis of the numerical example in the subsection 24.1.3 in relation (24.12). Thus
a somewhat smaller upper bound in a lower branch can indicate a more promising
branch.

The maximal bound strategy can lead to a very wide enumeration tree which
may cause memory problems. Moreover the construction of feasible solutions will be
slow and therefore the relatively few solutions will be enumerated implicitly, i.e. the
number of steps will be high, i.e. the method will be slow.

Fast bounds and estimates

If the optimal solution of the relaxed problem is non-integer then it can have several
fractional components. All of them must be changed to be integer to obtain the
optimal integer programming solution of the branch. The change of the value of each
currently fractional variable as a certain cost. The cost of the individual changes are
estimated and summed up. The cost means the loss in the value of the objective
function. An adjusted value of the bound of the branch is obtained if the sum of the
estimated individual costs is subtracted from the current bound. It is important to
emphasize that the adjusted value is not an upper or lower bound of the optimal value
of integer programming solution of the branch but it is only a realistic estimation.

There are two ways to obtain the estimation. The first one uses the crude values
of the fractionality. Let fj and f0

j be the fractional part of variable xj in the current
branch and in the relaxed problem of the original problem, respectively. Further on
let zr, z0, and ẑ be the optimal value of the relaxed problem in the current branch,
in the original problem, and the value of the best feasible integer solution found so
far. Generally speaking the measure of the fractionality of a real number α is that
how far is α to the closest integer, i.e.

min{α− bαc, dαe − α} .

Hence the estimate is

zr − (z0 − ẑ)

∑

j∈I min{fj , 1− fj}
∑

j∈I min{f0
j , 1− f0

j }
. (24.65)

(24.65) takes into account the average inaccuracy of the bounds.
The fast bounds defined in (24.55) and (24.57) can be used also for the same

purpose. They concern to the correction of the fractionality of a single variable in
the current branch. Hence the estimate

zr −
∑

j∈I
min{Plj , Puj}

is a natural choice.
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A Rule based on depth, bound, and estimates

The constraints defining the branches are integer valued lower and upper bounds on
the branching variables. Thus one can expect that these new constraints force the
majority of the branching variables to be integer. It means that the integrality of
the optimal solution of the relaxed problem improves with the depth of the branch.
Thus it is possible to connect the last two rules on the following way. The current
bound is abandoned and the algorithm selects the best bound is the improvement
based on estimates is above a certain threshold.

24.3.5. The selection of the branching variable

In selecting the branching variable again both the fractional part of the non-integer
variables and the fast bounds have critical role. A further factor can be the infor-
mation obtained from the user.

Selection based on the fractional part

The most significant change can be expected from that variable which is farthest
from integers as the cuts defining the two new branches cut the most. As the measure
of fractionality is min{fj , 1 − fj} the rule suggest to choose the branching variable
xp as

p = argmax{min{fj , 1− fj} | j ∈ I}

Selection based on fast bounds

Upper bounds are
zr − Plp and zr − Pup

in the lower and upper branches of branch r if the branching variable is xp.
Here are five possible selection criteria:

max
p:

max{zr − Plp, zr − Pup} (24.66)

max
p:

min{zr − Plp, zr − Pup} (24.67)

min
p:

max{zr − Plp, zr − Pup} (24.68)

min
p:

min{zr − Plp, zr − Pup} (24.69)

max
p:
{| Plp − Pup |} . (24.70)

Which one can be offered for a B&B algorithm?
Notice that

max{zr − Plp, zr − Pup}
is a correct upper bound of branch r as it has been mentioned earlier. Thus (24.66)
selects according to the most inaccurate upper bound. It is obviously not good.
(24.68) makes just the opposite it selects the variable giving the most accurate
bound. On the other hand

min{zr − Plp, zr − Pup} (24.71)
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is the upper bound in the worse one of the two subbranches. The interest of the
algorithm is that it will be fathomed without explicit investigation, i.e. the bound
of this subbranch will be less than the objective function value of an integer feasible
solution. Thus it is good if (24.71) is as small as possible. Hence (24.69) is a good
strategy and (24.67) is not. Finally, (24.70) tries to separate the good and low quality
feasible solutions. The conclusion is that (24.69) and (24.70) are the two best ones
and (24.68) is still applicable, but (24.66) and (24.67) must be avoided.

Priority rule

Assume that the numerical problem (24.31)-(24.35) is the model of an industrial
problem. Then the final user is the manager and/or expert who must apply the
decisions coded into the optimal solution. The expert may know that which fac-
tors (decisions) are the most critical ones from the point of view of the managerial
problem and the industrial system. The variables belonging to these factors may
have a special importance. Therefore it has sense if the user may define a priority
order of variables. Then the first non-integer variable of the order can be selected as
branching variable.

24.3.6. The numerical example is revisited

The solution of the problem

max x0 = 2x1 + x2

3x1 − 5x2 ≤ 0
3x1 + 5x2 ≤ 15

x1, x2 ≥ 0
x1, x2 is integer .

(24.36)

has been analyzed from geometric point of view in subsection 24.3.1. Now the above-
mentioned methods will be applied and the same course of solution will be obtained.

After introducing the slack variables x3 and x4 the (primal) simplex method
gives the equivalent form (24.38) of the equations and the objective function:

max x0 = 0x1 + 0x2 − 7
30 x3 − 13

30 x4 + 13
2

x1 + 0x2 + 1
6 x3 + 1

6 x4 = 5
2

0x1 + x2 − 1
10 x3 + 1

10 x4 = 3
2

x1, x2 x3, x4 ≥ 0 .

(24.38)

Hence it is clear that the solution x1 = 5
2 and x2 = 3

2 . (24.38) gives the following
optimal dual simplex tableaux:

−x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1

.
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The first two branches were defined by the inequalities x1 ≤ 2 and x1 ≥ 3. The
second one is an empty branch. The algebraic evidence of this fact is that there is
no negative element in the row of x1, thus it is not possible to find a pivot element
for the dual simplex method after introducing the cut. Now it will be shown in a
detailed way. Let s be the appropriate slack variable, i.e. the cut introduced in the
form

x1 − s = 3, s ≥ 0 .

The new variable s must be expressed by the non-basic variables, i.e. by x3 and x4:

3 = x1 − s =
5

2
− 1

6
x3 −

1

6
x4 − s .

Hence

s = −1

2
+

1

6
(−x3) +

1

6
(−x4) .

When this row is added to the dual simplex tableaux, it is the only row having a
negative constant term, but there is no negative coefficient of any non-basic variable
proving that the problem is infeasible. Notice that the sign of a coefficient is an
immediate consequence of the sign of the coefficient in the row of x1, i.e. it is not
necessary to carry out the calculation of the row of s and it is possible to conclude
immediately that the branch is empty.

The fractional part f1 equals 1
2 . Hence the fast bound (24.55) of the lower branch

defined by x1 ≤ 2 is

1

2
min

{ 7
30
1
6

,
13
30
1
6

}

=
7

10
.

It means that the fast upper bound in the branch is 13/2-7/10=5.8. The bound can
be rounded down to 5 as the objective function is integer valued.

Let x5 be the slack variable of the cut x1 ≤ 2, i.e. x1 + x5 = 2. Hence

x5 =
1

2
−

(

−1

6

)

(−x3) −
(

−1

6

)

(−x4) .

If it is added to the simplex tableaux then the pivot element is d53. After the first
pivot step the tableaux becomes optimal. It is

−x5 −x4

x0 29/5 7/5 1/5
x1 2 1 0
x2 9/5 −3/5 1/5
x3 3 −6 1
x4 0 0 −1
x5 0 −1 0

. (24.72)

Notice that the optimal value is 5.8, i.e. exactly the same what was provided by
the fast bound. The reason is that the fast bound gives the value of the objective
function after the first pivot step. In the current case the first pivot step immediately
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produced the optimal solution of the relaxed problem.
x2 is the only variable having non-integer value in simplex tableaux. Thus the

branching must be done according to x2. The two new cuts defining the branches
are x2 ≤ 1 and x2 ≥ 2. There are both positive and negative coefficients in the row
of x2, thus both the lower and upper branches exist. Moreover

Pl2 =
4

5
× 1/5

1/5
=

4

5
, Pu2 =

1

5
× 7/5

3/5
=

7

15
.

Thus the continuous upper bound is higher on the upper branch, therefore it is
selected first for further branching.

The constraint
x2 − x6 = 2, x6 ≥ 0

are added to the problem. By using the current simplex tableaux the equation

x6 = −1

5
− 3

5
(−x5) +

1

5
(−x4)

is obtained. It becomes the last row of the simplex tableaux. In the first pivoting
step x6 enters the basis and x5 leaves it. The first tableaux is immediately optimal
and it is

−x6 −x4

x0 16/3 7/3 2/3
x1 5/3 5/3 1/3
x2 2 −1 0
x3 5 −10 −1
x4 0 0 −1
x5 1/3 −5/3 −1/3
x6 0 −1 0

Here both x1 and x5 are integer variables having non-integer values. Thus branching
is possible according to both of them. Notice that the upper branch is empty in the
case of x1, while the lower branch of x5 is empty as well. x1 is selected for branching
as it is the variable of the original problem. Now

Pl1 =
2

3
min

{

7/3

5/3
,

2/3

1/3

}

=
14

15
.

On the other hand the bound can be improved in accordance with (24.64) as d16 > 1,
i.e. the coefficient of −x6 may be 2/3 instead of 5/3. It means that the inequality

x1 + x6 ≤ 1

is claimed instead of

x1 ≤ 1 .

It is transferred to the form

x1 + x6 + x7 = 1 .
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Hence

x7 = −2

3
− 2

3
(−x6)− 1

3
(−x4) .

The improved fast bound is obtained from

P
′

l1 =
2

3
min

{

7

2
, 2

}

=
4

3
.

It means that the objective function can not be greater than 4. After the first pivoting
the simplex tableau becomes

−x6 −x7

x0 4 1 2
x1 1 1 1
x2 2 −1 0
x3 7 −8 −3
x4 2 2 −3
x5 1 −1 −1
x6 0 −1 0
x7 0 0 −1

giving the feasible solution x1 = 1 and x2 = 2 with objective function value 4.
There is only one unfathomed branch which is to be generated from tableaux

(24.72) by the constraint x2 ≤ 1. Let x8 be the slack variable. Then the equation

1 = x2 + x8 =
9

5
− 3

5
(−x5) +

1

5
(−x4) + x8

gives the cut

x8 = −4

5
+

3

5
(−x5)− 1

5
(−x4)

to be added to the tableaux. After two pivoting steps the optimal solution is

−x3 −x6

x0 13/3 2/3 13/3
x1 5/3 1/3 5/3
x2 1 0 1
x3 5 −1 0
x4 5 −1 −10
x5 1/3 −1/3 −5/3
x6 0 0 −1

Although the optimal solution is not integer, the branch is fathomed as the upper
bound is under 5, i.e. the branch can not contain a feasible solution better than the
current best known integer solution. Thus the method is finished.

Exercises
24.3-1 Show that the rule of the choice of the integers µj (24.64) is not necessarily
optimal from the point of view of the object function. (Hint. Assume that variable
xj enters into the basis in the first pivoting. Compare the changes in the objective
function value if its coefficient is −fj and fj − 1, respectively.)
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24.4. On the enumeration tree

One critical point of B&B is the storing of the enumeration tree. When a branch is
fathomed then even some of its ancestors can become completely fathomed provided
that the current branch was the last unfathomed subbranch of the ancestors. The
ancestors are stored also otherwise it is not possible to restore the successor. As
B&B uses the enumeration tree on a flexible way, it can be necessary to store a large
amount of information on branches. It can causes memory problems. On the other
hand it would be too expensive from the point of view of calculations to check the
ancestors every time if a branch becomes fathomed. This section gives some ideas
how to make a trade-off.

The first thing is to decide is that which data are describing a branch. There
are two options. The first one is that all necessary informations are stored for each
branch. It includes all the branching defining constraints. In that case the same
constraint is stored many times, because a branch on a higher level may have many
subbranches. As matter of fact the number of branches is very high in the case of
large scale problems, thus the memory required by this solution is very high.

The other option is that only those informations are stored which are necessary
to the complete reconstruction of the branch. These ones are

• the parent branch, i.e. the branch from which it was generated directly,

• the bound of the objective function on the branch,

• the index of the branching variable,

• the branch defining constraint of the branching variable.

For technical reasons three other attributes are used as well:

• a Boolean variable showing if the branch has been decomposed into subbranches,

• another Boolean variable showing if any unfathomed subbranch of the branch
exists,

• and a pointer to the next element in the list of branches.

Thus a branch can be described by a record as follows:

´

record Branch
begin

Parent : Branch;
Bound : integer;
Variable : integer;
Value : integer;
Decomposition : Boolean;
Descendant : Boolean;
suc : Branch

end;

The value of the Parent attribute is none if and only if the branch is the initial
branch, i.e. the complete problem. It is the root of the B&B tree. The reconstruction
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of the constraints defining the particular branch is the simplest if it is supposed that
the branches are defined by the fixing of a free variable. Assume that Node is a
variable of type Branch. At the beginning its value is the branch to be reconstructed.
Then the algorithm of the reconstruction is as follows.

Branch-Reconstruction

1 while Node 6= none

2 do x[Node.Variable] ← Node.Value;
3 . . .
4 Node ← Node.Parent;
5 return Node

The value of a previously fixed variable is set to the appropriate value in row
2. Further operations are possible (row 3). Node becomes its own parent branch in
row 4. If it is none then the root is passed and all fixings are done.

Sometimes it is necessary to execute some operations on all elements of the
list L. The suc attribute of the branches point to the next element of the list.
The last element has no next element, therefore the value of suc is none in this
case. The procedure of changing all elements is somewhat similar to the Branch

Reconstruction procedure. The head of the list L is Tree, i.e. the first element of
the list is Tree.suc.

B&B-List

1 Node ← Tree.suc
2 while Node 6=none

3 . . .
4 Node ← Node.suc
5 return Node

The loop runs until there is no next element. The necessary operations are
executed in row 3. The variable Node becomes the next element of the list in row
4. To insert a new branch into the list is easy. Assume that it is NewNode of type
Branch and it is to be inserted after Node which is in the list. Then the necessary
two commands are:

NewNode.suc ← Node.suc
Node.suc ← NewNode

If the branches are not stored as objects but they are described in long arrays
then the use of attribute suc is superflous and instead of the procedure B&B List

a for loop can be applied.
The greatest technical problem of B&B from computer science point of view

is memory management. Because branches are created in enormous large quantity
the fathomed branches must be deleted from the list time to time and the memory
occupied by them must be freed. It is a kind of garbage collection. It can be done in
three main steps. In the first one value false is assigned to the attribute Descendant
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of all elements of the list. In the second main step an attribute Descendant is changed
to true if and only if the branch has unfathomed descendant(s). In the third step
the unnecessary branches are deleted. It is assumed that there is a procedure Out
which gets the branch to be deleted as a parameter and deletes it and frees the part
of the memory.

Garbage-Collection

1 Node ← Tree.suc
2 while Node 6= none

3 Node.Descendant ← False

4 Node ← Node.suc
5 Node ← Tree.suc
6 while Node 6= none

7 do if not Node.Decomposition and Node.Bound > ẑ
8 then Pont ← Node.Parent
9 while Pont 6= none do

10 Pont.Descendant ← True

11 Pont ← Pont.Parent
12 Node ← Node.suc
13 Node ← Tree.suc
14 while Node 6= none do

15 Pont ← Node.suc
16 if (not Node.Descendant and Node.Decomposition) or Node.Bound ≤ ẑ
17 then Out(Node)
18 Node ← Pont
19 return

24.5. The use of information obtained from other
sources

The method can be sped up by using information provided by further algorithmic
tools.

24.5.1. Application of heuristic methods

The aim of the application of heuristics methods is to obtain feasible solutions. From
theoretical point of view to decide if any feasible solution exists is NP-complete as
well. On the other hand heuristics can produce feasible solutions in the case of the
majority of the numerical problems. The methods to be applied depend on the nature
of the problem in question, i.e. pure binary, bounded integer, mixed integer problems
may require different methods. For example for pure integer problems local search
and Lagrange multipliers can work well. Lagrange multipliers also provide upper
bound (in the case of maximization) of the optimal value.
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If a feasible solution is known then it is immediately possible to disregard
branches based on their bounds. See row 12 of algorithm Branch and Bound.
There the branches having not good enough bounds are automatically eliminated.
In the case of pure binary problem an explicit objective function constraint can give
a lot of consequences as well.

24.5.2. Preprocessing

Preprocessing means to obtain information on variables and constraints based on
algebraic constraints and integrality.

For example if the two constraints of problem (24.36) are summed up then the
inequality

6x1 ≤ 15

is obtained implying that x1 ≤ 2.
Let

gi(x) ≤ bi (24.73)

be one of the constraints of problem (24.14)-(24.16). Many tests can be based on the
following two easy observations:

1. If the maximal value of the left-hand side of (24.73) of x ∈ X is not greater than
the right-hand side of (24.73) then the constraint is redundant.

2. If the minimal value of the left-hand side of (24.73) if x ∈ X is greater than the
right-hand side of (24.73) then it is not possible to satisfy the constraint, i.e. the
problem (24.14)-(24.16) has no feasible solution.

If under some further restriction the second observation is true then the restriction
in question can be excluded. A typical example is that certain variables are supposed
to have maximal/minimal possible value. In this way it is possible to fix a variable
or decrease its range.

Lagrange relaxation can be used to fix some variables, too. Assume that the
optimal value of Problem (24.22) and (24.16) is ν(L(λ | xj = δ)) under the further
condition that xj must take the value δ. If ẑ is the objective function value of a
known feasible solution and ẑ > ν(L(λ | xj = δ)) then xj can not take value δ.
Further methods are assuming that the LP relaxation of the problem is solved and
based on optimal dual prices try to fix the values of variables.

24.6. Branch and Cut

Branch and Cut (B&C) in the simplest case is a B&B method such that the a
certain kind of information is collected and used during the whole course of the
algorithm. The theoretical background is based on the notion of integer hull

Definition 24.9 Let

P = {x | Ax ≤ b}
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be a polyhedral set where A is an m× n matrix, x and b are n and m dimensional
vectors. All elements of A and b are rationals. The convex hull of the integer points
of P is called the integer hull of P, i.e. it is the set

conv(P ∩ Zn) .

The integer hull of the polyhedral set of problem (24.36) is the convex hull of
the points (0,0), (0,3), (1,2), and (1,1) as it can be seen on Figure 24.2. Thus the
description of the integer hull as a polyhedral set is the inequality system:

x1 ≥ 0, x1 + x2 ≤ 3, x1 ≤ 1, x1 − x2 ≤ 0 .

Under the conditions of the definition the integer hull is a polyhedral set, too.
It is a non-trivial statement and in the case of irrational coefficients it can be not
true. If the integer hull is known, i.e. a set of linear inequalities defining exactly the
integer hull polyhedral set is known, then the integer programming problem can be
reduced to a linear programming problem. Thus problem (24.36) is equivalent to the
problem

max x0 = 2x1 + x2

x1 ≥ 0
x1 + x2 ≤ 3
x1 ≤ 1
x1 − x2 ≤ 0 .

(24.74)

As the linear programming problem easier to solve than the integer programming
problem, one may think that it worth to carry out this reduction. It is not completely
true. First of all the number of the linear constraint can be extremely high. Thus
generating all constraints of the integer hull can be more difficult than the solution
of the original problem. Further on the constraints determining the shape of the
integer hull on the side opposite to the optimal solution are not contributing to the
finding of the optimal solution. For example the optimal solution of (24.74) will not
change if the first constraint is deleted and it is allowed both x1 and x2 may take
negative values.

On the other hand the first general integer programming method is the cutting
plane method of Gomory. Its main tool is the cut which is based on the observation
that possible to determine linear inequalities such that they cut the non-integer
optimal solution of the current LP relaxation, but they do not cut any integer feasible
solution. A systematic generation of cuts leads to a finite algorithm which finds an
optimal solution and proves its optimality if optimal solution exist, otherwise it
proves the non-existence of the optimal solution. From geometrical point of view the
result of the introducing of the cuts is that the shape of the polyhedral set of the last
LP relaxation is very similar to the integer hull in the neighborhood of the optimal
solution.

There is the generalization of Gomory’s cut called Chvátal (or Chvátal-Gomory)
cut. If the two inequalities of (24.36) are summed such that both have weight 1

6 then
the constraint

x1 ≤ 2.5
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is obtained. As x1 must be integer the inequality

x1 ≤ 2 (24.75)

follows immediately. It is not an algebraic consequence of the original constraints.
To obtain it the information of the integrality of the variables had to be used. But
the method can be continued. If (24.75) has weight 2

5 and the second constraint of
(24.36) has weight 1

5 then

x1 + x2 ≤ 3.8

is obtained implying

x1 + x2 ≤ 3 .

If the last inequality has weight 5
8 and the first inequality of (24.36) has weight 1

8
then the result is

x1 ≤
15

8

implying

x1 ≤ 1.

Finally the integer hull is obtained. In general the idea is as follows. Assume that a
polyhedral set is defined by the linear inequality system

Ax ≤ b . (24.76)

Let y ≥ 0
¯

be a vector such that AT y is an integer vector and yT b is a noninteger
value. Then

yT Ax ≤ byT bc

is a valid cut, i.e. all integer points of the polyhedral set satisfy it. As a matter of
fact it can be proven that a systematic application of the method creates a complete
description of the integer hull after finite many steps.

The example shows that Gomory and Chvátal cuts can help to solve a problem.
On the other hand they can be incorporated in a B&B frame easily. But in the very
general case it is hopeless to generate all effective cuts of this type.

The situation is significantly different in the case of many combinatorial prob-
lems. There are many theoretical results known on the type of the facet defining
constraints of special polyhedral sets. Here only one example is discussed. It is the
Traveling Salesperson Problem (TSP). A salesman must visit some cities and at
the end of the tour he must return to his home city. The problem is to find a tour
with minimal possible length. TSP has many applications including cases when the
"cities" are products or other objects and the “distance” among them doesn’t satisfy
the properties of the geometric distances, i.e. symmetry and triangle inequality may
be violated.
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The first exact mathematical formulation of the problem is the so-called Dantzig-
Fulkerson-Johnson (DFJ) model. DFJ is still the basis of the numerical solutions.
Assume that the number of cities is n. Let dij the distance of the route from city i
to city j (1 ≤ i, j ≤ n, i 6= j). DFJ uses the variables xij such that

xij =

{

1 if the salesman travel from city i to city j
0 otherwise

The objective function is the minimization on the total travel length:

min

n
∑

i=1

∑

i6=j

dijxij . (24.77)

The set of the constraints consists of three parts. The meaning of the first part is
that the salesman must travel from each city to another city exactly once:

n
∑

j=1,j 6=i

xij = 1 i = 1, . . . , n . (24.78)

The second part is very similar. It claims that the salesman must arrive to each city
from somewhere else again exactly once:

n
∑

i=1,i 6=j

xij = 1 j = 1, . . . , n . (24.79)

Constraints (24.78) and (24.79) are the constraints of an assignment problem. Taking
into account that the variables must be binary Problem (24.77)-(24.79) is really an
assignment problem. They don’t exclude solutions consisting of several smaller tours.
For example if n = 6 and x12 = x23 = x31 = 1 and x45 = x56 = x64 = 1 then all
other variables must be zero. The solution consists of two smaller tours. The first
one visits only cities 1, 2, and 3, the second one goes through the cities 4, 5, and 6.
The small tours are called subtours in the language of the theory of TSP.

Thus further constraints are needed which excludes the subtours. They are called
subtour elimination constraints. There are two kinds of logic how the subtours can
be excluded. The first one claims that in any subset of the cities which has at least
two elements but not the complete set of the cities the number of travels must be
less than the number of elements of the set. The logic can be formalized as follows:

∀S ⊂ {1, 2, . . . , n}, 1 ≤ |S| ≤ n− 1 :
∑

i∈S

∑

j∈Sj 6=i

xij ≤ |S| . (24.80)

The other logic claims that the salesman must leave all such sets. Let S̄ =
{1, 2, . . . , n} \ S. Then the subtour elimination constraints are the inequalities

∀S ⊂ {1, 2, . . . , n}, 1 ≤ |S| ≤ n− 1 :
∑

i∈S

∑

j∈S̄

xij ≥ 1 . (24.81)
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The numbers of the two types of constraints are equal and exponential. Although
the constraints (24.78)–(24.80) or (24.78), (24.79), and (24.81) are satisfied by only
binary vectors being characteristic vectors of complete tours but the polyhedral set
of the LP relaxation is strictly larger than the integer hull.

On the other hand it is clear that it is not possible to claim all of the subtour
elimination constraints in the real practice. What can be done? It is possible to
claim only the violated once. The difficulty is that the optimal solution of the LP
relaxation is a fractional vector in most of the cases and that subtour elimination
constraint must be found which is violated by the fractional solution provided that
such constraint exists as the subtour elimination constraints are necessary to the
description of the integer hull but further constraints are needed, too. Thus it is
possible that there is no violated subtour elimination constraint but the optimal
solution of the LP relaxation is still fractional.

To find a violated subtour elimination constraint is equivalent to the finding
of the absolute minimal cut in the graph which has only the edges having positive
weights in the optimal solution of the relaxed problem. If the value of the absolute
minimal cut is less than 1 in the directed case or less than 2 in the non-directed case
then such a violated constraint exists. The reason can be explained based on the
second logic of the constraints. If the condition is satisfied then the current solution
doesn’t leaves at least one of the two sets of the cut in enough number. There are
many effective methods to find the absolute minimal cut.

A general frame of the numerical solution of the TSP is the following. In a B&B
frame the calculation of the lower bound is repeated until a new violated subtour
elimination constraint is obtained, that is the new inequality is added to the relaxed
problem and the LP optimization is carried out again. If all subtour elimination
constraints are satisfied and the optimal solution of the relaxed problem is still non-
integer then branching is made according to a fractional valued variable.

The frame is rather general. The violated constraint cuts the previous optimal
solution and reoptimization is needed. Gomory cuts do the same for the general
integer programming problem. In the case of other combinatorial problems special
cuts may work if the description of the integer hull is known.

Thus the general idea of B&C is that a cut is generated until it can be found
and the improvement in the lower bound is great enough. Otherwise branching is
made by a non-integer variable. If the cut generation is made only at the root of the
enumeration tree then the name of the method is Cut and Branch (C&B). If a cut
is generated in a branch then it is locally valid in that branch and in its successors.
The cuts generated at the root are valid globally, i.e. in all branches. In some cases,
e.e. in binary optimization, it is possible to modify it such that it is valid in the
original problem, too.

For practical reasons the type of the generated cut can be restricted. It is the
case in TSP as the subtour elimination constraints can be found relatively easily.
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24.7. Branch and Price

The Branch and Price method is the dual of B&C in a certain sense. If a problem
has very large number of variables then it is often possible not to work explicitely
with all of them but generate only those which may enter the basis of the LP re-
laxation. This is column generation and is based on the current values of the dual
variables called shadow prices. Similarly to B&C the type of the generated columns
is restricted. If it is not possible to find a new column then branching is made.

Problems

24-1 Continuous Knapsack Problem

Prove Theorem 24.1. (Hint. Let x be a feasible solution such that there are two
indices, say j and k, such that 1 ≤ j < k ≤ n and xj < 1, and xk > 0. Show that
the solution can be improved.)
24-2 TSP’s relaxation

Decide if the Assignment Problem can be a relaxation of the Traveling Salesperson
Problem in the sense of definition 24.5. Explain your solution regardless that your
answer is YES or NO.
24-3 Infeasibility test

Based on the the second observation of Subsection 24.5.2 develop a test for the
infeasibility of a linear constraint of binary variables.
24-4 Mandatory fixing

Based on the previous problem develop a test for the mandatory fixing of binary
variables satisfying a linear constraint.

Chapter Notes

The principle of B&B first appears in [11]. It solves problems with bounded integer
variables. The fast bounds were introduced in [4] and [15]. A good summary of the
bounds is [7]. To the best knowledge of the author of this chapter the improvement
of the fast bounds appeared first in [16].

B&B can be used as an approximation scheme, too. In that case a branch can
be deleted even in the case if its bound is not greater than the objective function
value of the current best solution plus an allowed error. [10] showed that there are
classes such that the approximate method requires more computation than to solve
the problem optimally. B&B is very suitable for parallel processing. This issue is
discussed in [5].

Based on the theoretical results of [12] a very effective version of B&C method
was developed for pure binary optimization problem by [14] and independently [1].
Especially Egon Balas and his co-authors could achieve a significant progress. Their
method of lifting cuts means that a locally generated cut can be made globally valid
by solving a larger LP problem and modify the cut according to its optimal solution.
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The first integer programming method to solve an IP problem with general, i.e.
non-bounded, integer variables is Ralph Gomory’s cutting plane method [9]. In a
certain sense it is still the only general method. Strong cuts of integer programming
problems are discussed in [2]. The surrogate constraint (24.18) has been introduced
by [8]. The strength of the inequality depends on the choice of the multipliers λi. A
rule of thumb is that the optimal dual variables of the continuous problem give a
strong inequality provided that the original problem is linear.

The DFJ model of TSP appeared in [6]. It was not only an excellent theoretical
result, but is also an enormous computational effort as the capacities and speed of
that time computers were far above the recent ones. One important cut of the TSP
polyhedral set is the so-called comb inequality. The number of edges of a complete
tour is restricted in a special subgraph. The subgraph consists of a subset of cities
called hand and odd number of further subsets of cities intersecting the hand. They
are called teeth and their number must be at least three. Numerical problems of TSP
are exhaustively discussed in [13].

A good summary of Branch and Price is [3].
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