
Portable Randomized List Ranking on Multiprocessors
Using MPI

Jesper Larsson Tr~ff 1

Technische Universits Miinchen, Lehrstuhl fiir Efflziente Algorithmen
D-80290 Miinchen, Germany

emall: traef~@informatik, tu-muenchen, de

A b s t r a c t . We describe a simple multiprocessor list ranking algorithm
with low communication volume and simple communication pattern.
With p processors the algorithm performs < 4p (pipelined) communica-
tion rounds involving only point-to-point communication. For lists with
N elements the algorithm runs in O(Nlnp/p + p) time. Experiments
with an implementation using MPI on a network of workstations and an
IBM SP-2 comparing the algorithm to the well-known pointer jumping
algorithm are reported. On the NOW the new algorithm is significantly
better than pointer jumping. On the IBM SP-2 only the new algorithm
was able to produce (modest) speed-up.

1 I n t r o d u c t i o n

The list ranking problem is a prototypical irregular problem of fundamental im-
portance in the design of parallel graph algorithms under the PRAM model of
parallel computation [4]. Many problems on trees and graphs can be reduced to
list ranking, and the problem is of relevance in parallel computational biology
and computer vision. Hence, the problem may serve as a benchmark problem
for the feasibility of parallel combinatorial algorithms on parallel computers.
In its simplest form the problem consists in computing for each element of a
linked list the distance to the end of the list, ie. the number of links that have
to be traversed to reach the last element of the list. Sequentially the problem
is solved in linear time in the length of the input list; but the irregular nature
of the problem manifests itself also in the sequential setting when solving very
large problem instances [8]. In a parallel setting, where the list is divided among
several processors, the problem is considerably more difficult, giving rise to al-
gorithms with data dependent, irregular communication patterns. The problem
is well-studied in the theoretical li terature on parallel algorithm design [4], and
has recently a t t racted considerable interest also from a more practical point of
view [1, 3, 6, 7, 9, 11].

In this paper we describe portable implementations using the message passing
interface MPI [10] of two algorithms for the problem and evaluate their perfor-
mance on a small network of workstations (NOW) and on a powerful IBM SP-2
distributed memory multiprocessor. The first algorithm is the standard pointer-
jumping algorithm of Wyllie [13]. Due to its simplicity this algorithm typically

396

serves as a point of reference against which to compare other algorithms. As will
be seen pointer jumping is not a very good algorithm for the NOW. The second
algorithm is based on a different approach of ranking sublists on one proces-
sor by "folding" already ranked sublists on other processors into these sublists.
Although also theoretically non-optimal, this algorithm has the advantage of a
simpler communication pattern than the pointer jumping algorithm, and empir-
ically it performs substantially better: on a N O W it is easily a factor of 5 faster.
On the SP-2 only the new algorithm was able to produce speed-up, although
limited.

The algorithms are implemented using MPI [10] for programming in a simple
message passing model. The prime mode of communication MPI is by explici t
point-to-point message passing, but in addition MPI provides a set of convenient
collective operations. In contrast to other paradigms for portable parallel pro-
gramming, like PVM [2] or BSP [12, 5], MPI does not force upon the programmer
a particular virtual machine or programming style, although it is possible to use
M PI for programming in a BSP-like style. The presence of collective operations
makes MPI more flexible than BSP. Algorithm complexity can be measured in
terms of basic MPl-communication operations, and local computation.

The list ranking problem is defined in Section 2. Sections 3 and 4 describe
the two algorithms, and Section 5 gives a preliminary experimental evaluation.

2 T h e p r o b l e m

Given a set of list elements each having a successor index pointing to some other
element, or to a special tail element. Each element has at most one element point-
ing to it, and there are no cycles. Each element has an integer rank associated
with it. The (inclusive) list ranking problem consists in computing for each list
element the sum of the rank of the element itself and the ranks of all elements
that succeed it. In addition a pointer to the last reachable element must be com-
puted for each element. Note that in this formulation of the problem the set of
list elements may contain several disjoint linked lists. By the second requirement
each element will know after ranking to which list it belongs by having a pointer
to the unique last element of that list. The special case of computing for each
element the distance to the end of the list is obtained by setting the initial rank
of all elements to 1. Finally note that lists are singly linked.

When solving the list ranking problem on multiprocessors the set of list el-
ements is assumed to be distributed over a set of processors. The p processors,
P 1 , . . . , Pp, have no shared memory and no common clock, but can communicate
and synchronize by sending messages to each other. Each processor can commu-
nicate with any other processor through an interconnection network, the nature
of which is left unspecified. The total number of list elements is denoted by N,
and the number of list elements per processor, which we assume to be (roughly)
equal, by n, eg. N = ~9(pn). The list elements are stored in arrays in some arbi-
t rary order; in particular successor pointers and ranks are stored in arrays l i s t
and rank of size n, such that l i s t [i] and rank [i] are the successor pointer and

397

rank of the ith local list element. The list ranking procedures have the following
MPJ like prototype:

Listrank(Index list[l, int rank[], int n, MPI_Comm comm)

Type Index represents a pointer to a successor element, and consists of the id
(rank) of the processor at which the successor resides, and the index of the suc-
cessor in the list array of that processor. Upon return rank [i] is the computed
rank of the ith local element, and list [i] a pointer to the last reachable ele-
ment. In the implementations of this paper an Index is a structure consisting of
two integers. The Listrank() implementations can all be generalized to solve
the more general list scan problem, in which the rank is of arbitrary type and
some associative operation takes the place of addition.

Complexity is measured in terms of local computation and basic communi-
cation operations under the assumption of roughly synchronous operation of the
processors. This assumption is only for the analysis; if needed synchronization
can be enforced by appropriate MPI_Barrier() calls. The algorithms are ran-
domized in the sense that a random distribution of the list elements over the
p processors is assumed. This means that the probability of a list element at
processor i to have its successor at processor j is I/p, independently of i and j.
If this assumption is not fulfilled, the algorithms may run longer (but will still
be correct). Alternatively, a random permutation of the list can be performed
before list ranking.

3 List ranking by pointer jumping

List ranking by pointer jumping is done in a number of synchronized (su-
per)steps. Each list element maintains a current successor and a current rank,
the latter being the sum of the ranks of the successor elements up to but not
including the current successor. In a superstep each element adds the rank of
its current successor to its own rank, and updates its current successor to the
current successor of the current successor. When the current successor points
to an element which has already been ranked, correct rank (and last element
pointer) has been computed, and the element does not have to be considered
in subsequent supersteps. It is easy to see that the number of list elements
"jumped over" doubles in each superstep, so that flog 2 N] supersteps are re-
quired. The algorithm can immediately be parallelized, since the list elements
are treated independently of each other. The number of operations carried out
in step d ,d = 1 , . . . , flog 2 N] , is O (N - 2 d- l) (since i n s t ep d the 2 d elements
with distance < 2 d to a last element have been ranked), so the total "cost"
of the pointer jumping algorithm is O (N log N), in contrast to the linear num-
ber of operations required by a simple sequential algorithm. In this sense the
pointer jumping algorithm is not (work) optimal. In a multiprocessor implemen-
tation accessing the information in the current successor elements is done by
sending requests to the appropriate processors, A superstep requires 3 all-to-all
communication operations. First each processor buckets its requests for current
successor information and sends the bucket sizes to all other processors. Second

398

the requests themselves are sent. Finally current successor and current rank are
returned in acknowledgment to the requests. A request consists of a single inte-
ger (index in local list array) per list element. The information returned consists
of index (2 words) and rank information. The extra space needed is about 8n
words per processor; contrast this to the n words of the sequential algorithm.

There are two orthogonal improvements of the basic algorithm. For the spe-
cial case of computing only the distance to the last reachable element, it is not
necessary to send the rank of the current successor in every round, since, as is
easily seen, this simply doubles in each round. Only when an element which has
already been ranked is reached, does the rank of this element have to be sent.
Hence, in all rounds but the last only the index of the current successor needs to
be sent. This decreases the size of acknowledgment messages by one third. The
other improvement consists in performing a local ranking on each processor after
each superstep. On the assumption of a random distribution of the list elements
this decreases the number of messages to be sent per round by a factor 1/p. This
version turned out to be by far the most efficient, and is used for reference in
Section 5.

4 T h e f o l d - u n f o l d a l g o r i t h m

We now present a different list ranking algorithm. Let L be the global problem
and Li the set of list elements at processor i. Assume that the elements in each
Li have been ranked locally (the local rank of x 6 Li is the rank of x treating
each element having its successor outside Li as a last element). Each Li thus
becomes a collection of sublists each with its successor outside Li. By folding Li
into Lj we mean the following: each sublist in Lj having its successor in Li has
its rank updated with the rank of the successor sublist in Li, and its successor
updated to the successor of the Li sublist; if the successor of the Li sublist is
in Lj the two Lj sublists are joined. We denote this operation by fo ld (L i , Lj).
It runs in time proportional to the number of sublists of Li folded into Lj by
suitable bucketing of the sublists. The operation requires two communication
steps, since processor j must first send a request (1 word) to processor i for rank
information (3 words) for all Lj sublists with successor in Li. The fold-unfold
algorithm successively folds the sets La for k = 1 , . . . , p - 1 into Lp and looks as
follows:

1. For all k 6 {1, . . . ,p} do in parallel l oca l r ank (Lk)
2. For k = 1, 2 , . . . , p - 1 do: for all I E { k + l , . . . ,p} do (in parallel) fo ld(Lk, Lt)
3. For k = p , . . . , 3, 2 do: for all l E {1 , . . . , k - l } do (in parallel) ge t rank(Lt , Lk)

After the kth round of Step 2 all sublists in Lt have their successor in Li, i 6
{k + 1 , . . . ,p}, as had all sublists in Lk before round k. After completion of Step
2 final ranks for sublists in Lk can computed from the ranks of sublists in Li.
Correctness follows from these invariants. For the complexity we consider only
the fold computations of Step 2; Step 3 is analogous.

L e m m a 1, The expected number of sublists per processor before round k is ct =
p - k

n p + l _ k �9

399

Proof. Before the first round processor l,l C {1, . . . ,p} has n list elements of
which n/p have their successor in processor 1. Hence the number of sublists is
n - n / p = nPp 1 . Assume the claim holds before round k. In round k the
sublists in Lk are folded into Ll,l E {k + 1 , . . . , p } . Since 1/(p - k) of these

Oz have their successor in Lt, the number of sublists in LI becomes a (p-k)2

(p-~k)~ (P -- k + 1)(p - k - 1). Substituting for c~ yields the claim for k + 1.

In round k the sublists Lk are folded in parallel into all remaining subsets.
Thus O(n) words have to be communicated per round, giving an algorithm
with running time O(pn) = O(N), and no potential for speed-up. We solve
this problem by pipelining the fo ld(Lk,Lz) operations. This is possible since
processor k cannot start folding before round k. It suffices that processor k
has received fold information from processors 1 , . . . , k - 1 at round ck for some
constant c. The pipelining also takes place in rounds, and works as follows:
after receiving information from all lower numbered processors processor k waits
one round and then performs the fo ld (Lk , L1) operations one after another in
increasing order of l, doing one fold per round.

L e m m a 2 . At round 2(k - 1) + i processor k performs fo ld (Lk , Lk+i).

Proof. Processor 1 can start folding immediately, thus in round i performs
fold(Ll~ Ll+i). Assume the claim holds for processors 1 , . . . , k - 1. Then pro-
cessor k - j performs fo ld (Lk_ j , Lk) in round 2(k - j - 1) + j --- 2(k - 1) - j .
Hence processor k has received its last message (from processor k - 1) in round
2 (k - 1) - 1. It waits one round and in rounds 2 (k - 1) + i performs fo ld (Lk , Lk+i).

Processor p has thus received information from all smaller numbered processors
in round 2p - 3 . An advantage of the pipelining scheme is that only point-to-point
communication is called for.

L e m m a 3. The parallel time spent in exchanging messages in Step 2 is propor-
tional to 4 n l n p = O(n ln p + p).

Proof. By Lemma 1 the number of words exchanged between processor k and
k + 1 in round k is 4 ~ Summing gives 4n times the p th harmonic number.

p + l - - k "

T h e o r e m 4. The fold-unfold algorithm solves the list ranking problem in 4p - 6
communication rounds, each of which entails only point-to-point communication.
The time spent in local computation and exchange of messages per processor is
O(n in p + p).

The fold-unfold list ranking algorithm is non-optimal, but theoretically slightly
better than the pointer jumping algorithm (log 2 N has been traded for lnp).
More importantly, the logarithmic overhead has been switched from a logarith-
mic number of phases (each having a non-negligible communication start-up
latency) to a logarithmic overhead stemming from gradually increasing message
lengths. An unattractive feature of the algorithm is that it is unbalanced; after
the p first rounds of Step 2 processor 1 stands unemployed until Step 3. The
extra space required by the algorithm is about 7n words per processor.

400

5 E x p e r i m e n t a l r e s u l t s

The algorithms have been implemented in C using MPI [10]. Experiments have
been carried out on 1) a network of (different) HP workstations (80 to 125Mhz)
connected via a standard 10Mbit/second Ethernet, using mpich version 1.0.12,
and 2) an IBM SP-2 with 77 RS/6000 nodes; but only up to 32 67Mhz nodes were
available. Running times are given in seconds, and are quite erratic on the SP-2;
the machine at hand is run in batch mode and was often heavily loaded. The
input lists are "random lists" generated by randomly permuting random local
lists among the processors. Sequential running time is optimistically estimated
as the sum of the times for locally ranking the locally generated lists. Results are
reported for the best implementations of the two algorithms. For pointer jumping
performing local ranking in each superstep gave an improvement of about 30%
for 32 processors on the SP-2 compared to the standard implementation. The
best version of the fold-unfold algorithm exchanges messages as described in
Section 4; no explicit barrier synchronization was needed to make the pipelining
work well. Attempts at enforcing division into rounds to prevent congestion by
MPI_Bar r i e r () calls lead to slowdown from 10% to 300%. Running times for
fixed problem sizes for different numbers of processors have been measured, from
which speed-up can be computed, see Tables 1 and 3. We have also measured the
running times with problem size increasing linearly in the number of processors,
ie. keeping n ,.~ N / p fixed. The results are shown in Tables 2 and 4.

On the NOW the fold-unfold algorithm is clearly superior to pointer jumping,
being easily a factor of 5 faster. Of course, none of the algorithms were able to
produce actual speed-up, but with the limited communication capabilities of
the Ethernet this was not expected. However, with the fold-unfold algorithm
it is possible to solve problems larger than possible on a single workstation
at a modest price: with 14 processors the "slowdown" for a list with 7000000
elements is only about a factor of 10 over the most optimistic estimate for the
sequential running time. On the SP-2 the difference between the two algorithms
is less striking, but significant. On the large problems fold-unfold is consistently
a factor of two better than pointer jumping, and can bet ter utilize the increasing
number of processors. For p -- 32 it gave speed-up close to two, both in the case
where N was fixed, compared to the actual sequential running time (Table 3),
as in the case where N -- n p and sequential running time was estimated as p
times local ranking time (Table 4). For the problem with N -- 4000000 running
times on the SP-2 differed a lot from run to run. For large problems where
a straightforward sequential algorithm runs into trouble, a parallel algorithm
might be of interest.

6 D i s c u s s i o n

We presented a new, simple list ranking algorithm for distributed-memory multi-
processors, and compared it to the well-known pointer jumping algorithm. On a
network of workstations a significant improvement in performance was achieved.
For an IBM SP-2 multiprocessor neither algorithms were good. Only the fold-
unfold algorithm was capable of producing some small speed-up. On an Intel

401

Pointer jumping Fold-unfold
N Seq. 1 2 4 6 8 10 1 2 4 6 8 10

250000 0.58 0.75 2.67 9.21 16.59 41.65 64.04 0.93 2.88 4.44 5.07; 9.84 11.65
500000 1.27 1.57 5.32 18.51 31.94 87.00 110.51 1.76 5.75 8.60 9.9611.84 15.85

1000000 2.56 3.25 11.47 36.95 63.22 135.54 187.97 3.67 11.91 17.44 19,8426.34 32.68

Table 1. Running times on the HP NOW for lists of fixed total lengtb~ N for varying
number of processors, and local list length n = Nip.

n Scq. 4 Seq. 6 Seq. 8 Seq. 1{] Seq. 12 Seq. 14
Pj 25~}000 2.66 37.69 4.07 93.67 5.36 212.69 6.67 403.57 7.93 510.86 9.20 686.21

500000 5.55 79.34 8.43 191.73 Out of Memory
Fold 250000 2.69 16.91 4.01 29.71 5.33' 50.97 6.62 68.30 7.90 94.27 9.18 126.34

500000 5.55 35.29 8.46 66.13 11.34 97.21 13.82 143.72 16.75 179.10 19.22 211.76

Table 2. Running times on the HP NOW for lists with length proportional to the
number of processors, N ~- np, for fixed local length n. The "sequential" running
time is estimated as the sum of the running times for ranking a list of size n on each
workstation.

Paragon [9] reports good speed-up of up to about 27 on 100 processors for prob-
lems of similar sizes to those considered here. However, it should be noted that
even pointer jumping produced speed-up (up to 7 on 100 processors) on this
machine. However, the Paragon had a better ratio between computation and
communication speed than the SP-2. It would be interesting to test the perfor-
mance of the algorithms of [9] on the SP-2. Reduction in problem size might
lead to better algorithms. It is easy to devise a randomized scheme for reducing
the list length by a factor of at least 1/2 in only two all-to-all communication
rounds. Such a scheme is currently being implemented. Space limitations pro-
hibit thorough discussion and comparison to relevant related work [1, 7, 9].

References
!

1. F. Dehne and S. W. Song. Randomized parallel list ranking for distributed memory
multiprocessors. International Journal of Parallel Programming, 25(1):1-16, 1997.

2. A. Geist, A. Beguein, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine - A User's Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

3. T.-S. Hsu and V. Ramachandran. Efficient massively parallel implementation of
some combinatorial algorithms. Theoretical Computer Science, 162(2):297-322,
1996.

4. J. Js An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

402

Pointer jumping Fold-unfold
N Seq.~ 8 16 24 32 8 16 24 32

2000000 5.58 10.18 7.45 6.03 5.33 6.364.47 3.59 3.04
4000000 11.34 19.18 15.91 16.48 14.55 14.05 9.49 7.22 6.11

T a b l e 3. Running times on the IBM SP-2 for lists of fixed total length N for varying
number of processors. For the large problem with N = 4000000 the sequential running
time varied from 11.21 to 71.37 seconds.

n Seq. 8 Seq. 16 Seq. 24 Seq. 32
Pointer 1000000 21.09 33.28 41.51 58.71 64.93 111.36 86.90 133.68

2000000 43.06 111.78 86.02 160.27 129.44 205.21 171.86 206.64
Fold 1000000 23.79 25.33 44.60 38.21 62.19 50.25 82.68 49.93

2000000 42.82 50.24 85.98 71.73 129.27 91.05 172.84 103.59

T a b l e 4. Running times on the IBM SP-2 for lists with length proportional to the
number of processors and fixed local length n.

5. W. F. McColl. Scalable computing. In Computer Science Today. Recent Trends
and Developments, volume 1000 of Lecture Notes in Computer Science, pages 46-
61, 1995.

6. J. N. Patel, A. A. Khokhar, and L. H. Jamieson. Scalable parallel implementa-
tions of list ranking on fine-grained machines. IEEE Transactions on Parallel and
Distributed Systems, 8(10):1006-1018, 1997.

7. M. Reid-Miller. List ranking and list scan on the cray C-90. In Proceedings of
the 6th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
104-113, 1994.

8. J. F. Sibeyn. From parallel to external list ranking. Technical Report MPI-I-91-
1-021, Max-Planck Inst i tut fiir Informatik, 1997.

9. J. F. Sibeyn, F. Guillaume, and T. Seidel. Practical parallel list ranking. In Solv-
ing Irregularly Structured Problems in Parallel (IRREGULAR '97), volume 1253 of
Lecture Notes in Computer Science, pages 25-36, 1997.

10. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI:
The Complete Reference. MIT Press, 1996.

11. J. L. Tr~iff. Parallel list ranking and other operations on lists. Technical Report
SFB 124-D6 3/97, Universit~t des Saarlandes, Saarbriicken, Germany, Sonder-
forschungsbereich 124, VLSI Entwurfsmethoden und Parallelit~t, 1997. 69 Pages.

12. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, 1990.

13. J. C. Wyllie. The Complexity of Parallel Computation. PhD thesis, Computer
Science Department. Cornell University, 1979. Technical Report TR-79-387.

