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A b s t r a c t .  We describe a simple multiprocessor list ranking algorithm 
with low communication volume and simple communication pattern. 
With p processors the algorithm performs < 4p (pipelined) communica- 
tion rounds involving only point-to-point communication. For lists with 
N elements the algorithm runs in O(Nlnp/p + p) time. Experiments 
with an implementation using MPI on a network of workstations and an 
IBM SP-2 comparing the algorithm to the well-known pointer jumping 
algorithm are reported. On the NOW the new algorithm is significantly 
better than pointer jumping. On the IBM SP-2 only the new algorithm 
was able to produce (modest) speed-up. 

1 I n t r o d u c t i o n  

The list ranking problem is a prototypical irregular problem of fundamental im- 
portance in the design of parallel graph algorithms under the PRAM model of 
parallel computation [4]. Many problems on trees and graphs can be reduced to 
list ranking, and the problem is of relevance in parallel computational biology 
and computer vision. Hence, the problem may serve as a benchmark problem 
for the feasibility of parallel combinatorial algorithms on parallel computers. 
In its simplest form the problem consists in computing for each element of a 
linked list the distance to the end of the list, ie. the number of links that  have 
to be traversed to reach the last element of the list. Sequentially the problem 
is solved in linear time in the length of the input list; but  the irregular nature 
of the problem manifests itself also in the sequential setting when solving very 
large problem instances [8]. In a parallel setting, where the list is divided among 
several processors, the problem is considerably more difficult, giving rise to al- 
gorithms with data  dependent, irregular communication patterns. The problem 
is well-studied in the theoretical li terature on parallel algorithm design [4], and 
has recently a t t racted considerable interest also from a more practical point of 
view [1, 3, 6, 7, 9, 11]. 

In this paper we describe portable implementations using the message passing 
interface MPI [10] of two algorithms for the problem and evaluate their perfor- 
mance on a small network of workstations (NOW) and on a powerful IBM SP-2 
distributed memory multiprocessor. The first algorithm is the standard pointer- 
jumping algorithm of Wyllie [13]. Due to its simplicity this algorithm typically 
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serves as a point of reference against which to compare other algorithms. As will 
be seen pointer jumping is not a very good algorithm for the NOW. The second 
algorithm is based on a different approach of ranking sublists on one proces- 
sor by "folding" already ranked sublists on other processors into these sublists. 
Although also theoretically non-optimal, this algorithm has the advantage of a 
simpler communication pattern than the pointer jumping algorithm, and empir- 
ically it performs substantially better: on a N O W  it is easily a factor of 5 faster. 
On the SP-2 only the new algorithm was able to produce speed-up, although 
limited. 

The algorithms are implemented using MPI [10] for programming in a simple 
message passing model. The prime mode of communication MPI is by explici t  
point-to-point message passing, but in addition MPI provides a set of convenient 
collective operations. In contrast to other paradigms for portable parallel pro- 
gramming, like PVM [2] or BSP [12, 5], MPI does not force upon the programmer 
a particular virtual machine or programming style, although it is possible to use 
M PI for programming in a BSP-like style. The presence of collective operations 
makes MPI more flexible than BSP. Algorithm complexity can be measured in 
terms of basic MPl-communication operations, and local computation. 

The list ranking problem is defined in Section 2. Sections 3 and 4 describe 
the two algorithms, and Section 5 gives a preliminary experimental evaluation. 

2 T h e  p r o b l e m  

Given a set of list elements each having a successor index pointing to some other 
element, or to a special tail element. Each element has at most one element point- 
ing to it, and there are no cycles. Each element has an integer rank associated 
with it. The (inclusive) list ranking problem consists in computing for each list 
element the sum of the rank of the element itself and the ranks of all elements 
that  succeed it. In addition a pointer to the last reachable element must be com- 
puted for each element. Note that  in this formulation of the problem the set of 
list elements may contain several disjoint linked lists. By the second requirement 
each element will know after ranking to which list it belongs by having a pointer 
to the unique last element of that  list. The special case of computing for each 
element the distance to the end of the list is obtained by setting the initial rank 
of all elements to 1. Finally note that  lists are singly linked. 

When solving the list ranking problem on multiprocessors the set of list el- 
ements is assumed to be distributed over a set of processors. The p processors, 
P 1 , . . . ,  Pp, have no shared memory and no common clock, but  can communicate 
and synchronize by sending messages to each other. Each processor can commu- 
nicate with any other processor through an interconnection network, the nature 
of which is left unspecified. The total number of list elements is denoted by N, 
and the number of list elements per processor, which we assume to be (roughly) 
equal, by n, eg. N = ~9(pn). The list elements are stored in arrays in some arbi- 
t rary  order; in particular successor pointers and ranks are stored in arrays l i s t  
and rank of size n, such that  l i s t  [ i ]  and rank [ i ]  are the successor pointer and 
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rank of the ith local list element. The list ranking procedures have the following 
MPJ like prototype: 

Listrank(Index list[l, int rank[], int n, MPI_Comm comm) 

Type Index represents a pointer to a successor element, and consists of the id 
(rank) of the processor at which the successor resides, and the index of the suc- 
cessor in the list array of that processor. Upon return rank [i] is the computed 
rank of the ith local element, and list [i] a pointer to the last reachable ele- 
ment. In the implementations of this paper an Index is a structure consisting of 
two integers. The Listrank() implementations can all be generalized to solve 
the more general list scan problem, in which the rank is of arbitrary type and 
some associative operation takes the place of addition. 

Complexity is measured in terms of local computation and basic communi- 
cation operations under the assumption of roughly synchronous operation of the 
processors. This assumption is only for the analysis; if needed synchronization 
can be enforced by appropriate MPI_Barrier() calls. The algorithms are ran- 
domized in the sense that a random distribution of the list elements over the 
p processors is assumed. This means that the probability of a list element at 
processor i to have its successor at processor j is I/p, independently of i and j. 
If this assumption is not fulfilled, the algorithms may run longer (but will still 
be correct). Alternatively, a random permutation of the list can be performed 
before list ranking. 

3 List ranking by pointer jumping 

List ranking by pointer jumping is done in a number of synchronized (su- 
per)steps. Each list element maintains a current successor and a current rank, 
the latter being the sum of the ranks of the successor elements up to but not 
including the current successor. In a superstep each element adds the rank of 
its current successor to its own rank, and updates its current successor to the 
current successor of the current successor. When the current successor points 
to an element which has already been ranked, correct rank (and last element 
pointer) has been computed, and the element does not have to be considered 
in subsequent supersteps. It is easy to see that  the number of list elements 
"jumped over" doubles in each superstep, so that  flog 2 N] supersteps are re- 
quired. The algorithm can immediately be parallelized, since the list elements 
are treated independently of each other. The number of operations carried out 
in step d ,d  = 1 , . . . ,  flog 2 N] ,  is O ( N  - 2 d- l )  (since i n s t ep  d the 2 d elements 
with distance < 2 d to a last element have been ranked), so the total "cost" 
of the pointer jumping algorithm is O ( N  log N),  in contrast to the linear num- 
ber of operations required by a simple sequential algorithm. In this sense the 
pointer jumping algorithm is not (work) optimal. In a multiprocessor implemen- 
tation accessing the information in the current successor elements is done by 
sending requests to the appropriate processors, A superstep requires 3 all-to-all 
communication operations. First each processor buckets its requests for current 
successor information and sends the bucket sizes to all other processors. Second 
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the requests themselves are sent. Finally current successor and current rank are 
returned in acknowledgment to the requests. A request consists of a single inte- 
ger (index in local list array) per list element. The information returned consists 
of index (2 words) and rank information. The extra space needed is about 8n 
words per processor; contrast this to the n words of the sequential algorithm. 

There are two orthogonal improvements of the basic algorithm. For the spe- 
cial case of computing only the distance to the last reachable element, it is not 
necessary to send the rank of the current successor in every round, since, as is 
easily seen, this simply doubles in each round. Only when an element which has 
already been ranked is reached, does the rank of this element have to be sent. 
Hence, in all rounds but  the last only the index of the current successor needs to 
be sent. This decreases the size of acknowledgment messages by one third. The 
other improvement consists in performing a local ranking on each processor after 
each superstep. On the assumption of a random distribution of the list elements 
this decreases the number of messages to be sent per round by a factor 1/p. This 
version turned out to be by far the most efficient, and is used for reference in 
Section 5. 

4 T h e  f o l d - u n f o l d  a l g o r i t h m  

We now present a different list ranking algorithm. Let L be the global problem 
and Li the set of list elements at processor i. Assume that  the elements in each 
Li have been ranked locally (the local rank of x 6 Li is the rank of x treating 
each element having its successor outside Li as a last element). Each Li thus 
becomes a collection of sublists each with its successor outside Li. By folding Li 
into Lj we mean the following: each sublist in Lj having its successor in Li has 
its rank updated with the rank of the successor sublist in Li, and its successor 
updated to the successor of the Li sublist; if the successor of the Li sublist is 
in Lj the two Lj sublists are joined. We denote this operation by fo ld (L i ,  Lj). 
It runs in time proportional to the number of sublists of Li folded into Lj by 
suitable bucketing of the sublists. The operation requires two communication 
steps, since processor j must first send a request (1 word) to processor i for rank 
information (3 words) for all Lj sublists with successor in Li. The fold-unfold 
algorithm successively folds the sets La for k = 1 , . . . , p -  1 into Lp and looks as 
follows: 

1. For all k 6 {1, . . .  ,p} do in parallel l oca l r ank (Lk )  
2. For k = 1, 2 , . . .  , p - 1  do: for all I E { k + l , . . .  ,p} do (in parallel) fo ld(Lk,  Lt) 
3. For k = p , . . . ,  3, 2 do: for all l E {1 , . . . ,  k - l }  do (in parallel) ge t rank(Lt ,  Lk) 

After the kth round of Step 2 all sublists in Lt have their successor in Li, i 6 
{k + 1 , . . .  ,p}, as had all sublists in Lk before round k. After completion of Step 
2 final ranks for sublists in Lk can computed from the ranks of sublists in Li. 
Correctness follows from these invariants. For the complexity we consider only 
the fold computations of Step 2; Step 3 is analogous. 

L e m m a  1, The expected number of sublists per processor before round k is ct = 
p - k  

n p + l _  k �9 
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Proof. Before the first round processor l,l C {1, . . .  ,p} has n list elements of 
which n/p have their successor in processor 1. Hence the number of sublists is 
n - n / p  = nPp 1 . Assume the claim holds before round k. In round k the 
sublists in Lk are folded into Ll,l E {k + 1 , . . . , p } .  Since 1/(p - k) of these 

Oz have their successor in Lt, the number of sublists in LI becomes a (p-k)2 

(p-~k)~ (P -- k + 1)(p - k - 1). Substituting for c~ yields the claim for k + 1. 

In round k the sublists Lk are folded in parallel into all remaining subsets. 
Thus O(n) words have to be communicated per round, giving an algorithm 
with running time O(pn) = O(N),  and no potential for speed-up. We solve 
this problem by pipelining the fo ld(Lk,Lz)  operations. This is possible since 
processor k cannot start  folding before round k. It suffices that  processor k 
has received fold information from processors 1 , . . . ,  k - 1 at round ck for some 
constant c. The pipelining also takes place in rounds, and works as follows: 
after receiving information from all lower numbered processors processor k waits 
one round and then performs the fo ld (Lk ,  L1) operations one after another in 
increasing order of l, doing one fold per round. 

L e m m a 2 .  At round 2(k - 1) + i processor k performs fo ld (Lk ,  Lk+i). 

Proof. Processor 1 can start folding immediately, thus in round i performs 
fold(Ll~ Ll+i).  Assume the claim holds for processors 1 , . . . ,  k -  1. Then pro- 
cessor k - j performs fo ld (Lk_ j ,  Lk) in round 2(k - j - 1) + j --- 2(k - 1) - j .  
Hence processor k has received its last message (from processor k - 1) in round 
2 ( k - 1 ) -  1. It waits one round and in rounds 2 ( k - 1 ) + i  performs fo ld (Lk ,  Lk+i). 

Processor p has thus received information from all smaller numbered processors 
in round 2p - 3 .  An advantage of the pipelining scheme is that  only point-to-point 
communication is called for. 

L e m m a  3. The parallel time spent in exchanging messages in Step 2 is propor- 
tional to 4 n l n p  = O(n ln p + p). 

Proof. By Lemma 1 the number of words exchanged between processor k and 
k + 1 in round k is 4 ~  Summing gives 4n times the p th  harmonic number. 

p + l - - k  " 

T h e o r e m  4. The fold-unfold algorithm solves the list ranking problem in 4p - 6 
communication rounds, each of which entails only point-to-point communication. 
The time spent in local computation and exchange of messages per processor is 
O(n in p + p). 

The fold-unfold list ranking algorithm is non-optimal, but  theoretically slightly 
better  than the pointer jumping algorithm (log 2 N has been traded for lnp). 
More importantly, the logarithmic overhead has been switched from a logarith- 
mic number of phases (each having a non-negligible communication start-up 
latency) to a logarithmic overhead stemming from gradually increasing message 
lengths. An unattractive feature of the algorithm is that  it is unbalanced; after 
the p first rounds of Step 2 processor 1 stands unemployed until Step 3. The 
extra space required by the algorithm is about 7n words per processor. 
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5 E x p e r i m e n t a l  r e s u l t s  

The algorithms have been implemented in C using MPI [10]. Experiments have 
been carried out on 1) a network of (different) HP workstations (80 to 125Mhz) 
connected via a standard 10Mbit/second Ethernet,  using mpich version 1.0.12, 
and 2) an IBM SP-2 with 77 RS/6000 nodes; but  only up to 32 67Mhz nodes were 
available. Running times are given in seconds, and are quite erratic on the SP-2; 
the machine at hand is run in batch mode and was often heavily loaded. The 
input lists are "random lists" generated by randomly permuting random local 
lists among the processors. Sequential running time is optimistically estimated 
as the sum of the times for locally ranking the locally generated lists. Results are 
reported for the best implementations of the two algorithms. For pointer jumping 
performing local ranking in each superstep gave an improvement of about 30% 
for 32 processors on the SP-2 compared to the standard implementation. The 
best version of the fold-unfold algorithm exchanges messages as described in 
Section 4; no explicit barrier synchronization was needed to make the pipelining 
work well. Attempts at enforcing division into rounds to prevent congestion by 
MPI_Bar r i e r ( )  calls lead to slowdown from 10% to 300%. Running times for 
fixed problem sizes for different numbers of processors have been measured, from 
which speed-up can be computed, see Tables 1 and 3. We have also measured the 
running times with problem size increasing linearly in the number of processors, 
ie. keeping n ,.~ N / p  fixed. The results are shown in Tables 2 and 4. 

On the NOW the fold-unfold algorithm is clearly superior to pointer jumping, 
being easily a factor of 5 faster. Of course, none of the algorithms were able to 
produce actual speed-up, but  with the limited communication capabilities of 
the Ethernet  this was not expected. However, with the fold-unfold algorithm 
it is possible to solve problems larger than possible on a single workstation 
at a modest price: with 14 processors the "slowdown" for a list with 7000000 
elements is only about a factor of 10 over the most optimistic estimate for the 
sequential running time. On the SP-2 the difference between the two algorithms 
is less striking, but significant. On the large problems fold-unfold is consistently 
a factor of two better  than pointer jumping, and can bet ter  utilize the increasing 
number of processors. For p -- 32 it gave speed-up close to two, both in the case 
where N was fixed, compared to the actual sequential running time (Table 3), 
as in the case where N -- n p  and sequential running time was estimated as p 
times local ranking time (Table 4). For the problem with N -- 4000000 running 
times on the SP-2 differed a lot from run to run. For large problems where 
a straightforward sequential algorithm runs into trouble, a parallel algorithm 
might be of interest. 

6 D i s c u s s i o n  

We presented a new, simple list ranking algorithm for distributed-memory multi- 
processors, and compared it to the well-known pointer jumping algorithm. On a 
network of workstations a significant improvement in performance was achieved. 
For an IBM SP-2 multiprocessor neither algorithms were good. Only the fold- 
unfold algorithm was capable of producing some small speed-up. On an Intel 



401 

Pointer jumping Fold-unfold 
N Seq. 1 2 4 6 8 10 1 2 4 6 8 10 

250000 0.58 0.75 2.67 9.21 16.59 41.65 64.04 0.93 2.88 4.44 5.07; 9.84 11.65 
500000 1.27 1.57 5.32 18.51 31.94 87.00 110.51 1.76 5.75 8.60 9.9611.84 15.85 

1000000 2.56 3.25 11.47 36.95 63.22 135.54 187.97 3.67 11.91 17.44 19,8426.34 32.68 

Table 1. Running times on the HP NOW for lists of fixed total lengtb~ N for varying 
number of processors, and local list length n = Nip.  

n Scq. 4 Seq. 6 Seq. 8 Seq. 1{] Seq. 12 Seq. 14 
Pj 25~}000 2.66 37.69 4.07 93.67 5.36 212.69 6.67 403.57 7.93 510.86 9.20 686.21 

500000 5.55 79.34 8.43 191.73 Out of Memory 
Fold 250000 2.69 16.91 4.01 29.71 5.33' 50.97 6.62 68.30 7.90 94.27 9.18 126.34 

500000 5.55 35.29 8.46 66.13 11.34 97.21 13.82 143.72 16.75 179.10 19.22 211.76 

Table 2. Running times on the HP NOW for lists with length proportional to the 
number of processors, N ~- np, for fixed local length n. The "sequential" running 
time is estimated as the sum of the running times for ranking a list of size n on each 
workstation. 

Paragon [9] reports good speed-up of up to about 27 on 100 processors for prob- 
lems of similar sizes to those considered here. However, it should be noted that  
even pointer jumping produced speed-up (up to 7 on 100 processors) on this 
machine. However, the Paragon had a better ratio between computation and 
communication speed than the SP-2. It  would be interesting to test the perfor- 
mance of the algorithms of [9] on the SP-2. Reduction in problem size might 
lead to better algorithms. It is easy to devise a randomized scheme for reducing 
the list length by a factor of at least 1/2 in only two all-to-all communication 
rounds. Such a scheme is currently being implemented. Space limitations pro- 
hibit thorough discussion and comparison to relevant related work [1, 7, 9]. 
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