
Complexity class

From Wikipedia, the free encyclopedia

Jump to: navigation, search
In computational complexity theory, a complexity class is a set of problems of related complexity. A typical complexity class has a definition of the form:

the set of problems that can be solved by abstract machine M using O(f(n)) of resource R (n is the size of the input)

For example, the class NP is the set of decision problems that can be solved by a non-deterministic Turing machine in polynomial time, while the class PSPACE is the set of decision problems that can be solved by a deterministic Turing machine in polynomial space. Some complexity classes are sets of function problems, such as FP.

Many complexity classes can be characterized in terms of the mathematical logic needed to express them; see descriptive complexity.

The Blum axioms can be used to define complexity classes without referring to a concrete computational model.

[edit] Relationships between complexity classes
The following table shows some of the classes of problems (or languages, or grammars) that are considered in complexity theory. If class X is a strict subset of Y, then X is shown below Y, with a dark line connecting them. If X is a subset, but it is unknown whether they are equal sets, then the line is lighter and is dotted. Technically, the breakdown into decidable and undecidable pertains more to the study of computability theory but is useful for putting the complexity classes in perspective.

	
	Decision Problem

	
	

	
	

	Type 0 (Recursively enumerable)

	
	Undecidable

	

	
	
	
	
	

	Decidable

	
	
	
	
	

	

	
	
	
	
	

	EXPSPACE

	
	
	
	
	

	

	
	
	
	
	

	EXPTIME

	
	
	
	
	

	

	
	
	
	
	

	PSPACE

	

	

	

	

	
	

	
	

	Type 1 (Context Sensitive)

	

	

	

	
	

	
	PSPACE-Complete

	

	

	

	

	
	

	
	

	

	

	Co-NP

	

	
	

	NP

	

	

	

	

	
	

	
	

	

	

	

	BPP

	
	BQP

	
	NP-Complete

	

	

	

	

	
	

	
	

	

	

	P

	

	

	

	
	

	

	NC

	
	P-Complete

	

	

	
	
	
	
	

	Type 2 (Context Free)

	
	
	
	
	

	

	
	
	
	
	

	Type 3 (Regular)

	
	
	
	
	

[edit] Further reading
· The Complexity Zoo: A huge list of complexity classes, as reference for experts.

· Diagram by Neil Immerman showing the hierarchy of complexity classes and how they fit together.

· Michael Garey, and David S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman & Co., 1979. The standard reference on NP-Complete problems - an important category of problems whose solutions appear to require an impractically long time to compute.

[edit] See also
· List of complexity classes

	[hide]

v • d • e
Important complexity classes (more)

	P • NP • co-NP • NP-C • co-NP-C • NP-hard • UP • #P • #P-C • L • NL • NC • P-C • PSPACE • PSPACE-C • EXPTIME • NEXPTIME • EXPSPACE • 2-EXPTIME • PR • RE • Co-RE • RE-C • Co-RE-C • R • BQP • BPP • RP • ZPP • PCP • IP • PH

Retrieved from "http://en.wikipedia.org/wiki/Complexity_class"

Categories: Complexity classes | Computational complexity theory
UP (complexity)

From Wikipedia, the free encyclopedia

Jump to: navigation, search
In complexity theory, UP ("Unambiguous Non-deterministic Polynomial-time") is the complexity class of decision problems solvable in polynomial time on a non-deterministic Turing machine with at most one accepting path for each input. UP contains P and is contained in NP. If P ≠ NP then either P ≠ UP or UP ≠ NP or both must be true.

A common reformulation of NP states that a language is in NP if and only if a given answer can be verified by a deterministic machine in polynomial time. Similarly, a language is in UP if a given answer can be verified in polynomial time, and the verifier machine only accepts at most one answer for each problem instance. More formally, a language L belongs to UP if there exists a two input polynomial time algorithm A and a constant c such that

L = {x in {0,1}* | ∃! certificate, y with |y| = O(|x|c) such that A(x,y) = 1}

Algorithm A verifies L in polynomial time.

NP (complexity)

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Diagram of complexity classes provided that P ≠ NP. The existence of problems outside both P and NP-complete in this case was established by Ladner.[1]
In computational complexity theory, NP is one of the most fundamental complexity classes. The abbreviation NP refers to "Non-deterministic Polynomial time".

Intuitively, NP contains all decision problems for which the 'yes'-answers have simple proofs of the fact that the answer is indeed 'yes'. More precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing machine. In an equivalent formal definition, NP is the set of decision problems solvable in polynomial time by a non-deterministic Turing machine.

The complexity class P is contained in NP, but NP contains many important problems, called NP-complete problems, for which no polynomial-time algorithms are known. The most important open question in complexity theory, the P = NP problem, asks whether such algorithms actually exist for NP-complete problems. It is widely believed that this is not the case.

	Contents

[hide]
· 1 Formal definition

· 2 Introduction

· 2.1 Verifier-based definition

· 2.2 Machine-definition

· 2.3 Examples

· 3 Why some NP problems are hard to solve

· 4 Equivalency of definitions

· 5 Relationship to other classes

· 6 Other characterizations

· 7 Example

· 8 References

[image: image52.png]

[edit] Formal definition
The complexity class NP can be defined in terms of NTIME as follows:

[image: image53.png]NP = (_J NTIME(n").
=t

[edit] Introduction
Many natural computer science problems are covered by the class NP. In particular, the decision versions of many interesting search problems and optimization problems are contained in NP.

[edit] Verifier-based definition
In order to explain the verifier-based definition of NP, let us consider the subset sum problem: Assume that we are given some integers, such as {−7, −3, −2, 5, 8}, and we wish to know whether some of these integers sum up to zero. In this example, the answer is 'yes', since the subset of integers {-3, -2, 5} corresponds to the sum (-3) + (-2) + 5 = 0. The task of deciding whether such a subset with sum zero exists is called the subset sum problem.

As the number of integers that we feed into the algorithm becomes larger, the time needed to compute the answer to the subset sum problem grows exponentially, and in fact the subset sum problem is NP-complete. However, notice that, if we are given a particular subset (often called a certificate,) we can easily check or verify whether the subset sum is zero, by just summing up the integers of the subset. So if the sum is indeed zero, that particular subset is the proof or witness for the fact that the answer is 'yes'. An algorithm that verifies whether a given subset has sum zero is called verifier. In our case, the verifier needs only polynomial time, for which reason the subset sum problem is in NP.

Note that the verifier-based definition of NP does not require an easy-to-verify certificate for the 'no'-answers. The class of problems with such certificates for the 'no'-answers is called co-NP. In fact, it is an open question whether all problems in NP also have certificates for the 'no'-answers and thus are in co-NP.

[edit] Machine-definition
Equivalent to the verifier-based definition is the following characterization: NP is the set of decision problems solvable in polynomial time by a non-deterministic Turing machine.

[edit] Examples
This is an incomplete list of further problems that are in NP.

· All problems in P

· The integer factorization problem of finding a number which (nontrivially) divides a given number, as in 6 = 2 × 3

· The graph isomorphism problem of determining whether two graphs can be drawn identically

· The traveling salesperson problem, where we want to know if there is a route of some length that goes through all the nodes in a certain network

· The boolean satisfiability problem, where we want to know if a certain formula in propositional logic with boolean variables can be true for some value of the variables or not

See NP-complete for a list of additional important problems in NP.

[edit] Why some NP problems are hard to solve
Because of the many important problems in this class, there have been extensive efforts to find polynomial-time algorithms for problems in NP. However, there remain a large number of problems in NP that defy such attempts, seeming to require superpolynomial time. Whether these problems really aren't decidable in polynomial time is one of the greatest open questions in computer science (see P=NP problem for an in-depth discussion).

An important notion in this context is the set of NP-complete decision problems, which is a subset of NP and might be informally described as the "hardest" problems in NP. If there is a polynomial-time algorithm for even one of them, then there is a polynomial-time algorithm for all the problems in NP. Because of this, and because dedicated research has failed to find a polynomial algorithm for any NP-complete problem, once a problem has been proven to be NP-complete this is widely regarded as a sign that a polynomial algorithm for this problem is unlikely to exist.

[edit] Equivalency of definitions
The two definitions of NP as the class of problems solvable by a nondeterministic Turing machine (TM) in polynomial time and the class of problems verifiable by a deterministic Turing machine in polynomial time are equivalent. The proof is described by many textbooks, for example Sipser's Introduction to the Theory of Computation, section 7.3.

To show this, first suppose we have a deterministic verifier. A nondeterministic machine can simply nondeterministically run the verifier on all possible proof strings (this requires only polynomially-many steps because it can nondeterministically choose the next character in the proof string in each step, and the length of the proof string must be polynomially bounded). If any proof is valid, some path will accept; if no proof is valid, the string is not in the language and it will reject.

Conversely, suppose we have a nondeterministic TM called A accepting a given language L. At each of its polynomially-many steps, the machine's computation tree branches in at most a constant number of directions. There must be at least one accepting path, and the string describing this path is the proof supplied to the verifier. The verifier can then deterministically simulate A, following only the accepting path, and verifying that its accepts at the end. If A rejects the input, there is no accepting path, and the verifier will never accept.

[edit] Relationship to other classes
NP contains all problems in P, since one can verify any instance of the problem by simply ignoring the proof and solving it. NP is contained in PSPACE - to show this, it suffices to construct a PSPACE machine that loops over all proof strings and feeds each one to a polynomial-time verifier. Since a polynomial-time machine can only read polynomially-many bits, it cannot use more than polynomial space, nor can it read a proof string occupying more than polynomial space (so we don't have to consider proofs longer than this). NP is also contained in EXPTIME, since the same algorithm operates in exponential time.

The complement of NP, co-NP, contains those problems which have a simple proof for no instances, sometimes called counterexamples. For example, primality testing trivially lies in co-NP, since one can refute the primality of an integer by merely supplying a nontrivial factor. NP and co-NP together form the first level in the polynomial hierarchy, higher only than P.

NP is defined using only deterministic machines. If we permit the verifier to be probabilistic (specifically, a BPP machine), we get the class MA solvable using a Arthur-Merlin protocol with no communication from Merlin to Arthur.

NP is a class of decision problems; the analogous class of function problems is FNP.

[edit] Other characterizations
There is also a simple logical characterization of NP: it contains precisely those languages expressible in second-order logic restricted to exclude universal quantification over relations, functions, and subsets.

NP can be seen as a very simple type of interactive proof system, where the prover comes up with the proof certificate and the verifier is a deterministic polynomial-time machine that checks it. It is complete because the right proof string will make it accept if there is one, and it is sound because the verifier cannot accept if there is no acceptable proof string.

A major result of complexity theory is that NP can be characterized as the problems solvable by probabilistically checkable proofs where the verifier uses O(log n) random bits and examines only a constant number of bits of the proof string (the class PCP(log n, 1)). More informally, this means that the NP verifier described above can be replaced with one that just "spot-checks" a few places in the proof string, and using a limited number of coin flips can determine the correct answer with high probability. This allows several results about the hardness of approximation algorithms to be proven.

[edit] Example
The decision version of the traveling salesman problem is in NP. Given an input matrix of distances between N cities, the problem is to determine if there is a route visiting all cities with total distance less than k. A nondeterministic Turing machine can find such a route as follows:

· At each city it visits it "guesses" the next city to visit, until it has visited every vertex. If it gets stuck, it stops immediately.

· At the end it verifies that the route it has taken has cost less than k in O(n) time.

One can think of each guess as "forking" a new copy of the Turing machine to follow each of the possible paths forward, and if at least one machine finds a route of distance less than k, that machine accepts the input. (Equivalently, this can be thought of as a single Turing machine that always guesses correctly)

What makes this a natural decision version of the problem is that, if we could solve this problem quickly, we could use binary search to solve the original optimization version of the problem (finding the route and its exact length) quickly as well.

[edit] References
1. ^ R. E. Ladner "On the structure of polynomial time reducibility," J.ACM, 22, pp. 151–171, 1975. Corollary 1.1. ACM site.

· Complexity Zoo: NP

· Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 34.2: Polynomial-time verification, pp.979–983.

· Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing. ISBN 0-534-94728-X. Sections 7.3–7.5 (The Class NP, NP-completeness, Additional NP-complete Problems), pp.241–271.

· David Harel, Yishai Feldman. Algorithmics: The Spirit of Computing, Addison-Wesley, Reading, MA, 3rd edition, 2004.
NP-hard

From Wikipedia, the free encyclopedia

Jump to: navigation, search
For a gentler introduction, see P = NP problem.

Venn diagram for P, NP, NP-complete, and NP-hard set of problems

NP-hard (nondeterministic polynomial-time hard), in computational complexity theory, is a class of problems informally "at least as hard as the hardest problems in NP." A problem H is NP-hard if and only if there is an NP-complete problem L that is polynomial time Turing-reducible to H, i.e. [image: image56.png]

. In other words, L can be solved in polynomial time by an oracle machine with an oracle for H. Informally we can think of an algorithm that can call such an oracle machine as subroutine for solving H, and solves L in polynomial time if the subroutine call takes only one step to compute. NP-hard problems may be of any type: decision problems, search problems, optimization problems.

As consequences of such definition, we have (note that these are claims, not definitions):

· problem H is at least as hard as L, because H can be used to solve L;

· since L is NP-complete, and hence the hardest in class NP, also problem H is at least as hard as NP, but H does not have to be in NP and hence does not have to be a decision problem;

· since NP-complete problems transform to each other by polynomial-time many-one reduction (also called polynomial transformation), therefore all NP-complete problems can be solved in polynomial time by a reduction to H, thus all problems in NP reduce to H; note however, that this involves combining two different transformations: from NP-complete decision problems to NP-complete problem L by polynomial transformation, and from L to H by polynomial Turing reduction;

· if there is a polynomial algorithm for any NP-hard problem, then there are polynomial algorithms for all problems in NP, and hence P = NP;

· if [image: image57.png]

, then NP-hard problems have no solutions in polynomial time, while [image: image58.png]

does not resolve whether the NP-hard problems can be solved in polynomial time;

· if an optimization problem H has an NP-complete decision version L, then H is NP-hard;

· if H is in NP, then H is also NP-complete because in this case the existing polynomial Turing transformation fulfills the requirements of polynomial time transformation.

A common mistake is to think that the "NP" in "NP-hard" stands for "non-polynomial". Although it is widely suspected that there are no polynomial-time algorithms for these problems, this has never been proven.

	Contents

· 1 Examples

· 2 Alternative definitions

· 3 NP-naming convention

· 4 See also

· 5 References

[image: image59.png]

[edit] Examples
An example of an NP-hard problem is the decision problem SUBSET-SUM which is this: given a set of integers, does any non empty subset of them add up to zero? That is a yes/no question, and happens to be NP-complete. Another example of an NP-hard problem is the optimization problem of finding the least-cost route through all nodes of a weighted graph. This is commonly known as the Traveling Salesman Problem.

There are also decision problems that are NP-hard but not NP-complete, for example the halting problem. This is the problem "given a program and its input, will it run forever?" That's a yes/no question, so this is a decision problem. It is easy to prove that the halting problem is NP-hard but not NP-complete. For example the Boolean satisfiability problem can be reduced to the halting problem by transforming it to the description of a Turing machine that tries all truth value assignments and when it finds one that satisfies the formula it halts and otherwise it goes into an infinite loop. It is also easy to see that the halting problem is not in NP since all problems in NP are decidable in a finite number of operations, while the halting problem, in general, is not. But not all NP-Hard problems that aren't NP-Complete are undecidable. For instance, the language of True quantified Boolean formulas is decidable in polynomial space, but probably not nondeterministic polynomial time.

[edit] Alternative definitions
An alternative definition of NP-hard that is often used restricts NP-Hard to decision problems and then uses polynomial-time many-one reduction instead of Turing reduction. So, formally, a language L is NP-hard if [image: image60.png]VL' e NP, L' <, L

. If it is also the case that L is in NP, then L is called NP-complete.

[edit] NP-naming convention
The NP-family naming system is confusing: NP-hard problems are not all NP, despite having 'NP' as the prefix of their class name. However, the names are now entrenched and unlikely to change. On the other hand, the NP-naming system has some deeper sense, because the NP family is defined in relation to the class NP: NP-complete — means problems that are 'complete' in NP, i.e. the most difficult to solve in NP; NP-hard — stands for 'at least' as hard as NP (but not necessarily in NP); NP-easy — stands for 'at most' as hard as NP (but not necessarily in NP); NP-equivalent — means equally difficult as NP, (but not necessarily in NP).

As Cited from the NIST's web site. Making this PUBLIC domain information.

Definition: The complexity class of decision problems that are intrinsically harder than those that can be solved by a nondeterministic Turing machine in polynomial time. When a decision version of a combinatorial optimization problem is proved to belong to the class of NP-complete problems, then the optimization version is NP-hard. Note: For example, "is there a Hamiltonian cycle with length less than k" is NP-complete: it is easy to determine if a proposed certificate has length less than k. The optimization problem, "what is the shortest tour?", is NP-hard, since there is no easy way to determine if a certificate is the shortest.

Another NP-complete problem is to decide if there exist k star-shaped polygons whose union is equal to a given simple polygon, for some parameter k. The optimization problem, i.e., finding the minimum number (least k) of star-shaped polygons whose union is equal to a given simple polygon, is NP-hard.

From Algorithms and Theory of Computation Handbook, page 19-26, Copyright © 1999 by CRC Press LLC. Appearing in the Dictionary of Computer Science, Engineering and Technology, Copyright © 2000 CRC Press LLC.

[edit] See also
Main

NP-equivalent, NP-easy

Examples

Complexity Zoo

Other

Emergence

[edit] References
Michael R. Garey and David S. Johnson (1979). [1] Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman. ISBN 0-7167-1045-5.
[image: image61][image: image62][image: image63][image: image64][image: image65.png]

[image: image66][image: image67][image: image68][image: image69][image: image70][image: image71][image: image72][image: image73][image: image74][image: image75][image: image76][image: image77][image: image78][image: image79][image: image80][image: image81][image: image82][image: image83][image: image84][image: image85]
PAGE

