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30. Score Sets and Kings

The idea of comparison-based ranking has been discussed earlier in the chapter
Comparison based ranking, where score sequence was introduced as a way of ranking
vertices in a tournament. Oriented graphs are generalizations of tournaments. In fact,
just like one can think of a tournament as expressing the results of a round-robin
competition without ties (with vertices representing players and arrows pointing to
the defeated players), one can think of an oriented graph as a round-robin competi-
tion with ties allowed (ties are represented by not drawing the corresponding arcs).
Figure 30.1 shows the results of a round-robin competition involving 4 players a, b, c

Figure 30.1 A round-robin competition involving 4 players.

and d, with (a) ties not allowed and (b) ties allowed. In the first instance there is
always a winner and a loser whenever two players square off, while in the latter case
player a ties with player d and player b ties with player c.

In 2009 Antal Iványi studied directed graphs called by him (a, b, n)-tournaments
in which every pair of different vertices is connected with at least a and at most b
arcs. It is worth to mention that 1-tournaments are the classical tournaments, while
oriented graphs can be considered as 2-tournaments. If we allow loops then every
directed graph is some (a, b, n)-tournament (see the Chapter ?? (Comparison Based
Ranking) of this book).

In this chapter we deal first of all with (a, a, n)-tournaments, therefore use the
simpler notations 1-tournament, 2-tournament . . . , k-tournament, . . . .

In this chapter we discuss two concepts related with k-tournaments, namely
score sets and kings. A score set is just the set of scores of vertices, while a king is
a dominant vertex. We shall study both concepts for 1-tournaments first and then
extend these to the more general setting of 2-tournaments. Although we present
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Figure 30.2 A tournament with score set {0, 2}.

algorithms on finding score sets and kings in 1-tournaments in 2-tournaments, much
of the focus is on constructing 2-tournaments with special properties such as having
a prescribed score set or a fixed number of kings. Since players in a tournament are
represented by vertices, we shall use the words player and vertex interchangeably
throughout this chapter without affecting the meaning. We adopt the standard nota-
tion T (V, A) to denote a tournament with vertex set V and arc set A. We denote the
number of vertices by n, and the out-degree matrix byM. Furthermore, we use the
term n-tournament and the notation Tn to represent a tournament with n vertices.
When there is no ambiguity we shall refer to the tournament as T without specifying
the number n of vertices and number k of arcs between the pairs of vertices, the
vertex set and arc set.

It is worth to mention that a possible representation of 2-tournaments are ori-
ented graphs by substituting the double arcs with the same direction by a single one
and omitting the double arcs with opposite direction.

In Section 30.1 the score sets of 1-tournaments are discussed, while Section ??
deals with the sore sets of 2-tournaments.

In Section 30.3 the conditions of the unique reconstruction of the score sets are
considered at first for k-tournaments, then in more details for 1-tournaments and
2-tournaments.

In Section 30.4 and Section 30.5 results connected with the kings of different
tournaments are presented.

30.1. Score sets in 1-tournaments

In a round-robin competition with no ties allowed, what are the sets of non-negative
integers that can arise as scores of players? Note that here we are not interested in
the scores of individual players (the score sequence), rather we are looking for the
sets of non-negative integers with each integer being the score of at least one player
in the tournament. This question motivates the study of score sets of tournaments.

The set of scores of vertices in a tournament is called the score set of the tour-
nament. In other words, the score set is actually the score sequence of a tournament
with repetitions removed. For example the tournament given in Figure 30.2 has score
sequence [0, 2, 2, 2], whereas the score set of this tournament is {0, 2}. Figure 30.3
shows the out-degree matrix of the tournament represented on Figure 30.2. Figure
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vertex/vertex a b c d Score

a — 0 0 0 0

b 1 — 1 0 2

c 1 0 — 1 2

d 1 1 0 — 2

Figure 30.3 Out-degree matrix of the tournament represented in Figure 30.2.

30.3 shows the adjacency matrix of the tournament represented on Figure 30.3.

30.1.1. Determining the score set of 1-tournaments

Determining the score set of a tournament T (V, A) is quite easy. The following
algorithm Set1 takes the data of a tournament T (V, A) as input and returns the
score set S of T.

The procedures of this chapter are written according to the third edition of the
textbook Introduction to Algorithms published by T. H. Cormen, C. E. Leiserson,
R. L. Rivest and C. Stein in 2009.

Set1(n, V )

1 S = ∅
2 for all vertex u ∈ V
3 s = 0
4 for all vertex v ∈ V
5 if (u, v) ∈ A // is (u, v an arc of T?
6 s = s + 1
7 if s /∈ S // is the founded score new?
8 S = S ∪ {s}
9 return S

30.1.2. Construction of a score sequence

Since the scores of the vertices depend on n(n−1) out-degrees, any algorithm deter-
mining the score set requires Ω(n2) time. Due to the embedded loops in lines 02–08
the running time of Set1 is Ω(n2) even in the best case. The precise order of the
running time depends among others on the implementation of the if instruction in
line 07. E.g if line 07 is implemented by the comparison of the actual score with
the elements of S, then the running time is Θ(n3) for a score sequence containing
different elements and is Θ(n2) for a regular tournament.

Out-degree matrix Mn×n = [mij ]n×n is a useful tool in the implementation of
graph algorithms. The input of the following algorithm Quick-Set1 is n and M,
and the output is the score sequence s as a nonincreasingly ordered sequence and the
score set S as an increasingly ordered sequence. Quick-Set1 calls the well-known
sorting procedure Insertion-Sort.
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Quick-Set1(n,M)

1 S = ∅
2 for i = 1 to n
3 si = 0
4 for j = 1 to n
5 si = si + mij // score sequence is computed
6 S1 = s1

7 Insertion-Sorts if s /∈ S // sorting of the score vector
8 for i = 2 to n
9 if si 6= si−1

10 Sk = si

11 k = k + 1
12 return s, S

Since the embedded loops in lines 02–05 need Θ(n2) time, and the remaining
part of the code less, the running time of Quick-Set1 is Θ(n2) in all cases.

On the other hand constructing a tournament with a prescribed score set is
more difficult. Quite surprisingly, if sufficiently many players participate in a tour-
nament then any finite set of nonnegative integers can arise as a score set. This was
conjectured by K. B. Reid in 1978 and turned out to be a relatively challenging
problem.

Reid proved the result when | S | = 1, 2 or 3, or if S contains consecutive terms
of an arithmetic or geometric progression. That is, Reid showed that any set of one,
two or three nonnegative integers is a score set of some tournament and additionally,
any set of the form {s, s+d, s+2d, . . . , s+pd} for s > 0, d > 1 or {s, sd, sd2, . . . , sdp}
for s ≥ 0, d > 0, is a score set of some tournament. Hager settled the cases |S|S = 4
and 5 in 1986 and finally in 1987, T. X. Yao gave an existence proof of the general
Reid’s conjecture based on arithmetic analysis.

Theorem 30.1 (Yao, 1988) Every finite nonempty set S of nonnegative integers is
the score set of some tournament.

Let us try to formulate Reid’s conjecture purely as a statement about num-
bers. Let S = {s1, . . . , sp} be an increasing sequence of nonnegative integers. The
conjecture means that there exist positive integers x1, . . . , xp such that

S = (sx1

1 , . . . , sx2

2 . . . , sxp

p )

is the score sequence of some 1-tournament with
∑p

i=1 xi = n vertices. By Landau’s
theorem, r = (r1, . . . , rn), with r1 ≤ · · · ≤ rn, is the score sequence of some 1-

tournament Tn if and only if
∑k

i=1 ri ≥
(

k

2

)

, for k = 1, . . . , n−1 and
∑n

i=1 ri =
(

n

2

)

.

Thus it can be readily seen that Reid’s conjecture is equivalent to the following
statement.

For every nonempty set of nonnegative integers S = {s1, . . . , sp}, where s1 <
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Figure 30.4 Construction of tournament T with odd number of distinct scores.

· · · < sp, there exist positive integers x1, . . . , xp, such that

k
∑

i=1

sixi ≥

(

∑k

i=1 xi

2

)

, for k = 1, . . . , p− 1 , (30.1)

p
∑

i=1

sixi =

(∑p

i=1 xi

2

)

. (30.2)

It is this equivalent formulation of Reid’s conjecture that led to Yao’s proof. The
proof is not combinatorial in nature, but uses first of all some results of number
theory. Commenting on Yao’s proof in 2006, Q. Li wrote in the Annals of New York
Academy of Sciences:

Yao’s proof is the first proof of the conjecture, but I do not think it
is the last one. I hope a shorter and simpler new proof will be coming in
the near future.

However, the prophecized constructive proof has not been discovered yet. This
is in sharp contrast with Landau’s theorem on score sequences, for which several
proofs have emerged over the years. Recently, Pirzada and Naikoo gave a constructive
combinatorial proof of a new special case of Reid’s theorem. Their proof gives an
algorithm for constructing a tournament with the prescribed score set, provided the
score increments are increasing.

Theorem 30.2 (Pirzada and Naiko, 2008) If a1, a2, . . . , ap are nonnegative inte-
gers with a1 < a2 < · · · < ap, then there exists a 1-tournament T with score set

S =

{

s1 = a1, s2 =

2
∑

i=1

ai, . . . , sp =

p
∑

i=1

ai

}

. (30.3)

Since any set of nonnegative integers can be written in the form of 30.3, the
above theorem is applicable to all sets of nonnegative integers S = {s1, s2, . . . , sp}
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Figure 30.5 Construction of tournament T with even number of distinct scores.

with increasing increments (i.e., s1 < s2 − s1 < s3 − s2 < · · · < sp − sp−1.) The
importance of Pirzada-Naikoo proof of Theorem 30.2 is augmented by the fact that
Yao’s original proof is not constructive and is not accessible to a broad audience1.

The following recursive algorithm is based on Pirzada and Naikoo’s proof of
Theorem 30.2. The algorithm takes the set of increments Ip = {a1 < a2 < · · · < ap}
of the score set S as input and returns a tournament T whose score set is S. Let
Xt = {a−1 < a2 < · · · < at} for 1 ≤ t ≤ p. Let Tn denote the regular tournament on
n vertices and let T (1)⊕T (2) denote the vertex and arc disjoint union of tournaments
T (1) and T (2).

Score-Reconstruction1(p, Ip)

1 if p is odd
2 print Odd(p, Ip)
3 else print Even(p, Ip)

This algorithm calls one of the two following recursive procedures ODD and
Even according to the parity of p. The input of both algorithm is some prefix Xt of
the sequence of the increments a1, a2, . . . , at, and the output is a tournament having
the score set corresponding to the given increments.

1Yao’s proof originally appeared in Chinese in the journal Kexue Tongbao. Later in 1989, the proof
was published in English in the Chinese Science Bulletin. Unfortunately neither are accessible
through the world wide web, although the English version is available to subscribers of the Chinese
Science Bulletin. In Hungary this journal is accessible in the Library of Technical and Economical
University of Budapest.
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Odd(t, Xt)

1 if t == 1
2 return T2a1+1

3 else T
(3)
t = T(2(at−at−1+at−2−at−3+···+a3−a2+a1)+1)

4 T
(2)
t = T(2(at−1−at−2+at−3−at−2+···+a4−a3+a2−a1−1)+1)

5 t = t− 2

6 T
(1)
t = Odd(t, Xt)

7 T = T
(3)
t ⊕ T

(2)
t ⊕ T

(1)
t

8 T = T+ arcs such that

9 T
(2)
t dominates T

(1)
t

10 T
(3)
t dominates T

(1)
t

11 T
(3)
t dominates T

(2)
t

12 return T

We can remark that the tournament constructed by the first execution of line 03
of Odd contains the vertices whose score is ap, while the tournament constructed
in line 04 contains the vertices whose score is ap−1 in the tournament appearing as
output. The vertices having smaller scores appear during the later execution of lines
03 and 04 with exception of the vertices having score a1 since those vertices will be
added to the output in line 02.

Even(t, Xt)

1 T
(2)
t = T2(at−at−1+at−2−at−3+···+a4−a3+a2−a1−1)+1

2 t = t− 1

3 T
(1)
t = Odd(t, Xt)

4 T = T
(2)
t ⊕ T

(1)
t

5 T = T+ arcs such that T
(2)
t dominates T

(1)
t

6 return T

Since the algorithm is complicated, let’s consider an example.

Example 30.1 Let p = 5 and I5 = {0, 1, 2, 3, 4}. Since p is odd, Score-Reconst- ruction

calls Odd in line 02 with parameters 5 and I5.

The first step of Odd is the construction of T
(3)
5 = T2(4−3+2−1+0)+1 = T5 in line 03.

Denoting the vertices of this regular 5-tournament by v1, v2, v3, v4, v5 and using the
result of Exercise 30.1-1 we get the out-degree matrix shown in Figure 30.6.

The second step of Odd is the construction of T
(2)
5 = T2(3−2+1−0−1)+1 = T3. Let v6, v7

and v8 be the vertices of this tournament.
The third step of Odd is the recursive call with parameters p = 3 and X3 = {2, 1, 0}.

The fourth action of Odd is the construction of T
(3)
3 = T2(2−1+0)+1 = T3. Let v9, v10

and v11 be the vertices of this tournament. The fifth step is the construction of T
(2)
3 =

T2(2−1+0−1)+1 = T1. Let v12 be the only vertex of this graph. The sixth action is the call
of Odd with parameters t = 1 and X1 = {0}. Now the number of increments equals to 1,

therefore the algorithm constructs T
(1)
1 = T1 in line 02.

The seventh step is the construction of T in line 07, then the eighth step is adding new
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vertex/vertex v1 v2 v3 v4 v5 Score

v1 — 1 1 0 0 2

v2 0 — 1 1 0 2

v3 0 0 — 1 1 2

v4 1 0 0 — 1 2

v5 1 1 0 — 0 2

Figure 30.6 Out-degree matrix of the tournament T
(3)
5 .

vertex/vertex v9 v10 v11 v12 v13 Score

v9 — 1 0 1 1 3

v10 0 — 1 1 1 3

v11 1 0 — 1 1 3

v12 0 0 0 — 1 1

v13 0 0 0 0 — 0

Figure 30.7 Out-degree matrix of the tournament T
(3)
5 .

v/v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 Score

v1 — 0 0 0 0 0 0 0 0 0 0 0 0 0

v2 1 — 0 0 0 0 0 0 0 0 0 0 0 1

v3 1 1 — 1 0 0 0 0 0 0 0 0 0 3

v4 1 1 0 — 1 0 0 0 0 0 0 0 0 3

v5 1 1 1 0 — 0 0 0 0 0 0 0 0 3

v6 1 1 1 1 1 — 1 0 0 0 0 0 0 6

v7 1 1 1 1 1 0 — 1 0 0 0 0 0 6

v8 1 1 1 1 1 1 0 — 0 0 0 0 0 6

v9 1 1 1 1 1 1 1 1 — 1 0 1 1 10

v10 1 1 1 1 1 1 1 1 0 — 1 1 0 10

v11 1 1 1 1 1 1 1 1 0 0 — 1 1 10

v12 1 1 1 1 1 1 1 1 1 0 0 — 1 10

v13 1 1 1 1 1 1 1 1 1 1 0 0 — 10

Figure 30.8 Out-degree matrix of the tournament T5.

arcs (according to lines 08–11) to the actual T constructed in line 07 and consisting from
3 regular tournaments having altogether 5 vertices (v13, v12, v11, v10, v9). The result is
shown in Figure 30.7.

Ninth step of Odd is joining the tournaments T5 and T3 to T and the final step is
adding of the domination arcs. The out-degree-matrix of the output T of Odd is shown on
Figure 30.8.
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Correctness of the algorithm
Let I = {a1, a2, . . . , ap} be a set of p non-negative integers with a1 < a2 < · · · < ap.
Score-Reconstruction1 performs two types of recursions: the first if p is odd
and the second if p is even. Assume p to be odd. For p = 1, the set I contains one
nonnegative integer a1 and the algorithm returns the regular tournament T2a1+1 as
output. Note that each vertex of T2a1+1 has score

(

2a1+1−1
2

)

= a1, so that score set
of T2a1+1 is S = {s1 = a1}. This shows that the algorithm is correct for p = 1.

If p = 3, then the set of increments I consists of three non-negative integers
{a1, a2, a3} with a1 < a2 < a3. Now a3 > a2, therefore a3 − a2 > 0, so that
a3−a2 +a1 > 0 as a1 ≥ 0. Let T (3) be a regular tournament having 2(a3−a2 +a1)+1

vertices. Then each vertex of T (3) has score
(

2(a3−a2+a1)+1−1
2

)

= a3 − a2 + a1.

Again, since a2 > a1, therefore a2 − a1 > 0, so that a2 − a1 − 1 ≥ 0. Let T (2) be
a regular tournament having 2(a2 − a1 − 1) + 1 vertices. Then each vertex of T (2)

has score
(

2(a2−a1−1)+1−1
2

)

= a2 − a1 − 1. Also since a1 ≥ 0, let T (1) be a regular

tournament having 2a1+1 vertices. Then each vertex of T1 has score
(

2a1+1−1
2

)

= a1.
If p = 3, Score-Reconstruction1 outputs a tournament T whose vertex set

is the disjoint union of vertex sets of T (1), T (2) and T (3) and whose arc set contains
all the arcs of T (1), T (2) and T (3) such that every vertex of T (2) dominates each
vertex of T (1), and every vertex of T (3) dominates each vertex of T (1) and T (2).
Thus T has 2a1 +1+2(a2−a1−1)+1+2(a3−a2 +a1)+1 = 2(a1 +a3)+1 vertices
with score set

S = {a1, a2 − a1 − 1 + 2a1 + 1, a3 − a2 + a1 + 2(a2 − a1 − 1) + 1 + 2a1 + 1}

=

{

a1,
2
∑

i=1

ai,
3
∑

i=1

ai

}

.

This shows that the algorithm is correct for p = 3 too. When the set I of incre-
ments consists of an odd number of nonnegative integers, the algorithm recursively
builds the required tournament by using the procedure Odd. To see this assume that
the algorithm works for all odd numbers upto p. That is, if a1, a2, . . . , ap are p non-
negative integers with a1 < a2 < · · · < ap, then the algorithm outputs a tournament

having 2(a1 + a3 + . . . + ap) + 1 vertices with score set {a1,
∑2

i=1 ai, . . . ,
∑p

i=1 ai}.
Let us call this tournament T (1).

We now show how the algorithm constructs a tournament with p+2 vertices with
score set {a1,

∑2
i=1 ai, . . . ,

∑p+2
i=1 ai}, where a1, a2, . . . , ap+2 are p + 2 non-negative

integers with a1 < a2 < · · · < ap+2.
Since, a2 > a1, a4 > a3, . . . , ap−1 > ap−2, ap+1 > ap. therefore a2 − a1 > 0,

a4 − a3 > 0, . . . , ap−1 − ap−2 > 0, ap+1 − ap > 0, so that ap+1 − ap + ap−1 − ap−2 +
. . .+a4−a3+a2−a1 > 0, that is, ap+1−ap+ap−1−ap−2+. . .+a4−a3+a2−a1−1 ≥ 0.

The procedure Odd constructs T (2) as a regular tournament having 2(ap+1 −
ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1) + 1 vertices. Each vertex of T (2) has
score

2(ap+1 − ap + ap−1 − ap−2 + . . . + a4 − a3 + a2 − a1 − 1) + 1− 1

2
= ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1 .
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Again, a3 > a2, . . . , ap > ap−1, ap+2 > ap+1, therefore a3 − a2 > 0, . . . , ap −
ap−1 > 0, ap+2 − ap+1 > 0, so that ap+2 − ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1 > 0
as a1 ≥ 0.

The procedure Odd constructs T (3) as a regular tournament having 2(ap+2 −
ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1) + 1 vertices. Each vertex of T (3) has score

2(ap+2 − ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1) + 1− 1

2
= ap+2 − ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1 .

Now Score-Reconstruction1 sets T = T (1)⊕T (2)⊕T (3) and adds additional
arcs in such a way that every vertex of T (2) dominates each vertex of T (1), and every
vertex of T (3) dominates each vertex of T (1) and T (2). Therefore T is a tournament
having

2(a1 + a3 + · · ·+ ap) + 1 + 2(ap+1ap + ap1ap2 + · · ·+ a4a3 + a2a1) + 1

+2(ap+2ap+1 + apap−1 + · · ·+ a3a2 + a1) + 1

= 2(a1 + a3 + · · ·+ ap+2) + 1

vertices with score set

S =

{

a1,

2
∑

i=1

ai, . . . ,

p
∑

i=1

ai,

p+1
∑

i=1

ai,

p+2
∑

i=1

ai

}

.

Hence by induction, the algorithm is correct for all odd p.
To prove the correctness for even case, note that if p is odd, then p+1 is even. Let

a1, a2, . . . , ap+1 be p+1 non-negative integers with a1 < a2 < · · · < ap+1.. Therefore
a1 < a2 < · · · < ap, where p is odd. The procedure Even uses the procedure Odd

to generate a tournament T (1) having 2(a1 + a3 + · · · + ap) + 1 vertices with score

set S = {a1,
∑2

i=1 ai, . . . ,
∑p

i=1 ai}.
Also since a2 > a1, a4 > a3, . . . , ap−1 > ap−2, ap+1 > ap, the procedure Even

generates a regular tournament T (2) having 2(ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 −
a3 +a2−a1−1)+1 vertices such that the score for each vertex is ap+1−ap +ap−1−
ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1.

Finally the algorithm generates the tournament T (1)⊕T (2) and adds additional
arcs so that every vertex of T (2) dominates each vertex of T (1). The resulting tour-
nament T consists of

2(a1 + a3 + · · ·+ ap−2 + ap) + 1

+2(ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1) + 1

= 2(a2 + a4 + · · ·+ ap+1)

vertices and has score set
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S = {a1,

2
∑

i=1

ai, . . . ,

p
∑

i=1

ai,

ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1

+2(a1 + a3 + · · ·+ ap−2 + ap) + 1}

= {a1,

2
∑

i=1

ai, . . . ,

p+1
∑

i=1

ai} .

This shows that the algorithm is correct for even p as well.

Computational complexity
The running time of Score-Reconstruction1 depends on the size of the score set
|S| as well as the largest increment ap = sp− sp−1. The details are left as a problem
for the Reader (see Problem 30.1-1).

Exercises
30.1-1 The out-degree matrix D+ of a tournament is defined as the 0 − 1 matrix
with (i, j) entry equal to 1 if player vi defeats player vj and 0 otherwise (see (30.13)).
A tournament is completely determined by its out-degree matrix. Write an O(n2)
algorithm to generate the out-degree matrix of a regular tournament on n vertices,
where n is any odd positive integer. Hint. Circularly place

(

n−1
2

)

ones in each row.)

30.1-2 Use Exercise 30.1-1 and the discussion in this section to determine the worst-
case running time of Score-Reconstruction1.
30.1-3 Obtain the out-degree matrix of a tournament with score set {1, 3, 6}.
How many vertices does this tournament have? Draw this tournament and give
its outdegree-matrix.
30.1-4 Use the tournament obtained in Exercise 30.1-3 to generate the out-degree
matrix of a 1-tournament with score set {1, 3, 6, 10}. Write the score sequence of
your tournament.

30.2. Score sets in 2-tournaments

Oriented graphs are generalizations of tournaments. Formally, an oriented graph

D(V, A) with vertex set V and arc set A is a digraph with no symmetric pairs of
directed arcs and without loops. With other words oriented graph is a directed graph
in which every pair of different vertices is connected with at most one arc, or oriented
graphs are (0, 1)-tournaments.

Thus tournaments are complete oriented graphs, in the sense that any pair of
vertices in a tournament is joined exactly by one arc. Several concepts defined for
tournaments can be extended in a meaningful way to oriented graphs. For example
score of a player (vertex) in a tournament is defined as its out-degree, as a player
either wins (and earns one point) or looses (earning no points) a two-way clash. In
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Figure 30.9 An oriented graph with score sequence [1, 3, 3, 5] and score set {1, 3, 5}.

1991 Peter Avery introduced the score structure for oriented graphs based on the
intuition that in a round-robin competition with ties allowed, a player may earn two,
one or no points in case the player wins, looses or ties respectively.

More precisely, the score of a vertex vi in a k-tournament D with n vertices is
defined as

a(vi) = ai = n− 1 + d+
vi
− d−

vi
,

where d+
vi

and d−
vi

are the out-degree and in-degree, respectively, of vi. The score
sequence of an oriented graph is formed by listing the vertex scores in non-decreasing
order. If we denote the number of non-arcs in D containing the vertex vi as d∗

vi
, then

ai = 2d+
vi

+ d∗
vi

.

With this score structure, an oriented graph can be interpreted as the result of a
round-robin competition in which ties (draws) are allowed, that is, the players play
each other once, with an arc from player u to v if and only if u defeats v. A player
receives two points for each win, and one point for each tie.

Avery gave a complete characterization of score sequences of 2-tournaments sim-
ilar to Landau’s theorem.

Theorem 30.3 (Avery, 1991) A nondecreasing sequence A = [a1, . . . , an] of non-
negative integers is the score sequence of a 2-tournaments if and only if

k
∑

i=1

ai ≥ k(k − 1) (30.4)

for 1 ≤ k ≤ n with equality when k = n.

This theorem is a special case of the theorem proved by Moon in 1963 or the theorem
proved by Kemnitz and Dulff in 1997 (see the theorem and its proof in Chapter
Comparison Based Ranking).
Proof

Just as in the case of tournaments, the score set of a 2-tournament is defined
as the set of scores of its vertices. It is worth noting that a 2-tournament has different
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score sets under Avery’s and Landau’s score structures. In fact, the score of a vertex v
under Avery’s score structure is twice the score of v under Landau’s score structure.
This is obviously due to Avery’s assumption that a win contributes 2 points to the
score.

The score set of an oriented graph can be determined by adapting Algorithm ??
as follows:

Quick-Set2(n,M)

1 S = ∅
2 for i = 1 to n
3 si = 0
4 for j = 1 to n
5 si = si + 2mij

6 if mij==0 and mji == 0
7 si = si + 1 // score sequence is computed
8 S1 = s1

9 k = 2
10 for i = 2 to n
11 if si 6= si−1 // is the founded score new?
12 Sk = si

13 k = k + 1
14 return s, S

The running time of Quick-Score-Set-Oriented is Θ(n2) since the nested
loop in lines 02–07 requires Θ(n2) the remaining lines require Θ(n) time.

In Section ?? we discussed score sets of tournaments and noted that every non-
empty set of non-negative integers is the score set of some tournament. In this
section we study the corresponding question for oriented graphs, i.e., which sets of
non-negative integers can arise as score sets of oriented graphs. Pirzada and Naikoo
investigated this question and gave two sufficient conditions for a set of nonnegative
integers to be the score set of some oriented graph.

Theorem 30.4 (Pirzada, Naiko, 2008) Let a, d, n nonnegative integers, and S =
{a, ad, ad2, . . . , adn}, with a > 0 and d > 1. Then there exists an oriented graph with
score set A except for a = 1, d = 2, n > 0 and for a = 1, d = 3, n > 0.

Theorem 30.5 (Pirzada, Naiko, 2008) If n is a positive integer and a1, a2, . . . , an

are nonnegative integers with a1 < a2 < · · · < an, then there exists an oriented graph
with an + 1 vertices and with score set S = {a′

1, a′
2, . . . , a′

n}, where

a′
i =

{

ai−1 + ai + 1 for i > 1 ,
ai for i = 1 .

(30.5)

Thus any set of positive integers whose elements form a geometric progression
is the score set of some oriented graph with few exceptions and any set of non-
negative integers whose elements are of the form (30.5) is also a score set. It follows
that every singleton set of non-negative integers is the score set of some oriented
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graph. On the other hand, for any positive integer n, the sets {1, 2, 22, . . . , 2n} and
{1, 3, 32, . . . , 3n} cannot be the score sets of an oriented graph. Therefore, unlike
in the case of tournaments, not all sets of non-negative integers are score sets of
oriented graphs. So far no complete characterization of score sets of oriented graphs
is known.

The proof of Theorem ?? depends on the following auxiliary assertion.

Corollary 30.6 Naikoo, Pirzada, 2008) The number of vertices in an oriented
graph with at least two distinct scores does not exceed its largest score.

Proof This assertion is the special case k = 2 of Lemma ?? due to Iványi and
Phong.

Here we omit formal proofs of Theorems ?? and ?? since they can be found on
the internet and since we will implicitly prove these theorems when we check the
correctness of Geometric-Construction and Adding-Construction, respec-
tively.

We first present a recursive algorithm that takes positive integers a, d,
and n, satisfying the condition of Theorem 30.4, as input and generates a
2-tournament D(V, A) with score set {a, ad, ad2, . . . , adn}. Let Np denote
the null digraph on p vertices, i.e., the digraph with n vertices and no arcs.
Geometric(a, d, n)

1 if n = 0
2 D = Na+1

3 return D
4 if n = 1
54?? if n ≥ 2

5?? n = n− 1
6 D(1) = Geometric(a,d,n)
6 U = vertex set D(1)
7 D = D(1)⊕N
8 then part[p]← ind
9 place[ind]← p

10 waiting[ind]← false

Example 30.2 Let a = 2, d = 2 and n = 2. Then the prescribed score set is {2, 4, 8}. The
first step is the call of Geometric with parameters (2, 2, 2).

Algorithm description
If n = 0, then the algorithm returns the null digraph Na+1. Note that Na+1 is well-
defined as a + 1 > 0. Each vertex of Na+1 has score a + 1− 1 + 0− 0 = a. Therefore
the score set of Na+1 is S = {a}. Thus the algorithm is correct for n = 0.

Now we prove the correctness of Geometric by induction. That is, we show
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that if the algorithm is valid for n = 0, 1, . . . , p for some integer p ≥ 1 then it is also
valid for n = p + 1. Let a and d be positive integers with a > 0 and d > 1 such
that for a = 1, d 6= 2, 3. By the induction hypothesis the algorithm can construct an
oriented graph D(1) with score set {a, ad, . . . , adp} and a, ad, . . . , adp are the distinct
scores of the vertices of D(1). Let U be the vertex set of D(1).

There are three possibilities:

• a = 1 and d > 3,

• a > 1 and d = 2 or

• a > 1 and d > 2.

Obviously, for d > 1 in all the above cases we have adp+1 ≥ 2adp. Also the score set
of D(1), namely {a, ad, . . . , adp}, has at least two distinct scores for p ≥ 1. Therefore,
by Lemma 30.6 we have |U | ≤ adp. Hence adp+1 ≥ 2|U | so that adp+1−2|U |+1 > 0.

Let Nadp+1−2|U |+1 be the null digraph with vertex set X.. The algorithm now

generates the vertex and arc disjoint union D = D(1)⊕Nadp+1−2|U |+1 and adds an arc

directed from each vertex in Nadp+1−2|U vert+1 to every vertex of D(1). The output
D(V, A) of Geometric-Seq-Construction, therefore, has |V | = |U | + adp+1 −
2|U |+1 = adp+1−|U |+1 vertices. Moreover, a+ |X|−|X| = a,, ad+ |X|−|X| = ad.
ad2 +|X|−|X| = ad2, . . . , adp +|X|−|X| = adp are the distinct scores of the vertices
in U, while ax = |U |−1 + |V |−0 = adp+1−|V |+ 1−1 + |V | = adp+1 for all vertices
x ∈ X.

Therefore the score set of D is S = {a, ad, ad2, . . . , adp, adp+1} which shows that
the algorithm works for n = p + 1. Hence the algorithm is valid for all a, d and n
satisfying the hypothesis of Theorem 30.4.

The recursive procedure Geometric runs n times and during its ith run the
procedure adds O(adn+1−i) arcs to the oriented graph D. The overall complexity of
the algorithm is therefore O(nadn).

As noted in Theorem 30.4, there exists no 1-tournament when either a = 1, d =
2, n > 0 or a = 1, d = 3, n > 0. It is quite interesting to investigate these
exceptional cases as it provides more insight into the problem.

Let us assume that S = {1, 2, 22, . . . , 2n} is a score set of some oriented graph
D for n > 0. Then there exist positive integers, say x1, x2, x3, . . . , xn+1 such that

S1 = [1x1 , 2x2 , . . . , (22)x3 , . . . , (2n)xn+1

is the score sequence of D. Therefore, by relations (30.4) of score sequences of 1-
tournaments, we have

x1 + 2x2 + 22x3 + · · ·+ 2nxn+1 =

(

n+1
∑

i=1

xi

)(

n+1
∑

i=1

xi − 1

)

,

which implies that x1 is even. However, x1 is a positive integer, therefore x1 ≥ 2.
Let the scores be a1 = 1, a2 = 1 and a3 ≥ 1. By inequalities (30.4) a1 + a2 + a3 ≥
3(3− 1) = 6, or in other words, a3 ≥ 4. This implies that x2 = 0, a contradiction.

The proof of the other exceptional case (S = {1, 3, 32, . . . , 3n}) is left as an
exercise (Exercise 30.2-1).



1516 30. Score Sets and Kings

The next algorithm takes the set I = {a1 < a2 < · · · < an} consisting of n
nonnegative integers as input and recursively constructs a 2-tournament D(V, A)
the score set S = {a′

1, a′
2, . . . , a′

n} where a′
i are of the form 30.5.

Adding(n, In)

1 if n = 0
2 D = Na1+1

3 return D
4 n = n− 1
5 D(1) = Adding-Construction(n, In)
6 D = D1 ⊕Nan+1−an

7 Add arcs to D such that
8 Nn dominates D(1)
9 return D

Algorithm description
If n = 1, the algorithm returns the null digraph Na1+1. Each vertex of Na1+1 has
the score a1 + 1− 1 + 0− 0 = a1 = a′

1. Therefore the score set of Na1+1 is S = {a′
1}

as required.
We prove the correctness of General-Construction in general by induction

on n. Assume that the algorithm is valid for n = 1, 2, . . . , p, for some integer p ≥ 2.
We show that the algorithm is also valid for n = p + 1. Let a1, a2, . . . , ap+1 be
non-negative integers with a1 < a2 < · · · < ap+1. Since a1 < a2 < · · · < ap, by the
induction hypothesis, the algorithm returns an oriented graph D(1) on ap +1 vertices
with score set {a′

1, a′
2, . . . , a′

p}, where a′
i is given by equations (30.5). That is, score

set of D(1) is {a1, a1 + a2 + 1, a2 + a3 + 1, . . . , ap−1 + ap + 1}. So a1, a1 + a2 + 1,
a2 +a3 +1, . . . , ap−1 +ap +1 are the distinct scores of the vertices of D. Let X be the
vertex set of D(1) so that |X| = ap +1. Since ap+1 > ap, ap+1−ap > 0, the algorithm
constructs a new oriented graph D = D(1)⊕Np+1 with vertex set V = X ∪Y, where
Y is the vertex set of Np+1 and |Y | = ap+1 − ap. Arcs are added to D such that
there is an arc directed from each vertex in Y to every vertex in X. Thus D has
|V | = |X|+ |Y | = ap +1+ap+1−ap = ap+1 +1 vertices. The distinct score of vertices
in X are a1 + |Y |−|Y | = a1 = a′

1, a1 +a2 +1+ |Y |−|Y | = a1 +a2 +1 = a′
2, a2 +a3 +

1 + |Y | − |Y | = a2 + a3 + 1 = a′
3, . . . , ap−1 + ap + 1 + |Y | − |Y | = ap−1 + ap + 1 = a′

p,
while ay = |X| − 1 + |V | − 0 = ap+1 + 1− 1 + ap + 1 = ap + ap+1 + 1 = a′

p+1 for all
y ∈ Y.

Therefore the score set of D is S = {a′
1, a′

2, . . . , a′
p, a′

p+1} which proves the va-
lidity of algorithm for n = p + 1. Hence by induction, General-Construction is
valid for all n.

The analysis of computational complexity of General-Construction is left
as an exercise (Exercise 30.2-2).

Exercises
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30.2-1 Prove that there exists no oriented graph with score set {1, 3, 32, . . . , 3n} for
any n > 0.
30.2-2 Adding-Construction is a recursive algorithm. Analyse its running time
and compare its performance with the performance of Geometric-Construction.

30.2-3 Implement Geometric-Construction in a suitable programming lan-
guage and use it to construct an oriented graph with score set {2, 4, 8}. Write the
score sequence of your oriented graph.
30.2-4 Implement General-Construction in a suitable programming language
and use it to construct an oriented graph with score set {1, 4, 6, 9}. Write the score
sequence of your oriented graph.
30.2-5 Give a proof of Lemma 30.6.(multitournaments)
30.2-6 For any non-negative integer n, what is the score set of the regular tourna-
ment T2n+1 when considered as an oriented graph.
30.2-7 Determine the score set of the oriented graph D = T3 ⊕ T5,, where T5 dom-
inates T3, i.e., there is an arc directed from every vertex of T5 to every vertex of T3.

30.2-8 Write an O(n) algorithm to determine the score set of directed cycles (i.e.,
cycles with directed edges). How can we make this algorithm work for directed wheels
(note that a wheel is a cycle with an additional vertex joined to all the vertices on
the cycle).

30.3. Unicity of score sets

k-tournaments (multitournaments) are directed graphs in which each pair of ver-
tices is connected with exactly k arcs.

Reid formulated the following conjecture in [33].

Conjecture 30.7 Any set of nonnegative integers is the score set of some 1-
tournament T.

Using Landau’s theorem this conjecture can be formulated in the following arith-
metic form too.

Conjecture 30.8 If 0 ≤ r1 < r2 < · · · < rm, then there exist such positive integers
x1, x2, . . . , xm, that

j
∑

i=1

xiri ≥
(
∑j

i=1 xi)(
∑j

i=1 xi − 1)

2
, j ∈ [1 : m]

and
m
∑

i=1

xiri =
(
∑m

i=1 xi)(
∑m

i=1 xi − 1)

2
.

In this case we say that the sequence s = 〈s1, . . . , sn〉 = 〈rx1

1 , . . . , rxm
m 〉 realizes

the sequence r = 〈r1, . . . , rm〉 or s is a solution for r.
Reid gave a constructive proof of his conjecture for sets containing one, two or
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three elements [33].
Later Hager published a constructive proof for sets with four and five elements

[11] and Yao [41] published the outline of a nonconstructive proof of the general
case.

A score set is called k-unique, if there exists exactly 1 score sequence of k-
tournaments generating the given set. In the talk we investigate the following ques-
tions:

1. characterization of the unique score sets of 1-tournaments;

2. extension of the Reid’s conjecture to 2-tournaments.

30.3.1. 1-unique score sets

At first we formulate a useful necessary condition.

Lemma 30.9 (Iványi and Phong, 2004) If k ≥ 1, then for any (n, k)-tournament
holds that the sequence s is a solution for r, then in the case m = 1 we have

n = 2r1 + 1 (30.6)

and in the case m ≥ 2 we have

2r1

k
+ 1 < n <

2rm

k
+ 1 (30.7)

and
n ≥ rm + 1 . (30.8)

Proof If

This lemma implies the exact answer for the case m = 1.

Corollary 30.10 (Iványi and Phong, 2004) If r = 〈r1〉, then exactly the sequence
s = 〈r2r1+1

1 〉 is a solution for r.

Proof Lemma ?? implies that only this solution is acceptable. One can check that
it satisfies the required inequality and equality.

Now we present a useful method of the investigation of the uniqueness. Let
r = 〈a, a + d〉. Then according to the Reid-equality we get

2ax + 2(a + d)y = n(n− 1)

implying

y =
n(n− 2a− 1)

2d
. (30.9)

But here only the values n = 2a + 1 + i (i ∈ [1, 2d− 1]) are permitted where

i ≥ d + 1− a . (30.10)
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By substitution a = (q − 1)d from (30.9) we get

y =
(2qd− 2d + 2r + 1 + i)i

2d
. (30.11)

Here y must be an integer, so transform this formula into

y = i(q − d) +
i(2r + 1 + i)

2d
. (30.12)

Theorem 30.11 If 0 ≤ a < b, then there exist positive integers x and y satisfying

ax ≥
x(x− 1)

2

and

ax + by =
(x + y)(x + y − 1)

2
.

In the following cases there is only one solution:

• a = 0;

• d = 1;

• d = 2.

In the following case there are at least two solutions:

• d is odd and 3 ≤ d ≤ a.

Proof a) Existence of a solution (due to Waldrop). Let d = b−a and i = 2d−2r−1.
Then n = 2(b− r), y = q(2d− 2r − 1), x = q(2r + 1) satisfy all requirements.

b) Uniqueness. If a = 0, then d = b, q = 1 and y is integer only if i = 2b− 1. So
we get the unique 〈01, b2b−1〉 solution.

If d = 1, then only i = 1 is permitted, implying the unique solution 〈ab, bb〉.
If d = 2 or d is odd, then we also can analyse formula (30.12).

This theorem left open the case when the difference d is odd and the investigated
set is sparse and also the case when the difference is an even number greater then 2.

30.3.2. 2-unique score sets

Now we present a new form of Reid-problem for 2-tournaments.
For a fixed sequence q[m] = 〈q1, . . . , qm〉 with q1 < · · · < qm of positive integers,

we shall denote by G(q[m]) the set G of sequences g = 〈g1, . . . , gm〉 such that

k
∑

i=1

qigi ≥

(

k
∑

i=1

gi

)2

, k ∈ [1 : m− 1]

and
m
∑

i=1

qigi =

(

m
∑

i=1

gi

)2

.
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Here we also say that g is a solution for q.
We wish to give necessary and sufficient conditions for q[m] to have a solution

that is a nonempty G(q[m]).)

Theorem 30.12 For the sequence q[1] = 〈q1〉, we have G(q[1]) = 〈q1〉.

Proof If q[1] = 〈q1〉, then it is obvious that the solution of q1g1 = g2
1 is given in the

form g1 = q1. Hence we have G(q[1]) = 〈q1〉.

Theorem 30.13 Let q[2] = 〈q1, q2〉 be a sequence of positive integers with d =
q2 − q1 > 0. Then G(q[2]) 6= ∅ if and only if either d 6 |(q1, q2) or d|(q1, q2) and there
is a prime p such that p2|d.

Proof According to the definition of G(q[m]), we need only find positive integers
g1, g2 such that q1 ≥ g1 and q1g1 + q2g2 = (g1 + g2)2.

Let q, r be integers for which q2 = qd + r, where 0 ≤ r < d. If d 6 |(q1, q2), then
r 6= 0 and let g1 = rq and g2 = q2 − r(q + 1). Hence we have

g1 = rq = r
q2 − r

q2 − q1
= r + r

q1 − r

q2 − q1

< r + (R1 − r) = R1 ,

g2 = R2 − r(q + 1) =

q2 − (q2 − r)
r

q2 − q1
− r

> q2 − (q2 − r)− r = 0

and
q1g1 + q2g2 = q1rq + q2

2 − q2r(q + 1)

= q2
2 + r(q1q − q2q + q2)− 2q2r =

= (q2 − r)2 = (g1 + g2)2.

Now assume that d|(q1, q2) and there is a prime p such that p2|d. In this case r = 0
and we choose g1, g2 as follows:

g1 :=
q2

p
−

d

p2
and g2 := g1(p− 1) .

It is obvious that
g1 > 0, g2 > 0 , g1 ≤ R1

and
q1g1 + q2g2 = g1(q1 + (p− 1)q2)

= g1(pq2 − d) =
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= g1p2(
q2

p
−

d

p2
) = (g1p)2 = (g1 + g2)2.

Finally, assume that d = 1 or d|(q1, q2) and d is the product of distinct primes.
If there are positive integers g1, g2 such that q1 ≥ g1 and q1g1 + R2g2 = (g1 + g2)2,
then we have d|g1 + g2 and

1

d
(g1 + g2)2 −

q1

d
(g1 + g2) = g2 > 0 ,

1

d
(g1 + g2)2 −

R2

d
(g1 + g2) = −g1 < 0 ,

consequently
q2

d
=

q1

d
+ 1 >

g1 + g2

d
>

q1

d
.

This is impossible.

Theorem 30.14 Iványi, Phong, 2004 Let q[2] =< q1, q2 > be the sequence of
positive integers with conditions q1 < R2, (q1, q2) = 1, 2q1 > q2 and d := q2−R1 has
s distinct prime factors. Then

|G(q[2])| = 2s − 1 .

Proof Since d = q2 − q1 < q1 and (q1, q2) = 1, the congruence x2 ≡ q2x (mod d)
has 2s − 1 solutions in positive integers less than d. For each solution x we set

g1 = x(q2−x)
d

and g2 = (d − x) q2−x

d
. One can check that g1, g2 satisfy conditions

q1 ≥ g1 and q1g1 + q2g2 = (g1 + g2)2.

Exercises
30.3-1 How many ?
30.3-2 Design an algorithm

30.4. Kings and serfs in tournaments

Sociologists are often interested in determining the most dominant actors in a social
network. Moreover, dominance in animal societies is an important theme in ecology
and population biology. Social networks are generally modelled as digraphs with
vertices representing actors and arcs representing dominance relations among ac-
tors. The concept of “king” is very closely related to dominance in digraphs. Kings
and serfs were initially introduced to study dominance in round-robin competitions.
These concepts were latter extended to more general families of digraphs such as
multipartite tournaments, quasi-transitive digraphs, semicomplete multipartite di-
graphs and oriented graphs. In this section our focus will be on algorithmic aspects of
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Figure 30.10 A tournament with three kings {u, v, y} and three serfs {u, v, x}. Note that z is
neither a king nor a serf and {u.v} are both kings and serfs.

kings and serfs in tournaments and their applications in majority preference voting.
A king in a tournament dominates every other vertex either directly or through

another vertex. To make the idea more formal we define a path of length k from
a vertex u to a vertex v in a tournament (or any digraph) as a sequence of arcs
e1, e2, . . . , ek where u is the initial vertex of e1, v is the terminal vertex of ek and the
terminal vertex of ei is the same as the initial vertex of ei+1, for all 1 ≤ i ≤ k − 1.
If there is a path of length 1 or 2 from a vertex u to a vertex v, then v is said to be
reachable from u within two steps. Analogously, if there is a path of length 1, 2, . . .
or r from u to v then v is said to be reachable from u within r steps. Let T be an
n-tournament. A vertex u in T is called an r-king, where 1 ≤ r ≤ n − 1, if every
other vertex v in the tournament is reachable within r steps from u. A vertex u is
called an r-serf if u is reachable within r if u is reachable within r steps from every
other vertex v in T. In particular, a 2-king is simply called a king and a 2-serf is
called a serf.

S. B. Maurer introduced the dual terms of king and serf in a delightful expo-
sition of a tournament model for dominance in flocks of chicken. In his influential
series of papers on dominance in animal societies, H. G. Landau proved that every
tournament has a king (although he did not use the word king). In fact, he showed
the following.

Theorem 30.15 (Landau, 1953) Every vertex of maximum score in a tournament
is a king.

The proof is quite intuitive. Suppose to the contrary that u is a vertex with maximum
score in a tournament T and u is not a king. Then there exists another vertex v in T
such that v is not reachable from u within 2 steps. But this means that u and all out-
neighbours of u are reachable from v in 1 step and so s(v) > s(u), a contradiction.
Another classical result by J. W. Moon states that

Theorem 30.16 (Moon, 1968) A tournament without transmitters (vertices with
in-degree 0) contains at least three kings.

It is natural to ask if the bound on the number of kings given in Theorem 30.16
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is tight. The answer is yes, as demonstrated by the following example.

Example 30.3 Let T be a tournament with vertex set {v1, v2, . . . , v5}. Let us denote by
(u, v), an arc directed from u to v. Suppose that the arc set of T consists of the arcs
(v3, v5), (v4, v3), all arcs of the form (vj−1, vj), with 1 < j ≤ 5 and all arcs of the form
(vj+2, vj), (vj+3, vj), . . . , (vn, vj) with j = 1, 2, 4. Then it can be easily verified (Exercise
30.4-2) that T has no transmitters and v2, v3 and v4 are the only kings in T.

K. B. Reid proved the existence of a tournament with an arbitrary number of
vertices and an arbitrary number of kings, with few exceptions.

Theorem 30.17 (Reid, 1982) For all integers n ≥ k ≥ 1 there exists a tournament
on n vertices with exactly k kings except when k = 2 or when n = k = 4 (in which
case no such n-tournament exists).

Hence no tournament has exactly two kings. The above theorems can be stated
just as well in terms of serfs. To see this, note that the converse T ′ of a tournament
T, obtained by reversing the arcs of T, is also a tournament and that the kings and
serfs of T and T ′ are interchanged.

The king set of a tournament consists of all kings in the tournament. We can
define the serf set analogously. The problem of determining the king set of a tour-
nament is very important both for theoretical and practical considerations. In voting
theory literature, political scientists often refer to the uncovered set in majority pref-
erence voting. This uncovered set is actually the king set for the tournament whose
vertices consist of the candidates to be elected and arcs represent the outcomes of
the two-way race between candidates. Here we present a simple polynomial time
algorithm for determining the king set of a tournament. Given an n-tournament T,
let us define an n× n matrix D+

T as

(D+
T )ij =

{

1 if (vi, vj) is an arc of T ,
0 otherwise .

(30.13)

We call D+
T , the out-degree matrix of T. When there is no danger of ambiguity

we will drop the subscript T and simply denote the out-degree matrix by D+. King-

Set takes a tournament T (V, A) as input, calculates the out-degree matrix D+ of T
and uses it to generate the king set K of T. Let O be the n× n zero matrix and let
I be the n× n identity matrix.



1524 30. Score Sets and Kings

King-Set(V, A)

1 D+ =
2 K = ∅
3 for i = 1 to n
4 for j = 1 to n
5 if (vi, vj) ∈ A
6 (D+)ij = 1
7 M = I + D+ + (D+)2

8 K = {vi ∈ V |∀vj ∈ V, (M)ij 6= 0}
9 Nn dominates D(1)
9 return K

Algorithm description
The algorithm works on the same principle as the algorithm for finding the number
of paths, from one vertex to another, in a digraph (Exercise 30.4-1 asks you to derive
this algorithm). The (i, j) entry of the matrix (D+)2 is equal to the number of paths
of length two from vertex vi to vertex vj (check this!). Therefore, the (i, j) entry
of matrix D+ + (D+)2 counts the number of paths of length one or two from vi to
vj ; and if vertex vi is a king, all entries in the ith row of I + D+ + (D+)2 must be
non-zero.

The computational complexity of Algorithm King-Set depends on the way
(D+

T )2 is computed. If naive matrix multiplication is used, the algorithm runs in
Θ(n3) time. However, using the fast matrix multiplication by Coppersmith and
Winograd, the running time can be reduced to O(n2.38). The Reader should note
that by using the duality of kings and serfs, King-Set can be adapted for finding
the serf set of a tournament.

King sets in majority preference voting
Kings frequently arise in political science literature. A majority preference voting

procedure asks each voter to rank candidates in order of preference. The results can
be modeled by a tournament where vertices represent the candidates and arcs point
toward the loser of each two way race, where candidate u defeats candidate v if some
majority of voters prefer u to v. Political scientists are often interested in determining
uncovered vertices in the resulting tournament. A vertex u is said to cover another
vertex v if u defeats v and also defeats every vertex that v defeats.

The covering relation is clearly transitive and has maximal elements, called un-

covered vertices. An uncovered vertex u has the strategically important property
that u defeats any other vertex v in no more than two steps, i.e., either

1. u defeats v or

2. there is some third alternative w such that u defeats w and w defeats v.

Thus an uncovered vertex is actually a king. In fact the uncovered set, consisting of
all uncovered vertices, is precisely the set of all kings (see Exercise 30.4-8).

The idea behind finding kings in a tournament can be easily extended to finding
r-kings for any positive integer r.
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rKing-Set(V, A, r)

1 D+ = 0
2 K = ∅
3 for i = 1 to n
4 for j = 1 to n
5 if (vi, vj) ∈ A
6 (D+)ij = 1
7 M = I + D+ + . . . + (D+)r

8 K = {vi ∈ V |∀vj ∈ V, (M)ij 6= 0}
9 return K

The above algorithm runs in O(rn3) if the matrix multiplications are performed
naively, and in O(rn2.38) time if fast matrix multiplication is incorporated.

As we have seen, kings dominate in tournaments. However, there exists a stronger
notion of dominance in tournaments in the form of strong kings. Let us write u→ v
to denote that u defeats v in a tournament T, or in other words (u, v) is an arc of T. If
U1 and U2 are disjoint subsets of vertices of T then we write U1 → U2 to denote that
all vertices in U1 defeat all vertices in U2. We define BT (u, v) = {w ∈ V − {u, v} :
u→ w and w → v}, where V denotes the vertex set of T. Let bT (u, v) = |BT (u, v)|.
When no ambiguity arises, we drop the subscript T from the notation.

A vertex u in a tournament T is said to be a strong king if u→ v or b(u, v) >
b(v, u) for every other vertex v of T.

Note that bT (u, v) is the number of paths of length two through which v is
reachable from u. Therefore, bT (vi, vj) = ((D+

T
)2)ij , where D+

T is the out-degree
matrix of T.

Obviously, it is not true that every king is a strong king. For example, Figure
30.11 demonstrates a tournament with three kings, namely x, y and z. However,
only x and y are strong kings as b(z, x) < b(x, z). Figure 30.11 also shows that when
searching for the most dominant vertex in real life applications, a king may not be
the best choice (vertex z is a king, but it defeats only one vertex and is defeated by
all other vertices). Therefore, choosing a strong king is a better option. This intuition
is further confirmed by the fact that, in the probabilistic sense it can be shown that
in almost all tournaments every vertex is a king.

We have already shown that every tournament has a king. We now prove that
every tournament has a strong king.

Theorem 30.18 (???, ????) Every vertex with maximum score in a tournament
is a strong king.

Proof Suppose u is a vertex with maximum score in a tournament T that is not a
strong king. Then there is a vertex v in T such that v → u and b(u, v) ≤ b(v, u). Let
V be the vertex set of T. Define

W = {w ∈ V − {u, v} : u→ w and v → w} .

Then s(u) = b(u, v)+ |W | and s(v) = b(v, u)+ |W |+1. This implies that s(u) < s(v),
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Figure 30.11 A tournament with three kings and two strong kings

a contradiction.

The problem of finding strong kings is no harder than finding kings in tourna-
ments. Like King-Set, we present a polynomial time algorithm for finding all strong
kings in a tournament using the out-degree matrix D+.

Strong-Kings(V, A)

1 D+ = 0
2 K = ∅
3 for i = 1 to n
4 for j = 1 to n
5 if (vi, vj) ∈ A
6 D+

ij = 1

7 M = D+ + (D+)2

8 K = {vi ∈ V | ∀j(1 ≤ j ≤ n and j 6= i), Mij > Mji}
9 return K

Strong-Kings has the same order of running time King-Set.
So far we have been focusing on finding certain type of dominant vertices (like

kings and strong kings) in a tournament. Another very important problem is to
construct tournaments with a certain number of dominant vertices. Maurer posed the
problem of determining all 4-tuples (n, k, s, b) for which there exists a tournament on
n vertices with exactly k kings and s serfs such that b of the kings are also serfs. Such
a tournament is called an (n, k, s, b)-tournament. For example the tournament given
in Figure ?? is a (5, 3, 3, 2)-tournament. Reid gave the following characterization of
such 4-tuples.

Theorem 30.19 Suppose that n ≥ k ≥ s ≥ b ≥ 0 and n > 0. There exists an
(n, k, s, b)-tournament if and only if the following conditions hold.

1. n ≥ k + s− b,

2. s 6= 2 and k 6= 2,
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3. either n = k = s = b 6= 4 or n > k and s > b,

4. (n, k, s, b) is none of (n, 4, 3, 2), (5, 4, 1, 0), or (7, 6, 3, 2).

However, the corresponding problem for strong kings has been considered only
recently. For 1 ≤ k ≤ n, a tournament on n vertices is called an (n, k)-tournament if
it has exactly k strong kings. The construction of (n, k)- tournaments follows from
the results proved by Chen, Chang, Cheng and Wang in 2004. The results imply the
existence of (n, k)-tournaments for all 1 ≤ k ≤ n satisfying

k 6= n− 1, when n is odd (30.14)

k 6= n, when n is even . (30.15)

Algorithm nk-Tournament takes positive integers n and k as input satisfying
the constraints (26.2) and (26.3) and outputs an (n, k)-tournament and the set K of
its strong kings. Also for any vertex u of a tournament T, we adopt the notation of
Chen et al. in letting O(u) (respectively, I(u)) denote the set of vertices reachable
from u in one step (respectively, set of vertices from which u is reachable in one
step). Note that O(u) and I(u) are often referred to as the first out-neighbourhood
and first in-neighbourhood of u respectively.

nk−Tournament(n, k)

1 K = ∅
3 T = null digraph on n verices
4 if k is odd
5 T = Tk

6 K = {v1, . . . , vk}
7 if n 6= k
8 for i = k + 1 to n
9 V = V ∪ {vi}

10 A = A ∪ {(u, vi) : u ∈ V − {vi}}
11 if k is even
12 T = Tk−1

13 V = V ∪ {x, y, z}
14 K = {v1, . . . , vk−3, x}
15 choose u ∈ V arbitrarily
16 A = A ∪ {(v, x) : v ∈ O(u)}
17 A = A ∪ {(x, v) : v ∈ {u, y} ∪ I(u)}
18 A = A ∪ {(v, y) : v ∈ {u} ∪ I(u) ∪O(u)}
19 A = A ∪ {(v, z) : v ∈ {u} ∪ I(u)}
20 A = A ∪ {(z, v) : v ∈ O(u)}
21 if n 6= k + 2
22 for i = k + 1 to n
23 V = V ∪ {vi}
24 A = A ∪ {(u, vi) : u ∈ V − {vi}}
25 return T, K
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Figure 30.12 Construction of an (n, k)-tournament with even k.

Algorithm description
The algorithm consists of performing two separate inductions to generate an (n, k)-
tournament, one for odd k and one for even k.. If k is odd then we start by letting
T = Tk, the regular tournament on k vertices (which always exists for odd k),
and inductively add n − k vertices to T that are defeated by all the vertices of Tk.
Thus the resulting tournament has n vertices and k kings (the vertices of Tk). The
construction for even k is a bit more involved. We start with T = Tk−1. Note that
every vertex of Tk−1 has score m =

(

n−4
2

)

. We then add three vertices x, y and z
and several arcs to Tk−1 such that for a fixed existing vertex u of Tk−1.

• O(u)→ {x} → {u, y} ∪ I(u),

• {u} ∪ I(u) ∪O(u)→ {y} → {x, z},

• {u} ∪ I(u)→ {z} → O(u).

The resulting tournament T (illustrated in Figure 30.12) has k + 2 vertices with
scores s(x) = |I(x)| + 2 = m + 2, s(y) = 2, s(z) = |O(x)| = m and s(v) = m + 2,,
for all vertices v of Tk−1. Now by Theorem 30.18 all vertices v of Tk−1 and the new
vertex x are strong kings of T, while y and z are not (Exercise 30.4-9). Thus T is a
(k + 2, k)-tournament that can now be extended to an (n, k)-tournament by adding
n− k − 2 more vertices that are defeated by all the existing vertices of T (just like
in the case of odd k).
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nk-Tournament runs in quadratic time as it takes O(n2) operations to con-
struct a regular tournament and the remaining steps in the algorithm are completed
in linear time.

Exercises
30.4-1 The out-degree matrix D+ of an n-vertex oriented graph is an n×n matrix
whose (i, j) entry is given by dij = number of arcs directed from vi to vj . Describe
an algorithm based on the out-degree matrix for finding the number of paths of
length k < n between any two vertices of the graph.
30.4-2 Draw the tournament discussed in Example 30.3 and show that it has no
transmitters and exactly three kings.
30.4-3 Using the 5-tournament in Example 30.3 give the construction of an n-
tournament with no transmitters and exactly three kings.
30.4-4 For every odd number n ≥ 3, give an example of an n-tournament, in which
all vertices are serfs.
30.4-5 Prove that any tournament on 4 vertices contains a vertex which is not a
king.
30.4-6 A bipartite tournament is an orientation of a complete bipartite graph. A
vertex v of a bipartite tournament is called a 4-king2 (or simply a king) if there is a
directed path of length 4 from v to every other vertex of the tournament. Derive an
algorithm to obtain all 4-kings in a bipartite tournament and compare its complexity
with the complexity of r-Kings for finding r-kings in ordinary tournaments.
30.4-7 As the name suggests a multipartite tournament is an orientation of a com-
plete multipartite graph. Extend the algorithm obtained in Exercise 30.4-6 to find
all 4-kings in multipartite tournaments. Again compare the performance of your al-
gorithms with r-Kings.
30.4-8 Prove that the uncovered set arising in majority preference voting is exactly
the king set of the majority preference tournament.
30.4-9 Show that when k is even, the output of nk-Tournament has exactly k
kings.

30.5. Weak kings in oriented graphs

In the previous section we studied dominance in tournaments and used the terms
kings and strong kings to describe the dominant vertices in a tournament. However,
in most practical applications the underlying digraph is not a tournament. Rather we
are interested in determining dominant vertices in an oriented graph. For instance,
in a social network, an arc (u, v) denotes that actor u has some relation with actor
v.. Since most social relations (such as hierarchy relations) are irreflexive and asym-
metric, a majority of social networks can be modelled as oriented graphs. Therefore,
we would like to generalize the concept of dominance from tournaments to oriented
graphs. In Section ??, we have already defined kings and r-kings in the context of

2Several bipartite and multipartite tournaments have no 2-king or 3-king. However, a multipartite
tournament with at least one vertex of in-degree zero contains a 4-king. Therefore it is logical to
look for 4-kings in a multipartite tournament.



1530 30. Score Sets and Kings

general digraphs. The same definitions are applicable to oriented graphs.
As stated in the beginning of the chapter, oriented graphs can be considered as

round-robin competitions in which ties are allowed. Thus the the classical notion
of king, that is a vertex that defeats every other vertex either directly or through
another vertex, is too strong for oriented graphs. To overcome this difficulty, the
study of the so-called “weak kings” was initiated in 2008 by S. Pirzada and N. A.
Shah. Here we follow their notation. For any two vertices u and v in an oriented
graph D,, one of the following possibilities exist.

1. An arc directed from u to v, denoted by u(1− 0)v (i.e., u defeats v).

2. An arc directed from v to u , denoted by u(0− 1)v (i.e., v defeats u).

3. There is no arc from u to v or from v to u , and is denoted by u(0 − 0)v (i.e.,
there is a tie).

A triple in an oriented graph is an induced oriented subgraph with three vertices.
For any three vertices u, v and w, the triples of the form u(1− 0)v(1− 0)w(1− 0)u,
u(1− 0)v(1− 0)w(0− 0)u, u(0− 0)v(1− 0)w(1− 0)u or u(1− 0)v(0− 0)w(1− 0)u
are said to be intransitive, while the triples of the form u(1− 0)v(1− 0)w(0− 1)u,
u(0 − 1)v(1 − 0)w(1 − 0)u, u(1 − 0)v(0 − 1)w(1 − 0)u, u(1 − 0)v(0 − 1)w(0 − 0)u,
u(0 − 1)v(0 − 0)w(1 − 0)u, u(0 − 0)v(1 − 0)w(0 − 1)u, u(1 − 0)v(0 − 0)w(0 − 1)u,
u(0 − 0)v(0 − 1)w(1 − 0)u, u(0 − 1)v(1 − 0)w(0 − 0)u, u(1 − 0)v(0 − 0)w(0 − 0)u,
u(0 − 1)v(0 − 0)w(0 − 0)u, u(0 − 0)v(1 − 0)w(0 − 0)u, u(0 − 0)v(0 − 1)w(0 − 0)u,
u(0−0)v(0−0)w(1−0)u or u(0−0)v(0−0)w(0−1)u are said to be transitive. An
oriented graph is said to be transitive if all its triples are transitive. The converse
D of an oriented graph D is obtained by reversing each arc of D.

Let u and v be vertices in an oriented graph D such that either u(1 − 0)v or
u(0− 0)v or u(1− 0)w(1− 0)v or u(1− 0)w(0− 0)v or u(0− 0)w(1− 0)v for some
vertex w in D. Then v is said to be weakly reachable within two steps from u. If
either u(1 − 0)v, or u(1 − 0)w(1 − 0)v for some w in D, then v is reachable within
two steps from u.

A vertex u in an oriented graph D is called a weak king if every other vertex
v in D is weakly reachable within two steps from u. A vertex u is called a king if
every other vertex v in D is reachable within two steps from u. A vertex u in an
oriented graph D is called a weak serf if u is weakly reachable within two steps
from every other vertex in D, and a vertex u in D is called a serf if u is reachable
within two steps from every other vertex v in D.

We note that there exist oriented graphs on n vertices with exactly k kings for
all integers n ≥ k ≥ 1, with the exception of n = k = 4. Theorem 30.17 guarantees
the existence of complete oriented graphs (tournaments) with n vertices and exactly
k kings for all integers n ≥ k ≥ 1, with the exceptions k = 2 and n = k = 4.
An oriented graph D with exactly two kings can be constructed as follows. Let
V = {v1, v2, . . . , vn} be the vertex set of D, with arcs defined as v1(1 − 0)vi, for
i = 2, 4, . . . , n; v1(0 − 1)v3; v2(1 − 0)v3 and v2(1 − 0)vi, for 4 ≤ i ≤ n; and for all
other i 6= j, vi(0 − 0)vj . The vertices v1 and v3 are the only kings in D (Exercise
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Figure 30.13 Six vertices and six weak kings.

Figure 30.14 Six vertices and five weak kings.

Figure 30.15 Six vertices and four weak kings.

30.5-1).
There do not exist any complete or incomplete oriented graphs with 4 vertices
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Figure 30.16 Six vertices and three weak kings.

Figure 30.17 Six vertices and two weak kings.

and exactly 4 kings. Suppose to the contrary that this is the case and let D be
the incomplete oriented graph with 4 vertices, all of whom are kings. Then D can
be extended to a tournament on 4 vertices by inserting all the missing arcs with
arbitrary orientation. Clearly such a tournament contains 4 kings, which contradicts
Theorem 30.17.

The rest of the section is aimed at investigating weak kings in oriented graphs as
they present a more suitable notion of dominance in oriented graphs. The score of a
vertex in an oriented graph was defined in Section ??. Considering Theorem 30.15,
it is natural to ask if a vertex of maximum score in an oriented graph is a king. The
answer is negative as shown by the following example:

Example 30.4 Consider the oriented graph D shown in Figure 30.18. The scores of vertices
v1, v2, v3 and v4 are respectively 2, 3, 3 and 4. Clearly, v4 is a vertex of maximum score
but is not a king as v1 is not reachable within two steps from v4. However, v4 is a weak
king.

Now consider the oriented graph D∗ with vertices u1,, u2, u3, u4 and u5, and arcs
defined by u1(1 − 0)u2, u2(1 − 0)ui, for i = 3, 4, q5 and ui(0 − 0)uj for all other i 6= j.
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Figure 30.18 Vertex of maximum score is not a king.

Clearly, s(u1) = 5, s(u2) = 6, s(u3) = 3, s(u4) = 3, and s(u5) = 3. Evidently, u1 is a king
in D∗ whereas the vertex u2 of maximum score is not a king.

However, we do have the following weaker result.

Theorem 30.20 If u is a vertex with maximum score in a 2-tournament D, then
u is a weak king.

Proof Let u be a vertex of maximum score in D, and let X, Y and Z be respectively
the set of vertices x, y, and z such that u(1 − 0)x, u(0 − 0)y, and u(0 − 1)z. Let
|X| = n1, |Y | = n2 and |Z| = n3. Clearly, s(u) = 2n1 + n2. If n3 = 0, the result is
trivial. So assume that n3 6= 0. We claim that each z ∈ Z is weakly reachable within
two steps from u. If not, let z0 be a vertex in Z not weakly reachable within two
steps from u. Then for each x ∈ X and each y ∈ Y, z0(1 − 0)x, and z0(1 − 0)y or
z0(0 − 0)y. In case z0(1 − 0)x and z0(1 − 0)y for each x ∈ X and each y ∈ Y, then
s(z0) ≥ 2 + 2n1 + 2n2 = s(u) + n2 + 2 > s(u). which contradicts the choice of u. If
z0(1−0)x and z0(0−0)y for each x ∈ X and each y ∈ Y, then s(z0) ≥ 2+2n1 +n2 =
s(u) + 2 > s(u), again contradicting the choice of u. This establishes the claim, and
hence the proof is complete.

We now consider the problem of finding all weak kings in an oriented graph (as
kings can be determined by applying Algorithm ??). Let D− and D+ respectively
denote the in-degree and out-degree matrix of an oriented graph D(V, A) with n
vertices. Also let O and J denote the n× n zero matrix and all-ones matrix respec-
tively.
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Weak-Kings(V, A)

1 D+ = 0
2 D− = 0
3 K = ∅
4 for i = 1 to n and j = 1 to n
5 for j = 1 to n
6 if (vi, vj) ∈ A
7 D+

ij = 1

8 else if (vi, vj) ∈ A
9 D−

ij = 1

10 M = J −D−

11 M = D+ + (D+)2

12 N = M + MD+ + D+M
13 K = {vi ∈ V | ∀vj ∈ V, (N)ij 6= 0}
14 return K

Algorithm ?? returns the set of all weak kings of an oriented graph. Exercise
30.5-3 asks you to prove that the algorithm works correctly and to determine its
running time.

Indeed, it is also possible to extend Theorem 30.16 to weak kings in oriented
graphs as an oriented graph D without transmitters (vertices of in-degree 0) has at
least three weak kings. To see this let u be a vertex of maximum score in the oriented
graph D. Clearly, by Theorem 30.20, u is a weak king. As D has no transmitters,
there is at least one vertex v such that v(1− 0)u. Let S be the set of these vertices
v, and let v1 be a vertex of maximum score in S. Let X, Y and Z respectively be the
set of vertices x, y and z, other than u, with v1(1− 0)x, v1(0− 0)y and v1(0− 1)z.
Assume that |X| = n1, |Y | = n2, and |Z| = n3 so that s(v1) = 2n1 + n2 + 2. We
note that all vertices of Z are weakly reachable within two steps from v1. If this is
not the case, let z0 be a vertex which is not weakly reachable within two steps from
v1. Then z0(1 − 0)u, and (a) z0(1 − 0)x and (b) z0(1 − 0)y or z0(0 − 0)y for each
x ∈ X and each y ∈ Y.

If for each x in X and each y in Y, z0(1 − 0)x and z0(1 − 0)y, then s(z0) ≥
2n1 + 2n2 + 4 = s(v1) + n2 + 2 > s(v1). This contradicts the choice of v1. If for each
x in X and each y in Y, z0(1−0)x and z0(0−0)y, then s(z0) ≥ 2n1 +n2 +4 > s(v1),
again contradicting the choice of v1. This establishes the claim, and thus v1 is also
a weak king.

Now let W be set of vertices w with w(1 − 0)v1 and let w1 be the vertex of
maximum score in W. Then by the same argument as above, every other vertex in
D is weakly reachable within two steps from w1, and so w1 is a weak king. Since D
is asymmetric, and in D we have w1(1− 0)v1 and v1(1− 0)u, therefore u, v1 and w1

are necessarily distinct vertices. Hence D contains at least three weak kings.
Although, no oriented graph with 4 vertices and exactly 4 kings exists, it is

possible to generate an oriented graph on n vertices with exactly k weak kings, for
all integers n ≥ k ≥ 1. The following algorithm constructs such an oriented graph.
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kWeak-Kings(n, k)

1 V = {x, y, u1, u2, . . . , un−2}
2 x(0− 0)y
3 if k > 2
4 for i = 1 to n− 2
5 ui(1− 0)x
6 ui(0− 1)y
7
8 for i = n− 3 downto k − 2
9 un−2(1− 0)ui

10 for i = k − 3 downto 1
11 un−2(0− 0)ui

12 K = {x, y, un−2} ∪ {ui | i = 1, . . . , k − 3}
13 else if k = 2
14 for i = 1 to n− 2
15 x(1− 0)ui

16 y(1− 0)ui

17 for j = 1 to n− 2
18 if i 6= j
19 ui(0− 0)uj

20 K = {x, y}
21 else x(1− 0)ui

22 u1(1− 0)y
23 for i = 2 to n− 2
24 u1(1− 0)ui

25 x(1− 0)ui

26 y(1− 0)ui

27 K = {u1}
28 return V, A, K

Algorithm description
When k = n, the algorithm defines the arcs of a 2-tournament D with vertex set
V = {x, y, u1, u2, · · · , un−2} as

x(0− 0)y,
ui(1− 0)x and ui(0− 1)y for all 1 ≤ i ≤ n− 2,
ui(0− 0)uj for all i 6= j and 1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 2,
Clearly, x is a weak king as x(0−0)y and x(0−0)y(1−0)ui for all 1 ≤ i ≤ n−2..

Also y is a weak king as y(0− 0)x and y(1− 0)ui for all 1 ≤ i ≤ n− 2. Finally, every
ui is a weak king, since ui(0−0)uj , for all i 6= j and ui(1−0)x and ui(1−0)x(0−0)y.
Thus D contains exactly n weak kings.

If n = k − 1, the algorithm creates one additional arc un−2(1 − 0)un−3 in D.
The resulting oriented graph contains exactly n − 1 weak kings, since now un−2 is
not weakly reachable within two steps from un−3 and so un−3 is not a weak king.

If n = k−2 then the algorithm creates two additional arcs in D. namely un−2(1−
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0)un−3 and un−2(1− 0)un−4. Thus D now contains exactly n− 2 weak kings, with
un−3 and un−4 not being weak kings.

Continuing in this way, for any 3 ≤ k ≤ n, the algorithm creates new arcs
un−2(1− 0)ui in D for all k− 2 ≤ i ≤ n− 3. The resulting graph D contains exactly
k weak kings.

If k = 2, then D is constructed so that x(0 − 0)y, x(1 − 0)ui. y(1 − 0)ui and
ui(0− 0)uj for all 1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 2 and i 6= j. Thus D contains exactly
two weak kings x and y.

Finally, D has exactly one weak king if it is constructed such that x(0 − 0)y,
u1(1−0)x, u1(1−0)y and u1(1−0)ui, x(1−0)ui and y(1−0)ui for all 2 ≤ i ≤ n−2.

Due to the nested for loops the algorithm runs in O(n2) time.
Figure 30.13 shows a 6 vertex oriented graph with exactly 6 weak kings, Figure

30.14 shows a 6 vertex oriented graph with exactly 5 weak kings namely x, y, v1,
v2 and v4, Figure 30.15 shows a 6 vertex oriented graph with exactly 4 weak kings
namely x, y. v1 and v4. Figure 30.16 shows a 6 vertex oriented graph with exactly
3 weak kings namely x, y and v4 and Figure 30.17 shows a 6 vertex oriented graph
with exactly 2 weak kings namely x and y.

The directional dual of a weak king is a weak serf, and thus a vertex u is a weak
king of an oriented graph D if and only if u is a weak serf of D̄, the converse of
D. So by duality, there exists an oriented graph on n vertices with exactly s weak
serfs for all integers n ≥ s ≥ 1. If n = k ≥ 1, then every vertex in any such oriented
graph is both a weak king and a weak serf. Also if n > k ≥ 1, the oriented graph
described in algorithm kWeakKings contains vertices which are both weak kings
and weak serfs, and also contains vertices which are weak kings but not weak serfs
and vice versa. These ideas give rise to the following problem. For what 4-tuples
(n, k, s, b) does there exist an oriented graph with n vertices, exactly k weak kings,
s weak serfs and that exactly b of the weak kings are also serfs? By analogy with
(n, k, s, b)-tournaments, such oriented graphs are called (n, k, s, b)-oriented graphs.
Without loss of generality, we assume that k ≥ s. The following results by Pirzada
and Shah address this problem.

Theorem 30.21 Pirzada, Shah, 2008 If n > k ≥ s ≥ 0, then there exists no
(n, k, s, s)-oriented graph.

Theorem 30.22 Pirzada, Shah, 2008 There exist (n, k, s, b)-oriented graphs, n ≥
k ≥ s > b ≥ 0 and n > 0, n ≥ k + s− b.

Proof Let D1 be the oriented graph with vertex set {x1, y1, u1, u2, · · · , uk−b−2} and
x1(0− 0)y1, ui(1− 0)x1, ui(0− 1)y1 for all 1 ≤ i ≤ k− b− 2, and ui(0− 0)uj for all
i 6= j.

Take the oriented graph D2 with vertex set {x2, y2, v1, v2, . . . , vb−2} and arcs
defined as in D1. Let D3 be the oriented graph with vertex set {z1, z2, . . . , zs−b} and
zi(0−0)zj for all i, j. Let D be the oriented graph D1∪D2∪D3 (see Figure 30.19) with

zi(1− 0)y2 for 1 ≤ i ≤ s− b
zi(0− 0)x2 for 1 ≤ i ≤ s− b
zi(0− 0)vj for 1 ≤ i ≤ s− b, 1 ≤ j ≤ b− 2
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Figure 30.19 Construction of an (n, k, s, b)-oriented graph.

x1(1− 0)zi, y1(1− 0)zi for 1 ≤ i ≤ s− b
ur(0− 0)zi for 1 ≤ r ≤ k − b− 2, 1 ≤ i ≤ s− b
x1(1− 0)y2, y1(1− 0)y2

vr(1− 0)y2 for 1 ≤ r ≤ k − b− 2
x1(0− 0)x2, y1(0− 0)x2

vr(0− 0)vj , for 1 ≤ r ≤ k − b− 2, 1 ≤ j ≤ b− 2.
Clearly D contains exactly k weak kings and the weak king set is {x1, y1} ∪

{u1, u2, . . . , uk−b−2} ∪ {x2, y2} ∪ {v1, v2, . . . , vb−2}. D contains exactly s weak serfs
with the weak serf set as {x2, y2} ∪ {v1, v2, . . . , vb−2} ∪ {z1, z2, . . . , zs−b}. Also from
these k weak kings, exactly b are weak serfs. The weak king-serf set is {x2, y2} ∪
{v1, v2, . . . , vb−2}.

Exercise 30.5-5 asks the reader to derive an algorithm for generating an
(n, k, s, b)-oriented graph when the hypothesis of Theorem 30.22 is satisfied.

Exercises
30.5-1 Give an algorithm that generates an oriented graph with n vertices and
exactly 2 kings. Prove the correctness of your algorithm.
30.5-2 Draw the graph D∗ discussed in Example 30.4.
30.5-3 Prove that Weak-Kings is correct. Also determine its runtime.
30.5-4 Construct an oriented graph with six vertices and exactly one king.
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30.5-5 Derive an algorithm that takes a 4-tuple (n, k, s, b) satisfying the hypothesis
of Theorem 30.22 as input and generates an (n, k, s, b)-oriented graph. Analyze the
performance of your algorithm.

Problems

30-1 Optimal reconstruction of score sets

In connection with the reconstruction of graphs the basic questions are the existence
and the construction of at least one corresponding graph. These basic questions are
often solvable in polynomial time. In given sense optimal reconstruction is usually a
deeper problem.

a) Analyse Exercise 30.1-1 and try to find a smaller tournament with score set
{0, 1, 3, 6, 10}.

b) Write a back-track program which constructs the smallest tournament whose
score set is {0, 1, 3, 6, 10}.

c) Write a back-track program which constructs the smallest tournament arbi-
trary given score set.

d) Estimate the running time of your programmes.
Hint. Read Yoo’s proof.

30-2 Losing set

We define the losing score of a vertex as the in-degree of the vertex. The loosing
score set of a tournament is the set of in-degrees of its vertices.

a) Give an argument to show that any set of non-negative integers is the loosing
score set of some tournament.

b) Given a set L = {r1, r2, . . . , rn} of nonnegative integers with r1 < r2 − r1 <
r3− r2 < · · · < rn− rn−1, write an algorithm to generate a tournament with loosing
score set L.
30-3 Imbalance set

Let
30-4 Unicity

Let

Chapter Notes

Many classical ans several contemporary graph theory textbooks are available to
Readers. Such books are e.g. the books of Claude Berge [3] and László Lovász [18].
However, there is a dearth of books focusing on recent advances in the theory of
digraphs. The book due to Bang-Jensen and Gutin [1] probably comes closest and
the Reader can refer to it for a comprehensive treatment of the theoretical and
algorithmic aspects of digraphs.

The books by Harary, Norman and Cartwright [12], and Chartrand, Lesniak and
Zhang [5, 6], Gross and Yellen [10] present introductory material on tournaments
and score structures. Moon’s book on tournaments [20] is also a good resource but
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is now out of print.
The books A. Schrijver [38] and A. Frank [9] contain reach material on optimiza-

tion problems connected with directed graphs.
The algorithms discussed in this chapter are not commonly found in literature.

In particular the algorithms presented here for constructing tournaments and ori-
ented graphs with special properties are not available in textbooks. Most of these
algorithms are based on fairly recent research on tournaments and oriented graphs.

Majority of the researches connected with score sequences and score sets were
inspired by the work of H. G. Landau, K. B. Reid and J. W. Moon. For classical
and recent results in this area we refer to the excellent surveys by Reid [33, 36, 37].
Landau’s pioneering work on kings and score structure appeared in 1953 [16]. Reid
stated his famous score set conjecture in [33]. Partial results were proved by M.
Hager [11]. Yao’s proof of Reid’s conjecture appeared in English in 1989 [41]. The
comment of Q. Li on Reid’s conjecture and Yao’s proof was published in 2006 [17].
The construction of a new special tournament with a prescribed score set is due to
Pirzada and Naikoo [27]. The score structure for 1-tournaments was introduced by
H. G. Landau [16] and extended for k-tournaments by J. W. Moon in 1963. This
result of Moon later was reproved by Avery for k = 2 and for arbitrary k by Kemnitz
and Dolff [15]. Score sets of 2-tournaments were investigated by Pirzada and Naikoo
in 2008 [30].

Authors of a lot of papers investigated the score sets of different generalized
tournament, among others Pirzada, Naikoo and Christhi in 2006 (bipartite graphs),
Pirzada and Naikoo in 2006 [28] (k-partite graphs), Pirzada and Naiko in 2006 [29]
(kpartite tournaments@k-partite tournaments).

The basic results on kings are due to K. Brooks Reid [34, 35, 36, 37] and Vojislav
Petrović [4, 22, 24, 25, 23].

The problem of the unicity of score sequences was posed and studied by Antal
Iványi and Bui Minh Phong [14]. Another unicity results connected with tournaments
was published e.g. by P. Tetali, J. W. Moon and recently by Chen et al. [7, 8, 21, 40].

The term king in tournaments was first used by Maurer [19]. Strong kings were
introduced by Ho and Chang [13] and studied later by Chen et al. [7, 8], while Pirzada
and Shah [32] introduced weak kings in oriented graphs. The problems connected
with 3-kings and 4-kings were discussed by Tan in [39] and the construction of
tournaments with given number of strong kings by Chen et al. in [8].

The difference of the out-degree and of the in-degree of a given vertex is called
the imbalance of the given vertex. The imbalance set of directed multigraphs were
studied by Pirzada, Naiko, Samee and Iványi in [31], while the imbalance sets of
multipartite oriented graphs by Pirzada, Al-Assaf and Kayibi [26].

Problem 1
problem 2
problem 3
Problem 4
An interesting new direction is proposed by "L. B. Beasley, D. E. Brown, and.

K. B. Brooks in [2]: the problem is the reconstruction of tournaments on the base
of the partially given out-degree matrix.
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