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29. Perfect Arrays

An (n, a, b)-perfect double cube is a b × b × b sized n-ary periodic array containing
all possible a × a × a sized n-ary array exactly once as subarray. A growing cube
is an array whose cj × cj × cj sized prefix is an (nj , a, cj)-perfect double cube for

j = 1, 2, . . ., where cj = n
v/3
j , v = a3 and n1 < n2 < · · · . We construct the smallest

possible perfect double cube (a 256×256×256 sized 8-ary array) and growing cubes
for any a.

29.1. Basic concepts

Cyclic sequences in which every possible sequence of a fixed length occurs exactly
once have been studied for more than a hundred years. The same problem, which
can be applied to position localization, was extended to arrays by Fan et al. in 1985.

Let Z be the set of integers. For u, v ∈ Z we denote the set {j ∈ Z | u ≤ j ≤ v}
by [u..v] and the set {j ∈ Z | j ≥ u} by [u..∞]. Let d ∈ [1..∞] and k, n ∈ [2..∞],
bi, ci, ji ∈ [1..∞] (i ∈ [1..d]) and ai, ki ∈ [2..∞] (i ∈ [1..d]). Let a = 〈a1, a2, . . . , ad〉,
b = 〈b1, b2, . . . , bd〉, c = 〈c1, c2, . . . , cd〉, j = 〈j1, j2, . . . , jd〉 and k = 〈k1, k2, . . . , kd〉
be vectors of length d, n = 〈n1, n2, . . .〉 an infinite vector with 2 ≤ n1 < n2 < · · · .

A d-dimensional n-ary array A is a mapping A : [1..∞]d → [0, n− 1].
If there exist a vector b and an array M such that

∀j ∈ [1..∞]d : A[j] = M [(j1 mod b1) + 1, (j2 mod b2) + 1, . . . , (jd mod bd) + 1],

then A is a bperiodic array and M is a period of A.
The a-sized subarrays of A are the a-periodic n-ary arrays.
Although our arrays are infinite we say that a b-periodic array is b-sized.

Indexset Aindex of a b-periodic array A is the Cartesian product

Aindex = ×d
i=1[1..bi] .

A d dimensional b-periodic n-ary array A is called (n, d, a, b)-perfect, if all
possible n-ary arrays of size a appear in A exactly once as a subarray.

Here n is the alphabet size, d gives the number of dimensions of the “window”
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and the perfect array M, the vector a characterizes the size of the window, and the
vector b is the size of the perfect array M.

An (n, d, a, b)-perfect array A is called c-cellular, if ci divides bi for i ∈ [1..d].
A cellular array consists of b1/c1 × b2/c2 × · · · × bd/cd disjoint subarrays of size c,
called cells. In each cell the element with smallest indices is called the head of the
cell. The contents of the cell is called pattern.

The product of the elements of a vector a is called the volume of the vector
and is denoted by |a|. The number of elements of the perfect array M is called the
volume of M and is denoted by |M |.

If b1 = b2 = · · · = bd, then the (n, d, a, b)-perfect array A is called symmetric.
If A is symmetric and a1 = a2 = · · · = ad, then A is called doubly symmetric. If
A is doubly symmetric and

1. d = 1, then A is called a double sequence;

2. d = 2, then A is called a double square;

3. d = 3, then A is called a double cube.

According to this definition, all perfect sequences are doubly symmetric. In the
case of symmetric arrays we use the notion (n, d, a, b) and in the case of doubly
symmetric arrays we use (n, d, a, b) instead of (n, d, a, b).

The first known result originates from Flye-Sainte who proved the existence of
(2, 1, a, 2a)-perfect sequences for all possible values of a in 1894.

One dimensional perfect arrays are often called de Bruijn or Good sequences.
Two dimensional perfect arrays are called also perfect maps or de Bruijn tori.

Even De Bruijn sequences—introduced by Antal Iványi and Zoltán Tóth in
1988—are useful in construction of perfect arrays when the size of the alphabet
is an even number and the window size is 2× 2. Their definition is as follows.

If n is an even integer then an (n, 1, 2, n2)-perfect sequence M = (m1, m2,
. . . , mn2) is called even, if mi = x, mi+1 = y, x 6= y, mj = y and mj+1 = x
imply j − i is even.

Iványi and Tóth in 1988 and later Hurlbert and Isaak in 1994 provided a con-
structive proof of the existence of even sequences. The later algorithm is stronger
since it constructs a universal infinite sequence whos prefixes are even sequences for
the corresponding alphabet size.

Lexicographic indexing of an array M = [mj1j2...jd
] = [mj] (1 ≤

ji ≤ bi) for i ∈ [1..d] means that the index I(mj) is defined as

I(mj) = j1 − 1 +
d
∑

i=2

(

(ji − 1)
i−1
∏

m=1

bm

)

.

The concept of perfectness can be extended to infinite arrays in various ways. In
growing arrays introduced by G. Hurlbert and G. isaak in 1994 the window size
is fixed, the alphabet size is increasing and the prefixes grow in all d directions.

Let a and d be positive integers with a ≥ 2 and n = 〈n1, n2, . . .〉 be a strictly
increasing sequence of positive integers. An array M = [mi1i2...id

] is called (n, d, a)-
growing, if the following conditions hold:
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1. M = [mi1i2...id
] (1 ≤ ij <∞) for j ∈ [1..d];

2. mi1i2...id
∈ [0..n− 1];

3. the prefix Mk = [mi1i2...id
] (1 ≤ ij ≤ n

ad/d
k for j ∈ [1..d]) of M is (nk, d, a, n

ad/d
k )-

perfect array for k ∈ [0..∞].

For the growing arrays we use the terms growing sequence, growing square and
growing cube.

For a, n ∈ [2..∞] the new alphabet size N(n, a) is

N(n, a) =

{

n, if any prime divisor of a divides n ,
nq, otherwise ,

(29.1)

where q is the product of the prime divisors of a not dividing n.
Note, that alphabet size n and new alphabet size N have the property that

n | N, furthermore, n = N holds in the most interesting case d = 3 and n = a1 =
a2 = a3 = 2.

The aim of this chapter is to prove the existence of a double cube. As a side-effect
we show that there exist (n, d, a)-growing arrays for any n, d and a.

29.2. Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a pattern,
the volume of M equals the number of the possible patterns. Since each pattern –
among others the pattern containing only zeros – can appear only once, any size of
M is greater then the corresponding size of the window. So we have the following
necessary condition due to Cook, further Hurlbert and Isaak: If M is an (n, d, a, b)-
perfect array, then

|b| = n|a| (29.2)

and
bi > ai for i ∈ [1..d] . (29.3)

Different construction algorithms and other results concerning one and two di-
mensional perfect arrays can be found in the fourth volume of The Art of Computer
Programming written by D. E. Knuth [22]. E.g. a (2,1,5,32)-perfect array [22, page
22], a 36-length even sequence whose 4-length and 16-length prefixes are also even
sequences [22, page 62], a (2,2,2,4)-perfect array [22, page 38] and a (4,2,2,16)-perfect
array [22, page 63].

It is known [2, 22] that in the one-dimensional case the necessary condition (??)
is sufficient too. There are many construction algorithms, like the ones of Cock [4],
Fan, Fan, Ma and Siu [8], Martin [24] or any algorithm for constructing of directed
Euler cycles [23].

Chung, Diaconis and Graham [3] posed the problem to give a necessary and
sufficient condition of the existence of (n, 2, a, b)-perfect arrays.

The conditions (2) and (3) are sufficient for the existence of (2,2,a,b)-perfect
arrays [8] and (n,2,a,b)-perfect arrays [26]. Later Paterson in [27, 28] supplied further
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sufficient conditions.
Hurlbert and Isaak [13] gave a construction for one and two dimensional growing

arrays.

29.3. One-dimensional arrays

In the construction of one-dimensional perfect arrays we use the following algorithms.
Algorithm Martin generates one-dimensional perfect arrays. Its inputs are the

alphabet size n and the window size a. Its output is an n-ary perfect sequence of
length na. The output begins with a zeros and always continues with the maximal
permitted element of the alphabet.

29.3.1. Pseudocode of the algorithm Quick-Martin

A natural implementation of Martin’s algorithm can be found in the chapter Com-
plexity of words of this book. The following effective implementation of Martin is
due to M. Horváth and A. Iványi.

Quick-Martin(n, a)

1 for i = 0 to na−1 − 1
2 C[i] = n− 1
3 for i = 1 to a
4 w[i] = 0
5 for i = a + 1 to na

6 k = w[i− a + 1]
7 for j = 1 to a− 1
8 k = kn + w[i− a + j]
9 w[i] = C[k]
10 C[k] = C[k]− 1
11 return w

This algorithm runs in Θ(ana) time. The following implementation of Martin
algorithm requires even smaller time.

29.3.2. Pseudocode of the algorithm Optimal-Martin

Optimal-Martin(n, a)

1 for i = 0 to na−1 − 1
2 C[i] = n− 1
3 for i = 1 to a
4 w[i] = 0
5 for i = a + 1 to na

6 k = w[i− a + 1]
7 for j = 1 to a− 1
8 k = kn + w[i− a + j]
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9 w[i] = C[k]
10 C[k] = C[k]− 1
11 return w

The running time of any algorithm which constructs a on??? perfect array is
Ω(na), since the sequance contains na elements. The running time of Optimal-
Martin is Θ(na).

29.3.3. Pseudocode of the algorithm Shift

Algorithm Shift proposed by Cook in 1988 is a widely usable algorithm to construct
perfect arrays. We use it to transform cellular (N, d, a, b)-perfect arrays into (N, d+
1, a, c)-perfect arrays.

Shift(N, d, a, Pd, Pd+1)

1 Martin(Nad

, a− 1, w)

2 for j = 0 to Nad−ad−1

− 1
3 transform wi to an ad digit N -ary number
4 produce the (j + 1)-st layer of the output Pd+1 by multiple shifting

the jth layer of Pd by the transformed number (the first a digits
give the shift size for the first direction, then the next a2 − a digits
in the second direction etc.)

5 return Pd+1

29.3.4. Pseudocode of the algorithm Even

If N is even, then this algorithm generates the N2-length prefix of an even growing
sequence [13].

Even(N, w)

1 if N == 2
2 w[1] = 0
3 w[2] = 0
4 w[3] = 1
5 w[4] = 1
6 return w

7 for i = 1 to N/2− 1
8 for j = 0 to 2i− 1
9 w[4i2 + 2j + 1] = j
10 for j = 0 to i− 1
11 w[4i2 + 2 + 4j] = 2i
12 for j = 0 to i− 1
13 w[4i2 + 4 + 4j] = 2i + 1
14 for j = 0 to 4i− 1
15 w[4i2 + 4i + 1 + j] = w[4i2 + 4i− j]
16 w[4i2 + 8i + 1] = 2i + 1
17 w[4i2 + 8i + 2] = 2i
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18 w[4i2 + 8i + 3] = 2i
19 w[4i2 + 8i + 4] = 2i + 1
20 return w

Algorithm Even [13] produces even de Bruijn sequences.

29.4. One dimensional words with fixed length

29.5. Two-dimensional infinite arrays

Chung, Diaconis and Graham posed the problem to give a necessary and sufficient
condition of the existence of (n, 2, a, b)-perfect arrays.

As Fan, Fan and Siu proved in 1985, the conditions (2) and (3) are sufficient
for the existence of (2,2,a,b)-perfect arrays. Paterson proved the same in 1994 for
(n, 2, a, b)-perfect arrays. leter Paterson supplied further sufficient conditions.

Hurlbert and Isaak in 1993 gave a construction for one and two dimensional
growing arrays.

29.5.1. Pseudocode of the algorithm Mesh

The following implementation of Mesh is was proposed by Iványi and Tóth in 1988.

Mesh(N, w, S)

1 for i = 1 to N2

2 for j = 1 to N2

3 if i + j is even
4 S[i, j] = w[i]
5 else S[i, j] = w[j]
6 return S

29.5.2. Pseudocode of the algorithm Cellular

This is an extension and combination of the known algorithms Shift, Martin,
Even and Mesh.

Cellular results cellular perfect arrays. Its input data are n, d and a, its
output is an (N, d, a, b)-perfect array, where b1 = Na1 and bi = Na1a2...ai−a1a2...ai−1

for i = 2, 3, . . . , d. Cellular consists of five parts:

1. Calculation (line 1 in the pseudocode) determining the new alphabet size N
using formula (29.1);

2. Walking (lines 2–3) if d = 1, then construction of a perfect symmetric sequence
S1 using algorithm Martin (walking in a de Bruijn graph);

3. Meshing (lines 4–6) if d = 2, N is even and a = 2, then first construct an N -
ary even perfect sequence e = 〈e1, e2, . . . , eN2〉 using Even, then construct an
N2 ×N2 sized N -ary square S1 using meshing function (??);
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4. Shifting (lines 7–12) if d > 1 and (N is odd or a > 2), then use Martin once,
then use Shift d− 1 times, receiving a perfect array P ;

5. Combination (lines 13–16) if d > 2, N is even and a = 2, then construct an
even sequence with Even, construct a perfect square by Mesh and finally use
of Shift d− 2 times, results a perfect array P.

Cellular(n, d, a, N, A)

1 N = N(n, a)
2 if d = 1
3 Martin(N, d, a, A)
4 return A
5 if d == 2 and a == 2 and N is even
6 Mesh(N, a, A)
7 return A
8 if N is odd or a 6= 2
9 Martin(N, a, P1)
10 for i = 1 to d− 1
11 Shift(N, i, Pi, Pi+1)
12 A = P1

13 return A
14 Mesh(N, a, P1)
15 for i = 2 to d− 1
16 Shift(N, i, Pi, Pi+1)
17 A← Pd

18 return Pd

29.6. Three-dimensional infinite cubes

29.6.1. Pseudocode of the algorithm Colour

Colour transforms cellular perfect arrays into larger cellular perfect arrays. Its
input data are

• d ≥ 1 – the number of dimensions;

• N ≥ 2 – the size of the alphabet;

• a – the window size;

• b – the size of the cellular perfect array A;

• A – a cellular (N, d, a, b)-perfect array.

• k ≥ 2 – the multiplication coefficient of the alphabet;

• 〈k1, k2, . . . , kd〉 – the extension vector having the property k|a| = k1×k2×· · ·×kd.

The output of Colour is

• a (kN)-ary cellular perfect array P of size b = 〈k1a1, k2a2, . . . , kdad〉.
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Colour consists of three steps:

1. Blocking: (line 1) arranging k|a| copies (blocks) of a cellular perfect array A into
a rectangular array R of size k = k1 × k2 × · · · × kd and indexing the blocks
lexicographically (by 0, 1, . . . , k|a| − 1);

2. Indexing: (line 2) the construction of a lexicographic indexing scheme I contain-
ing the elements 0, 1, . . . k|a| − 1 and having the same structure as the array R,
then construction of a colouring matrix C, transforming the elements of I into
k-ary numbers consisting of |a| digits;

3. Colouring: (lines 3-4) colouring R into a symmetric perfect array P using the
colouring array C that is adding the N -fold of the j-th element of C to each cell
of the j-th block in R (considering the elements of the cell as lexicographically
ordered digits of a number).

The output P consists of blocks, blocks consist of cells and cells consists of el-
ements. If e = P [j] is an element of P, then the lexicographic index of the block
containing e is called the blockindex of e, the lexicographic index of the cell con-
taining e is called the cellindex and the lexicographic index of e in the cell is called
elementindex. E.g. the element S2[7, 6] = 2 in Table 3 has blockindex 5, cellindex
2 and elementindex 1.

Input parameters are N, d, a, k, k, a cellular (N, d, a, b)-perfect array A, the
output is a (kN, d, a, c)-perfect array P, where c = 〈a1k1, a2k2, . . . , adkd〉.

Colour(N, d, a, k, k, A, P )

1 arrange the copies of P into an array R of size
k1 × k2 × · · · × kd blocks

2 construct a lexicographic indexing scheme I containing the elements

of [0..kad

− 1] and having the same structure as R
3 construct an array C transforming the elements of I into k-ary

numbers of v digits and multiplying them by N

4 produce the output S adding the j-th (j ∈ [0..kad

− 1]) element of C
to each cell of the j-th block in R for each block of R

5 return S

29.6.2. Pseudocode of the algorithm Growing

Finally, algorithm Growing generates a prefix Sr of a growing array G. Its input
data are r, the number of required doubly perfect prefixes of the growing array G,
then n, d and a. It consists of the following steps:

1. Initialization: construction of a cellular perfect array P using Cellular;

2. Resizing: if the result of the initialization is not doubly symmetric, then con-
struction of a symmetric perfect array S1 using Colour, otherwise we take P
as S1;
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3. Iteration: construction of the further r − 1 prefixes of the growing array G re-
peatedly, using Colour.

Input parameters of Growing are n, d, a and r, the output is a doubly sym-
metric perfect array Sr, which is the rth prefix of an (n, d, a)-growing array.

Growing(n, d, a, r, Sr)

1 Cellular(n, d, a, N, P )
2 calculation of N using formula (29.1)
3 if P is symmetric
4 S1 = P
5 if P is not symmetric

6 n1 = Nd/gcd(d,ad)

7 k = n1/N

8 k1 = (n1)ad/3/Na

9 for i = 2 to d

10 ki = (n1)ad/d/Nai−ai−1

11 Colour(n1, d, a, k, k, P, S1)
12 k = Nd/gcd(d, ad)
13 for i = 1 to d

14 ki = (n2)ad/d/Nai−ai−1

15 for i = 2 to r

16 ni = Ndi/gcd(d,ad)

17 Colour(ni, d, a, k, k, Si−1, Si)
18 return Sr

29.7. Examples of constructing growing arrays using
colouring

In this section particular constructions are presented.

29.7.1. Construction of growing sequences

As the first example let n = 2, a = 2 and r = 3. Cellular calculates N = 2 and
Martin produces the cellular (2,1,2,4)-perfect sequence P = 00|11.

Since P is symmetric, S1 = P. Now Growing chooses multiplication coefficient
k = n2/n1 = 2, extension vector k = 〈4〉 and uses Colour to construct a 4-ary
perfect sequence.

Colour arranges k1 = 4 copies into a 4 blocks sized arrray receiving

R = 00|11 || 00|11 || 00|11 || 00|11. (29.4)

Colouring receives the indexing scheme I = 0 1 2 3, and the colour-
ing matrix C transforming the elements of I into a digit length k-ary numbers:
C = 00 || 01 || 10 || 11.

Finally we colour the matrix R using C – that is multiply the elements of C by
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29.1. Table a) A (2,2,4,4)-square b) Indexing scheme I of size 4 × 4

column/row 1 2 3 4 column/row 1 2 3 4

1 0 0 0 1 1 0 1 2 3

2 0 0 1 0 2 4 5 6 7

3 1 0 1 1 3 8 9 10 11

4 0 1 1 1 4 12 13 14 15

29.2. Table Binary colouring matrix C of size 8 × 8

column/row 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 1 1

3 0 1 0 1 0 1 0 1

4 0 0 0 1 1 0 1 1

5 1 0 1 0 1 0 1 0

6 0 0 0 1 1 0 1 1

7 1 1 1 1 1 1 1 1

8 0 0 0 1 1 0 1 1

n1 and adding the j-th (j = 0, 1, 2, 3) block of C1 = n1C to both cells of the j-th
copy in R:

S2 = 00|11 || 02|13 || 20|31 || 22|33. (29.5)

Since r = 3, we use Colour again with k = n3/n2 = 2 and get the (8,1,2,64)-
perfect sequence S3 repeating S2 4 times, using the same indexing array I and
colouring array C ′ = 2C.

Another example is a = 2, n = 3 and r = 2. To guarantee the cellular prop-
erty now we need a new alphabet size N = 6. Martin produces a (6,1,2,36)-perfect
sequence S1, then Colour results a (12,1,2,144)-perfect sequence S2.

29.7.2. Construction of growing squares

Let n = a = 2 and r = 3. Then N(2, 2) = 2. We construct the even sequence
W4 = e1e2e3e4 = 0 0 1 1 using Even and the symmetric perfect array A in Table
29.1.a using the meshing function (??). Since A is symmetric, it can be used as S1.
Now the greatest common divisor of a and ad is 2, therefore indeed n1 = N2/2 = 2.

Growing chooses k = n1/N = 2 and Colour returns the array R repeating
the array A k2 × k2 = 4× 4 times.

Colour uses the indexing scheme I containing k4 indices in the same 4 × 4
arrangement as it was used in R. Table 29.1.b shows I.

Transformation of the elements of I into 4-digit k-ary form results the colouring
matrix C represented in Table 29.2.

Colouring of array R using the colouring array 2C results the (4,2,2,16)-square
S2 represented in Table 29.3.
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29.3. Table A (4,2,2,16)-square generated by colouring

column/row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

3 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

4 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

5 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3

6 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

7 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3

8 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

9 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 1

10 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

11 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3 1

12 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

13 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3

14 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

15 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3

16 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

In the next iteration Colour constructs an 8-ary square repeating S2 4 × 4
times, using the same indexing scheme I and colouring by 4C. The result is S3, a
(8, 2, 2, 64)-perfect square.

29.7.3. Construction of growing cubes

If d = 3, then the necessary condition (2) is b3 = (n)a3

for double cubes, implying n
is a cube number or a is a multiple of 3. Therefore, either n ≥ 8 and then b ≥ 256,
or a ≥ 3 and so b ≥ 512, that is, the smallest possible perfect double cube is the (8,
3, 2, 256)-cube.

As an example, let n = 2, a = 2 and r = 2. Cellular computes N = 2, Mesh
constructs the (2, 2, 2, 4)-perfect square in Table 29.1.a, then Shift uses Martin
with N = 16 and a = 1 to get the shift sizes for the layers of the (2, 3, 2, b)-perfect
output P of Cellular, where b = 〈4, 4, 16〉. Shift uses P as zeroth layer and the
jth (j ∈ [1 : 15]) layer is generated by cyclic shifting of the previous layer downwards
by wi (div 4) and right by wi (mod 4), where w = 〈0 15 14 13 12 11 10 9 8 7 6 5 4
3 2 1〉. 8 layers of P are shown in Table 29.4.

Let A3 be a 4 × 4 × 16 sized perfect, rectangular matrix, whose 0. layer is the
matrix represented in Table 29.1, and the (2, 3, a, b)-perfect array P in Table 29.4,
where a = (2, 2, 2) and b = (4, 4, 8).

Growing uses Colour to retrieve a doubly symmetric cube. n1 = 8, thus
b = 256, k = n1/N = 4 and k = 〈256/4, 256/4, 256/64〉, that is we construct the
matrix R repeating P 64× 64× 16 times.

I has the size 64 × 64 × 16 and I[i1, i2, i3] = 642(i1 − 1) + 64(i2 − 1) + i3 − 1.
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29.4. Table 8 layers of a (2,3,2,16)-perfect array

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1

Colour gets the colouring matrix C by transforming the elements of I into 8-digit
4-ary numbers – and arrange the elements into 2×2×2 sized cubes in lexicographic
order – that is in order (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1).
Finally colouring results a double cube S1.

S1 contains 224 elements therefore it is presented only in electronic form (on the
homepage of the corresponding author).

If we repeat the colouring again with k = 2, then we get a 64-ary 65536×64536×
64536 sized double cube S2.

29.8. Proof of the main result

The main result of this paper can be formulated as follows.

Theorem 29.1 If n ≥ 2, d ≥ 1, a ≥ 2, nj = Ndj/gcd(d,ad) with N = N(n, a) given
by (1) for j ∈ [0..∞], then there exists an (n, d, a)-growing array.

The proof is based on the following lemmas.

Lemma 29.2 (Cellular lemma) If n ≥ 2, d ≥ 1 and a ≥ 2, then algorithm Cel-
lular produces a cellular (N, d, a, b)-perfect array A, where N is determined by

formula (29.1), b1 = Na and bi = Nai−ai−1

(i ∈ [2..d]).

Proof It is known that algorithms Even+Mesh and Martin+Shift result perfect
outputs.

Since Mesh is used only for even alphabet size and for 2× 2 sized window, the
sizes of the constructed array are even numbers and so the output array is cellular.

In the case of Shift we exploit that all prime divisors of a divide the new
alphabet size N, and bi = N (a−1)(ai−1) and (a− 1)(ai−1) ≥ 1.

Lemma 29.3 (Indexing lemma) If n ≥ 2, d ≥ 2, k ≥ 2, C is a d dimensional
a-cellular array with |b| = k|a| cells and each cell of C contains the corresponding
cellindex as an |a| digit k-ary number, then any two elements of C having the same
elementindex and different cellindex are heads of different patterns.

Proof Let P1 and P2 be two such patterns and let us suppose they are identical. Let
the head of P1 in the cell have cellindex g and head of P2 in the cell have cellindex
h (both cells are in array C). Let g − h = u.
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We show that u = 0 (mod k|b|). For example in Table 2 let the head of P1 be
(2, 2) and the head of P2 be (2, 6). Then these heads are in cells with cellindex 0 and
2 so here u = 2.

In both cells, let us consider the position containing the values having local value
1 of some number (in our example they are the elements (3,2) and (3,6) of C.) Since
these elements are identical, then k|u. Then let us consider the positions with local
values k (in our example they are (3,1) and (3,5).) Since these elements are also
identical so k2|u. We continue this way up to the elements having local value k|b|

and get k|b||u, implying u = 0.
This contradicts to the conditon that the patterns are in different cells.

Lemma 29.4 (Colouring lemma) If k ≥ 2, ki ∈ [2..∞] (i ∈ [1..d]), A is a cellu-
lar (n, d, a, b)-perfect array, then algorithm Colour(N, d, a, k, k, A, S) produces a
cellular (kN, d, a, c)-perfect array P, where c = 〈k1a1, k2a2, . . . , kdad〉.

Proof The input array A is N -ary, therefore R is also N -ary. The colouring array
C contains the elements of [0..N(k − 1)], so elements of P are in [0..kN − 1].

The number of dimensions of S equals to the number of dimensions of P that
is, d.

Since A is cellular and ci is a multiple of bi (i ∈ [1..d]), P is cellular.
All that has to be shown is that the patterns in P are different.
Let’s consider two elements of P as heads of two windows and their contents –

patterns p and q. If these heads have different cellindex, then the considered patterns
are different due to the periodicity of R. E.g. in Table 29.3 P [11, 9] has cellindex
8, the pattern headed by P [9, 11] has cellindex 2, therefore they are different (see
parity of the elements).

If two heads have identical cellindex but different blockindex, then the indexing
lemma can be applied.

Proof of the main theorem. Lemma 18 implies that the first call of Colour in
line 10 of Growing results a doubly symmetric perfect output S1. In every iteration
step (in lines 14–16 of Growing) the zeroth block of Si is the same as Si−1, since
the zeroth cell of the colouring array is filled up with zeros.

Thus S1 is transformed into a doubly symmetric perfect output Sr having the
required prefixes S1, S2, . . . , Sr−1.

29.9. Multi-dimensional infinite arrays

Chapter Notes

Cyclic sequences in which every possible sequence of a fixed length occurs exactly
once have been studied for more than a hundred years. The first proof of the exis-
tence of (2, 1, a, 2a)-perfect sequences was published by Flye-Sainte [9] in 1894. The
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problem was extended to arrays by Fan, Fan, Ma, and Siu in 1985 [8].
One dimensional perfect arrays are often called de Bruijn or Good sequences,

since the papers of De Bruijn [2] and Good [10] make these sequences popular. Two
dimensional perfect arrays were called perfect maps by Reed and Stewart in 1962 [31]
and by Paterson in 1996 [27], or de Bruijn tori by Hurlbert and Isaak and Mitchell
in 1993 and later [12, 13, 16].

The even De Bruijn sequences were introduced by A. Iványi and Z. Tóth in
1988 [21, 22]. They proposed an algorithm constructing even sequences for arbitrary
alphabet size. Later Hurlbert and Isaak [13] provided an universal algorithm which
construct an infinite sequence whose prefixes are even for the corresponding alphabet
size.

The concept of growing sequences was introduced by G. Hurlbert and G. Isaak
[13].

The necessary conditions 29.2 and 29.3 were formulated at first in papers of
Cock in 1988 [4], and in 1994 of Hurlbert and Isaak [?].

For Section 29.4:
For Section 29.5:
For Section 29.6:
[1] [3] [4]
[5] [6]
[2] [7] [9] [10] [11]
[12] [13] [14] [15]
[16] [17]
[18] [19] [20] [21] [22]
[23] [24] [25] [26]
[27] [28] [29] [30]
[31] [32]
For Section 29.9:
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