Contents

29. Perfect Arrays 1452
29.1. Basic concepts 1452
29.2. Necessary condition and earlier results 1454
29.3. One-dimensional arrays 1455
29.3.1. Pseudocode of the algorithm Quick-Martin 1455
29.3.2. Pseudocode of the algorithm Optimal-Martin 1455
29.3.3. Pseudocode of the algorithm Shift 1456
29.3.4. Pseudocode of the algorithm Even 1456
29.4. One dimensional words with fixed length 1457
29.5. Two-dimensional infinite arrays 1457
29.5.1. Pseudocode of the algorithm Mesh 1457
29.5.2. Pseudocode of the algorithm Cellular 1457
29.6. Three-dimensional infinite cubes 1458
29.6.1. Pseudocode of the algorithm Colour 1458
29.6.2. Pseudocode of the algorithm Growing 1459
29.7. Examples of constructing growing arrays using colouring 1460
29.7.1. Construction of growing sequences 1460
29.7.2 Construction of growing squares 1461
29.7.3. Construction of growing cubes 1462
29.8. Proof of the main result 1463
29.9. Multi-dimensional infinite arrays 1464
Bibliography 1466
Index 1468
Name Index 1469

29. Perfect Arrays

An (n, a, b)-perfect double cube is a $b \times b \times b$ sized n-ary periodic array containing all possible $a \times a \times a$ sized n-ary array exactly once as subarray. A growing cube is an array whose $c_{j} \times c_{j} \times c_{j}$ sized prefix is an $\left(n_{j}, a, c_{j}\right)$-perfect double cube for $j=1,2, \ldots$, where $c_{j}=n_{j}^{v / 3}, v=a^{3}$ and $n_{1}<n_{2}<\cdots$. We construct the smallest possible perfect double cube (a $256 \times 256 \times 256$ sized 8 -ary array) and growing cubes for any a.

29.1. Basic concepts

Cyclic sequences in which every possible sequence of a fixed length occurs exactly once have been studied for more than a hundred years. The same problem, which can be applied to position localization, was extended to arrays by Fan et al. in 1985.

Let \mathbb{Z} be the set of integers. For $u, v \in \mathbb{Z}$ we denote the set $\{j \in \mathbb{Z} \mid u \leq j \leq v\}$ by $[u . . v]$ and the set $\{j \in \mathbb{Z} \mid j \geq u\}$ by $[u . . \infty]$. Let $d \in[1 . . \infty]$ and $k, n \in[2 . . \infty]$, $b_{i}, c_{i}, j_{i} \in[1 . . \infty](i \in[1 . . d])$ and $a_{i}, k_{i} \in[2 . . \infty](i \in[1 . . d])$. Let $\mathbf{a}=\left\langle a_{1}, a_{2}, \ldots, a_{d}\right\rangle$, $\mathbf{b}=\left\langle b_{1}, b_{2}, \ldots, b_{d}\right\rangle, \mathbf{c}=\left\langle c_{1}, c_{2}, \ldots, c_{d}\right\rangle, \mathbf{j}=\left\langle j_{1}, j_{2}, \ldots, j_{d}\right\rangle$ and $\mathbf{k}=\left\langle k_{1}, k_{2}, \ldots, k_{d}\right\rangle$ be vectors of length $d, \mathbf{n}=\left\langle n_{1}, n_{2}, \ldots\right\rangle$ an infinite vector with $2 \leq n_{1}<n_{2}<\cdots$.

A \boldsymbol{d}-dimensional n-ary array \boldsymbol{A} is a mapping $A:[1 . . \infty]^{d} \rightarrow[0, n-1]$.
If there exist a vector \mathbf{b} and an array M such that

$$
\forall \mathbf{j} \in[1 . . \infty]^{d}: A[\mathbf{j}]=M\left[\left(j_{1} \bmod b_{1}\right)+1,\left(j_{2} \bmod b_{2}\right)+1, \ldots,\left(j_{d} \bmod b_{d}\right)+1\right]
$$

then A is a bperiodic array and M is a period of A.
The a-sized subarrays of A are the a-periodic n-ary arrays.
Although our arrays are infinite we say that a b-periodic array is b-sized.
Indexset $A_{\text {index }}$ of a b-periodic array A is the Cartesian product

$$
A_{\text {index }}=\times_{i=1}^{d}\left[1 . . b_{i}\right] .
$$

A dimensional b-periodic n-ary array A is called $(n, d, \mathbf{a}, \mathbf{b})$-perfect, if all possible n-ary arrays of size a appear in A exactly once as a subarray.

Here n is the alphabet size, d gives the number of dimensions of the "window"
and the perfect array M, the vector a characterizes the size of the window, and the vector \mathbf{b} is the size of the perfect array M.

An $(n, d, \mathbf{a}, \mathbf{b})$-perfect array A is called \mathbf{c}-cellular, if c_{i} divides b_{i} for $i \in[1 . . d]$. A cellular array consists of $b_{1} / c_{1} \times b_{2} / c_{2} \times \cdots \times b_{d} / c_{d}$ disjoint subarrays of size \mathbf{c}, called cells. In each cell the element with smallest indices is called the head of the cell. The contents of the cell is called pattern.

The product of the elements of a vector a is called the volume of the vector and is denoted by $|\mathbf{a}|$. The number of elements of the perfect array M is called the volume of M and is denoted by $|M|$.

If $b_{1}=b_{2}=\cdots=b_{d}$, then the $(n, d, \mathbf{a}, \mathbf{b})$-perfect array A is called symmetric. If A is symmetric and $a_{1}=a_{2}=\cdots=a_{d}$, then A is called doubly symmetric. If A is doubly symmetric and

1. $d=1$, then A is called a double sequence;
2. $\quad d=2$, then A is called a double square;
3. $d=3$, then A is called a double cube.

According to this definition, all perfect sequences are doubly symmetric. In the case of symmetric arrays we use the notion (n, d, \mathbf{a}, b) and in the case of doubly symmetric arrays we use (n, d, a, b) instead of ($n, d, \mathbf{a}, \mathbf{b}$).

The first known result originates from Flye-Sainte who proved the existence of $\left(2,1, a, 2^{a}\right)$-perfect sequences for all possible values of a in 1894.

One dimensional perfect arrays are often called de Bruijn or Good sequences. Two dimensional perfect arrays are called also perfect maps or de Bruijn tori.

Even De Bruijn sequences-introduced by Antal Iványi and Zoltán Tóth in 1988 - are useful in construction of perfect arrays when the size of the alphabet is an even number and the window size is 2×2. Their definition is as follows.

If n is an even integer then an $\left(n, 1,2, n^{2}\right)$-perfect sequence $M=\left(m_{1}, m_{2}\right.$, $\left.\ldots, m_{n^{2}}\right)$ is called even, if $m_{i}=x, m_{i+1}=y, x \neq y, m_{j}=y$ and $m_{j+1}=x$ imply $j-i$ is even.

Iványi and Tóth in 1988 and later Hurlbert and Isaak in 1994 provided a constructive proof of the existence of even sequences. The later algorithm is stronger since it constructs a universal infinite sequence whos prefixes are even sequences for the corresponding alphabet size.

Lexicographic indexing of an array $M=\left[m_{j_{1} j_{2} \ldots j_{d}}\right]=\left[m_{\mathbf{j}}\right](1 \leq$ $\left.j_{i} \leq b_{i}\right)$ for $i \in[1 . . d]$ means that the index $I\left(m_{\mathbf{j}}\right)$ is defined as

$$
I\left(m_{\mathbf{j}}\right)=j_{1}-1+\sum_{i=2}^{d}\left(\left(j_{i}-1\right) \prod_{m=1}^{i-1} b_{m}\right) .
$$

The concept of perfectness can be extended to infinite arrays in various ways. In growing arrays introduced by G. Hurlbert and G. isaak in 1994 the window size is fixed, the alphabet size is increasing and the prefixes grow in all d directions.

Let a and d be positive integers with $a \geq 2$ and $\mathbf{n}=\left\langle n_{1}, n_{2}, \ldots\right\rangle$ be a strictly increasing sequence of positive integers. An array $M=\left[m_{i_{1} i_{2} \ldots i_{d}}\right]$ is called (n, $\left.d, a\right)$ growing, if the following conditions hold:

1. $\quad M=\left[m_{i_{1} i_{2} \ldots i_{d}}\right]\left(1 \leq i_{j}<\infty\right)$ for $j \in[1 . . d]$;
2. $m_{i_{1} i_{2} \ldots i_{d}} \in[0 . . n-1]$;
3. the prefix $M_{k}=\left[m_{i_{1} i_{2} \ldots i_{d}}\right]\left(1 \leq i_{j} \leq n_{k}^{a^{d} / d}\right.$ for $\left.j \in[1 . . d]\right)$ of M is $\left(n_{k}, d, a, n_{k}^{a^{d} / d}\right)$ perfect array for $k \in[0 . . \infty]$.
For the growing arrays we use the terms growing sequence, growing square and growing cube.

For $a, n \in[2 . . \infty]$ the new alphabet size $N(n, a)$ is

$$
N(n, a)= \begin{cases}n, & \text { if any prime divisor of a divides } n \tag{29.1}\\ n q, & \text { otherwise }\end{cases}
$$

where q is the product of the prime divisors of a not dividing n.
Note, that alphabet size n and new alphabet size N have the property that $n \mid N$, furthermore, $n=N$ holds in the most interesting case $d=3$ and $n=a_{1}=$ $a_{2}=a_{3}=2$.

The aim of this chapter is to prove the existence of a double cube. As a side-effect we show that there exist (\mathbf{n}, d, a)-growing arrays for any n, d and a.

29.2. Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a pattern, the volume of M equals the number of the possible patterns. Since each pattern among others the pattern containing only zeros - can appear only once, any size of M is greater then the corresponding size of the window. So we have the following necessary condition due to Cook, further Hurlbert and Isaak: If M is an $(n, d, \mathbf{a}, \mathbf{b})$ perfect array, then

$$
\begin{equation*}
|\mathbf{b}|=n^{|\mathbf{a}|} \tag{29.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}>a_{i} \text { for } i \in[1 . . d] \tag{29.3}
\end{equation*}
$$

Different construction algorithms and other results concerning one and two dimensional perfect arrays can be found in the fourth volume of The Art of Computer Programming written by D. E. Knuth [22]. E.g. a (2,1,5,32)-perfect array [22, page 22], a 36 -length even sequence whose 4 -length and 16 -length prefixes are also even sequences [22, page 62], a ($2,2,2,4$)-perfect array [22, page 38] and a ($4,2,2,16$)-perfect array [22, page 63$]$.

It is known [2, 22] that in the one-dimensional case the necessary condition (??) is sufficient too. There are many construction algorithms, like the ones of Cock [4], Fan, Fan, Ma and Siu [8], Martin [24] or any algorithm for constructing of directed Euler cycles [23].

Chung, Diaconis and Graham [3] posed the problem to give a necessary and sufficient condition of the existence of ($n, 2, \mathbf{a}, \mathbf{b}$)-perfect arrays.

The conditions (2) and (3) are sufficient for the existence of $(2,2, \mathbf{a}, \mathbf{b})$-perfect arrays [8] and (n,2,a,b)-perfect arrays [26]. Later Paterson in [27, 28] supplied further
sufficient conditions.
Hurlbert and Isaak [13] gave a construction for one and two dimensional growing arrays.

29.3. One-dimensional arrays

In the construction of one-dimensional perfect arrays we use the following algorithms.
Algorithm Martin generates one-dimensional perfect arrays. Its inputs are the alphabet size n and the window size a. Its output is an n-ary perfect sequence of length n^{a}. The output begins with a zeros and always continues with the maximal permitted element of the alphabet.

29.3.1. Pseudocode of the algorithm Quick-Martin

A natural implementation of Martin's algorithm can be found in the chapter Complexity of words of this book. The following effective implementation of Martin is due to M. Horváth and A. Iványi.

Quick-Martin (n, a)
1 for $i=0$ to $n^{a-1}-1$
$2 \quad C[i]=n-1$
3 for $i=1$ to a
$4 \quad w[i]=0$
5 for $i=a+1$ to n^{a}
$6 \quad k=w[i-a+1]$
$7 \quad$ for $j=1$ to $a-1$
$8 \quad k=k n+w[i-a+j]$
$9 \quad w[i]=C[k]$
$10 \quad C[k]=C[k]-1$
11 return w
This algorithm runs in $\Theta\left(a n^{a}\right)$ time. The following implementation of Martin algorithm requires even smaller time.

29.3.2. Pseudocode of the algorithm Optimal-Martin

Optimal-Martin (n, a)
1 for $i=0$ to $n^{a-1}-1$
$2 \quad C[i]=n-1$
3 for $i=1$ to a
$4 \quad w[i]=0$
5 for $i=a+1$ to n^{a}
$6 \quad k=w[i-a+1]$
$7 \quad$ for $j=1$ to $a-1$
$8 \quad k=k n+w[i-a+j]$
$9 \quad w[i]=C[k]$
$10 \quad C[k]=C[k]-1$
11 return w
The running time of any algorithm which constructs a on??? perfect array is $\Omega\left(n^{a}\right)$, since the sequance contains n^{a} elements. The running time of OptimalMartin is $\Theta\left(n^{a}\right)$.

29.3.3. Pseudocode of the algorithm Shift

Algorithm Shift proposed by Cook in 1988 is a widely usable algorithm to construct perfect arrays. We use it to transform cellular (N, d, a, \mathbf{b})-perfect arrays into $(N, d+$ $1, a, \mathbf{c})$-perfect arrays.
$\operatorname{Shift}\left(N, d, a, P_{d}, P_{d+1}\right)$
$1 \operatorname{Martin}\left(N^{a^{d}}, a-1, \mathbf{w}\right)$
2 for $j=0$ to $N^{a^{d}-a^{d-1}}-1$
3 transform w_{i} to an a^{d} digit N-ary number
4 produce the $(j+1)$-st layer of the output P_{d+1} by multiple shifting the j th layer of P_{d} by the transformed number (the first a digits
give the shift size for the first direction, then the next $a^{2}-a$ digits in the second direction etc.)
5 return P_{d+1}

29.3.4. Pseudocode of the algorithm Even

If N is even, then this algorithm generates the N^{2}-length prefix of an even growing sequence [13].

$$
\operatorname{Even}(N, \mathbf{w})
$$

1 if $N==2$
2
$w[1]=0$
$3 \quad w[2]=0$
$4 \quad w[3]=1$
$5 w[4]=1$
6 return w
7 for $i=1$ to $N / 2-1$
8 for $j=0$ to $2 i-1$
$9 \quad w\left[4 i^{2}+2 j+1\right]=j$
10 for $j=0$ to $i-1$
11 $w\left[4 i^{2}+2+4 j\right]=2 i$
12
13
14
15
16
17
for $j=0$ to $i-1$ $w\left[4 i^{2}+4+4 j\right]=2 i+1$
for $j=0$ to $4 i-1$ $w\left[4 i^{2}+4 i+1+j\right]=w\left[4 i^{2}+4 i-j\right]$
$w\left[4 i^{2}+8 i+1\right]=2 i+1$
$w\left[4 i^{2}+8 i+2\right]=2 i$
$18 \quad w\left[4 i^{2}+8 i+3\right]=2 i$
$19 w\left[4 i^{2}+8 i+4\right]=2 i+1$
20 return w
Algorithm Even [13] produces even de Bruijn sequences.

29.4. One dimensional words with fixed length 29.5. Two-dimensional infinite arrays

Chung, Diaconis and Graham posed the problem to give a necessary and sufficient condition of the existence of ($n, 2, \mathbf{a}, \mathbf{b}$)-perfect arrays.

As Fan, Fan and Siu proved in 1985, the conditions (2) and (3) are sufficient for the existence of ($2,2, \mathbf{a}, \mathbf{b}$)-perfect arrays. Paterson proved the same in 1994 for ($n, 2, a, b$)-perfect arrays. leter Paterson supplied further sufficient conditions.

Hurlbert and Isaak in 1993 gave a construction for one and two dimensional growing arrays.

29.5.1. Pseudocode of the algorithm Mesh

The following implementation of Mesh is was proposed by Iványi and Tóth in 1988.
$\operatorname{Mesh}(N, \mathbf{w}, S)$

```
1 for \(i=1\) to \(N^{2}\)
2 for \(j=1\) to \(N^{2}\)
3 if \(i+j\) is even
\(4 \quad S[i, j]=w[i]\)
\(5 \quad\) else \(S[i, j]=w[j]\)
6 return \(S\)
```


29.5.2. Pseudocode of the algorithm Cellular

This is an extension and combination of the known algorithms Shift, Martin, Even and Mesh.

Cellular results cellular perfect arrays. Its input data are n, d and \mathbf{a}, its output is an $(N, d, \mathbf{a}, \mathbf{b})$-perfect array, where $b_{1}=N^{a_{1}}$ and $b_{i}=N^{a_{1} a_{2} \ldots a_{i}-a_{1} a_{2} \ldots a_{i-1}}$ for $i=2,3, \ldots, d$. Cellular consists of five parts:

1. Calculation (line 1 in the pseudocode) determining the new alphabet size N using formula (29.1);
2. Walking (lines $2-3$) if $d=1$, then construction of a perfect symmetric sequence S_{1} using algorithm Martin (walking in a de Bruijn graph);
3. Meshing (lines 4-6) if $d=2, N$ is even and $a=2$, then first construct an N ary even perfect sequence $\mathbf{e}=\left\langle e_{1}, e_{2}, \ldots, e_{N^{2}}\right\rangle$ using Even, then construct an $N^{2} \times N^{2}$ sized N-ary square S_{1} using meshing function (??);
4. Shifting (lines $7-12$) if $d>1$ and (N is odd or $a>2$), then use MARTIN once, then use Shift $d-1$ times, receiving a perfect array P;
5. Combination (lines 13-16) if $d>2, N$ is even and $a=2$, then construct an even sequence with Even, construct a perfect square by Mesh and finally use of Shift $d-2$ times, results a perfect array P.
$\operatorname{Cellular}(n, d, a, N, A)$
$1 N=N(n, a)$
2 if $d=1$
$3 \operatorname{Martin}(N, d, a, A)$
4 return A
5 if $d==2$ and $a==2$ and N is even
$6 \operatorname{Mesh}(N, a, A)$
7 return A
8 if N is odd or $a \neq 2$
$9 \quad \operatorname{Martin}\left(N, a, P_{1}\right)$
10 for $i=1$ to $d-1$
$11 \quad \operatorname{Shift}\left(N, i, P_{i}, P_{i+1}\right)$
$12 \quad A=P_{1}$
13 return A
$14 \operatorname{Mesh}\left(N, a, P_{1}\right)$
15 for $i=2$ to $d-1$
$16 \operatorname{Shift}\left(N, i, P_{i}, P_{i+1}\right)$
$17 A \leftarrow P_{d}$
18 return P_{d}

29.6. Three-dimensional infinite cubes

29.6.1. Pseudocode of the algorithm Colour

Colour transforms cellular perfect arrays into larger cellular perfect arrays. Its input data are

- $d \geq 1$ - the number of dimensions;
- $\quad N \geq 2$ - the size of the alphabet;
- \mathbf{a} - the window size;
- \mathbf{b} - the size of the cellular perfect array A;
- $A-\mathrm{a}$ cellular $(N, d, \mathbf{a}, \mathbf{b})$-perfect array.
- $k \geq 2$ - the multiplication coefficient of the alphabet;
- $\left\langle k_{1}, k_{2}, \ldots, k_{d}\right\rangle$ - the extension vector having the property $k^{|\mathbf{a}|}=k_{1} \times k_{2} \times \cdots \times k_{d}$. The output of Colour is
- a $(k N)$-ary cellular perfect array P of $\operatorname{size} \mathbf{b}=\left\langle k_{1} a_{1}, k_{2} a_{2}, \ldots, k_{d} a_{d}\right\rangle$.

Colour consists of three steps:

1. Blocking: (line 1) arranging $k^{|\mathbf{a}|}$ copies (blocks) of a cellular perfect array A into a rectangular array R of size $\mathbf{k}=k_{1} \times k_{2} \times \cdots \times k_{d}$ and indexing the blocks lexicographically (by $0,1, \ldots, k^{|\mathbf{a}|}-1$);
2. Indexing: (line 2) the construction of a lexicographic indexing scheme I containing the elements $0,1, \ldots k^{|a|}-1$ and having the same structure as the array R, then construction of a colouring matrix C, transforming the elements of I into k-ary numbers consisting of $|a|$ digits;
3. Colouring: (lines $3-4$) colouring R into a symmetric perfect array P using the colouring array C that is adding the N-fold of the j-th element of C to each cell of the j-th block in R (considering the elements of the cell as lexicographically ordered digits of a number).

The output P consists of blocks, blocks consist of cells and cells consists of elements. If $e=P[\mathbf{j}]$ is an element of P, then the lexicographic index of the block containing e is called the blockindex of e, the lexicographic index of the cell containing e is called the cellindex and the lexicographic index of e in the cell is called elementindex. E.g. the element $S_{2}[7,6]=2$ in Table 3 has blockindex 5, cellindex 2 and elementindex 1.

Input parameters are N, d, a, k, \mathbf{k}, a cellular (N, d, a, \mathbf{b})-perfect array A, the output is a $(k N, d, \mathbf{a}, \mathbf{c})$-perfect array P, where $\mathbf{c}=\left\langle a_{1} k_{1}, a_{2} k_{2}, \ldots, a_{d} k_{d}\right\rangle$.
$\operatorname{Colour}(N, d, \mathbf{a}, k, \mathbf{k}, A, P)$
1 arrange the copies of P into an array R of size
$k_{1} \times k_{2} \times \cdots \times k_{d}$ blocks
2 construct a lexicographic indexing scheme I containing the elements
of $\left[0 . . k^{a^{d}}-1\right]$ and having the same structure as R
3 construct an array C transforming the elements of I into k-ary
numbers of v digits and multiplying them by N
4 produce the output S adding the j-th $\left(j \in\left[0 . . k^{a^{d}}-1\right]\right)$ element of C
to each cell of the j-th block in R for each block of R
5 return S

29.6.2. Pseudocode of the algorithm Growing

Finally, algorithm Growing generates a prefix S_{r} of a growing array G. Its input data are r, the number of required doubly perfect prefixes of the growing array G, then n, d and \mathbf{a}. It consists of the following steps:

1. Initialization: construction of a cellular perfect array P using Cellular;
2. Resizing: if the result of the initialization is not doubly symmetric, then construction of a symmetric perfect array S_{1} using Colour, otherwise we take P as S_{1};
3. Iteration: construction of the further $r-1$ prefixes of the growing array G repeatedly, using Colour.

Input parameters of Growing are n, d, a and r, the output is a doubly symmetric perfect array S_{r}, which is the r th prefix of an (\mathbf{n}, d, a)-growing array.
$\operatorname{Growing}\left(n, d, a, r, S_{r}\right)$
$1 \operatorname{Cellular}(n, d, a, N, P)$
2 calculation of N using formula (29.1)
3 if P is symmetric
$4 \quad S_{1}=P$
5 if P is not symmetric
$6 \quad n_{1}=N^{d / \operatorname{gcd}\left(d, a^{d}\right)}$
$7 \quad k=n_{1} / N$
$8 \quad k_{1}=\left(n_{1}\right)^{a^{d} / 3} / N^{a}$
$9 \quad$ for $i=2$ to d
$10 \quad k_{i}=\left(n_{1}\right)^{a^{d} / d} / N^{a^{i}-a^{i-1}}$
$11 \operatorname{Colour}\left(n_{1}, d, a, k, \mathbf{k}, P, S_{1}\right)$
$12 k=N^{d} / \operatorname{gcd}\left(d, a^{d}\right)$
13 for $i=1$ to d
$14 \quad k_{i}=\left(n_{2}\right)^{a^{d} / d} / N^{a^{i}-a^{i-1}}$
15 for $i=2$ to r
$16 \quad n_{i}=N^{d i / \operatorname{gcd}\left(d, a^{d}\right)}$
$17 \operatorname{Colour}\left(n_{i}, d, \mathbf{a}, k, \mathbf{k}, S_{i-1}, S_{i}\right)$
18 return S_{r}

29.7. Examples of constructing growing arrays using colouring

In this section particular constructions are presented.

29.7.1. Construction of growing sequences

As the first example let $n=2, a=2$ and $r=3$. Cellular calculates $N=2$ and Martin produces the cellular $(2,1,2,4)$-perfect sequence $P=00 \mid 11$.

Since P is symmetric, $S_{1}=P$. Now Growing chooses multiplication coefficient $k=n_{2} / n_{1}=2$, extension vector $\mathbf{k}=\langle 4\rangle$ and uses Colour to construct a 4-ary perfect sequence.

Colour arranges $k_{1}=4$ copies into a 4 blocks sized arrray receiving

$$
\begin{equation*}
R=00|11||00| 11| | 00|11||00| 11 \tag{29.4}
\end{equation*}
$$

Colouring receives the indexing scheme $I=0123$, and the colouring matrix C transforming the elements of I into a digit length k-ary numbers: $C=00 \| 01| | 10| | 11$.

Finally we colour the matrix R using C - that is multiply the elements of C by
29.1. Table a) A (2,2,4,4)-square
b) Indexing scheme I of size 4×4

column/row	1	2	3	4	column/row	1	2	3	4
1	0	0	0	1	1	0	1	2	3
2	0	0	1	0	2	4	5	6	7
3	1	0	1	1	3	8	9	10	11
4	0	1	1	1	4	12	13	14	15

29.2. Table Binary colouring matrix C of size 8×8

column/row	1	2	3	4	5	6	7	8
1	0	0	0	0	0	0	0	0
2	0	0	0	1	1	0	1	1
3	0	1	0	1	0	1	0	1
4	0	0	0	1	1	0	1	1
5	1	0	1	0	1	0	1	0
6	0	0	0	1	1	0	1	1
7	1	1	1	1	1	1	1	1
8	0	0	0	1	1	0	1	1

n_{1} and adding the j-th $(j=0,1,2,3)$ block of $C_{1}=n_{1} C$ to both cells of the j-th copy in R :

$$
\begin{equation*}
S_{2}=00|11||02| 13| | 20|31||22| 33 . \tag{29.5}
\end{equation*}
$$

Since $r=3$, we use Colour again with $k=n_{3} / n_{2}=2$ and get the ($8,1,2,64$)perfect sequence S_{3} repeating $S_{2} 4$ times, using the same indexing array I and colouring array $C^{\prime}=2 C$.

Another example is $a=2, n=3$ and $r=2$. To guarantee the cellular property now we need a new alphabet size $N=6$. Martin produces a ($6,1,2,36$)-perfect sequence S_{1}, then Colour results a $(12,1,2,144)$-perfect sequence S_{2}.

29.7.2. Construction of growing squares

Let $n=a=2$ and $r=3$. Then $N(2,2)=2$. We construct the even sequence $W_{4}=e_{1} e_{2} e_{3} e_{4}=0011$ using Even and the symmetric perfect array A in Table 29.1.a using the meshing function (??). Since A is symmetric, it can be used as S_{1}. Now the greatest common divisor of a and a^{d} is 2, therefore indeed $n_{1}=N^{2 / 2}=2$.

Growing chooses $k=n_{1} / N=2$ and Colour returns the array R repeating the array $A k^{2} \times k^{2}=4 \times 4$ times.

Colour uses the indexing scheme I containing k^{4} indices in the same 4×4 arrangement as it was used in R. Table 29.1.b shows I.

Transformation of the elements of I into 4 -digit k-ary form results the colouring matrix C represented in Table 29.2.

Colouring of array R using the colouring array $2 C$ results the ($4,2,2,16$)-square S_{2} represented in Table 29.3.
29.3. Table A $(4,2,2,16)$-square generated by colouring

column/row	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
3	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
4	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3
5	0	2	0	3	0	2	0	3	0	2	0	3	0	2	0	3
6	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
7	1	2	1	3	1	2	1	3	1	2	1	3	1	2	1	3
8	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3
9	2	0	2	1	2	0	2	1	2	0	2	1	2	0	2	1
10	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
11	3	0	3	1	3	0	3	1	3	0	3	1	3	0	3	1
12	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3
13	2	2	2	3	2	2	2	3	2	2	2	3	2	2	2	3
14	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
15	3	2	3	3	3	2	3	3	3	2	3	3	3	2	3	3
16	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3

In the next iteration Colour constructs an 8-ary square repeating $S_{2} 4 \times 4$ times, using the same indexing scheme I and colouring by $4 C$. The result is S_{3}, a ($8,2,2,64$)-perfect square.

29.7.3. Construction of growing cubes

If $d=3$, then the necessary condition (2) is $b^{3}=(n)^{a^{3}}$ for double cubes, implying n is a cube number or a is a multiple of 3 . Therefore, either $n \geq 8$ and then $b \geq 256$, or $a \geq 3$ and so $b \geq 512$, that is, the smallest possible perfect double cube is the (8, $3,2,256)$-cube.

As an example, let $n=2, a=2$ and $r=2$. Cellular computes $N=2$, Mesh constructs the ($2,2,2,4$)-perfect square in Table 29.1.a, then Shift uses Martin with $N=16$ and $a=1$ to get the shift sizes for the layers of the ($2,3,2, \mathbf{b}$)-perfect output P of Cellular, where $\mathbf{b}=\langle 4,4,16\rangle$. Shift uses P as zeroth layer and the j th $(j \in[1: 15])$ layer is generated by cyclic shifting of the previous layer downwards by $w_{i}(\operatorname{div} 4)$ and right by $w_{i}(\bmod 4)$, where $\mathbf{w}=\langle 0151413121110987654$ $321\rangle .8$ layers of P are shown in Table 29.4.

Let A_{3} be a $4 \times 4 \times 16$ sized perfect, rectangular matrix, whose 0 . layer is the matrix represented in Table 29.1, and the (2,3, a, b)-perfect array P in Table 29.4, where $\mathrm{a}=(2,2,2)$ and $\mathrm{b}=(4,4,8)$.

Growing uses Colour to retrieve a doubly symmetric cube. $n_{1}=8$, thus $b=256, k=n_{1} / N=4$ and $\mathbf{k}=\langle 256 / 4,256 / 4,256 / 64\rangle$, that is we construct the matrix R repeating $P 64 \times 64 \times 16$ times.
I has the size $64 \times 64 \times 16$ and $I\left[i_{1}, i_{2}, i_{3}\right]=64^{2}\left(i_{1}-1\right)+64\left(i_{2}-1\right)+i_{3}-1$.
29.4. Table 8 layers of a $(2,3,2,16)$-perfect array

Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7
0001	0001	1011	1011	1011	1011	1011	1011
0010	0010	0001	0001	0111	0111	0111	0111
1011	1011	1011	1011	1011	1011	1011	1011
0111	0111	1011	1011	1011	1011	1011	0111

Colour gets the colouring matrix C by transforming the elements of I into 8-digit 4 -ary numbers - and arrange the elements into $2 \times 2 \times 2$ sized cubes in lexicographic order - that is in order $(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)$. Finally colouring results a double cube S_{1}.
S_{1} contains 2^{24} elements therefore it is presented only in electronic form (on the homepage of the corresponding author).

If we repeat the colouring again with $k=2$, then we get a 64 -ary $65536 \times 64536 \times$ 64536 sized double cube S_{2}.

29.8. Proof of the main result

The main result of this paper can be formulated as follows.
Theorem 29.1 If $n \geq 2, d \geq 1, a \geq 2, n_{j}=N^{d j / \operatorname{gcd}\left(d, a^{d}\right)}$ with $N=N(n, a)$ given by (1) for $j \in[0 . . \infty]$, then there exists an ($\mathbf{n}, d, a)$-growing array.

The proof is based on the following lemmas.
Lemma 29.2 (Cellular lemma) If $n \geq 2, d \geq 1$ and $a \geq 2$, then algorithm CELLULAR produces a cellular (N, d, a, \mathbf{b})-perfect array A, where N is determined by formula (29.1), $b_{1}=N^{a}$ and $b_{i}=N^{a^{i}-a^{i-1}}(i \in[2 . . d])$.

Proof It is known that algorithms Even + Mesh and Martin+Shift result perfect outputs.

Since Mesh is used only for even alphabet size and for 2×2 sized window, the sizes of the constructed array are even numbers and so the output array is cellular.

In the case of Shift we exploit that all prime divisors of a divide the new alphabet size N, and $b_{i}=N^{(a-1)\left(a^{i-1}\right)}$ and $(a-1)\left(a^{i-1}\right) \geq 1$.

Lemma 29.3 (Indexing lemma) If $n \geq 2, d \geq 2, k \geq 2, C$ is a d dimensional a-cellular array with $|\mathbf{b}|=k^{|\mathbf{a}|}$ cells and each cell of C contains the corresponding cellindex as an $|\mathbf{a}|$ digit k-ary number, then any two elements of C having the same elementindex and different cellindex are heads of different patterns.

Proof Let P_{1} and P_{2} be two such patterns and let us suppose they are identical. Let the head of P_{1} in the cell have cellindex g and head of P_{2} in the cell have cellindex h (both cells are in array C). Let $g-h=u$.

We show that $u=0\left(\bmod k^{|b|}\right)$. For example in Table 2 let the head of P_{1} be $(2,2)$ and the head of P_{2} be $(2,6)$. Then these heads are in cells with cellindex 0 and 2 so here $u=2$.

In both cells, let us consider the position containing the values having local value 1 of some number (in our example they are the elements $(3,2)$ and $(3,6)$ of C.) Since these elements are identical, then $k \mid u$. Then let us consider the positions with local values k (in our example they are $(3,1)$ and $(3,5)$.) Since these elements are also identical so $k^{2} \mid u$. We continue this way up to the elements having local value $k^{|b|}$ and get $k^{|b|} \mid u$, implying $u=0$.

This contradicts to the conditon that the patterns are in different cells.

Lemma 29.4 (Colouring lemma) If $k \geq 2, k_{i} \in[2 . . \infty](i \in[1 . . d])$, A is a cellular ($n, d, \mathbf{a}, \mathbf{b}$)-perfect array, then algorithm $\operatorname{Colour}(N, d, \mathbf{a}, k, \mathbf{k}, A, S)$ produces a cellular $(k N, d, \mathbf{a}, \mathbf{c})$-perfect array P, where $\mathbf{c}=\left\langle k_{1} a_{1}, k_{2} a_{2}, \ldots, k_{d} a_{d}\right\rangle$.

Proof The input array A is N-ary, therefore R is also N-ary. The colouring array C contains the elements of [0.. $N(k-1)$], so elements of P are in [0.. $k N-1$].

The number of dimensions of S equals to the number of dimensions of P that is, d.

Since A is cellular and c_{i} is a multiple of $b_{i}(i \in[1 . . d]), P$ is cellular.
All that has to be shown is that the patterns in P are different.
Let's consider two elements of P as heads of two windows and their contents patterns p and q. If these heads have different cellindex, then the considered patterns are different due to the periodicity of R. E.g. in Table $29.3 P[11,9]$ has cellindex 8 , the pattern headed by $P[9,11]$ has cellindex 2 , therefore they are different (see parity of the elements).

If two heads have identical cellindex but different blockindex, then the indexing lemma can be applied.

Proof of the main theorem. Lemma 18 implies that the first call of Colour in line 10 of Growing results a doubly symmetric perfect output S_{1}. In every iteration step (in lines $14-16$ of Growing) the zeroth block of S_{i} is the same as S_{i-1}, since the zeroth cell of the colouring array is filled up with zeros.

Thus S_{1} is transformed into a doubly symmetric perfect output S_{r} having the required prefixes $S_{1}, S_{2}, \ldots, S_{r-1}$.

29.9. Multi-dimensional infinite arrays Chapter Notes

Cyclic sequences in which every possible sequence of a fixed length occurs exactly once have been studied for more than a hundred years. The first proof of the existence of $\left(2,1, a, 2^{a}\right)$-perfect sequences was published by Flye-Sainte [9] in 1894. The
problem was extended to arrays by Fan, Fan, Ma, and Siu in 1985 [8].
One dimensional perfect arrays are often called de Bruijn or Good sequences, since the papers of De Bruijn [2] and Good [10] make these sequences popular. Two dimensional perfect arrays were called perfect maps by Reed and Stewart in 1962 [31] and by Paterson in 1996 [27], or de Bruijn tori by Hurlbert and Isaak and Mitchell in 1993 and later [12, 13, 16].

The even De Bruijn sequences were introduced by A. Iványi and Z. Tóth in 1988 [21, 22]. They proposed an algorithm constructing even sequences for arbitrary alphabet size. Later Hurlbert and Isaak [13] provided an universal algorithm which construct an infinite sequence whose prefixes are even for the corresponding alphabet size.

The concept of growing sequences was introduced by G. Hurlbert and G. Isaak [13].

The necessary conditions 29.2 and 29.3 were formulated at first in papers of Cock in 1988 [4], and in 1994 of Hurlbert and Isaak [?].

For Section 29.4:
For Section 29.5:
For Section 29.6:
[1] [3] [4]
[5] [6]
[2] [7] [9] [10] [11]
[12] [13] [14] [15]
[16] [17]
[18] [19] [20] [21] [22]
[23] [24] [25] [26]
[27] [28] [29] [30]
[31] [32]
For Section 29.9:

Bibliography

[1] B. Arazi. Position recovery using binary sequences. Electronic Letters, 20:61-62, 1984. 1465
[2] N. G. Bruijn. A combinatorial problem. Nederlandse Akademie van Wetenschappen. Proceedings., 49:758-764, 1946. 1454, 1465
[3] F. Chung, R. L. Graham, P. Diaconis. Universal cycles for combinatorial structures. Discrete Mathematics, 110(1-3):43-59, 1992. 1454, 1465
[4] J. C. Cock. Toroidal tilings from de Bruijn cyclic sequences. Discrete Mathematics, 70(2):209210, 1988. 1454, 1465
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms 3rd edition. The MIT Press/McGraw-Hill, 2009. 1465
[6] L. J. Cummings, D. Weidemann. Embedded De Bruijn sequences. Congressus Numer., 53:155160, 1986. 1465
[7] J. Dénes, A. D. Keedwell. Frequency allocation for a mobile radio telephone system. IEEE Transactions on Communication, 36:765-767, 1988. 1465
[8] C. T. Fan, S. M. Fan, S. M. Ma, M. K. Siu. On de Bruijn arrays. Ars Combinatoria, 19A:205$213,1985.1454, \underline{1465}$
[9] T. M. Flye-Sainte. Solution of problem 58. Intermediare des Mathematiciens, 1:107-110, 1894. 1464,1465
[10] I. Good. Normally recurring decimals. Australasian Journal of Combinatorics, 21:167-169, 1946. 1465
[11] M. Horváth, A. Iványi. Growing perfect cubes. Discrete Mathematics, 308:4378-4388, 2008. 1465
[12] G. Hurlbert, G. Isaak. On the de Bruijn torus problem. Combinatorial Theory Series A, 164(1):50-62, 1993. 1465
[13] G. Hurlbert, G. Isaak. A meshing technique for de bruijn tori. Contemporary Mathematics, 164(1):50-62, 1994. 1455, 1456, 1457, 1465
[14] G. Hurlbert, G. Isaak. New constructions for De Bruijn tori. Designs, Codes and Cryptography, 1:47-56, 1995. 1465
[15] G. Hurlbert, G. Isaak. On higher dimensional perfect factors. Ars Combinatoria, 45:229-239, 1997. 1465
[16] G. Hurlbert, C. J. Mitchell, K. G. Paterson. On the existence of the Bruijn tori with two by two window property. Combinatorial Theory Series A, 76(2):213-230, 1996. 1465
[17] G. Isaak. Construction for higher dimensional perfect multifactors. Aequationes Mathematicae, 178:153-160, 2002. 1465
[18] A. Iványi. On the d-complexity of words. Annales Universitatis Scientiarum Budapestinensis de $\overline{R o l a n} d o$ Eötvös Nominatae, Sectio Computarorica, 8:69-90, 1987. 1465
[19] A. Iványi. Construction of infinite De Bruijn arrays. Discrete Applied Mathhematics, 22:289293, 1988/89. 1465
[20] A. Iványi. Construction of three-dimensional perfect matrices. Ars Combinatoria, 29C:33-40, 1990. 1465
[21] A. Iványi, Z. Tóth. Existence of De Bruijn words. In I. Peák (Ed.), Second Conference on Automata, Languages and Programming Systems (Salgótarján, 1988), 165-172 pages. Karl Marx University of Economics, 1988. 1465
[22] D. E. Knuth. The Art of Computer Programming, Volume 4A. Combinatorial Algorithms. Addison-Wesley, 2011. 1454, 1465
[23] L. Lovász. Combinatorial Problems and Exercises. Academic Press, 1979. MR0537284 (80m:05001). $\underline{1454}, \underline{1465}$
[24] M. H. Martin. A problem in arrangements. Bulletin of American Mathematical Society, 40:859-864, 1934. 1454, $\underline{1465}$
[25] C. J. Mitchell. Aperiodic and semi-periodic perfect maps. IEEE Transactions on Information Theory, 41(1):88-95, 1995. 1465
[26] K. G. Paterson. Perfect maps. IEEE Transactions on Information Theory, 40(3):743-753, 1994. 1454, 1465
[27] K. G. Paterson. New classes of perfect maps. i. Combinatorial Theory Series A, 73(2):302-334, 1996. $\underline{1454,1465}$
[28] K. G. Paterson. New classes of perfect maps. ii. Combinatorial Theory Series A, 73(2):335$345,1 \overline{996.1454}, \underline{1465}$
[29] E. M. Petriou, J. Basran. On the position measurement of automated guided vehicle using pseudorandom encoding. IEEE Transactions on Instrumentation and Measurement, 38:799803, 1989. 1465
[30] E. M. Petriou, J. Basran, F. Groen. Automated guided vehicle position recovery. IEEE Transactions on Instrumentation and Measurement, 39:254-258, 1990. 1465
[31] I. S. Reed, R. M. Stewart. Note on the existence of perfect maps. IRE Transactions on Information Theory, 8:10-12, 1962. 1465
[32] N. Vörös. On the complexity of symbol sequences. In Conference of Young Programmers and Mathematicians (ed. A. Iványi), Eötvös Loránd University, Budapest, 43-50 pages, 1984. 1465

This bibliography is made by $\mathrm{HBibT}_{\mathrm{E}} \mathrm{X}$. First key of the sorting is the name of the authors (first author, second author etc.), second key is the year of publication, third key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage of the book contains a link to the corresponding address.

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for example, "2-3-4-tree" is indexed as if were "two-three-four-tree". When an entry refers to a place other than the main text, the page number is followed by a tag: exe for exercise, exa for example, $f i g$ for figure, $p r$ for problem and $f n$ for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.
time complexity, $\underline{583}$.

C

Cellular, 1458
Colour, $1 \underline{459}$

E

Even, 1456

G

growing sequence, 1465

M
Mesh, 1457

N

n-ary perfect sequence, $\underline{1455}$

O

one-dimensional perfect array, $\underline{1455}$
Optimal-Martin, $\underline{1455}$

Q
Quick-Martin, $\underline{1455}$

S

Shift, 1456

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we print it. If the cited person is not living, and we know the correct data, then we print also the year of her/his birth and death.

A

Arazi, B., 1466

B

Basran, J. S., 1467
Bruijn, Nicolaas Govert, de, 1466

C

Chung, Fan R. K., 1466
Cock, J. C., $1454,1465,1466$
Cormen, Thomas H., 1466
Cummings, L. J., $146 \overline{6}$

D

De Bruijn, Nicolaas Govert, 1465
Dénes, József, 1466
Diaconis, Persi Warren, 1466

F

Fan, C. T., 1465,1466
Fan, S. M., $1465, \underline{1466}$
Flye-Sainte, T. Marie, $1464, \underline{1466}$
Flye-Sainte,T. Marie, $\underline{1453}$

G

Good, I. J., 1465, 1466
Graham, Ronald Lewis, 1466
Groen, F. C. A., 1467

H

Horváth, Márk, 1455,1466
Hurlbert, Glenn, $1454, \underline{1465}, 1466$

I

Isaak, Garth, 1454, 1465, 1466
Iványi, Antal Miklós, 1455, 1457, 1465-1467

K

Keedwell, A. Donald, 1466
Knuth, Donald Ervin, 1467

L

Leiserson, Charles E., 1466
Lovász, László, 1467

M

Ma, M. K., 1466
Ma, S. L, 1465
Martin, Monroe Harnish (1907-2007), 1467
Mitchell, Chris J., 1465-1467

P

Paterson, Kenneth G., 1465-1467
Peák, István (1938-1989), $14 \overline{67}$
Petriou, E. M., 1467

R

Reed, I. S., 1465, 1467
Rivest, Ronald Lewis, 1466

S

Siu, M. K., $1454,1457,1465,1466$
Stein, Clifford, 1466
Stewart, R. M., 1465,1467

T

Tóth, Zoltán, 1457, 1465, 1467

V

Vörös, Nóra, 1467

W
Weidemann, D., 1466

