
27. Conflict Situations

In all areas of everyday life there are situations when conflicting aspects have to
be taken into account simultaneously. A problem becomes even more difficult when
several decision makers’ or interest groups’ mutual agreement is needed to find a
solution.

Conflict situations are divided in three categories in terms of mathematics:

1. One decision maker has to make a decision by taking several conflicting aspects
into account

2. Several decision makers have to find a common solution, when every decision
maker takes only one criterion into account

3. Several decision makers look for a common solution, but every decision maker
takes several criteria into account

In the first case the problem is a multi-objective optimization problem, where the
objective functions make up the various aspects. The second case is a typical problem
of the game theory, when the decision makers are the players and the criteria mean
the payoff functions. The third case appears as Pareto games in the literature, when
the different players only strive to find Pareto optimal solutions instead of optimal
ones.

In this chapter we will discuss the basics of this very important and complex
topic.

27.1. The basics of multi-objective programming

Suppose, that one decision maker wants to find the best decision alternative on the
basis of several, usually conflicting criteria. The criteria usually represent decision
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objectives. At first these are usually defined verbally, such as clean air, cheap main-
tenance, etc. Before the mathematical model is given, firstly, these objectives have
to be described by quantifiable indices. It often occurs that one criterion is described
by more than one indices, such as the quality of the air, since the simultaneous pres-
ence of many types of pollution have an effect on it. In mathematics it is usually
assumed that the bigger value of the certain indices (they will be called objective
functions) means favorable value, hence we want to maximize all of the objective
functions simultaneously. If we want to minimize one of the objective functions, we
can safely multiply its value by (−1), and maximize the resulting new objective
function. If in the case of one of the objective functions, the goal is to attain some
kind of optimal value, we can maximize the deviation from it by multiplying it by
(−1).

If X denotes the set of possible decision alternatives, and fi : X → R denotes the
ith objective function (i = 1, 2, . . . , I), the problem can be described mathematically
as follows:

fi(x)→ max (i = 1, 2, . . . , I) , (27.1)

supposing that x ∈ X.
In the case of a single objective function we look for an optimal solution.

Optimal solutions satisfy the following requirements:

(i) An optimal solution is always better than any non-optimal solution.

(ii) There is no such possible solution that provides better objective functions than
an optimal solution.

(iii) If more than one optimal solution exist simultaneously, they are equivalent in
the meaning that they have the same objective functions.

These properties come from the simple fact that the consequential space,

H = {u|u = f(x) for some x ∈ X} (27.2)

is a subset of the real number line, which is totally ordered. In the case of multiple
objective functions, the

H = {u = (u1, . . . , uI)|ui = fi(x), i = 1, 2, . . . , I for some x ∈ X} (27.3)

consequential space is a subset of the I-dimensional Euclidean space, which is only
partially ordered. Another complication results from the fact that a decision alterna-
tive that could maximize all of the objective functions simultaneously doesn’t usually
exist.

Let’s denote
f?

i = max{fi(x)|x ∈ X} (27.4)
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the maximum of the ith objective function, then the

f? = (f?
1 , . . . , f

?
I )

point is called ideal point. If f? ∈ H, then there exits an x? decision for which
fi(x

?) = f?
i , i = 1, 2, . . . , I. In such special cases x? satisfies the previously defined

(i)-(iii) conditions. However, if f? /∈ H, the situation is much more complicated. In
that case we look for Pareto optimal solutions instead of optimal ones.

Definition 27.1 An alternative x ∈ X is said to be Pareto optimal, if there is
no x ∈ X such that fi(x) ≥ fi(x) for all i = 1, 2, . . . , I, with at least one strict
inequality.

It is not necessary that a multi-purpose optimization problem has Pareto optimal
solution, as the case of the

H = {(f1, f2)|f1 + f2 < 1}

set shows it. Since H is open set, (f1 + ε1, f2 + ε2) ∈ H for arbitrary (f1, f2) ∈ H
and for a small enough positive ε1 and ε2.

Theorem 27.2 If X bounded, closed in a finite dimensional Euclidean space and
all of the objective functions are continuous, there is Pareto optimal solution.

The following two examples present a discrete and a continuous problem.

Example 27.1 Assume that during the planning of a sewage plant one out of two options
must be chosen. The expenditure of the first option is two billion Ft, and its daily capacity
is 1500 m3. The second option is more expensive, three billion Ft with 2000 m3 daily
capacity. In this case X = {1, 2}, f1 = −expenditure, f2 = capacity. The following table
summarizes the data:

Options f1 f2

1

2

−2

−3

1500

2000

Figure 27.1 Planning of a sewage plant.

Both options are Pareto optimal, since −2 > −3 and 2000 > 1500.The H consequential
space consists of two points: (−2, 1500) and (−3, 2000).

Example 27.2 The optimal combination of three technology variants is used in a sewage
station. The first variant removes 3,2,1 mg/m3 from one kind of pollution, and 1,3,2 mg/m3

quantity from the another kind of pollution. Let x1, x2 and 1−x1−x2 denote the percentage
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composition of the three technology variants.
The restrictive conditions:

x1, x2 ≥ 0

x1 + x2 ≤ 1 ,

the quantity of the removed pollution:

3x1 + 2x2 + (1 − x1 − x2) = 2x1 + x2 + 1

x1 + 3x2 + 2(1 − x1 − x2) = −x1 + x2 + 2 .

Since the third term is constant, we get the following two objective-function optimum
problem:

2x1 + x2, −x1 + x2 −→ max

provided that

x1, x2 ≥ 0

x1 + x2 ≤ 1 .

A H consequential space can be determined as follows. From the

f1 = 2x1 + x2

f2 = −x1 + x2

equations

x1 =
f1 − f2

3
and x2 =

f1 − 2f2

3
,

and from the restrictive conditions the following conditions arises for the f1 and f2 objective
functions:

x1 ≥ 0 ⇐⇒ f1 − f2 ≥ 0

x2 ≥ 0 ⇐⇒ f1 + 2f2 ≥ 0

x1 + x2 ≤ 1 ⇐⇒ 2f1 + f2 ≤ 3 .

Figures ?? and ?? display the X and H sets.
On the basis of the image of the H set, it is clear that the points of the straight section

joining (1, 1) to (2, −1) are Pareto optimal. Point (2, −1) isn’t better than any possible
point of H, because in the first objective function it results the worst possible planes. The
points of the section are not equivalent to each other, either, going down from the point
(1, 1) towards point (2, 1), the first objective function is increasing, but the second one is
continually decreasing. Thus the (ii) and (iii) properties of the optimal solution doesn’t
remain valid in the case of multi-objection.

As we saw in the previous example, the different Pareto optimal solutions result
in different objective function values, so it is primary importance to decide which one
should be selected in a particular case. This question is answered by the methodology
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Figure 27.2 The image of set X.

Figure 27.3 The image of set H.

of the multi-objective programming. Most methods’ basis is to substitute some real-
valued

”̨ “
value-function” for the objective functions, that is the preference generated
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by the objective functions is replaced by a single real-valued function. In this chapter
the most frequently used methods of multi-objective programming are discussed.

27.1.1. Applications of utility functions

A natural method is the following. We assign one utility function to every objective
function. Let ui(fi(x)) denote the utility function of the ith objective function. The
construction of the ui function can be done by the usual manner of the theory
of utility functions, for example the decision maker can subjectively define the ui

values for the given fi values, then a continuous function can be interpolated on the
resulting point. In the case of additive independent utility function additive, whereas
in the case of independent of usefulness utility function additive or multiplicative
aggregate utility function can be obtained. That is, the form of the aggregate utility
function is either

u(f) =

I
∑

i=1

kiui(fi) (27.5)

or

ku(f) + 1 =

I
∏

i=1

kkiui(fi) + 1 . (27.6)

In such cases the multi-objective optimization problem can be rewrite to one
objective-function form:

u(f) −→ max (27.7)

provided that x ∈ X, and thus u(f) means the "value-function".

Example 27.3 Consider again the decision making problem of the previous example. The
range of the first objective function is [0, 2], while the range of the second one is [−1, 1].
Assuming linear utility functions

u1(f1) =
1

2
(f1) and u2(f2) =

1

2
(f2) + 1 .

In addition, suppose that the decision maker gave the

u(0, −1) = 0, u(2, 1) = 1, and the u(0, 1) =
1

4

values. Assuming linear utility functions

u(f1, f2) = k1u1(f1) + k2u2(f2) ,

and in accordance with the given values

0 = k10 + k20

1 = k11 + k21
1

4
= k10 + k21 .
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By the third equation k2 = 1
4
, and by the second one we obtain k1 = 3

4
, so that

u(f1, f2) =
3

4
u1(f1) +

1

4
u2(f2) =

3

4

1

2
(2x1 + x2) +

1

4

1

2
(−x1 + x2 + 1) =

5

8
x1 +

4

8
x2 +

1

8
.

Thus we solve the following one objective-function problem:

5

8
x1 +

4

8
x2 −→ max

provided that

x1, x2 ≥ 0

x1 + x2 ≤ 1 .

Apparently, the optimal solution is: x1 = 1, x2 = 0, that is the first technology must be
chosen.

Assume that the number of objective functions is n and the decision maker gives

N vectors: (f
(l)
1 , . . . , f

(l)
n ) and the related u(l) aggregated utility function values.

Then the k1, . . . , kn coefficients can be given by the solution of the

k1u1(f
(l)
1 ) + · · ·+ knun(f (l)

n ) = u(l) (l = 1, 2, . . . , N)

equation system. We always suppose that N ≥ n, so that we have at least as many
equations as the number of unknown quantities. If the equation system is contradic-
tory, we determine the best fitting solution by the method of least squares. Suppose
that

U =











u11 · · · u1n

u21 · · · u2n

...
...

uN1 · · · uNn











és u =











u(1)

u(2)

...
u(N)











.

The formal algorithm is as follows:

Utility-Function-Method(u)

1 for i← 1 to N
2 do for j ← 1 to n

3 do uij ← uj(f
(i)
j )

4 k← (UT U)−1UT u the vector of solutions
5 return k
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27.1.2. Weighting method

Using this method the value-function is chosen as the linear combination of the
original object functions, that is we solve the

I
∑

i=1

αifi(x) −→ max (x ∈ X) (27.8)

problem. If we measure the certain objective functions in different dimensions, the
aggregate utility function can’t be interpreted, since we add up terms in different
units. In this case we generally normalize the objective functions. Let mi and Mi

the minimum and maximum of the fi objective function on the set X. Then the
normalized ith objective function is given by the

fi(x) =
fi(x)−mi

Mi −mi

formula, and in the (27.8) problem fi is replaced by fi:

I
∑

i=1

αifi(x) −→ max . (x ∈ X) (27.9)

It can be shown, that if all of the αi weights are positive, the optimal solutions of
(27.9) are Pareto optimal with regard to the original problem.

Example 27.4 Consider again the case of Example 27.2. From Figure 27.3, we can see
that m1 = 0, M1 = 2, m2 = −1, and M2 = 1. Thus the normalized objective functions are:

f1(x1, x2) =
2x1 + x2 − 0

2 − 0
= x1 +

1

2
x2

and

f2(x1, x2) =
−x1 + x2 + 1

1 + 1
= −

1

2
x1 +

1

2
x2 +

1

2
.

Assume that the objective functions are equally important, so we choose equivalent weights:
α1 = α2 = 1

2
, in this way the aggregate objective function is:

1

2
(x1 +

1

2
x2) +

1

2
(−

1

2
x1 +

1

2
x2 +

1

2
) =

1

4
x1 +

1

2
x2 +

1

4
.

It is easy to see that the optimal solution on set X:

x1 = 0, x2 = 1 ,

that is, only the second technology variant can be chosen.

Suppose that α = (α1, α2, . . . , αI). The formal algorithm is as follows:
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Weighting-Method(α)

1 for i← 1 to I
2 do mi ← (fi(x) −→ min)
3 Mi ← (fi(x) −→ max)

4 k ← (
∑I

i=1 αifi −→ max)
5 return k

27.1.3. Distance-dependent methods

If we normalize the objective functions, the certain normalized objective functions
most favorable value is 1 and the most unfavourable is 0. So that 1 = (1, 1, . . . , 1) is
the ideal point and 0 = (0, 0, . . . , 0) is the worst yield vector.

In the case of distance-dependent methods we either want to get nearest to the
vector 1 or get farthest from the point 0, so that we solve either the

%(f(x),1) −→ min (x ∈ X) (27.10)

or the
%(f(x),0) −→ max (x ∈ X) (27.11)

problem, where % denotes some distance function in R
I .

In practical applications the following distance functions are used most fre-
quently:

%1(a,b) =
I
∑

i=1

αi|ai − bi| (27.12)

%2(a,b) =

(

I
∑

i=1

αi|ai − bi|
2

)

1

2

(27.13)

%∞(a,b) = max
i
{αi|ai − bi|} (27.14)

%g(a,b) =

I
∏

i=1

|ai − bi|
αi . (27.15)

The %1, %1, %∞ distance functions the commonly known Minkowski distance for p =
1, 2,∞. The %g geometric distance doesn’t satisfy the usual requirements of distance
functions however, it is frequently used in practice. As we will see it later, Nash’s
classical conflict resolution algorithm uses the geometric distance as well. It is easy
to prove that the methods using the %1 distance are equivalent of the weighting
method. Notice firstly that

%1(f(x),1) =

I
∑

i=1

αi|fi(x)− 1| =
I
∑

i=1

αi|1− fi(x)| =
I
∑

i=1

αi −
I
∑

i=1

αifi(x) , (27.16)
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Figure 27.4 Minimizing distance.

where the first term is constant, while the second term is the objective function of
the weighting method. Similarly,

%1(f(x),0) =
I
∑

i=1

αi|fi(x)− 0| =
I
∑

i=1

αi(fi(x)− 0) =
I
∑

i=1

αifi(x) (27.17)

which is the objective function of the weighting method.
The method is illustrated in Figures 27.4. and 27.5.

Example 27.5 Consider again the problem of the previous example. The normalized con-
sequences are shown by Figure 27.6. The two coordinates are:

f1 =
f1

2
and f2 =

f2 + 1

2
.

Choosing the α1 = α2 = 1
2

and the %2 distances, the nearest point of H to the ideal
point is

f1 =
3

5
, f2 =

4

5
.

Hence

f1 = 2f1 = 2x1 + x2 =
6

5
and f2 = 2f1 − 1 = −x1 + x2 =

3

5
,

that is the optimal decision is:

x1 =
1

5
, x2 =

4

5
, 1 − x1 − x2 = 0 .

Therefore only the first two technology must be chosen in 20% and 80% proportion.
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Figure 27.5 Maximizing distance.

Figure 27.6 The image of the normalized set H.

Let’s choose again equivalent weights (α1 = α2 = 1
2
) and the %2 distance, but look for

the farthest point of H from the ideal worst point. We can see from Figure 27.5, that the
solution is

f1 =
f1

2
, f2 = 1 ,
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so

f1 = 2f1 = 1, f2 = 2f2 − 1 = 1 .

Thus the optimal decision is: x1 = 0 and x2 = 1

The formal algorithm is as follows:

Distance-Dependent-Method(%, f)

1 for i← 1 to I
2 do mi ← (fi(x) −→ min)
3 Mi ← (fi(x) −→ max)

4 fi(x)← (fi(x)−mi)/(Mi −mi)
5 k ← (%(f(x),1) −→ min) or k ← (%(f(x),0) −→ max)
6 return k

27.1.4. Direction-dependent methods

Assume that we have a f∗ point in set H, on which we’d like to improve. f∗ denotes
the present position, on which the decision maker wants to improve, or at design
level we can choose the worst point for the starting one. Furthermore, we assume
that the decision maker gives an improvement direction vector, which is denoted by
v. After that, the task is to reach the farthest possible point in set H starting from
f∗ along the v direction vector. Thus, mathematically we solve the

t −→ max (f∗ + tv ∈ H) (27.18)

optimum task, and the related decision is given by the solution of the

f(x) = f∗ + tv (27.19)

equation under the optimal t value. The method is illustrated in Figure 27.7.

Example 27.6 Let’s consider again the problem of Example 27.2, and assume that f∗ =
(0, −1), which contains the worst possible objective function values in its components. If
we want to improve the objective functions equally, we have to choose v = (1, 1). The
graphical solution is illustrated in Figure 27.8, that

f1 =
4

3
and f2 =

1

3
,

so the appropriate values of the decision variables are the following:

x1 =
1

3
és x2 =

2

3
.
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Figure 27.7 Direction-dependent methods.

Figure 27.8 The graphical solution of Example 27.6

A very rarely used variant of the method is when we diminishes the object func-
tion values systematically starting from an unreachable ideal point until a possible
solution is given. If f∗ denotes this ideal point, the (27.18) optimum task is modified
as follows:

t −→ min (f∗ − tv ∈ H) (27.20)

and the appropriate decision is given by the solution of the

f = f∗ − tv (27.21)

equation.
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Figure 27.9 The graphical solution of Example 27.7

Example 27.7 To return to the previous example, consider again that f ∗ = (2, 1) and
v = (1, 1), that is we want to diminish the object functions equally. Figure 27.9 shows the
graphical solution of the problem, in which we can see that the given solution is the same
as the solution of the previous example.

Applying the method is to solve the (27.18) or the (27.20) optimum tasks, and
the optimal decision is given by the solution of the (27.19) or the (27.21) equations.

Exercises
27.1-1 Determine the consequence space H for the following exercise:

x1 + x2 −→ max x1 − x2 −→ max

provided that

x1, x2 ≥ 0

3x1 + x2 ≤ 3

x1 + 3x2 ≤ 3 .

27.1-2 Consider the utility functions of the decision maker: u1(f1) = f1 és u2(f2) =
1
2f2. Furthermore, assume that the decision maker gave the u(0, 0) = 0, u(1, 0) =
u(0, 1) = 1

2 values. Determine the form of the aggregate utility function.
27.1-3 Solve Exercise 27.1-1 using the weighting-method without normalizing the
objective functions. Choose the α1 = α2 = 1

2 weights.
27.1-4 Repeat the previous exercise, but do normalize the objective functions.
27.1-5 Solve Exercise 27.1-1 with normalized objective functions, α1 = α2 = 1

2
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weights and minimizing the

(i) %1 distance

(ii) %2 distance

(iii) %∞distance.

27.1-6 Repeat the previous exercise, but maximize the distance from the 0 vector
instead of minimizing it.
27.1-7 Solve Exercise 27.1-1 using the direction-dependent method, choosing f∗ =
(0,−1) and v = (1, 1).
27.1-8 Repeat the previous exercise, but this time choose f∗ = ( 3

2 , 1) and v = (1, 1).

27.2. Method of equilibrium

In this chapter we assume that I decision makers interested in the selection of a
mutual decision alternative. Let fi : X 7→ R denote the objective function of the ith
decision maker, which is also called payoff function in the game theory literature.
Depending on the decision makers relationship to each other we can speak about
cooperative and non-cooperative games. In the first case the decision makers care
about only their own benefits, while in the second case they strive for an agreement
when every one of them are better off than in the non-cooperative case. In this
chapter we will discuss the non-cooperative case, while the cooperative case will be
topic of the next chapter.

Let’s denote Hi(x) for i = 1, 2, . . . , I and x ∈ X, the set of the decision alterna-
tives into which the ith decision maker can move over without the others’ support.
Evidently Hi(x) ⊆ X.

Definition 27.3 An x∗ ∈ X alternative is equilibrium if for all i and x ∈ Hi(x
∗),

fi(x) ≤ fi(x
∗) . (27.22)

This definition can also be formulated that x∗ is stable in the sense that none
of the decision makers can change the decision alternative from x∗ alone to change
any objective function value for the better. In the case of non-cooperative games,
the equilibrium are the solutions of the game.

For any x ∈ X and i decision maker, the set

Li(x) = {z|z ∈ Hi(x) and for all y ∈ Hi(x), fi(z) ≥ fi(y)} (27.23)

is called the set of the best answers of the ith decision maker to alternative x. It is
clear that the elements of Li(x) are those alternatives which the ith decision maker
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i = 2

1 2

i = 1
1

2

(1, 2)

(2, 4)

(2, 1)

(0, 5)

Figure 27.10 Game with no equilibrium.

can move over from x, and which ensure the best objective functions out of all the
possible alternatives. According to inequality (27.22) it is also clear that x∗ is an
equilibrium if and only if for all i = 1, 2, . . . , I, x∗ ∈ Li(x

∗), that is x∗ is mutual
fixed point of the Li point-to-set maps. Thus, the existence of equilibrium can be
traced to the existence of mutual fixed point of point-to-set maps, so the problem
can be solved by the usual methods.

It is a very common case when the collective decision is made up by the personal
decisions of the certain decision makers. Let Xi denote the set of the ith decision
maker’s alternatives, let xi ∈ Xi be the concrete alternatives, and let fi(x1, . . . , xI)
be the objective function of the ith decision maker. That is the collective decision is
x = (x1, . . . , xI) ∈ X1 ×X2 × · · · ×XI = X. In this case

Hi(x1, . . . , xI) = {(x1, . . . , xi−1, zi, xi+1, . . . , xI)|zi ∈ Xi}

and the (27.22) definition of equilibrium is modified as follows:

fi(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I) ≤ fi(x

∗
i , . . . , x

∗
I) . (27.24)

In the game theory literature the equilibrium is also called Nash-equilibrium.
The existence of an equilibrium is not guaranteed in general. To illustrate this

let’s consider the I = 2 case, when both decision makers can choose between to
alternatives: X1 = {1, 2} and X2 = {1, 2}. The objective function values are shown in
Figure 27.10, where the the first number in the parentheses shows the first, the second
number shows the second decision maker’s objective function value. If equilibrium
exists, it might not be unique, what can be proved by the case of constant objective
functions, when every decision alternative is an equilibrium.

If the X1, . . . ,XI sets are finite, the equilibrium can be found easily by the
method of reckoning, when we check for all of the x = (x1, . . . , xI) decision vectors
whether the component xi can be changed for the better of the fi objective function.
If the answer is yes, x is not equilibrium. If none of the components can be changed
in such manner, x is equilibrium. For the formal algorithm, let’s assume that X1 =
{1, 2, . . . , ni}.
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Equilibrium-Search

1 for i1 ← 1 to n1

2 do for i2 ← 1 to n2

3
. . .

4 do for iI ← 1 to nI

5 do key ← 0
6 for k ← 1 to n
7 do for j ← 1 to nk

8 do if fk(i1, . . . , ik−1, j, ik+1, . . . , iI) > f(i1, . . . , iI)
9 then key ← 1 and go to 10

10 if key = 0
11 then (i1, . . . , iI) is equilibrium

The existence of equilibrium is guaranteed by the following theorem.

Theorem 27.4 Assume that for all i = 1, 2, . . . , I

(i) Xi is convex, bounded and closed in a final dimensional Euclidean space;

(ii) fi is continuous on the set X;

(iii) for any fixed x1, . . . , xi−1, xi+1, . . . , xI , fi is concave in xi.

Then there is at least one equilibrium.

Determination of the equilibrium is usually based on the observation that for all
i, x∗

i is the solution of the

fi(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I) −→ max (xi ∈ Xi) (27.25)

optimum task. Writing the necessary conditions of the optimal solution (for exam-
ple the Kuhn-Tucker conditions) we can get an equality-inequality system which
solutions include the equilibrium. To illustrate this method let’s assume that

Xi = {xi|gi(xi) ≥ 0}

where xi is a finite dimensional vector and gi is a vector-valued function. In this way
(27.25) can be rewritten as follows:

fi(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I) −→ max (gi(xi) ≥ 0) . (27.26)

In this case the Kuhn-Tucker necessary conditions are:

ui ≥ 0
gi(xi) ≥ 0

∇ifi(x) + uT
i ∇igi(xi) = 0T

uT
i gi(xi) = 0 ,

(27.27)
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where ∇i denotes the gradient at xi, and ui is a vector which has the same length
as gi. If we formulate the (27.27) conditions for i = 1, 2, . . . , I, we get an equality-
inequality system which can be solved by computer methods. It is easy to see that
(27.27) can also be rewritten to an nonlinear optimization task:

∑I

i=1 u
T
i gi(xi) −→ min

ui ≥ 0
gi(xi) ≥ 0

∇ifi(x) + uT
i ∇igi(xi) = 0T .

(27.28)

If the optimal objective function value is positive, the (27.27) system doesn’t have
a solution, and if the optimal objective function value is zero, any optimal solution
is also a solution of the (27.27) system, so the equilibrium are among the optimal
solutions. We know about the sufficiency of the Kuhn-Tucker conditions that if fi is
concave in xi with all i, the Kuhn-Tucker conditions are also sufficient, thus every
solution of (27.27) gives an equilibrium.

The formal algorithm is as follows:

Kuhn–Tucker-Equilibrium

1 for i← 1 to I
2 do gi ← ∇ifi

3 Ji ← ∇igi(xi)
4 (x1, . . . , xI)← the solution of the (27.28) optimum task

5 if
∑I

i=1 u
T
i gi(xi) > 0

6 then return "there is no equilibrium"
7 else return (x1, . . . , xI)

Example 27.8 Assume that I production plant produce some water purification device
sold into households. Let xi denote the quantity produced by the ith production plant, let
ci(xi) be the cost function of it, and let p(

∑I

j=1
xj) be the sale price, which depends on

the total quantity to be put on the market. Furthermore, be Li is the capacity of the ith
production plant. Thus, the possible Xi decision set is the [0, Li] closed interval, which can
be defined by the

xi ≥ 0
Li − xi ≥ 0

(27.29)

conditions, so

gi(xi) =
(

xi

Li − xi

)

.

The objective function of the ith production plant is the profit of that:

fi(x1, . . . , xn) = xip(x1 + · · · + xn) − ci(xi) . (27.30)

Since gi(xi) is two-dimensional, ui is a two-element vector as well, and the (27.28)
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optimum task has the following form:
∑I

i=1
(u

(1)
i xi + u

(2)
i (Li − xi)) −→ min

u
(1)
i , u

(2)
i ≥ 0
xi ≥ 0

Li − xi ≥ 0

p(
∑I

j=1
xj) + xip

′(
∑I

j=1
xj) − c′

i(xi) + (u
(1)
i , u

(2)
i )
(

1

−1

)

= 0 .

(27.31)

Let’s introduce the αi = u
(1)
i −u

(2)
i new variables, and for the sake of notational convenience

be βi = u
(2)
i , then taking account of the last condition, we get the following problem:

∑I

i=1
(−xi(p(

∑I

j=1
xj) + xip

′(
∑I

j=1
xj) − c′

i(xi)) + βiLi) −→ min

βi ≥ 0
xi ≥ 0
xi ≤ Li .

(27.32)

Let’s notice that in case of optimum βi = 0, so the last term of the objective function can
be neglected.

Consider the special case of I = 3, ci(xi) = ix3
i + xi, Li = 1, p(s) = 2 − 2s − s3. The

(27.32) problem is now simplified as follows:
∑3

i=1
xi(2 − 2s − s2 − 2xi − 2xis − 3ix2

i − 1) −→ max
xi ≥ 0
xi ≤ 1

x1 + x2 + x3 = s .

(27.33)

Using a simple computer program we can get the optimal solution:

x∗
1 = 0.1077, x∗

2 = 0.0986, x∗
3 = 0.0919 ,

which is the equilibrium as well.

Exercises
27.2-1 Let I = 2, X1 = X2 = [0, 1], f1(x1, x2) = x1 + x2 − x2

1, f2(x1, x2) =
x1 + x2 − x

2
2. Formulate the (27.27) conditions and solve them as well.

27.2-2 Formulate and solve the optimum problem (27.28) for the previous exercise.

27.2-3 Let again I = 2. X1 = X2 = [−1, 1], f1(x1, x2) = −(x1 + x2)2 + x1 + 2x2,
f2(x1, x2) = −(x1 + x2)2 + 2x1 + x2. Repeat Exercise 27.2-1.
27.2-4 Repeat Exercise 27.2-2 for the problem given in the previous exercise.

27.3. Methods of cooperative games

Similarly to the previous chapter let Xi denote again the decision set of the ith
decision maker and let xi ∈ Xi be the concrete decision alternatives. Furthermore,
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let fi(x1, . . . , xI) denote the objective function of the ith decision maker. Let S be
some subset of the decision makers, which is usually called coalition in the game
theory. For arbitrary S ⊆ {1, 2, . . . , I}, let’s introduce the

v(S) = max
xi∈Xi

min
xj∈Xj

∑

k∈S

fk(x1, . . . , xI) (i ∈ S, j /∈ S) (27.34)

function, which is also called the characteristic function defined on all of the subsets
of the set {1, 2, . . . , I}, if we add the v(∅) = 0 and

v({1, 2, . . . , I}) = max
xi∈Xi

I
∑

k=1

fk(x1, . . . , xI) (1 ≤ i ≤ I)

special cases to definition (27.34).
Consider again that all of the Xi sets are finite for Xi = {1, 2, . . . , ni} , i =

1, 2, . . . , I. Be S a coalition. The value of v(S) is given by the following algorithm,
where |S| denotes the number of elements of S, k1, k2, . . . , k|S| denotes the elements
and l1, l2, . . . , lI−|S| the elements which are not in S.

Characteristic-Function(S)

1 v(S)← −M , where M a very big positive number
2 for i1 ← 1 to nk1

3
. . .

4 do for i|S| ← 1 to nk|S|

5 do for j1 ← 1 to nl1

6
. . .

7 do for jI−|S| ← 1 to nlI−|S|

8 do Z ←M , where M a very big positive number

9 V ←
∑|S|

t=1 fit
(i1, . . . , i|S|, j1, . . . , jI−|S|)

10 if V < Z
11 then Z ← V
12 if Z > v(S)
13 then v(S)← Z
14 return v(S)

Example 27.9 Let’s return to the problem discussed in the previous example, and assume
that I = 3, Li = 3, p(

∑I

i=1
xi) = 10 −

∑I

i=1
xi és ci(xi) = xi + 1 for i = 1, 2, 3. Since the

cost functions are identical, the objective functions are identical as well:

fi(x1, x2, x3) = xi(10 − x1 − x2 − x3) − (xi + 1) .
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In the following we determine the characteristic function. At first be S = {i}, then

v(S) = max
xi

min
xj

{xi(10 − x1 − x2 − x3) − (xi + 1)} (j 6= i) .

Since the function strictly decreases in the xj(i 6= j) variables, the minimal value of it is
given at xj = 3, so

v(S) = max
i

xi(4 − xi) − (xi + 1) = max
0≤xi≤3

(−x2
i + 3xi − 1) =

5

4
,

what is easy to see by plain differentiation. Similarly for S = {i, j}

v(S) = max
i,j

min
k 6=i,j

{(xi + xj)(10 − x1 − x2 − x3) − (xi + 1) − (xj + 1)} .

Similarly to the previous case the minimal value is given at xk = 3, so

v(S) = max
0≤xi,xj ≤3

{(xi + xj)(7 − xi − xj) − (xi + xj + 2)} = max
0≤x≤6

{x(7 − x) − (x + 2)} =

= max
0≤x≤6

{−x2 + 6x − 2} = 7

where we introduced the new x = xi + xj variable. In the case of S = {1, 2, 3}

v(S) = max
0≤x1,x2,x3≤3

{(x1 + x2 + x3)(10 − x1 − x2 − x3) − (x1 + 1) − (x2 + 1) − (x3 + 1)} =

= max
0≤x≤9

{x(10 − x) − (x + 3)} = max
0≤x≤9

{−x2 + 9x − 3)} = 17.25 ,

where this time we introduced the x = x1 + x2 + x3 variable.

Definition (27.34) can be interpreted in a way that the v(S) characteristic func-
tion value gives the guaranteed aggregate objective function value of the S coalition
regardless of the behavior of the others. The central issue of the theory and practice
of the cooperative games is how should the certain decision makers share in the maxi-
mal aggregate profit v({1, 2, . . . , I}) attainable together. An (φ1, φ2, . . . , φI) division
is usually called imputation, if

φi ≥ v({i}) (27.35)

for i = 1, 2, . . . , I and
I
∑

i=1

φi = v({1, 2, . . . , I}) . (27.36)

The inequality system (27.35)–(27.36) is usually satisfied by infinite number of
imputations, so we have to specify additional conditions in order to select one special
element of the imputation set. We can run into a similar situation while discussing
the multi-objective programming, when we looks for a special Pareto optimal solution
using the concrete methods.
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Example 27.10 In the previous case a (φ1, φ2, φ3) vector is imputation if

φ1, φ2, φ3 ≥ 1.25

φ1 + φ2, φ1 + φ3, φ2 + φ3 ≥ 7

φ1 + φ2 + φ3 = 17.2 .

The most popular solving approach is the Shapley value, which can be defined
as follows:

φi =
∑

S⊆{1,2,...,I}

(s− 1)!(I − s)!

I!
(v(S)− v(S − {i})) , (27.37)

where s denotes the number of elements of the S coalition.
Let’s assume again that the decision makers are fully cooperating, that is they

formulate the coalition {1,2,. . . ,I}, and the certain decision makers join to the coali-
tion in random order. The difference v(S)− v(S−{i}) indicates the contribution to
the S coalition by the ith decision maker, while expression (27.37) indicates the av-
erage contribution of the same decision maker. It can be shown that (φ1, φ2, . . . , φI)
is an imputation.

The Shapley value can be computed by following algorithm:

Shapley-Value

1 for ∀S ⊆ {1, . . . , I}
2 do v(S)← Characteristic-Function(S)
3 for i← 1 to I
4 do use (27.37) for calculating φi

Example 27.11 In the previous example we calculated the value of the characteristic
function. Because of the symmetry, φ1 = φ2 = φ3 must be true for the case of Shapley
value. Since φ1 + φ2 + φ3 = v({1, 2, 3}) = 17.25, φ1 = φ2 = φ3 = 5.75. We get the same
value by formula (27.37) too. Let’s consider the φ1 value. If i /∈ S, v(S) = v(S −{i}), so the
appropriate terms of the sum are zero-valued. The non-zero terms are given for coalitions
S = {1}, S = {1, 2}, S = {1, 3} and S = {1, 2, 3}, so

φ1 =
0!2!

3!
(
5

4
− 0) +

1!1!

3!
(7 −

5

4
) +

1!1!

3!
(7 −

5

4
) +

2!0!

3!
(
69

4
− 7) =

1

6
(
10

4
+

23

4
+

23

3
+

82

4
) =

138

24
= 5.75 .

An alternative solution approach requires the stability of the solution. It is said
that the vector φ = (φ1, . . . , φI) majorizes the vector ψ = (ψ1, . . . , ψI) in coalition
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S, if
∑

i∈S

φi >
∑

i∈S

ψi ,

that is the S coalition has an in interest to switch from payoff vector φ to payoff
vector ψ, or ψ is instabil for coalition S. The Neumann–Morgenstern solution
is a V set of imputations for which

(i) There is no φ, ψ ∈ V , that φ majorizes ψ in some coalition (inner stability)

(ii) If ψ /∈ V , there is φ ∈ V , that φ majorizes ψ-t in at least one coalition (outer
stability).

The main difficulty of this conception is that there is no general existence the-
orem for the existence of a non-empty V set, and there is no general method for
constructing the set V .

Exercises
27.3-1 Let I = 3, X1 = X2 = X3 = [0, 1], fi(x1, x2, x3) = x1 + x2 + x3 − x

2
i (i =

1, 2, 3). Determine the v(S) characteristic function.
27.3-2 Formulate the (27.35), (27.36) condition system for the game of the previous
exercise.
27.3-3 Determine the ψi Shapley values for the game of Exercise 27.3-1.

27.4. Collective decision-making

In the previous chapter we assumed that the objective functions are given by nu-
merical values. These numerical values also mean preferences, since the ith decision
maker prefers alternative x to z, if fi(x) > fi(z). In this chapter we will discuss
such methods which don’t require the knowledge of the objective functions, but the
preferences of the certain decision makers.

Let I denote again the number of decision makers, and X the set of decision
alternatives. If the ith decision maker prefers alternative x to y, this is denoted by
x �i y, if prefers alternative x to y or thinks to be equal, it is denoted by x �i y.
Assume that

(i) For all x, y ∈ X, x �i y or y �i x (or both)

(ii) For x �i y and y �i z, x �i z.

Condition (i) requires that the �i partial order be a total order, while condition (ii)
requires to be transitive.

Definition 27.5 A group decision-making function combines arbitrary individual
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(�1,�2, . . . ,�I) partial orders into one partial order, which is also called the collec-
tive preference structure of the group.

We illustrate the definition of group decision-making function by some simple
example.

Example 27.12 Be x, y ∈ X arbitrary, and for all i

αi =

{

1, ha x �i y,
0, ha x ∼i y,
−1, ha x ≺i y.

Let βi, β2, . . . , βI given positive constant, and

α =

I
∑

i=1

βiαi .

The group decision-making function means:

x � y ⇐⇒ α > 0

x ∼ y ⇐⇒ α = 0

x ≺ y ⇐⇒ α < 0 .

The majority rule is a special case of it when β1 = β2 = · · · = βI = 1.

Example 27.13 An i0 decision maker is called dictator , if his or her opinion prevails in
group decision-making:

x � y ⇐⇒ x �i0
y

x ∼ y ⇐⇒ x ∼i0
y

x ≺ y ⇐⇒ x ≺i0
y .

This kind of group decision-making is also called dictatorship.

Example 27.14 In the case of Borda measure we assume that α is a finite set and
the preferences of the decision makers is expressed by a ci(x) measure for all x ∈ X. For
example ci(x) = 1, if x is the best, ci(x) = 2, if x is the second best alternative for the ith
decision maker, and so on, ci(x) = I, if x is the worst alternative. Then

x � y ⇐⇒

I
∑

i=1

ci(x) >

I
∑

i=1

ci(y)

x ∼ y ⇐⇒

I
∑

i=1

ci(x) =

I
∑

i=1

ci(y)

x ≺ y ⇐⇒

I
∑

i=1

ci(x) <

I
∑

i=1

ci(y) .
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A group decision-making function is called Pareto or Pareto function, if for
all x, y ∈ X and x �i y (i = 1, 2, . . . , I), x � y necessarily. That is, if all the decision
makers prefer x to y, it must be the same way in the collective preference of the
group. A group decision-making function is said to satisfy the condition of pairwise
independence, if any two (�1, . . . ,�I) and (�′

1, . . . ,�
′
I) preference structure satisfy

the followings. Let x, y ∈ X such that for arbitrary i, x �i y if and only if x �′
i y,

and y �i x if and only if y �′
i x. Then x � y if and only if x �′ y, and y � x if and

only if y �′ x in the collective preference of the group.

Example 27.15 It is easy to see that the Borda measure is Pareto, but it doesn’t satisfy
the condition of pairwise independence. The first statement is evident, while the second
one can be illustrated by a simple example. Be I = 2, α = {x, y, z}. Let’s assume that

x �1 z �1 y

y �2 x �2 z

and

x �′
1 y �′

1 z

y �′
2 z �′

2 x .

Then c(x) = 1 + 2 = 3, c(y) = 3 + 1 = 4, thus y � x. However c′(x) = 1 + 3 = 4, c′(y) =
2 + 1 = 3, so x � y. As we can see the certain decision makers preference order between x
and y is the same in both case, but the collective preference of the group is different.

Let RI denote the set of the I-element full and transitive partial orders on
an at least three-element X set, and be � the collective preference of the group
which is Pareto and satisfies the condition of pairwise independence. Then � is
necessarily dictatorial. This result originated with Arrow shows that there is no
such group decision-making function which could satisfy these two basic and natural
requirements.

Example 27.16 The method of paired comparison is as follows. Be x, y ∈ X arbitrary,
and let’s denote P (x, y) the number of decision makers, to which x �i y. After that, the
collective preference of the group is the following:

x � y ⇐⇒ P (x, y) > P (y, x)

x ∼ y ⇐⇒ P (x, y) = P (y, x)

x ≺ y ⇐⇒ P (x, y) < P (y, x) ,

that is x � y if and only if more than one decision makers prefer the x alternative to y.
Let’s assume again that X consists of three elements, X = {x, y, z} and the individual
preferences for I = 3

x �1 y �1 z

z �2 x �2 y

y �3 z �3 x .
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Decision makers Alternatives Weights

1 2 . . . N

1

2

.

..

I

a11

a21

.

..

aI1

a12

a22

.

..

aI2

. . .

. . .

. . .

a1N

a2N

.

..

aIN

α1

α2

.

..

αI

Figure 27.11 Group decision-making table.

Thus, in the collective preference x � y, because P (x, y) = 2 and P (y, x) = 1. Similarly
y � z, because P (y, z) = 2 and P (z, y) = 1, and z � x, since P (z, x) = 2 and P (x, z) = 1.
Therefore x � y � z � x which is inconsistent with the requirements of transitivity.

The methods discussed so far didn’t take account of the important circumstance
that the decision makers aren’t necessarily in the same position, that is they can
have different importance. This importance can be characterized by weights. In this
generalized case we have to modify the group decision-making methods as required.
Let’s assume that X is finite set, denote N the number of alternatives. We denote
the preferences of the decision makers by the numbers ranging from 1 to N , where
1 is assigned to the most favorable, while N is assigned to most unfavorable alter-
native. It’s imaginable that the two alternatives are equally important, then we use
fractions. For example, if we can’t distinguish between the priority of the 2nd and
3rd alternatives, then we assign 2.5 to each of them. Usually the average value of the
indistinguishable alternatives is assigned to each of them. In this way, the problem
of the group decision can be given by a table which rows correspond to the decision
makers and columns correspond to the decision alternatives. Every row of the table
is a permutation of the 1, 2, . . . , N numbers, at most some element of it is replaced
by some average value if they are equally-preferred. Figure 27.11 shows the given
table in which the last column contains the weights of the decision makers.

In this general case the majority rule can be defined as follows. For all of the j
alternatives determine first the aggregate weight of the decision makers to which the
alternative j is the best possibility, then select that alternative for the best collective
one for which this sum is the biggest. If our goal is not only to select the best, but
to rank all of the alternatives, then we have to choose descending order in this sum
to rank the alternatives, where the biggest sum selects the best, and the smallest
sum selects the worst alternative. Mathematically, be

f(aij) =

{

1, ha aij = 1,
0 otherwise

(27.38)
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and

Aj =

I
∑

i=1

f(aij)αi (27.39)

for j = 1, 2, . . . , I. The j0th alternative is considered the best by the group, if

Aj0
= max

j
{Aj} . (27.40)

The formal algorithm is as follows:

Majority-Rule(A)

1 A1 ← 0, A2 ← 0, . . . , AN ← 0,max← 0
2 for i← 1 to N
3 do for j ← 1 to I
4 do if aji = 1
5 then Ai ← Ai + αj

6 if Ai > max
7 then max← Ai

8 ind← i
9 return ind

Applying the Borda measure, let

Bj =

I
∑

i=1

aijαi , (27.41)

and alternative j0 is the result of the group decision if

Bj0
= min

j
{Bj} . (27.42)

The Borda measure can be described by the following algorithm:

Borda-Measure-Method(A,α)

1 B1 ← 0, B2 ← 0, . . . , BN ← 0,max← 0
2 for j ← 1 to N
3 do for i← 1 to I
4 do Bj ← Bj + aijαi

5 if Bj > max
6 then max← Bj

7 ind← j
8 return ind
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Applying the method of paired comparison, let with any j, j′ ∈ X

P (j, j′) =
∑

{i|aij<aij′ }

αi (27.43)

which gives the weight of the decision makers who prefer the alternative j to j′. In
the collective decision

j � j′ ⇐⇒ P (j, j′) > P (j′, j) .

In many cases the collective partial order given this way doesn’t result in a clearly
best alternative. In such cases further analysis (for example using some other
method) need on the

S∗ = {j|j ∈ X and theres is no such j′ ∈ X, for which j′ � j}

non-dominated alternative set.
By this algorithm we construct a matrix consists of the {0, 1} elements, where

ajl = 1 if and only if the j alternative is better in all then alternative l. In the case
of draw ajl = 1

2 .

Paired-Comparison(A)

1 for j ← 1 to N − 1
2 do for l← j to N
3 do z ← 0
4 for i← 1 to I
5 do if aij > ail

6 then z ← z + 1
7 if z > N

2
8 then ajl ← 1
9 if z = N

2
10 then ajl ←

1
2

11 if z < N
2

12 then ajl ← 0
13 alj ← ajl

14 return A

Example 27.17 Four proposal were received by the Environmental Authority for the
cleaning of a chemically contaminated site. A committee consists of 6 people has to choose
the best proposal and thereafter the authority can conclude the contract for realizing the
proposal. Figure 27.12 shows the relative weight of the committee members and the personal
preferences.

Majority rule
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Committee Alternatives Weights

Members 1 2 3 4

1

2

3

4

5

6

1

2

1

2

3

1

3

1

3

3

1

4

2

4

2

1

4

2

4

3

4

4

2

3

0.3

0.2

0.2

0.1

0.1

0.1

Figure 27.12 The database of Example 27.17

Using the majority rule

A1 = 0.3 + 0.2 + 0.1 = 0.6

A2 = 0.2 + 0.1 = 0.3

A3 = 0.1

A4 = 0 ,

so the first alternative is the best.
Using the Borda measure

B1 = 0.3 + 0.4 + 0.2 + 0.2 + 0.3 + 0.1 = 1.5

B2 = 0.9 + 0.2 + 0.6 + 0.3 + 0.1 + 0.4 = 2.5

B3 = 0.6 + 0.8 + 0.4 + 0.1 + 0.4 + 0.2 = 2.5

B4 = 1.2 + 0.6 + 0.8 + 0.4 + 0.2 + 0.3 = 3.5 .

In this case the first alternative is the best as well, but this method shows equally good the
second and third alternatives. Notice, that in the case of the previous method the second
alternative was better than the third one.

In the case of the method of paired comparison
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Figure 27.13 The preference graph of Example 27.17

P (1, 2) = 0.3 + 0.2 + 0.1 + 0.1 = 0.7

P (2, 1) = 0.2 + 0.1 = 0.3

P (1, 3) = 0.3 + 0.2 + 0.2 + 0.1 + 0.1 = 0.9

P (3, 1) = 0.1

P (1, 4) = 0.3 + 0.2 + 0.2 + 0.1 + 0.1 = 0.9

P (4, 1) = 0.1

P (2, 3) = 0.2 + 0.1 + 0.1 = 0.4

P (3, 2) = 0.3 + 0.2 + 0.1 = 0.6

P (2, 4) = 0.3 + 0.2 + 0.2 + 0.1 + 0.1 = 0.9

P (4, 2) = 0.1

P (3, 4) = 0.3 + 0.2 + 0.1 + 0.1 = 0.7

P (4, 3) = 0.2 + 0.1 = 0.3 .

Thus 1 � 2, 1 � 3, 1 � 4, 3 � 2, 2 � 4 and 3 � 4. These references are showed by Figure
27.13. The first alternative is better than any others, so this is the obvious choice.

In the above example all three methods gave the same result. However, in several
practical cases one can get different results and the decision makers have to choose
on the basis of other criteria.

Exercises
27.4-1 Let’s consider the following group decision-making table:

Apply the majority rule.
27.4-2 Apply the Borda measure to the previous exercise.
27.4-3 Apply the method of paired comparison to Exercise 27.4-1.
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Decision makers Alternatives Weights

1 2 3 4 5

1

2

3

4

1

1

5

4

3

4

4

3

2

5

1

2

5

2

3

1

4

3

2

5

3

2

2

1

Figure 27.14 Group decision-making table

27.4-4 Let’s consider now the following group decision-making table:

Decision makers Alternatives Weights

1 2 3

1

2

3

4

1

3

2

1

2

2

1

3

3

1

3

2

1

1

1

1

Figure 27.15 Group decision-making table

Repeat Exercise 27.4-1 for this exercise.
27.4-5 Apply the Borda measure to the previous exercise.
27.4-6 Apply the method of paired comparison to Exercise 27.4-4.

27.5. Applications of Pareto games

Let I denote again the number of decision makers but suppose now that the deci-
sion makers have more than one objective functions separately. There are several
possibility to handle such problems:

(A) In the application of multi-objective programming, let αi denote the weight of
the ith decision maker, and let βi1, βi2, . . . , βic(i) be the weights of this decision
maker’s objective functions. Here c(i) denote the number of the ith decision
maker’s objective functions. Thus we can get an optimization problem with the
∑I

i=1 c(i) objective function, where all of the decision makers’ all the objective
functions mean the objective function of the problem, and the weights of the
certain objective functions are the αiβij sequences. We can use any of the
methods from Chapter 27.1. to solve this problem.

(B) We can get another family of methods in the following way. Determine an
utility function for every decision maker (as described in Chapter 27.1.1.),
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which compresses the decision maker’s preferences into one function. In the
application of this method every decision maker has only one (new) objective
function, so any methods and solution concepts can be used from the previous
chapters.

(C) A third method can be given, if we determine only the partial order of the
certain decision makers defined on an alternative set by some method instead
of the construction of utility functions. After that we can use any method of
Chapter 27.4. directly.

Example 27.18 Modify the previous chapter as follows. Let’s suppose again that we choose
from four alternatives, but assume now that the committee consists of three people and
every member of it has two objective functions. The first objective function is the technical
standards of the proposed solution on a subjective scale, while the second one are the odds
of the exact implementation. The latter one is judged subjectively by the decision makers
individually by the preceding works of the supplier. The data is shown in Figure 27.16.,
where we assume that the first objective function is judged on a subjective scale from 0
to 100, so the normalized objective function values are given dividing by 100. Using the
weighting method we get the following aggregate utility function values for the separate
decision makers:

1. Decision maker

First alternative: 0.9(0.5) + 0.9(0.5) = 0.9
Second alternative: 0.75(0.5) + 0.8(0.5) = 0.775
Third alternative: 0.8(0.5) + 0.7(0.5) = 0.75
Fourth alternative: 0.85(0.5) + 0.8(0.5) = 0.825

2. Decision maker

First alternative: 0.85(0.6) + 0.8(0.4) = 0.83
Second alternative: 0.8(0.6) + 0.9(0.4) = 0.84
Third alternative: 0.7(0.6) + 0.8(0.4) = 0.74
Fourth alternative: 0.9(0.6) + 0.85(0.4) = 0.88

3. Decision maker

First alternative: 0.8(0.7) + 0.85(0.3) = 0.815
Second alternative: 0.9(0.7) + 0.8(0.3) = 0.87
Third alternative: 0.75(0.7) + 0.9(0.3) = 0.795
Fourth alternative: 0.7(0.7) + 0.8(0.3) = 0.73

The preferences thus are the following:

1 �1 4 �1 2 �1 3, 4 �2 2 �2 1 �2 3, and 2 �3 1 �3 3 �3 4 .
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Decision maker Objective function Alternatives Objective function Decision maker

1 2 3 4 weight weight

1
1 90 75 80 85 0.5

0.4
2 0.9 0.8 0.7 0.8 0.5

2
1 85 80 70 90 0.6

0.3
2 0.8 0.9 0.8 0.85 0.4

3
1 80 90 75 70 0.7

0.3
2 0.85 0.8 0.9 0.8 0.3

Figure 27.16 The database of Example 27.18

For example, in the application of Borda measure

B1 = 1(0.4) + 3(0.3) + 2(0.3) = 1.9

B2 = 3(0.4) + 2(0.3) + 1(0.3) = 2.1

B3 = 4(0.4) + 4(0.3) + 3(0.3) = 3.7

B4 = 2(0.4) + 1(0.3) + 4(0.3) = 2.3

are given, so the group-order of the four alternatives

1 � 2 � 4 � 3 .

Exercises
27.5-1 Let’s consider the following table:

Decision maker Objective function Alternatives Objective function Decision maker

1 2 3 weight weight

1
1 0.6 0.8 0.7 0.6

0.5
2 0.9 0.7 0.6 0.4

2
1 0.5 0.3 0.4 0.5

0.25
2 0.6 0.8 0.7 0.5

3

1 0.4 0.5 0.6 0.4

0.252 0.7 0.6 0.6 0.4

3 0.5 0.8 0.6 0.2

Figure 27.17

Let’s consider that the objective functions are already normalized. Use method
(A) to solve the exercise.
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27.5-2 Use method (B) for the previous exercise, where the certain decision makers’
utility functions are given by the weighting method, and the group decision making
is given by the Borda measure.
27.5-3 Solve Exercise 27.5-2 using the method of paired comparison instead of
Borda measure.

27.6. Axiomatic methods

For the sake of simplicity, let’s consider that I = 2, that is we’d like to solve the
conflict between two decision makers. Assume that the consequential space H is
convex, bounded and closed in R

2, and there is given a f∗ = (f1∗, f2∗) point which
gives the objective function values of the decision makers in cases where they are
unable to agree. We assume that there is such f ∈ H that f > f∗. The conflict is
characterized by the (H, f∗) pair. The solution obviously has to depend on both H
and f∗, so it is some function of them: φ(H, f∗).

For the case of the different solution concepts we demand that the solution
function satisfies some requirements which treated as axioms. These axioms require
the correctness of the solution, the certain axioms characterize this correctness in
different ways.

In the case of the classical Nash solution we assume the following:

(i) φ(H, f∗) ∈ H (possibility)

(ii) φ(H, f∗) ≥ f∗ (rationality)

(iii) φ(H, f∗) is Pareto solution in H (Pareto optimality)

(iv) If H1 ⊆ H and φ(H, f∗) ∈ H1, necessarily φ(H1, f∗) = φ(H, f∗) (independence
of irrelevant alternatives)

(v) Be T : R2 7→ R
2 such linear transformation that T (f1, f2) = (α1f1 +β1, α2f2 +

β2) is positive for α1 and α2. Then φ(T (H), T (f∗)) = T (φ(H, f∗)) (invariant to
affine transformations)

(vi) If H and f∗ are symmetrical, that is f1∗ = f2∗ and (f1, f2) ∈ H ⇐⇒ (f2, f1) ∈
H, then the components of φ(H, f∗) be equals (symmetry).

Condition (i) demands the possibility of the solution. Condition (ii) requires
that none of the rational decision makers agree on a solution which is worse than
the one could be achieved without consensus. On the basis of condition (iii) there
is no better solution than the friendly solution. According to requirement (iv), if
after the consensus some alternatives lost their possibility, but the solution is still
possible, the solution remains the same for the reduced consequential space. If the
dimension of any of the objective functions changes, the solution can’t change. This
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is required by (v), and the last condition means that if two decision makers are in the
absolutely same situation defining the conflict, we have to treat them in the same
way in the case of solution. The following essential result originates from Nash:

Theorem 27.6 The (i)-(vi) conditions are satisfied by exactly one solution func-
tion, and φ(H, f∗) can be given by as the

(f1 − f1∗)(f2 − f2∗) −→ max ((f1, f2) ∈ H)
f1 ≥ f1∗

f2 ≥ f2∗

(27.44)

optimum problem unique solution.

Example 27.19 Let’s consider again the consequential space showed in Figure 27.3 be-
fore, and suppose that (f1∗, f2∗) = (0, −1), that is it comprises the worst values in its
components. Then Exercise (27.44) is the following:

f1(f2 + 1) −→ max

f2 ≤ f1

f2 ≤ 3 − 2f1

f2 ≥ −
1

2
f1 .

It’s easy to see that the optimal solution is f1 = f2 = 1.

Notice that problem (27.44) is a distance dependent method, where we maximize
the geometric distance from the (f1∗, f2∗) point. The algorithm is the solution of the
(27.44) optimum problem.

Condition (vi) requires that the two decision makers must be treated equally.
However in many practical cases this is not an actual requirement if one of them is
in stronger position than the other.

Theorem 27.7 Requirements (i)-(v) are satisfied by infinite number of functions,
but every solution function comprises such 0 ≤ α ≤ 1, that the solution is given by
as the

(f1 − f1∗)α(f2 − f2∗)1−α −→ max ((f1, f2) ∈ H)
f1 ≥ f1∗

f2 ≥ f2∗

(27.45)

optimum problem unique solution.

Notice that in the case of α = 1
2 , problem (27.45) reduces to problem (27.44).

The algorithm is the solution of the (27.45) optimum problem.
Many author criticized Nash’s original axioms, and beside the modification of the
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Figure 27.18 Kalai–Smorodinsky solution.

axiom system, more and more new solution concepts and methods were introduced.
Without expose the actual axioms, we will show the methods judged to be of the
utmost importance by the literature.

In the case of the Kalai–Smorodinsky solution we determine firstly the ideal
point, which coordinates are:

f∗
i = max{fi|(f1, f2) ∈ H, (f1, f2) ≥ f∗} ,

then we will accept the last mutual point of the half-line joining f∗ to the ideal point
and H as solution. Figure 27.18. shows the method. Notice that this is an direction
dependent method, where the half-line shows the direction of growing and f∗ is the
chosen start point.

The algorithm is the solution of the following optimum problem.

t −→ max

provided that
f∗ + t(f∗ − f∗) ∈ H .

Example 27.20 In the case of the previous example f∗ = (0, −1) and f ∗ = (2, 1). We
can see in Figure 27.19, that the last point of the half-line joining f∗ to f ∗ in H is the
intersection point of the half-line and the section joining (1, 1) to (2, −1).

The equation of the half-line is

f2 = f1 − 1 ,

while the equation of the joining section is

f2 = −2f1 + 3 ,
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Figure 27.19 Solution of Example 27.20

so the intersect point: f1 = 4
3
, f2 = 1

3
.

In the case of the equal-loss method we assume, that starting from the ideal
point the two decision makers reduce the objective function values equally until they
find a possible solution. This concept is equivalent to the solution of the

t −→ min ((f∗
1 − t, f

∗
2 − t) ∈ H) (27.46)

optimum problem. Let t∗ denote the minimal t value, then the (f∗
1 −t

∗, f∗
2 −t

∗) point
is the solution of the conflict. The algorithm is the solution of the (27.46) optimum
problem.

Example 27.21 In the case of the previous example f ∗ = (2, 1), so starting from this point
going by the 45◦ line, the first possible solution is the f1 = 4

3
, f2 = 1

3
point again.

In the case of the method of monotonous area the (f1, f2) solution is given by
as follows. The linear section joining (f1∗, f2∗) to (f1, f2) divides the set H into two
parts, if (f1, f2) is a Pareto optimal solution. In the application of this concept we
require the two areas being equal. Figure 27.20 shows the concept. The two areas
are given by as follows:

∫ f1

f1∗

(g(t)− f2∗)dt−
1

2
(f1 − f1∗)(g(f1)− f2∗)

and
1

2
(f1 − f1∗)(g(f1)− f2∗) +

∫ f∗
1

f1

(g(t)− f∗
2 )dt
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Figure 27.20 The method of monotonous area.

where we suppose that f2 = g(f1) defines the graph of the Pareto optimal solution.
Thus we get a simple equation to determine the unknown value of f1.

The algorithm is the solution of the following nonlinear, univariate equation:

∫ f1

f1∗

(g(t)− f2∗)dt−

∫ f1∗

f1

(g(t)− f∗
2 )dt− (f1 − f1∗)(g(f1)− f2∗) = 0 .

Any commonly known (bisection, secant, Newton’s method) method can be used to
solve the problem.

Exercises
27.6-1 Consider that H = {(f1, f2)|f1, f2 ≥ 0, f1 + 2f2 ≤ 4}. Be f1∗ = f2∗ = 0. Use
the (27.44) optimum problem.
27.6-2 Assume that the two decision makers are not equally important in the
previous exercise. α = 1

3 , 1− α = 2
3 . Solve the (27.45) optimum problem.

27.6-3 Use the Kalai–Smorodinsky solution for Exercise 27.6-1
27.6-4 Use the equal-loss method for Exercise 27.6-1
27.6-5 Use the method of monotonous area for Exercise 27.6-1

Problems

27-1 Első feladat címe
Prove that the solution of problem (27.9) is Pareto optimal for any positive
α1, α2, . . . , αI values.
27-2 Masodik feladat címe
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Prove that the distance dependent methods always give Pareto optimal solution for
%1. Is it also true for %∞?
27-3 Harmadik feladat címe
Find a simple example for which the direction dependent methods give non Pareto
optimal solution.
27-4 Negyedik feladat címe
Suppose in addition to the conditions of 27.4. that all of the fi functions are strictly
concave in xi. Give an example for which there are more than one equilibrium.
27-5 Ötödik feladat címe
Prove that the Shapley values result imputation and satisfy the (27.35)–(27.36) con-
ditions.
27-6 Hatodik feladat címe
Solve such a group decision making table where the method of paired comparison
doesn’t satisfy the requirement of transitivity. That is there are such i, j, k alterna-
tives for which i � j, j � k, but k � i.
27-7 Hetedik feladat címe
Construct such an example, where the application of Borda measure equally qualifies
all of the alternatives.
27-8 Nyolcadik feladat címe
Prove that using the Kalai–Smorodinsky solution for non convex H, the solution is
not necessarily Pareto optimal.
27-9 Kilencedik feladat címe
Show that for non convex H, neither the equal-loss method nor the method of
monotonous area can guarantee Pareto optimal solution.

Chapter Notes

Readers interested in multi-objective programming can find addition details and
methods related to the topic in the [8] book. There are more details about the
method of equilibrium and the solution concepts of the cooperative games in the [3]
monograph. The [9] monograph comprises additional methods and formulas from the
methodology of group decision making. Additional details to Theorem 27.6 originates
from Hash can be found in [7]. One can read more details about the weakening of
the conditions of this theorem in [4]. Details about the Kalai–Smorodinsky solution,
the equal-loss method and the method of monotonous area can found respectively
in [5], [2] and [1]. Note finally that the [10] summary paper discuss the axiomatic
introduction and properties of these and other newer methods.

The results discussed in this chapter can be found in the book of Molnár Sándor
and Szidarovszky Ferenc [6] in details.
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