
ALGORITHMS

OF INFORMATICS

Volume 3

AnTonCom
Budapest, 2011



This electronic book was prepared in the framework of project Eastern Hungarian
Informatics Books Repository no. TÁMOP-4.1.2-08/1/A-2009-0046.

This electronic book appeared with the support of European Union and with the
co-financing of European Social Fund.

Editor: Antal Iványi

Authors of Volume 3: Mira-Cristiana Anisiu (Chapter 26) Béla Vizvári (Chapter 24),
Antal Iványi (Chapter 25), Zoltán Kása (Chapter 25), Ferenc Szidarovszky (Chapter 10),

László Szirmay-Kalos (Chapter 28),

Validators of Volume 3: György Kovács (Chapter 24) Zoltán Kása (Chapter 25), Antal
Iványi (Chapter 26), Anna Iványi (Bibliography)

c© 2011 AnTonCom Infokommunikációs Kft.
Homepage: http://www.antoncom.hu/

http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.cs.elte.hu/vizvari
http://people.inf.elte.hu/tony/
http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
http://www.sie.arizona.edu/faculty/szidar.html
http://www.iit.bme.hu/~szirmay/szirmay.html
http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
http://people.inf.elte.hu/tony/
http://www.nimfea.hu/kapcsolat/programvez.htm
http://www.antoncom.hu/


Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206

26.The Branch and Bound Method . . . . . . . . . . . . . . . . . . . . . 1208
26.1. An example: the Knapsack Problem . . . . . . . . . . . . . . . . . 1208

26.1.1. The Knapsack Problem . . . . . . . . . . . . . . . . . . . . 1209
26.1.2. A numerical example . . . . . . . . . . . . . . . . . . . . . . 1211
26.1.3. Properties in the calculation of the numerical example . . . 1214
26.1.4. How to accelerate the method . . . . . . . . . . . . . . . . . 1216

26.2. The general frame of the B&B method . . . . . . . . . . . . . . . . 1217
26.2.1. Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
26.2.2. The general frame of the B&B method . . . . . . . . . . . . 1224

26.3. Mixed integer programming with bounded variables . . . . . . . . . 1229
26.3.1. The geometric analysis of a numerical example . . . . . . . 1230
26.3.2. The linear programming background of the method . . . . . 1232
26.3.3. Fast bounds on lower and upper branches . . . . . . . . . . 1240
26.3.4. Branching strategies . . . . . . . . . . . . . . . . . . . . . . 1244
26.3.5. The selection of the branching variable . . . . . . . . . . . . 1247
26.3.6. The numerical example is revisited . . . . . . . . . . . . . . 1248

26.4. On the enumeration tree . . . . . . . . . . . . . . . . . . . . . . . . 1252
26.5. The use of information obtained from other sources . . . . . . . . . 1254

26.5.1. Application of heuristic methods . . . . . . . . . . . . . . . 1254
26.5.2. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 1255

26.6. Branch and Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255
26.7. Branch and Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260

27. Comparison Based Ranking . . . . . . . . . . . . . . . . . . . . . . . 1262
27.1. Introduction to supertournaments . . . . . . . . . . . . . . . . . . . 1262
27.2. Introduction to (a, b, 2)-tournaments . . . . . . . . . . . . . . . . . 1264
27.3. Existence of a (1, 1, 2)-tournament with prescribed score sequence . 1266
27.4. Existence of an (a, a, 2)-tournament with prescribed score sequence 1267
27.5. Existence of a tournament with arbitrary degree sequence . . . . . 1268

27.5.1. Definition of a naive reconstructing algorithm . . . . . . . . 1268
27.5.2. Computation of e . . . . . . . . . . . . . . . . . . . . . . . . 1268
27.5.3. Definition of a construction algorithm . . . . . . . . . . . . 1269
27.5.4. Computation of f and g . . . . . . . . . . . . . . . . . . . . 1270



1204 Contents

27.5.5. Definition of a testing algorithm . . . . . . . . . . . . . . . 1271
27.5.6. Definition of an algorithm computing f and g . . . . . . . . 1272
27.5.7. Computing of f and g in linear time . . . . . . . . . . . . . 1274

27.6. Tournament with f and g . . . . . . . . . . . . . . . . . . . . . . . 1274
27.6.1. Definition of the minimax reconstruction algorithm . . . . . 1275
27.6.2. Definition of the score slicing algorithm . . . . . . . . . . . 1275
27.6.3. Analysis of the minimax reconstruction algorithm . . . . . . 1279

27.7. Imbalances in (0, b, 2)-tournaments . . . . . . . . . . . . . . . . . . 1279
27.7.1. Imbalances in (0, b)-graphs . . . . . . . . . . . . . . . . . . . 1280

27.8. Supertournaments . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285
27.8.1. Hypertournamentss . . . . . . . . . . . . . . . . . . . . . . . 1287

27.9. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292

28.Complexity of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
28.1. Simple complexity measures . . . . . . . . . . . . . . . . . . . . . . 1293

28.1.1. Finite words . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
28.1.2. Infinite words . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
28.1.3. Word graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 1297
28.1.4. Complexity of words . . . . . . . . . . . . . . . . . . . . . . 1302

28.2. Generalized complexity measures . . . . . . . . . . . . . . . . . . . 1313
28.2.1. Rainbow words . . . . . . . . . . . . . . . . . . . . . . . . . 1313
28.2.2. General words . . . . . . . . . . . . . . . . . . . . . . . . . . 1322

28.3. Palindrome complexity . . . . . . . . . . . . . . . . . . . . . . . . . 1322
28.3.1. Palindromes in finite words . . . . . . . . . . . . . . . . . . 1323
28.3.2. Palindromes in infinite words . . . . . . . . . . . . . . . . . 1326

29. Conflict Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
29.1. The basics of multi-objective programming . . . . . . . . . . . . . . 1331

29.1.1. Applications of utility functions . . . . . . . . . . . . . . . . 1335
29.1.2. Weighting method . . . . . . . . . . . . . . . . . . . . . . . 1337
29.1.3. Distance-dependent methods . . . . . . . . . . . . . . . . . 1338
29.1.4. Direction-dependent methods . . . . . . . . . . . . . . . . . 1341

29.2. Method of equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 1344
29.3. Methods of cooperative games . . . . . . . . . . . . . . . . . . . . . 1348
29.4. Collective decision-making . . . . . . . . . . . . . . . . . . . . . . . 1352
29.5. Applications of Pareto games . . . . . . . . . . . . . . . . . . . . . 1359
29.6. Axiomatic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361

30. General Purpose Computing on Graphics Processing Units . . . 1368
30.1. The graphics pipeline model . . . . . . . . . . . . . . . . . . . . . . 1370

30.1.1. GPU as the implementation of incremental image synthesis 1372
30.2. GPGPU with the graphics pipeline model . . . . . . . . . . . . . . 1375

30.2.1. Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375
30.2.2. Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
30.2.3. Functions and parameters . . . . . . . . . . . . . . . . . . . 1377

30.3. GPU as a vector processor . . . . . . . . . . . . . . . . . . . . . . . 1378
30.3.1. Implementing the SAXPY BLAS function . . . . . . . . . . 1380
30.3.2. Image filtering . . . . . . . . . . . . . . . . . . . . . . . . . 1381



Contents 1205

30.4. Beyond vector processing . . . . . . . . . . . . . . . . . . . . . . . . 1382
30.4.1. SIMD or MIMD . . . . . . . . . . . . . . . . . . . . . . . . 1382
30.4.2. Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384
30.4.3. Implementing scatter . . . . . . . . . . . . . . . . . . . . . . 1385
30.4.4. Parallelism versus reuse . . . . . . . . . . . . . . . . . . . . 1387

30.5. GPGPU programming model: CUDA and OpenCL . . . . . . . . . 1389
30.6. Matrix-vector multiplication . . . . . . . . . . . . . . . . . . . . . . 1389

30.6.1. Making matrix-vector multiplication more parallel . . . . . 1391
30.7. Case study: computational fluid dynamics . . . . . . . . . . . . . . 1394

30.7.1. Eulerian solver for fluid dynamics . . . . . . . . . . . . . . . 1396
30.7.2. Lagrangian solver for differential equations . . . . . . . . . . 1401

31. Perfect Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408
31.1. Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408
31.2. Necessary condition and earlier results . . . . . . . . . . . . . . . . 1410
31.3. One-dimensional arrays . . . . . . . . . . . . . . . . . . . . . . . . . 1411

31.3.1. Pseudocode of the algorithm Quick-Martin . . . . . . . . 1411
31.3.2. Pseudocode of the algorithm Optimal-Martin . . . . . . . 1411
31.3.3. Pseudocode of the algorithm Shift . . . . . . . . . . . . . . 1412
31.3.4. Pseudocode of the algorithm Even . . . . . . . . . . . . . . 1412

31.4. One dimensional words with fixed length . . . . . . . . . . . . . . . 1413
31.5. Two-dimensional infinite arrays . . . . . . . . . . . . . . . . . . . . 1413

31.5.1. Pseudocode of the algorithm Mesh . . . . . . . . . . . . . . 1413
31.5.2. Pseudocode of the algorithm Cellular . . . . . . . . . . . 1413

31.6. Three-dimensional infinite cubes . . . . . . . . . . . . . . . . . . . 1414
31.6.1. Pseudocode of the algorithm Colour . . . . . . . . . . . . 1414
31.6.2. Pseudocode of the algorithm Growing . . . . . . . . . . . 1415

31.7. Examples of constructing growing arrays using colouring . . . . . . 1416
31.7.1. Construction of growing sequences . . . . . . . . . . . . . . 1416
31.7.2. Construction of growing squares . . . . . . . . . . . . . . . . 1417
31.7.3. Construction of growing cubes . . . . . . . . . . . . . . . . . 1418

31.8. Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . 1419
31.9. Multi-dimensional infinite arrays . . . . . . . . . . . . . . . . . . . 1420

32. Score Sets and Kings . . . . . . . . . . . . . . . . . . . . . . . . . . . 1422
32.1. Score sets in 1-tournaments . . . . . . . . . . . . . . . . . . . . . . 1423

32.1.1. Determining the score set . . . . . . . . . . . . . . . . . . . 1423
32.1.2. Tournaments with prescribed score set . . . . . . . . . . . . 1425

32.2. Score sets in oriented graphs . . . . . . . . . . . . . . . . . . . . . . 1432
32.2.1. Oriented graphs with prescribed scoresets . . . . . . . . . . 1434

32.3. Unicity of score sets . . . . . . . . . . . . . . . . . . . . . . . . . . 1439
32.3.1. 1-unique score sets . . . . . . . . . . . . . . . . . . . . . . . 1440
32.3.2. 2-unique score sets . . . . . . . . . . . . . . . . . . . . . . . 1441

32.4. Kings and serfs in tournaments . . . . . . . . . . . . . . . . . . . . 1443
32.5. Weak kings in oriented graphs . . . . . . . . . . . . . . . . . . . . . 1451

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1472



1206 Contents

Name Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477



Introduction

The first volume of the book Informatikai algoritmusok appeared in 2004 in Hun-
garian [?], and the second volume of the book appeared in 2005 [?]. Two volumes
contained 31 chapters: 23 chapters of the present book, and further chapters on clus-
tering, frequent elements in data bases, geoinformatics, inner-point methods, number
theory, Petri-nets, queuing theory, scheduling.

The Hungarian version of the first volume contains those chapters which were
finished until May of 2004, and the second volume contains the chapters finished
until April of 2005.

The printed English version contains the chapters submitted until April of 2007.
Volume 1 [?] contains the chapters belonging to the fundamentals of informatics,
while the second volume [?] contains the chapters having closer connection with
some applications.

The given book is the extended and corrected electronic version of the printed
book written is English.

The chapters of the first volume are divided into three parts. The chapters of Part
1 are connected with automata: Automata and Formal Languages (written by Zoltán
Kása, Sapientia Hungarian University of Transylvania), Compilers (Zoltán Csörnyei,
Eötvös Loránd University), Compression and Decompression (Ulrich Tamm, Chem-
nitz University of Technology Commitment), Reliable Computations (Péter Gács,
Boston University).

The chapters of Part 2 have algebraic character: here are the chapters Algebra
(written by Gábor Ivanyos, and Lajos Rónyai, Budapest University of Technology
and Economics), Computer Algebra (Antal Járai, Attila Kovács, Eötvös Loránd Uni-
versity), further Cryptology and Complexity Theory (Jörg Rothe, Heinrich Heine
University).

The chapters of the third part have numeric character: Competitive Analysis
(Csanád Imreh, University of Szeged), Game Theory and Risk Analysis (Ferenc Szi-
darovszky, The University of Arizona) and Scientific Computations (Aurél Galántai,
András Jeney, University of Miskolc).

The second volume is also divided into three parts. The chapters of Part 4
are connected with computer networks: Distributed Algorithms (Burkhard Englert,
California State University; Dariusz Kowalski, University of Liverpool; Grzegorz
Malewicz, University of Alabama; Alexander Allister Shvartsman, University of Con-
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necticut), Parallel Algorithms (Claudia Fohry, University of Kassel and Antal Iványi,
Eötvös Loránd University;), Network Simulation (Tibor Gyires, Illinois State Uni-
versity) and Systolic Systems (Eberhard Zehendner, Friedrich Schiller University).

The chapters of Part 5 are Relational Databases and Query in Relational
Databases (János Demetrovics, Eötvös Loránd University; Attila Sali, Alfréd Rényi
Institute of Mathematics), Semistructured Data Bases (Attila Kiss, Eötvös Loránd
University) and Memory Management (Ádám Balog, Antal Iványi, Eötvös Loránd
University).

The chapters of the third part of the second volume have close connections with
biology: Bioinformatics (István Miklós, Rényi Institute of Mathematics), Human-
Computer Interactions (Ingo Althöfer, Stefan Schwarz, Friedrich Schiller University),
and Computer Graphics (László Szirmay-Kalos, Budapest University of Technology
and Economics).

The chapters are validated by Gábor Ivanyos,qnevindexIvanyos, Gábor Lajos
Rónyai, András Recski, and Tamás Szántai (Budapest University of Technology and
Economics), Sándor Fridli, János Gonda, and Béla Vizvári (Eötvös Loránd Univer-
sity), Pál Dömösi, and Attila Pethő (University of Debrecen), Zoltán Fülöpqnevin-
dexFülöp, Zoltán (University of Szeged), Anna GálqnevindexGál, Anna (University
of Texas), János Mayer (University of Zürich).

The book contains verbal description, pseudocode and analysis of over 200 algo-
rithms, and over 350 figures and 120 examples illustrating how the algorithms work.
Each section ends with exercises and each chapter ends with problems. In the book
you can find over 330 exercises and 70 problems.

We have supplied an extensive bibliography, in the section Chapter Notes of
each chapter. The web site of book contains the maintained living version of the
bibliography in which the names of authors, journals and publishers are usually
links to the corresponding web site.

The LATEX style file was written by Viktor Belényesi, Zoltán Csörnyei and Lás-
zló Domoszlai. The figures was drawn or corrected by Kornél Locher. Anna Iványi
transformed the bibliography into hypertext.

The publication of the printed book was supported by Department of Mathe-
matics of Hungarian Academy of Science, and the electronic version received support
from ???????????????????????????????????????

We plan to publish the corrected and extended version of this book in printed and
electronic form too. This book has a web site: http://elek.inf.elte.hu/EnglishBooks.
You can use this website to obtain a list of known errors, report errors, or make sug-
gestions (using the data of the colofon page you can contact with any of the creators
of the book). The website contains the maintaned PDF version of the bibliography
in which the names of the authors, journals and publishers are usually active links
to the corresponding web sites (the living elements are underlined in the printed
bibliography). We welcome ideas for new exercises and problems.

Budapest, Szeptember 2010

Antal Iványi (tony@compalg.inf.elte.hu)

http://elek.inf.elte.hu/EnglishBooks
mailto:tony@compalg.inf.elte.hu


26. The Branch and Bound Method

It has serious practical consequences if it is known that a combinatorial problem is
NP-complete. Then one can conclude according to the present state of science that
no simple combinatorial algorithm can be applied and only an enumerative-type
method can solve the problem in question. Enumerative methods are investigating
many cases only in a non-explicit, i.e. implicit, way. It means that huge majority
of the cases are dropped based on consequences obtained from the analysis of the
particular numerical problem. The three most important enumerative methods are
(i) implicit enumeration, (ii) dynamic programming, and (iii) branch and bound
method. This chapter is devoted to the latter one. Implicit enumeration and dynamic
programming can be applied within the family of optimization problems mainly if all
variables have discrete nature. Branch and bound method can easily handle problems
having both discrete and continuous variables. Further on the techniques of implicit
enumeration can be incorporated easily in the branch and bound frame. Branch and
bound method can be applied even in some cases of nonlinear programming.
The Branch and Bound (abbreviated further on as B&B) method is just a frame of a
large family of methods. Its substeps can be carried out in different ways depending
on the particular problem, the available software tools and the skill of the designer
of the algorithm.

Boldface letters denote vectors and matrices; calligraphic letters are used for
sets. Components of vectors are denoted by the same but non-boldface letter. Cap-
ital letters are used for matrices and the same but lower case letters denote their
elements. The columns of a matrix are denoted by the same boldface but lower case
letters.

Some formulae with their numbers are repeated several times in this chapter. The
reason is that always a complete description of optimization problems is provided.
Thus the fact that the number of a formula is repeated means that the formula is
identical to the previous one.

26.1. An example: the Knapsack Problem

In this section the branch and bound method is shown on a numerical example.
The problem is a sample of the binary knapsack problem which is one of the easiest
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problems of integer programming but it is still NP-complete. The calculations are
carried out in a brute force way to illustrate all features of B&B. More intelligent
calculations, i.e. using implicit enumeration techniques will be discussed only at the
end of the section.

26.1.1. The Knapsack Problem

There are many different knapsack problems. The first and classical one is the binary
knapsack problem. It has the following story. A tourist is planning a tour in the
mountains. He has a lot of objects which may be useful during the tour. For example
ice pick and can opener can be among the objects. We suppose that the following
conditions are satisfied.

• Each object has a positive value and a positive weight. (E.g. a balloon filled with
helium has a negative weight. See Exercises 26.1-1 and 26.1-2) The value is the
degree of contribution of the object to the success of the tour.

• The objects are independent from each other. (E.g. can and can opener are not
independent as any of them without the other one has limited value.)

• The knapsack of the tourist is strong and large enough to contain all possible
objects.

• The strength of the tourist makes possible to bring only a limited total weight.

• But within this weight limit the tourist want to achieve the maximal total value.

The following notations are used to the mathematical formulation of the prob-
lem:

n the number of objects;
j the index of the objects;
wj the weight of object j;
vj the value of object j;
b the maximal weight what the tourist can bring.

For each object j a so-called binary or zero-one decision variable, say xj , is
introduced:

xj =
{

1 if object j is present on the tour
0 if object j isn’t present on the tour.

Notice that

wjxj =
{

wj if object j is present on the tour,
0 if object j isn’t present on the tour

is the weight of the object in the knapsack.
Similarly vjxj is the value of the object on the tour. The total weight in the

knapsack is

n
∑

j=1

wjxj
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which may not exceed the weight limit. Hence the mathematical form of the problem
is

max
n
∑

j=1

vjxj (26.1)

n
∑

j=1

wjxj ≤ b (26.2)

xj = 0 or 1, j = 1, . . . , n . (26.3)

The difficulty of the problem is caused by the integrality requirement. If con-
straint (26.3) is substituted by the relaxed constraint, i.e. by

0 ≤ xj ≤ 1, j = 1, . . . , n , (26.4)

then the Problem (26.1), (26.2), and (26.4) is a linear programming problem. (26.4)
means that not only a complete object can be in the knapsack but any part of it.
Moreover it is not necessary to apply the simplex method or any other LP algorithm
to solve it as its optimal solution is described by

Theorem 26.1 Suppose that the numbers vj , wj (j = 1, . . . , n) are all positive and
moreover the index order satisfies the inequality

v1

w1
≥ v2

w2
· · · ≥ vn

wn
. (26.5)

Then there is an index p (1 ≤ p ≤ n) and an optimal solution x∗ such that

x∗
1 = x∗

2 = · · · = x∗
p−1 = 1, x∗

p+1 = x∗
p+2 = · · · = x∗

p+1 = 0 .

Notice that there is only at most one non-integer component in x∗. This property
will be used at the numerical calculations.

From the point of view of B&B the relation of the Problems (26.1), (26.2), and
(26.3) and (26.1), (26.2), and (26.4) is very important. Any feasible solution of the
first one is also feasible in the second one. But the opposite statement is not true.
In other words the set of feasible solutions of the first problem is a proper subset of
the feasible solutions of the second one. This fact has two important consequences:

• The optimal value of the Problem (26.1), (26.2), and (26.4) is an upper bound
of the optimal value of the Problem (26.1), (26.2), and (26.3).

• If the optimal solution of the Problem (26.1), (26.2), and (26.4) is feasible in the
Problem (26.1), (26.2), and (26.3) then it is the optimal solution of the latter
problem as well.

These properties are used in the course of the branch and bound method intensively.
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26.1.2. A numerical example

The basic technique of the B&B method is that it divides the set of feasible solutions
into smaller sets and tries to fathom them. The division is called branching as new
branches are created in the enumeration tree. A subset is fathomed if it can be
determined exactly if it contains an optimal solution.

To show the logic of B&B the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25
x1, x2, x3, x4, x5 = 0 or 1

(26.6)

will be solved. The course of the solution is summarized on Figure 26.1.2.
Notice that condition (26.5) is satisfied as

23
8

= 2.875 >
19
7
≈ 2.714 >

28
11
≈ 2.545 >

14
6
≈ 2.333 >

44
19
≈ 2.316 .

The set of the feasible solutions of (26.6) is denoted by F , i.e.

F = {x | 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25; x1, x2, x3, x4, x5 = 0 or 1}.

The continuous relaxation of (26.6) is

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25
0 ≤ x1, x2, x3, x4, x5 ≤ 1 .

(26.7)

The set of the feasible solutions of (26.7) is denoted by R, i.e.

R = {x | 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25; 0 ≤ x1, x2, x3, x4, x5 ≤ 1}.

Thus the difference between (26.6) and (26.7) is that the value of the variables must
be either 0 or 1 in (26.6) and on the other hand they can take any value from the
closed interval [0, 1] in the case of (26.7).

Because Problem (26.6) is difficult, (26.7) is solved instead. The optimal solution
according to Theorem 26.1 is

x∗
1 = x∗

2 = 1, x∗
3 =

10
11
, x∗

4 = x∗
5 = 0 .

As the value of x∗
3 is non-integer, the optimal value 67.54 is just an upper bound

of the optimal value of (26.6) and further analysis is needed. The value 67.54 can
be rounded down to 67 because of the integrality of the coefficients in the objective
function.

The key idea is that the sets of feasible solutions of both problems are divided
into two parts according the two possible values of x3. The variable x3 is chosen as
its value is non-integer. The importance of the choice is discussed below.

Let
F0 = F , F1 = F0 ∩ {x | x3 = 0}, F2 = F0 ∩ {x | x3 = 1}
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6 63.32

R5

7 −∞
R6

x1 = 1

5 67.127

R4

x1 = 0

x2 = 1

4 65

R3

x2 = 0

x1 = x3 = x4 = 1
x2 = x5 = 0

3 67.28

R2

x3 = 1

2 65.26

R1

x3 = 0

1 67.45

R0

Figure 26.1 The first seven steps of the solution

and
R0 = R, R1 = R0 ∩ {x | x3 = 0}, R2 = R0 ∩ {x | x3 = 1} .

Obviously
F1 ⊆ R1 and F2 ⊆ R2 .

Hence the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ R1 (26.8)
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is a relaxation of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ F1 . (26.9)

Problem (26.8) can be solved by Theorem 26.1, too, but it must be taken into
consideration that the value of x3 is 0. Thus its optimal solution is

x∗
1 = x∗

2 = 1, x∗
3 = 0, x∗

4 = 1, x∗
5 =

4
19
.

The optimal value is 65.26 which gives the upper bound 65 for the optimal value of
Problem (26.9). The other subsets of the feasible solutions are immediately investi-
gated. The optimal solution of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ R2 (26.10)

is
x∗

1 = 1, x∗
2 =

6
7
, x∗

3 = 1, x∗
4 = x∗

5 = 0

giving the value 67.28. Hence 67 is an upper bound of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ F2 . (26.11)

As the upper bound of (26.11) is higher than the upper bound of (26.9), i.e. this
branch is more promising, first it is fathomed further on. It is cut again into two
branches according to the two values of x2 as it is the non-integer variable in the
optimal solution of (26.10). Let

F3 = F2 ∩ {x | x2 = 0} ,
F4 = F2 ∩ {x | x2 = 1} ,
R3 = R2 ∩ {x | x2 = 0} ,
R4 = R2 ∩ {x | x2 = 1} .

The sets F3 and R3 are containing the feasible solution of the original problems such
that x3 is fixed to 1 and x2 is fixed to 0. In the sets F4 and R4 both variables are
fixed to 1. The optimal solution of the first relaxed problem, i.e.

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ R3

is
x∗

1 = 1, x∗
2 = 0, x∗

3 = 1, x∗
4 = 1, x∗

5 = 0 .

As it is integer it is also the optimal solution of the problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

x ∈ F3 .
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The optimal objective function value is 65. The branch of the sets F3 and R3 is
completely fathomed, i.e. it is not possible to find a better solution in it.

The other new branch is when both x2 and x3 are fixed to 1. If the objective
function is optimized on R4 then the optimal solution is

x∗
1 =

7
8
, x∗

2 = x∗
3 = 1, x∗

4 = x∗
5 = 0 .

Applying the same technique again two branches are defined by the sets

F5 = F4 ∩ {x | x1 = 0}, F6 = F4 ∩ {x | x1 = 1},

R5 = R4 ∩ {x | x2 = 0}, R6 = R4 ∩ {x | x2 = 1} .
The optimal solution of the branch of R5 is

x∗
1 = 0, x∗

2 = x∗
3 = x∗

4 = 1, x∗
5 =

1
19
.

The optimal value is 63.32. It is strictly less than the objective function value of the
feasible solution found in the branch of R3. Therefore it cannot contain an optimal
solution. Thus its further exploration can be omitted although the best feasible
solution of the branch is still not known. The branch of R6 is infeasible as objects
1, 2, and 3 are overusing the knapsack. Traditionally this fact is denoted by using
−∞ as optimal objective function value.

At this moment there is only one branch which is still unfathomed. It is the
branch of R1. The upper bound here is 65 which is equal to the objective function
value of the found feasible solution. One can immediately conclude that this feasible
solution is optimal. If there is no need for alternative optimal solutions then the
exploration of this last branch can be abandoned and the method is finished. If
alternative optimal solutions are required then the exploration must be continued.
The non-integer variable in the optimal solution of the branch is x5. The subbranches
referred later as the 7th and 8th branches, defined by the equations x5 = 0 and
x5 = 1, give the upper bounds 56 and 61, respectively. Thus they do not contain
any optimal solution and the method is finished.

26.1.3. Properties in the calculation of the numerical example

The calculation is revisited to emphasize the general underlying logic of the method.
The same properties are used in the next section when the general frame of B&B is
discussed.

Problem (26.6) is a difficult one. Therefore the very similar but much easier
Problem (26.7) has been solved instead of (26.6). A priori it was not possible to
exclude the case that the optimal solution of (26.7) is the optimal solution of (26.6)
as well. Finally it turned out that the optimal solution of (26.7) does not satisfy
all constraints of (26.6) thus it is not optimal there. But the calculation was not
useless, because an upper bound of the optimal value of (26.6) has been obtained.
These properties are reflected in the definition of relaxation in the next section.

As the relaxation did not solved Problem (26.6) therefore it was divided into
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Subproblems (26.9) and (26.11). Both subproblems have their own optimal solution
and the better one is the optimal solution of (26.6). They are still too difficult to be
solved directly, therefore relaxations were generated to both of them. These problems
are (26.8) and (26.10). The nature of (26.8) and (26.10) from mathematical point of
view is the same as of (26.7).

Notice that the union of the sets of the feasible solutions of (26.8) and (26.10)
is a proper subset of the relaxation (26.7), i.e.

R1 ∪R2 ⊂ R0 .

Moreover the two subsets have no common element, i.e.

R1 ∩R2 = ∅ .

It is true for all other cases, as well. The reason is that the branching, i.e. the
determination of the Subproblems (26.9) and (26.11) was made in a way that the
optimal solution of the relaxation, i.e. the optimal solution of (26.7), was cut off.

The branching policy also has consequences on the upper bounds. Let ν(S) be
the optimal value of the problem where the objective function is unchanged and
the set of feasible solutions is S. Using this notation the optimal objective function
values of the original and the relaxed problems are in the relation

ν(F) ≤ ν(R) .

If a subset Rk is divided into Rp and Rq then

ν(Rk) ≥ max{ν(Rp), ν(Rq)} . (26.12)

Notice that in the current Problem (26.12) is always satisfied with strict inequality

ν(R0) > max{ν(R1), ν(R2)} ,
ν(R1) > max{ν(R7), ν(R8)} ,
ν(R2) > max{ν(R3), ν(R4)} ,
ν(R4) > max{ν(R5), ν(R6)} .

(The values ν(R7) and ν(R8) were mentioned only.) If the upper bounds of a certain
quantity are compared then one can conclude that the smaller the better as it is
closer to the value to be estimated. An equation similar to (26.12) is true for the
non-relaxed problems, i.e. if Fk = Fp ∪ Fq then

ν(Fk) = max{ν(Fp), ν(Fq)} , (26.13)

but because of the difficulty of the solution of the problems, practically it is not
possible to use (26.13) for getting further information.

A subproblem is fathomed and no further investigation of it is needed if either

• its integer (non-relaxed) optimal solution is obtained, like in the case of F3, or

• it is proven to be infeasible as in the case of F6, or



26.1. An example: the Knapsack Problem 1217

• its upper bound is not greater than the value of the best known feasible solution
(cases of F1 and F5).

If the first or third of these conditions are satisfied then all feasible solutions of the
subproblem are enumerated in an implicit way.

The subproblems which are generated in the same iteration, are represented by
two branches on the enumeration tree. They are siblings and have the same parent.
Figure 24.1 visualize the course of the calculations using the parent–child relation.

The enumeration tree is modified by constructive steps when new branches are
formed and also by reduction steps when some branches can be deleted as one of
the three above-mentioned criteria are satisfied. The method stops when no subset
remained which has to be still fathomed.

26.1.4. How to accelerate the method

As it was mentioned in the introduction of the chapter, B&B and implicit enumer-
ation can co-operate easily. Implicit enumeration uses so-called tests and obtains
consequences on the values of the variables. For example if x3 is fixed to 1 then the
knapsack inequality immediately implies that x5 must be 0, otherwise the capacity
of the tourist is overused. It is true for the whole branch 2.

On the other hand if the objective function value must be at least 65, which is
the value of the found feasible solution then it possible to conclude in branch 1 that
the fifth object must be in the knapsack, i.e. x5 must be 1, as the total value of the
remaining objects 1, 2, and 4 is only 56.

Why such consequences accelerate the algorithm? In the example there are 5
binary variables, thus the number of possible cases is 32 = 25. Both branches 1 and
2 have 16 cases. If it is possible to determine the value of a variable, then the number
of cases is halved. In the above example it means that only 8 cases remain to be
investigated in both branches. This example is a small one. But in the case of larger
problems the acceleration process is much more significant. E.g. if in a branch there
are 21 free, i.e. non-fixed, variables but it is possible to determine the value of one of
them then the investigation of 1 048 576 cases is saved. The application of the tests
needs some extra calculation, of course. Thus a good trade-off must be found.

The use of information provided by other tools is further discussed in Section
26.5.

Exercises
26.1-1 What is the suggestion of the optimal solution of a Knapsack Problem in
connection of an object having (a) negative weight and positive value, (b) positive
weight and negative value?
26.1-2 Show that an object of a knapsack problem having negative weight and
negative value can be substituted by an object having positive weight and positive
value such that the two knapsack problems are equivalent. (Hint. Use complementary
variable.)
26.1-3 Solve Problem (26.6) with a branching strategy such that an integer valued
variable is used for branching provided that such a variable exists.
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26.2. The general frame of the B&B method

The aim of this section is to give a general description of the B&B method. Particular
realizations of the general frame are discussed in later sections.

B&B is based on the notion of relaxation. It has not been defined yet. As there
are several types of relaxations the first subsection is devoted to this notion. The
general frame is discussed in the second subsection.

26.2.1. Relaxation

Relaxation is discussed in two steps. There are several techniques to define relaxation
to a particular problem. There is no rule for choosing among them. It depends on
the design of the algorithm which type serves the algorithm well. The different types
are discussed in the first part titled “Relaxations of a particular problem”. In the
course of the solution of Problem (26.6) subproblems were generated which were
still knapsack problems. They had their own relaxations which were not totally
independent from the relaxations of each other and the main problem. The expected
common properties and structure is analyzed in the second step under the title
“Relaxation of a problem class”.

Relaxations of a particular problem The description of Problem (26.6)
consists of three parts: (1) the objective function, (2) the algebraic constraints, and
(3) the requirement that the variables must be binary. This structure is typical for
optimization problems. In a general formulation an optimization problem can be
given as

max f(x) (26.14)

g(x) ≤ b (26.15)

x ∈ X . (26.16)

Relaxing the non-algebraic constraints The underlying logic of generating
relaxation (26.7) is that constraint (26.16) has been substituted by a looser one. In
the particular case it was allowed that the variables can take any value between 0
and 1. In general (26.16) is replaced by a requirement that the variables must belong
to a set, say Y, which is larger than X , i.e. the relation X ⊆ Y must hold. More
formally the relaxation of Problem (26.14)-(26.16) is the problem

max f(x) (26.14)

g(x) ≤ b (26.15)

x ∈ Y. (26.17)

This type of relaxation can be applied if a large amount of difficulty can be eliminated
by changing the nature of the variables.
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Relaxing the algebraic constraints There is a similar technique such that
(26.16) the inequalities (26.15) are relaxed instead of the constraints. A natural way
of this type of relaxation is the following. Assume that there are m inequalities in
(26.15). Let λi ≥ 0 (i = 1, . . . ,m) be fixed numbers. Then any x ∈ X satisfying
(26.15) also satisfies the inequality

m
∑

i=1

λigi(x) ≤
m
∑

i=1

λibi . (26.18)

Then the relaxation is the optimization of the (26.14) objective function under the
conditions (26.18) and (26.16). The name of the inequality (26.18) is surrogate
constraint.

The problem

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

5x1 + 4x2 + 6x3 + 3x4 + 5x5 ≤ 14
2x1 − 2x2 − 3x3 + 5x4 + 6x5 ≤ 4
1x1 + 5x2 + 8x3 − 2x4 + 8x5 ≤ 7

x1, x2, x3, x4, x5 = 0 or 1

(26.19)

is a general zero-one optimization problem. If λ1 = λ2 = λ3 = 1 then the relaxation
obtained in this way is Problem (26.6). Both problems belong to NP-complete classes.
However the knapsack problem is significantly easier from practical point of view
than the general problem, thus the relaxation may have sense. Notice that in this
particular problem the optimal solution of the knapsack problem, i.e. (1,0,1,1,0),
satisfies the constraints of (26.19), thus it is also the optimal solution of the latter
problem.

Surrogate constraint is not the only option in relaxing the algebraic constraints.
A region defined by nonlinear boundary surfaces can be approximated by tangent
planes. For example if the feasible region is the unit circuit which is described by
the inequality

x2
1 + x2

2 ≤ 1

can be approximated by the square

−1 ≤ x1, x2 ≤ 1 .

If the optimal solution on the enlarged region is e.g. the point (1,1) which is not in
the original feasible region then a cut must be found which cuts it from the relaxed
region but it does not cut any part of the original feasible region. It is done e.g. by
the inequality

x1 + x2 ≤
√

2 .

A new relaxed problem is defined by the introduction of the cut. The method is
similar to one of the method relaxing of the objective function discussed below.
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Relaxing the objective function In other cases the difficulty of the problem is
caused by the objective function. If it is possible to use an easier objective function,
say h(x), but to obtain an upper bound the condition

∀x ∈ X : h(x) ≥ f(x) (26.20)

must hold. Then the relaxation is

max h(x) (26.21)

g(x) ≤ b (26.15)

x ∈ X . (26.16)

This type of relaxation is typical if B&B is applied in (continuous) nonlinear
optimization. An important subclass of the nonlinear optimization problems is the
so-called convex programming problem. It is again a relatively easy subclass. There-
fore it is reasonable to generate a relaxation of this type if it is possible. A Problem
(26.14)-(26.16) is a convex programming problem, if X is a convex set, the functions
gi(x) (i = 1, . . . ,m) are convex and the objective function f(x) is concave. Thus
the relaxation can be a convex programming problem if only the last condition is
violated. Then it is enough to find a concave function h(x) such that (26.20) is
satisfied.

For example the single variable function f(x) = 2x2 − x4 is not concave in the
interval [ −

√
3

3 ,
√

3
3 ].1 Thus if it is the objective function in an optimization problem

it might be necessary that it is substituted by a concave function h(x) such that
∀x ∈ [ −

√
3

3 ,
√

3
3 ] : f(x) ≤ h(x). It is easy to see that h(x) = 8

9 − x2 satisfies the
requirements.

Let x∗ be the optimal solution of the relaxed problem (26.21), (26.15), and
(26.16). It solves the original problem if the optimal solution has the same objective
function value in the original and relaxed problems, i.e. f(x∗) = h(x∗).

Another reason why this type of relaxation is applied that in certain cases the
objective function is not known in a closed form, however it can be determined in
any given point. It might happen even in the case if the objective function is concave.
Assume that the value of f(x) is known in the points y1, . . . ,yk. If f(x) concave
then it is smooth, i.e. its gradient exists. The gradient determines a tangent plane
which is above the function. The equation of the tangent plane in point yp is2

∇(f(yp))(x− yp) = 0.

Hence in all points of the domain of the function f(x) we have that

h(x) = min {f(yp) +∇(f(yp))(x− yp) | p = 1, . . . , k} ≥ f(x).

Obviously the function h(x) is an approximation of function f(x).

1A continuous function is concave if its second derivative is negative. f
′′

(x) = 4 − 12x2 which is

positive in the open interval
(

−
√

3
3

,
√

3
3

)

.
2The gradient is considered being a row vector.
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The idea if the method is illustrated on the following numerical example. Assume
that an “unknown” concave function is to be maximized on the [0,5] closed interval.
The method can start from any point of the interval which is in the feasible region.
Let 0 be the starting point. According to the assumptions although the closed formula
of the function is not known, it is possible to determine the values of function and
its derivative. Now the values f(0) = −4 and f

′

(0) = 4 are obtained. The general
formula of the tangent line in the point (x0, f(x0)) is

y = f
′

(x0)(x− x0) + f(x0).

Hence the equation of the first tangent line is y = 4x−4 giving the first optimization
problem as

max h
h ≤ 4x− 4
x ∈ [0, 5].

As 4x − 4 is a monotone increasing function, the optimal solution is x = 5. Then
the values f(5) = −9 and f

′

(5) = −6 are provided by the method calculating the
function. The equation of the second tangent line is y = −6x+ 21. Thus the second
optimization problem is

max h
h ≤ 4x− 4, h ≤ −6x+ 21

x ∈ [0, 5].

As the second tangent line is a monotone decreasing function, the optimal solution
is in the intersection point of the two tangent lines giving x = 2.5. Then the values
f(2.5) = −0.25 and f

′

(2.5) = −1 are calculated and the equation of the tangent line
is y = −x+ 2.25. The next optimization problem is

max h
h ≤ 4x− 4, h ≤ −6x+ 21, h ≤ −x+ 2.25

x ∈ [0, 5].

The optimal solution is x = 1.25. It is the intersection point of the first and third
tangent lines. Now both new intersection points are in the interval [0,5]. In general
some intersection points can be infeasible. The method goes in the same way further
on. The approximated “unknow” function is f(x) = −(x− 2)2.

The Lagrange Relaxation Another relaxation called Lagrange relaxation.
In that method both the objective function and the constraints are modified. The
underlying idea is the following. The variables must satisfy two different types of
constraints, i.e. they must satisfy both (26.15) and (26.16). The reason that the
constraints are written in two parts is that the nature of the two sets of constraints is
different. The difficulty of the problem caused by the requirement of both constraints.
It is significantly easier to satisfy only one type of constraints. So what about to
eliminate one of them?
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Assume again that the number of inequalities in (26.15) is m. Let λi ≥ 0 (i =
1, . . . ,m) be fixed numbers. The Lagrange relaxation of the problem (26.14)- (26.16)
is

max f(x) +
m
∑

i=1

λi(bi − gi(x)) (26.22)

x ∈ X . (26.16)

Notice that the objective function (26.22) penalizes the violation of the constraints,
e.g. trying to use too much resources, and rewards the saving of resources. The first
set of constraints disappeared from the problem. In most of the cases the Lagrange
relaxation is a much easier one than the original problem. In what follows Problem
(26.14)- (26.16) is also denoted by (P ) and the Lagrange relaxation is referred as
(L(λ)). The notation reflects the fact that the Lagrange relaxation problem depends
on the choice of λi’s. The numbers λi’s are called Lagrange multipliers.

It is not obvious that (L(λ)) is really a relaxation of (P ). This relation is estab-
lished by

Theorem 26.2 Assume that both (P ) and (L(λ)) have optimal solutions. Then
for any nonnegative λi (i = 1, . . . ,m) the inequality

ν(L(λ)) ≥ ν(P )

holds.

Proof The statement is that the optimal value of (L(λ)) is an upper bound of the
optimal value of (P ). Let x∗ be the optimal solution of (P ). It is obviously feasible
in both problems. Hence for all i the inequalities λi ≥ 0, bi ≥ gi(x∗) hold. Thus
λi(bi − gi(x∗)) ≥ 0 which implies that

f(x∗) ≤ f(x∗) +
m
∑

i=1

λi(bi − gi(x∗)).

Here the right-hand side is the objective function value of a feasible solution of
(L(λ)), i.e.

ν(P ) = f(x∗) ≤ f(x∗) +
m
∑

i=1

λi(bi − gi(x∗)) ≤ ν(L(λ)) .

There is another connection between (P ) and (L(λ)) which is also important
from the point of view of the notion of relaxation.

Theorem 26.3 Let xL be the optimal solution of the Lagrange relaxation. If

g(xL) ≤ b (26.23)
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and

m
∑

i=1

λi(bi − gi(xL)) = 0 (26.24)

then xL is an optimal solution of (P ).

Proof (26.23) means that xL is a feasible solution of (P ). For any feasible solution
x of (P ) it follows from the optimality of xL that

f(x) ≤ f(x) +
m
∑

i=1

λi(bi − gi(x)) ≤ f(xL) +
m
∑

i=1

λi(bi − gi(xL)) = f(xL) ,

i.e. xL is at least as good as x.

The importance of the conditions (26.23) and (26.24) is that they give an opti-
mality criterion, i.e. if a point generated by the Lagrange multipliers satisfies them
then it is optimal in the original problem. The meaning of (26.23) is that the optimal
solution of the Lagrange problem is feasible in the original one and the meaning of
(26.24) is that the objective function values of xL are equal in the two problems, just
as in the case of the previous relaxation. It also indicates that the optimal solutions
of the two problems are coincident in certain cases.

There is a practical necessary condition for being a useful relaxation which is
that the relaxed problem is easier to solve than the original problem. The Lagrange
relaxation has this property. It can be shown on Problem (26.19). Let λ1 = 1,
λ2 = λ3 = 3. Then the objective function (26.22) is the following

(23x1 + 19x2 + 28x3 + 14x4 + 44x5) + (14− 5x1 − x2 − 6x3 − 3x4 − 5x5)

+3(4− 2x1 − x2 + 3x3 − 5x4 − 6x5) + 3(7− x1 − 5x2 − 8x3 + 2x4 − 8x5)

= 47 + (23− 5− 6− 3)x1 + (19− 1− 3− 15)x2 + (28− 6 + 9− 24)x3

+(14− 3− 15 + 5)x4 + (44− 5− 18− 24)x5

= 47 + 9x1 + 0x2 + 7x3 + x4 − 3x5 .

The only constraint is that all variables are binary. It implies that if a coefficient is
positive in the objective function then the variable must be 1 in the optimal solution
of the Lagrange problem, and if the coefficient is negative then the variable must
be 0. As the coefficient of x2 is zero, there are two optimal solutions: (1,0,1,1,0)
and (1,1,1,1,0). The first one satisfies the optimality condition thus it is an optimal
solution. The second one is infeasible.

What is common in all relaxation? They have three common properties.

1. All feasible solutions are also feasible in the relaxed problem.

2. The optimal value of the relaxed problem is an upper bound of the optimal
value of the original problem.
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3. There are cases when the optimal solution of the relaxed problem is also opti-
mal in the original one.

The last property cannot be claimed for all particular case as then the relaxed prob-
lem is only an equivalent form of the original one and needs very likely approximately
the same computational effort, i.e. it does not help too much. Hence the first two
properties are claimed in the definition of the relaxation of a particular problem.

Definition 26.4 Let f, h be two functions mapping from the n-dimensional Eu-
clidean space into the real numbers. Further on let U ,V be two subsets of the n-
dimensional Euclidean space. The problem

max{h(x) | x ∈ V} (26.25)

is a relaxation of the problem

max{f(x) | x ∈ U} (26.26)

if
(i) U ⊂ V and
(ii) it is known a priori, i.e. without solving the problems that ν(26.25) ≥ ν(26.26).

Relaxation of a problem class No exact definition of the notion of problem
class will be given. There are many problem classes in optimization. A few examples
are the knapsack problem, the more general zero-one optimization, the traveling
salesperson problem, linear programming, convex programming, etc. In what follows
problem class means only an infinite set of problems.

One key step in the solution of (26.6) was that the problem was divided into
subproblems and even the subproblems were divided into further subproblems, and
so on.

The division must be carried out in a way such that the subproblems belong
to the same problem class. By fixing the value of a variable the knapsack problem
just becomes another knapsack problem of lesser dimension. The same is true for
almost all optimization problems, i.e. a restriction on the value of a single variable
(introducing either a lower bound, or upper bound, or an exact value) creates a new
problem in the same class. But restricting a single variable is not the only possible
way to divide a problem into subproblems. Sometimes special constraints on a set
of variables may have sense. For example it is easy to see from the first constraint
of (26.19) that at most two out of the variables x1, x3, and x5 can be 1. Thus it is
possible to divide it into two subproblems by introducing the new constraint which
is either x1 +x3 +x5 = 2, or x1 +x3 +x5 ≤ 1. The resulted problems are still in the
class of binary optimization. The same does not work in the case of the knapsack
problem as it must have only one constraint, i.e. if a second inequality is added to
the problem then the new problem is out of the class of the knapsack problems.

The division of the problem into subproblems means that the set of feasible
solutions is divided into subsets not excluding the case that one or more of the
subsets turn out to be empty set. R5 and R6 gave such an example.

Another important feature is summarized in formula (26.12). It says that the
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upper bound of the optimal value obtained from the undivided problem is at most
as accurate as the upper bound obtained from the divided problems.

Finally, the further investigation of the subset F1 could be abandoned as R1

was not giving a higher upper bound as the objective function value of the optimal
solution on R3 which lies at the same time in F3, too, i.e. the subproblem defined
on the set F3 was solved.

The definition of the relaxation of a problem class reflects the fact that relax-
ation and defining subproblems (branching) are not completely independent. In the
definition it is assumed that the branching method is a priori given.

Definition 26.5 Let P and Q be two problem classes. Class Q is a relaxation of
class P if there is a map R with the following properties.

1. R maps the problems of P into the problems of Q.

2. If a problem (P) ∈ P is mapped into (Q) ∈ Q then (Q) is a relaxation of (P)
in the sense of Definition 26.4.

3. If (P) is divided into (P1),. . .,(Pk) and these problems are mapped into
(Q1),. . .,(Qk), then the inequality

ν(Q) ≥ max{ν(Q1), . . . , ν(Qk)} (26.27)

holds.

4. There are infinite many pairs (P), (Q) such that an optimal solution of (Q) is
also optimal in (P).

26.2.2. The general frame of the B&B method

As the Reader has already certainly observed B&B divides the problem into subprob-
lems and tries to fathom each subproblem by the help of a relaxation. A subproblem
is fathomed in one of the following cases:

1. The optimal solution of the relaxed subproblem satisfies the constraints of
the unrelaxed subproblem and its relaxed and non-relaxed objective function
values are equal.

2. The infeasibility of the relaxed subproblem implies that the unrelaxed sub-
problem is infeasible as well.

3. The upper bound provided by the relaxed subproblem is less (in the case
if alternative optimal solution are sought) or less or equal (if no alternative
optimal solution is requested) than the objective function value of the best
known feasible solution.

The algorithm can stop if all subsets (branches) are fathomed. If nonlinear program-
ming problems are solved by B&B then the finiteness of the algorithm cannot be
always guaranteed.

In a typical iteration the algorithm executes the following steps.
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• It selects a leaf of the branching tree, i.e. a subproblem not divided yet into
further subproblems.

• The subproblem is divided into further subproblems (branches) and their relax-
ations are defined.

• Each new relaxed subproblem is solved and checked if it belongs to one of the
above-mentioned cases. If so then it is fathomed and no further investigation is
needed. If not then it must be stored for further branching.

• If a new feasible solution is found which is better than the so far best one, then
even stored branches having an upper bound less than the value of the new best
feasible solution can be deleted without further investigation.

In what follows it is supposed that the relaxation satisfies definition 26.5.
The original problem to be solved is

max f(x) (26.14)

g(x) ≤ b (26.15)

x ∈ X . (26.16)

Thus the set of the feasible solutions is

F = F0 = {x | g(x) ≤ b; x ∈ X} . (26.28)

The relaxed problem satisfying the requirements of definition 26.5 is

max h(x)

k(x) ≤ b

x ∈ Y,

where X ⊆ Y and for all points of the domain of the objective functions f(x) ≤ h(x)
and for all points of the domain of the constraint functions k(x) ≤ h(x). Thus the
set of the feasible solutions of the relaxation is

R = R0 = {x | k(x) ≤ b; x ∈ Y} .

Let Fk be a previously defined subset. Suppose that it is divided into the subsets
Ft+1,. . . ,Ft+p, i.e.

Fk =
p
⋃

l=1

Ft+l .

Let Rk and Rt+1,. . . ,Rt+p be the feasible sets of the relaxed subproblems. To satisfy
the requirement (26.27) of definition 26.5 it is assumed that

Rk ⊇
p
⋃

l=1

Rt+l .
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The subproblems are identified by their sets of feasible solutions. The unfath-
omed subproblems are stored in a list. The algorithm selects a subproblem from the
list for further branching. In the formal description of the general frame of B&B the
following notations are used.

ẑ the objective function value of the best feasible solution found so far
L the list of the unfathomed subsets of feasible solutions
t the number of branches generated so far
F0 the set of all feasible solutions
r the index of the subset selected for branching
p(r) the number of branches generated from Fr

xi the optimal solution of the relaxed subproblem defined on Ri

zi the upper bound of the objective function on subset Fi

L+ Fi the operation of adding the subset Fi to the list L
L − Fi the operation of deleting the subset Fi from the list L

Note that yi = max{h(x) | x ∈ Ri}.
The frame of the algorithms can be found below. It simply describes the basic

ideas of the method and does not contain any tool of acceleration.

Branch-and-Bound

1 ẑ ← −∞
2 L ← {F0 }
3 t ← 0
4 while L 6= ∅
5 do determination of r
6 L ← L−Fr

7 determination of p(r)
8 determination of branching Fr ⊂ R1 ∪ ... ∪Rp(r)

9 for i← 1 to p(r) do
10 Ft+i ← Fr ∩Ri

11 calculation of (xt+i, zt+i)
12 if zt+i > ẑ
13 then if xt+i ∈ F
14 then ẑ ← zt+i

15 else L ← L+ Ft+i

16 t ← t+ p(r)
17 for i← 1 to t do
18 if zi ≤ ẑ
19 then L ← L−Fi

20 return x
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The operations in rows 5, 7, 8, and 11 depend on the particular problem class and
on the skills of the designer of the algorithm. The relaxed subproblem is solved in
row 14. A detailed example is discussed in the next section. The handling of the list
needs also careful consideration. Section 26.4 is devoted to this topic.

The loop in rows 17 and 18 can be executed in an implicit way. If the selected
subproblem in row 5 has a low upper bound, i.e. zr ≤ ẑ then the subproblem is
fathomed and a new subproblem is selected.

However the most important issue is the number of required operations includ-
ing the finiteness of the algorithm. The method is not necessarily finite. Especially
nonlinear programming has infinite versions of it. Infinite loop may occur even in the
case if the number of the feasible solutions is finite. The problem can be caused by
an incautious branching procedure. A branch can belong to an empty set. Assume
that that the branching procedure generates subsets from Fr such that one of the
subsets Ft+1, ...,Ft+p(r) is equal to Fr and the other ones are empty sets. Thus there
is an index i such that

Ft+i = Fr, Ft+1 = ... = Ft+i−1 = Ft+i+1 = ... = Ft+p(r) = ∅ . (26.29)

If the same situation is repeated at the branching of Ft+i then an infinite loop is
possible.

Assume that a zero-one optimization problem of n variables is solved by B&B
and the branching is made always according to the two values of a free variable.
Generally it is not known that how large is the number of the feasible solutions.
There are at most 2n feasible solutions as it is the number of the zero-one vectors.
After the first branching there are at most 2n−1 feasible solutions in the two first
level leaves, each. This number is halved with each branching, i.e. in a branch on
level k there are at most 2n−k feasible solutions. It implies that on level n there is
at most 2n−n = 20 = 1 feasible solution. As a matter of fact on that level there is
exactly 1 zero-one vector and it is possible to decide whether or not it is feasible.
Hence after generating all branches on level n the problem can be solved. This idea
is generalized in the following finiteness theorem. While formulating the statement
the previous notations are used.

Theorem 26.6 Assume that
(i) The set F is finite.
(ii) There is a finite set U such that the following conditions are satisfied. If a subset
F̂ is generated in the course of the branch and bound method then there is a subset
Û of U such that F̂ ⊆ Û . Furthermore if the branching procedure creates the cover
R1 ∪ . . . ∪Rp ⊇ F̂ then Û has a partitioning such that

Û = Û1 ∪ · · · ∪ Ûp, Ûi ∩ Ûj = ∅(i 6= j)

F̂ ∩ R̂j ⊆ Ûj(j = 1, . . . , p)

and moreover

1 ≤| Ûj |<| Û | (j = 1, . . . , p) . (26.30)

(iii) If a set Û belonging to set F̂ has only a single element then the relaxed subprob-
lem solves the unrelaxed subproblem as well.
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Then the Branch-and-Bound procedure stops after finite many steps. If ẑ =
−∞ then there is no feasible solution. Otherwise ẑ is equal to the optimal objective
function value.

Remark. Notice that the binary problems mentioned above with Ûj ’s of type

Ûj = {x ∈ {0, 1}n | xk = δkj , k ∈ Ij} ,

where Ij ⊂ {1, 2, . . . , n} is the set of fixed variables and δkj ∈ {0, 1} is a fixed value,
satisfy the conditions of the theorem.

Proof Assume that the procedure Branch-and-Bound executes infinite many
steps. As the set F is finite it follows that there is at least one subset of F say Fr

such that it defines infinite many branches implying that the situation described in
(26.29) occurs infinite many times. Hence there is an infinite sequence of indices,
say r0 = r < r1 < · · · , such that Frj+1

is created at the branching of Frj
and

Frj+1
= Frj

. On the other hand the parallel sequence of the U sets must satisfy the
inequalities

| Ur0
|>| Ur1

|> · · · ≥ 1 .

It is impossible because the Us are finite sets.
The finiteness of F implies that optimal solution exists if and only if F is

nonempty, i.e. the problem cannot be unbounded and if feasible solution exist then
the supremum of the objective function is its maximum. The initial value of ẑ is
−∞. It can be changed only in Row 18 of the algorithm and if it is changed then
it equals to the objective function value of a feasible solution. Thus if there is no
feasible solution then it remains −∞. Hence if the second half of the statement is
not true, then at the end of the algorithm ẑ equal the objective function value of a
non-optimal feasible solution or it remains −∞.

Let r be the maximal index such that Fr still contains the optimal solution.
Then

zr ≥ optimal value > ẑ .

Hence it is not possible that the branch containing the optimal solution has been
deleted from the list in the loop of Rows 22 and 23, as zr > ẑ. It is also sure that
the subproblem

max{f(x) | x ∈ Fr}
has not been solved, otherwise the equation zr = ẑ should hold. Then only one option
remained that Fr was selected for branching once in the course of the algorithm. The
optimal solution must be contained in one of its subsets, say Ft+i which contradicts
the assumption that Fr has the highest index among the branches containing the
optimal solution.

If an optimization problem contains only bounded integer variables then the sets
Us are the sets the integer vectors in certain boxes. In the case of some scheduling
problems where the optimal order of tasks is to be determined even the relaxations
have combinatorial nature because they consist of permutations. Then U = R is also
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possible. In both of the cases Condition (iii) of the theorem is fulfilled in a natural
way.

Exercises
26.2-1 Decide if the Knapsack Problem can be a relaxation of the Linear Binary
Optimization Problem in the sense of Definition 26.5. Explain your solution regard-
less that your answer is YES or NO.

26.3. Mixed integer programming with bounded
variables

Many decisions have both continuous and discrete nature. For example in the pro-
duction of electric power the discrete decision is to switch on or not an equipment.
The equipment can produce electric energy in a relatively wide range. Thus if the
first decision is to switch on then a second decision must be made on the level of
the produced energy. It is a continuous decision. The proper mathematical model of
such problems must contain both discrete and continuous variables.

This section is devoted to the mixed integer linear programming problem with
bounded integer variables. It is assumed that there are n variables and a subset of
them, say I ⊆ {1, . . . , n} must be integer. The model has m linear constraints in
equation form and each integer variable has an explicit integer upper bound. It is also
supposed that all variables must be nonnegative. More formally the mathematical
problem is as follows.

max cT x (26.31)

Ax = b (26.32)

∀ j ∈ I : xj ≤ gj (26.33)

xj ≥ 0 j = 1, . . . , n (26.34)

∀ j ∈ I : xj is integer , (26.35)

where c and x are n-dimensional vectors, A is an m×n matrix, b is an m-dimensional
vector and finally all gj (j ∈ I) is a positive integer.

In the mathematical analysis of the problem below the the explicit upper bound
constraints (26.33) will not be used. The Reader may think that they are formally
included into the other algebraic constraints (26.32).

There are technical reasons that the algebraic constraints in (26.32) are claimed
in the form of equations. Linear programming relaxation is used in the method.
The linear programming problem is solved by the simplex method which needs this
form. But generally speaking equations and inequalities can be transformed into
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one another in an equivalent way. Even in the numerical example discussed below
inequality form is used.

First a numerical example is analyzed. The course of the method is discussed
from geometric point of view. Thus some technical details remain concealed. Next
simplex method and related topics are discussed. All technical details can be de-
scribed only in the possession of them. Finally some strategic points of the algorithm
are analyzed.

26.3.1. The geometric analysis of a numerical example

The problem to be solved is

max x0 = 2x1 + x2

3x1 − 5x2 ≤ 0
3x1 + 5x2 ≤ 15

x1, x2 ≥ 0
x1, x2 is integer .

(26.36)

To obtain a relaxation the integrality constraints are omitted from the problem.
Thus a linear programming problem of two variables is obtained.

The branching is made according to a non-integer variable. Both x1 and x2 have
fractional values. To keep the number of branches as low as possible, only two new
branches are created in a step.

The numbering of the branches is as follows. The original set of feasible solutions
is No. 1. When the two new branches are generated then the branch belonging to
the smaller values of the branching variable has the smaller number. The numbers
are positive integers started at 1 and not skipping any integer. Branches having no
feasible solution are numbered, too.

The optimal solution of the relaxation is x1 = 2.5, x2 = 1.5, and the optimal
value is 13

2 as it can be seen from figure 26.2. The optimal solution is the intersection
point the lines determined by the equations

3x1 − 5x2 = 0

and
3x1 + 5x2 = 15 .

If the branching is based on variable x1 then they are defined by the inequalities

x1 ≤ 2 and x1 ≥ 3 .

Notice that the maximal value of x1 is 2.5. In the next subsection the problem is
revisited. Then this fact will be observed from the simplex tableaux. Variable x2

would create the branches

x2 ≤ 1 and x2 ≥ 2 .
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Feasible region
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1
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3

4

2x1 + x2 = 13
2

Figure 26.2 The geometry of linear programming relaxation of Problem (26.36) including the
feasible region (triangle OAB), the optimal solution (x1 = 2.5, x2 = 1.5), and the optimal level of
the objective function represented by the line 2x1 + x2 = 13

2
.

None of them is empty. Thus it is more advantageous the branch according to x1.
Geometrically it means that the set of the feasible solutions in the relaxed problem
is cut by the line x1 = 2. Thus the new set becomes the quadrangle OACD on
Figure 26.3. The optimal solution on that set is x1 = 2, x2 = 1.8. It is point C on
the figure.

Now branching is possible according only to variable x2. Branches 4 and 5 are
generated by the cuts x2 ≤ 1 and x2 ≥ 2, respectively. The feasible regions of
the relaxed problems are OHG of Branch 4, and AEF of Branch 5. The method
continues with the investigation of Branch 5. The reason will be given in the next
subsection when the quickly calculable upper bounds are discussed. On the other
hand it is obvious that the set AEF is more promising than OHG if the Reader
takes into account the position of the contour, i.e. the level line, of the objective
function on Figure 26.3. The algebraic details discussed in the next subsection serve
to realize the decisions in higher dimensions what is possible to see in 2-dimension.

Branches 6 and 7 are defined by the inequalities x1 ≤ 1 and x1 ≥ 2, respectively.
The latter one is empty again. The feasible region of Branch 6 is AIJF . The optimal
solution in this quadrangle is the Point I. Notice that there are only three integer
points in AIJF which are (0,3), (0,2), and (1,2). Thus the optimal integer solution of



26.3. Mixed integer programming with bounded variables 1233

1 2 3O

B

A

C

D

E

F

GH
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�Branch 2 - Branch 3; EMPTY

?
Branch 4

6
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�Branch 6

Figure 26.3 The geometry of the course of the solution. The co-ordinates of the points are:
O=(0,0), A=(0,3), B=(2.5,1.5), C=(2,1.8), D=(2,1.2), E=( 5

3
,2), F=(0,2), G=( 5

3
,1), H=(0,1),

I=(1,2.4), and J=(1,2). The feasible regions of the relaxation are as follows. Branch 1: OAB, Branch
2: OACD, Branch 3: empty set, Branch 4: OHG, Branch 5: AEF , Branch 6: AIJF , Branch 7:
empty set (not on the figure). Point J is the optimal solution.

this branch is (1,2). There is a technique which can help to leap over the continuous
optimum. In this case it reaches directly point J, i.e. the optimal integer solution of
the branch as it will be seen in the next section, too. Right now assume that the
integer optimal solution with objective function value 4 is uncovered.

At this stage of the algorithm the only unfathomed branch is Branch 4 with
feasible region OHG. Obviously the optimal solution is point G=(5

3 ,1). Its objective
function value is 13

3 . Thus it cannot contain a better feasible solution than the known
(1,2). Hence the algorithm is finished.

26.3.2. The linear programming background of the method

The first ever general method solving linear programming problems were discovered
by George Dantzig and called simplex method. There are plenty of versions of the
simplex method. The main tool of the algorithm is the so-called dual simplex method.
Although simplex method is discussed in a previous volume, the basic knowledge is
summarized here.

Any kind of simplex method is a so-called pivoting algorithm. An important
property of the pivoting algorithms is that they generate equivalent forms of the
equation system and – in the case of linear programming – the objective function.
Practically it means that the algorithm works with equations. As many variables as
many linearly independent equations exist are expressed with other variables and
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x1 = 1
x2 = 2

solution

6 4

4/3

5 5 1/3

7/15

x1 ≤ 1

x2 ≥ 2

7 −∞

x1 = 2

4 4 1/3

4/5

x2 ≤ 1

2 5 4/5

7/10

x1 ≤ 2

1 6 1/2

3 −∞

x1 ≥ 3

Figure 26.4 The course of the solution of Problem (26.36). The upper numbers in the circuits are
explained in subsection 26.3.2. They are the corrections of the previous bounds obtained from the
first pivoting step of the simplex method. The lower numbers are the (continuous) upper bounds
obtained in the branch.

further consequences are drawn from the current equivalent form of the equations.
If there are inequalities in the problem then they are reformulated by introducing

nonnegative slack variables. E.g. in case of LP-relaxation of Problem (26.36) the
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equivalent form of the problem is

max x0 = 2x1 + x2 + 0x3 + 0x4

3x1 − 5x2 + x3 + 0x4 = 0
3x1 + 5x2 + 0x3 + x4 = 15
x1, x2 x3, x4 ≥ 0 .

(26.37)

Notice that all variables appear in all equations including the objective function,
but it is allowed that some coefficients are zeros. The current version (26.37) can be
considered as a form where the variables x3 and x4 are expressed by x1 and x2 and
the expression is substituted into the objective function. If x1 = x2 = 0 then x3 = 0
and x4 = 15, thus the solution is feasible. Notice that the value of the objective
function is 0 and if it is possible to increase the value of any of x1 and x2 and
still getting a feasible solution then a better feasible solution is obtained. It is true,
because the method uses equivalent forms of the objective function. The method
obtains better feasible solution by pivoting. Let x1 and x2 be the two expressed
variables. Skipping some pivot steps the equivalent form of (26.37) is

max x0 = 0x1 + 0x2 − 7
30x3 − 13

30x4 + 13
2

x1 + 0x2 + 1
6x3 + 1

6x4 = 5
2

0x1 + x2 − 1
10x3 + 1

10x4 = 3
2

x1, x2 x3, x4 ≥ 0 .

(26.38)

That form has two important properties. First if x3 = x4 = 0 then x1 = 5
2 and

x2 = 3
2 , thus the solution is feasible, similarly to the previous case. Generally this

property is called primal feasibility. Secondly, the coefficients of the non-expressed
variables are negative in the objective function. It is called dual feasibility. It implies
that if any of the non-expressed variables is positive in a feasible solution then that is
worse than the current one. It is true again, because the current form of the objective
function is equivalent to the original one. Thus the current value of the objective
function which is 13

2 , is optimal.
In what follows the sign of maximization and the nonnegativity of the variables

will be omitted from the problem but they are kept in mind.
In the general case it may be assumed without loss of generality that all equations

are independent. Simplex method uses the form of the problem

max x0 = cT x (26.39)

Ax = b (26.40)

x ≥ 0 , (26.41)

where A is an m × n matrix, c and x are n-dimensional vectors, and b is an m-
dimensional vector. According to the assumption that all equations are independent,
A has m linearly independent columns. They form a basis of the m-dimensional
linear space. They also form an m × m invertible submatrix. It is denoted by B.
The inverse of B is B−1. Matrix A is partitioned into the basic and non-basic parts:
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A = (B,N) and the vectors c and x are partitioned accordingly. Hence

Ax = BxB + NxN = b .

The expression of the basic variables is identical with the multiplication of the equa-
tion by B−1 from left

B−1Ax = B−1BxB + B−1NxN = IxB + B−1NxN = B−1b,

where I is the unit matrix. Sometimes the equation is used in the form

xB = B−1b−B−1NxN . (26.42)

The objective function can be transformed into the equivalent form

cT x = cT
BxB + cT

N xN

cT
B(B−1b−B−1NxN ) + cT

N xN = cT
BB−1b + (cT

N − cT
BB−1N)xN .

Notice that the coefficients of the basic variables are zero. If the non-basic variables
are zero valued then the value of the basic variables is given by the equation

xB = B−1b .

Hence the objective function value of the basic solution is

cT x = cT
BxB + cT

N xN = cT
BB−1b + cT

N 0 = cT
BB−1b . (26.43)

Definition 26.7 A vector x is a solution of Problem (26.39)-(26.41) if it satisfies
the equation (26.40). It is a feasible solution or equivalently a primal feasible
solution if it satisfies both (26.40) and (26.41). A solution x is a basic solution
if the columns of matrix A belonging to the non-zero components of x are linearly
independent. A basic solution is a basic feasible or equivalently a basic primal
feasible solution if it is feasible. Finally a basic solution is basic dual feasible
solution if

cT
N − cT

BB−1N ≤ 0T . (26.44)

The primal feasibility of a basic feasible solution is equivalent to

B−1b ≥ 0 .

Let a1, . . . ,an be the column vectors of matrix A. Further on let IB and IN be the
set of indices of the basic and non-basic variables, respectively. Then componentwise
reformulation of (26.44) is

∀ j ∈ IN : cj − cT
BB−1aj ≤ 0 .

The meaning of the dual feasibility is this. The current value of the objective function
given in (26.43) is an upper bound of the optimal value as all coefficients in the
equivalent form of the objective function is nonpositive. Thus if any feasible, i.e.
nonnegative, solution is substituted in it then value can be at most the constant
term, i.e. the current value.
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Definition 26.8 A basic solution is OPTIMAL if it is both primal and dual fea-
sible.

It is known from the theory of linear programming that among the optimal
solutions there is always at least one basic solution. To prove this statement is
beyond the scope of the chapter.

In Problem (26.37)

A =
(

3 −5 1 0
3 5 0 1

)

b =
(

0
15

)

c =









2
1
0
0









.

If the basic variables are x1 and x2 then

B =
(

3 −5
3 5

)

B−1 =
1
30

(

5 5
−3 3

)

N =
(

1 0
0 1

)

cB =
(

2
1

)

.

Hence

cT
BB−1 = (2, 1)

1
30

(

5 5
−3 3

)

=
(

7
30
,

13
30

)

B−1b =
1
30

(

5 5
−3 3

)(

0
15

)

=
(

75/30
45/30

)

=
(

5/2
3/2

)

, B−1N = B−1 .

The last equation is true as N is the unit matrix. Finally

cT
N − cT

BB−1N = (0, 0)−
(

7
30
,

13
30

)(

1 0
0 1

)

=
(

− 7
30
, −13

30

)

.

One can conclude that this basic solution is both primal and dual feasible.
There are two types of simplex methods. Primal simplex method starts from

a primal feasible basic solution. Executing pivoting steps it goes through primal
feasible basic solutions and finally even the dual feasibility achieved. The objective
function values are monotone increasing in the primal simplex method.

The dual simplex method starts from a dual feasible basic solution it goes
through dual feasible basic solutions until even primal feasibility is achieved in the
last iteration. The objective function values are monotone decreasing in the dual
simplex method. We discuss it in details as it is the main algorithmic tool of the
method.

Each simplex method uses its own simplex tableau. Each tableau contains the
transformed equivalent forms of the equations and the objective function. In the
case of the dual simplex tableau the elements of it are derived from the form of the
equations

xB = B−1b−B−1NxN = B−1b + B−1N(−xN ) ,

where the second equation indicates that the minus sign is associated to non-basic
variables. The dual simplex tableau contains the expression of all variables by the
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negative non-basic variables including the objective function variable x0 and the
non-basic variables. For the latter ones the trivial

xj = −(−xj)

equation is included. For example the dual simplex tableau for (26.37) is provided
that the basic variables are x1 and x2 (see (26.38))

variable constant −x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1

Generally speaking the potentially non-zero coefficients of the objective function are
in the first row, the constant terms are in the first column and all other coefficients
are in the inside of the tableau. The order of the rows is never changed. On the
other hand a variable which left the basis immediately has a column instead of that
variable which entered the basis.

The elements of the dual simplex tableau are denoted by djk where k = 0 refers
to the constant term of the equation of variable xj and otherwise k ∈ IN and djk is
the coefficient of the non-basic variable −xk in the expression of the variable xj . As
x0 is the objective function variable d0k is the coefficient of −xk in the equivalent
form (26.42) of the objective function. The dual simplex tableau can be seen on
Figure 26.5.

Notice that dual feasibility means that there are nonnegative elements in the
first row of the tableau with the potential exception of its first element, i.e. with the
potential exception of the objective function value.

Without giving the proof of its correctness the pivoting procedure is this. The
aim of the pivoting is to eliminate the primal infeasibility, i.e. the negative values
of the variables, with the potential exception of the objective function value, i.e.
the elimination of the negative terms from the first column. Instead of that basic
variable xp a non-basic one will be expressed from the equation such that the negative
constant term becomes zero and the value of the new basic variable, i.e. the value
of xk, becomes positive. It is easy to see that this requirement can be satisfied only
if the new expressed variable, say xk, has a negative coefficient in the equation, i.e.
dpk < 0. After the change of the basis the row of xp must become a negative unit
vector as xp became a non-basic variable, thus its expression is

xp = −(−xp) . (26.45)

The transformation of the tableau consists of the transformations of the columns such
that the form (26.45) of the row of xp is generated. The position of the (-1) in the
row is the crossing of the row of xp and the column belonging to xk before pivoting.
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d00

?

objective function value

d0k
+

objective function coefficient

dj0
6

constant term in the equation of xj

djk
6

the coefficient of −xk in the equation of xj

Figure 26.5 The elements of the dual simplex tableau.

This column becomes the column of xp. There is another requirement claiming that
the dual feasibility must hold on. Let dj be the column of the non-basic variable xj

including d0 as the column of the constant terms. Then the formulae of the column
transformation are the followings where j is either zero or the index of a non-basic
variable different from k:

dnew
j = dold

j −
dold

pj

dold
pk

dold
k (26.46)

and

dnew
p = − 1

dold
pk

dold
k .

To maintain dual feasibility means that after the change of the basis the relation
dnew

0j ≥ 0 must hold for all non-basic indices, i.e. for all j ∈ Inew
N . It follows from

(26.46) that k must be chosen such that

k = argmax

{

dold
0j

dold
pj

| dold
pj < 0

}

. (26.47)

In the course of the branch method in the optimization of the relaxed subproblems
dual simplex method can save a lot of computation. On the other hand what is used
in the description of the method, is only the effect of one pivoting on the value of
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the objective function. According to (26.46) the new value is

dnew
00 = dold

00 −
dold

p0

dold
pk

dold
0k .

Notice that dold
p0 , d

old
pk < 0 and dold

0k ≥ 0. Hence the objective function value decreases
by the nonnegative value

dold
p0

dold
pk

dold
0k . (26.48)

The formula (26.48) will be used if a new constraint is introduced at branching
and it cuts the previous optimal solution. As the new constraint has nothing to do
with the objective function, it will not destroy dual feasibility, but, of course, the
optimal solution of the relaxed problem of the branch becomes primal infeasible.

For example the inequality x1 ≤ 2 is added to the relaxation (26.37) defining a
new branch then it is used in the equation form

x1 + x5 = 2 , (26.49)

where x5 is nonnegative continuous variable. According to the simplex tableau

x1 =
5
2

+
1
6

(−x3) +
1
6

(−x4).

Hence

x5 = −1
2
− 1

6
(−x3)− 1

6
(−x4) . (26.50)

(26.49) is added to the problem in the form (26.50). Then the dual simplex tableau
is

variable constant −x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1
x5 −1/2 −1/6 −1/6

Only x5 has a negative value, thus the first pivoting must be done in its row. Rule
(26.47) selects x3 for entering the basis. Then after the first pivot step the value of
the objective function decreases by

− 1
2

− 1
6

× 7
30

=
7
10
.

If the optimal solution of the relaxed problem is not reached after the first pivoting
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variable constant −x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1
x6 −1/2 1/6 1/6

then further decrease is possible. But decrease of 0.7 is sure compared to the previous
upper bound.

Another important property of the cuts is that if it has no negative coefficient
in the form how it is added to the simplex tableau then there is no negative pivot
element, i.e. the relaxed problem is infeasible, i.e. the branch is empty. For example
the cut x1 ≥ 3 leading to an empty branch is added to the problem in the form

x1 − x6 = 3

where x6 is also a nonnegative variable. Substituting the value of x1 again the
equation is transformed to

x6 = −1
2

+
1
6

(−x3) +
1
6

(−x4) .

Hence the simplex tableau is obtained. There is a negative value at the crossing point
of the first column and the row of x6. But it is not possible to choose a pivot element
in that row, as there is no negative element of the row. It means that feasibility can
not be achieved, i.e. that branch is infeasible and thus it is completely fathomed.

26.3.3. Fast bounds on lower and upper branches

The branching is always based on a variable which should be integer but in the
current optimal solution of the linear programming relaxation it has fractional value.
If it has fractional value then its value is non-zero thus it is basic variable. Assume
that its index is p. Remember that I, IB , and IN are the index sets of the integer,
basic, and non-basic variables, respectively. Hence p ∈ I ∩IB . According to the last
simplex tableau xp is expressed by the non-basic variables as follows:

xp = dp0 +
∑

j∈IN

dpj(−xj) . (26.51)

As dp0 has fractional value

1 > fp = dp0 − bdp0c > 0 .

The branch created by the inequality

xp ≤ bdp0c (26.52)
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is called lower branch and the inequality

xp ≥ bdp0c+ 1

creates the upper branch.
Let J+ and J− be the set of indices of the nonbasic variables according to the

signs of the coefficients in (26.51), i.e.

J +(J−) = {j | j ∈ IN ; dpj > 0 (dpj < 0)} .

First the lower branch is analyzed. It follows from (26.51) that the inequality
(26.52) is equivalent to

xp − bdp0c = fp +
∑

j∈IN

dpj(−xj) ≤ 0.

Thus

s = −fp +
∑

j∈IN

(−dpj)(−xj) (26.53)

is a nonnegative variable and row (26.53) can be added to the dual simplex tableau.
It will contain the only negative element in the first column that is the optimization
in the lower branch starts by pivoting in this row. (26.53) can be reformulated
according to the signs of the coefficients as

s = −fp +
∑

j∈J +

(−dpj)(−xj) +
∑

j∈J −

(−dpj)(−xj) . (26.54)

The pivot element must be negative, thus it is one of −dpj ’s with j ∈ J+ . Hence
the first decrease (26.48) of the objective function is

Plp = min
{

d0j

dpj
fp | j ∈ J +

}

. (26.55)

In the upper branch the inequality (26.52) is equivalent to

xp − bdp0c = fp +
∑

j∈IN

dpj(−xj) ≥ 1 .

Again the nonnegative slack variable s should be introduced. Then the row which
can be added to the simplex tableau is

s = (fp − 1) +
∑

j∈J +

dpj(−xj) +
∑

j∈J −

dpj(−xj) . (26.56)

Thus the pivot element must belong to one of the indices j ∈ J− giving the value

Pup = min
{

d0j

−dpj
(1− fp) | j ∈ J−

}

. (26.57)
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Let ẑ be the upper bound on the original branch obtained by linear programming.
Then the quantities Plp and Pup define the upper bounds of the objective functions
ẑ−Plp and ẑ−Pup on the lower and upper subbranches, respectively. They are not
substituting complete optimization in the subbranches. On the other hand they are
easily computable and can give some orientation to the selection of the next branch
for further investigation (see below).

The quantities Plp and Pup can be improved, i.e. increased. The claim that the
variable s defined in (26.54) is nonnegative implies that

− fp ≥
∑

j∈J +

dpj(−xj) . (26.58)

In a similar way the nonnegativity of variable s in (26.56) implies that

fp − 1 ≥
∑

j∈J −

(−dpj)(−xj) . (26.59)

If (26.59) is multiplied by the positive number

fp

1− fp

then it gets the form

− fp ≥
∑

j∈J −

fp

1− fp
(−dpj)(−xj) . (26.60)

The inequalities (26.58) and (26.60) can be unified in the form:

− fp ≥
∑

j∈J +

dpj(−xj) +
∑

j∈J −

fp

1− fp
(−dpj)(−xj) . (26.61)

Notice that (26.61) not the sum of the two inequalities. The same negative number
stands on the left-hand side of both inequalities and is greater or equal than the
right-hand side. Then both right-hand sides must have negative value. Hence the
left-hand side is greater than their sum.

The same technique is applied to the variable x
′

p instead of xp with

x
′

p = xp +
∑

j∈I∩IN

µjxj ,

where µj ’s are integer values to be determined later. x
′

p can be expressed by the
non-basic variables as

x
′

p = dp0 +
∑

j∈I∩IN

(dpj − µj)(−xj) +
∑

j∈IN \I
dpj(−xj) .

Obviously x
′

p is an integer variable as well and its current value if the non-basic
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variables are fixed to zero is equal to the current value of dp0. Thus it is possible to
define the new branches according to the values of x

′

p. Then the inequality of type
(26.61) which is defined by x

′

p, has the form

−fp ≥
∑

j ∈ I ∩ IN

dpj − µj ≥ 0

(dpj − µj)(−xj) +
∑

j ∈ I ∩ IN

dpj − µj < 0

fp

1− fp
(µj − dpj)(−xj)

+
∑

j ∈ IN \ I
dpj > 0

dpj(−xj) +
∑

j ∈ IN \ I
dpj < 0

fp

1− fp
(−dpj)(−xj) .

The appropriate quantities P
′

lp and P
′

up are as follows:

P
′

lp = min{a, b} ,

where

a = min
{

d0j

dpj − µj
fp | j ∈ I ∩ IN , dpj − µj > 0

}

and

b = min
{

d0j

dpj
fp | j ∈ IN \ I, dpj > 0

}

further
P

′

up = min{c, d} ,
where

c = min
{

d0j(1− fp)2

(µj − dpj)fp
| j ∈ I ∩ IN , dpj − µj < 0

}

and

d = min
{

−d0j(1− fp)2

fpdpj
| j ∈ IN \ I, dpj < 0

}

.

The values of the integers must be selected in a way that the absolute values of the
coefficients are as small as possible, because the inequality cuts the greatest possible
part of the polyhedral set of the continuous relaxation in this way. (See Exercise
26.3-1.) To do so the absolute value of dpj−µj must be small. Depending on its sign
it can be either fj , or fj−1, where fj is the fractional part of dpj , i.e. fj = dpj−bdpjc.

Assume that fj > 0. If dpj + µj = fj then the term

d0jfp

fj
(26.62)

is present among the terms of the minimum of the lower branch. If dpj > 0 then it
obviously is at least as great as the term

d0jfp

dpj
,
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which appears in Plp, i.e. in the right-hand side of (26.55). If dpj < 0 then there is
a term

d0j(fp − 1)
dpj

(26.63)

is in the right-hand side of (26.57) . doj is a common multiplier in the terms (26.62)
and (26.63), therefore it can be disregarded when the terms are compared. Under
the assumption that fj ≤ fp it will be shown that

fp

fj
≥ fp − 1

dpj
.

As dpj is supposed to be negative the statement is equivalent to

dpjfp ≤ (fp − 1)fj .

Hence the inequality

(bdpjc+ fj) fp ≤ fpfj − fj

must hold. It can be reduced to

bdpjc fp ≤ −fj .

It is true as bdpjc ≤ −1 and

−1 ≤ −fj

fp
< 0 .

If dpj + µj = fj − 1 then according to (26.57) and (26.61) the term

d0j(1− fj)2

fp(1− fj)

is present among the terms of the minimum of the upper branch. In a similar way
it can be shown that if fj > fp then it is always at least as great as the term

d0j(fj − 1)
dpj

which is present in the original formula (26.57).
Thus the rule of the choice of the integers µj ’s is

µj =
{

bdpjc if fj ≤ fp ,
ddpje if fj > fp

(26.64)

26.3.4. Branching strategies

The B&B frame doesn’t have any restriction in the selection of the unfathomed
node for the next branching in row 7 of Branch-and-Bound. First two extreme
strategies are discussed with pros and cons. The same considerations have to be
taken in almost all applications of B&B. The third method is a compromise between
the two extreme ones. Finally methods more specific to the integer programming are
discussed.
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The LIFO Rule LIFO means “Last-In-First-Out”, i.e. one of the branches
generated in the last iteration is selected. A general advantage of the rule is that the
size of the enumeration tree and the size of the list L remains as small as possible. In
the case of the integer programming problem the creation of the branches is based on
the integer values of the variables. Thus the number of the branches is at most gj +1
if the branching variable is xj . In the LIFO strategy the number of leaves is strictly
less then the number of the created branches on each level with the exemption of
the deepest level. Hence at any moment the enumeration tree may not have more
than

n
∑

j=1

gj + 1

leaves.
The drawback of the strategy is that the flexibility of the enumeration is lost.

The flexibility is one of the the main advantage of B&B in solving pure integer
problems.

If the algorithm skips from one branch to another branch far away from the
first one then it is necessary to reconstruct the second branch including not only the
branching restrictions on the variables but any other information which is necessary
to the bounding procedure. In the particular algorithm the procedure determining
the bound is linear programming, more precisely a simplex method. If a new re-
striction as a linear constraint is added to the problem which cuts off the previous
optimal solution, then the simplex tableau looses the primal feasibility but the dual
feasibility still holds. Thus a dual simplex method can immediately start without
carrying out a first phase. (The purpose of the first phase which itself is a complete
optimization, is to find a primal or dual feasible basic solution depending for primal
or dual simplex method, respectively.) If the B&B method skips to another branch
then to get the new bound by the simplex method will require the execution of the
first phase, too.

A further consideration concerns to the construction of feasible solutions. Gener-
ally speaking if good feasible solutions are known in the early phase of the algorithm
then the whole procedure can be accelerated. In the current algorithm branching has
a "constructive nature". It means that the value of the branching variable becomes
more restricted therefore it either becomes integer in the further optimal solutions
in the subbranches of the branch, or it will be restricted further on. Thus it can be
expected that sooner or later a complete integer solution is constructed which might
be feasible or infeasible. On the other hand if the algorithm skips frequently in the
phase when no feasible solution is known then it is very likely that any construction
will be finished only later, i.e. the acceleration will not take place, because of the
lack of feasible solution.

If a LIFO type step is to be done and the branching variable is xp then the lower
branch should be chosen in step 7 of the algorithm, if

zr − Plp ≥ zr − Pup, i.e. Plp ≤ Pup .
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The maximal bound The other extreme strategy is that the branch having the
maximal bound is selected in each iteration. The idea is simple and clear: it is the
most promising branch therefore it worth to explore it.

Unfortunately the idea is not completely true. The bounds of the higher level
branches are not accurate enough. This phenomenon has been discussed during the
analysis of the numerical example in the subsection 26.1.3 in relation (26.12). Thus
a somewhat smaller upper bound in a lower branch can indicate a more promising
branch.

The maximal bound strategy can lead to a very wide enumeration tree which
may cause memory problems. Moreover the construction of feasible solutions will be
slow and therefore the relatively few solutions will be enumerated implicitly, i.e. the
number of steps will be high, i.e. the method will be slow.

Fast bounds and estimates If the optimal solution of the relaxed problem
is non-integer then it can have several fractional components. All of them must be
changed to be integer to obtain the optimal integer programming solution of the
branch. The change of the value of each currently fractional variable as a certain
cost. The cost of the individual changes are estimated and summed up. The cost
means the loss in the value of the objective function. An adjusted value of the bound
of the branch is obtained if the sum of the estimated individual costs is subtracted
from the current bound. It is important to emphasize that the adjusted value is not
an upper or lower bound of the optimal value of integer programming solution of
the branch but it is only a realistic estimation.

There are two ways to obtain the estimation. The first one uses the crude values
of the fractionality. Let fj and f0

j be the fractional part of variable xj in the current
branch and in the relaxed problem of the original problem, respectively. Further on
let zr, z0, and ẑ be the optimal value of the relaxed problem in the current branch,
in the original problem, and the value of the best feasible integer solution found so
far. Generally speaking the measure of the fractionality of a real number α is that
how far is α to the closest integer, i.e.

min{α− bαc, dαe − α} .

Hence the estimate is

zr − (z0 − ẑ)
∑

j∈I min{fj , 1− fj}
∑

j∈I min{f0
j , 1− f0

j }
. (26.65)

(26.65) takes into account the average inaccuracy of the bounds.
The fast bounds defined in (26.55) and (26.57) can be used also for the same

purpose. They concern to the correction of the fractionality of a single variable in
the current branch. Hence the estimate

zr −
∑

j∈I
min{Plj , Puj}

is a natural choice.
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A Rule based on depth, bound, and estimates The constraints defining
the branches are integer valued lower and upper bounds on the branching variables.
Thus one can expect that these new constraints force the majority of the branching
variables to be integer. It means that the integrality of the optimal solution of the
relaxed problem improves with the depth of the branch. Thus it is possible to connect
the last two rules on the following way. The current bound is abandoned and the
algorithm selects the best bound is the improvement based on estimates is above a
certain threshold.

26.3.5. The selection of the branching variable

In selecting the branching variable again both the fractional part of the non-integer
variables and the fast bounds have critical role. A further factor can be the infor-
mation obtained from the user.

Selection based on the fractional part The most significant change can be
expected from that variable which is farthest from integers as the cuts defining the
two new branches cut the most. As the measure of fractionality is min{fj , 1 − fj}
the rule suggest to choose the branching variable xp as

p = argmax{min{fj , 1− fj} | j ∈ I}

Selection based on fast bounds Upper bounds are

zr − Plp and zr − Pup

in the lower and upper branches of branch r if the branching variable is xp.
Here are five possible selection criteria:

max
p:

max{zr − Plp, zr − Pup} (26.66)

max
p:

min{zr − Plp, zr − Pup} (26.67)

min
p:

max{zr − Plp, zr − Pup} (26.68)

min
p:

min{zr − Plp, zr − Pup} (26.69)

max
p:
{| Plp − Pup |} . (26.70)

Which one can be offered for a B&B algorithm?
Notice that

max{zr − Plp, zr − Pup}
is a correct upper bound of branch r as it has been mentioned earlier. Thus (26.66)
selects according to the most inaccurate upper bound. It is obviously not good.
(26.68) makes just the opposite it selects the variable giving the most accurate
bound. On the other hand

min{zr − Plp, zr − Pup} (26.71)
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is the upper bound in the worse one of the two subbranches. The interest of the
algorithm is that it will be fathomed without explicit investigation, i.e. the bound
of this subbranch will be less than the objective function value of an integer feasible
solution. Thus it is good if (26.71) is as small as possible. Hence (26.69) is a good
strategy and (26.67) is not. Finally, (26.70) tries to separate the good and low quality
feasible solutions. The conclusion is that (26.69) and (26.70) are the two best ones
and (26.68) is still applicable, but (26.66) and (26.67) must be avoided.

Priority rule Assume that the numerical problem (26.31)-(26.35) is the model
of an industrial problem. Then the final user is the manager and/or expert who
must apply the decisions coded into the optimal solution. The expert may know
that which factors (decisions) are the most critical ones from the point of view of
the managerial problem and the industrial system. The variables belonging to these
factors may have a special importance. Therefore it has sense if the user may define
a priority order of variables. Then the first non-integer variable of the order can be
selected as branching variable.

26.3.6. The numerical example is revisited

The solution of the problem

max x0 = 2x1 + x2

3x1 − 5x2 ≤ 0
3x1 + 5x2 ≤ 15

x1, x2 ≥ 0
x1, x2 is integer .

(26.36)

has been analyzed from geometric point of view in subsection 26.3.1. Now the above-
mentioned methods will be applied and the same course of solution will be obtained.

After introducing the slack variables x3 and x4 the (primal) simplex method
gives the equivalent form (26.38) of the equations and the objective function:

max x0 = 0x1 + 0x2 − 7
30x3 − 13

30x4 + 13
2

x1 + 0x2 + 1
6x3 + 1

6x4 = 5
2

0x1 + x2 − 1
10x3 + 1

10x4 = 3
2

x1, x2 x3, x4 ≥ 0 .

(26.38)

Hence it is clear that the solution x1 = 5
2 and x2 = 3

2 . (26.38) gives the following
optimal dual simplex tableaux:

−x3 −x4

x0 13/2 7/30 13/30
x1 5/2 1/6 1/6
x2 3/2 −1/10 1/10
x3 0 −1 0
x4 0 0 −1

.
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The first two branches were defined by the inequalities x1 ≤ 2 and x1 ≥ 3. The
second one is an empty branch. The algebraic evidence of this fact is that there is
no negative element in the row of x1, thus it is not possible to find a pivot element
for the dual simplex method after introducing the cut. Now it will be shown in a
detailed way. Let s be the appropriate slack variable, i.e. the cut introduced in the
form

x1 − s = 3, s ≥ 0 .

The new variable s must be expressed by the non-basic variables, i.e. by x3 and x4:

3 = x1 − s =
5
2
− 1

6
x3 −

1
6
x4 − s .

Hence
s = −1

2
+

1
6

(−x3) +
1
6

(−x4) .

When this row is added to the dual simplex tableaux, it is the only row having a
negative constant term, but there is no negative coefficient of any non-basic variable
proving that the problem is infeasible. Notice that the sign of a coefficient is an
immediate consequence of the sign of the coefficient in the row of x1, i.e. it is not
necessary to carry out the calculation of the row of s and it is possible to conclude
immediately that the branch is empty.

The fractional part f1 equals 1
2 . Hence the fast bound (26.55) of the lower branch

defined by x1 ≤ 2 is

1
2

min
{ 7

30
1
6

,
13
30
1
6

}

=
7
10
.

It means that the fast upper bound in the branch is 13/2-7/10=5.8. The bound can
be rounded down to 5 as the objective function is integer valued.

Let x5 be the slack variable of the cut x1 ≤ 2, i.e. x1 + x5 = 2. Hence

x5 =
1
2
−
(

−1
6

)

(−x3) −
(

−1
6

)

(−x4) .

If it is added to the simplex tableaux then the pivot element is d53. After the first
pivot step the tableaux becomes optimal. It is

−x5 −x4

x0 29/5 7/5 1/5
x1 2 1 0
x2 9/5 −3/5 1/5
x3 3 −6 1
x4 0 0 −1
x5 0 −1 0

. (26.72)

Notice that the optimal value is 5.8, i.e. exactly the same what was provided by
the fast bound. The reason is that the fast bound gives the value of the objective
function after the first pivot step. In the current case the first pivot step immediately
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produced the optimal solution of the relaxed problem.
x2 is the only variable having non-integer value in simplex tableaux. Thus the

branching must be done according to x2. The two new cuts defining the branches
are x2 ≤ 1 and x2 ≥ 2. There are both positive and negative coefficients in the row
of x2, thus both the lower and upper branches exist. Moreover

Pl2 =
4
5
× 1/5

1/5
=

4
5
, Pu2 =

1
5
× 7/5

3/5
=

7
15
.

Thus the continuous upper bound is higher on the upper branch, therefore it is
selected first for further branching.

The constraint
x2 − x6 = 2, x6 ≥ 0

are added to the problem. By using the current simplex tableaux the equation

x6 = −1
5
− 3

5
(−x5) +

1
5

(−x4)

is obtained. It becomes the last row of the simplex tableaux. In the first pivoting
step x6 enters the basis and x5 leaves it. The first tableaux is immediately optimal
and it is

−x6 −x4

x0 16/3 7/3 2/3
x1 5/3 5/3 1/3
x2 2 −1 0
x3 5 −10 −1
x4 0 0 −1
x5 1/3 −5/3 −1/3
x6 0 −1 0

Here both x1 and x5 are integer variables having non-integer values. Thus branching
is possible according to both of them. Notice that the upper branch is empty in the
case of x1, while the lower branch of x5 is empty as well. x1 is selected for branching
as it is the variable of the original problem. Now

Pl1 =
2
3

min
{

7/3
5/3

,
2/3
1/3

}

=
14
15
.

On the other hand the bound can be improved in accordance with (26.64) as d16 > 1,
i.e. the coefficient of −x6 may be 2/3 instead of 5/3. It means that the inequality

x1 + x6 ≤ 1

is claimed instead of

x1 ≤ 1 .

It is transferred to the form

x1 + x6 + x7 = 1 .
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Hence

x7 = −2
3
− 2

3
(−x6)− 1

3
(−x4) .

The improved fast bound is obtained from

P
′

l1 =
2
3

min
{

7
2
, 2
}

=
4
3
.

It means that the objective function can not be greater than 4. After the first pivoting
the simplex tableau becomes

−x6 −x7

x0 4 1 2
x1 1 1 1
x2 2 −1 0
x3 7 −8 −3
x4 2 2 −3
x5 1 −1 −1
x6 0 −1 0
x7 0 0 −1

giving the feasible solution x1 = 1 and x2 = 2 with objective function value 4.
There is only one unfathomed branch which is to be generated from tableaux

(26.72) by the constraint x2 ≤ 1. Let x8 be the slack variable. Then the equation

1 = x2 + x8 =
9
5
− 3

5
(−x5) +

1
5

(−x4) + x8

gives the cut

x8 = −4
5

+
3
5

(−x5)− 1
5

(−x4)

to be added to the tableaux. After two pivoting steps the optimal solution is

−x3 −x6

x0 13/3 2/3 13/3
x1 5/3 1/3 5/3
x2 1 0 1
x3 5 −1 0
x4 5 −1 −10
x5 1/3 −1/3 −5/3
x6 0 0 −1

Although the optimal solution is not integer, the branch is fathomed as the upper
bound is under 5, i.e. the branch can not contain a feasible solution better than the
current best known integer solution. Thus the method is finished.

Exercises
26.3-1 Show that the rule of the choice of the integers µj (26.64) is not necessarily
optimal from the point of view of the object function. (Hint. Assume that variable
xj enters into the basis in the first pivoting. Compare the changes in the objective
function value if its coefficient is −fj and fj − 1, respectively.)
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26.4. On the enumeration tree

One critical point of B&B is the storing of the enumeration tree. When a branch is
fathomed then even some of its ancestors can become completely fathomed provided
that the current branch was the last unfathomed subbranch of the ancestors. The
ancestors are stored also otherwise it is not possible to restore the successor. As
B&B uses the enumeration tree on a flexible way, it can be necessary to store a large
amount of information on branches. It can causes memory problems. On the other
hand it would be too expensive from the point of view of calculations to check the
ancestors every time if a branch becomes fathomed. This section gives some ideas
how to make a trade-off.

The first thing is to decide is that which data are describing a branch. There
are two options. The first one is that all necessary informations are stored for each
branch. It includes all the branching defining constraints. In that case the same
constraint is stored many times, because a branch on a higher level may have many
subbranches. As matter of fact the number of branches is very high in the case of
large scale problems, thus the memory required by this solution is very high.

The other option is that only those informations are stored which are necessary
to the complete reconstruction of the branch. These ones are

• the parent branch, i.e. the branch from which it was generated directly,

• the bound of the objective function on the branch,

• the index of the branching variable,

• the branch defining constraint of the branching variable.

For technical reasons three other attributes are used as well:

• a Boolean variable showing if the branch has been decomposed into subbranches,

• another Boolean variable showing if any unfathomed subbranch of the branch
exists,

• and a pointer to the next element in the list of branches.

Thus a branch can be described by a record as follows:

´

record Branch
begin

Parent : Branch;
Bound : integer;
Variable : integer;
Value : integer;
Decomposition : Boolean;
Descendant : Boolean;
suc : Branch

end;

The value of the Parent attribute is none if and only if the branch is the initial
branch, i.e. the complete problem. It is the root of the B&B tree. The reconstruction
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of the constraints defining the particular branch is the simplest if it is supposed that
the branches are defined by the fixing of a free variable. Assume that Node is a
variable of type Branch. At the beginning its value is the branch to be reconstructed.
Then the algorithm of the reconstruction is as follows.

Branch-Reconstruction

1 while Node 6= none
2 do x[Node.Variable] ← Node.Value;
3 . . .
4 Node ← Node.Parent;
5 return Node

The value of a previously fixed variable is set to the appropriate value in row
2. Further operations are possible (row 4). Node becomes its own parent branch in
row 5. If it is none then the root is passed and all fixings are done.

Sometimes it is necessary to execute some operations on all elements of the
list L. The suc attribute of the branches point to the next element of the list.
The last element has no next element, therefore the value of suc is none in this
case. The procedure of changing all elements is somewhat similar to the Branch
Reconstruction procedure. The head of the list L is Tree, i.e. the first element of
the list is Tree.suc.

B&B-List

1 Node ← Tree.suc
2 while Node 6=none
3 . . .
4 Node ← Node.suc
5 return Node

The loop runs until there is no next element. The necessary operations are
executed in row 4. The variable Node becomes the next element of the list in row
5. To insert a new branch into the list is easy. Assume that it is NewNode of type
Branch and it is to be inserted after Node which is in the list. Then the necessary
two commands are:

NewNode.suc ← Node.suc
Node.suc ← NewNode

If the branches are not stored as objects but they are described in long arrays
then the use of attribute suc is superflous and instead of the procedure B&B List
a for loop can be applied.

The greatest technical problem of B&B from computer science point of view
is memory management. Because branches are created in enormous large quantity
the fathomed branches must be deleted from the list time to time and the memory
occupied by them must be freed. It is a kind of garbage collection. It can be done in
three main steps. In the first one value false is assigned to the attribute Descendant
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of all elements of the list. In the second main step an attribute Descendant is changed
to true if and only if the branch has unfathomed descendant(s). In the third step
the unnecessary branches are deleted. It is assumed that there is a procedure Out
which gets the branch to be deleted as a parameter and deletes it and frees the part
of the memory.

Garbage-Collection

1 Node ← Tree.suc
2 while Node 6= none
3 Node.Descendant ← False
4 Node ← Node.suc
5 Node ← Tree.suc
6 while Node 6= none
7 do if not Node.Decomposition and Node.Bound > ẑ
8 then Pont ← Node.Parent
9 while Pont 6= none do

10 Pont.Descendant ← True
11 Pont ← Pont.Parent
12 Node ← Node.suc
13 Node ← Tree.suc
14 while Node 6= none do
15 Pont ← Node.suc
16 if (not Node.Descendant and Node.Decomposition) or Node.Bound ≤ ẑ
17 then Out(Node)
18 Node ← Pont
19 return ???

26.5. The use of information obtained from other
sources

The method can be sped up by using information provided by further algorithmic
tools.

26.5.1. Application of heuristic methods

The aim of the application of heuristics methods is to obtain feasible solutions. From
theoretical point of view to decide if any feasible solution exists is NP-complete as
well. On the other hand heuristics can produce feasible solutions in the case of the
majority of the numerical problems. The methods to be applied depend on the nature
of the problem in question, i.e. pure binary, bounded integer, mixed integer problems
may require different methods. For example for pure integer problems local search
and Lagrange multipliers can work well. Lagrange multipliers also provide upper
bound (in the case of maximization) of the optimal value.
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If a feasible solution is known then it is immediately possible to disregard
branches based on their bounds. See row 15 of algorithm Branch and Bound.
There the branches having not good enough bounds are automatically eliminated.
In the case of pure binary problem an explicit objective function constraint can give
a lot of consequences as well.

26.5.2. Preprocessing

Preprocessing means to obtain information on variables and constraints based on
algebraic constraints and integrality.

For example if the two constraints of problem (26.36) are summed up then the
inequality

6x1 ≤ 15

is obtained implying that x1 ≤ 2.
Let

gi(x) ≤ bi (26.73)

be one of the constraints of problem (26.14)-(26.16). Many tests can be based on the
following two easy observations:

1. If the maximal value of the left-hand side of (26.73) of x ∈ X is not greater
than the right-hand side of (26.73) then the constraint is redundant.

2. If the minimal value of the left-hand side of (26.73) if x ∈ X is greater than
the right-hand side of (26.73) then it is not possible to satisfy the constraint,
i.e. the problem (26.14)-(26.16) has no feasible solution.

If under some further restriction the second observation is true then the restriction
in question can be excluded. A typical example is that certain variables are supposed
to have maximal/minimal possible value. In this way it is possible to fix a variable
or decrease its range.

Lagrange relaxation can be used to fix some variables, too. Assume that the
optimal value of Problem (26.22) and (26.16) is ν(L(λ | xj = δ)) under the further
condition that xj must take the value δ. If ẑ is the objective function value of a
known feasible solution and ẑ > ν(L(λ | xj = δ)) then xj can not take value δ.
Further methods are assuming that the LP relaxation of the problem is solved and
based on optimal dual prices try to fix the values of variables.

26.6. Branch and Cut

Branch and Cut (B&C) in the simplest case is a B&B method such that the a
certain kind of information is collected and used during the whole course of the
algorithm. The theoretical background is based on the notion of integer hull
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Definition 26.9 Let

P = {x | Ax ≤ b}

be a polyhedral set where A is an m× n matrix, x and b are n and m dimensional
vectors. All elements of A and b are rationals. The convex hull of the integer points
of P is called the integer hull of P, i.e. it is the set

conv(P ∩ Zn) .

The integer hull of the polyhedral set of problem (26.36) is the convex hull of
the points (0,0), (0,3), (1,2), and (1,1) as it can be seen on Figure 24.2. Thus the
description of the integer hull as a polyhedral set is the inequality system:

x1 ≥ 0, x1 + x2 ≤ 3, x1 ≤ 1, x1 − x2 ≤ 0 .

Under the conditions of the definition the integer hull is a polyhedral set, too.
It is a non-trivial statement and in the case of irrational coefficients it can be not
true. If the integer hull is known, i.e. a set of linear inequalities defining exactly the
integer hull polyhedral set is known, then the integer programming problem can be
reduced to a linear programming problem. Thus problem (26.36) is equivalent to the
problem

max x0 = 2x1 + x2

x1 ≥ 0
x1 + x2 ≤ 3
x1 ≤ 1
x1 − x2 ≤ 0 .

(26.74)

As the linear programming problem easier to solve than the integer programming
problem, one may think that it worth to carry out this reduction. It is not completely
true. First of all the number of the linear constraint can be extremely high. Thus
generating all constraints of the integer hull can be more difficult than the solution
of the original problem. Further on the constraints determining the shape of the
integer hull on the side opposite to the optimal solution are not contributing to the
finding of the optimal solution. For example the optimal solution of (26.74) will not
change if the first constraint is deleted and it is allowed both x1 and x2 may take
negative values.

On the other hand the first general integer programming method is the cutting
plane method of Gomory. Its main tool is the cut which is based on the observation
that possible to determine linear inequalities such that they cut the non-integer
optimal solution of the current LP relaxation, but they do not cut any integer feasible
solution. A systematic generation of cuts leads to a finite algorithm which finds an
optimal solution and proves its optimality if optimal solution exist, otherwise it
proves the non-existence of the optimal solution. From geometrical point of view the
result of the introducing of the cuts is that the shape of the polyhedral set of the last
LP relaxation is very similar to the integer hull in the neighborhood of the optimal
solution.
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There is the generalization of Gomory’s cut called Chvátal (or Chvátal-Gomory)
cut. If the two inequalities of (26.36) are summed such that both have weight 1

6 then
the constraint

x1 ≤ 2.5

is obtained. As x1 must be integer the inequality

x1 ≤ 2 (26.75)

follows immediately. It is not an algebraic consequence of the original constraints.
To obtain it the information of the integrality of the variables had to be used. But
the method can be continued. If (26.75) has weight 2

5 and the second constraint of
(26.36) has weight 1

5 then

x1 + x2 ≤ 3.8

is obtained implying

x1 + x2 ≤ 3 .

If the last inequality has weight 5
8 and the first inequality of (26.36) has weight 1

8
then the result is

x1 ≤
15
8

implying

x1 ≤ 1.

Finally the integer hull is obtained. In general the idea is as follows. Assume that a
polyhedral set is defined by the linear inequality system

Ax ≤ b . (26.76)

Let y ≥ 0
¯

be a vector such that AT y is an integer vector and yT b is a noninteger
value. Then

yT Ax ≤ byT bc

is a valid cut, i.e. all integer points of the polyhedral set satisfy it. As a matter of
fact it can be proven that a systematic application of the method creates a complete
description of the integer hull after finite many steps.

The example shows that Gomory and Chvátal cuts can help to solve a problem.
On the other hand they can be incorporated in a B&B frame easily. But in the very
general case it is hopeless to generate all effective cuts of this type.

The situation is significantly different in the case of many combinatorial prob-
lems. There are many theoretical results known on the type of the facet defining
constraints of special polyhedral sets. Here only one example is discussed. It is the
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Traveling Salesperson Problem (TSP). A salesman must visit some cities and at
the end of the tour he must return to his home city. The problem is to find a tour
with minimal possible length. TSP has many applications including cases when the
"cities" are products or other objects and the “distance” among them doesn’t satisfy
the properties of the geometric distances, i.e. symmetry and triangle inequality may
be violated.

The first exact mathematical formulation of the problem is the so-called Dantzig-
Fulkerson-Johnson (DFJ) model. DFJ is still the basis of the numerical solutions.
Assume that the number of cities is n. Let dij the distance of the route from city i
to city j (1 ≤ i, j ≤ n, i 6= j). DFJ uses the variables xij such that

xij =
{

1 if the salesman travel from city i to city j
0 otherwise

The objective function is the minimization on the total travel length:

min
n
∑

i=1

∑

i6=j

dijxij . (26.77)

The set of the constraints consists of three parts. The meaning of the first part is
that the salesman must travel from each city to another city exactly once:

n
∑

j=1,j 6=i

xij = 1 i = 1, . . . , n . (26.78)

The second part is very similar. It claims that the salesman must arrive to each city
from somewhere else again exactly once:

n
∑

i=1,i 6=j

xij = 1 j = 1, . . . , n . (26.79)

Constraints (26.78) and (26.79) are the constraints of an assignment problem. Taking
into account that the variables must be binary Problem (26.77)-(26.79) is really an
assignment problem. They don’t exclude solutions consisting of several smaller tours.
For example if n = 6 and x12 = x23 = x31 = 1 and x45 = x56 = x64 = 1 then all
other variables must be zero. The solution consists of two smaller tours. The first
one visits only cities 1, 2, and 3, the second one goes through the cities 4, 5, and 6.
The small tours are called subtours in the language of the theory of TSP.

Thus further constraints are needed which excludes the subtours. They are called
subtour elimination constraints. There are two kinds of logic how the subtours can
be excluded. The first one claims that in any subset of the cities which has at least
two elements but not the complete set of the cities the number of travels must be
less than the number of elements of the set. The logic can be formalized as follows:

∀S ⊂ {1, 2, . . . , n}, 1 ≤ |S| ≤ n− 1 :
∑

i∈S

∑

j∈Sj 6=i

xij ≤ |S| . (26.80)
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The other logic claims that the salesman must leave all such sets. Let S̄ =
{1, 2, . . . , n} \ S. Then the subtour elimination constraints are the inequalities

∀S ⊂ {1, 2, . . . , n}, 1 ≤ |S| ≤ n− 1 :
∑

i∈S

∑

j∈S̄

xij ≥ 1 . (26.81)

The numbers of the two types of constraints are equal and exponential. Although
the constraints (26.78)–(26.80) or (26.78), (26.79), and (26.81) are satisfied by only
binary vectors being characteristic vectors of complete tours but the polyhedral set
of the LP relaxation is strictly larger than the integer hull.

On the other hand it is clear that it is not possible to claim all of the subtour
elimination constraints in the real practice. What can be done? It is possible to
claim only the violated once. The difficulty is that the optimal solution of the LP
relaxation is a fractional vector in most of the cases and that subtour elimination
constraint must be found which is violated by the fractional solution provided that
such constraint exists as the subtour elimination constraints are necessary to the
description of the integer hull but further constraints are needed, too. Thus it is
possible that there is no violated subtour elimination constraint but the optimal
solution of the LP relaxation is still fractional.

To find a violated subtour elimination constraint is equivalent to the finding
of the absolute minimal cut in the graph which has only the edges having positive
weights in the optimal solution of the relaxed problem. If the value of the absolute
minimal cut is less than 1 in the directed case or less than 2 in the non-directed case
then such a violated constraint exists. The reason can be explained based on the
second logic of the constraints. If the condition is satisfied then the current solution
doesn’t leaves at least one of the two sets of the cut in enough number. There are
many effective methods to find the absolute minimal cut.

A general frame of the numerical solution of the TSP is the following. In a B&B
frame the calculation of the lower bound is repeated until a new violated subtour
elimination constraint is obtained, that is the new inequality is added to the relaxed
problem and the LP optimization is carried out again. If all subtour elimination
constraints are satisfied and the optimal solution of the relaxed problem is still non-
integer then branching is made according to a fractional valued variable.

The frame is rather general. The violated constraint cuts the previous optimal
solution and reoptimization is needed. Gomory cuts do the same for the general
integer programming problem. In the case of other combinatorial problems special
cuts may work if the description of the integer hull is known.

Thus the general idea of B&C is that a cut is generated until it can be found
and the improvement in the lower bound is great enough. Otherwise branching is
made by a non-integer variable. If the cut generation is made only at the root of the
enumeration tree then the name of the method is Cut and Branch (C&B). If a cut
is generated in a branch then it is locally valid in that branch and in its successors.
The cuts generated at the root are valid globally, i.e. in all branches. In some cases,
e.e. in binary optimization, it is possible to modify it such that it is valid in the
original problem, too.

For practical reasons the type of the generated cut can be restricted. It is the
case in TSP as the subtour elimination constraints can be found relatively easily.
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26.7. Branch and Price

The Branch and Price method is the dual of B&C in a certain sense. If a problem
has very large number of variables then it is often possible not to work explicitely
with all of them but generate only those which may enter the basis of the LP re-
laxation. This is column generation and is based on the current values of the dual
variables called shadow prices. Similarly to B&C the type of the generated columns
is restricted. If it is not possible to find a new column then branching is made.

Problems

26-1 Continuous Knapsack Problem
Prove Theorem 26.1. (Hint. Let x be a feasible solution such that there are two
indices, say j and k, such that 1 ≤ j < k ≤ n and xj < 1, and xk > 0. Show that
the solution can be improved.)
26-2 TSP’s relaxation
Decide if the Assignment Problem can be a relaxation of the Traveling Salesperson
Problem in the sense of definition 26.5. Explain your solution regardless that your
answer is YES or NO.
26-3 Infeasibility test
Based on the the second observation of Subsection 26.5.2 develop a test for the
infeasibility of a linear constraint of binary variables.
26-4 Mandatory fixing
Based on the previous problem develop a test for the mandatory fixing of binary
variables satisfying a linear constraint.

Chapter Notes

The principle of B&B first appears in [138]. It solves problems with bounded integer
variables. The fast bounds were introduced in [16] and [229]. A good summary of the
bounds is [68]. To the best knowledge of the author of this chapter the improvement
of the fast bounds appeared first in [236].

B&B can be used as an approximation scheme, too. In that case a branch can
be deleted even in the case if its bound is not greater than the objective function
value of the current best solution plus an allowed error. [107] showed that there are
classes such that the approximate method requires more computation than to solve
the problem optimally. B&B is very suitable for parallel processing. This issue is
discussed in [35].

Based on the theoretical results of [147] a very effective version of B&C method
was developed for pure binary optimization problem by [217] and independently [10].
Especially Egon Balas and his co-authors could achieve a significant progress. Their
method of lifting cuts means that a locally generated cut can be made globally valid
by solving a larger LP problem and modify the cut according to its optimal solution.
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The first integer programming method to solve an IP problem with general, i.e.
non-bounded, integer variables is Ralph Gomory’s cutting plane method [80]. In a
certain sense it is still the only general method. Strong cuts of integer programming
problems are discussed in [11]. The surrogate constraint (26.18) has been introduced
by [79]. The strength of the inequality depends on the choice of the multipliers λi.
A rule of thumb is that the optimal dual variables of the continuous problem give a
strong inequality provided that the original problem is linear.

The DFJ model of TSP appeared in [50]. It was not only an excellent theoretical
result, but is also an enormous computational effort as the capacities and speed of
that time computers were far above the recent ones. One important cut of the TSP
polyhedral set is the so-called comb inequality. The number of edges of a complete
tour is restricted in a special subgraph. The subgraph consists of a subset of cities
called hand and odd number of further subsets of cities intersecting the hand. They
are called teeth and their number must be at least three. Numerical problems of TSP
are exhaustively discussed in [209].

A good summary of Branch and Price is [14].



27. Comparison Based Ranking

In the practice often appears the problem, how to rank different objects. Researchers
of these problems often mention different applications, e.g. in biology Landau [139],
in chemistry Hakimi [87], in networks Kim, Toroczkai, Miklós, Erdős, and Székely
[127], in business Bozóki, Fülöp, Kéri, Poesz, and Rónyai [27, 28, 134], in sports
Iványi, Pirzada, and Zhou [116, 200].

An often used method is the comparison of two—and simetimes more– objects
in all possible manner and distribution some amount of points among the compared
objects.

In this chapter we introduce a general model for such ranking and study some
connected problems.

27.1. Introduction to supertournaments

Let n, m be positive integers, a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm) and k =
(k1, k2, . . . , km) vectors of nonnegative integers with ai ≤ bi (i = 1, 2, . . . ,m) and
0 < k1 < k2 < · · · < km.

Then an (a,b,k,m, n)-supertournament is an x × n sized matrix M, whose
columns correspond to the players of the tournament (they represent those objects
which we wish to rank) and the lines correspond to the comparisons of the objects.
The permitted elements of M belong to the set {0, 1, 2, . . . , bmax} ∪ {∗}, where
mij = ∗ means, that the player Pj is not a participants of the match corresponding
to the i-th line, mij = k means, that Pj received k points in the match corresponding
to the i-th line, and brmmax = max1≤i≤n bi.

Using the terminology of the sports a supertournament can combine the math-
ches of different sports. For example in Hungary there are popular chess-bridge,
chess-tennis and tennis-bridge tournaments.

A sport is characterized by the set of the permitted results. For example in tennis
the set of permitted results is Stennis = {0 : 1}, for chess is the set Schess = {0 : 2, 1 :
1}, for football is the set Sfootball = {0 : 3, 1 : 1} and in the Hungarian card game
last trick is Slast trick = {(0, 1, 1), (0, 0, 2). There are different possible rules for an
individual bridge tournament, e.g. Sbridge = {(0, 2, 2, 2), (1, 1, 1, 3)}.
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match/player P1 P2 P3 P4

P1-P2 1 1 * *
P1-P3 0 * 2 *
P1-P4 0 * * 2
P2-P3 * 0 2 *
P2-P4 * 0 * 2
P3-P4 ∗ * 1 1

P1-P2-P3 1 1 0 *
P1-P2-P4 1 0 * 2
P1-P3-P4 1 * 1 0
P2-P3-P4 * 0 0 2

P1-P2-P3-P4 3 1 1 1

Total score 7 3 8 10

Figure 27.1 Point matrix of a chess+last trick-bridge tournament with n = 4 players.

The number of participants of a match of a given sport Si is denoted by ki,
the minimal number of the distributed points in a match is denoted by ai, and the
maximal number of points is denoted by bi.

If a supertournament consists of only the matches of one sport, then we use a, b
and k instead of vectors a, b, and k and omit the parameter m. When the number
of the players is not important, then the parameter n is also omitted.

According to this notations chess is a (2,2,2)-sport, while football is a (2,3,2)-
sport. If the points can be distributed according to arbitrary integer partition, then
the given sport is called complete, otherwise it is called incomplete.

Since a set containing n elements has
(

n
k

)

k-element subsets, an (a, b, k)-
tournament consists of

(

n
k

)

matches. If all matches are played, then the tournament
is finished, otherwise it is partial.

In this chapter we deal only with complete and finished tournaments.
Figure 27.1 contains the results of a full and finished chess+last trick+bridge

supertournament. In this example n = 4, a = b = (2, 2, 6),k = (2, 3, 4), and x =
(

4
2

)

+
(

4
3

)

+
(

4
4

)

= 11.
In this example the score vector of the given supertournament is (7, 3, 8, 10), and

its score sequence is (3, 7, 8, 10).
In this chapter we investigate the problems connected with the existence and con-

struction of different types of supertournaments having prescribed score sequences.
At first we give an introduction to (a, b, 2)-tournaments (Section 27.2), then sum-

marize the simplest results on (1,1,2)-tournaments (Section 27.3), then for (a, a, 2)-
tournaments (Section 27.4) and for (a, b, 2)-tournaments (Section 27.5).

In Section 27.7 we deal with imbalance sequences, and in Section 27.8 with
supertournaments.

Exercises
27.1-1 Design
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27.1-2 How many ???

27.2. Introduction to (a, b, 2)-tournaments

In this section we consider the traditional round-robin tournament, in which each
pair of players plays a match and the winner gets one point, the loser gets zero point.
A natural way to represent such a tournament using a directed graph, in which every
pair of vertices is connected with a directed arc.

Let D = (d1, d2, . . . , dn) be a sequence of the number of the points of the players
(the sequence of the out-degrees of the vertices. Then s is called the score vector
of the given tournament T . If we form a nondecreasing sequence q = (q1, q2, . . . , qn)
from the elements of s, then we get the score sequence of T .

Clearly, 0 ≤ si ≤ n−1. Further, no two scores can be zero and no two scores can
be n − 1. Tournament score sequences have also been called score structures [139]
and score lists [25].

We use u → v to denote an arc from player (vertex) u to v and also to denote
the fact that u wins against v.

Now, we give the characterization of score sequences of tournaments which is due
to Landau [139]. This result has attracted quite a bit of attention as nearly a dozen
of different proofs appear in the literature. Early proofs tested the readers patience
with special choices of subscripts, but eventually such gymnastics were replaced by
more elegant arguments. Many of the existing proofs are discussed in a survey by
Reid [205] and the proof we give here is due to Thomassen [227]. Further, two new
proofs can be found in [83].

Let a, b (b ≥ a) and n (n ≥ 2) be nonnegative integers and let T (a, b, n) be
the set of such generalized tournaments, in which every pair of distinct players is
connected at most with b, and at least with a arcs. In [114] we gave a necessary
and sufficient condition to decide whether a given sequence of nonnegative integers
D = (d1, d2, . . . , dn) can be realized as the outdegree sequence of a T ∈ T (a, b, n).
Extending the results of [114] we show that for any sequence of nonnegative integers
D there exist f and g such that some element T ∈ T (g, f, n) has D as its outdegree
sequence, and for any (a, b, n)-tournament T ′ with the same outdegree sequence D
hold a ≤ g and b ≥ f . We propose a Θ(n) algorithm to determine f and g and an
O(dnn

2) algorithm to construct a corresponding tournament T .
Let a, b (b ≥ a) and n (n ≥ 2) be nonnegative integers and let T (a, b, n) be

the set of such generalised tournaments, in which every pair of distinct players is
connected at most with b, and at least with a arcs. The elements of T (a, b, n) are
called (a, b, n)-tournaments. The vector D = (d1, d2, . . . , dn) of the outdegrees
of T ∈ T (a, b, n) is called the score vector of T . If the elements of D are in
nondecreasing order, then D is called the score sequence of T .

An arbitrary vector D = (d1, d2, . . . , dn) of nonnegative integers is called graph-
ical vector, iff there exists a loopless multigraph whose degree vector is D, and D
is called digraphical vector (or score vector) iff there exists a loopless directed
multigraph whose outdegree vector is D.

A nondecreasingly ordered graphical vector is called graphical sequence, and a
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nondecreasinly ordered digraphical vector is called digraphical sequence (or score
sequence).

The number of arcs of T going from player Pi to player Pj is denoted by mij (1 ≤
i, j ≤ n), and the matrix M = [1. .n, 1. .n] is called point matrix or tournament
matrix of T .

In the last sixty years many efforts were devoted to the study of both types of
vectors, resp. sequences. E.g. in the papers [21, 59, 74, 82, 87, 89, 90, 95, 124, 175,
215, 218, 222, 231, 239] the graphical sequences, while in the papers [1, 8, 12, 21,
33, 66, 77, 78, 83, 85, 89, 96, 128, 129, 139, 149, 158, 159, 160, 164, 165, 170, 176,
205, 208, 211, 234, 240, 242] the score sequences were discussed.

Even in the last two years many authors investigated the conditions, when D is
graphical (e.g. [15, 24, 32, 43, 70, 71, 75, 72, 100, 101, 121, 127, 130, 131, 152, 184,
187, 210, 230, 235, 237, 244]) or digraphical (e.g. [17, 92, 114, 125, 132, 146, 163,
201, 197, 196, 198, 199, 212, 213, 227, 246]).

In this chapter we deal only with directed graphs and usually follow the termi-
nology used by K. B. Reid [208, 206]. If in the given context a, b and n are fixed
or non important, then we speak simply on tournaments instead of generalized or
(a, b, n)-tournaments.

We consider the loopless directed multigraphs as generalized tournaments, in
which the number of arcs from vertex/player Pi to vertex/player Pj is denoted by
mij , where mij means the number of points won by player Pi in the match with
player Pj .

The first question: how one can characterise the set of the score sequences of the
(a, b, n)-tournaments. Or, with another words, for which sequences D of nonnega-
tive integers does exist an (a, b, n)-tournament whose outdegree sequence is D. The
answer is given in Section ??.

If T is an (a, b, n)-tournament with point matrix M = [1. .n, 1. .n], then let
E(T ), F (T ) and G(T ) be defined as follows: E(T ) = max1≤i,j≤n mij , F (T ) =
max1≤i<j≤n(mij +mji), and g(T ) = min1≤i<j≤n(mij +mji). Let ∆(D) denote the
set of all tournaments having D as outdegree sequence, and let e(D), f(D) and g(D)
be defined as follows: e(D) = {min E(T ) | T ∈ ∆(D)}, f(D) = {min F (T ) | T ∈
∆(D)}, and g(D) = {max G(T ) | T ∈ ∆(D)}. In the sequel we use the short
notations E, F, G, e, f, g, and ∆.

Hulett, Will, and Woeginger [101, 241], Kapoor, Polimeni, and Wall [123], and
Tripathi et al. [232, 230] investigated the construction problem of a minimal size
graph having a prescribed degree set [202, 243]. In a similar way we follow a mini-
max approach formulating the following questions: given a sequenceD of nonnegative
integers,

• How to compute e and how to construct a tournament T ∈ ∆ characterised by
e? In Section 27.5.2 a formula to compute e, and an algorithm to construct a
corresponding tournament are presented.

• How to compute f and g? In Section 27.5.4 an algorithm to compute f and g is
described.

• How to construct a tournament T ∈ ∆ characterised by f and g? In Section
27.6 an algorithm to construct a corresponding tournament is presented and
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analysed.

We describe the proposed algorithms in words, by examples and by the pseu-
docode used in [47].

In the following sections we characterize the score sequences of (1, 1, 2)-
tournaments in Section ??, then the score sequences of (a, a, 2)-tournaments in Sec-
tion ??. In Section ?? we show that for arbitrary score sequence d we can choose
suitable a and b such, that there exists an (a, b, 2)-tournament whose score sequence
is d.

27.3. Existence of a (1, 1, 2)-tournament with
prescribed score sequence

Now, we give the characterization of score sequences of tournaments which is due
to Landau [139]. This result has attracted quite a bit of attention as nearly a dozen
different proofs appear in the literature. Early proofs tested the readers patience
with special choices of subscripts, but eventually such gymnastics were replaced by
more elegant arguments. Many of the existing proofs are discussed in a survey by
[205]. The proof we give here is due to Thomassen [227]. Further, two new proofs
can be found in in the paper due to Griggs and Reid [83].

Theorem 27.1 (Landau, 1953) A sequence of nonnegative integers D = (d1, d −
2, . . . , dn) is the score vector of a (1, 1, n)-tournament if and only if for each subset
I ∈ {1, 2, . . . , n}

∑

i∈I

si ≥
( |I|

2

)

, (27.1)

with equality when |I| = n.

This is a nice necessary and sufficient condition, but its direct application can
require the test of exponential number of subsets.

If instead of the score vector we consider the nondecreasingly ordered score
sequence D = (d − 1, d2, . . . , dn), then due to the monotonity d1 ≤ d2 ≤ . . . the
inequalities (?? called Landau inequalities, are equivalent to

k
∑

i=1

d− i ≥
(

k

2

)

, (27.2)

for 1 ≤ k ≤ n, with equality for k = n.
Proof Necessity If a nondecreasing sequence of nonnegative integers D is the
score sequence of an (1, 1, n)-tournament T , then the sum of the first k scores in
the sequence counts exactly once each arc in the subtournamnent W induced by
{v1, v2, . . . , vk} plus each arc from W to T -W . Therefore the sum is at least
(

k(k−1)
2

)

, the number of arcs in W. Also, since the sum of the scores of the ver-

tices counts each arc of the tournament exactly once, the sum of the scores is the
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total number of arcs, that is,
(

n(n−1)
2

)

.

Sufficiency Thomassen, 1981) Let n be the smallest integer for which there is
a nondecreasing sequence S of non-negative integers satisfying Landau’s conditions
(??), but for which there is no (1, 1, n)-tournament with score sequence S. Among
all such S, pick one for which s1 is as small as possible.

First consider the case where for some k < n,

k
∑

i=1

si =
(

k

2

)

.

By the minimality of n, the sequence S1 = [s1, s−2, . . . , sk] is the score sequence
of some tornament T1. Further,

m
∑

i=1

(sk+i − k) =
m+k
∑

i=1

si −mk ≥
(

m+ k

2

)

−
(

k

2

)

−mk =
(m

2

)

,

for each m, 1 ≤ m ≤ n − k, with the equality when m = n − k. Therefore, by the
minimality of n, the sequence S2 = [sk+1−k, sk+2−k, . . . sn−k] is the score sequence
of some tournament T2. By forming the disjoint union of T1 and T2 and adding all
arcs from T2 to T1, we obtain a tournament with score sequence S.

Now, consider the case where each inequality in (??) is strict when k < n (in
particular s1 > 0). Then the sequence S3 = [s1 − 1, s2, . . . , ..., sn−1, sn + 1] satisfies
(?? and by the minimality of s1, S3 is the score sequence of some tournament T3.
Let u and v be the vertices with scores sn +1 and s1−1 respectively. Since the score
of u is larger than that of v, T3 has a path P from u to v of length ≤ 2. By reversing
the arcs of P , we obtain a tournament with score sequence S, a contradiction.

Landau’s theorem is the tournament analog of the Erdős-Gallai theorem for
graphical sequences [59]. A tournament analog of the Havel-Hakimi theorem [95, 88]
for graphical sequences is the following result, the proof of which can be found in
the paper of Reid and Beineke [207].

Theorem 27.2 Reid and beineke, ???? A non-decreasing sequence [s1, s−2, . . . , sn]
of nonnegative integers, n ≥ 2, is the score sequence of an (1, 1, n)-tournament if
and only if the new sequence

[s1, s2, . . . , sm, sm+1 − 1, . . . , sn−1 − 1

where m = sn, when arranged in nondecreasing order, is the score sequence of some
(1, 1, n− 1)−tournament.

27.4. Existence of an (a, a, 2)-tournament with
prescribed score sequence

For the (a, a, 2)-tournament Moon [159] proved the following extension of Landau’s
theorem.
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Theorem 27.3 A nondecreasing sequeuence of nonnegative integers

Later kemnitz and Dulff [125] reproved this theorem.

27.5. Existence of a tournament with arbitrary degree
sequence

Since the numbers of points mij are not limited, it is easy to construct a (0, dn, n)-
tournament for any D.

Lemma 27.4 If n ≥ 2, then for any vector of nonnegative integers D = (d1,
d2, . . . , dn) there exists a loopless directed multigraph T with outdegree vector D
so, that E ≤ dn.

Proof Let mn1 = dn and mi,i+1 = di for i = 1, 2, . . . , n − 1, and let the remaining
mij values be equal to zero.

Using weighted graphs it would be easy to extend the definition of the (a, b, n)-
tournaments to allow arbitrary real values of a, b, and D. The following algorithm
Naive-Construct works without changes also for input consisting of real numbers.

We remark that Ore in 1956 [170] gave the necessary and sufficient conditions
of the existence of a tournament with prescribed indegree and outdegree vectors.
Further Ford and Fulkerson [66, Theorem11.1] published in 1962 necessary and suf-
ficient conditions of the existence of a tournament having prescribed lower and upper
bounds for the indegree and outdegree of the vertices. They results also can serve
as basis of the existence of a tournament having arbitrary outdegree sequence.

27.5.1. Definition of a naive reconstructing algorithm

Sorting of the elements of D is not necessary.
Input. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): arbitrary sequence of nonnegative integer numbers.
Output. M = [1. .n, 1. .n]: the point matrix of the reconstructed tournament.
Working variables. i, j: cycle variables.

Naive-Construct(n,D)
01 for i = 1 to n
02 for j = 1 to n
03 mij = 0
04 mn1 = dn

05 for i = 1 to n− 1
06 mi,i+1 = di

07 return M

The running time of this algorithm is Θ(n2) in worst case (in best case too). Since
the point matrix M has n2 elements, this algorithm is asymptotically optimal.
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27.5.2. Computation of e

This is also an easy question. From here we suppose that D is a nondecreasing
sequence of nonnegative integers, that is 0 ≤ d1 ≤ d2 ≤ . . . ≤ dn. Let h = ddn/(n−
1)e.

Since ∆(D) is a finite set for any finite score vector D, e(D) = min{E(T )|T ∈
∆(D)} exists.

Lemma 27.5 If n ≥ 2, then for any sequence D = (d1, d2, . . . , dn) there exists a
(0, b, n)-tournament T such that

E ≤ h and b ≤ 2h, (27.3)

and h is the smallest upper bound for e, and 2h is the smallest possible upper bound
for b.

Proof If all players gather their points in a uniform as possible manner, that is

max
1≤j≤n

mij − min
1≤j≤n, i 6=j

mij ≤ 1 for i = 1, 2, . . . , n, (27.4)

then we get E ≤ h, that is the bound is valid. Since player Pn has to gather dn

points, the pigeonhole principle [18, 19, 53] implies E ≥ h, that is the bound is
not improvable. E ≤ h implies max1≤i<j≤n mij + mji ≤ 2h. The score sequence
D = (d1, d2, . . . , dn) = (2n(n − 1), 2n(n − 1), . . . , 2n(n − 1)) shows, that the upper
bound b ≤ 2h is not improvable.

Corollary 27.6 If n ≥ 2, then for any sequence D = (d1, d2, . . . , dn) holds e(D) =
ddn/(n− 1)e.

Proof According to Lemma 27.5 h = ddn/(n− 1)e is the smallest upper bound for
e.

27.5.3. Definition of a construction algorithm

The following algorithm constructs a (0, 2h, n)-tournament T having E ≤ h for any
D.

Input. n: the number of players (n ≥ 2);
D = (d1, d2, . . . , dn): arbitrary sequence of nonnegative integer numbers.

Output. M = [1. .n, 1. .n]: the point matrix of the tournament.
Working variables. i, j, l: cycle variables;

k: the number of the ”larger parts" in the uniform distribution of the points.

Pigeonhole-Construct(n,D)
01 for i = 1 to n
02 mii = 0
03 k = di − (n− 1)bdi/(n− 1)c
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04 for j = 1 to k
05 l = i+ j (mod n)
06 mil = ddn/(n− 1)e
07 for j = k + 1 to n− 1
08 l = i+ j (mod n)
09 mil = bdn/(n− 1)c
10 return M

The running time of Pigeonhole-Construct is Θ(n2) in worst case (in best
case too). Since the point matrixM has n2 elements, this algorithm is asymptotically
optimal.

27.5.4. Computation of f and g

Let Si (i = 1, 2, . . . , n) be the sum of the first i elements of D, Bi (i = 1, 2, . . . , n)
be the binomial coefficient n(n−1)/2. Then the players together can have Sn points
only if fBn ≥ Sn. Since the score of player Pn is dn, the pigeonhole principle implies
f ≥ ddn/(n− 1)e.

These observations result the following lower bound for f :

f ≥ max
(⌈

Sn

Bn

⌉

,

⌈

dn

n− 1

⌉)

. (27.5)

If every player gathers his points in a uniform as possible manner then

f ≤ 2
⌈

dn

n− 1

⌉

. (27.6)

These observations imply a useful characterisation of f .

Lemma 27.7 If n ≥ 2, then for arbitrary sequence D = (d1, d2, . . . , dn) there exists
a (g, f, n)-tournament having D as its outdegree sequence and the following bounds
for f and g:

max
(⌈

S

Bn

⌉

,

⌈

dn

n− 1

⌉)

≤ f ≤ 2
⌈

dn

n− 1

⌉

, (27.7)

0 ≤ g ≤ f. (27.8)

Proof (27.7) follows from (27.5) and (27.6), (27.8) follows from the definition of f .

It is worth to remark, that if dn/(n − 1) is integer and the scores are identical,
then the lower and upper bounds in (27.7) coincide and so Lemma 27.7 gives the
exact value of F .

In connection with this lemma we consider three examples. If di = dn = 2c(n−
1) (c > 0, i = 1, 2, . . . , n − 1), then dn/(n − 1) = 2c and Sn/Bn = c, that is
Sn/Bn is twice larger than dn/(n− 1). In the other extremal case, when di = 0 (i =
1, 2, . . . , n − 1) and dn = cn(n − 1) > 0, then dn/(n − 1) = cn, Sn/Bn = 2c, so
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dn/(n− 1) is n/2 times larger, than Sn/Bn.
If D = (0, 0, 0, 40, 40, 40), then Lemma 27.7 gives the bounds 8 ≤ f ≤ 16.

Elementary calculations show that Figure 27.2 contains the solution with minimal
f , where f = 10.

Player/Player P1 P2 P3 P4 P5 P5 Score
P1 — 0 0 0 0 0 0
P2 0 — 0 0 0 0 0
P3 0 0 — 0 0 0 0
P4 10 10 10 — 5 5 40
P5 10 10 10 5 — 5 40
P6 10 10 10 5 5 — 40

Figure 27.2 Point matrix of a (0, 10, 6)-tournament with f = 10 for D = (0, 0, 0, 40, 40, 40).

In [114] we proved the following assertion.

Theorem 27.8 For n ≥ 2 a nondecreasing sequence D = (d1, d2, . . . , dn) of non-
negative integers is the score sequence of some (a, b, n)-tournament if and only if

aBk ≤
k
∑

i=1

di ≤ bBn − Lk − (n− k)dk (1 ≤ k ≤ n), (27.9)

where

L0 = 0, and Lk = max

(

Lk−1, bBk −
k
∑

i=1

di

)

(1 ≤ k ≤ n). (27.10)

The theorem proved by Moon [159], and later by Kemnitz and Dolff [125] for
(a, a, n)-tournaments is the special case a = b of Theorem 27.8. Theorem 3.1.4 of
[119] is the special case a = b = 2. The theorem of Landau [139] is the special case
a = b = 1 of Theorem 27.8.

27.5.5. Definition of a testing algorithm

The following algorithm Interval-Test decides whether a given D is a score se-
quence of an (a, b, n)-tournament or not. This algorithm is based on Theorem 27.8
and returns W = True if D is a score sequence, and returns W = False otherwise.

Input. a: minimal number of points divided after each match;
b: maximal number of points divided after each match.

Output. W : logical variable (W = True shows that D is an (a, b, n)-tournament.
Local working variable. i: cycle variable;

L = (L0, L1, . . . , Ln): the sequence of the values of the loss function.
Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;
B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;
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S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

Interval-Test(a, b)
01 for i = 1 to n
02 Li = max(Li−1, bBn − Si − (n− i)di)
03 if Si < aBi

04 W = False
05 return W
06 if Si > bBn − Li − (n− i)di

07 W ← False
08 return W
09 return W

In worst case Interval-Test runs in Θ(n) time even in the general case 0 <
a < b (n the best case the running time of Interval-Test is Θ(n)). It is worth
to mention, that the often referenced Havel–Hakimi algorithm [87, 95] even in the
special case a = b = 1 decides in Θ(n2) time whether a sequence D is digraphical or
not.

27.5.6. Definition of an algorithm computing f and g

The following algorithm is based on the bounds of f and g given by Lemma 27.7
and the logarithmic search algorithm described by D. E. Knuth [132, page 410].

Input. No special input (global working variables serve as input).
Output. b: f (the minimal F );

a: g (the maximal G).
Local working variables. i: cycle variable;

l: lower bound of the interval of the possible values of F ;
u: upper bound of the interval of the possible values of F .

Global working variables. n: the number of players (n ≥ 2);
D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;
B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;
S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores;
W : logical variable (its value is True, when the investigated D is a score sequence).
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MinF-MaxG

01 B0 = S0 = L0 = 0 � Initialization
02 for i = 1 to n
03 Bi = Bi−1 + i− 1
04 Si = Si−1 + di

05 l = max(dSn/Bne, ddn/(n− 1)e)
06 u = 2 ddn/(n− 1)e
07 W = True � Computation of f
08 Interval-Test(0, l)
09 if W == True
10 b = l
11 go to 21
12 b = d(l + u)/2e
13 Interval-Test(0, f)
14 if W == True
15 go to 17
16 l = b
17 if u == l + 1
18 b = u
19 go to 37
20 go to 14
21 l = 0 � Computation of g
22 u = f
23 Interval-Test(b, b)
24 if W == True
25 a← f
26 go to 37
27 a = d(l + u)/2e
28 Interval-Test(0, a)
29 if W == True
30 l← a
31 go to 33
32 u = a
33 if u == l + 1
34 a = l
35 go to 37
36 go to 27
39 return a, b

MinF-MaxG determines f and g.

Lemma 27.9 Algorithm MinG-MaxG computes the values f and g for arbitrary
sequence D = (d1, d2, . . . , dn) in O(n log(dn/(n)) time.

Proof According to Lemma 27.7 F is an element of the interval [ddn/(n −
1)e, d2dn/(n−1)e] and g is an element of the interval [0, f ]. Using Theorem B of [132,
page 412] we get that O(log(dn/n)) calls of Interval-Test is sufficient, so the O(n)
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run time of Interval-Test implies the required running time of MinF-MaxG.

27.5.7. Computing of f and g in linear time

Analysing Theorem 27.8 and the work of algorithm MinF-MaxG one can observe
that the maximal value of G and the minimal value of F can be computed indepen-
dently by Linear-MinF-MaxG.

Input. No special input (global working variables serve as input).
Output. b: f (the minimal F ).

a: g (the maximal G).
Local working variables. i: cycle variable.
Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;
B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;
S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

Linear-MinF-MaxG
01 B0 = S0 = L0 = 0 � Initialization
02 for i = 1 to n
03 Bi = Bi−1 + i− 1
04 Si = Si−1 + di

05 a = 0)
06 b = min 2 ddn/(n− 1)e
07 for i = 1 to n � Computation of g
08 ai =

⌈

(2Si/(n2 − n)
⌉

) < a
09 if ai > a
10 a = ai

11 for i = 1 to n � Computation of f
12 Li = max(Li−1, bBn − Si − (n− i)di

13 bi = (Si + (n− i)di + Li)/Bi

14 if bi < b
15 b = bi

16 return a, b

Lemma 27.10 Algorithm Linear-MinG-MaxG computes the values f and g for
arbitrary sequence D = (d1, d2, . . . , dn) in Θ(n) time.

Proof Lines 01–03, 07, and 18 require only constant time, lines 04–06, 09–12, and
13–17 require Θ(n) time, so the total running time is Θ(n).

27.6. Tournament with f and g

The following reconstruction algorithm Score-Slicing2 is based on balancing be-
tween additional points (they are similar to “excess”, introduced by Brauer et al.
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[29]) and missing points introduced in [114]. The greediness of the algorithm Havel–
Hakimi [87, 95] also characterises this algorithm.

This algorithm is an extended version of the algorithm Score-Slicing proposed
in [114].

27.6.1. Definition of the minimax reconstruction algorithm

The work of the slicing program is managed by the following program Mini-Max.
Input. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of integers satisfying (27.9).
Output.M = [1 . . n, 1 . . n]: the point matrix of the reconstructed tournament.
Local working variables. i, j: cycle variables.
Global working variables. p = (p0, p1, . . . , pn): provisional score sequence;

P = (P0, P1, . . . , Pn): the partial sums of the provisional scores;
M[1 . . n, 1 . . n]: matrix of the provisional points.

Mini-Max(n,D)
01 MinF-MaxG(n,D) � Initialization
02 p0 = 0
03 P0 = 0
04 for i = 1 to n
05 for j = 1 to i− 1
06 M[i, j] = b
07 for j = i to n
08 M[i, j] = 0
09 pi = di

10 if n ≥ 3 � Score slicing for n ≥ 3 players
11 for k = n downto 3
12 Score-Slicing2(k)
13 if n == 2 � Score slicing for 2 players
14 m1,2 = p1

15 m2,1 = p2

16 return M

27.6.2. Definition of the score slicing algorithm

The key part of the reconstruction is the following algorithm Score-Slicing2 [114].
During the reconstruction process we have to take into account the following

bounds:
a ≤ mi,j +mj,i ≤ b (1 ≤ i < j ≤ n); (27.11)

modified scores have to satisfy (27.9); (27.12)

mi,j ≤ pi (1 ≤ i, j ≤ n, i 6= j); (27.13)

the monotonicity p1 ≤ p2 ≤ . . . ≤ pk has to be saved (1 ≤ k ≤ n) (27.14)

mii = 0 (1 ≤ i ≤ n). (27.15)
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Input. k: the number of the actually investigated players (k > 2);
pk = (p0, p1, p2, . . . , pk) (k = 3, 4, · · · , n): prefix of the provisional score sequence
p;
M[1 . . n, 1 . . n]: matrix of provisional points;

Output. Local working variables. A = (A1, A2, . . . , An) the number of the addi-
tional points;
M : missing points: the difference of the number of actual points and the number of
maximal possible points of Pk;
d: difference of the maximal decreasable score and the following largest score;
y: number of sliced points per player;
f : frequency of the number of maximal values among the scores p1, p2,
. . . , pk−1;
i, j: cycle variables;
m: maximal amount of sliceable points;
P = (P0, P1, . . . , Pn): the sums of the provisional scores;
x: the maximal index i with i < k and mi,k < b.

Global working variables: n: the number of players (n ≥ 2);
B = (B0, B1, B2, . . . , Bn): the sequence of the binomial coefficients;
a: minimal number of points divided after each match;
b: maximal number of points divided after each match.

Score-Slicing2(k)
01 for i = 1 to k − 1 � Initialization
02 Pi = Pi−1 + pi

03 Ai = Pi − aBi

04 M = (k − 1)b− pk

05 while M > 0 and Ak−1 > 0 � There are missing and additional points
06 x = k − 1
07 while rx,k = b
08 x = x− 1
09 f = 1
10 while px−f+1 = px−f

11 f = f + 1
12 d = px−f+1 − px−f

13 m = min(b, d, dAx/be, dM/be)
14 for i = f downto 1
15 y = min(b− rx+1−i,k,m,M,Ax+1−i, px+1−i)
16 rx+1−i,k = rx+1−i,k + y
17 px+1−i = px+1−i − y
18 rk,x+1−i = b− rx+1−i,k

19 M = M − y
20 for j = i downto 1
21 Ax+1−i = Ax+1−i − y
22 while M > 0 � No missing points
23 i = k − 1
24 y = max(mki +mik − a,mki,M)
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25 rki = rki − y
26 M = M − y
27 i = i− 1
28 return πk,M

Let’s consider an example. Figure 27.3 shows the point table of a (2, 10, 6)-
tournament T .

Player/Player P1 P2 P3 P4 P5 P6 Score
P1 — 1 5 1 1 1 09
P2 1 — 4 2 0 2 09
P3 3 3 — 5 4 4 19
P4 8 2 5 — 2 3 20
P5 9 9 5 7 — 2 32
P6 8 7 5 6 8 — 34

Figure 27.3 The point table of a (2, 10, 6)-tournament T .

The score sequence of T is D = (9,9,19,20,32,34). In [114] the algorithm Score-
Slicing2 resulted the point table represented in Figure 27.4.

Player/Player P1 P2 P3 P4 P5 P6 Score
P1 — 1 1 6 1 0 9
P2 1 — 1 6 1 0 9
P3 1 1 — 6 8 3 19
P4 3 3 3 — 8 3 20
P5 9 9 2 2 — 10 32
P6 10 10 7 7 0 — 34

Figure 27.4 The point table of T reconstructed by Score-Slicing2.

The algorithm Mini-Max starts with the computation of f . MinF-MaxG called
in line 01 begins with initialization, including provisional setting of the elements of
M so, that mij = b, if i > j, and mij = 0 otherwise. Then MinF-MaxG sets the
lower bound l = max(9, 7) = 9 of f in line 07 and tests it in line 10 Interval-Test.
The test shows that l = 9 is large enough so Mini-Max sets b = 9 in line 12 and
jumps to line 23 and begins to compute g. Interval-Test called in line 25 shows
that a = 9 is too large, therefore MinF-MaxG continues with the test of a = 5 in
line 30. The result is positive, therefore comes the test of a = 7, then the test of
a = 8. Now u = l + 1 in line 35, so a = 8 is fixed, and the control returns to line 02
of Mini-Max.

Lines 02–09 contain initialization, and Mini-Max begins the reconstruction of
a (8, 9, 6)-tournament in line 10. The basic idea is that Mini-Max successively de-
termines the won and lost points of P6, P5, P4 and P3 by repeated calls of Score-
Slicing2 in line 12, and finally it computes directly the result of the match between
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P2 and P1.
At first Mini-Max computes the results of P6 calling calling Score-Slicing2

with parameter k = 6. The number of additional points of the first five players is
A5 = 89 − 8 · 10 = 9 according to line 03, the number of missing points of P6 is
M = 5 · 9 − 34 = 11 according to line 04. Then Score-Slicing2 determines the
number of maximal numbers among the provisional scores p1, p2, . . . , p5 (f = 1
according to lines 09–14) and computes the difference between p5 and p4 (d = 12
according to line 12). In line 13 we get, that m = 9 points are sliceable, and P5

gets these points in the match with P6 in line 16, so the number of missing points
of P6 decreases to M = 11 − 9 = 2 (line 19) and the number of additional point
decreases to A = 9 − 9 = 0. Therefore the computation continues in lines 22–27
and m64 and m63 will be decreased by 1 resulting m64 = 8 and m63 = 8 as the
seventh line and seventh column of Figure 27.5 show. The returned score sequence
is p = (9, 9, 19, 20, 23).

Player/Player P1 P2 P3 P4 P5 P6 Score
P1 — 4 4 0 0 0 9
P2 4 — 4 1 0 0 9
P3 4 4 — 7 4 0 19
P4 7 7 1 — 5 0 20
P5 8 8 4 3 — 9 32
P6 9 9 8 8 0 — 34

Figure 27.5 The point table of T reconstructed by Mini-Max.

Second time Mini-Max calls Score-Slicing2 with parameter k = 5, and get
A4 = 9 and M = 13. At first A4 gets 1 point, then A3 and A4 get both 4 points,
reducing M to 4 and A4 to 0. The computation continues in line 22 and results
the further decrease of m54, m53, m52, and m51 by 1, resulting m54 = 3, m53 = 4,
m52 = 8, and m51 = 8 as the sixth row of Figure 27.5 shows.

Third time Mini-Max calls Score-Slicing2 with parameter k = 4, and get
A3 = 11 and M = 11. At first P3 gets 6 points, then P3 further 1 point, and P2 and
P1 also both get 1 point, resulting m34 = 7, m43 = 2, m42 = 8, m24 = 1, m14 = 1
and m14 = 8, further A3 = 0 and M = 2. The computation continues in lines 22–27
and results a decrease of m43 by 1 point resulting m43 = 1, m42=8, and m41 = 8, as
the fifth row and fifth column of Figure 27.5 show. The returned score sequence is
p = (9, 9, 15).

Fourth time Mini-Max calls Score-Slicing2 with parameter k = 3, and gets
A2 = 10 and M = 9. At first P2 gets 6 points, then ... The returned point vector is
p = (4, 4).

Finally Mini-Max sets m12 = 4 and m21 = 4 in lines 14–15 and returns the
point matrix represented in Figure 27.5.

The comparison of Figures 27.4 and 27.5 shows a large difference between the
simple reconstruction of Score-Slicing2 and the minimax reconstruction of Mini-
Max: while in the first case the maximal value of mij +mji is 10 and the minimal
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value is 2, in the second case the maximum equals to 9 and the minimum equals to
8, that is the result is more balanced (the given D does not allow to build a perfectly
balanced (k, k, n)-tournament).

27.6.3. Analysis of the minimax reconstruction algorithm

The main result of this paper is the following assertion.

Theorem 27.11 If n ≥ 2 is a positive integer and D = (d1, d2, . . . , dn) is a non-
decreasing sequence of nonnegative integers, then there exist positive integers f and
g, and a (g, f, n)-tournament T with point matrix M such, that

f = min(mij +mji) ≤ b, (27.16)

g = maxmij +mji ≥ a (27.17)

for any (a, b, n)-tournament, and algorithm Linear-MinF-MaxG computes f and
g in Θ(n) time, and algorithm Mini-Max generates a suitable T in O(dnn

2) time.

Proof The correctness of the algorithms Score-Slicing2, MinF -MaxG implies
the correctness of Mini-Max.

Lines 1–46 of Mini-Max require O(log(dn/n)) uses of MinG-MaxF, and one
search needs O(n) steps for the testing, so the computation of f and g can be
executed in O(n log(dn/n)) times.

The reconstruction part (lines 47–55) uses algorithm Score-Slicing2, which
runs in O(bn3) time [114]. Mini-Max calls Score-Slicing2 n − 2 times with f ≤
2ddn/ne, so n3dn/n = dnn

2 finishes the proof.

The property of the tournament reconstruction problem that the extremal val-
ues of f and g can be determined independently and so there exists a tournament
T having both extremal features is called linking property. One of the earliest oc-
curences appeared in a paper Mendelsohn and Dulmage [153]. It was formulated by
Ford and Fulekerson [66, page 49] in a theorem on the existence of integral matri-
ces for which the row-sums and the column-sums lie between specified bounds. The
concept was investigated in detail in the book written by Mirsky [155]. A. Frank
used this property in the analysis of different different problems of combinatorial
optimization [69, 73].

27.7. Imbalances in (0, b, 2)-tournaments

A directed graph (shortly digraph) without loops and without multi-arcs is called
a simple digraph [84]. The imbalance of a vertex vi in a digraph as bvi

(or simply
bi) = d+

vi
− d−

vi
, where d+

vi
and d−

vi
are respectively the outdegree and indegree of

vi. The imbalance sequence of a simple digraph is formed by listing the vertex
imbalances in non-increasing order. A sequence of integers F = [f1, f2, . . . , fn]
with f1 ≥ f2 ≥ . . . ≥ fn is feasible if the sum of its elements is zero, and satisfies
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k
∑

i=1

fi ≤ k(n− k), for 1 ≤ k < n.

The following result [84] provides a necessary and sufficient condition for a
sequence of integers to be the imbalance sequence of a simple digraph.

Theorem 27.12 A sequence is realizable as an imbalance sequence if and only if
it is feasible.

The above result is equivalent to saying that a sequence of integers B =
[b1, b2, . . . , bn] with b1 ≥ b2 ≥ . . . ≥ bn is an imbalance sequence of a simple di-
graph if and only if

k
∑

i=1

bi ≤ k(n− k),

for 1 ≤ k < n, with equality when k = n.
On arranging the imbalance sequence in non-decreasing order, we have the fol-

lowing observation.

Corollary 27.13 A sequence of integers B = [b1, b2, . . . , bn] with b1 ≤ b2 ≤ . . . ≤
bn is an imbalance sequence of a simple digraph if and only if

k
∑

i=1

bi ≥ k(k − n),

for 1 ≤ k < n with equality when k = n.

Various results for imbalances in simple digraphs and oriented graphs can be
found in [114, 116, 192, 193].

27.7.1. Imbalances in (0, b)-graphs

A multigraph is a graph from which multi-edges are not removed, and which has
no loops [84]. If r ≥ 1 then an r-digraph (shortly r-graph) is an orientation of a
multigraph that is without loops and contains at most r edges between the elements
of any pair of distinct vertices. Clearly 1-digraph is an oriented graph. Let D be
an f -digraph with vertex set V = {v1, v2, . . . , vn}, and let d+

v and d−
v respectively

denote the outdegree and indegree of vertex v. Define bvi
(or simply bi) = d+

vi
− d−

ui

as imbalance of vi. Clearly, −r(n− 1) ≤ bvi
≤ r(n− 1). The imbalance sequence of

D is formed by listing the vertex imbalances in non-decreasing order.
We remark that r-digraphs are special cases of (a, b)-digraphs containing at least

a and at most b edges between the elements of any pair of vertices. Degree sequences
of (a, b)-digraphs are studied in [162, 192].

Let u and v be distinct vertices in D. If there are f arcs directed from u to v and
g arcs directed from v to u, we denote this by u(f − g)v, where 0 ≤ f, g, f + g ≤ r.

A double in D is an induced directed subgraph with two vertices u, and v having
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the form u(f1 − f2)v, where 1 ≤ f1, f2 ≤ r, and 1 ≤ f1 + f2 ≤ r, and f1 is the
number of arcs directed from u to v, and f2 is the number of arcs directed from v
to u. A triple in D is an induced subgraph with tree vertices u, v, and w having
the form u(f1 − f2)v(g1 − g2)w(h1 − h2)u, where 1 ≤ f1, f2, g1, g2, h1, h2 ≤ r,
and 1 ≤ f1 + f2, g1 + g2, h1 + h2 ≤ r, and the meaning of f1, f2, g1, g2, h1, h2

is similar to the meaning in the definition of doubles. An oriented triple in D is an
induced subdigraph with three vertices. An oriented triple is said to be transitive
if it is of the form u(1 − 0)v(1 − 0)w(0 − 1)u, or u(1 − 0)v(0 − 1)w(0 − 0)u, or
u(1−0)v(0−0)w(0−1)u, or u(1−0)v(0−0)w(0−0)u, or u(0−0)v(0−0)w(0−0)u,
otherwise it is intransitive. An r-graph is said to be transitive if all its oriented triples
are transitive. In particular, a triple C in an r-graph is transitive if every oriented
triple of C is transitive.

The following observation can be easily established and is analogues to Theorem
2.2 of Avery [8].

Lemma 27.14 If D1 and D2 are two r-graphs with same imbalance sequence, then
D1 can be transformed to D2 by successively transforming (i) appropriate oriented
triples in one of the following ways, either (a) by changing the intransitive oriented
triple u(1− 0)v(1− 0)w(1− 0)u to a transitive oriented triple u(0− 0)v(0− 0)w(0−
0)u, which has the same imbalance sequence or vice versa, or (b) by changing the
intransitive oriented triple u(1 − 0)v(1 − 0)w(0 − 0)u to a transitive oriented triple
u(0 − 0)v(0 − 0)w(0 − 1)u, which has the same imbalance sequence or vice versa;
or (ii) by changing a double u(1 − 1)v to a double u(0 − 0)v, which has the same
imbalance sequence or vice versa.

The above observations lead to the following result.

Theorem 27.15 Among all r-graphs with given imbalance sequence, those with the
fewest arcs are transitive.

Proof Let B be an imbalance sequence and let D be a realization of B that is
not transitive. Then D contains an intransitive oriented triple. If it is of the form
u(1 − 0)v(1 − 0)w(1 − 0)u, it can be transformed by operation i(a) of Lemma 3
to a transitive oriented triple u(0 − 0)v(0 − 0)w(0 − 0)u with the same imbalance
sequence and three arcs fewer. If D contains an intransitive oriented triple of the
form u(1− 0)v(1− 0)w(0− 0)u, it can be transformed by operation i(b) of Lemma
3 to a transitive oriented triple u(0− 0)v(0− 0)w(0− 1)u same imbalance sequence
but one arc fewer. In case D contains both types of intransitive oriented triples, they
can be transformed to transitive ones with certainly lesser arcs. If in D there is a
double u(1− 1)v, by operation (ii) of Lemme 4, it can be transformed to u(0− 0)v,
with same imbalance sequence but two arcs fewer.

The next result gives necessary and sufficient conditions for a sequence of integers
to be the imbalance sequence of some r-graph.

Theorem 27.16 A sequence B = [b1, b2, . . . , bn] of integers in non-decreasing order
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is an imbalance sequence of an r-graph if and only if

k
∑

i=1

bi ≥ rk(k − n), (27.18)

with equality when k = n.

Proof Necessity. A multi subdigraph induced by k vertices has a sum of imbal-
ances rk(k − n).

Sufficiency. Assume that B = [b1, b2, . . . , bn] be the sequence of integers in non-
decreasing order satisfying conditions (1) but is not the imbalance sequence of any
r-graph. Let this sequence be chosen in such a way that n is the smallest possible
and b1 is the least with that choice of n. We consider the following two cases.

Case (i). Suppose equality in (1) holds for some k ≤ n, so that

k
∑

i=1

bi = rk(k − n),

for 1 ≤ k < n.
By minimality of n, B1 = [b1, b2, . . . , bk] is the imbalance sequence of some

r-graph D1 with vertex set, say V1. Let B2 = [bk+1, bk+2, . . . , bn].
Consider,

f
∑

i=1

bk+i =
k+f
∑

i=1

bi −
k
∑

i=1

bi

≥ r(k + f)[(k + f)− n]− rk(k − n)

= r(k2 + kf − kn+ fk + f2 − fn− k2 + kn)

≥ r(f2 − fn)

= rf(f − n),

for 1 ≤ f ≤ n− k, with equality when f = n− k. Therefore, by the minimality for
n, the sequence B2 forms the imbalance sequence of some r-graph D2 with vertex
set, say V2. Construct a new r-graph D with vertex set as follows.

Let V = V1 ∪ V2 with, V1 ∩ V2 = φ and the arc set containing those arcs which
are in D1 and D2. Then we obtain the r-graph D with the imbalance sequence B,
which is a contradiction.
Case (ii). Suppose that the strict inequality holds in (1) for some k < n, so that

k
∑

i=1

bi > rk(k − n),

for 1 ≤ k < n. Let B1 = [b1−1, b2, . . . , bn−1, bn +1], so that B1 satisfy the conditions
(1). Thus by the minimality of b1, the sequences B1 is the imbalances sequence of
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some r-graph D1 with vertex set, say V1). Let bv1
= b1 − 1 and bvn

= an + 1. Since
bvn

> bv1
+ 1, there exists a vertex vp ∈ V1 such that vn(0 − 0)vp(1 − 0)v1, or

vn(1−0)vp(0−0)v1, or vn(1−0)vp(1−0)v1, or vn(0−0)vp(0−0)v1, and if these are
changed to vn(0− 1)vp(0− 0)v1, or vn(0− 0)vp(0− 1)v1, or vn(0− 0)vp(0− 0)v1, or
vn(0− 1)vp(0− 1)v1 respectively, the result is an r-graph with imbalances sequence
B, which is again a contradiction. This proves the result.

Arranging the imbalance sequence in non-increasing order, we have the following
observation.

Corollary 27.17 A sequence B = [b1, b2, . . . , bn] of integers with b1 ≥ b2 ≥ . . . ≥
bn is an imbalance sequence of an r-graph if and only if

k
∑

i=1

bi ≤ rk(n− k),

for 1 ≤ k ≤ n, with equality when k = n.

The converse of an r-graphD is an r-graphD′, obtained by reversing orientations
of all arcs of D. If B = [b1, b2, . . . , bn] with b1 ≤ b2 ≤ . . . ≤ bn is the imbalance
sequence of an r-graphD, then B′ = [−bn,−bn−1, . . . ,−b1] is the imbalance sequence
of D′.

The next result gives lower and upper bounds for the imbalance bi of a vertex
vi in an r-graph D.

Theorem 27.18 If B = [b1, b2, . . . , bn] is an imbalance sequence of an r-graph D,
then for each i

r(i− n) ≤ bi ≤ r(i− 1).

Proof Assume to the contrary that bi < r(i− n), so that for k < i,

bk ≤ bi < r(i− n).

That is,
b1 < r(i− n), b2 < r(i− n), . . . , bi < r(i− n).

Adding these inequalities, we get

i
∑

k=1

bk < ri(i− n),

which contradicts Theorem 3.
Therefore, r(i− n) ≤ bi.
The second inequality is dual to the first. In the converse r-graph with imbalance

sequence B = [b′
1, b

′
2, . . . , b

′
n] we have, by the first inequality

b′
n−i+1 ≥ r[(n− i+ 1)− n]

= r(−i+ 1).
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Since bi = −b′
n−i+1, therefore

bi ≤ −r(−i+ 1) = r(i− 1).

Hence, bi ≤ r(i− 1).

Now we obtain the following inequalities for imbalances in r-graphs.

Theorem 27.19 If B = [b1, b2, . . . , bn] is an imbalance sequence of an r-graph with
b1 ≥ b2 ≥ . . . ≥ bn, then

k
∑

i=1

b2
i ≤

k
∑

i=1

(2rn− 2rk − bi)2,

for 1 ≤ k ≤ n with equality when k = n.

Proof By Theorem 3, we have for 1 ≤ k ≤ n with equality when k = n

rk(n− k) ≥
k
∑

i=1

bi,

implying

k
∑

i=1

b2
i + 2(2rn− 2rk)rk(n− k) ≥

k
∑

i=1

b2
i + 2(2rn− 2rk)

k
∑

i=1

bi,

from where

k
∑

i=1

b2
i + k(2rn− 2rk)2 − 2(2rn− 2rk)

k
∑

i=1

bi ≥
k
∑

i=1

b2
i ,

and so we get the required

b2
1 + b2

2 + . . .+ b2
k + (2rn− 2rk)2 + (2rn− 2rk)2 + . . .+ (2rn− 2rk)2

− 2(2rn− 2rk)b1 − 2(2rn− 2rk)b2 − . . .− 2(2rn− 2rk)bk

≥
k
∑

i=1

b2
i ,

or
k
∑

i=1

(2rn− 2rk − bi)2 ≥
k
∑

i=1

b2
i .

The set of distinct imbalances of vertices in an r-graph is called its imbalance
set. The following result gives the existence of an r-graph with a given imbal-
ance set. Let (p1, p2, . . . , pm, q1, q2, . . . , qn) denote the greatest common divisor of
p1, p2, . . . , pn, q1, q2, . . . , qn.
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Theorem 27.20 If P = {p1, p2, . . . , pm} and Q = {−q1,−q2, . . . ,−qn} where
p1, p2, . . . , pm, q1, q2, . . . , qn are positive integers such that p1 < p2 < . . . < pm and
q1 < q2 < . . . < qn and (p1, p2, . . . , pm, q1, q2, . . . , qn) = t, 1 ≤ t ≤ r, then there
exists an r-graph with imbalance set P ∪Q.

Proof Since (p1, p2, . . . , pm, q1, q2, . . . , qn) = t, 1 ≤ t ≤ r, there exist positive inte-
gers f1, f2, . . . , fm and g1, g2, . . . , gn with f1 < f2 < . . . < fm and g1 < g2 < . . . < gn

such that
pi = tfi

for 1 ≤ i ≤ m and
qi = tgi

for 1 ≤ j ≤ n.
We construct an r-graph D with vertex set V as follows.
Let

V = X1
1 ∪X1

2 ∪ . . .∪X1
m∪X2

1 ∪X3
1 ∪ . . .∪Xn

1 ∪Y 1
1 ∪Y 1

2 ∪ . . .∪Y 1
m∪Y 2

1 ∪Y 3
1 ∪ . . .∪Y n

1 ,

with Xj
i ∩X l

k = φ, Y j
i ∩ Y l

k = φ, Xj
i ∩ Y l

k = φ and
|X1

i | = g1, for all 1 ≤ i ≤ m,
|Xi

1| = gi, for all 2 ≤ i ≤ n,
|Y 1

i | = fi, for all 1 ≤ i ≤ m,
|Y i

1 | = f1, for all 2 ≤ i ≤ n.
Let there be t arcs directed from every vertex of X1

i to each vertex of Y 1
i , for all

1 ≤ i ≤ m and let there be t arcs directed from every vertex of Xi
1 to each vertex of

Y i
1 , for all 2 ≤ i ≤ n so that we obtain the r-graph D with imbalances of vertices as

under.
For 1 ≤ i ≤ m, for all x1

i ∈ X1
i

bx1
i

= t|Y 1
i | − 0 = tfi = pi,

for 2 ≤ i ≤ n, for all xi
1 ∈ Xi

1

bxi
1

= t|Y i
1 | − 0 = tf1 = p1,

for 1 ≤ i ≤ m, for all y1
i ∈ Y 1

i

by1
i

= 0− t|X1
i | = −tgi = −qi,

and for 2 ≤ i ≤ n, for all yi
1 ∈ Y i

1

byi
1

= 0− t|Xi
1| = −tgi = −qi.

Therefore imbalance set of D is P ∪Q.



27.8. Supertournaments 1287

27.8. Supertournaments

Let n, m be positive integers, a = (a1, a2, · · · , an), b = (b1, b2, · · · , bm) and k =
(k1, k2, · · · , km) vectors of nonnegative integers with ai ≤ biq(i = 1, 2, . . . , n) and
0 < k1 < k2 < . . . < km.

Then an a,b,k, n-supertournament is an x× y sized matrix ...
Info 2/2 PirzadaZhouIvanyi
Hypergraphs are generalizations of graphs [21, 22]. While edges of a graph are

pairs of vertices of the graph, edges of a hypergraph are subsets of the vertex set,
consisting of at least two vertices. An edge consisting of k vertices is called a k-edge.
A k-hypergraph is a hypergraph all of whose edges are k-edges. A k-hypertournament
is a complete k-hypergraph with each k-edge endowed with an orientation, that is,
a linear arrangement of the vertices contained in the hyperedge. Instead of scores
of vertices in a tournament, Zhou et al. [246] considered scores and losing scores of
vertices in a k-hypertournament, and derived a result analogous to Landau’s theorem
[139]. The score s(vi) or si of a vertex vi is the number of arcs containing vi and
in which vi is not the last element, and the losing score r(vi) or ri of a vertex vi

is the number of arcs containing vi and in which vi is the last element. The score
sequence (losing score sequence) is formed by listing the scores (losing scores) in
non-decreasing order.

The following characterizations of score sequences and losing score sequences in
k-hypertournaments can be found in G. Zhou et al. [247].

Theorem 27.21 Given two non-negative integers n and k with n ≥ k > 1, a non-
decreasing sequence R = [r1, r2, . . . , rn] of non-negative integers is a losing score
sequence of some k-hypertournament if and only if for each j,

j
∑

i=1

ri ≥
(

j

k

)

,

with equality when j = n.

Theorem 27.22 Given non-negative integers n and k with n ≥ k > 1, a non-
decreasing sequence S = [s1, s2, . . . , sn] of non-negative integers is a score sequence
of some k-hypertournament if and only if for each j,

j
∑

i=1

si ≥ j
(

n− 1
k − 1

)

+
(

n− j
k

)

−
(n

k

)

,

with equality when j = n.

Some more results on k-hypertournaments can be found in [30, 133, 185, 187,
246]. The analogous results of Theorem 27.21 and Theorem 27.22 for [h, k]-bipartite
hypertournaments can be found in [184] and for [α, β, γ]-tripartite hypertournaments
can be found in [194].

Throughout this paper i takes values from 1 to k and ji takes values from 1 to
ni, unless otherwise stated.
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A k-partite hypergraph is a generalization of k-partite graph. Given non-negative
integers ni and αi, (i = 1, 2, . . . , k) with ni ≥ αi ≥ 1 for each i, an [α1, α2, . . . , αk]-k-
partite hypertournament (or briefly k-partite hypertournament) M of order

∑k
1 ni

consists of k vertex sets Ui with |Ui| = ni for each i, (1 ≤ i ≤ k) together with an arc
set E, a set of

∑k
1 αi tuples of vertices, with exactly αi vertices from Ui, called arcs

such that any
∑k

1 αi subset ∪k
1U

′
i of ∪k

1Ui, E contains exactly one of the
(

∑k
1 αi

)

∑k
1 αi-tuples whose αi entries belong to U ′

i .
Let e = (u11, u12, . . . , u1α1

, u21, u22, . . . , u2α2
, . . . , uk1, uk2, . . . , ukαk

), with uiji
∈

Ui for each i, (1 ≤ i ≤ k, 1 ≤ ji ≤ αi), be an arc in M and let h < t, we let e(u1h, u1t)
denote to be the new arc obtained from e by interchanging u1h and u1t in e. An arc
containing αi vertices from Ui for each i, (1 ≤ i ≤ k) is called an (α1, α2, . . . , αk)-arc.

For a given vertex uiji
∈ Ui for each i, 1 ≤ i ≤ k and 1 ≤ ji ≤ αi, the score

d+
M (uiji

) (or simply d+(uiji
)) is the number of

∑k
1 αi-arcs containing uiji

and in
which uiji

is not the last element. The losing score d−
M (uiji

) (or simply d−(uiji
)) is

the number of
∑k

1 αi-arcs containing uiji
and in which uiji

is the last element. By
arranging the losing scores of each vertex set Ui separately in non-decreasing order,
we get k lists called losing score lists of M and these are denoted by Ri = [riji

]ni

ji=1

for each i, (1 ≤ i ≤ k). Similarly, by arranging the score lists of each vertex set Ui

separately in non-decreasing order, we get k lists called score lists of M which are
denoted as Si = [siji

]ni

ji=1 for each i (1 ≤ i ≤ k).

27.8.1. Hypertournamentss

The following two theorems are the main results.

Theorem 27.23 Given k non-negative integers ni and k non-negative integers αi

with 1 ≤ αi ≤ ni for each i (1 ≤ i ≤ k), the k non-decreasing lists Ri = [riji
]ni

ji=1 of
non-negative integers are the losing score lists of a k-partite hypertournament if and
only if for each pi (1 ≤ i ≤ k) with pi ≤ ni,

k
∑

i=1

pi
∑

ji=1

riji
≥

k
∏

i=1

(

pi

αi

)

, (27.19)

with equality when pi = ni for each i (1 ≤ i ≤ k).

Theorem 27.24 Given k non-negative integers ni and k nonnegative integers αi

with 1 ≤ αi ≤ ni for each i (1 ≤ i ≤ k), the k non-decreasing lists Si = [siji
]ni

ji=1 of
non-negative integers are the score lists of a k-partite hypertournament if and only
if for each pi, (1 ≤ i ≤ k) with pi ≤ ni

k
∑

i=1

pi
∑

ji=1

siji
≥
(

k
∑

i=1

αipi

ni

)(

k
∏

i=1

(

ni

αi

)

)

+
k
∏

i=1

(

ni − pi

αi

)

−
k
∏

i=1

(

ni

αi

)

, (27.20)

with equality when pi = ni for each i (1 ≤ i ≤ k).
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We note that in a k-partite hypertournament M , there are exactly
∏k

i=1

(

ni

αi

)

arcs and in each arc only one vertex is at the last entry. Therefore,

k
∑

i=1

ni
∑

ji=1

d−
M (uiji

) =
k
∏

i=1

(

ni

αi

)

.

In order to prove the above two theorems, we need the following Lemmas.

Lemma 27.25 If M is a k-partite hypertournament of order
∑k

1 ni with score lists
Si = [siji

]ni

ji=1 for each i (1 ≤ i ≤ k), then

k
∑

i=1

ni
∑

ji=1

siji
=

[(

k
∑

1=1

αi

)

− 1

]

k
∏

i=1

(

ni

αi

)

.

Proof We have ni ≥ αi for each i (1 ≤ i ≤ k). If riji
is the losing score of uiji

∈ Ui,
then

k
∑

i=1

ni
∑

ji=1

riji
=

k
∏

i=1

(

ni

αi

)

.

The number of [αi]k1 arcs containing uiji
∈ Ui for each i, (1 ≤ i ≤ k), and

1 ≤ ji ≤ ni is

αi

ni

k
∏

t=1

(

nt

αt

)

.

Thus,

k
∑

i=1

ni
∑

ji=1

siji
=

k
∑

i=1

ni
∑

ji=1

(

αi

ni

) k
∏

1

(

nt

αt

)

−
(

ni

αi

)

=

(

k
∑

i=1

αi

)

k
∏

1

(

nt

αt

)

−
k
∏

1

(

ni

αi

)

=

[(

k
∑

1=1

αi

)

− 1

]

k
∏

1

(

ni

αi

)

.

Lemma 27.26 If Ri = [riji
]ni

ji=1 (1 ≤ i ≤ k) are k losing score lists of a k-

partite hypertournament M , then there exists some h with r1h <
α1

n1

∏k
1

(

np

αp

)

so that

R′
1 = [r11, r12, . . . , r1h + 1, . . . , r1n1

], R′
s = [rs1, rs2, . . . , rst− 1, . . . , rsns

] (2 ≤ s ≤ k)
and Ri = [riji

]ni

ji=1, (2 ≤ i ≤ k), i 6= s are losing score lists of some k-partite
hypertournament, t is the largest integer such that rs(t−1) < rst = . . . = rsns

.
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Proof Let Ri = [riji
]ni

ji=1 (1 ≤ i ≤ k) be losing score lists of a k-partite hypertour-

nament M with vertex sets Ui = {ui1, ui2, . . . , uiji
} so that d−(uiji

) = riji
for each

i (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).
Let h be the smallest integer such that

r11 = r12 = . . . = r1h < r1(h+1) ≤ . . . ≤ r1n1

and t be the largest integer such that

rs1 ≤ rs2 ≤ . . . ≤ rs(t−1) < rst = . . . = rsns

Now, let
R′

1 = [r11, r12, . . . , r1h + 1, . . . , r1n1
],

R′
s = [rs1, rs2, . . . , rst − 1, . . . , rsns

(2 ≤ s ≤ k), and Ri = [riji
]ni

ji=1, (2 ≤ i ≤ k), i 6= s.
Clearly, R′

1 and R′
s are both in non-decreasing order.

Since r1h < α1

n1

∏k
1

(

np

αp

)

, there is at least one [αi]k1-arc e containing both u1h

and ust with ust as the last element in e, let e′ = (u1h, ust). Clearly, R′
1, R′

s and
Ri = [riji

]ni

ji=1 for each i (2 ≤ i ≤ k), i 6= s are the k losing score lists of M ′ =
(M − e) ∪ e′.

The next observation follows from Lemma 27.26, and the proof can be easily
established.

Lemma 27.27 Let Ri = [riji
]ni

ji=1, (1 ≤ i ≤ k) be k non-decreasing sequences

of non-negative integers satisfying (1). If r1n1
< α1

n1

∏k
1

(

nt

αt

)

, then there exists s

and t (2 ≤ s ≤ k), 1 ≤ t ≤ ns such that R′
1 = [r11, r12, . . . , r1h + 1, . . . , r1n1

],
R′

s = [rs1, rs2, . . . , rst − 1, . . . , rsns
] and Ri = [riji

]ni

ji=1, (2 ≤ i ≤ k), i 6= s satisfy
(1).

Proof of Theorem 27.23. Necessity. Let Ri, (1 ≤ i ≤ k) be the k losing
score lists of a k-partite hypertournament M(Ui, 1 ≤ i ≤ k). For any pi with αi ≤ pi

≤ ni, let U ′
i = {uiji

}pi

ji=1(1 ≤ i ≤ k) be the sets of vertices such that d−(uiji
) = riji

for each 1 ≤ ji ≤ pi, 1 ≤ i ≤ k. Let M ′ be the k-partite hypertournament formed
by U ′

i for each i (1 ≤ i ≤ k).
Then,

k
∑

i=1

pi
∑

ji=1

riji
≥

k
∑

i=1

pi
∑

ji=1

d−
M ′(uiji

)

=
k
∏

1

(

pt

αt

)

.
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Sufficiency. We induct on n1, keeping n2, . . . , nk fixed. For n1 = α1, the result is
obviously true. So, let n1 > α1, and similarly n2 > α2, . . . , nk > αk. Now,

r1n1
=

k
∑

i=1

ni
∑

ji=1

riji
−





n1−1
∑

j1=1

r1j1
+

k
∑

i=2

ni
∑

ji=1

riji





≤
k
∏

1

(

nt

αt

)

−
(

n1 − 1
α1

) k
∏

2

(

nt

αt

)

=
[(

n1

α1

)

−
(

n1 − 1
α1

)] k
∏

2

(

nt

αt

)

=
(

n1 − 1
α1 − 1

) k
∏

2

(

nt

αt

)

.

We consider the following two cases.

Case 1. r1n1
=
(

n1 − 1
α1 − 1

)

∏k
2

(

nt

αt

)

. Then,

n1−1
∑

j1=1

r1j1
+

k
∑

i=2

ni
∑

ji=1

riji
=

k
∑

i=1

ni
∑

ji=1

riji
− r1n1

=
k
∏

1

(

nt

αt

)

−
(

n1 − 1
α1 − 1

) k
∏

2

(

nt

αt

)

=
[(

n1

α1

)

−
(

n1 − 1
α1 − 1

)] k
∏

2

(

nt

αt

)

=
(

n1 − 1
α1

) k
∏

2

(

nt

αt

)

.

By induction hypothesis [r11, r12, . . . , r1(n1−1)], R2, . . . , Rk are losing score

lists of a k-partite hypertournament M ′(U ′
1, U2, . . . , Uk) of order

(

∑k
i=1 ni

)

− 1.

Construct a k-partite hypertournament M of order
∑k

i=1 ni as follows. In M ′, let
U ′

1 = {u11, u12, . . . , u1(n1−1)}, Ui = {uiji
}ni

ji=1 for each i, (2 ≤ i ≤ k). Adding a

new vertex u1n1
to U ′

1, for each
(

∑k
i=1 αi

)

-tuple containing u1n1
, arrange u1n1

on the last entry. Denote E1 to be the set of all these
(

n1 − 1
α1 − 1

)

∏k
2

(

nt

αt

)

(

∑k
i=1 αi

)

-tuples. Let E(M) = E(M ′) ∪ E1. Clearly, Ri for each i, (1 ≤ i ≤ k) are
the k losing score lists of M .

Case 2. r1n1
<

(

n1 − 1
α1 − 1

)

∏k
2

(

nt

αt

)

.

Applying Lemma 27.27 repeatedly on R1 and keeping each Ri, (2 ≤ i ≤ k)
fixed until we get a new non-decreasing list R′

1 = [r′
11, r

′
12, . . . , r

′
1n1

] in which now
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′
1n1

=
(

n1 − 1
α1 − 1

)

∏k
2

(

nt

αt

)

. By Case 1, R′
1, Ri (2 ≤ i ≤ k) are the losing

score lists of a k-partite hypertournament. Now, apply Lemma 27.26 on R′
1, Ri

(2 ≤ i ≤ k) repeatedly until we obtain the initial non-decreasing lists Ri for each i
(1 ≤ i ≤ k). Then by Lemma 27.26, Ri for each i (1 ≤ i ≤ k) are the losing score
lists of a k-partite hypertournament. �

Proof of Theorem 27.24. Let Si = [siji
]ni

ji=1(1 ≤ i ≤ k) be the k score
lists of a k-partite hypertournament M(Ui, 1 ≤ i ≤ k), where Ui = {uiji

}ni

ji=1 with
d+

M (uiji
) = siji

, for each i, (1 ≤ i ≤ k). Clearly,

d+(uiji
) + d−(uiji

) = αi

ni

∏k
1

(

nt

αt

)

, (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).

Let ri(ni+1−ji) = d−(uiji
), (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).

Then Ri = [riji
]ni

ji=1(i = 1, 2, . . . , k) are the k losing score lists of M . Conversely,
if Ri for each i (1 ≤ i ≤ k) are the losing score lists of M , then Si for each i,
(1 ≤ i ≤ k) are the score lists of M . Thus, it is enough to show that conditions

(1) and (2) are equivalent provided siji
+ ri(ni+1−ji) =

(

αi

ni

)

∏k
1

(

nt

αt

)

, for each i

(1 ≤ i ≤ k and 1 ≤ ji ≤ ni).
First assume (2) holds. Then,

k
∑

i=1

pi
∑

ji=1

riji
=

k
∑

i=1

pi
∑

ji=1

(

αi

ni

)

(

k
∏

1

(

nt

αt

)

)

−
k
∑

i=1

pi
∑

ji=1

si(ni+1−ji)

=
k
∑

i=1

pi
∑

ji=1

(

αi

ni

)

(

k
∏

1

(

nt

αt

)

)

−





k
∑

i=1

ni
∑

ji=1

riji
−

k
∑

i=1

ni−pi
∑

ji=1

siji





≥





k
∑

i=1

pi
∑

ji=1

(

αi

ni

)

(

k
∏

1

(

nt

αt

)

)





−
[((

k
∑

1

αi

)

− 1

)

k
∏

1

(

ni

αi

)

]

+
k
∑

i=1

(ni − pi)
(

αi

ni

) k
∏

1

(

nt

αt

)

+
k
∏

1

(

ni − (ni − pi)
αi

)

−
k
∏

1

(

ni

αi

)

=
k
∏

1

(

ni

αi

)

,

with equality when pi = ni for each i (1 ≤ i ≤ k). Thus (1) holds.
Now, when (1) holds, using a similar argument as above, we can show that (2)

holds. This completes the proof. �
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27.9. Summary

A nondecreasing sequence of nonnegative integers D = (d1, d2, . . . , dn) is a score
sequence of a (1, 1, 1)-tournament, iff the sum of the elements of D equals to Bn and
the sum of the first i (i = 1, 2, . . . , n− 1) elements of D is at least Bi [139].

D is a score sequence of a (k, k, n)-tournament, iff the sum of the elements of D
equals to kBn, and the sum of the first i elements of D is at least kBi [125, 158].

D is a score sequence of an (a, b, n)-tournament, iff (27.9) holds [114].
In all 3 cases the decision whether D is digraphical requires only linear time.
In this paper the results of [114] are extended proving that for any D there exists

an optimal minimax realization T , that is a tournament having D as its outdegree
sequence and maximal G and minimal F in the set of all realization of D.

In a continuation [116] of this chapter we construct balanced as possible tourna-
ments in a similar way if not only the outdegree sequence but the indegree sequence
is also given.

Exercises
27.9-1 How many

Problems

27-1 Football score sequences
Let
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28. Complexity of Words

The complexity of words is a continuously growing field of the combinatorics of
words. Hundreds of papers are devoted to different kind of complexities. We try to
present in this chapter far from beeing exhaustive the basic notions and results for
finite and infinite words.

First of all we summarize the simple (classical) complexity measures, giving
formulas and algorithms for several cases. After this, generalized complexities are
treated, with different type of algorithms. We finish this chapter by presenting the
palindrome complexity.

Finally, references from a rich bibliography are given.

28.1. Simple complexity measures

In this section simple (classical) complexities, as measures of the diversity of the
subwords in finite and infinite words, are discussed. First, we present some useful
notions related to the finite and infinite words with examples. Word graphs, which
play an important role in understanding and obtaining the complexity, are presented
in detail with pertinent examples. After this, the subword complexity (as number of
subwords), with related notions, is expansively presented.

28.1.1. Finite words

Let A be a finite, nonempty set, called alphabet. Its elements are called letters or
symbols. A string a1a2 . . . an, formed by (not necessary different) elements of A,
is a word. The length of the word u = a1a2 . . . an is n, and is denoted by |u|. The
word without any element is the empty word, denoted by ε (sometimes λ). The set
of all finite words over A is denoted by A∗. We will use the following notations too:

A+ = A∗ \ {ε}, An =
{

u ∈ A∗ ∣
∣ |u| = n

}

=
{

a1a2 . . . an | ai ∈ A
}

,

that is A+ is the set of all finite and nonempty words over A, whilst An is the set of
all words of length n over A. Obviously A0 = {ε}. The sets A∗ and A+ are infinite
denumerable sets.
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We define in A∗ the binary operation called concatenation (shortly catena-
tion). If u = a1a2 . . . an and v = b1b2 . . . bm, then

w = uv = a1a2 . . . anb1b2 . . . bm, |w| = |u|+ |v| .

This binary operation is associative, but not commutative. Its neutral element is
ε because εu = uε = u. The set A∗ with this neutral element is a monoid. We
introduce recursively the power of a word:

• u0 = ε
• un = un−1u, if n ≥ 1.

A word is primitive if it is no power of any word, so u is primitive if

u = vn, v 6= ε ⇒ n = 1 .

For example, u = abcab is a primitive word, whilst v = abcabc = (abc)2 is not.
The word u = a1a2 . . . an is periodic if there is a value p, 1 ≤ p < n such that

ai = ai+p, for all i = 1, 2, . . . , n− p ,

and p is the period of u. The least such p is the least period of u.
The word u = abcabca is periodic with the least period p = 3.
Let us denote by (a, b) the greatest common divisor of the naturals a and b. The

following result is obvious.

Theorem 28.1 If u is periodic, and p and q are periods, then (p, q) is a period too.

The reversal (or mirror image) of the word u = a1a2 . . . an is uR =
anan−1 . . . a1. Obviously

(

uR
)R

= u. If u = uR, then u is a palindrome.
The word u is a subword (or factor) of v if there exist the words p and q such

that v = puq. If pq 6= ε, then u is a proper subword of v. If p = ε, then u is a prefix
of v, and if q = ε, then u is a suffix of v. The set of all subwords of length n of u is
denoted by Fn(u). F (u) is the set of nonempty subwords of u, so

F (u) =
|u|
⋃

n=1

Fn(u) .

For example, if u = abaab, then

F1(u) = {a, b}, F2(u) = {ab, ba, aa}, F3(u) = {aba, baa, aab},
F4(u) = {abaa, baab}, F5(u) = {abaab}.

The words u = a1a2 . . . am and v = b1b2 . . . bn are equal, if

• m = n and
• ai = bi, for i = 1, 2, . . . , n .

Theorem 28.2 (Fine–Wilf). If u and v are words of length n, respective m, and if
there are the natural numbers p and q, such that up and vq have a common prefix of
length n+m− (n,m), then u and v are powers of the same word.
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The value n + m − (n,m) in the theorem is tight. This can be illustrated by the
following example. Here the words u and v have a common prefix of length n+m−
(n,m)− 1, but u and v are not powers of the same word.

u = abaab, m = |u| = 5, u2 = abaababaab ,
v = aba, n = |v| = 3, v3 = abaabaaba .

By the theorem a common prefix of length 7 would ensure that u and v are powers
of the same word. We can see that u2 and v3 have a common prefix of length 6
(abaaba), but u and v are not powers of the same word, so the length of the common
prefix given by the theorem is tight.

28.1.2. Infinite words

Beside the finite words we consider infinite (more precisely infinite at right) words
too:

u = u1u2 . . . un . . . , where u1, u2, . . . ∈ A .
The set of infinite words over the alphabet A is denoted by Aω. If we will study
together finite and infinite words the following notation will be useful:

A∞ = A∗ ∪Aω .

The notions as subwords, prefixes, suffixes can be defined similarly for infinite words
too.

The word v ∈ A+ is a subword of u ∈ Aω if there are the words p ∈ A∗, q ∈ Aω,
such that u = pvq. If p 6= ε, then p is a prefix of u, whilst q is a suffix of u. Here
Fn(u) also represents the set of all subwords of length n of u.

Examples of infinite words over a binary alphabet:

1) The power word is defined as:

p = 010011000111 . . . 0n1n . . . = 0102120313 . . . 0n1n . . . .

It can be seen that

F1(p) = {0, 1}, F2(p) = {01, 10, 00, 11},
F3(p) = {010, 100, 001, 011, 110, 000, 111}, . . .
2) The Champernowne word is obtained by writing in binary representation

the natural numbers 0, 1, 2, 3, . . .:

c = 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 . . . .

It can be seen that

F1(p) = {0, 1}, F2(p) = {00, 01, 10, 11},
F3(p) = {000, 001, 010, 011, 100, 101, 110, 111}, . . .
3) The finite Fibonacci words can be defined recursively as:

f0 = 0, f1 = 01
fn = fn−1fn−2, if n ≥ 2.
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From this definition we obtain:
f0 = 0,
f1 = 01,
f2 = 010,
f3 = 01001,
f4 = 01001010,
f5 = 0100101001001,
f6 = 010010100100101001010.

The infinite Fibonacci word can be defined as the limit of the sequence of finite
Fibonacci words:

f = lim
n→∞

fn .

The subwords of this word are:

F1(f) = {0, 1}, F2(f) = {01, 10, 00}, F3(f) = {010, 100, 001, 101},
F4(f) = {0100, 1001, 0010, 0101, 1010}, . . . .
The name of Fibonacci words stems from the Fibonacci numbers, because the

length of finite Fibonacci words is related to the Fibonacci numbers: |fn| = Fn+2,
i.e. the length of the nth finite Fibonacci word fn is equal to the (n+2)th Fibonacci
number.

The infinite Fibonacci word has a lot of interesting properties. For example, from
the definition, we can see that it cannot contain the subword 11.

The number of 1’s in a word u will be denoted by h(u). An infinite word u is
balanced, if for arbitrary subwords x and y of the same length, we have |h(x) −
h(y)| ≤ 1, i.e.

x, y ∈ Fn(u) ⇒ |h(x)− h(y)| ≤ 1 .

Theorem 28.3 The infinite Fibonacci word f is balanced.

Theorem 28.4 Fn(f) has n+ 1 elements.

If word u is concatenated by itself infinitely, then the result is denoted by uω.
The infinite word u is periodic, if there is a finite word v, such that u = vω. This

is a generalization of the finite case periodicity. The infinite word u is ultimately
periodic, if there are the words v and w, such that u = vwω.

The infinite Fibonacci word can be generated by a (homo)morphism too. Let us
define this morphism:

χ : A∗ → A∗, χ(uv) = χ(u)χ(v), ∀u, v ∈ A∗ .

Based on this definition, the function χ can be defined on letters only. A morphism
can be extended for infinite words too:

χ : Aω → Aω, χ(uv) = χ(u)χ(v), ∀u ∈ A∗, v ∈ Aω .

The finite Fibonacci word fn can be generated by the following morphism:

σ(0) = 01, σ(1) = 0 .

In this case we have the following theorem.
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Figure 28.1 The De Bruijn graph B(2, 3).

Theorem 28.5 fn+1 = σ(fn) .

Proof The proof is by induction. Obviously f1 = σ(f0). Let us presume that fk =
σ(fk−1) for all k ≤ n. Because

fn+1 = fnfn−1,

by the induction hypothesis

fn+1 = σ(fn−1)σ(fn−2) = σ(fn−1fn−2) = σ(fn).

From this we obtain:

Theorem 28.6 fn = σn(0) .

The infinite Fibonacci word f is the fixed point of the morphism σ.

f = σ(f) .

28.1.3. Word graphs

Let V ⊆ Am be a set of words of length m over A, and E ⊆ AV ∩ V A. We define
a digraph, whose vertices are from V , and whose arcs from E. There is an arc from
the vertex a1a2 . . . am to the vertex b1b2 . . . bm if

a2 = b1, a3 = b2, . . . , am = bm−1 and a1a2 . . . ambm ∈ E ,

that is the last m− 1 letters in the first word are identical to the first m− 1 letters
in the second word. This arc is labelled by a1a2 . . . ambm (or a1b1 . . . bm).

De Bruijn graphs If V = Am and E = Am+1, where A = {a1, a2, . . . an}, then
the graph is called De Bruijn graph, denoted by B(n,m).

Figures 28.1 and 28.2 illustrate De Bruijn graphs B(2, 3) and B(3, 2).
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Figure 28.2 The De Bruijn graph B(3, 2).

To a walk1 x1x2 . . . xm, x2x3 . . . xmxm+1, . . . , z1z2 . . . zm in the De Bruijn
graph we attach the label x1x2 . . . zm−1zm, which is obtained by maximum overlap
of the vertices of the walk. In Figure 28.1 in the graph B(2, 3) the label attached
to the walk 001, 011, 111, 110 (which is a path) is 001110. The word attached to a
Hamiltonian path (which contains all vertices of the graph) in the graph B(n,m) is
an (n,m)-type De Bruijn word. For example, words 0001110100 and 0001011100
are (2, 3)-type De Bruijn word. An (n,m)-type De Bruijn word contains all words
of length m.

A connected digraph2 is Eulerian3 if the in-degree of each vertex is equal to its
out-degree4.

Theorem 28.7 The De Bruijn graph B(n,m) is Eulerian.

Proof a) The graph is connected because between all pair of vertices x1x2 . . . xm and
z1z2 . . . zm there is an oriented path. For vertex x1x2 . . . xm there are n leaving arcs,
which enter vertices whose first m− 1 letters are x2x3 . . . xm, and the last letters in
this words are all different. Therefore, there is the path x1x2 . . . xm, x2x3 . . . xmz1,
. . . , xmz1 . . . zm−1, z1z2 . . . zm.

b) There are incoming arcs to vertex x1x2 . . . xm from vertices yx1 . . . xm−1,

1In a graph a walk is a sequence of neighbouring edges (or arcs with the same orientation). If the
edges or arcs of the walk are all different the walk is called trail, and when all vertices are different,
the walk is a path.
2A digraph (oriented graph) is connected if between every pair of vertices there is an oriented path
at least in a direction.
3A digraph is Eulerian if it contains a closed oriented trail with all arcs of the graph.
4In-degree (out-degree) of a vertex is the number of arcs which enter (leave) this vertex.
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where y ∈ A (A is the alphabet of the graph, i.e. V = Am). The arcs leaving
vertex x1x2 . . . xm enter vertices x2x3 . . . xmy, where y ∈ A. Therefore, the graph is
Eulerian, because the in-degree and out-degree of each vertex are equal.

From this the following theorem is simply obtained.

Theorem 28.8 An oriented Eulerian trail of the graph B(n,m) (which contains
all arcs of graph) is a Hamiltonian path in the graph B(n,m + 1), preserving the
order.

For example, in B(2, 2) the sequence 000, 001, 010, 101, 011, 111, 110, 100 of
arcs is an Eulerian trail. At the same time these words are vertices of a Hamiltonian
path in B(2, 3).

Algorithm to generate De Bruijn words Generating De Bruijn words is
a common task with respectable number of algorithms. We present here the well-
known Martin algorithm. Let A = {a1, a2, . . . , an} be an alphabet. Our goal is to
generate an (n,m)-type De Bruijn word over the alphabet A.

We begin the algorithm with the word am
1 , and add at its right end the letter ak

with the greatest possible subscript, such that the suffix of length m of the obtained
word does not duplicate a previously occurring subword of length m. Repeat this
until such a prolongation is impossible.

When we cannot continue, a De Bruijn word is obtained, with the length nm +
m − 1. In the following detailed algorithm, A is the n-letters alphabet, and B =
(b1, b2, . . .) represents the result, an (n,m)-type De Bruijn word.

Martin(A,n,m)

1 for i← 1 to m
2 do bi ← a1

3 i← m
4 repeat
5 done ← true
6 k ← n
7 while k > 1
8 do if bi−m+2bi−m+3 . . . biak 6⊂ b1b2 . . . bi � Not a subword.
9 then i← i+ 1

10 bi ← ak

11 done ← false
12 exit while
13 else k ← k − 1
14 until done
15 return B � B = (b,

1b2, . . . , bnm+m+1).

Because this algorithm generates all letters of a De Bruijn word of length (nm +
m−1), and n and m are independent, its time complexity is Ω(nm). The more precise
characterization of the running time depends on the implementation of line 8. The
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repeat statement is executed nm−1 times. The while statement is executed at most
n times for each step of the repeat. The test bi−m+2bi−m+3 . . . biak 6⊂ b1b2 . . . bi can
be made in the worst case in mnm steps. So, the total number of steps is not greater
than mn2m+1, resulting a worst case bound Θ(nm+1). If we use Knuth-Morris-Pratt
string mathching algorithm, then the worst case running time is Θ(n2m).

In chapter ?? a more efficient implementation of the idea of Martin is presented.
Based on this algorithm the following theorem can be stated.

Theorem 28.9 An (n,m)-type De Bruijn word is the shortest possible among all
words containing all words of length m over an alphabet with n letters.

To generate all (n,m)-type De Bruijn words the following recursive algorithm is
given. Here A is also an alphabet with n letters, and B represents an (n,m)-type De
Bruijn word. The algorithm is called for each position i with m+1 ≤ i ≤ nm +m−1.

All-De-Bruijn(B, i,m)

1 for j ← 1 to n
2 do bi ← aj

3 if bi−m+1bi−m+2 . . . bi 6⊂ b1b2 . . . bi−1 � Not a subword.
4 then All-De-Bruijn(b, i+ 1,m)
5 else if length(B) = nm +m− 1
6 then print B � A De Bruijn word.
7 exit for

The call of the procedure:

for i = 1 to m
do bi ← a1

All-De-Bruijn (B,m+ 1,m).

This algorithm naturally is exponential.
In following, related to the De Bruijn graphs, the so-called De Bruijn trees will

play an important role.
A De Bruijn tree T (n,w) with the root w ∈ Am is a n-ary tree defined

recursively as follows:

i. The word w of length m over the alphabet A = {a1, a2, . . . , an} is the root of
T (n,w).
ii. If x1x2 . . . xm is a leaf in the tree T (n,w), then each word v of the form
x2x3 . . . xma1, x2x3 . . . xma2, . . . , x2x3 . . . xman will be a descendent of x1x2 . . . xm,
if in the path from root to x1x2 . . . xm the vertex v does not appears.
iii. The rule ii is applied as many as it can.

In Figure 28.3 the De Bruijn tree T (2, 010) is given.

Rauzy graphs If the word u is infinite, and V = Fn(u), E = Fn+1(u), then
the corresponding word graph is called Rauzy graph (or subword graph). Figure
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Figure 28.3 The De Bruijn tree T (2, 010).

Figure 28.4 Rauzy graphs for the infinite Fibonacci word.

28.4 illustrates the Rauzy graphs of the infinite Fibonacci word for n = 3 and n = 4.
As we have seen, the infinite Fibonacci word is

f = 0100101001001010010100100101001001 . . . ,

and F1(f) = {0, 1}, F2(f) = {01, 10, 00},
F3(f) = {010, 100, 001, 101}, F4(f) = {0100, 1001, 0010, 0101, 1010},
F5(f) = {01001, 10010, 00101, 01010, 10100, 00100}.

In the case of the power word p = 01001100011100001111 . . . 0n1n . . . , where
F1(p) = {0, 1}, F2(p) = {01, 10, 00, 11},
F3(p) = {010, 100, 000, 001, 011, 111, 110},
F4(p) = {0100, 1001, 0011, 0110, 1100, 1000, 0000, 0001, 0111, 1110, 1111},
the corresponding Rauzy graphs are given in Figure 28.5.

As we can see in Fig, 28.4 and 28.5 there are subwords of length n which can be
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Figure 28.5 Rauzy graphs for the power word.

continued only in a single way (by adding a letter), and there are subwords which
can be continued in two different ways (by adding two different letters). These latter
subwords are called special subwords. A subword v ∈ Fn(u) is a right special
subword, if there are at least two different letters a ∈ A, such that va ∈ Fn+1(u).
Similarly, v ∈ Fn(u) is left special subword, if there are at least two different
letters a ∈ A, such that av ∈ Fn+1(u). A subword is bispecial, if at the same time
is right and left special. For example, the special subwords in Figures 28.4 and 28.5)
are:

left special subwords: 010, 0100 (Figure 28.4),
110, 000, 111, 1110, 0001, 1111, 0011 (Figure 28.5),

right special subwords:: 010, 0010 ( Figure 28.4),
011, 000, 111, 0111, 1111, 0011 (Figure 28.5)

bispecial subwords: 010 (Figure 28.4),
000, 111, 1111, 0011 (Figure 28.5).

28.1.4. Complexity of words

The complexity of words measures the diversity of the subwords of a word. In this
regard the word aaaaa has smaller complexity then the word abcab.

We define the following complexities for a word.

1) The subword complexity or simply the complexity of a word assigns to
each n ∈ N the number of different subwords of length n. For a word u the number
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of different subwords of length n is denoted by fu(n).

fu(n) = #Fn(u), u ∈ A∞ .

If the word is finite, then fu(n) = 0, if n > |u|.
2) The maximal complexity is considered only for finite words.

C(u) = max{fu(n) | n ≥ 1, u ∈ A∗} .

If u is an infinite word, then C−
u (n) is the lower maximal complexity, respectively

C+
u (n) the upper maximal complexity.

C−
u (n) = min

i
C(uiui+1 . . . ui+n−1), C+

u (n) = max
i
C(uiui+1 . . . ui+n−1) .

3) The global maximal complexity is defined on the set An:

G(n) = max{C(u) | u ∈ An} .

4) The total complexity for a finite word is the number of all different
nonempty subwords5

K(u) =
|u|
∑

i=1

fu(i), u ∈ A∗ .

For an infinite word K−
u (n) is the lower total complexity, and K+

u (n) is the upper
total complexity:

K−
u (n) = min

i
K(uiui+1 . . . ui+n−1), K+

u (n) = max
i
K(uiui+1 . . . ui+n−1) .

5) A decomposition u = u1u2 . . . uk is called a factorization of u. If each ui

(with the possible exception of uk) is the shortest prefix of uiui+1 . . . uk which does
not occur before in u, then this factorization is called the Lempel-Ziv factorization.
The number of subwords ui in such a factorization is the Lempel-Ziv factoriza-
tion complexity of u. For example for the word u = ababaaabb the Lempel-Ziv
factorization is: u = a.b.abaa.abb. So, the Lempel-Ziv factorization complexity of u
is lz(u) = 4.

6) If in a factorization u = u1u2 . . . uk each ui is the longest possible palin-
drome, then the factorization is called a palindromic factorization, and the num-
ber of subwords ui in this is the palindromic factorization complexity. For
u = aababbabbabb = aa.babbabbab.b, so the palindromic factorization complexity of
u is pal(u) = 3.

7) The window complexity Pw is defined for infinite words only. For u =
u0u1u2 . . . un . . . the window complexity is

Pw(u, n) = #
{

uknukn+1 . . . u(k+1)n−1

∣

∣ k ≥ 0
}

.

5Sometimes the empty subword is considered too. In this case the value of total complexity is
increased by 1.
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Subword complexity As we have seen

fu(n) = #Fn(u), ∀u ∈ A∞, n ∈ N .

fu(n) = 0, if n > |u|.
For example, in the case of u = abacab:

fu(1) = 3, fu(2) = 4, fu(3) = 4, fu(4) = 3, fu(5) = 2, fu(6) = 1 .

In Theorem 28.4 was stated that for the infinite Fibonacci word:

ff (n) = n+ 1 .

In the case of the power word p = 010011 . . . 0k1k . . . the complexity is:

fp(n) =
n(n+ 1)

2
+ 1 .

This can be proved if we determine the difference fp(n+ 1)− fp(n), which is equal
to the number of words of length n which can be continued in two different ways to
obtain words of length n+ 1. In two different ways can be extended only the words
of the form 0k1n−k (it can be followed by 1 always, and by 0 when k ≤ n− k) and
1k0n−k (it can be followed by 0 always, and by 1 when k < n − k). Considering
separately the cases when n is odd and even, we can see that:

fp(n+ 1)− fp(n) = n+ 1 ,

and from this we get

fp(n) = n+ fp(n− 1) = n+ (n− 1) + fp(n− 2) = . . .

= n+ (n− 1) + . . .+ 2 + fp(1) =
n(n+ 1)

2
+ 1 .

In the case of the Champernowne word

c = u0u1 . . . un . . . = 0 1 10 11 100 101 110 111 1000 . . .

= 0110111001011101111000 . . . ,

the complexity is fc(n) = 2n.

Theorem 28.10 If for the infinite word u ∈ Aω there exists an n ∈ N such that
fu(n) ≤ n, then u is ultimately periodic.

Proof fu(1) ≥ 2, otherwise the word is trivial (contains just equal letters). Therefore
there is a k ≤ n, such that fu(k) = fu(k + 1). But

fu(k + 1)− fu(k) =
∑

v∈Fk(u)

(

#
{

a ∈ A | va ∈ Fk+1(u)
}

− 1
)

.

It follows that each subword v ∈ Fk(u) has only one extension to obtain va ∈
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Fk+1(u). So, if v = uiui+1 . . . ui+k−1 = ujuj+1 . . . uj+k−1, then ui+k = uj+k. Be-
cause Fk(u) is a finite set, and u is infinite, there are i and j (i < j), for which
uiui+1 . . . ui+k−1 = ujuj+1 . . . uj+k−1, but in this case ui+k = uj+k is true too.
Then from ui+1ui+2 . . . ui+k = uj+1uj+2 . . . uj+k we obtain the following equality
results: ui+k+1 = uj+k+1, therefore ui+l = uj+l is true for all l ≥ 0 values. Therefore
u is ultimately periodic.

A word u ∈ Aω is Sturmian, if fu(n) = n+ 1 for all n ≥ 1.
Sturmian words are the least complexity infinite and non periodic words. The

infinite Fibonacci word is Sturmian. Because fu(1) = 2, the Sturmian words are
two-letters words.

From the Theorem 28.10 it follows that each infinite and not ultimately periodic
word has complexity at least n+ 1, i.e.

u ∈ Aω, u not ultimately periodic ⇒ fu(n) ≥ n+ 1 .

The equality holds for Sturmian words.
Infinite words can be characterized using the lower and upper total complexity

too.

Theorem 28.11 If an infinite word u is not ultimately periodic and n ≥ 1, then

C+
u (n) ≥

[n

2

]

+ 1, K+
u (n) ≥

[

n2

4
+ n

]

.

For the Sturmian words equality holds.

Let us denote by {x} the fractional part of x, and by bxc its integer part.
Obviously x = bxc + {x}. The composition of a function R by itself n times will
be denoted by Rn. So Rn = R ◦ R ◦ . . . ◦ R (n times). Sturmian words can be
characterized in the following way too:

Theorem 28.12 A word u = u1u2 . . . is Sturmian if and only if there exists an
irrational number α and a real number z, such that for R(x) = {x+ α}

un =
{

0, if Rn(z) ∈ (0, 1− α) ,
1, if Rn(z) ∈ [1− α, 1) ,

or

un =
{

1, if Rn(z) ∈ (0, 1− α) ,
0, if Rn(z) ∈ [1− α, 1) .

In the case of the infinite Fibonacci number, these numbers are: α = z = (
√

5+1)/2.
Sturmian words can be generated by the orbit of a billiard ball inside a square

too. A billiard ball is launched under an irrational angle from a boundary point of
the square. If we consider an endless move of the ball with reflection on boundaries
and without friction, an infinite trajectory will result. We put an 0 in the word if
the ball reaches a horizontal boundary, and 1 when it reaches a vertical one. In such
a way we generate an infinite word. This can be generalized using an (s + 1)-letter
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u fu(1) fu(2) fu(3) fu(4) fu(5) fu(6) fu(7) fu(8)
00100011 2 4 5 5 4 3 2 1
00100100 2 3 3 3 3 3 2 1
00100101 2 3 4 4 4 3 2 1
00100110 2 4 5 5 4 3 2 1
00100111 2 4 5 5 4 3 2 1
00101000 2 3 5 5 4 3 2 1
00101001 2 3 4 5 4 3 2 1
00101011 2 4 4 4 4 3 2 1
01010101 2 2 2 2 2 2 2 1
11111111 1 1 1 1 1 1 1 1

Figure 28.6 Complexity of several binary words.

alphabet and an (s+ 1)-dimensional hypercube. In this case the complexity is

fu(n, s+ 1) =
min(n,s)
∑

i=0

n!s!
(n− i)!i!(s− i)! .

If s = 1, then fu(n, 2) = fu(n) = n+ 1, and if s = 2, then fu(n, 3) = n2 + n+ 1.

Maximal complexity For a finite word u

C(u) = max{fu(n) | n ≥ 1}

is the maximal complexity. In Figure 28.6 the values of the complexity function for
several words are given for all possible length. From this, we can see for example
that C(00100011) = 5, C(00100100) = 3 etc.

For the complexity of finite words the following interesting result is true.

Theorem 28.13 If w is a finite word, fw(n) is its complexity, then there are the
natural numbers m1 and m2 with 1 ≤ m1 ≤ m2 ≤ |w| such that

• fw(n+ 1) > fw(n), for 1 ≤ n < m1,
• fw(n+ 1) = fw(n), for m1 ≤ n < m2,
• fw(n+ 1) = fw(n)− 1, for m2 ≤ n ≤ |w|.

From the Figure 28.6, for example, if
w = 00100011, then m1 = 3, m2 = 4,
w = 00101001, then m1 = 4, m2 = 4,
w = 00101011, then m1 = 2, m2 = 5.

Global maximal complexity The global maximal complexity is

G(n) = max{C(u) | u ∈ An} ,
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fu(i)
u i = 1 i = 2 i = 3

000 1 1 1
001 2 2 1
010 2 2 1
011 2 2 1
100 2 2 1
101 2 2 1
110 2 2 1
111 1 1 1

Figure 28.7 Complexity of all 3-length binary words

that is the greatest (maximal) complexity in the set of all words of length n on a
given alphabet. The following problems arise:
• what is length of the subwords for which the global maximal complexity is

equal to the maximal complexity?
• how many such words exist?

Example 28.1 For the alphabet A = {0, 1} the Figure 28.7 and 28.8 contain the complexity
of all 3-length and 4-length words.

In this case of the 3-length words (Figure 28.7) the global maximal complexity is 2,
and this value is obtained for 1-length and 2-length subwords. There are 6 such words.

For 4-length words (Figure 28.8) the global maximal complexity is 3, and this value is
obtained for 2-length words. The number of such words is 8.

To solve the above two problems, the following notations will be used:

R(n) = {i ∈ {1, 2, . . . , n} | ∃u ∈ An : fu(i) = G(n)} ,

M(n) = #{u ∈ An : C(u) = G(n)} .

In the table of Figure 28.9 values of G(n), R(n), M(n) are given for length up
to 20 over on a binary alphabet.

We shall use the following result to prove some theorems on maximal complexity.

Lemma 28.14 For each k ∈ N∗, the shortest word containing all the qk words of
length k over an alphabet with q letters has qk + k − 1 letters (hence in this word
each of the qk words of length k appears only once).

Theorem 28.15 If #A = q and qk + k ≤ n ≤ qk+1 + k, then G(n) = n− k .

Proof Let us consider at first the case n = qk+1 + k, k ≥ 1.
From Lemma 28.14 we obtain the existence of a word w of length qk+1 +k which

contains all the qk+1 words of length k+1, hence fw(k+1) = qk+1. It is obvious that
fw(l) = ql < fw(k+ 1) for l ∈ {1, 2, . . . , k} and fw(k+ 1 + j) = qk+1− j < fw(k+ 1)
for j ∈ {1, 2, . . . qk+1− 1}. Any other word of length qk+1 + k will have the maximal
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fu(i)
u i = 1 i = 2 i = 3 i = 4

0000 1 1 1 1
0001 2 2 2 1
0010 2 3 2 1
0011 2 3 2 1
0100 2 3 2 1
0101 2 2 2 1
0110 2 3 2 1
0111 2 2 2 1
1000 2 2 2 1
1001 2 3 2 1
1010 2 2 2 1
1011 2 3 2 1
1100 2 3 2 1
1101 2 3 2 1
1110 2 2 2 1
1111 1 1 1 1

Figure 28.8 Complexity of all 4-length binary words.

complexity less than or equal to C(w) = fw(k + 1), hence we have G(n) = qk+1 =
n− k.

For k ≥ 1 we consider now the values of n of the form n = qk+1 + k − r with
r ∈ {1, 2, . . . , qk+1 − qk}, hence qk + k ≤ n < qk+1 + k. If from the word w of
length qk+1 + k considered above we delete the last r letters, we obtain a word
wn of length n = qk+1 + k − r with r ∈ {1, 2, . . . , qk+1 − qk}. This word will have
fwn

(k + 1) = qk+1 − r and this value will be its maximal complexity. Indeed, it is
obvious that fwn

(k+1+j) = fwn
(k+1)−j < fwn

(k+1) for j ∈ {1, 2, . . . , n−k−1};
for l ∈ {1, 2, . . . , k} it follows that fwn

(l) ≤ ql ≤ qk ≤ qk+1 − r = fwn
(k + 1), hence

C(wn) = fwn
(k + 1) = qk+1 − r. Because it is not possible for a word of length

n = qk+1 + k − r, with r ∈ {1, 2, . . . , qk+1 − qk} to have the maximal complexity
greater than qk+1 − r, it follows that G(n) = qk+1 − r = n− k.

Theorem 28.16 If #A = q and qk + k < n < qk+1 + k + 1 then R(n) = {k + 1};
if n = qk + k then R(n) = {k, k + 1}.

Proof In the first part of the proof of Theorem 28.15, we proved for n = qk+1 + k,
k ≥ 1, the existence of a word w of length n for which G(n) = fw(k + 1) = n − k.
This means that k + 1 ∈ R(n). For the word w, as well as for any other word w′ of
length n, we have fw′(l) < fw(k+1), l 6= k+1, because of the special construction of
w, which contains all the words of length k + 1 in the most compact way. It follows
that R(n) = {k + 1}.

As in the second part of the proof of Theorem 28.15, we consider n = qk+1 +k−r
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n G(n) R(n) M(n)

1 1 1 2
2 2 1 2
3 2 1, 2 6
4 3 2 8
5 4 2 4
6 4 2, 3 36
7 5 3 42
8 6 3 48
9 7 3 40

10 8 3 16
11 8 3, 4 558
12 9 4 718
13 10 4 854
14 11 4 920
15 12 4 956
16 13 4 960
17 14 4 912
18 15 4 704
19 16 4 256
20 16 4, 5 79006

Figure 28.9 Values of G(n), R(n), and M(n).

with r ∈ {1, 2, . . . qk+1−qk} and the word wn for which G(n) = fwn
(k+1) = qk+1−r.

We have again k + 1 ∈ R(n). For l > k + 1, it is obvious that the complexity
function of wn, or of any other word of length n, is strictly less than fwn

(k + 1).
We examine now the possibility of finding a word w with fw(k + 1) = n − k for
which fw(l) = n − k for l ≤ k. We have fw(l) ≤ ql ≤ qk ≤ qk+1 − r, hence the
equality fw(l) = n− k = qk+1− r holds only for l = k and r = qk+1− qk, that is for
w = qk + k.

We show that for n = qk + k we have indeed R(n) = {k, k+ 1}. If we start with
the word of length qk + k− 1 generated by the Martin’s algorithm (or with another
De Bruijn word) and add to this any letter from A, we obtain obviously a word v of
length n = qk + k, which contains all the qk words of length k and qk = n− k words
of length k + 1, hence fv(k) = fv(k + 1) = G(n).

Having in mind the Martin algorithm (or other more efficient algorithms),
words w with maximal complexity C(w) = G(n) can be easily constructed for each
n and for both situations in Theorem 28.16.

Theorem 28.17 If #A = q and qk + k ≤ n ≤ qk+1 + k then M(n) is equal to the
number of different paths of length n− k − 1 in the de Bruijn graph B(q, k + 1).

Proof From Theorems 28.15 and 28.16 it follows that the number M(n) of the
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words of length n with global maximal complexity is given by the number of words
w ∈ An with fw(k + 1) = n− k. It means that these words contain n− k subwords
of length k + 1, all of them distinct. To enumerate all of them we start successively
with each word of k + 1 letters (hence with each vertex in B(q, k + 1)) and we add
at each step, in turn, one of the symbols from A which does not duplicate a word of
length k + 1 which has already appeared. Of course, not all of the trials will finish
in a word of length n, but those which do this, are precisely paths in B(q, k + 1)
starting with each vertex in turn and having the length n − k − 1. Hence to each
word of length n with fw(k + 1) = n − k we can associate a path and only one of
length n− k− 1 starting from the vertex given by the first k+ 1 letters of the initial
word; conversely, any path of length n − k − 1 will provide a word w of length n
which contains n− k distinct subwords of length k + 1.

M(n) can be expressed also as the number of vertices at level n − k − 1 in the

set
{

T (q, w)
∣

∣w ∈ Ak+1
}

of De Bruijn trees.

Theorem 28.18 If n = 2k + k − 1, then M(n) = 22k−1

.

Proof In the De Bruijn graph B(2, k) there are 22k−1−k different Hamiltonian cycles.
With each vertex of a Hamiltonian cycle a De Bruijn word begins (containing all

k-length subwords), which has maximal complexity, so M(n) = 2k ·22k−1−k = 22k−1

,
which proves the theorem.

A generalization for an alphabet with q ≥ 2 letters:

Theorem 28.19 If n = qk + k − 1, then M(n) = (q!)qk−1

.

Total complexity The total complexity is the number of different nonempty
subwords of a given word:

K(u) =
|u|
∑

i=1

fu(i) .

The total complexity of a trivial word of length n (of the form an, n ≥ 1) is
equal to n. The total complexity of a rainbow word (with pairwise different letters)

of length n is equal to
n(n+ 1)

2
.

The problem of existence of words with a given total complexity are studied in
the following theorems.

Theorem 28.20 If C is a natural number different from 1, 2 and 4, then there
exists a nontrivial word of total complexity equal to C.

Proof To prove this theorem we give the total complexity of the following k-length
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words:

K(ak−1b) = 2k − 1, for k ≥ 1 ,

K(abk−3aa) = 4k − 8, for k ≥ 4 ,

K(abcdk−3) = 4k − 6, for k ≥ 3 .

These can be proved immediately from the definition of the total complexity.
1. If C is odd then we can write C = 2k − 1 for a given k. It follows that

k = (C + 1)/2, and the word ak−1b has total complexity C.
2. If C is even, then C = 2`.

2.1. If ` = 2h, then 4k − 8 = C gives 4k − 8 = 4h, and from this k = h+ 2
results. The word abk−3aa has total complexity C.

2.2. If ` = 2h + 1 then 4k − 6 = C gives 4k − 6 = 4h + 2, and from this
k = h+ 2 results. The word abcdk−3 has total complexity C.

In the proof we have used more than two letters in a word only in the case of
the numbers of the form 4h+ 2 (case 2.2 above). The new question is, if there exist
always nontrivial words formed only of two letters with a given total complexity.
The answer is yes anew. We must prove this only for the numbers of the form 4h+2.
If C = 4h+ 2 and C ≥ 34, we use the followings:

K(abk−7abbabb) = 8k − 46, for k ≥ 10 ,

K(abk−7ababba) = 8k − 42, for k ≥ 10 .

If h = 2s, then 8k− 46 = 4h+ 2 gives k = s+ 6, and the word abk−7abbabb has total
complexity 4h+ 2.

If h = 2s+ 1, then 8k − 42 = 4h+ 2 gives k = s+ 6, and the word abk−7ababba
has total complexity 4h + 2. For C < 34 only 14, 26 and 30 are feasible. The word
ab4a has total complexity 14, ab6a has 26, and ab5aba 30. Easily it can be proved,
using a tree, that for 6, 10, 18 and 22 such words does not exist. Then the following
theorem is true.

Theorem 28.21 If C is a natural number different from 1, 2, 4, 6, 10, 18 and 22,
then there exists a nontrivial word formed only of two letters, with the given total
complexity C.

The existence of a word with a given length and total complexity is not always
assured, as we will prove in what follows.

In relation with the second problem a new one arises: How many words of length
n and complexity C there exist? For small n this problem can be studied exhaustively.
Let A be of n letters, and let us consider all words of length n over A. By a computer
program we have got Figure 28.10, which contains the frequency of words with given
length and total complexity.

Let |A| = n and let φn(C) denote the frequency of the words of length n over A
having a complexity C. Then we have the following easy to prove results:
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n = 2
C 2 3
φn(C) 2 2
n = 3

C 3 4 5 6
φn(C) 3 0 18 6
n = 4

C 4 5 6 7 8 9 10
φn(C) 4 0 0 36 48 144 24
n = 5

C 5 6 7 8 9 10 11 12 13 14 15
φn(C) 5 0 0 0 60 0 200 400 1140 1200 120
n = 6

C 6 7 8 9 10 11 12 13
φn(C) 6 0 0 0 0 90 0 0

C 14 15 16 17 18 19 20 21
φn(C) 300 990 270 5400 8280 19800 10800 720

Figure 28.10 Frequency of words with given total complexity

φn(C) = 0, if C < n or C >
n(n+ 1)

2
,

φn(n) = n,
φn(2n− 1) = 3n(n− 1),

φn

(

n(n+ 1)
2

− 1
)

=
n(n− 1)n!

2
,

φn

(

n(n+ 1)
2

)

= n!

As regards the distribution of the frequency 0, the following are true:

If C = n+ 1, n+ 2, . . . , 2n− 2, then φn(C) = 0 .
If C = 2n, 2n+ 1, . . . , 3n− 5, then φn(C) = 0 .

The question is, if there exists a value from which up to n(n+1)
2 no more 0

frequency exist. The answer is positive. Let us denote by bn the least number between
n and n(n+ 1)/2 for which

φn(C) 6= 0 for all C with bn ≤ C ≤
n(n+ 1)

2
.

The number bn exists for any n (in the worst case it may be equal to n(n+1)/2):

Theorem 28.22 If ` ≥ 2, 0 ≤ i ≤ `, n =
`(`+ 1)

2
+ 2 + i, then

bn =
`(`2 − 1)

2
+ 3`+ 2 + i(`+ 1) .
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Figure 28.11 Graph for (2, 4)-subwords when n = 6.

28.2. Generalized complexity measures

As we have seen in the previous section, a contiguous part of a word (obtained by
erasing a prefix or/and a suffix) is a subword or factor. If we eliminate arbitrary
letters from a word, what is obtained is a scattered subword, sometimes called
subsequence. Special scattered subwords, in which the consecutive letters are at
distance at least d1 and at most d2 in the original word, are called (d1, d2)-subwords.
More formally we give the following definition.

Let n, d1 ≤ d2, s be positive integers, and let u = x1x2 . . . xn ∈ An be a word
over the alphabet A. The word v = xi1

xi2
. . . xis

, where
i1 ≥ 1,
d1 ≤ ij+1 − ij ≤ d2, for j = 1, 2, . . . , s− 1,
is ≤ n,

is a (d1, d2)-subword of length s of u.
For example the (2, 4)-subwords of aabcade are: a, ab, ac, aba, aa, acd, abd, aae,
abae, ace, abe, ad, b, ba, bd, bae, be, c, cd, ce, ae, d, e.

The number of different (d1, d2)-subwords of a word u is called (d1, d2)-
complexity and is denoted by Cu(d1, d2).
For example, if u = aabcade, then Cu(2, 4) = 23.

28.2.1. Rainbow words

Words with pairwise different letters are called rainbow words. The (d1, d2)-
complexity of a rainbow word of length n does not depends on what letters it
contains, and is denoted by C(n; d1, d2).

To compute the (d1, d2)-complexity of a rainbow word of length n, let us consider
the word a1a2 . . . an (if i 6= j, then ai 6= aj) and the corresponding digraph G =
(V,E), with

V =
{

a1, a2, . . . , an

}

,
E =

{

(ai, aj) | d1 ≤ j − i ≤ d2, i = 1, 2, . . . , n, j = 1, 2, . . . , n
}

.
For n = 6, d1 = 2, d2 = 4 see Figure 28.11.
The adjacency matrix A =

(

aij

)

i=1,n

j=1,n

of the graph is defined by:

aij =
{

1, if d1 ≤ j − i ≤ d2,
0, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.
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Because the graph has no directed cycles, the entry in row i and column j in Ak

(where Ak = Ak−1A, with A1 = A) will represent the number of k-length directed
paths from ai to aj . If A0 is the identity matrix (with entries equal to 1 only on the
first diagonal, and 0 otherwise), let us define the matrix R = (rij):

R = A0 +A+A2 + · · ·+Ak, where Ak+1 = O (the null matrix).

The (d1, d2)-complexity of a rainbow word is then

C(n; d1, d2) =
n
∑

i=1

n
∑

j=1

rij .

The matrix R can be better computed using a variant of the well-known Warshall
algorithm:

Warshall(A,n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do wij ← wij + wikwkj

6 return W

From W we obtain easily R = A0 +W . The time complexity of this algorithms
is Θ(n3).

For example let us consider the graph in Figure 28.11. The corresponding adja-
cency matrix is:

A =

















0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

















.

After applying the Warshall algorithm:

W =

















0 0 1 1 2 2
0 0 0 1 1 2
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

















, R =

















1 0 1 1 2 2
0 1 0 1 1 2
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

















,

and then C(6; 2, 4) = 19, the sum of entries in R.
The Warshall algorithm combined with the Latin square method can be used

to obtain all nontrivial (with length at least 2) (d1, d2)-subwords of a given rainbow
word a1a2 . . . an of length n. Let us consider a matrix A with the elements Aij which
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n = 6 n = 7

d1
d2 1 2 3 4 5

1 21 46 58 62 63
2 - 12 17 19 20
3 - - 9 11 12
4 - - - 8 9
5 - - - - 7

d1
d2 1 2 3 4 5 6

1 28 79 110 122 126 127
2 - 16 25 30 32 33
3 - - 12 15 17 18
4 - - - 10 12 13
5 - - - - 9 10
6 - - - - - 8

Figure 28.12 (d1, d2)-complexity for rainbow words of length 6 and 7.

are set of words. Initially this matrix is defined as

Aij =
{

{aiaj}, if d1 ≤ j − i ≤ d2,
∅, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n .

If A and B are sets of words, AB will be formed by the set of concatenation of each
word from A with each word from B:

AB =
{

ab
∣

∣ a ∈ A, b ∈ B
}

.

If s = s1s2 . . . sp is a word, let us denote by ′s the word obtained from s by erasing
the first character: ′s = s2s3 . . . sp. Let us denote by ′Aij the set Aij in which we
erase from each element the first character. In this case ′A is a matrix with entries
′Aij .

Starting with the matrix A defined as before, the algorithm to obtain all non-
trivial (d1, d2)-subwords is the following:

Warshall-Latin(A, n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do if Wik 6= ∅ and Wkj 6= ∅
6 then Wij ←Wij ∪Wik

′Wkj

7 return W

The set of nontrivial (d1, d2)-subwords is
⋃

i,j∈{1,2,...,n}
Wij . The time complexity

is also Θ(n3).
For n = 7, d1 = 2, d2 = 4, the initial matrix is:
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A =

























∅ ∅ {ac} {ad} {ae} ∅ ∅
∅ ∅ ∅ {bd} {be} {bf} ∅
∅ ∅ ∅ ∅ {ce} {cf} {cg}
∅ ∅ ∅ ∅ ∅ {df} {dg}
∅ ∅ ∅ ∅ ∅ ∅ {eg}
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅

























,

and

W =





















∅ ∅ {ac} {ad} {ace, ae} {adf, acf} {aeg, aceg, adg, acg}
∅ ∅ ∅ {bd} {be} {bdf, bf} {beg, bdg}
∅ ∅ ∅ ∅ {ce} {cf} {ceg, cg}
∅ ∅ ∅ ∅ ∅ {df} {dg}
∅ ∅ ∅ ∅ ∅ ∅ {eg}
∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅





















.

Counting the one-letter subwords too, we obtain C(7; 2, 4) = 30.

The case d1 = 1d1 = 1d1 = 1 In this case instead of d2 we will use d. For a rainbow word,
ai,d we will denote the number of (1, d)-subwords which finish at the position i. For
i = 1, 2, . . . , n

ai,d = 1 + ai−1,d + ai−2,d + . . .+ ai−d,d . (28.1)

For simplicity, let us denote C(n; 1, d) by N(n, d). The (1, d)-complexity of a
rainbow word can be obtained by the formula

N(n, d) =
n
∑

i=1

ai,d .

Because of (28.1) we can write in the case of d ≥ 2

ai,d +
1

d− 1
=
(

ai−1,d +
1

d− 1

)

+ · · ·+
(

ai−d,d +
1

d− 1

)

.

Denoting

bi,d = ai,d +
1

d− 1
, and ci,d = (d− 1)bi,d ,

we get
ci,d = ci−1,d + ci−2,d + . . .+ ci−d,d ,

and the sequence ci,d is one of Fibonacci-type. For any d we have a1,d = 1 and
from this c1,d = d results. Therefore the numbers ci,d are defined by the following
recurrence equations:

cn,d = cn−1,d + cn−2,d + . . .+ cn−d,d, for n > 0,
cn,d = 1, for n ≤ 0.
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These numbers can be generated by the following generating function:

Fd(z) =
∑

n≥0

cn,dz
n =

1 + (d− 2)z − z2 − · · · − zd

1− 2z + zd+1

=
1 + (d− 3)z − (d− 1)z2 + zd+1

(1− z)(1− 2z + zd+1)
.

The (1, d)-complexity N(n, d) can be expressed with these numbers cn,d by the
following formula:

N(n, d) =
1

d− 1

(

n
∑

i=1

ci,d − n
)

, for d > 1 ,

and

N(n, 1) =
n(n+ 1)

2
,

or
N(n, d) = N(n− 1, d) +

1
d− 1

(cn,d − 1), for d > 1, n > 1 .

If d = 2 then

F2(z) =
1− z2

1− 2z + z3
=

1 + z

1− z − z2
=
F (z)
z

+ F (z) ,

where F (z) is the generating function of the Fibonacci numbers Fn (with F0 =
0, F1 = 1). Then, from this formula we have

cn,2 = Fn+1 + Fn = Fn+2 ,

and

N(n, 2) =
n
∑

i=1

Fi+2 − n = Fn+4 − n− 3 .

Figure 28.13 contains the values of N(n, d) for k ≤ 10 and d ≤ 10.

N(n, d) = 2n − 1, for any d ≥ n− 1.

The following theorem gives the value of N(n, d) in the case n ≥ 2d− 2:

Theorem 28.23 For n ≥ 2d− 2 we have

N(n, n− d) = 2n − (d− 2) · 2d−1 − 2 .

The main step in the proof is based on the formula

N(n, n− d− 1) = N(n, n− d)− d · 2d−1 .

The value of N(n, d) can be also obtained by computing the number of sequences
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n \d 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 3 3 3 3 3 3 3 3 3 3
3 6 7 7 7 7 7 7 7 7 7
4 10 14 15 15 15 15 15 15 15 15
5 15 26 30 31 31 31 31 31 31 31
6 21 46 58 62 63 63 63 63 63 63
7 28 79 110 122 126 127 127 127 127 127
8 36 133 206 238 250 254 255 255 255 255
9 45 221 383 464 494 506 510 511 511 511

10 55 364 709 894 974 1006 1018 1022 1023 1023

Figure 28.13 The (1, d)-complexity of words of length n

of length k of 0’s and 1’s, with no more than d−1 adjacent zeros. In such a sequence
one 1 represents the presence, one 0 does the absence of a letter of the word in a
given (1, d)-subword. Let bn,d denote the number of n-length sequences of zeros and
ones, in which the first and last position is 1, and the number of adjacent zeros is at
most d− 1. Then it can be proved easily that

bn,d = bn−1,d + bn−2,d + . . .+ bn−d,d , for k > 1 ,
b1,d = 1 ,
bn,d = 0, for all n ≤ 0 ,

because any such sequence of length n− i (i = 1, 2, ..., d) can be continued in order
to obtain a similar sequence of length n in only one way (by adding a sequence of
the form 0i−11 on the right). For bn,d the following formula also can be derived:

bn,d = 2bn−1,d − bn−1−d,d .

If we add one 1 or 0 at an internal position (e.g at the (n − 2)th position) of each
bn−1,d sequences, then we obtain 2bn−1,d sequences of length n, but from these,
bn−1−d,d sequences will have d adjacent zeros.

The generating function corresponding to bn,d is

Bd(z) =
∑

n≥0

bn,dz
n =

z

1− z · · · − zd
=

z(1− z)
1− 2z + zd+1

.

By adding zeros on the left and/or on the right to these sequences, we can obtain
the number N(k, d), as the number of all these sequences. Thus

N(k, d) = bk,d + 2bk−1,d + 3bk−2,d + · · ·+ kb1,d .

(i zeros can be added in i + 1 ways to these sequences: 0 on the left and i on the
right, 1 on the left and i− 1 on the right, and so on).

From the above formula, the generating function corresponding to the complexi-
ties N(k, d) can be obtained as a product of the two generating functions Bd(z) and
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A(z) =
∑

n≥0 nz
n = 1/(1− z)2, thus:

Nd(z) =
∑

n≥0

N(n, d)zn =
z

(1− z)(1− 2z + zd+1)
.

The case d2 = n− 1d2 = n− 1d2 = n− 1 In the sequel instead of d1 we will use d. In this case the
distance between two letters picked up to be neighbours in a subword is at least d.

Let us denote by bn,d(i) the number of (d, n − 1)-subwords which begin at the
position i in a rainbow word of length n. Using our previous example (abcdef ), we
can see that b6,2(1) = 8, b6,2(2) = 5, b6,2(3) = 3, b6,2(4) = 2, b6,2(5) = 1, and
b6,2(6) = 1.

The following formula immediately results:

bn,d(i) = 1 + bn,d(i+d) + bn,d(i+d+1) +· · ·+ bn,d(n) , (28.2)

for n > d, and 1 ≤ i ≤ n− d ,

bn,d(1) = 1 for n ≤ d .

For simplicity, C(n; d, n) will be denoted by K(n, d).
The (d, n− 1)-complexity of rainbow words can be computed by the formula:

K(n, d) =
n
∑

i=1

bn,d(i) . (28.3)

This can be expressed also as

K(n, d) =
n
∑

k=1

bk,d(1) , (28.4)

because of the formula

K(n+ 1, d) = K(n, d) + bn+1,d(1) .

In the case d = 1 the complexity K(n, 1) can be computed easily: K(n, 1) =
2n − 1.

From (28.2) we get the following algorithm for the computation of bn,d(i). The
numbers bn,d(k) (k = 1, 2, . . .) for a given n and d are obtained in the array b =
(b1, b2, . . .). Initially all these elements are equal to −1. The call for the given n and
d and the desired i is:

Input (n, d, i)
for k ← 1 to n

do bk ← −1
B(n, d, i) � Array b is a global one.
Output b1, b2, . . . , bn
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n
d 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
2 3 2 2 2 2 2 2 2 2 2 2
3 7 4 3 3 3 3 3 3 3 3 3
4 15 7 5 4 4 4 4 4 4 4 4
5 31 12 8 6 5 5 5 5 5 5 5
6 63 20 12 9 7 6 6 6 6 6 6
7 127 33 18 13 10 8 7 7 7 7 7
8 255 54 27 18 14 11 9 8 8 8 8
9 511 88 40 25 19 15 12 10 9 9 9

10 1023 143 59 35 25 20 16 13 11 10 10
11 2047 232 87 49 33 26 21 17 14 12 11
12 4095 376 128 68 44 33 27 22 18 15 13

Figure 28.14 Values of K(n, d).

The recursive algorithm is the following:

B(n, d, i)

1 p← 1
2 for k ← i+ d to n
3 do if bk = −1
4 then B(n, d, k)
5 p← p+ bk

6 bi ← p
7 return

This algorithm is a linear one.
If the call is B(8, 2, 1), the elements will be obtained in the following order:

b7 = 1, b8 = 1, b5 = 3, b6 = 2, b3 = 8, b4 = 5, and b1 = 21.

Lemma 28.24 bn,2(1) = Fn, where Fn is the nth Fibonacci number.

Proof Let us consider a rainbow word a1a2 . . . an and let us count all its (2, n− 1)-
subwords which begin with a2. If we change a2 for a1 in each (2, n − 1)-subword
which begin with a2, we obtain (2, n−1)-subwords too. If we add a1 in front of each
(2, n− 1)-subword which begin with a3, we obtain (2, n− 1)-subwords too. Thus

bn,2(1) = bn−1,2(1) + bn−2,2(1) .

So bn,2(1) is a Fibonacci number, and because b1,2(1) = 1, we obtain that bn,2(1) =
Fn.

Theorem 28.25 K(n, 2) = Fn+2 − 1, where Fn is the nth Fibonacci number.
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Proof From equation (28.4) and Lemma 28.24:

K(n, 2) = b1,2(1) + b2,2(1) + b3,2(1) + b4,2(1) + · · ·+ bn,2(1)

= F1 + F2 + · · ·+ Fn

= Fn+2 − 1 .

If we use the notation Mn,d = bn,d(1), because of the formula

bn,d(1) = bn−1,d(1) + bn−d,d(1) ,

a generalized middle sequence will be obtained:

Mn,d = Mn−1,d +Mn−d,d , for n ≥ d ≥ 2 , (28.5)

M0,d = 0, M1,n = 1, . . . , Md−1,d = 1 .

Let us call this sequence d-middle sequence. Because of the equality Mn,2 =
Fn, the d-middle sequence can be considered as a generalization of the Fibonacci
sequence.

Then next linear algorithm computes Mn,d, by using an array M0,M1, . . . ,Md−1

to store the necessary previous elements:

Middle(n, d)

1 M0 ← 0
2 for i← 1 to d− 1
3 do Mi ← 1
4 for i← d to n
5 do Mi mod d ←M(i−1) mod d +M(i−d) mod d

6 print Mi mod d

7 return

Using the generating function Md(z) =
∑

n≥0

Mn,dz
n, the following closed formula

can be obtained:
Md(z) =

z

1− z − zd
. (28.6)

This can be used to compute the sum sn,d =
n
∑

n=1

Mi,d, which is the coefficient of

zn+d in the expansion of the function

zd

1− z − zd
· 1

1− z =
zd

1− z − zd
+

z

1− z − zd
− z

1− z .

So sn.d = Mn+(d−1),d +Mn,d − 1 = Mn+d,d − 1. Therefore

n
∑

i=1

Mi,d = Mn+d,d − 1 . (28.7)
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Theorem 28.26 K(n, d) = Mn+d,d−1, where n > d and Mn,d is the nth elements
of d-middle sequence.

Proof The proof is similar to that in Theorem 28.25 taking into account the equation
(28.7).

Theorem 28.27 K(n, d) =
∑

k≥0

(

n− (d− 1)k
k + 1

)

, for n ≥ 2, d ≥ 1 .

Proof Let us consider the generating function G(z) =
1

1− z = 1 + z + z2 + · · · .
Then, taking into account the equation (28.6) we obtain Md(z) = zG(z + zd) =
z+ z(z+ zd)+ z(z+ zd)2 + · · ·+ z(z+ zd)i + · · · . The general term in this expansion
is equal to

zi+1
i
∑

k=1

(

i

k

)

z(d−1)k ,

and the coefficient of zn+1 is equal to

∑

k≥0

(

n− (d− 1)k
k

)

.

The coefficient of zn+d is

Mn+d,d =
∑

k≥0

(

n+ d− 1− (d− 1)k
k

)

. (28.8)

By Theorem 28.26 K(n, d) = Mn+d,d − 1, and an easy computation yields

K(n, d) =
∑

k≥0

(

n− (d− 1)k
k + 1

)

.

28.2.2. General words

The algorithm Warshall-Latin can be used for nonrainbow words too, with the
remark that repeating subwords must be eliminated. For the word aabbbaaa and
d1 = 2, d2 = 4 the result is: ab, abb, aba, abba, abaa, aa, aaa, bb, ba, bba, baa, and with
a and b we have Caabbbaaa(2, 4) = 13.

28.3. Palindrome complexity

The palindrome complexity function palw of a finite or infinite word w attaches
to each n ∈ N the number of palindrome subwords of length n in w, denoted by
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palw(n).
The total palindrome complexity of a finite word w ∈ A∗ is equal to the

number of all nonempty palindrome subwords of w, i.e.:

P (w) =
|w|
∑

n=1

palw(n) .

This is similar to the total complexity of words.

28.3.1. Palindromes in finite words

Theorem 28.28 The total palindrome complexity P (w) of any finite word w sat-
isfies P (w) ≤ |w|.

Proof We proceed by induction on the length n of the word w. For n = 1 we have
P (w) = 1.

We consider n ≥ 2 and suppose that the assertion holds for all words of length
n− 1. Let w = a1a2 . . . an be a word of length n and u = a1a2 . . . an−1 its prefix of
length n− 1. By the induction hypothesis it is true that P (u) ≤ n− 1.

If an 6= aj for each j ∈ {1, 2, . . . n− 1}, the only palindrome in w which is not in
u is an, hence P (w) = P (u) + 1 ≤ n.

If there is an index j, 1 ≤ j ≤ n − 1 such that an = aj , then P (w) > P (u) if
and only if w has suffixes which are palindromes. Let us suppose that there are at
least two such suffixes aiai+1 . . . an and ai+kai+k+1 . . . an, 1 ≤ k ≤ n− i, which are
palindromes. It follows that

ai = an = ai+k

ai+1 = an−1 = ai+k+1

· · ·
an−k = ai+k = an,

hence ai+k . . . an = ai . . . an−k. The last palindrome appears in u (because of k ≥ 1)
and has been already counted in P (u). It follows that P (w) ≤ P (u) + 1 ≤ n.

This result shows that the total number of palindromes in a word cannot be
larger than the length of that word. We examine now if there are words which are
‘poor’ in palindromes. In the next lemma we construct finite words wn of arbitrary
length n ≥ 9, which contain precisely 8 palindromes.

Let us denote by w
p

q the fractional power of the word w of length q, which is
the prefix of length p of wp.

Lemma 28.29 If wn = (001011)
n
6 , n ≥ 9, then P (wn) = 8.

Proof In wn there are the following palindromes: 0, 1, 00, 11, 010, 101, 0110, 1001.
Because 010 and 101 are situated in wn between 0 on the left and 1 on the right,
these cannot be continued to obtain any palindromes. The same is true for 1001 and
0110, which are situated between 1 on the left and 0 on the right, excepting the
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cases when 1001 is a suffix. So, there are no other palindromes in wn.

Remark 28.30 If u is a circular permutation of 001011 and n ≥ 9 then P (u
n
6 ) = 8

too. Because we can interchange 0 with 1, for any n there will be at least 12 words
of length n with total complexity equal to 8.

We shall give now, beside the upper delimitation from Theorem 28.28, lower
bounds for the number of palindromes contained in finite binary words. (In the
trivial case of a 1-letter alphabet it is obvious that, for any word w, P (w) = |w| .)
Theorem 28.31 If w is a finite word of length n on a 2-letter alphabet, then

P (w) = n, for 1 ≤ n ≤ 7 ,
7 ≤ P (w) ≤ 8, for n = 8 ,
8 ≤ P (w) ≤ n, for n ≥ 9 .

Proof Up to 8 the computation can be made by a computer program. For n ≥ 9,
Lemma 28.29 gives words vn for which P (vn) = 8. The maximum value is obtained
for words of the form an, a ∈ A, n ∈ N.

Remark 28.32 For all the short binary words (up to |w| = 7), the palindrome
complexity takes the maximum possible value given in Theorem 28.28; from the words
with |w| = 8, only four (out of 28) have P (w) = 7, namely 00110100, 00101100 and
their complemented words.

In the following lemmas we construct binary words which have a given total
palindrome complexity greater than or equal to 8.

Lemma 28.33 If uk,` = 0k10110`1 for k ≥ 2 and 1 ≤ ` ≤ k − 1, then P (uk,`) =
k + 6.

Proof In the prefix of length k of uk,` there are always k palindromes (1, . . . , 1k).
The other palindromes different from these are 1, 11, 010, 101, 0110 and 10`1 (for
` ≥ 2), respectively 101101 (for ` = 1). In each case P (uk,`) = k + 6.

Lemma 28.34 If vk,` = (0k1011)
k+`+5

k+4 for k ≥ 2 and k ≤ ` ≤ n − k − 5, then
P (vk,`) = k + 6.

Proof Since ` ≥ k, the prefix of uk,j is at least 0k10110k1, which includes the
palindromes 0, . . . , 0k, 1, 11, 010, 101, 0110 and 10k1, hence P (vk,`) ≥ k + 6. The
palindromes 010 and 101 are situated between 0 and 1, while 0110 and 10k1 are
between 1 and 0 (excepting the cases when they are suffixes), no matter how large
is `. It follows that vk,` contains no other palindromes, hence P (vk,`) = k + 6.

Remark 28.35 If k = 2, then the word v2,` is equal to w`+7, with wn defined in
Lemma 28.29.
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We can determine now precisely the image of the restriction of the palindrome
complexity function to An, n ≥ 1.

Theorem 28.36 Let A be a binary alphabet. Then

P (An) =







{

n
}

, for 1 ≤ n ≤ 7 ,
{

7, 8
}

, for n = 8 ,
{

8, . . . , n
}

, for n ≥ 9 .

Proof Having in mind the result in Theorem 28.31, we have to prove only that for
each n and i so that 8 ≤ i ≤ n, there exists always a binary word wn,i of length n
for which the total palindrome complexity is P (wn,i) = i. Let n and i be given so
that 8 ≤ i ≤ n. We denote k = i− 6 ≥ 2 and ` = n− k − 5.

If ` ≤ k− 1, we take wn,i = uk,` (from Lemma 28.33); if ` ≥ k, wn,i = vk,` (from
Lemma 28.34). It follows that |wn,i| = n and P (wn,i) = k + 6 = i.

Example 28.2 Let us consider n = 25 and i = 15. Then k = 15−6 = 9, ` = 26−15 = 11.

Because ` > k − 1, we use v9,11 = (091011)
25
13 = 09101109101, whose total palindrome

complexity is 15.

We give similar results for the case of alphabets with q ≥ 3 letters.

Theorem 28.37 If w is a finite word of length n over a q-letter (q ≥ 3) alphabet,
then

P (w) = n, for n ∈ {1, 2} ,
3 ≤ P (w) ≤ n, for n ≥ 3 .

Proof For n ∈ {1, 2} it can be checked directly. Let us consider now n ≥ 3 and a
word of length at least 3. If this is a trivial word (containing only one letter n times),
its total palindrome complexity is n ≥ 3. If in the word there appear exactly two
letters a1 and a2, it will have as palindromes those two letters and at least one of
a2

1, a
2
2, a1a2a1 or a2a1a2, hence again P (w) ≥ 3. If the word contains a third letter,

then obviously P (w) ≥ 3. So, the total complexity cannot be less then 3.

Theorem 28.38 Let A be a q-letter (q ≥ 3) alphabet. Then for

P (An) =
{ {

n
}

, for 1 ≤ n ≤ 2 ,
{

3, . . . , n
}

, for n ≥ 3 .

Proof It remains to prove that for each n and i so that 3 ≤ i ≤ n, there exists always
a word wn,i of length n, for which the total palindrome complexity is P (wn,i) = i.

Such a word is wn,i = ai−3
1 (a1a2a3)

n−i+3

3 , which has i− 2 palindromes in its prefix
of length i− 2, and other two palindromes a2 and a3 in what follows.
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28.3.2. Palindromes in infinite words

Sturmian words The number of palindromes in the infinite Sturmian words is
given by the following theorem.

Theorem 28.39 If u is an infinite Sturmian word, then

palu(n) =
{

1, if n is even ,
2, if n is odd .

Power word Let us recall the power word as being
p = 01001100011100001111 . . . 0n1n . . . .

Theorem 28.40 The palindrome complexity of the power word p is

palp(n) = 2
⌊n

3

⌋

+ 1 + ε ,

where

ε =
{

0, if n divisible by 3 ,
1, otherwise .

Proof There exist the following cases:

Case n = 3k. Palindrome subwords are:

0i13k−2i0i for i = 0, 1, . . . k ,
1i03k−2i1i for i = 0, 1, . . . k − 1, so palp(3k) = 2k + 1 .

Case n = 3k + 1. Palindrome subwords are:

0i13k+1−2i0i for i = 0, 1, . . . k ,
1i03k+1−2i1i for i = 0, 1, . . . k, so palp(3k + 1) = 2k + 2 .

Case n = 3k + 2. Palindrome subwords are:

0i13k+2−2i0i for i = 0, 1, . . . k ,
1i03k+2−2i1i for i = 0, 1, . . . k, so palp(3k + 2) = 2k + 2 .

The palindrome subwords of the power word have the following properties:
• Every palindrome subword which contains both 0’s and 1’s occurs only once in the
power word.
• If we use the notations Uiji = 0i1j0i and Viji = 1i0j1i then there are the unique
decompositions:

p = U111U121U232U242U353U363 . . . Uk,2k−1,kUk,2k,k . . . ,

p = 0V121V232V141V353V262V474V383 . . . Vk+1,2k+1,k+1Vk,2k+2,k . . . .

Champernowne word The Champernowne word is defined as the concatenation
of consecutive binary written natural numbers:

c = 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 . . . .
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Theorem 28.41 The palindrome complexity of the Champernowne word is

palc(n) = 2b n
2

c+ε,

where

ε =
{

0, if n is even ,
1, if n is odd .

Proof Any palindrome w of length n can be continued as 0w0 and 1w1 to obtain
palindromes of length n + 2. This theorem results from the following: palc(1) = 2,
palc(2) = 2 and for n ≥ 1 we have

palc(2n+ 1) = 2palc(2n− 1) ,
palc(2n+ 2) = 2palc(2n) .

The following algorithm generates all palindromes up to a given length of a
Sturmian word beginning with the letter a, and generated by the morphism σ.

The idea is the following. If p is the least value for which σp(a) and σp(b) are
both of odd length (such a p always exists), we consider conjugates6 of these words,
which are palindromes (such conjugates always exists), and we define the following
morphism:

π(a) = conj
(

σp(a)
)

,
π(b) = conj

(

σp(b)
)

,
where conj(u) produces a conjugate of u, which is a palindrome.

The sequences
(

πn(a)
)

n≥0
and

(

πn(b)
)

n≥0
generate all odd length palindromes,

and the sequence
(

πn(aa)
)

n≥0
all even length palindromes.

If α is a word, then ′α′ represents the word which is obtained from α by erasing
its first and last letter. More generally, m′α′m is obtained from α by erasing its first
m and last m letters.

6If w = uv then vu is a conjugate of w.
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Sturmian-Palindromes(n)

1 if n is even
2 then n← n− 1
3 let p be the least value for which σp(a) and σp(b) are both of odd length
4 let define the morphism: π(a) = conj

(

σp(a)
)

and π(b) = conj
(

σp(b)
)

5 α← a
6 while |α| < n
7 do α← π(α)
8 m← (|α| − n)/2
9 α← m′α′m

10 β ← b
11 while |β| < n
12 do β ← π(β)
13 m← (|β| − n)/2
14 β ← m′β′m

15 repeat print α, β � Printing odd length palindromes.
16 α←′α′

17 β ←′β′

18 until α = ε and β = ε
19 γ ← aa
20 while |γ| < n+ 1
21 do γ ← π(γ)
22 m← (|γ| − n− 1)/2
23 γ ← m′γ′m

24 repeat print γ � Printing even length palindromes.
25 γ ←′γ′

26 until γ = ε

Because any substitution requires no more than cn steps, where c is a constant,
the algorithm is a linear one.

In the case of the Fibonacci word the morphism σ is defined by
σ(a) = ab, σ(b) = a,

and because
σ(a) = ab, σ2(a) = aba, σ3(a) = abaab, |σ3(a)| = |abaab| = 5,
σ(b) = a, σ(b) = ab, σ3(b) = aba, |σ3(b)| = |aba| = 3,

both being odd numbers, p will be equal to 3.
The word abaab is not a palindrome, and for the morphism π we will use the

adequate conjugate ababa, which is a palindrome.
In this case the morphism π is defined by
π(a) = ababa,
π(b) = aba.

For example, if n = 14, the following are obtained:
π2(a) = ababa aba ababa aba ababa, and then α = aabaababaabaa,
π2(b) = ababa aba ababa, and β = ababaabaababa,
π3(aa) = ababaabaababaabaababaababaabaababaabaababa, and



1330 28. Complexity of Words

γ = baababaababaab.
The odd palindromes obtained are:

aabaababaabaa, ababaabaababa,
abaababaaba, babaabaabab,
baababaab, abaabaaba,
aababaa, baabaab,
ababa, aabaa,
bab, aba,
a, b,

The even palindromes obtained are:

baababaababaab,
aababaababaa,
ababaababa,
babaabab,
abaaba,
baab,
aa.

Problems

28-1 Generating function 1
Let bn,d denote the number of sequences of length n of zeros and ones, in which the
first and last position is 1, and the number of adjacent zeros is at most d− 1. Prove
that the generating function corresponding to bn,d is

Bd(z) =
∑

n≥0

bn,dz
n =

z(1− z)
1− 2z + zd+1

.

Hint. See Subsection 28.2.1.)
28-2 Generating function 2
Prove that the generating function of N(n, d), the number of all (1, d)-subwords of
a rainbow word of length n, is

Nd(z) =
∑

n≥0

N(n, d)zn =
z

(1− z)(1− 2z + zd+1)

(Hint. (See Subsection 28.2.1.)
28-3 Window complexity
Compute the window complexity of the infinite Fibonacci word.
28-4 Circuits in De Bruijn graphs
Prove that in the De Bruijn graph B(q,m) there exist circuits (directed cycles) of
any length from 1 to qm.

Chapter Notes

The basic notions and results on combinatorics of words are given in Lothaire’s [142,
143, 144] and Fogg’s books [65]. Neither Lothaire nor Fogg is a single author, they
are pseudonyms of groups of authors. A chapter on combinatorics of words written
by Choffrut and Karhumäki [42] appeared in a handbook on formal languages.

The different complexities are defined as follows: total complexity in Iványi [111],
maximal and total maximal complexity in Anisiu, Blázsik, Kása [5], (1, d)-complexity
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in Iványi [111] (called d-complexity) and used also in Kása [135]), (d, n − 1)-
complexity (called super-d-complexity) in Kása [137], scattered complexity in Kása
[136], factorization complexity in Ilie [109] and window complexity in Cassaigne,
Kaboré, Tapsoba [37].

The power word, lower/upper maximal/total complexities are defined in Fer-
enczi, Kása [62]. In this paper a characterization of Sturmian words by upper maxi-
mal and upper total complexities (Theorem 28.11) is also given. The maximal com-
plexity of finite words is studied in Anisiu, Blázsik, Kása [5]. The total complexity
of finite words is described in Kása [135], where the results of the Theorem 28.22 is
conjectured too, and proved later by Levé and Séébold [140].

Different generalized complexity measures of words are defined and studied by
Iványi [111] and Kása [135, 137, 136].

The results on palindrome complexity are described in M.-C. Anisiu, V. Anisiu,
Kása [4] for finite words, and in Droubay, Pirillo [54] for infinite words. The algorithm
for palindrome generation in Sturmian words is from this paper too.

Applications of complexities in social sciences are given in Elzinga [57, 56], and
in biology in Troyanskaya et al. [233].

It is worth to consult other papers too, such as [7, 36, 51, 61, 216] (on complexity
problems) and [2, 9, 23, 26, 31, 49, 108] (on palindromes).



29. Conflict Situations

In all areas of everyday life there are situations when conflicting aspects have to
be taken into account simultaneously. A problem becomes even more difficult when
several decision makers’ or interest groups’ mutual agreement is needed to find a
solution.

Conflict situations are divided in three categories in terms of mathematics:

1. One decision maker has to make a decision by taking several conflicting aspects
into account

2. Several decision makers have to find a common solution, when every decision
maker takes only one criterion into account

3. Several decision makers look for a common solution, but every decision maker
takes several criteria into account

In the first case the problem is a multi-objective optimization problem, where the
objective functions make up the various aspects. The second case is a typical problem
of the game theory, when the decision makers are the players and the criteria mean
the payoff functions. The third case appears as Pareto games in the literature, when
the different players only strive to find Pareto optimal solutions instead of optimal
ones.

In this chapter we will discuss the basics of this very important and complex
topic.

29.1. The basics of multi-objective programming

Suppose, that one decision maker wants to find the best decision alternative on the
basis of several, usually conflicting criteria. The criteria usually represent decision
objectives. At first these are usually defined verbally, such as clean air, cheap main-
tenance, etc. Before the mathematical model is given, firstly, these objectives have
to be described by quantifiable indices. It often occurs that one criterion is described
by more than one indices, such as the quality of the air, since the simultaneous pres-
ence of many types of pollution have an effect on it. In mathematics it is usually
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assumed that the bigger value of the certain indices (they will be called objective
functions) means favorable value, hence we want to maximize all of the objective
functions simultaneously. If we want to minimize one of the objective functions, we
can safely multiply its value by (−1), and maximize the resulting new objective
function. If in the case of one of the objective functions, the goal is to attain some
kind of optimal value, we can maximize the deviation from it by multiplying it by
(−1).

If X denotes the set of possible decision alternatives, and fi : X → R denotes the
ith objective function (i = 1, 2, . . . , I), the problem can be described mathematically
as follows:

fi(x)→ max (i = 1, 2, . . . , I) , (29.1)

supposing that x ∈ X.
In the case of a single objective function we look for an optimal solution.

Optimal solutions satisfy the following requirements:

(i) An optimal solution is always better than any non-optimal solution.

(ii) There is no such possible solution that provides better objective functions than
an optimal solution.

(iii) If more than one optimal solution exist simultaneously, they are equivalent in
the meaning that they have the same objective functions.

These properties come from the simple fact that the consequential space,

H = {u|u = f(x) for some x ∈ X} (29.2)

is a subset of the real number line, which is totally ordered. In the case of multiple
objective functions, the

H = {u = (u1, . . . , uI)|ui = fi(x), i = 1, 2, . . . , I for some x ∈ X} (29.3)

consequential space is a subset of the I-dimensional Euclidean space, which is only
partially ordered. Another complication results from the fact that a decision alterna-
tive that could maximize all of the objective functions simultaneously doesn’t usually
exist.

Let’s denote
f?

i = max{fi(x)|x ∈ X} (29.4)

the maximum of the ith objective function, then the

f? = (f?
1 , . . . , f

?
I )

point is called ideal point. If f? ∈ H, then there exits an x? decision for which
fi(x?) = f?

i , i = 1, 2, . . . , I. In such special cases x? satisfies the previously defined
(i)-(iii) conditions. However, if f? /∈ H, the situation is much more complicated. In
that case we look for Pareto optimal solutions instead of optimal ones.



1334 29. Conflict Situations

Definition 29.1 An alternative x ∈ X is said to be Pareto optimal, if there is
no x ∈ X such that fi(x) ≥ fi(x) for all i = 1, 2, . . . , I, with at least one strict
inequality.

It is not necessary that a multi-purpose optimization problem has Pareto optimal
solution, as the case of the

H = {(f1, f2)|f1 + f2 < 1}

set shows it. Since H is open set, (f1 + ε1, f2 + ε2) ∈ H for arbitrary (f1, f2) ∈ H
and for a small enough positive ε1 and ε2.

Theorem 29.2 If X bounded, closed in a finite dimensional Euclidean space and
all of the objective functions are continuous, there is Pareto optimal solution.

The following two examples present a discrete and a continuous problem.

Example 29.1 Assume that during the planning of a sewage plant one out of two options
must be chosen. The expenditure of the first option is two billion Ft, and its daily capacity
is 1500 m3. The second option is more expensive, three billion Ft with 2000 m3 daily
capacity. In this case X = {1, 2}, f1 = −expenditure, f2 = capacity. The following table
summarizes the data:

Options f1 f2

1
2

−2
−3

1500
2000

Figure 29.1 Planning of a sewage plant.

Both options are Pareto optimal, since −2 > −3 and 2000 > 1500.The H consequential
space consists of two points: (−2, 1500) and (−3, 2000).

Example 29.2 The optimal combination of three technology variants is used in a sewage
station. The first variant removes 3,2,1 mg/m3 from one kind of pollution, and 1,3,2 mg/m3

quantity from the another kind of pollution. Let x1, x2 and 1−x1−x2 denote the percentage
composition of the three technology variants.

The restrictive conditions:

x1, x2 ≥ 0

x1 + x2 ≤ 1 ,

the quantity of the removed pollution:

3x1 + 2x2 + (1 − x1 − x2) = 2x1 + x2 + 1

x1 + 3x2 + 2(1 − x1 − x2) = −x1 + x2 + 2 .

Since the third term is constant, we get the following two objective-function optimum
problem:
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Figure 29.2 The image of set X.

2x1 + x2, −x1 + x2 −→ max

provided that

x1, x2 ≥ 0

x1 + x2 ≤ 1 .

A H consequential space can be determined as follows. From the

f1 = 2x1 + x2

f2 = −x1 + x2

equations

x1 =
f1 − f2

3
and x2 =

f1 − 2f2

3
,

and from the restrictive conditions the following conditions arises for the f1 and f2 objective
functions:

x1 ≥ 0 ⇐⇒ f1 − f2 ≥ 0

x2 ≥ 0 ⇐⇒ f1 + 2f2 ≥ 0

x1 + x2 ≤ 1 ⇐⇒ 2f1 + f2 ≤ 3 .

Figures ?? and ?? display the X and H sets.
On the basis of the image of the H set, it is clear that the points of the straight section

joining (1, 1) to (2, −1) are Pareto optimal. Point (2, −1) isn’t better than any possible
point of H, because in the first objective function it results the worst possible planes. The
points of the section are not equivalent to each other, either, going down from the point
(1, 1) towards point (2, 1), the first objective function is increasing, but the second one is
continually decreasing. Thus the (ii) and (iii) properties of the optimal solution doesn’t
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Figure 29.3 The image of set H.

remain valid in the case of multi-objection.

As we saw in the previous example, the different Pareto optimal solutions result
in different objective function values, so it is primary importance to decide which one
should be selected in a particular case. This question is answered by the methodology
of the multi-objective programming. Most methods’ basis is to substitute some real-
valued

”̨ “
value-function” for the objective functions, that is the preference generated

by the objective functions is replaced by a single real-valued function. In this chapter
the most frequently used methods of multi-objective programming are discussed.

29.1.1. Applications of utility functions

A natural method is the following. We assign one utility function to every objective
function. Let ui(fi(x)) denote the utility function of the ith objective function. The
construction of the ui function can be done by the usual manner of the theory
of utility functions, for example the decision maker can subjectively define the ui

values for the given fi values, then a continuous function can be interpolated on the
resulting point. In the case of additive independent utility function additive, whereas
in the case of independent of usefulness utility function additive or multiplicative
aggregate utility function can be obtained. That is, the form of the aggregate utility
function is either

u(f) =
I
∑

i=1

kiui(fi) (29.5)
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or

ku(f) + 1 =
I
∏

i=1

kkiui(fi) + 1 . (29.6)

In such cases the multi-objective optimization problem can be rewrite to one
objective-function form:

u(f) −→ max (29.7)

provided that x ∈ X, and thus u(f) means the "value-function".

Example 29.3 Consider again the decision making problem of the previous example. The
range of the first objective function is [0, 2], while the range of the second one is [−1, 1].
Assuming linear utility functions

u1(f1) =
1

2
(f1) and u2(f2) =

1

2
(f2) + 1 .

In addition, suppose that the decision maker gave the

u(0, −1) = 0, u(2, 1) = 1, and the u(0, 1) =
1

4

values. Assuming linear utility functions

u(f1, f2) = k1u1(f1) + k2u2(f2) ,

and in accordance with the given values

0 = k10 + k20

1 = k11 + k21
1

4
= k10 + k21 .

By the third equation k2 = 1
4
, and by the second one we obtain k1 = 3

4
, so that

u(f1, f2) =
3

4
u1(f1) +

1

4
u2(f2) =

3

4

1

2
(2x1 + x2) +

1

4

1

2
(−x1 + x2 + 1) =

5

8
x1 +

4

8
x2 +

1

8
.

Thus we solve the following one objective-function problem:

5

8
x1 +

4

8
x2 −→ max

provided that

x1, x2 ≥ 0

x1 + x2 ≤ 1 .

Apparently, the optimal solution is: x1 = 1, x2 = 0, that is the first technology must be
chosen.

Assume that the number of objective functions is n and the decision maker gives
N vectors: (f (l)

1 , . . . , f
(l)
n ) and the related u(l) aggregated utility function values.
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Then the k1, . . . , kn coefficients can be given by the solution of the

k1u1(f (l)
1 ) + · · ·+ knun(f (l)

n ) = u(l) (l = 1, 2, . . . , N)

equation system. We always suppose that N ≥ n, so that we have at least as many
equations as the number of unknown quantities. If the equation system is contradic-
tory, we determine the best fitting solution by the method of least squares. Suppose
that

U =











u11 · · · u1n

u21 · · · u2n

...
...

uN1 · · · uNn











és u =











u(1)

u(2)

...
u(N)











.

The formal algorithm is as follows:

Utility-Function-Method(u)

1 for i← 1 to N
2 do for j ← 1 to n

3 do uij ← uj(f (i)
j )

4 k← (UT U)−1UT u the vector of solutions
5 return k

29.1.2. Weighting method

Using this method the value-function is chosen as the linear combination of the
original object functions, that is we solve the

I
∑

i=1

αifi(x) −→ max (x ∈ X) (29.8)

problem. If we measure the certain objective functions in different dimensions, the
aggregate utility function can’t be interpreted, since we add up terms in different
units. In this case we generally normalize the objective functions. Let mi and Mi

the minimum and maximum of the fi objective function on the set X. Then the
normalized ith objective function is given by the

fi(x) =
fi(x)−mi

Mi −mi

formula, and in the (29.8) problem fi is replaced by fi:

I
∑

i=1

αifi(x) −→ max . (x ∈ X) (29.9)

It can be shown, that if all of the αi weights are positive, the optimal solutions of
(29.9) are Pareto optimal with regard to the original problem.
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Example 29.4 Consider again the case of Example 29.2. From Figure 29.3, we can see
that m1 = 0, M1 = 2, m2 = −1, and M2 = 1. Thus the normalized objective functions are:

f1(x1, x2) =
2x1 + x2 − 0

2 − 0
= x1 +

1

2
x2

and

f2(x1, x2) =
−x1 + x2 + 1

1 + 1
= −

1

2
x1 +

1

2
x2 +

1

2
.

Assume that the objective functions are equally important, so we choose equivalent weights:
α1 = α2 = 1

2
, in this way the aggregate objective function is:

1

2
(x1 +

1

2
x2) +

1

2
(−

1

2
x1 +

1

2
x2 +

1

2
) =

1

4
x1 +

1

2
x2 +

1

4
.

It is easy to see that the optimal solution on set X:

x1 = 0, x2 = 1 ,

that is, only the second technology variant can be chosen.

Suppose that α = (α1, α2, . . . , αI). The formal algorithm is as follows:

Weighting-Method(α)

1 for i← 1 to I
2 do mi ← (fi(x) −→ min)
3 Mi ← (fi(x) −→ max)
4 k ← (

∑I
i=1 αifi −→ max)

5 return k

29.1.3. Distance-dependent methods

If we normalize the objective functions, the certain normalized objective functions
most favorable value is 1 and the most unfavourable is 0. So that 1 = (1, 1, . . . , 1) is
the ideal point and 0 = (0, 0, . . . , 0) is the worst yield vector.

In the case of distance-dependent methods we either want to get nearest to the
vector 1 or get farthest from the point 0, so that we solve either the

%(f(x),1) −→ min (x ∈ X) (29.10)

or the
%(f(x),0) −→ max (x ∈ X) (29.11)

problem, where % denotes some distance function in R
I .

In practical applications the following distance functions are used most fre-
quently:

%1(a,b) =
I
∑

i=1

αi|ai − bi| (29.12)
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Figure 29.4 Minimizing distance.

%2(a,b) =

(

I
∑

i=1

αi|ai − bi|2
)

1
2

(29.13)

%∞(a,b) = max
i
{αi|ai − bi|} (29.14)

%g(a,b) =
I
∏

i=1

|ai − bi|αi . (29.15)

The %1, %1, %∞ distance functions the commonly known Minkowski distance for p =
1, 2,∞. The %g geometric distance doesn’t satisfy the usual requirements of distance
functions however, it is frequently used in practice. As we will see it later, Nash’s
classical conflict resolution algorithm uses the geometric distance as well. It is easy
to prove that the methods using the %1 distance are equivalent of the weighting
method. Notice firstly that

%1(f(x),1) =
I
∑

i=1

αi|fi(x)− 1| =
I
∑

i=1

αi|1− fi(x)| =
I
∑

i=1

αi −
I
∑

i=1

αifi(x) , (29.16)

where the first term is constant, while the second term is the objective function of
the weighting method. Similarly,

%1(f(x),0) =
I
∑

i=1

αi|fi(x)− 0| =
I
∑

i=1

αi(fi(x)− 0) =
I
∑

i=1

αifi(x) (29.17)

which is the objective function of the weighting method.
The method is illustrated in Figures 29.4. and 29.5.
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Figure 29.5 Maximizing distance.

Figure 29.6 The image of the normalized set H.

Example 29.5 Consider again the problem of the previous example. The normalized con-
sequences are shown by Figure 29.6. The two coordinates are:

f1 =
f1

2
and f2 =

f2 + 1

2
.

Choosing the α1 = α2 = 1
2

and the %2 distances, the nearest point of H to the ideal
point is

f1 =
3

5
, f2 =

4

5
.
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Hence

f1 = 2f1 = 2x1 + x2 =
6

5
and f2 = 2f1 − 1 = −x1 + x2 =

3

5
,

that is the optimal decision is:

x1 =
1

5
, x2 =

4

5
, 1 − x1 − x2 = 0 .

Therefore only the first two technology must be chosen in 20% and 80% proportion.
Let’s choose again equivalent weights (α1 = α2 = 1

2
) and the %2 distance, but look for

the farthest point of H from the ideal worst point. We can see from Figure 29.5, that the
solution is

f1 =
f1

2
, f2 = 1 ,

so

f1 = 2f1 = 1, f2 = 2f2 − 1 = 1 .

Thus the optimal decision is: x1 = 0 and x2 = 1

The formal algorithm is as follows:

Distance-Dependent-Method(%, f)

1 for i← 1 to I
2 do mi ← (fi(x) −→ min)
3 Mi ← (fi(x) −→ max)
4 fi(x)← (fi(x)−mi)/(Mi −mi)
5 k ← (%(f(x),1) −→ min) or k ← (%(f(x),0) −→ max)
6 return k

29.1.4. Direction-dependent methods

Assume that we have a f∗ point in set H, on which we’d like to improve. f∗ denotes
the present position, on which the decision maker wants to improve, or at design
level we can choose the worst point for the starting one. Furthermore, we assume
that the decision maker gives an improvement direction vector, which is denoted by
v. After that, the task is to reach the farthest possible point in set H starting from
f∗ along the v direction vector. Thus, mathematically we solve the

t −→ max (f∗ + tv ∈ H) (29.18)

optimum task, and the related decision is given by the solution of the

f(x) = f∗ + tv (29.19)

equation under the optimal t value. The method is illustrated in Figure 29.7.

Example 29.6 Let’s consider again the problem of Example 29.2, and assume that f∗ =
(0, −1), which contains the worst possible objective function values in its components. If
we want to improve the objective functions equally, we have to choose v = (1, 1). The
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Figure 29.7 Direction-dependent methods.

Figure 29.8 The graphical solution of Example 29.6

graphical solution is illustrated in Figure 29.8, that

f1 =
4

3
and f2 =

1

3
,

so the appropriate values of the decision variables are the following:

x1 =
1

3
és x2 =

2

3
.

A very rarely used variant of the method is when we diminishes the object func-
tion values systematically starting from an unreachable ideal point until a possible
solution is given. If f∗ denotes this ideal point, the (29.18) optimum task is modified
as follows:

t −→ min (f∗ − tv ∈ H) (29.20)
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Figure 29.9 The graphical solution of Example 29.7

and the appropriate decision is given by the solution of the

f = f∗ − tv (29.21)

equation.

Example 29.7 To return to the previous example, consider again that f ∗ = (2, 1) and
v = (1, 1), that is we want to diminish the object functions equally. Figure 29.9 shows the
graphical solution of the problem, in which we can see that the given solution is the same
as the solution of the previous example.

Applying the method is to solve the (29.18) or the (29.20) optimum tasks, and
the optimal decision is given by the solution of the (29.19) or the (29.21) equations.

Exercises
29.1-1 Determine the consequence space H for the following exercise:

x1 + x2 −→ max x1 − x2 −→ max

provided that

x1, x2 ≥ 0

3x1 + x2 ≤ 3

x1 + 3x2 ≤ 3 .

29.1-2 Consider the utility functions of the decision maker: u1(f1) = f1 és u2(f2) =
1
2f2. Furthermore, assume that the decision maker gave the u(0, 0) = 0, u(1, 0) =
u(0, 1) = 1

2 values. Determine the form of the aggregate utility function.
29.1-3 Solve Exercise 29.1-1 using the weighting-method without normalizing the
objective functions. Choose the α1 = α2 = 1

2 weights.
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29.1-4 Repeat the previous exercise, but do normalize the objective functions.
29.1-5 Solve Exercise 29.1-1 with normalized objective functions, α1 = α2 = 1

2
weights and minimizing the

(i) %1 distance

(ii) %2 distance

(iii) %∞distance.

29.1-6 Repeat the previous exercise, but maximize the distance from the 0 vector
instead of minimizing it.
29.1-7 Solve Exercise 29.1-1 using the direction-dependent method, choosing f∗ =
(0,−1) and v = (1, 1).
29.1-8 Repeat the previous exercise, but this time choose f∗ = ( 3

2 , 1) and v = (1, 1).

29.2. Method of equilibrium

In this chapter we assume that I decision makers interested in the selection of a
mutual decision alternative. Let fi : X 7→ R denote the objective function of the ith
decision maker, which is also called payoff function in the game theory literature.
Depending on the decision makers relationship to each other we can speak about
cooperative and non-cooperative games. In the first case the decision makers care
about only their own benefits, while in the second case they strive for an agreement
when every one of them are better off than in the non-cooperative case. In this
chapter we will discuss the non-cooperative case, while the cooperative case will be
topic of the next chapter.

Let’s denote Hi(x) for i = 1, 2, . . . , I and x ∈ X, the set of the decision alterna-
tives into which the ith decision maker can move over without the others’ support.
Evidently Hi(x) ⊆ X.

Definition 29.3 An x∗ ∈ X alternative is equilibrium if for all i and x ∈ Hi(x∗),

fi(x) ≤ fi(x∗) . (29.22)

This definition can also be formulated that x∗ is stable in the sense that none
of the decision makers can change the decision alternative from x∗ alone to change
any objective function value for the better. In the case of non-cooperative games,
the equilibrium are the solutions of the game.

For any x ∈ X and i decision maker, the set

Li(x) = {z|z ∈ Hi(x) and for all y ∈ Hi(x), fi(z) ≥ fi(y)} (29.23)

is called the set of the best answers of the ith decision maker to alternative x. It is
clear that the elements of Li(x) are those alternatives which the ith decision maker
can move over from x, and which ensure the best objective functions out of all the
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i = 2
1 2

i = 1
1
2

(1, 2)
(2, 4)

(2, 1)
(0, 5)

Figure 29.10 Game with no equilibrium.

possible alternatives. According to inequality (29.22) it is also clear that x∗ is an
equilibrium if and only if for all i = 1, 2, . . . , I, x∗ ∈ Li(x∗), that is x∗ is mutual
fixed point of the Li point-to-set maps. Thus, the existence of equilibrium can be
traced to the existence of mutual fixed point of point-to-set maps, so the problem
can be solved by the usual methods.

It is a very common case when the collective decision is made up by the personal
decisions of the certain decision makers. Let Xi denote the set of the ith decision
maker’s alternatives, let xi ∈ Xi be the concrete alternatives, and let fi(x1, . . . , xI)
be the objective function of the ith decision maker. That is the collective decision is
x = (x1, . . . , xI) ∈ X1 ×X2 × · · · ×XI = X. In this case

Hi(x1, . . . , xI) = {(x1, . . . , xi−1, zi, xi+1, . . . , xI)|zi ∈ Xi}

and the (29.22) definition of equilibrium is modified as follows:

fi(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I) ≤ fi(x∗

i , . . . , x
∗
I) . (29.24)

In the game theory literature the equilibrium is also called Nash-equilibrium.
The existence of an equilibrium is not guaranteed in general. To illustrate this

let’s consider the I = 2 case, when both decision makers can choose between to
alternatives: X1 = {1, 2} and X2 = {1, 2}. The objective function values are shown in
Figure 29.10, where the the first number in the parentheses shows the first, the second
number shows the second decision maker’s objective function value. If equilibrium
exists, it might not be unique, what can be proved by the case of constant objective
functions, when every decision alternative is an equilibrium.

If the X1, . . . ,XI sets are finite, the equilibrium can be found easily by the
method of reckoning, when we check for all of the x = (x1, . . . , xI) decision vectors
whether the component xi can be changed for the better of the fi objective function.
If the answer is yes, x is not equilibrium. If none of the components can be changed
in such manner, x is equilibrium. For the formal algorithm, let’s assume that X1 =
{1, 2, . . . , ni}.
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Equilibrium-Search

1 for i1 ← 1 to n1

2 do for i2 ← 1 to n2

3
. . .

4 do for iI ← 1 to nI

5 do key ← 0
6 for k ← 1 to n
7 do for j ← 1 to nk

8 do if fk(i1, . . . , ik−1, j, ik+1, . . . , iI) > f(i1, . . . , iI)
9 then key ← 1 and go to 10

10 if key = 0
11 then (i1, . . . , iI) is equilibrium

The existence of equilibrium is guaranteed by the following theorem.

Theorem 29.4 Assume that for all i = 1, 2, . . . , I

(i) Xi is convex, bounded and closed in a final dimensional Euclidean space;

(ii) fi is continuous on the set X;

(iii) for any fixed x1, . . . , xi−1, xi+1, . . . , xI , fi is concave in xi.

Then there is at least one equilibrium.

Determination of the equilibrium is usually based on the observation that for all
i, x∗

i is the solution of the

fi(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I) −→ max (xi ∈ Xi) (29.25)

optimum task. Writing the necessary conditions of the optimal solution (for exam-
ple the Kuhn-Tucker conditions) we can get an equality-inequality system which
solutions include the equilibrium. To illustrate this method let’s assume that

Xi = {xi|gi(xi) ≥ 0}

where xi is a finite dimensional vector and gi is a vector-valued function. In this way
(29.25) can be rewritten as follows:

fi(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
I) −→ max (gi(xi) ≥ 0) . (29.26)

In this case the Kuhn-Tucker necessary conditions are:

ui ≥ 0
gi(xi) ≥ 0

∇ifi(x) + uT
i ∇igi(xi) = 0T

uT
i gi(xi) = 0 ,

(29.27)

where ∇i denotes the gradient at xi, and ui is a vector which has the same length



1348 29. Conflict Situations

as gi. If we formulate the (29.27) conditions for i = 1, 2, . . . , I, we get an equality-
inequality system which can be solved by computer methods. It is easy to see that
(29.27) can also be rewritten to an nonlinear optimization task:

∑I
i=1 u

T
i gi(xi) −→ min

ui ≥ 0
gi(xi) ≥ 0

∇ifi(x) + uT
i ∇igi(xi) = 0T .

(29.28)

If the optimal objective function value is positive, the (29.27) system doesn’t have
a solution, and if the optimal objective function value is zero, any optimal solution
is also a solution of the (29.27) system, so the equilibrium are among the optimal
solutions. We know about the sufficiency of the Kuhn-Tucker conditions that if fi is
concave in xi with all i, the Kuhn-Tucker conditions are also sufficient, thus every
solution of (29.27) gives an equilibrium.

The formal algorithm is as follows:

Kuhn–Tucker-Equilibrium

1 for i← 1 to I
2 do gi ← ∇ifi

3 Ji ← ∇igi(xi)
4 (x1, . . . , xI)← the solution of the (29.28) optimum task
5 if

∑I
i=1 u

T
i gi(xi) > 0

6 then return "there is no equilibrium"
7 else return (x1, . . . , xI)

Example 29.8 Assume that I production plant produce some water purification device
sold into households. Let xi denote the quantity produced by the ith production plant, let
ci(xi) be the cost function of it, and let p(

∑I

j=1
xj) be the sale price, which depends on

the total quantity to be put on the market. Furthermore, be Li is the capacity of the ith
production plant. Thus, the possible Xi decision set is the [0, Li] closed interval, which can
be defined by the

xi ≥ 0
Li − xi ≥ 0

(29.29)

conditions, so

gi(xi) =
(

xi

Li − xi

)

.

The objective function of the ith production plant is the profit of that:

fi(x1, . . . , xn) = xip(x1 + · · · + xn) − ci(xi) . (29.30)

Since gi(xi) is two-dimensional, ui is a two-element vector as well, and the (29.28)
optimum task has the following form:

∑I

i=1
(u

(1)
i xi + u

(2)
i (Li − xi)) −→ min

u
(1)
i , u

(2)
i ≥ 0
xi ≥ 0

Li − xi ≥ 0

p(
∑I

j=1
xj) + xip

′(
∑I

j=1
xj) − c′

i(xi) + (u
(1)
i , u

(2)
i )
(

1

−1

)

= 0 .

(29.31)
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Let’s introduce the αi = u
(1)
i −u

(2)
i new variables, and for the sake of notational convenience

be βi = u
(2)
i , then taking account of the last condition, we get the following problem:

∑I

i=1
(−xi(p(

∑I

j=1
xj) + xip

′(
∑I

j=1
xj) − c′

i(xi)) + βiLi) −→ min

βi ≥ 0
xi ≥ 0
xi ≤ Li .

(29.32)

Let’s notice that in case of optimum βi = 0, so the last term of the objective function can
be neglected.

Consider the special case of I = 3, ci(xi) = ix3
i + xi, Li = 1, p(s) = 2 − 2s − s3. The

(29.32) problem is now simplified as follows:
∑3

i=1
xi(2 − 2s − s2 − 2xi − 2xis − 3ix2

i − 1) −→ max
xi ≥ 0
xi ≤ 1

x1 + x2 + x3 = s .

(29.33)

Using a simple computer program we can get the optimal solution:

x∗
1 = 0.1077, x∗

2 = 0.0986, x∗
3 = 0.0919 ,

which is the equilibrium as well.

Exercises
29.2-1 Let I = 2, X1 = X2 = [0, 1], f1(x1, x2) = x1 + x2 − x2

1, f2(x1, x2) =
x1 + x2 − x2

2. Formulate the (29.27) conditions and solve them as well.
29.2-2 Formulate and solve the optimum problem (29.28) for the previous exercise.

29.2-3 Let again I = 2. X1 = X2 = [−1, 1], f1(x1, x2) = −(x1 + x2)2 + x1 + 2x2,
f2(x1, x2) = −(x1 + x2)2 + 2x1 + x2. Repeat Exercise 29.2-1.
29.2-4 Repeat Exercise 29.2-2 for the problem given in the previous exercise.

29.3. Methods of cooperative games

Similarly to the previous chapter let Xi denote again the decision set of the ith
decision maker and let xi ∈ Xi be the concrete decision alternatives. Furthermore,
let fi(x1, . . . , xI) denote the objective function of the ith decision maker. Let S be
some subset of the decision makers, which is usually called coalition in the game
theory. For arbitrary S ⊆ {1, 2, . . . , I}, let’s introduce the

v(S) = max
xi∈Xi

min
xj∈Xj

∑

k∈S

fk(x1, . . . , xI) (i ∈ S, j /∈ S) (29.34)

function, which is also called the characteristic function defined on all of the subsets
of the set {1, 2, . . . , I}, if we add the v(∅) = 0 and

v({1, 2, . . . , I}) = max
xi∈Xi

I
∑

k=1

fk(x1, . . . , xI) (1 ≤ i ≤ I)
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special cases to definition (29.34).
Consider again that all of the Xi sets are finite for Xi = {1, 2, . . . , ni} , i =

1, 2, . . . , I. Be S a coalition. The value of v(S) is given by the following algorithm,
where |S| denotes the number of elements of S, k1, k2, . . . , k|S| denotes the elements
and l1, l2, . . . , lI−|S| the elements which are not in S.

Characteristic-Function(S)

1 v(S)← −M , where M a very big positive number
2 for i1 ← 1 to nk1

3
. . .

4 do for i|S| ← 1 to nk|S|

5 do for j1 ← 1 to nl1

6
. . .

7 do for jI−|S| ← 1 to nlI−|S|

8 do Z ←M , where M a very big positive number
9 V ←∑|S|

t=1 fit
(i1, . . . , i|S|, j1, . . . , jI−|S|)

10 if V < Z
11 then Z ← V
12 if Z > v(S)
13 then v(S)← Z
14 return v(S)

Example 29.9 Let’s return to the problem discussed in the previous example, and assume
that I = 3, Li = 3, p(

∑I

i=1
xi) = 10 −

∑I

i=1
xi és ci(xi) = xi + 1 for i = 1, 2, 3. Since the

cost functions are identical, the objective functions are identical as well:

fi(x1, x2, x3) = xi(10 − x1 − x2 − x3) − (xi + 1) .

In the following we determine the characteristic function. At first be S = {i}, then

v(S) = max
xi

min
xj

{xi(10 − x1 − x2 − x3) − (xi + 1)} (j 6= i) .

Since the function strictly decreases in the xj(i 6= j) variables, the minimal value of it is
given at xj = 3, so

v(S) = max
i

xi(4 − xi) − (xi + 1) = max
0≤xi≤3

(−x2
i + 3xi − 1) =

5

4
,

what is easy to see by plain differentiation. Similarly for S = {i, j}

v(S) = max
i,j

min
k 6=i,j

{(xi + xj)(10 − x1 − x2 − x3) − (xi + 1) − (xj + 1)} .

Similarly to the previous case the minimal value is given at xk = 3, so

v(S) = max
0≤xi,xj ≤3

{(xi + xj)(7 − xi − xj) − (xi + xj + 2)} = max
0≤x≤6

{x(7 − x) − (x + 2)} =

= max
0≤x≤6

{−x2 + 6x − 2} = 7
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where we introduced the new x = xi + xj variable. In the case of S = {1, 2, 3}

v(S) = max
0≤x1,x2,x3≤3

{(x1 + x2 + x3)(10 − x1 − x2 − x3) − (x1 + 1) − (x2 + 1) − (x3 + 1)} =

= max
0≤x≤9

{x(10 − x) − (x + 3)} = max
0≤x≤9

{−x2 + 9x − 3)} = 17.25 ,

where this time we introduced the x = x1 + x2 + x3 variable.

Definition (29.34) can be interpreted in a way that the v(S) characteristic func-
tion value gives the guaranteed aggregate objective function value of the S coalition
regardless of the behavior of the others. The central issue of the theory and practice
of the cooperative games is how should the certain decision makers share in the maxi-
mal aggregate profit v({1, 2, . . . , I}) attainable together. An (φ1, φ2, . . . , φI) division
is usually called imputation, if

φi ≥ v({i}) (29.35)

for i = 1, 2, . . . , I and
I
∑

i=1

φi = v({1, 2, . . . , I}) . (29.36)

The inequality system (29.35)–(29.36) is usually satisfied by infinite number of
imputations, so we have to specify additional conditions in order to select one special
element of the imputation set. We can run into a similar situation while discussing
the multi-objective programming, when we looks for a special Pareto optimal solution
using the concrete methods.

Example 29.10 In the previous case a (φ1, φ2, φ3) vector is imputation if

φ1, φ2, φ3 ≥ 1.25

φ1 + φ2, φ1 + φ3, φ2 + φ3 ≥ 7

φ1 + φ2 + φ3 = 17.2 .

The most popular solving approach is the Shapley value, which can be defined
as follows:

φi =
∑

S⊆{1,2,...,I}

(s− 1)!(I − s)!
I!

(v(S)− v(S − {i})) , (29.37)

where s denotes the number of elements of the S coalition.
Let’s assume again that the decision makers are fully cooperating, that is they

formulate the coalition {1,2,. . . ,I}, and the certain decision makers join to the coali-
tion in random order. The difference v(S)− v(S−{i}) indicates the contribution to
the S coalition by the ith decision maker, while expression (29.37) indicates the av-
erage contribution of the same decision maker. It can be shown that (φ1, φ2, . . . , φI)
is an imputation.

The Shapley value can be computed by following algorithm:
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Shapley-Value

1 for ∀S ⊆ {1, . . . , I}
2 do v(S)← Characteristic-Function(S)
3 for i← 1 to I
4 do use (29.37) for calculating φi

Example 29.11 In the previous example we calculated the value of the characteristic
function. Because of the symmetry, φ1 = φ2 = φ3 must be true for the case of Shapley
value. Since φ1 + φ2 + φ3 = v({1, 2, 3}) = 17.25, φ1 = φ2 = φ3 = 5.75. We get the same
value by formula (29.37) too. Let’s consider the φ1 value. If i /∈ S, v(S) = v(S −{i}), so the
appropriate terms of the sum are zero-valued. The non-zero terms are given for coalitions
S = {1}, S = {1, 2}, S = {1, 3} and S = {1, 2, 3}, so

φ1 =
0!2!

3!
(
5

4
− 0) +

1!1!

3!
(7 −

5

4
) +

1!1!

3!
(7 −

5

4
) +

2!0!

3!
(
69

4
− 7) =

1

6
(
10

4
+

23

4
+

23

3
+

82

4
) =

138

24
= 5.75 .

An alternative solution approach requires the stability of the solution. It is said
that the vector φ = (φ1, . . . , φI) majorizes the vector ψ = (ψ1, . . . , ψI) in coalition
S, if

∑

i∈S

φi >
∑

i∈S

ψi ,

that is the S coalition has an in interest to switch from payoff vector φ to payoff
vector ψ, or ψ is instabil for coalition S. The Neumann–Morgenstern solution
is a V set of imputations for which

(i) There is no φ,ψ ∈ V , that φ majorizes ψ in some coalition (inner stability)

(ii) If ψ /∈ V , there is φ ∈ V , that φ majorizes ψ-t in at least one coalition (outer
stability).

The main difficulty of this conception is that there is no general existence the-
orem for the existence of a non-empty V set, and there is no general method for
constructing the set V .

Exercises
29.3-1 Let I = 3, X1 = X2 = X3 = [0, 1], fi(x1, x2, x3) = x1 + x2 + x3 − x2

i (i =
1, 2, 3). Determine the v(S) characteristic function.
29.3-2 Formulate the (29.35), (29.36) condition system for the game of the previous
exercise.
29.3-3 Determine the ψi Shapley values for the game of Exercise 29.3-1.



29.4. Collective decision-making 1353

29.4. Collective decision-making

In the previous chapter we assumed that the objective functions are given by nu-
merical values. These numerical values also mean preferences, since the ith decision
maker prefers alternative x to z, if fi(x) > fi(z). In this chapter we will discuss
such methods which don’t require the knowledge of the objective functions, but the
preferences of the certain decision makers.

Let I denote again the number of decision makers, and X the set of decision
alternatives. If the ith decision maker prefers alternative x to y, this is denoted by
x �i y, if prefers alternative x to y or thinks to be equal, it is denoted by x �i y.
Assume that

(i) For all x, y ∈ X, x �i y or y �i x (or both)

(ii) For x �i y and y �i z, x �i z.

Condition (i) requires that the �i partial order be a total order, while condition (ii)
requires to be transitive.

Definition 29.5 A group decision-making function combines arbitrary individual
(�1,�2, . . . ,�I) partial orders into one partial order, which is also called the collec-
tive preference structure of the group.

We illustrate the definition of group decision-making function by some simple
example.

Example 29.12 Be x, y ∈ X arbitrary, and for all i

αi =

{

1, ha x �i y,
0, ha x ∼i y,
−1, ha x ≺i y.

Let βi, β2, . . . , βI given positive constant, and

α =

I
∑

i=1

βiαi .

The group decision-making function means:

x � y ⇐⇒ α > 0

x ∼ y ⇐⇒ α = 0

x ≺ y ⇐⇒ α < 0 .

The majority rule is a special case of it when β1 = β2 = · · · = βI = 1.

Example 29.13 An i0 decision maker is called dictator , if his or her opinion prevails in
group decision-making:

x � y ⇐⇒ x �i0 y

x ∼ y ⇐⇒ x ∼i0 y

x ≺ y ⇐⇒ x ≺i0 y .
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This kind of group decision-making is also called dictatorship.

Example 29.14 In the case of Borda measure we assume that α is a finite set and
the preferences of the decision makers is expressed by a ci(x) measure for all x ∈ X. For
example ci(x) = 1, if x is the best, ci(x) = 2, if x is the second best alternative for the ith
decision maker, and so on, ci(x) = I, if x is the worst alternative. Then

x � y ⇐⇒

I
∑

i=1

ci(x) >

I
∑

i=1

ci(y)

x ∼ y ⇐⇒

I
∑

i=1

ci(x) =

I
∑

i=1

ci(y)

x ≺ y ⇐⇒

I
∑

i=1

ci(x) <

I
∑

i=1

ci(y) .

A group decision-making function is called Pareto or Pareto function, if for
all x, y ∈ X and x �i y (i = 1, 2, . . . , I), x � y necessarily. That is, if all the decision
makers prefer x to y, it must be the same way in the collective preference of the
group. A group decision-making function is said to satisfy the condition of pairwise
independence, if any two (�1, . . . ,�I) and (�′

1, . . . ,�′
I) preference structure satisfy

the followings. Let x, y ∈ X such that for arbitrary i, x �i y if and only if x �′
i y,

and y �i x if and only if y �′
i x. Then x � y if and only if x �′ y, and y � x if and

only if y �′ x in the collective preference of the group.

Example 29.15 It is easy to see that the Borda measure is Pareto, but it doesn’t satisfy
the condition of pairwise independence. The first statement is evident, while the second
one can be illustrated by a simple example. Be I = 2, α = {x, y, z}. Let’s assume that

x �1 z �1 y

y �2 x �2 z

and

x �′
1 y �′

1 z

y �′
2 z �′

2 x .

Then c(x) = 1 + 2 = 3, c(y) = 3 + 1 = 4, thus y � x. However c′(x) = 1 + 3 = 4, c′(y) =
2 + 1 = 3, so x � y. As we can see the certain decision makers preference order between x
and y is the same in both case, but the collective preference of the group is different.

Let RI denote the set of the I-element full and transitive partial orders on
an at least three-element X set, and be � the collective preference of the group
which is Pareto and satisfies the condition of pairwise independence. Then � is
necessarily dictatorial. This result originated with Arrow shows that there is no
such group decision-making function which could satisfy these two basic and natural
requirements.
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Decision makers Alternatives Weights
1 2 . . . N

1
2
...
I

a11

a21

...
aI1

a12

a22

...
aI2

. . .

. . .

. . .

a1N

a2N

...
aIN

α1

α2

...
αI

Figure 29.11 Group decision-making table.

Example 29.16 The method of paired comparison is as follows. Be x, y ∈ X arbitrary,
and let’s denote P (x, y) the number of decision makers, to which x �i y. After that, the
collective preference of the group is the following:

x � y ⇐⇒ P (x, y) > P (y, x)

x ∼ y ⇐⇒ P (x, y) = P (y, x)

x ≺ y ⇐⇒ P (x, y) < P (y, x) ,

that is x � y if and only if more than one decision makers prefer the x alternative to y.
Let’s assume again that X consists of three elements, X = {x, y, z} and the individual
preferences for I = 3

x �1 y �1 z

z �2 x �2 y

y �3 z �3 x .

Thus, in the collective preference x � y, because P (x, y) = 2 and P (y, x) = 1. Similarly
y � z, because P (y, z) = 2 and P (z, y) = 1, and z � x, since P (z, x) = 2 and P (x, z) = 1.
Therefore x � y � z � x which is inconsistent with the requirements of transitivity.

The methods discussed so far didn’t take account of the important circumstance
that the decision makers aren’t necessarily in the same position, that is they can
have different importance. This importance can be characterized by weights. In this
generalized case we have to modify the group decision-making methods as required.
Let’s assume that X is finite set, denote N the number of alternatives. We denote
the preferences of the decision makers by the numbers ranging from 1 to N , where
1 is assigned to the most favorable, while N is assigned to most unfavorable alter-
native. It’s imaginable that the two alternatives are equally important, then we use
fractions. For example, if we can’t distinguish between the priority of the 2nd and
3rd alternatives, then we assign 2.5 to each of them. Usually the average value of the
indistinguishable alternatives is assigned to each of them. In this way, the problem
of the group decision can be given by a table which rows correspond to the decision
makers and columns correspond to the decision alternatives. Every row of the table
is a permutation of the 1, 2, . . . , N numbers, at most some element of it is replaced
by some average value if they are equally-preferred. Figure 29.11 shows the given
table in which the last column contains the weights of the decision makers.

In this general case the majority rule can be defined as follows. For all of the j
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alternatives determine first the aggregate weight of the decision makers to which the
alternative j is the best possibility, then select that alternative for the best collective
one for which this sum is the biggest. If our goal is not only to select the best, but
to rank all of the alternatives, then we have to choose descending order in this sum
to rank the alternatives, where the biggest sum selects the best, and the smallest
sum selects the worst alternative. Mathematically, be

f(aij) =
{

1, ha aij = 1,
0 otherwise

(29.38)

and

Aj =
I
∑

i=1

f(aij)αi (29.39)

for j = 1, 2, . . . , I. The j0th alternative is considered the best by the group, if

Aj0
= max

j
{Aj} . (29.40)

The formal algorithm is as follows:

Majority-Rule(A)

1 A1 ← 0, A2 ← 0, . . . , AN ← 0,max← 0
2 for i← 1 to N
3 do for j ← 1 to I
4 do if aji = 1
5 then Ai ← Ai + αj

6 if Ai > max
7 then max← Ai

8 ind← i
9 return ind

Applying the Borda measure, let

Bj =
I
∑

i=1

aijαi , (29.41)

and alternative j0 is the result of the group decision if

Bj0
= min

j
{Bj} . (29.42)

The Borda measure can be described by the following algorithm:
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Borda-Measure-Method(A,α)

1 B1 ← 0, B2 ← 0, . . . , BN ← 0,max← 0
2 for j ← 1 to N
3 do for i← 1 to I
4 do Bj ← Bj + aijαi

5 if Bj > max
6 then max← Bj

7 ind← j
8 return ind

Applying the method of paired comparison, let with any j, j′ ∈ X

P (j, j′) =
∑

{i|aij<aij′ }
αi (29.43)

which gives the weight of the decision makers who prefer the alternative j to j′. In
the collective decision

j � j′ ⇐⇒ P (j, j′) > P (j′, j) .

In many cases the collective partial order given this way doesn’t result in a clearly
best alternative. In such cases further analysis (for example using some other
method) need on the

S∗ = {j|j ∈ X and theres is no such j′ ∈ X, for which j′ � j}
non-dominated alternative set.

By this algorithm we construct a matrix consists of the {0, 1} elements, where
ajl = 1 if and only if the j alternative is better in all then alternative l. In the case
of draw ajl = 1

2 .

Paired-Comparison(A)

1 for j ← 1 to N − 1
2 do for l← j to N
3 do z ← 0
4 for i← 1 to I
5 do if aij > ail

6 then z ← z + 1
7 if z > N

2
8 then ajl ← 1
9 if z = N

2
10 then ajl ← 1

2

11 if z < N
2

12 then ajl ← 0
13 alj ← ajl

14 return A

Example 29.17 Four proposal were received by the Environmental Authority for the
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Committee Alternatives Weights
Members 1 2 3 4

1
2
3
4
5
6

1
2
1
2
3
1

3
1
3
3
1
4

2
4
2
1
4
2

4
3
4
4
2
3

0.3
0.2
0.2
0.1
0.1
0.1

Figure 29.12 The database of Example 29.17

cleaning of a chemically contaminated site. A committee consists of 6 people has to choose
the best proposal and thereafter the authority can conclude the contract for realizing the
proposal. Figure 29.12 shows the relative weight of the committee members and the personal
preferences.

Majority rule
Using the majority rule

A1 = 0.3 + 0.2 + 0.1 = 0.6

A2 = 0.2 + 0.1 = 0.3

A3 = 0.1

A4 = 0 ,

so the first alternative is the best.
Using the Borda measure

B1 = 0.3 + 0.4 + 0.2 + 0.2 + 0.3 + 0.1 = 1.5

B2 = 0.9 + 0.2 + 0.6 + 0.3 + 0.1 + 0.4 = 2.5

B3 = 0.6 + 0.8 + 0.4 + 0.1 + 0.4 + 0.2 = 2.5

B4 = 1.2 + 0.6 + 0.8 + 0.4 + 0.2 + 0.3 = 3.5 .

In this case the first alternative is the best as well, but this method shows equally good the
second and third alternatives. Notice, that in the case of the previous method the second
alternative was better than the third one.

In the case of the method of paired comparison
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Figure 29.13 The preference graph of Example 29.17

P (1, 2) = 0.3 + 0.2 + 0.1 + 0.1 = 0.7

P (2, 1) = 0.2 + 0.1 = 0.3

P (1, 3) = 0.3 + 0.2 + 0.2 + 0.1 + 0.1 = 0.9

P (3, 1) = 0.1

P (1, 4) = 0.3 + 0.2 + 0.2 + 0.1 + 0.1 = 0.9

P (4, 1) = 0.1

P (2, 3) = 0.2 + 0.1 + 0.1 = 0.4

P (3, 2) = 0.3 + 0.2 + 0.1 = 0.6

P (2, 4) = 0.3 + 0.2 + 0.2 + 0.1 + 0.1 = 0.9

P (4, 2) = 0.1

P (3, 4) = 0.3 + 0.2 + 0.1 + 0.1 = 0.7

P (4, 3) = 0.2 + 0.1 = 0.3 .

Thus 1 � 2, 1 � 3, 1 � 4, 3 � 2, 2 � 4 and 3 � 4. These references are showed by Figure
29.13. The first alternative is better than any others, so this is the obvious choice.

In the above example all three methods gave the same result. However, in several
practical cases one can get different results and the decision makers have to choose
on the basis of other criteria.

Exercises
29.4-1 Let’s consider the following group decision-making table:

Apply the majority rule.
29.4-2 Apply the Borda measure to the previous exercise.
29.4-3 Apply the method of paired comparison to Exercise 29.4-1.
29.4-4 Let’s consider now the following group decision-making table:

Repeat Exercise 29.4-1 for this exercise.
29.4-5 Apply the Borda measure to the previous exercise.
29.4-6 Apply the method of paired comparison to Exercise 29.4-4.
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Decision makers Alternatives Weights
1 2 3 4 5

1
2
3
4

1
1
5
4

3
4
4
3

2
5
1
2

5
2
3
1

4
3
2
5

3
2
2
1

Figure 29.14 Group decision-making table

Decision makers Alternatives Weights
1 2 3

1
2
3
4

1
3
2
1

2
2
1
3

3
1
3
2

1
1
1
1

Figure 29.15 Group decision-making table

29.5. Applications of Pareto games

Let I denote again the number of decision makers but suppose now that the deci-
sion makers have more than one objective functions separately. There are several
possibility to handle such problems:

(A) In the application of multi-objective programming, let αi denote the weight of
the ith decision maker, and let βi1, βi2, . . . , βic(i) be the weights of this decision
maker’s objective functions. Here c(i) denote the number of the ith decision
maker’s objective functions. Thus we can get an optimization problem with the
∑I

i=1 c(i) objective function, where all of the decision makers’ all the objective
functions mean the objective function of the problem, and the weights of the
certain objective functions are the αiβij sequences. We can use any of the
methods from Chapter 29.1. to solve this problem.

(B) We can get another family of methods in the following way. Determine an
utility function for every decision maker (as described in Chapter 29.1.1.),
which compresses the decision maker’s preferences into one function. In the
application of this method every decision maker has only one (new) objective
function, so any methods and solution concepts can be used from the previous
chapters.

(C) A third method can be given, if we determine only the partial order of the
certain decision makers defined on an alternative set by some method instead
of the construction of utility functions. After that we can use any method of
Chapter 29.4. directly.
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Decision maker Objective function Alternatives Objective function Decision
1 2 3 4 weight weigh

1
1 90 75 80 85 0.5

0.4
2 0.9 0.8 0.7 0.8 0.5

2
1 85 80 70 90 0.6

0.3
2 0.8 0.9 0.8 0.85 0.4

3
1 80 90 75 70 0.7

0.3
2 0.85 0.8 0.9 0.8 0.3

Figure 29.16 The database of Example 29.18

Example 29.18 Modify the previous chapter as follows. Let’s suppose again that we choose
from four alternatives, but assume now that the committee consists of three people and
every member of it has two objective functions. The first objective function is the technical
standards of the proposed solution on a subjective scale, while the second one are the odds
of the exact implementation. The latter one is judged subjectively by the decision makers
individually by the preceding works of the supplier. The data is shown in Figure 29.16.,
where we assume that the first objective function is judged on a subjective scale from 0
to 100, so the normalized objective function values are given dividing by 100. Using the
weighting method we get the following aggregate utility function values for the separate
decision makers:

1. Decision maker

First alternative: 0.9(0.5) + 0.9(0.5) = 0.9
Second alternative: 0.75(0.5) + 0.8(0.5) = 0.775
Third alternative: 0.8(0.5) + 0.7(0.5) = 0.75
Fourth alternative: 0.85(0.5) + 0.8(0.5) = 0.825

2. Decision maker

First alternative: 0.85(0.6) + 0.8(0.4) = 0.83
Second alternative: 0.8(0.6) + 0.9(0.4) = 0.84
Third alternative: 0.7(0.6) + 0.8(0.4) = 0.74
Fourth alternative: 0.9(0.6) + 0.85(0.4) = 0.88

3. Decision maker

First alternative: 0.8(0.7) + 0.85(0.3) = 0.815
Second alternative: 0.9(0.7) + 0.8(0.3) = 0.87
Third alternative: 0.75(0.7) + 0.9(0.3) = 0.795
Fourth alternative: 0.7(0.7) + 0.8(0.3) = 0.73

The preferences thus are the following:

1 �1 4 �1 2 �1 3, 4 �2 2 �2 1 �2 3, and 2 �3 1 �3 3 �3 4 .
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For example, in the application of Borda measure

B1 = 1(0.4) + 3(0.3) + 2(0.3) = 1.9

B2 = 3(0.4) + 2(0.3) + 1(0.3) = 2.1

B3 = 4(0.4) + 4(0.3) + 3(0.3) = 3.7

B4 = 2(0.4) + 1(0.3) + 4(0.3) = 2.3

are given, so the group-order of the four alternatives

1 � 2 � 4 � 3 .

Exercises
29.5-1 Let’s consider the following table:

Decision maker Objective function Alternatives Objective function Decision maker
1 2 3 weight weight

1
1 0.6 0.8 0.7 0.6

0.5
2 0.9 0.7 0.6 0.4

2
1 0.5 0.3 0.4 0.5

0.25
2 0.6 0.8 0.7 0.5

3
1 0.4 0.5 0.6 0.4

0.252 0.7 0.6 0.6 0.4
3 0.5 0.8 0.6 0.2

Figure 29.17

Let’s consider that the objective functions are already normalized. Use method
(A) to solve the exercise.
29.5-2 Use method (B) for the previous exercise, where the certain decision makers’
utility functions are given by the weighting method, and the group decision making
is given by the Borda measure.
29.5-3 Solve Exercise 29.5-2 using the method of paired comparison instead of
Borda measure.

29.6. Axiomatic methods

For the sake of simplicity, let’s consider that I = 2, that is we’d like to solve the
conflict between two decision makers. Assume that the consequential space H is
convex, bounded and closed in R

2, and there is given a f∗ = (f1∗, f2∗) point which
gives the objective function values of the decision makers in cases where they are
unable to agree. We assume that there is such f ∈ H that f > f∗. The conflict is
characterized by the (H, f∗) pair. The solution obviously has to depend on both H
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and f∗, so it is some function of them: φ(H, f∗).
For the case of the different solution concepts we demand that the solution

function satisfies some requirements which treated as axioms. These axioms require
the correctness of the solution, the certain axioms characterize this correctness in
different ways.

In the case of the classical Nash solution we assume the following:

(i) φ(H, f∗) ∈ H (possibility)

(ii) φ(H, f∗) ≥ f∗ (rationality)

(iii) φ(H, f∗) is Pareto solution in H (Pareto optimality)

(iv) If H1 ⊆ H and φ(H, f∗) ∈ H1, necessarily φ(H1, f∗) = φ(H, f∗) (independence
of irrelevant alternatives)

(v) Be T : R2 7→ R
2 such linear transformation that T (f1, f2) = (α1f1 +β1, α2f2 +

β2) is positive for α1 and α2. Then φ(T (H), T (f∗)) = T (φ(H, f∗)) (invariant
to affine transformations)

(vi) If H and f∗ are symmetrical, that is f1∗ = f2∗ and (f1, f2) ∈ H ⇐⇒ (f2, f1) ∈
H, then the components of φ(H, f∗) be equals (symmetry).

Condition (i) demands the possibility of the solution. Condition (ii) requires
that none of the rational decision makers agree on a solution which is worse than
the one could be achieved without consensus. On the basis of condition (iii) there
is no better solution than the friendly solution. According to requirement (iv), if
after the consensus some alternatives lost their possibility, but the solution is still
possible, the solution remains the same for the reduced consequential space. If the
dimension of any of the objective functions changes, the solution can’t change. This
is required by (v), and the last condition means that if two decision makers are in the
absolutely same situation defining the conflict, we have to treat them in the same
way in the case of solution. The following essential result originates from Nash:

Theorem 29.6 The (i)-(vi) conditions are satisfied by exactly one solution func-
tion, and φ(H, f∗) can be given by as the

(f1 − f1∗)(f2 − f2∗) −→ max ((f1, f2) ∈ H)
f1 ≥ f1∗
f2 ≥ f2∗

(29.44)

optimum problem unique solution.

Example 29.19 Let’s consider again the consequential space showed in Figure 29.3 be-
fore, and suppose that (f1∗, f2∗) = (0, −1), that is it comprises the worst values in its
components. Then Exercise (29.44) is the following:

f1(f2 + 1) −→ max

f2 ≤ f1

f2 ≤ 3 − 2f1

f2 ≥ −
1

2
f1 .



1364 29. Conflict Situations

It’s easy to see that the optimal solution is f1 = f2 = 1.

Notice that problem (29.44) is a distance dependent method, where we maximize
the geometric distance from the (f1∗, f2∗) point. The algorithm is the solution of the
(29.44) optimum problem.

Condition (vi) requires that the two decision makers must be treated equally.
However in many practical cases this is not an actual requirement if one of them is
in stronger position than the other.

Theorem 29.7 Requirements (i)-(v) are satisfied by infinite number of functions,
but every solution function comprises such 0 ≤ α ≤ 1, that the solution is given by
as the

(f1 − f1∗)α(f2 − f2∗)1−α −→ max ((f1, f2) ∈ H)
f1 ≥ f1∗
f2 ≥ f2∗

(29.45)

optimum problem unique solution.

Notice that in the case of α = 1
2 , problem (29.45) reduces to problem (29.44).

The algorithm is the solution of the (29.45) optimum problem.
Many author criticized Nash’s original axioms, and beside the modification of the

axiom system, more and more new solution concepts and methods were introduced.
Without expose the actual axioms, we will show the methods judged to be of the
utmost importance by the literature.

In the case of the Kalai–Smorodinsky solution we determine firstly the ideal
point, which coordinates are:

f∗
i = max{fi|(f1, f2) ∈ H, (f1, f2) ≥ f∗} ,

then we will accept the last mutual point of the half-line joining f∗ to the ideal point
and H as solution. Figure 29.18. shows the method. Notice that this is an direction
dependent method, where the half-line shows the direction of growing and f∗ is the
chosen start point.

The algorithm is the solution of the following optimum problem.

t −→ max

provided that
f∗ + t(f∗ − f∗) ∈ H .

Example 29.20 In the case of the previous example f∗ = (0, −1) and f ∗ = (2, 1). We
can see in Figure 29.19, that the last point of the half-line joining f∗ to f ∗ in H is the
intersection point of the half-line and the section joining (1, 1) to (2, −1).

The equation of the half-line is

f2 = f1 − 1 ,

while the equation of the joining section is

f2 = −2f1 + 3 ,
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Figure 29.18 Kalai–Smorodinsky solution.

Figure 29.19 Solution of Example 29.20

so the intersect point: f1 = 4
3
, f2 = 1

3
.

In the case of the equal-loss method we assume, that starting from the ideal
point the two decision makers reduce the objective function values equally until they
find a possible solution. This concept is equivalent to the solution of the

t −→ min ((f∗
1 − t, f∗

2 − t) ∈ H) (29.46)

optimum problem. Let t∗ denote the minimal t value, then the (f∗
1 −t∗, f∗

2 −t∗) point
is the solution of the conflict. The algorithm is the solution of the (29.46) optimum
problem.

Example 29.21 In the case of the previous example f ∗ = (2, 1), so starting from this point
going by the 45◦ line, the first possible solution is the f1 = 4

3
, f2 = 1

3
point again.
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Figure 29.20 The method of monotonous area.

In the case of the method of monotonous area the (f1, f2) solution is given by
as follows. The linear section joining (f1∗, f2∗) to (f1, f2) divides the set H into two
parts, if (f1, f2) is a Pareto optimal solution. In the application of this concept we
require the two areas being equal. Figure 29.20 shows the concept. The two areas
are given by as follows:

∫ f1

f1∗

(g(t)− f2∗)dt− 1
2

(f1 − f1∗)(g(f1)− f2∗)

and
1
2

(f1 − f1∗)(g(f1)− f2∗) +
∫ f∗

1

f1

(g(t)− f∗
2 )dt

where we suppose that f2 = g(f1) defines the graph of the Pareto optimal solution.
Thus we get a simple equation to determine the unknown value of f1.

The algorithm is the solution of the following nonlinear, univariate equation:

∫ f1

f1∗

(g(t)− f2∗)dt−
∫ f1∗

f1

(g(t)− f∗
2 )dt− (f1 − f1∗)(g(f1)− f2∗) = 0 .

Any commonly known (bisection, secant, Newton’s method) method can be used to
solve the problem.

Exercises
29.6-1 Consider that H = {(f1, f2)|f1, f2 ≥ 0, f1 + 2f2 ≤ 4}. Be f1∗ = f2∗ = 0. Use
the (29.44) optimum problem.
29.6-2 Assume that the two decision makers are not equally important in the
previous exercise. α = 1

3 , 1− α = 2
3 . Solve the (29.45) optimum problem.

29.6-3 Use the Kalai–Smorodinsky solution for Exercise 29.6-1
29.6-4 Use the equal-loss method for Exercise 29.6-1
29.6-5 Use the method of monotonous area for Exercise 29.6-1



Notes for Chapter 29 1367

Problems

29-1 Első feladat címe
Prove that the solution of problem (29.9) is Pareto optimal for any positive
α1, α2, . . . , αI values.
29-2 Masodik feladat címe
Prove that the distance dependent methods always give Pareto optimal solution for
%1. Is it also true for %∞?
29-3 Harmadik feladat címe
Find a simple example for which the direction dependent methods give non Pareto
optimal solution.
29-4 Negyedik feladat címe
Suppose in addition to the conditions of 29.4. that all of the fi functions are strictly
concave in xi. Give an example for which there are more than one equilibrium.
29-5 Ötödik feladat címe
Prove that the Shapley values result imputation and satisfy the (29.35)–(29.36) con-
ditions.
29-6 Hatodik feladat címe
Solve such a group decision making table where the method of paired comparison
doesn’t satisfy the requirement of transitivity. That is there are such i, j, k alterna-
tives for which i � j, j � k, but k � i.
29-7 Hetedik feladat címe
Construct such an example, where the application of Borda measure equally qualifies
all of the alternatives.
29-8 Nyolcadik feladat címe
Prove that using the Kalai–Smorodinsky solution for non convex H, the solution is
not necessarily Pareto optimal.
29-9 Kilencedik feladat címe
Show that for non convex H, neither the equal-loss method nor the method of
monotonous area can guarantee Pareto optimal solution.

Chapter Notes

Readers interested in multi-objective programming can find addition details and
methods related to the topic in the [220] book. There are more details about the
method of equilibrium and the solution concepts of the cooperative games in the
[67] monograph. The [225] monograph comprises additional methods and formulas
from the methodology of group decision making. Additional details to Theorem
29.6 originates from Hash can be found in [166]. One can read more details about
the weakening of the conditions of this theorem in [94]. Details about the Kalai–
Smorodinsky solution, the equal-loss method and the method of monotonous area
can found respectively in [122], [45] and [3]. Note finally that the [228] summary
paper discuss the axiomatic introduction and properties of these and other newer
methods.
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The results discussed in this chapter can be found in the book of Molnár Sándor
and Szidarovszky Ferenc [157] in details.



30. General Purpose Computing on
Graphics Processing Units

GPGPU stands for General-Purpose computation on Graphics Processing Units,
also known as GPU Computing. Graphics Processing Units (GPU ) are highly par-
allel, multithreaded, manycore processors capable of very high computation and data
throughput. Once specially designed for computer graphics and programmable only
through graphics APIs, today’s GPUs can be considered as general-purpose parallel
processors with the support for accessible programming interfaces and industry-
standard languages such as C.

Developers who port their applications to GPUs often achieve speedups of or-
ders of magnitude vs. optimized CPU implementations. This difference comes from
the high floating point performance and peak memory bandwidth of GPUs. This is
because the GPU is specialized for compute-intensive, highly parallel computation—
exactly what graphics rendering is about—and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow con-
trol. From the developer’s point of view this means that hardware latencies are not
hidden, they must be managed explicitly, and writing an efficient GPU program is
not possible without the knowledge of the architecture.

Another reason of discussing GPGPU computing as a specific field of computer
science is that although a GPU can be regarded as a parallel system, its architecture
is not a clean implementation of parallel computing models (see Chapter 15 of this
book titled Parallel Computations). Instead, it has the features of many different
models, like pipelines, vector or array processors, Single-Instruction Multiple-
Data (SIMD) machines, stream-processors, multi-processors connected via shared
memory, hard-wired algorithms, etc. So, when we develop solutions for this special
architecture, the ideas applicable for many different architectures should be com-
bined in creative ways.

GPUs are available as graphics cards, which must be mounted into computer sys-
tems, and a runtime software package must be available to drive the computations.
A graphics card has programmable processing units, various types of memory and
cache, and fixed-function units for special graphics tasks. The hardware operation
must be controlled by a program running on the host computer’s CPU through Ap-
plication Programming Interfaces (API ). This includes uploading programs
to GPU units and feeding them with data. Programs might be written and compiled



1370 30. General Purpose Computing on Graphics Processing Units

Graphics API programming model CUDA programming model

Figure 30.1 GPU programming models for shader APIs and for CUDA. We depict here a Shader
Model 4 compatible GPU. The programmable stages of the shader API model are red, the fixed-
function stages are green.

from various programming languages, some originally designed for graphics (like
Cg [168] or HLSL [154]) and some born by the extension of generic programming
languages (like CUDA C). The programming environment also defines a program-
ming model or virtual parallel architecture that reflects how programmable and
fixed-function units are interconnected. Interestingly, different programming models
present significantly different virtual parallel architectures (Figure 30.1). Graphics
APIs provide us with the view that the GPU is a pipeline or a stream-processor
since this is natural for most of the graphics applications. CUDA [169] or OpenCL
[126], on the other hand, gives the illusion that the GPU is a collection of multi-
processors where every multiprocessor is a wide SIMD processor composed of scalar
units, capable of executing the same operation on different data. The number of
multiprocessors in a single GPU can range nowadays up to a few hundreds and a
single multiprocessor typically contains 8 or 16 scalar units sharing the instruction
decoder.

The total number of scalar processors is the product of the number of multi-
processors and the number of SIMD scalar processors per multiprocessor, which can
be well over a thousand. This huge number of processors can execute the same pro-
gram on different data. A single execution of the program is called the thread. A
multiprocessor executes a thread block. All processors have some fast local mem-
ory, which is only accessible to threads executed on the same processor, i.e. to a
thread block. There is also global device memory to which data can be uploaded
or downloaded from by the host program. This memory can be accessed from mul-
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tiprocessors through different caching and synchronization strategies. Compared to
the CPU, this means less transistors for caching, less cache performance in general,
but more control for the programmer to make use of the memory architecture in an
efficient way.

The above architecture favours the parallel execution of short, coherent compu-
tations on compact pieces of data. Thus, the main challenge of porting algorithms to
the GPU is that of parallelization and decomposition to independent computational
steps. GPU programs, which perform such a step when executed by the processing
units, are often called kernels or shaders, the former alludes to the parallel data
processing aspect and the latter is a legacy of the fundamental graphics task: the
simulation of light reflection at object surfaces, better known as shading.

GPU programming languages and control APIs have grown pretty similar to each
other in both capabilities and syntax, but they can still be divided into graphics
and GPGPU solutions. The two approaches can be associated with two different
programmer attitudes. While GPGPU frameworks try to add some constructs to
programming languages to prepare regular code for parallel execution, graphics APIs
extend previously very limited parallel shader programs into flexible computational
tools. This second mindset may seem obsolete or only relevant in specific graphics-
related scenarios, but in essence it is not about graphics at all: it is about the
implicit knowledge of how parallel algorithms work, inherent to the incremental
image synthesis pipeline. Therefore, we first discuss this pipeline and how the GPU
device is seen by a graphics programmer. This will not only make the purpose and
operation of device components clear, but also provides a valid and tried approach
to general purpose GPU programming, and what GPU programs should ideally
look like. Then we introduce the GPGPU approach, which abandons most of the
graphics terminology and neglects task-specific hardware elements in favour of a
higher abstraction level.

30.1. The graphics pipeline model

The graphics pipeline model provides an abstraction over the GPU hardware where
we view it as a device which performs incremental image synthesis [221] (see
Chapter 22 of this book, titled Computer Graphics of this book). Incremental image
synthesis aims to render a virtual world defined by a numerical model by transform-
ing it into linear primitives (points, lines, triangles), and rasterizing these primitives
to pixels of a discrete image. The process is composed of several algorithmic steps,
which are grouped in pipeline stages. Some of these stages are realized by dedicated
hardware components while others are implemented through programs run by GPUs.
Without going into details, let us recap the image synthesis process (Figure 30.2):

• The virtual world is a collection of model instances. The models are approxi-
mated using triangle meshes. This is called .

• In order to perform shading, the objects have to be transformed into the coordi-
nate system where the camera and lights are specified. This is either the world
space or the camera space.
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Figure 30.2 Incremental image synthesis process.

• Triangle vertices are projected on-screen according to the camera settings. Where
a vertex should appear on the screen is found by applying the camera transfor-
mation, the perspective transformation, and finally the viewport trans-
formation. In camera space the camera is in the origin and looks at the −z
direction. Rays originating at the camera focus, called the eye position, and
passing through points on the window that represent the pixels of our display
form a perspective bundle. The role of perspective transformation is to convert
this perspective bundle into a parallel bundle of rays, thus to replace perspec-
tive projection by a parallel projection. After perspective transformation, the
vertices are in normalized device space where the visible volume is an axis
aligned cube defined by inequalities −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.
Parts of the geometric primitives that are outside of this volume are removed
by clipping. Normalized device space is further transformed to screen space,
where the target image resolution and position are taken into account. Points of
normalized device space coordinates x = −1, y = −1 are mapped to the lower
left corner of the viewport rectangle on the screen. Points of x = 1, y = 1 are
projected to the upper right corner. Meanwhile, the z range of −1 ≤ z ≤ 1 is
converted to [0, 1].

• In screen space every projected triangle is rasterized to a set of pixels. When an
internal pixel is filled, its properties, including the z coordinate, also called the
depth value, and shading data are computed via incremental linear interpo-
lation from the vertex data. For every pixel, a shading color is computed from
the interpolated data. The shading color of a pixel inside the projection of the
triangle might be the color interpolated from the vertex colors. Alternatively,
we can map images called textures onto the meshes. Texture images are 2D
arrays of color records. An element of the texture image is called the texel.
How the texture should be mapped onto triangle surfaces is specified by texture
coordinates assigned to every vertex.
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• Pixel colors are finally written to the frame buffer that is displayed on the
computer screen. Besides the frame buffer, we maintain a depth buffer (also
called z-buffer or depth stencil texture), containing screen space depth, which
is the z coordinate of the point whose color value is in the frame buffer. Whenever
a triangle is rasterized to a pixel, the color and the depth are overwritten only if
the new depth value is less than the depth stored in the depth buffer, meaning
the new triangle fragment is closer to the viewer. As a result, we get a rendering
of triangles correctly occluding each other in 3D. This process is commonly called
the depth buffer algorithm. The depth buffer algorithm is also an example
of a more general operation, which computes the pixel data as some function
of the new data and the data already stored at the same location. This general
operation is called merging.

30.1.1. GPU as the implementation of incremental image synthe-
sis

The GPU architecture as presented by the graphics API is the direct implementation
of the image synthesis pipeline (left part of Figure 30.1). This pipeline is configured
by the CPU via graphics API calls, and its operation is initiated by the draw call. A
sequence of draw calls during which the configuration of the pipeline does not change
(but the inputs do) is called a pass. A single draw call operates on a sequence of
vertices, the attributes of which are stored in a vertex buffer.

Vertices are expected to be specified in modeling space with homogeneous coor-
dinates. A point of Cartesian coordinates (x, y, z) can be defined by the quadruple
of homogeneous coordinates [xw, yw, zw,w] using an arbitrary, non-zero scalar
w (for more details see Chapter 21 Computer Graphics of this book). This represen-
tation owns its name to the fact that if the elements of the quadruple are multiplied
by the same scalar, then the represented point will not change. From homogeneous
quadruple [X,Y,Z,w] the Cartesian coordinates of the same point can be obtained
by homogeneous division, that is as (X/w, Y/w,Z/w). Homogeneous coordinates
have several advantages over Cartesian coordinates. When homogeneous coordinates
are used, even parallel lines have an intersection (an ideal point,) thus the singu-
larity of the Euclidean geometry caused by parallel lines is eliminated. Homogeneous
linear transformations include perspective projection as well, which has an im-
portant role in rendering, but cannot be expressed as a linear function of Cartesian
coordinates. Most importantly, the widest class of transformations that preserve
lines and planes are those which modify homogeneous coordinates linearly.

Having set the vertex buffer, vertices defined by their coordinates and attributes
like texture coordinates or color begin their journey down the graphics pipeline,
visiting processing stages implemented by programmable shader processors or fixed-
function hardware elements. We consider these stages one-by-one.

Tessellation If the vertices do not directly define the final triangle mesh, but they
are control points of a parametric surface or define just a coarse version of the mesh,
the first step is the development of the final mesh, which is called tessellation. As
the programmability of this stage is limited and its GPGPU potential is small, we
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do not discuss this stage further but assume that the vertex buffer contains the fine
mesh that needs no tessellation.

Vertex processing Objects must be transformed to normalized device space
for clipping, which is typically executed by a homogeneous linear transformation.
Additionally, GPUs may also take the responsibility of illumination computation
at the vertices of the triangle mesh. These operations are executed in the vertex
shader. From a more general point of view, the vertex shader gets a single vertex at
a time, modifies its attributes, including position, color, and texture coordinates, and
outputs the modified vertex. Vertices are processed independently and in parallel.

The geometry shader The geometry shader stage receives vertex records
along with primitive information. It may just pass them on as in the fixed-
function pipeline, or spawn new vertices. Optionally, these may be writ-
ten to an output buffer, which can be used as an input vertex buffer in
a consecutive pass. A typical application of the geometry shader is proce-
dural modeling, when a complex model is built from a single point or a
triangle [148].

While vertex shaders have evolved from small, specialized units to general stream
processors, they have kept the one record of output for every record of input scheme.
The geometry shader, on the other hand, works on vertex shader output records
(processed vertices), and outputs a varying (but limited) number of similar records.

Clipping The hardware keeps only those parts of the primitives that are inside
an axis aligned cube of corners (−1,−1,−1) and (1, 1, 1) in normalized device space.
In homogeneous coordinates, a point should meet the following requirements to be
inside:

−w ≤ x ≤ w, −w ≤ y ≤ w, −w ≤ z ≤ w .
This formulation complies to the OpenGL [167] convention. It is valid e.g. in the
Cg language when compiling for an OpenGL vertex shader profile. The last pair of
inequalities can also be defined as 0 ≤ z ≤ w, as Direct3D assumes. This is the
case for Cg Direct3D profiles and in the HLSL standard. The difference is hidden
by compilers which map vertex shader output to what is expected by the clipping
hardware.

Clipping is executed by a fixed-function hardware of the GPU, so its operation
can neither be programmed nor modified. However, if we wish our primitives to
continue their path in further stages of the pipeline, the conditions of the clipping
must be satisfied. In GPGPU, the clipping hardware is considered as a stream
filter. If it turns out that a data element processed by vertex and geometry shader
programs needs to be discarded, vertices should be set to move the primitive out of
the clipping volume. Then the clipping hardware will delete this element from the
pipeline.

After clipping the pipeline executes , that is, it converts homogeneous coordinates
to Cartesian ones by dividing the first three homogeneous coordinates by the fourth
(w). The points are then transformed to where the first two Cartesian coordinates
select the pixel in which this point is visible.
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Rasterization with linear interpolation The heart of the pipeline is the non-
programmable rasterization stage. This is capable of converting linear primitives
(triangles, line segments, points) into discrete fragments corresponding to digital
image pixels. More simply put, it draws triangles if the screen coordinates of the
vertices are given. Pipeline stages before the rasterizer have to compute these vertex
coordinates, stages after it have to process the fragments to find pixel colors.

Even though the base functionality of all stages can be motivated by rasteriza-
tion, GPGPU applications do not necessarily make use of drawing triangles. Still,
the rasterizer can be seen to work as a stream expander, launching an array of frag-
ment computations for all primitive computations, only the triangles have to be set
up cleverly.

Rasterization works in screen space where the x, y coordinates of the vertices
are equal to those integer pixel coordinates where the vertices are projected. The
vertices may have additional properties, such as a z coordinate in screen space, tex-
ture coordinates and color values. When a triangle is rasterized, all those pixels are
identified which fall into the interior of the projection of the triangle. The prop-
erties of the individual pixels are obtained from the vertex properties using linear
interpolation.

Fragment shading The fragment properties interpolated from vertex properties
are used to find the fragment color and possibly a modified depth value. The classical
operation for this includes fetching the texture memory addressed by the interpolated
texture coordinates and modulating the result with the interpolated color.

Generally, fragment shader programs get the interpolated properties of the frag-
ment and output the color and optionally modify the depth of the fragment. Like the
vertex shader, the fragment shader is also one-record-in, one-record-out type pro-
cessor. The fragment shader is associated with the target pixel, so it cannot write
its output anywhere else.

Merging When final fragment colors are computed, they may not directly be
written to the image memory, but the output merger stage is responsible for the
composition. First, the depth test against the depth buffer is performed. Note that
if the fragment shader does not modify the z value, depth testing might be moved
before the execution of the fragment shader. This early z-culling might improve
performance by not processing irrelevant fragments.

Finally, the output merger blends the new fragment color with the existing pixel
color, and outputs the result. This feature could implement blending needed for
transparent surface rendering (Figure 30.3).

In GPGPU, blending is mainly useful if we need to find the sum, minimum or
maximum of results from consecutive computations without a need of reconfiguring
the pipeline between them.
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Figure 30.3 Blending unit that computes the new pixel color of the frame buffer as a function of
its old color (destination) and the new fragment color (source).

30.2. GPGPU with the graphics pipeline model

In general purpose programming, we are used to concepts like input data, tempo-
rary data, output data, and functions that convert input data to temporary and
finally to output data according to their parameters. If we wish to use the GPU
as presented by a graphics API, our programming concepts should be mapped onto
the concepts of incremental image synthesis, including geometric primitives, ver-
tex/primitive/fragment processing, rasterization, texturing, merging, and final im-
age. There are many different possibilities to establish this correspondence, and their
comparative advantages also depend on the actual algorithm. Here we consider a few
general approaches that have proven to be successful in high performance computing
applications. First, we discuss how our general purpose programming concepts can
be related to GPU features.

30.2.1. Output

GPUs render images, i.e. two-dimensional arrays of pixels. The render target can
be the frame buffer that is displayed or an output texture (in the latter case, the pixel
is often referred to as a texel). In GPGPU the output is usually a texture since texels
can be stored in floating point format unlike the final frame buffer values that are
unsigned bytes. Furthermore, textures can be used later on as inputs of subsequent
computation passes, i.e. the two-dimensional output texture can be interpreted as
one or two-dimensional input texture in the next rendering pass, or as a single layer
of a three-dimensional texture. In older GPUs, a pixel was capable of storing at most
five floating point values since a color is typically identified by red, green, blue, and
opacity values, and hidden surface elimination needed a single distance value, which
is the z coordinate of the point in screen coordinates. Later, with the emergence
of multiple render targets, a pixel could be associated with several, e.g. four
textures, which means that the maximum size of an output record could grow to 17
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floats. In current, most advanced Shader Model 5.0 GPUs even this limitation has
been lifted, so a single pixel can store a list of varying number of values.

Which pixel is targeted by the rendering process is determined by the geometric
elements. Each primitive is transformed to screen space and its projection is raster-
ized which means that those pixels are targeted that are inside the projection. If
more than one element is sent down the pipeline, their projections may overlap, so
the pixel value is calculated multiple times. The merging unit combines these par-
tial results, it may keep only one, e.g. the fragment having minimal screen space z
coordinate if depth testing is enabled, or it may add up partial results using blending.

An important property of the render target is that it can be read directly by none
of the shader processors, and only the fragment shader processor can indirectly write
into it via the possible merging operation. Different fragment shaders are assigned
to different parts of the render target, so no synchronization problem may occur.

30.2.2. Input

In image synthesis the inputs are the geometry stream and the textures used to
color the geometry. As a triangle mesh geometry has usually no direct meaning in
a GPGPU application, we use the geometry stream only as a control mechanism to
distribute the computational load among the shader processors. The real GPGPU
input will be the data stored in textures. The texture is a one-, two- or three-
dimensional array of color data elements, which can store one, two, three or four
scalars. In the most general case, the color has red, green, blue and opacity channels.
These color values can be stored in different formats including, for example, unsigned
bytes or 32 bit floats. From the point of view of GPGPU, 32 bit floats are the most
appropriate.

A one-dimensional float texture is similar to the linear CPU memory where
the usual data structures like arrays, lists, trees etc. can be encoded. However, the
equivalence of the CPU memory and the GPU texture fails in two important aspects.
In one, the texture is poorer, in the other, it is better than the linear CPU memory.

An apparent limitation is that a texture is parallel read-only for all pro-
grammable shaders with the exception of the render target that cannot be read
by the shaders and is accessible only for the merger unit. Read-modify-write cycles,
which are common in the CPU memory, are not available in shader programs. GPU
designers had a good reason not to allow read-modify-write cycles and to classify
textures as parallel read-only and exclusive write-only. In this way, the writes do not
have to be cached and during reads caches get never invalidated.

On the other hand, the texture memory has much more addressing modes than a
linear memory, and more importantly, they are also equipped with built-in texture
filters. With the filters, a texture is not only an array of elements, but also a finite
element representation of a one-, two-, or three-dimensional spatial function (refer
to Section 30.7 to learn more of the relation between finite element representations
and textures).

For one-dimensional textures, we can use linear filtering, which means that if
the texture coordinate u points to a location in between two texels of coordinates U
and U + 1, then the hardware automatically computes a linear interpolation of the
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two texel values. Let these texels be T (U) and T (U + 1). The filtered value returned
for u is then

T (u) = (1− u∗)T (U) + u∗T (U + 1), where u∗ = u− U .
Two-dimensional textures are filtered with bi-linear filtering taking the four

texels closest to the interpolated texture coordinate pair (u, v). Let these be T (U, V ),
T (U + 1, V ), T (U + 1, V + 1), and T (U, V + 1). The filtered value returned for (u, v)
is then

T (U, V )u∗v∗ + T (U + 1, V )(1− u∗)v∗ + T (U + 1, V + 1)(1− u∗)(1− v∗)

+T (U, V + 1)u∗(1− v∗),

where u∗ = u− U and v∗ = v − V .
For three-dimensional textures, tri-linear filtering is implemented.

30.2.3. Functions and parameters

As the primitives flow through the pipeline, shader processors and fixed-function
elements process them, determining the final values in each pixel. The programs of
shader processors are not changed in a single rendering pass, so we can say that each
pixel is computed by the very same program. The difference of pixel colors is due
to data dependencies. So, in conclusion a GPU can be regarded as a hardware that
computes an array of records.

In the GPU, primitives are processed by a series of processors that are either
programmable or execute fixed algorithms while output pixels are produced. It means
that GPUs can also be seen as stream processors. Vertices defining primitives enter
a single virtual stream and are first processed by the vertex shader. With stream
processing terminology, the vertex shader is a mapping since it applies a function
to the vertex data and always outputs one modified vertex for each input vertex. So,
the data frequency is the same at the output as it was at the input. The geometry
shader may change the topology and inputting a single primitive, it may output
different primitives having different number of vertices. The data frequency may
decrease, when the stream operation is called reduction, or may increase, when it
is called expansion. The clipping unit may keep or remove primitives, or may even
change them if they are partially inside of the clipping volume. If we ignore partially
kept primitives, the clipping can be considered as a . By setting the coordinates of
the vertices in the vertex shader to be outside of the clipping volume, we can filter
this primitive out of the further processing steps. Rasterization converts a primitive
to possibly many fragments, so it is an expansion. The fragment shader is also a
mapping similarly to the vertex shader. Finally, merging may act as a selection,
for example, based on the z coordinate or even as an accumulation if blending is
turned on.

Shader processors get their stream data via dedicated registers, which are filled
by the shader of the preceding step. These are called varying input. On the other
hand, parameters can also be passed from the CPU. These parameters are called
uniform input since they are identical for all elements of the stream and cannot
be changed in a pass.
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Figure 30.4 GPU as a vector processor.

30.3. GPU as a vector processor

If the computation of the elements is done independently and without sharing tem-
porary results, the parallel machines are called vector processors or array proces-
sors. As in the GPU hardware the fragment shader is associated with the elements
of the output data, we use the fragment shader to evaluate output elements. Of
course, the evaluation in a given processor must also be aware which element is be-
ing computed, which is the fundamental source of data dependency (it would not
make sense to compute the very same data many times on a parallel machine). In
the fragment shader, the index of the data element is in fact the pair of the pixel
coordinates. This is available in screen space as a pair of two integers specifying the
row and the column where the pixel is located.

In the simplest, but practically the most important case, we wish to have a result
in all pixels in a single rendering pass. So we have to select a geometric primitive that
is mapped to all pixels in screen space and a single pixel is mapped only once. Such a
geometric primitive is the virtual display itself, thus we should render a rectangle or a
quadrilateral that represents the window of our virtual camera. In screen space, this
is the viewport rectangle, in clipping space, this is a square on the x, y plane and
having corners in homogeneous coordinates (−1,−1, 0, 1), (1,−1, 0, 1), (1, 1, 0, 1),
(−1, 1, 0, 1). This rectangle is also called the full screen quad and is processed by
the hardware as two triangles (Figure 30.4).

Suppose that we want to compute an output array y of dimension N from an
input array x of possibly different dimension M and a global parameter p with
function F :

yi = F (i,x, p), i = 1, . . . , N .

To set up the GPU for this computation, we assign output array y to the output
texture that is the current render target. Texture size is chosen according to the out-
put size, and the viewport is set to cover the entire render target. A two-dimensional
array of H horizontal resolution and V vertical resolution is capable of storing H×V
elements. If H × V ≥ N, then it is up to us how horizontal and vertical resolutions
are found. However, GPUs may impose restrictions, e.g. they cannot be larger than
212 or, if we wish to use them as input textures in the next pass or compute binary
reductions, the resolutions are preferred to be powers of two. If power of two dimen-
sions are advantageous but the dimension of the array is different, we can extend
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the array by additional void elements.
According to vector processing principles, different output values are computed

independently without sharing temporary results. As in the GPU hardware the frag-
ment shader is associated with the elements of the output data and can run inde-
pendently of other elements, we use the fragment shader to evaluate function F. To
find its parameters, we need to know i, i.e. which element is currently computed, and
should have an access to input array x. The simplest way is to store the input array
as an input texture (or multiple input textures if that is more convenient) since the
fragment shader can access textures.

The only responsibility of the CPU is to set the uniform parameters, specify the
viewport and send a full screen quad down the pipeline. Uniform parameters select
the input texture and define global parameter p. Assuming the OpenGL API, the
corresponding CPU program in C would look like the following:

StartVectorOperation( ) {
Set uniform parameters p and arrayX identifying the input texture

glViewport(0, 0, H, V); // Set horizontal and vertical resolutions, H and V
glBegin(GL_QUADS); // The next four vertices define a quad

glVertex4f(-1,-1, 0, 1); // Vertices assuming normalized device space
glVertex4f(-1, 1, 0, 1);
glVertex4f( 1, 1, 0, 1);
glVertex4f( 1,-1, 0, 1);

glEnd( );
}

Note that this program defines the rectangle directly in normalized device space
using homogeneous coordinates passed as input parameters of the glVertex4f func-
tions. So in the pipeline we should make sure that the vertices are not transformed.

For the shader program, the varying inputs are available in dedicated registers
and outputs must also be written to dedicated registers. All of these registers are of
type float4, that is, they can hold 4 float values. The role of the register is explained
by its name. For example, the current value of the vertex position can be fetched
from the POSITION register. Similar registers can store the texture coordinates
or the color associated with this vertex.

The vertex shader gets the position of the vertex and is responsible for trans-
forming it to the normalized device space. As we directly defined the vertices in
normalized device space, the vertex shader simply copies the content of its input
POSITION register to its output POSITION register (the input and output classi-
fication is given by the in and out keywords in front of the variable names assigned
to registers):

void VertexShader( in float4 inputPos : POSITION,
out float4 outputPos : POSITION )

{
outputPos = inputPos;

}

The geometry shader should keep the rectangle as it is without changing the
vertex coordinates. As this is the default operation for the geometry shader, we do
not specify any program for it. The rectangle leaving the geometry shader goes to
the clipping stage, which keeps it since we defined our rectangle to be inside the
clipping region. Then, Cartesian coordinates are obtained from the homogeneous
ones by dividing the first three coordinates by the fourth one. As we set all fourth
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homogeneous coordinates to 1, the first three coordinates are not altered. After ho-
mogeneous division, the fixed-function stage transforms the vertices of the rectangle
to the vertices of a screen space rectangle having the x, y coordinates equal to the
corners of the viewport and the z = 0 coordinate to 0.5. Finally, this rectangle is
rasterized in screen space, so all pixels of the viewport are identified as a target, and
the fragment shader is invoked for each of them.

The fragment shader is our real computing unit. It gets the input array and
global parameter p as uniform parameters and can also find out which pixel is being
computed by reading the WPOS register:

float FragmentShaderF(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT arrayX, // input array
uniform float p // global parameter p
) : COLOR // output is interpreted as a pixel color

{
float yi = F(index, arrayX, p); // F is the function to be evaluated
return yi;

}

In this program two input parameters were declared as uniform inputs by the
uniform keyword, a float parameter p and the texture identification arrayX. The
type of the texture is samplerRECT that determines the addressing modes how a
texel can be selected. In this addressing mode, texel centers are on a two-dimensional
integer grid. Note that here we used a different syntax to express what the output of
the shader is. Instead of declaring a register as out, the output is given as a return
value and the function itself, and is assigned to the output COLOR register.

30.3.1. Implementing the SAXPY BLAS function

To show concrete examples, we first implement the level 1 functionality of the Ba-
sic Linear Algebra Subprograms (BLAS) library (http://www.netlib.org/blas/)
that evaluates vector functions of the following general form:

y = px + y,

where x and y are vectors and p is a scalar parameter. This operation is called
SAXPY in the BLAS library. Now our fragment shader inputs two textures, vector
x and the original version of vector y. One fragment shader processor computes a
single element of the output vector:

float FragmentShaderSAXPY(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT arrayX, // input array x
uniform samplerRECT arrayY, // original version of y
uniform float p // global parameter p
) : COLOR // output is interpreted as a pixel color

{
float yoldi = texRECT(arrayY, index); // yoldi = arrayY[index]
float xi = texRECT(arrayX, index); // xi = arrayX[index]
float yi = p * xi + yoldi;
return yi;

}

Note that instead of indexing an array of CPU style programming, here we fetch
the element from a texture that represents the array by the texRECT Cg function.
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The first parameter of the texRECT function is the identification number of a two-
dimensional texture, which is passed from the CPU as a uniform parameter, and the
second is the texture address pointing to the texel to be selected.

Here we can observe how we can handle the limitation that a shader can only
read textures but is not allowed to write into it. In the operation, vector y is an input
and simultaneously also the output of the operation. To resolve this, we assign two
textures to vector y. One is the original vector in texture arrayY, and the other one
is the render target. While we read the original value, the new version is produced
without reading back from the render target, which would not be possible.

30.3.2. Image filtering

Another important example is the discrete convolution of two textures, an image and
a filter kernel, which is the basic operation in many image processing algorithms:

L̃(X,Y ) ≈
M
∑

i=−M

M
∑

j=−M

L(X − i, Y − j)w(i, j) , (30.1)

where L̃(X,Y ) is the filtered value at pixel X,Y , L(X,Y ) is the original image, and
w(x, y) is the filter kernel, which spans over (2M + 1)× (2M + 1) pixels.

Now the fragment shader is responsible for the evaluation of a single output pixel
according to the input image given as texture Image and the filter kernel stored in
a smaller texture Weight. The half size of the filter kernel M is passed as a uniform
variable:

float3 FragmentShaderConvolution(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT Image, // input image
uniform samplerRECT Weight, // filter kernel
uniform float M // size of the filter kernel
) : COLOR // a pixel of the filtered image

{
float3 filtered = float3(0, 0, 0);

for(int i = -M; i <= M; i++)
for(int j = -M; j <= M; j++) {

float2 kernelIndex = float2(i, j);
float2 sourceIndex = index + kernelIndex;
filtered += texRECT(Image, sourceIndex) * texRECT(Weight, kernelIndex);

}
}
return filtered;

}

Note that this example was a linear, i.e. convolution filter, but non-linear filters
(e.g. median filtering) could be implemented similarly. In this program we applied
arithmetic operators (*, +=, =) for float2 and float3 type variables storing two
and three floats, respectively. The Cg compiler and the GPU will execute these
instructions independently on the float elements.

Note also that we did not care what happens at the edges of the image, the
texture is always fetched with the sum of the target address and the shift of the
filter kernel. A CPU implementation ignoring image boundaries would obviously be
wrong, since we would over-index the source array. However, the texture fetching
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hardware implementing, for example, the texRECT function automatically solves
this problem. When the texture is initialized, we can specify what should happen if
the texture coordinate is out of its domain. Depending on the selected option, we get
the closest texel back, or a default value, or the address is interpreted in a periodic
way.

Exercises
30.3-1 Following the vector processing concept, write a pixel shader which, when a
full screen quad is rendered, quantizes the colors of an input texture to a few levels
in all three channels, achieving a cell shading effect.
30.3-2 Following the gathering data processing scheme, write a pixel shader which,
when a full screen quad is rendered, performs median filtering on an input grayscale
image, achieving dot noise reduction. The shader should fetch nine texel values from
a neighborhood of 3× 3, outputting the fifth largest.
30.3-3 Implement an anisotropic, edge preserving low-pass image filter with the
gathering data processing scheme. In order to preserve edges, compute the Euclidean
distance of the original pixel color and the color of a neighboring pixel, and include
the neighbor in the averaging operation only when the distance is below a threshold.

30.3-4 Write a parallel Mandelbrot set rendering program by assuming that pixel
x, y corresponds to complex number c = x + iy and deciding whether or not the
zn = z2

n−1 + c iteration diverges when started from z0 = c. The divergence may
be checked by iterating n = 106 times and examining that |zn| is large enough.
Divergent points are depicted with white, non-divergent points with black.

30.4. Beyond vector processing

Imagining the GPU as a vector processor is a simple but efficient application of the
GPU hardware in general parallel processing. If the algorithm is suitable for vector
processing, then this approach is straightforward. However, some algorithms are not
good candidates for vector processing, but can still be efficiently executed by the
GPU. In this section, we review the basic approaches that can extend the vector
processing framework to make the GPU applicable for a wider range of algorithms.

30.4.1. SIMD or MIMD

Vector processors are usually SIMD machines, which means that they execute not
only the same program for different vector elements but always the very same ma-
chine instruction at a time. It means that vector operations cannot contain data
dependent conditionals or loop lengths depending on the actual data. There is only
one control sequence in a SIMD parallel program.

Of course, writing programs without if conditionals and using only constants as
loop cycle numbers are severe limitations, which significantly affects the program
structure and the ease of development. Early GPU shaders were also SIMD type
processors and placed the burden of eliminating all conditionals from the program
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on the shoulder of the programmer. Current GPUs and their compilers solve this
problem automatically, thus, on the programming level, we can use conditionals and
variable length loops as if the shaders were MIMD computers. On execution level,
additional control logic makes it possible that execution paths of scalar units diverge:
in this case it is still a single instruction which is executed at a time, possibly with
some scalar units being idle. Operations of different control paths are serialized so
that all of them are completed. The overhead of serialization makes performance
strongly dependent on the coherence of execution paths, but many transistors of
control logic can be spared for more processing units.

The trick of executing all branches of conditionals with possibly disabled writes
is called predication. Suppose that our program has an if statement like

if (condition(i)) {
F( );

} else {
G( );

}

Depending on the data, on some processors the condition(i) may be true, while
it is false on other processors, thus our vector machine would like to execute function
F of the first branch in some processors while it should evaluate function G of the
second branch in other processors. As in SIMD there can be only one control path,
the parallel system should execute both paths and disable writes when the processor
is not in a valid path. This method converts the original program to the following
conditional free algorithm:

enableWrite = condition(i);
F( );
enableWrite = !enableWrite;
G( );

This version does not have conditional instructions so it can be executed by the
SIMD machine. However, the computation time will be the the sum of computation
times of the two functions.

This performance bottleneck can be attacked by decomposing the computation
into multiple passes and by the exploitation of the feature. The early z-cull compares
the z value of the fragment with the content of the depth buffer, and if it is smaller
than the stored value, the fragment shader is not called for this fragment but the
fragment processor is assigned to another data element. The early z-cull is enabled
automatically if we execute fragment programs that do not modify the fragment’s z
coordinate (this is the case in all examples discussed so far).

To exploit this feature, we decompose the computation into three passes. In the
first pass, only the condition is evaluated and the depth buffer is initialized with the
values. Recall that if the z value is not modified, our full screen quad is on the xy
plane in normalized device space, so it will be on the z = 0.5 plane in screen space.
Thus, to allow a discrimination according to the condition, we can set values in the
range (0.5, 1) if the condition is true and in (0, 0.5) if it is false.

The fragment shader of the first pass computes just the condition values and
stores them in the depth buffer:

float FragmentShaderCondition(
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT Input, // input vector
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) : DEPTH // the output goes to the depth buffer
{

bool condition = ComputeCondition( texRECT(Input, index) );
return (condition) ? 0.8 : 0.2; // 0.8 is greater than 0.5; 0.2 is smaller than 0.5

}

Then we execute two passes for the evaluation of functions F and G, respectively.
In the first pass, the fragment shader computes F and the depth comparison is set
to pass those fragments where their z = 0.5 coordinate is less than the depth value
stored in the depth buffer. In this pass, only those fragments are evaluated where
the depth buffer has 0.8 value, i.e. where the previous condition was true. Then, in
the second pass, the fragment shader is set to compute G while the depth buffer
is turned to keep those fragments where the fragment’s depth is greater than the
stored value.

In Subsection 30.7.1 we exploit early z-culling to implement a variable length
loop in fragment processors.

30.4.2. Reduction

The vector processing principle assumes that the output is an array where elements
are obtained independently. The array should be large enough to keep every shader
processor busy. Clearly, if the array has just one or a few elements, then only one or
a few shader processors may work at a time, so we loose the advantages of parallel
processing.

In many algorithms, the final result is not a large array, but is a single value
computed from the array. Thus, the algorithm should reduce the dimension of the
output. Doing the in a single step by producing a single texel would not benefit
from the parallel architecture. Thus, reduction should also be executed in parallel,
in multiple steps. This is possible if the operation needed to compute the result from
the array is associative, which is the case for the most common operations, like sum,
average, maximum, or minimum.
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Figure 30.5 An example for parallel reduction that sums the elements of the input vector.

Suppose that the array is encoded by a two-dimensional texture. At a single
phase, we downsample the texture by halving its linear resolution, i.e. replacing four
neighboring texels by a single texel. The fragment shaders will compute the operation
on four texels. If the original array has 2n×2n resolution, then n reduction steps are
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needed to obtain a single 1× 1 output value. In the following example, we compute
the sum of the elements of the input array (Figure 30.5). The CPU program renders
a full screen quad in each iteration having divided the render target resolution by
two:

Reduction( ) {
Set uniform parameter arrayX to identify the input texture

for(N /= 2 ; N >= 1; N /= 2) { // log_2 N iterations
glViewport(0, 0, N, N); // Set render target dimensions to hold NxN elements
glBegin(GL_QUADS); // Render a full screen quad

glVertex4f(-1,-1, 0, 1);
glVertex4f(-1, 1, 0, 1);
glVertex4f( 1, 1, 0, 1);
glVertex4f( 1,-1, 0, 1);

glEnd( );

Copy render target to input texture arrayX
}

}

The fragment shader computes a single reduced texel from four texels as a sum-
mation in each iteration step:

float FragmentShaderSum( ) (
in float2 index : WPOS, // target pixel coordinates
uniform samplerRECT arrayX, // input array x
) : COLOR // output is interpreted as a pixel color

{
float sum = texRECT(arrayX, 2 * index);
sum += texRECT(arrayX, 2 * index + float2(1, 0));
sum += texRECT(arrayX, 2 * index + float2(1, 1));
sum += texRECT(arrayX, 2 * index + float2(0, 1));
return sum;

}

Note that if we exploited the bi-linear filtering feature of the texture memory,
then we could save three texture fetch operations and obtain the average in a single
step.

30.4.3. Implementing scatter

In vector processing a processor is assigned to each output value, i.e. every processor
should be aware which output element it is computing and it is not allowed to deroute
its result to somewhere else. Such a static assignment is appropriate for gathering
type computations. The general structure of gathering is that we may rely on a
dynamically selected set of input elements but the variable where the output is
stored is known a-priory:

index = ComputeIndex( ); // index of the input data
y = F(x[index]);

Opposed to gathering, algorithms may have scattering characteristics, i.e. a
given input value may end up in a variable that is selected dynamically. A simple
scatter operation is:

index = ComputeIndex( ); // index of the output data
y[index] = F(x);

Vector processing frameworks and our fragment shader implementation are un-
able to implement scatter since the fragment shader can only write to the pixel it



30.4. Beyond vector processing 1387

rasterizer
fragment

shaderoutput

data

index
input

data

texture

output

data

texture

vertex

shader

0 1 2 3 4 5 6 vertex buffer

input data index

Figure 30.6 Implementation of scatter.

has been assigned to.
If we wish to solve a problem having scattering type algorithm on the GPU,

we have two options. First, we can restructure the algorithm to be of gathering
type. Converting scattering type parallel algorithms to gathering type ones requires
a change of our viewpoint how we look at the problem and its solution. For example,
when integral equations or transport problems are considered, this corresponds to
the solution of the adjoint problem [?]. Secondly, we can move the index calculation
up to the pipeline and use the rasterizer to establish the dynamic correspondence
between the index and the render target (Figure 30.6).

Let us consider a famous scattering type algorithm, histogram generation.
Suppose we scan an input array x of dimension M, evaluate function F for the
elements, and calculate output array y of dimension N that stores the number of
function values that are in bins equally subdividing range (Fmin, Fmax).

A scalar implementation of histogram generation would be:

Histogram( x ) {
for(int i = 0; i < M; i++) {

index = (int)((F(x[i]) - Fmin)/(Fmax - Fmin) * N); // bin
index = max(index, 0);
index = min(index, N-1);
y[index] = y[index] + 1;

}
}

We can see that the above function writes to the output array at random loca-
tions, meaning it cannot be implemented in a fragment shader which is only allowed
to write the render target at its dedicated index. The problem of scattering will be
solved by computing the index in the vertex shader but delegating the responsibility
of incrementing to the rest of the pipeline. The indices are mapped to output pix-
els by the rasterization hardware. The problem of read-modify-write cycles might be
solved by starting a new pass after each increment operation and copying the current
render target as an input texture of the next rendering pass. However, this solution
would have very poor performance and would not utilize the parallel hardware at
all. A much better solution uses the arithmetic capabilities of the merging unit.
The fragment shader generates just the increment (i.e. value 1) where the histogram
needs to be updated and gives this value to the merging unit. The merging unit, in
turn, adds the increment to the content of the render target.
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The CPU program generates a point primitive for each input data element.
Additionally, it sets the render target to match the output array and also enables
the merging unit to execute add operations:

ScanInputVector( ) {
Set uniform parameters Fmin, Fmax, N

glDisable(GL_DEPTH_TEST); // Turn depth buffering off
glBlendFunc(GL_ONE, GL_ONE); // Blending operation: dest = source * 1 + dest * 1;
glEnable(GL_BLEND); // Enable blending

glViewport(0, 0, N, 1); // Set render target dimensions to hold N elements
glBegin(GL_POINTS); // Assign a point primitive to each input elements
for(int i = 0; i < M; i++) {

glVertex1f( x[i] ); // an input element as a point primitive
}
glEnd( );

}

The vertex positions in this level are not important since it turns out later where
this point will be mapped. So we use the first coordinate of the vertex to pass the
current input element x[i].

The vertex shader gets the position of the vertex currently storing the input
element, and finds the location of this point in normalized device space. First, func-
tion F is evaluated and the bin index is obtained, then we convert this index to the
[−1, 1] range since in normalized device space these will correspond to the extremes
of the viewport:

void VertexShaderHistogram(
in float inputPos : POSITION,
out float4 outputPos : POSITION,
uniform float Fmin,
uniform float Fmax,
uniform float N )

{
float xi = inputPos;
int index = (int)((F(xi) - Fmin)/(Fmax - Fmin) * N); // bin
index = max(index, 0);
index = min(index, N-1);
float nindex = 2.0 * index / N - 1.0; // normalized device space
outputPos = float4(nindex, 0, 0, 1); // set output coordinates

}

The above example is not optimized. Note that the index calculation and the
normalization could be merged together and we do not even need the size of the
output array N to execute this operation.

The fragment shader will be invoked for the pixel on which the point primitive
is mapped. It simply outputs an increment value of 1:

float FragmentShaderIncr( ) : COLOR // output is interpreted as a pixel color
{

return 1; // increment that is added to the render target by merging
}

30.4.4. Parallelism versus reuse

Parallel processors running independently offer a linear speed up over equivalent
scalar processor implementations. However, scalar processors may benefit from rec-
ognizing similar parts in the computation of different output values, so they can
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Figure 30.7 Caustics rendering is a practical use of histogram generation. The illumination in-
tensity of the target will be proportional to the number of photons it receives (images courtesy of
Dávid Balambér).

increase their performance utilizing reuse. As parallel processors may not reuse
data generated by other processors, their comparative advantages become less at-
tractive.

GPUs are parallel systems of significant streaming capabilities, so if data that
can be reused are generated early, we can get the advantages of both independent
parallel processing and the reuse features of scalar computing.

Our main stream expander is the rasterization. Thus anything happens before
rasterization can be considered as a global computation for all those pixels that are
filled with the rasterized version of the primitive. Alternatively, the result of a pass
can be considered as an input texture in the next pass, so results obtained in the
previous pass can be reused by all threads in the next pass.

Exercises
30.4-1 Implement a parallel regula falsi equation solver for (2 − a − b)x3 + ax2 +
bx − 1 = 0 that searches for roots in [0, 1] for many different a and b parameters.
The a and b parameters are stored in a texture and the pixel shader is responsible
for iteratively solving the equation for a particular parameter pair. Terminate the
iteration when the error is below a given threshold. Take advantage of the early z-
culling hardware to prevent further refinement of the terminated iterations. Analyze
the performance gain.
30.4-2 Based on the reduction scheme, write a program which applies simple linear
tone mapping to a high dynamic range image stored in a floating-point texture. The
scaling factor should be chosen to map the maximum texel value to the value of one.
Find this maximum using iterative reduction of the texture.
30.4-3 Based on the concept of scatter, implement a caustics renderer program
(Figure 30.7). The scene includes a point light source, a glass sphere, and a diffuse
square that is visualized on the screen. Photons with random directions are generated
by the CPU and passed to the GPU as point primitives. The vertex shader traces
the photon through possible reflections or refractions and decides where the photon
will eventually hit the diffuse square. The point primitive is directed to that pixel
and the photon powers are added by additive alpha blending.
30.4-4 Based on the concept of scatter, given an array of GSM transmitter tower
coordinates, compute cell phone signal strength on a 2D grid. Assume signal strength
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diminishes linearly with the distance to the nearest transmitter. Use the rasterizer
to render circular features onto a 2D render target, and set up blending to pick the
maximum.

30.5. GPGPU programming model: CUDA and
OpenCL

The Compute Unified Device Architecture (CUDA) and the interfaces pro-
vide the programmer with a programming model that is significantly different from
the graphics pipeline model (right of Figure 30.1). It presents the GPU as a col-
lection of multiprocessors where each multiprocessor contains several SIMD scalar
processors. Scalar processors have their own registers and can communicate inside
a multiprocessor via a fast shared memory. Scalar processors can read cached
textures having built-in filtering and can read or write the slow global memory. If
we wish, even read-modify-write operations can also be used. Parts of the global
memory can be declared as a texture, but from that point it becomes read-only.

Unlike in the graphics API model, the write to the global memory is not ex-
clusive and atomic add operations are available to support semaphores and data
consistency. The fixed-function elements like clipping, rasterization, and merging are
not visible in this programming model.

Comparing the GPGPU programming model to the graphics API model, we
notice that it is cleaner and simpler. In the GPGPU programming model, parallel
processors are on the same level and can access the global memory in an unrestricted
way, while in the graphics API model, processors and fixed-function hardware form
streams and write is possible only at the end of the stream. When we program
through the GPGPU model, we face less restrictions than in the graphics pipeline
model. However, care should be practiced since the graphics pipeline model for-
bids exactly those features that are not recommended to use in high performance
applications.

The art of programming the GPGPU model is an efficient decomposition of the
original algorithm to parallel threads that can run with minimum amount of data
communication and synchronization, but always keep most of the processors busy.
In the following sections we analyze a fundamental operation, the matrix-vector
multiplication, and discuss how these requirements can be met.

30.6. Matrix-vector multiplication

Computational problems are based on mathematical models and their numerical
solution. The numerical solution methods practically always rely on some kind of
linearization, resulting in algorithms that require us to solve linear systems of equa-
tions and perform matrix-vector multiplication as a core of the iterative solution.
Thus, matrix-vector multiplication is a basic operation that can be, if implemented
efficiently on the parallel architecture, the most general building block in any nu-
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merical algorithm. We define the basic problem to be the computation of the result
vector y from input matrix A, vectors x and b, as

y = Ax + b .

We call this the MV problem. Let N ×M be the dimensions of matrix A. As every
input vector element may contribute to each of the output vector elements, a scalar
CPU implementation would contain a double loop, one loop scans the input elements
while the other the output elements. If we parallelize the algorithm by assigning
output elements to parallel threads, then we obtain a gathering type algorithm where
a thread gathers the contributions of all input elements and aggregates them to the
thread’s single output value. On the other hand, if we assigned parallel threads to
input elements, then a thread would compute the contribution of this input element
to all output elements, which would be a scatter operation. In case of gathering,
threads share only input data but their output is exclusive so no synchronization
is needed. In case of scattering, multiple threads may add their contribution to the
same output element, so atomic adds are needed, which may result in performance
degradation.

An implementation of the matrix-vector multiplication on a scalar processor
looks like the following:
void ScalarMV(int N, int M, float* y, const float* A, const float* x, const float* b)
{

for(int i=0; i<N; i++) {
float yi = b[i];
for(int j=0; j<M; j++) yi += A[i * M + j] * x[j];
y[i] = yi;

}
}

The first step of porting this algorithm to a parallel machine is to determine
what a single thread would do from this program. From the options of gathering
and scattering, we should prefer gathering since that automatically eliminates the
problems of non-exclusive write operations. In a gathering type solution, a thread
computes a single element of vector y and thus we need to start N threads. A GPU
can launch a practically unlimited number of threads that are grouped in thread
blocks. Threads of a block are assigned to the same multiprocessor. So the next
design decision is how the N threads are distributed in blocks. A multiprocessor
typically executes 32 threads in parallel, so the number of threads in a block should
be some multiple of 32. When the threads are halted because of a slow memory
access, a hardware scheduler tries to continue the processing of other threads, so it
is wise to assign more than 32 threads to a multiprocessor to always have threads
that are ready to run. However, increasing the number of threads in a single block
may also mean that at the end we have just a few blocks, i.e. our program will run
just on a few multiprocessors. Considering these, we assign 256 threads to a single
block and hope that N/256 exceeds the number of multiprocessors and thus we fully
utilize the parallel hardware.

There is a slight problem if N is not a multiple of 256. We should assign the
last elements of the vector to some processors as well, so the thread block number
should be the ceiling of N/256. As a result of this, we shall have threads that are not
associated with vector elements. It is not a problem if the extra threads can detect
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it and cause no harm, e.g. they do not over-index the output array.
Similarly to the discussed vector processing model, a thread should be aware

which output element it is computing. The CUDA library provides implicit input
parameters that encode this information: blockIdx is the index of the thread block,
blockDim is the number of threads in a block, and threadIdx is the index of the
thread inside the block.

The program of the CUDA kernel computing a single element of the output
vector is now a part of a conventional CPU program:

__global__ void cudaSimpleMV(int N, int M, float* y, float* A, float* x, float* b)
{

// Determine element to process from thread and block indices
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < N) { // if the index is out of the range of the output array, skip.

float yi = b[i];
for(int j=0; j<M; j++) yi += A[i * M + j] * x[j];
y[i] = yi;

}
}

The global keyword tells the compiler that this function will run not on the
CPU but on the GPU and it may be invoked from the CPU as well. The parameters
are passed according to the normal C syntax. The only special feature is the use of
the implicit parameters to compute the identification number of this thread, which
is the index of the output array.

The kernels are started from a CPU program that sets the parameters and also
defines the number of thread blocks and the number of threads inside a block.

__host__ void run_cudaSimpleMV()
{

int threadsPerBlock = 256; // number of threads per block
int blockNum = (N + threadsPerBlock - 1)/threadsPerBlock; // number of blocks
cudaSimpleMV<<<blockNum, threadsPerBlock>>>(N, M, y, A, x, b);

}

The compiler will realize that this function runs on the CPU by reading the
host keyword. The parallel threads are started like a normal C function call with
the exception of the <blockNum, threadsPerBlock> tag, which defines how many
threads should be started and how they are distributed among the multiprocessors.

30.6.1. Making matrix-vector multiplication more parallel

So far, we assigned matrix rows to parallel threads and computed scalar product
Aix serially inside threads. If the number of matrix rows is less than the number
of parallel scalar processors, this amount of parallelization is not enough to supply
all processing units with work to do, and the execution of individual threads will be
lengthy. Reformulating the scalar product computation is a well known, but tougher
parallelization problem, as the additions cannot be executed independently, and we
require a single scalar to be written for every row of the matrix. However, parts of
the summation can be executed independently, and then the results added. This is a
classic example of . It is required that the threads whose results are to be added both
finish execution and write their results to where they are accessible for the thread
that needs to add them. Thus, we use thread synchronization and available only
for the threads of the same block.
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Let us assume first—unrealistically—that we can have M threads processing a
row and the shared memory can hold M floating point values. Let Q be the vector of
length M residing in shared memory. Then, every thread can compute one element
Qj as Aijxj .. Finally, elements of Q must be reduced by summation. Let us further
assume that M = 2k.. The reduction can be carried out in k steps, terminating
half of the threads, while each surviving thread adds the value in Q computed by
a terminated one to its own. The final remaining thread outputs the value to the
global memory.

#define M THE_NUMBER_OF_MATRIX_COLUMNS
__global__ void cudaReduceMV(int N, float* y, float* A, float* x, float* b)
{

int i = blockIdx.x;
int j = threadIdx.x;

__shared__ float Q[M]; // in the shader memory inside a multiprocessor

Q[j] = A[i * M + j] * x[j]; // a parallel part of matrix-vector multiplication

for(int stride = M / 2; stride > 0; stride >>= 1) // reduction
{

__syncthreads(); // wait until all other threads of the block arrive this point
if(j + stride < M)

Q[j] += Q[j + stride];
}

if(j == 0) // reduced to a single element
y[i] = Q[0] + b[i];

}

__host__ void run_cudaReduceMV()
{

cudaReduceMV<<< N, M >>>(N, y, A, x, b);
}

For practical matrix dimensions (M > 104), neither the number of possible
threads of a single multiprocessor nor the size of the shared memory is enough to
process all elements in parallel. In our next example, we use a single block of threads
with limited size to process a large matrix. First, we break the output vector into
segments of size T . Elements within such a segment are evaluated in parallel, then the
threads proceed to the next segment. Second, for every scalar product computation,
we break the vectors Ai and x into segments of length Z. We maintain a shared
vector Qt of length Z for every row being processed in parallel. We can compute the
elementwise product of the Ai and x segments in parallel, and add it to Qt. As T
rows are being processed by Z threads each, the block will consist of T ×Z threads.
From one thread’s perspective this means it has to loop over y with a stride of T,
and for every such element in y, loop over Ai and x with a stride of Z. Also for
every element in y, the contents of Qt must be summed by reduction as before. The
complete kernel which works with large matrices would then be:

__global__ void cudaLargeMV(int N, int M, float* y, float* A, float* x, float* b)
{

__shared__ float Q[T * Z]; // stored in the shared memory inside a multiprocessor

int t = threadIdx.x / Z;
int z = threadIdx.x % Z;

for(int i = t; i < N; i += T)
{
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Q[t * Z + z] = 0;
for(int j = z; j < M; j += Z)

Q[t * Z + z] += A[i * M + j] * x[j];

for(int stride = Z / 2; stride > 0; stride >>= 1)
{

__syncthreads();
if(z + stride < Z)

Q[t * Z + z] += Q[t * Z + z + stride];
}

if(z == 0)
y[i] = Q[t * Z + 0] + b[i];

}
}

__host__ void run_cudaLargeMV()
{

cudaReduceMV<<< 1, T*Z >>>(N, M, y, A, x, b);
}

This can easily be extended to make use of multiple thread blocks by restricting
the outer loop to only a fraction of the matrix rows based on the blockIdx parameter.

The above algorithm uses shared memory straightforwardly and allows us to
align memory access of threads through a proper choice of block sizes. However,
every element of vector x must be read once for the computation of every row. We
can improve on this if we read values of x into the shared memory and have threads
in one block operate on multiple rows of the matrix. This, however, means we can use
less shared memory per line to parallelize summation. The analysis of this trade-off
is beyond the scope of this chapter, but a block size of 64× 8 has been proposed in
[76]. With such a strategy it is also beneficial to access matrix A as a texture, as
data access will exhibit 2D locality, supported by texture caching hardware.

Even though matrix-vector multiplication is a general mathematical formulation
for a wide range of computational problems, the arising matrices are often large, but
sparse. In case of sparse matrices, the previously introduced matrix-vector multipli-
cation algorithms will not be efficient as they explicitly compute multiplication with
zero elements. Sparse matrix representations and MV algorithms are discussed in
[20].

Exercises
30.6-1 Implement matrix-vector multiplication for large matrices in CUDA. Com-
pare results to a CPU implementation.
30.6-2 Implement an inverse iteration type Julia set renderer. The Julia set is the
attractor of the zn = z2

n−1 +c iteration where zn and c are complex numbers. Inverse
iteration starts from a fixed point of the iteration formula, and iterates the inverse
mapping, zn = ±√zn − c by randomly selecting either

√
zn − c or −√zn − c from

the two possibilities. Threads must use pseudo-random generators that are initialized
with different seeds. Note that CUDA has no built-in random number generator, so
implement one in the program.
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Figure 30.8 Finite element representations of functions. The texture filtering of the GPU directly
supports finite element representations using regularly placed samples in one-, two-, and three-
dimensions and interpolating with piece-wise constant and piece-wise linear basis functions.

30.7. Case study: computational fluid dynamics

Problems emerging in physics or engineering are usually described mathematically
as a set of partial differential or integral equations. As physical systems expand in
space and time, derivatives or integrals should be evaluated both in temporal and
spatial domains.

When we have to represent a value over space and time, we should use functions
having the spatial position and the time as their variables. The representation of
general functions would require infinite amount of data, so in numerical methods
we only approximate them with finite number of values. Intuitively, these values
can be imagined as the function values at discrete points and time instances. The
theory behind this is the finite element method. If we need to represent function
f(~r) with finite data, we approximate the function in the following finite series form
(Figure 30.8):

f(~r) ≈ f̃(~r) =
N
∑

i=1

fiBi(~r),

where B1(~r), . . . , BN (~r) are pre-defined basis functions and f1, . . . , fN are the
coefficients that describe f̃ .

A particularly simple finite element representation is the piece-wise linear scheme
that finds possibly regularly placed sample points ~r1, . . . , ~rN in the domain, evalu-
ates the function at these points to obtain the coefficients fi = f(~ri) and linearly
interpolates between ~ri and ~ri+1.

When the system is dynamic, solution f will be time dependent, so a new finite
element representation is needed for every time instance. We have basically two
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options for this. We can set sample points ~r1, . . . , ~rN in a static way and allow only
coefficients fi to change in time. This approach is called Eulerian. On the other
hand, we can also allow the sample points to move with the evaluation of the system,
making also sample points ~ri time dependent. This is the Lagrangian approach,
where sample locations are also called particles.

Intuitive examples of Eulerian and Lagrangian discretization schemes are how
temperature and other attributes are measured in meteorology. In ground stations,
these data are measured at fixed locations. However, meteorological balloons can
also provide the same data, but from varying positions that follow the flow of the
air.

In this section we discuss a case study for GPU-based scientific computation.
The selected problem is computational fluid dynamics. Many phenomena that
can be seen in nature like smoke, cloud formation, fire, and explosion show fluid-like
behavior. Understandably, there is a need for good and fast fluid solvers both in
engineering and in computer animation.

The mathematical model of the fluid motion is given by the Navier-Stokes equa-
tion. First we introduce this partial differential equation, then discuss how GPU-
based Eulerian and Langrangian solvers can be developed for it.

A fluid with constant density and temperature can be described by its velocity
~v = (vx, vy, vz) and pressure p fields. The velocity and the pressure vary both in
space and time:

~v = ~v(~r, t), p = p(~r, t) .

Let us focus on a fluid element of unit volume that is at point ~r at time t. At an
earlier time instance t − dt, this fluid element was in ~r − ~vdt and, according to the
fundamental law of dynamics, its velocity changed according to an acceleration that
is equal to total force ~F divided by mass ρ of this unit volume fluid element:

~v(~r, t) = ~v(~r − ~vdt, t− dt) +
~F

ρ
dt .

Mass ρ of a unit volume fluid element is called the fluid density. Moving the
velocity terms to the left side and dividing the equation by dt, we can express the
substantial derivative of the velocity:

~v(~r, t)− ~v(~r − ~vdt, t− dt)
dt

=
~F

ρ
.

The total force can stem from different sources. It may be due to the pressure
differences:

~Fpressure = −~∇p = −
(

∂p

∂x
,
∂p

∂y
,
∂p

∂z

)

,

where ~∇p is the gradient of the pressure field. The minus sign indicates that the
pressure accelerates the fluid element towards the low pressure regions. Here we used
the nabla operator, which has the following form in a Cartesian coordinate system:

~∇ =
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

.
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Due to friction, the fluid motion is damped. This damping depends on the vis-
cosity ν of the fluid. Highly viscous fluids like syrup stick together, while low-
viscosity fluids flow freely. The total damping force is expressed as a diffusion term
since the viscosity force is proportional to the Laplacian of the velocity field:

~Fviscosity = ν ~∇2
~v = ν

(

∂2~v

∂x2
+
∂2~v

∂y2
+
∂2~v

∂z2

)

.

Finally, an external force field ~Fexternal may also act on our fluid element causing
acceleration. In the gravity field of the Earth, assuming that the vertical direction
is axis z, this external acceleration is (0, 0,−g) where g = 9.8 [m/s2].

Adding the forces together, we can obtain the Navier-Stokes equation for the
velocity of our fluid element:

ρ
~v(~r, t)− ~v(~r − ~vdt, t− dt)

dt
= −~∇p+ ν ~∇2

~v + ~Fexternal .

In fact, this equation is the adaptation of the fundamental law of dynamics for
fluids. If there is no external force field, the momentum of the dynamic system must
be preserved. This is why this equation is also called momentum conservation
equation.

Closed physics systems preserve not only the momentum but also the mass, so
this aspect should also be built into our fluid model. Simply put, the mass conser-
vation means that what flows into a volume must also flow out, so the divergence of
the mass flow is zero. If the fluid is incompressible, then the fluid density is constant,
thus the mass flow is proportional to the velocity field. For incompressible fluids, the
mass conservation means that the velocity field is divergence free:

~∇ · ~v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0 . (30.2)

30.7.1. Eulerian solver for fluid dynamics

The Eulerian approach tracks the evolution of the velocity and pressure fields on
fixed, uniform grid points. The grid allows a simple approximation of spatial deriva-
tives by finite differences. If the grid points are in distances ∆x, ∆y, and ∆z along
the three coordinate axes and the values of scalar field p and vector field ~v at grid
point (i, j, k) are pi,j,k and ~vi,j,k, respectively, then the gradient, the divergence and
the Laplacian operators can be approximated as:

~∇p ≈
(

pi+1,j,k − pi−1,j,k

2∆x
,
pi,j+1,k − pi,j−1,k

2∆y
,
pi,j,k+1 − pi,j,k−1

2∆x

)

, (30.3)

~∇ · ~v ≈ vi+1,j,k
x − vi−1,j,k

x

2∆x
+
vi,j+1,k

y − vi,j−1,k
y

2∆y
+
vi,j,k+1

z − vi,j,k−1
z

2∆z
, (30.4)

~∇2
p ≈ pi+1,j,k − 2pi,j,k + pi−1,j,k

(∆x)2
+
pi,j+1,k − 2pi,j,k + pi,j−1,k

(∆x)2
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+
pi,j,k+1 − 2pi,j,k + pi,j,k−1

(∆x)2
. (30.5)

The Navier-Stokes equation and the requirement that the velocity is divergence
free define four scalar equations (the conservation of momentum is a vector equation)
with four scalar unknowns (vx, vy, vz, p). The numerical solver computes the current
fields advancing the time in discrete steps of length ∆t:

~v(~r, t) = ~v(~r − ~v∆t, t−∆t) +
ν∆t
ρ

~∇2
~v +

∆t
ρ
~Fexternal −

∆t
ρ
~∇p .

The velocity field is updated in several steps, each considering a single term on the
right side of this equation. Let us consider these steps one-by-one.

Advection To initialize the new velocity field at point ~r, we fetch the previous
field at position ~r − ~v∆t since the fluid element arriving at point ~r was there in the
previous time step [219]. This step computes advection, i.e. the phenomenon that
the fluid carries its own velocity field:

~w1(~r) = ~v(~r − ~v∆t, t−∆t) .

Diffusion To damp the velocity field, we could update it proportionally to a
diffusion term:

~w2 = ~w1 +
ν∆t
ρ

~∇2
~w1 .

However, this type of forward Euler integrator is numerically unstable. The rea-
son of instability is that forward methods predict the future based on the present
values, and as time passes, each simulation step adds some error, which may accu-
mulate and exceed any limit.

Unlike forward integrators, a backward method can guarantee stability. A back-
ward looking approach is stable since while predicting the future, it simultaneously
corrects the past. Thus, the total error converges to a finite value and remains
bounded. Here a backward method means that the Laplacian is obtained from the
future, yet unknown velocity field, and not from the current velocity field:

~w2 = ~w1 +
ν∆t
ρ

~∇2
~w2 . (30.6)

At this step of the computation, the advected field ~w1 is available at the grid points,
the unknowns are the diffused velocity ~wi,j,k

2 for each of the grid points. Using (30.5)
to compute the Laplacian of the x, y, z coordinates of unknown vector field ~w2 at
grid point (i, j, k), we observe that it will be a linear function of the ~w2 velocities
in the (i, j, k) grid point and its neighbors. Thus, (30.6) is a sparse linear system of
equations:

w2 = w1 + A ·w2 (30.7)

where vector w1 is the vector of the known velocities obtained by advection, w2 is
the vector of unknown velocities of the grid points, and matrix-vector multiplication
A ·w2 represents the discrete form of (ν∆t/ρ)∇2 ~w2(~r).
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Such systems are primary candidates for Jacobi iteration (see Chapter 12 of
this book, titled Scientific Computation). Initially we fill vector w2 with zero and
evaluate the right side of (30.7) iteratively, moving the result of the previous step
to vector w2 of the right side. Thus, we traced back the problem to a sequence of
sparse vector-matrix multiplications. Note that matrix A needs not be stored. When
velocity field ~w2 is needed at a grid point, the neighbors are looked up and the simple
formula of (30.5) gives us the result.

Updating a value in a grid point according to its previous value and the values of
its neighbors are called image filtering. Thus, a single step of the Jacobi iteration
is equivalent to an image filtering operation, which is discussed in Section 30.3.2.

External force field The external force accelerates the velocity field at each
grid point:

~w3 = ~w2 +
∆t
ρ
~Fexternal .

Projection So far, we calculated an updated velocity field ~w3 without considering
the unknown pressure field. In the projection step, we compute the unknown pressure
field p and update the velocity field with it:

~v(t) = ~w3 −
∆t
ρ
~∇p .

The pressure field is obtained from the requirement that the final velocity field
must be divergence free. Let us apply the divergence operator to both sides of this
equation. After this, the left side becomes zero since we aim at a divergence free
vector field for which ~∇ · ~v = 0:

0 = ~∇ ·
(

~w3 −
∆t
ρ
~∇p
)

= ~∇ · ~w3 −
∆t
ρ
~∇2
p .

Assuming a regular grid where vector field ~w3 is available, searching the unknown
pressure at grid positions, and evaluating the divergence and the Laplacian with
finite differences of equations (30.4) and (30.5), respectively, we again end up with
a sparse linear system for the discrete pressure values and consequently for the
difference between the final velocity field ~v and ~w3. This system is also solved with
Jacobi iteration. Similarly to the diffusion step, the Jacobi iteration of the projection
is also a simple image filtering operation.

Eulerian simulation on the GPU The discretized velocity and pressure fields
can be conveniently stored in three-dimensional textures, where discrete variables
are defined at the centers of elemental cubes, called voxels of a grid [93]. At each
time step, the content of these data sets should be refreshed (Figure 30.9).

The representation of the fields in textures has an important advantage when
the advection is computed. The advected field at voxel center ~ri is obtained by
copying the field value at position ~ri − ~vi∆t. Note that the computed position is
not necessarily a voxel center, but it can be between the grid points. According
to the finite element concept, this value can be generated from the finite element
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Figure 30.9 A time step of the Eulerian solver updates textures encoding the velocity field.

Advection Jacobi iteration

Figure 30.10 Computation of the simulation steps by updating three-dimensional textures. Ad-
vection utilizes the texture filtering hardware. The linear equations of the viscosity damping and
projection are solved by Jacobi iteration, where a texel (i.e. voxel) is updated with the weighted sum
of its neighbors, making a single Jacobi iteration step equivalent to an image filtering operation.

representation of the data. If we assume piece-wise linear basis functions, then the
texture filtering hardware automatically solves this problem for us at no additional
computation cost.

The disadvantage of storing vector and scalar fields in three-dimensional textures
is that the GPU can only read these textures no matter whether we take the graphics
API or the GPGPU approach. The updated field must be written to the render target
in case of the graphics API approach, and to the global memory if we use a GPGPU
interface. Then, for the next simulation step, the last render target or global memory
should be declared as an input texture.

In order to avoid write collisions, we follow a gathering approach and assign
threads to each of the grid points storing output values. If GPUs fetch global data
via textures, then the new value written by a thread becomes visible when the pass or
the thread run is over, and the output is declared as an input texture for the next run.
Thus, the computation of the time step should be decomposed to elemental update
steps when the new output value of another grid point is needed. It means that we
have and advection pass, a sequence of Jacobi iteration passes of the diffusion step,
an external force calculation pass, and another sequence of Jacobi iteration passes
of the projection step. With a GPGPU framework, a thread may directly read the
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Figure 30.11 Flattened 3D velocity (left) and display variable (right) textures of a simulation.

data produced by another thread, but then synchronization is needed to make sure
that the read value is already valid, so not the old but the new value is fetched.
In such cases, synchronization points have the same role and passes or decomposed
kernels.

In case of graphics APIs, there is one additional limitation. The render target can
only be two-dimensional, thus either we flatten the layers of the three-dimensional
voxel array into a large two-dimensional texture, or update just a single layer at
a time. Flattened three-dimensional textures are shown by Figure 30.11. Once the
textures are set up, one simulation step of the volume can be done by the rendering
of a quad covering the flattened grid.

The graphics API approach has not only drawbacks but also an advantage over
the GPGPU method, when the linear systems are solved with Jacobi iteration. The
graphics API method runs the fragment shader for each grid point to update the
solution in the texel associated with the grid point. However, if the neighbor ele-
ments of a particular grid point are negligible, we need less iteration steps than in
a grid point where the neighbor elements are significant. In a quasi-SIMD machine
like the GPU, iterating less in some of the processors is usually a bad idea. However,
the exploitation of the early z-culling hardware helps to sidestep this problem and
boosts the performance [224]. The z coordinate in the depth value is set propor-
tionally to the maximum element in the neighborhood and to the iteration count.
This way, as the iteration proceeds, the GPU processes less and less number of frag-
ments, and can concentrate on important regions. According to our measurements,
this optimization reduces the total simulation time by about 40 %.

When we wish to visualize the flow, we can also assume that the flow carries a
scalar display variable with itself. The display variable is analogous with some paint
or confetti poured into the flow. The display variable is stored in a float voxel array.

Using the advection formula for display variable D, its field can also be updated



1402 30. General Purpose Computing on Graphics Processing Units

Figure 30.12 Snapshots from an animation rendered with Eulerian fluid dynamics.

in parallel with the simulation of time step ∆t:

D(~r, t) = D(~r − ~v∆t, t−∆t) .

At a time, the color and opacity of a point can be obtained from the display variable
using a user controlled transfer function.

We can use a 3D texture slicing rendering method to display the resulting display
variable field, which means that we place semi-transparent polygons perpendicular
to the view plane and blend them together in back to front order (Figure 30.12). The
color and the opacity of the 3D texture is the function of the 3D display variable
field.

30.7.2. Lagrangian solver for differential equations

In the Lagrangian approach, the space is discretized by identifying , i.e. following
just finite number of fluid elements. Let us denote the position and the velocity of
the ith discrete fluid element by ~ri and ~vi, respectively. We assume that all particles
represent fluid elements of the same mass m, but as the density varies in space and
will be the attribute of the particle, every particle is associated with a different
volume ∆Vi = m/ρi of the fluid. The momentum conservation equation has the
following form in this case:

d~ri

dt
= ~vi ,

m
d~vi

dt
=
(

−~∇p(~ri) + ν ~∇2
~v(~ri) + ~Fexternal(~ri)

)

∆Vi . (30.8)

If particles do not get lost during the simulation, the mass is automatically conserved.
However, temporarily this mass may concentrate in smaller parts of the volume,
so the simulated fluid is not incompressible. In Lagrangian simulation, we usually
assume compressible gas.

From the knowledge of the system at discrete points, attributes are obtained at
an arbitrary point via interpolation. Suppose we know an attribute A at the particle
locations, i.e. we have A1, . . . , AN . Attribute A is interpolated at location ~r by a
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weighted sum of contributions from the particles:

A(~r) =
N
∑

i=1

Ai∆ViW (|~r − ~ri|) ,

where ∆Vi is the volume represented by the particle in point ~ri, and W (d) is a
smoothing kernel, also called radial basis function, that depends on distance
d between the particle location and the point of interest. From a different point of
view, the smoothing kernel expresses how quickly the impact of a particle diminishes
farther away. The smoothing kernel is normalized if smoothing preserves the total
amount of the attribute value, which is the case if the kernel has unit integral over
the whole volumetric domain. An example for the possible kernels is the spiky kernel
of maximum radius h:

W (d) =
15
πh6

(h− d)3, if 0 ≤ d ≤ h and zero otherwise .

For normalized kernels, the particle density at point ~rj is approximated as:

ρj = ρ(~rj) =
N
∑

i=1

mW (|~rj − ~ri|) .

As each particle has the same mass m, the volume represented by particle j is

∆Vj =
m

ρj
=

1
∑N

i=1 W (|~rj − ~ri|)
.

According to the ideal gas law, the pressure is inversely proportional to the volume
on constant temperature, thus at particle j the pressure is

pj =
k

∆Vj
,

where constant k depends on the temperature.
The pressure at an arbitrary point ~r is

p(~r) =
N
∑

i=1

pi∆ViW (|~r − ~ri|) .

The acceleration due to pressure differences requires the computation of the gradient
of the pressure field. As spatial variable ~r shows up only in the smoothing kernel,
the gradient can be computed by using the gradient of the smoothing kernel:

~∇p(~r) =
N
∑

i=1

pi∆Vi
~∇W (|~r − ~ri|) .

Thus, our first guess for the pressure force at particle j is:

~Fpressure,j = −~∇p(~rj) = −
N
∑

i=1

pi∆Vi
~∇W (|~rj − ~ri|) .
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However, there is a problem here. Our approximation scheme could not guarantee
to satisfy the physical rules including symmetry of forces and consequently the con-
servation of momentum. We should make sure that the force on particle i due to
particle j is always equal to the force on particle j due to particle i. The symmetric
relation can be ensured by modifying the pressure force in the following way:

~Fpressure,j = −
N
∑

i=1

pi + pj

2
∆Vi

~∇W (|~rj − ~ri|) .

The viscosity term contains the Laplacian of the vector field, which can be
computed by using the Laplacian of the smoothing kernel:

~Fviscosity,j = ν ~∇2
~v = ν

N
∑

i=1

~vi∆Vi
~∇2
W (|~rj − ~ri|) .

Similarly to the pressure force, a symmetrized version is used instead that makes
the forces symmetric:

~Fviscosity,j = ν

N
∑

i=1

(~vi − ~vj)∆Vi
~∇2
W (|~rj − ~ri|) .

External forces can be directly applied to particles. Particle-object collisions are
solved by reflecting the velocity component that is perpendicular to the surface.

Having computed all forces, and approximating the time derivatives of (30.8) by
finite differences, we may obtain the positions and velocities of each of the particles
in the following way:

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t ,

~vi(t+ ∆t) = ~vi(t) + (~Fpressure,i + ~Fviscosity,i + ~Fexternal,i)∆Vi∆t/m .

Note that this is also a forward Euler integration scheme, which has stability
problems. Instead of this, we should use a stable version, for example, the Verlet
integration [55].

The Lagrangian approach tracks a finite number of particles where the forces
acting on them depend on the locations and actual properties of other particles.
Thus, to update a system of N particles, O(N2) interactions should be examined.
Such tasks are generally referred to as the N-body problem.

Lagrangian solver on the GPU In a GPGPU framework, the particle at-
tributes can be stored in the global memory as a one-dimensional array or can be
fetched via one-dimensional textures. In graphics API frameworks, particle attributes
can only be represented by textures. The advantage of reading the data via textures
is only the better caching since now we cannot utilize the texture filtering hardware.
A gathering type method would assign a thread to each of the controlled particles,
and a thread would compute the effect of other particles on its own particle. As the
smoothing kernel has finite support, only those particles can interact with the con-
sidered one, which are not farther than the maximum radius of the smoothing filter.
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Figure 30.13 Data structures stored in arrays or textures. One-dimensional float3 arrays store the
particles’ position and velocity. A one-dimensional float2 texture stores the computed density and
pressure. Finally, a two-dimensional texture identifies nearby particles for each particle.

Figure 30.14 A time step of the Lagrangian solver. The considered particle is the red one, and its
neighbors are yellow.

It is worth identifying these particles only once, storing them in a two-dimensional
texture of in the global memory, and using this information in all subsequent kernels.

A GPGPU approach would need three one-dimensional arrays representing the
particle position, velocity, density and pressure, and a two-dimensional array for the
neighboring particles (Figure 30.13). In a graphics API approach, these are one-
or two-dimensional textures. We can run a kernel or a fragment shader for each of
the particles. In a GPGPU solution it poses no problem for the kernel to output a
complete column of the neighborhood array, but in the fragment shaders of older
GPUs the maximum size of a single fragment is limited. To solve this, we may limit
the number of considered neighbor particles to the number that can be outputted
with the available multiple render target option.

The processing of a single particle should be decomposed to passes or kernel
runs when we would like to use the already updated properties of other particles
(Figure 30.14). The first pass is the identification of the neighbors for each particles,
i.e. those other particles that are closer than the support of the smoothing kernel.
The output of this step is a two-dimensional array where columns are selected by
the index of the considered particle and the elements in this column store the index
and the distance of those particles that are close by.

The second pass calculates the density and the pressure from the number and
the distance of the nearby particles. Having finished this pass, the pressure of every
particle will be available for all threads. The third pass computes the forces from the
pressure and the velocity of nearby particles. Finally, each particle gets its updated
velocity and is moved to its new position.

Having obtained the particle positions, the system can be visualized by different
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Figure 30.15 Animations obtained with a Lagrangian solver rendering particles with spheres
(upper image) and generating the isosurface (lower image) [99].

methods. For example, we can render a point or a small sphere for each particle
(upper image of Figure 30.15). Alternatively, we can splat particles onto the screen,
resulting in a rendering style similar to that of the Eulerian solver (Figure 30.12).
Finally, we can also find the surface of the fluid and compute reflections and re-
fractions here using the laws of geometric optics (lower image of Figure 30.15). The
surface of fluid is the isosurface of the density field, which is the solution of the
following implicit equation:

ρ(~r) = ρiso .

This equation can be solved for points visible in the virtual camera by ray march-
ing. We trace a ray from the eye position through the pixel and make small steps
on it. At every sample position ~rs we check whether the interpolated density ρ(~rs)
has exceeded the specified isovalue ρiso. The first step when this happens is the in-
tersection of the ray and the isosurface. The rays are continued from here into the
reflection and refraction directions. The computation of these directions also requires
the normal vector of the isosurface, which can be calculated as the gradient of the
density field.

Exercises
30.7-1 Implement a game-of-life in CUDA. On a two-dimensional grid of cells, every
cell is either populated of unpopulated. In every step, all cell states are re-evaluated.
For populated cells:

• Each cell with one or no neighbors dies, as if by loneliness.

• Each cell with four or more neighbors dies, as if by overpopulation.

• Each cell with two or three neighbors survives.
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For unpopulated cells:

• Each cell with three neighbors becomes populated.

Store cell states in arrays accessible as textures. Always compute the next iteration
state into a different output array. Start with a random grid and display results
using the graphics API.
30.7-2 Implement a wave equation solver. The wave equation is a partial differential
equation:

∂2z

∂t2
= c2

(

∂2z

∂x2
+
∂2z

∂y2

)

,

where z(x, y, t) is the wave height above point x, y in time t, and c is the speed of
the wave.

Chapter Notes

The fixed transformation and multi-texturing hardware of GPUs became pro-
grammable vertex and fragment shaders about a decade ago. The high floating point
processing performance of GPUs has quickly created the need to use them not only
for incremental rendering but for other algorithms as well. The first GPGPU al-
gorithms were also graphics related, e.g. ray tracing or the simulation of natural
phenomena. An excellent review about the early years of GPGPU computing can be
found in [171]. Computer graphics researchers have been very enthusiastic to work
with the new hardware since its general purpose features allowed them to implement
algorithms that are conceptually different from the incremental rendering, includ-
ing the physically plausible light transport, called global illumination [221], physics
simulation of rigid body motion with accurate collision detection, fluid dynamics
etc., which made realistic simulation and rendering possible in real-time systems
and games. The GPU Gems book series [63, 145, 183] and the ShaderX (currently
GPU Pro [58]) series provide a huge collection of such methods.

Since the emergence of GPGPU platforms like CUDA and OpenCL, GPU solu-
tions have showed up in all fields of high performance computing. Online warehouses
of papers and programs are the gpgpu.org homepage and the NVIDIA homepage
[168, 169], which demonstrate the wide acceptance of this approach in many fields.
Without aiming at completeness, successful GPU applications have targeted high
performance computing tasks including simulation of all kinds of physics phenom-
ena, differential equations, tomographic reconstruction, computer vision, database
searches and compression, linear algebra, signal processing, molecular dynamics and
docking, financial informatics, virus detection, finite element methods, Monte Carlo
methods, simulation of computing machines (CNN, neural networks, quantum com-
puters), pattern matching, DNA sequence alignment, cryptography, digital hologra-
phy, quantum chemistry, etc.

To get a scalable system that is not limited by the memory of a single GPU
card, we can build GPU clusters. A single PC can be equipped with four GPUs and
the number of interconnected PCs is unlimited [245]. However, in such systems the
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communication will be the bottleneck since current communication channels cannot
compete with the computing power of GPUs.



31. Perfect Arrays

An (n, a, b)-perfect double cube is a b× b× b sized n-ary periodic array containing
all possible a × a × a sized n-ary array exactly once as subarray. A growing cube
is an array whose cj × cj × cj sized prefix is an (nj , a, cj)-perfect double cube for
j = 1, 2, . . ., where cj = n

v/3
j , v = a3 and n1 < n2 < · · · . We construct the smallest

possible perfect double cube (a 256×256×256 sized 8-ary array) and growing cubes
for any a.

31.1. Basic concepts

Cyclic sequences in which every possible sequence of a fixed length occurs exactly
once have been studied for more than a hundred years [64]. The same problem, which
can be applied to position localization, was extended to arrays [60].

Let Z be the set of integers. For u, v ∈ Z we denote the set {j ∈ Z | u ≤ j ≤ v}
by [u..v] and the set {j ∈ Z | j ≥ u} by [u..∞]. Let d ∈ [1..∞] and k, n ∈ [2..∞],
bi, ci, ji ∈ [1..∞] (i ∈ [1..d]) and ai, ki ∈ [2..∞] (i ∈ [1..d]). Let a = 〈a1, a2, . . . , ad〉,
b = 〈b1, b2, . . . , bd〉, c = 〈c1, c2, . . . , cd〉, j = 〈j1, j2, . . . , jd〉 and k = 〈k1, k2, . . . , kd〉
be vectors of length d, n = 〈n1, n2, . . .〉 an infinite vector with 2 ≤ n1 < n2 < · · · .

A d-dimensional n-ary array A is a mapping A : [1..∞]d → [0, n− 1].
If there exist a vector b and an array M such that

∀j ∈ [1..∞]d : A[j] = M [(j1 mod b1) + 1, (j2 mod b2) + 1, . . . , (jd mod bd) + 1],

then A is a bperiodic array and M is a period of A.
The a-sized subarrays of A are the a-periodic n-ary arrays.
Although our arrays are infinite we say that a b-periodic array is b-sized.
Indexset Aindex of a b-periodic array A is the Cartesian product

Aindex = ×d
i=1[1..bi] .

A d dimensional b-periodic n-ary array A is called (n, d,a,b)-perfect, if all
possible n-ary arrays of size a appear in A exactly once as a subarray.

Here n is the alphabet size, d gives the number of dimensions of the “window”
and the perfect array M, the vector a characterizes the size of the window, and the
vector b is the size of the perfect array M.

An (n, d,a,b)-perfect array A is called c-cellular, if ci divides bi for i ∈ [1..d].
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A cellular array consists of b1/c1 × b2/c2 × · · · × bd/cd disjoint subarrays of size c,
called cells. In each cell the element with smallest indices is called the head of the
cell. The contents of the cell is called pattern.

The product of the elements of a vector a is called the volume of the vector
and is denoted by |a|. The number of elements of the perfect array M is called the
volume of M and is denoted by |M |.

If b1 = b2 = · · · = bd, then the (n, d,a,b)-perfect array A is called symmetric.
If A is symmetric and a1 = a2 = · · · = ad, then A is called doubly symmetric. If
A is doubly symmetric and

1. d = 1, then A is called a double sequence;

2. d = 2, then A is called a double square;

3. d = 3, then A is called a double cube.

According to this definition, all perfect sequences are doubly symmetric. In the
case of symmetric arrays we use the notion (n, d,a, b) and in the case of doubly
symmetric arrays we use (n, d, a, b) instead of (n, d,a,b).

The first known result originates from Flye-Sainte [64] who proved the existence
of (2, 1, a, 2a)-perfect sequences for all possible values of a in 1894.

One dimensional perfect arrays are often called de Bruijn [34] or Good [81]
sequences. Two dimensional perfect arrays are called also perfect maps [173] or de
Bruijn tori [102, 103, 106].

De Bruijn sequences of even length – introduced in [120] – are useful in con-
struction of perfect arrays when the size of the alphabet is an even number and the
window size is 2× 2. Their definition is as follows.

If n is an even integer then an (n, 1, 2, n2)-perfect sequence M = (m1,m2,
. . . ,mn2) is called even, if mi = x, mi+1 = y, x 6= y,mj = y and mj+1 = x
imply j − i is even.

Iványi and Tóth [120] and later Hurlbert and Isaak [103] provided a constructive
proof of the existence of even sequences.

Lexicographic indexing of an array M = [mj1j2...jd
] = [mj] (1 ≤

ji ≤ bi) for i ∈ [1..d] means that the index I(mj) is defined as

I(mj) = j1 − 1 +
d
∑

i=2

(

(ji − 1)
i−1
∏

m=1

bm

)

.

The concept of perfectness can be extended to infinite arrays in various ways. In
growing arrays [103] the window size is fixed, the alphabet size is increasing and
the prefixes grow in all d directions.

Let a and d be positive integers with a ≥ 2 and n = 〈n1, n2, . . .〉 be a strictly
increasing sequence of positive integers. An array M = [mi1i2...id

] is called (n, d, a)-
growing, if the following conditions hold:

1. M = [mi1i2...id
] (1 ≤ ij <∞) for j ∈ [1..d];

2. mi1i2...id
∈ [0..n− 1];
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3. the prefix Mk = [mi1i2...id
] (1 ≤ ij ≤ n

ad/d
k for j ∈ [1..d]) of M is

(nk, d, a, n
ad/d
k )-perfect array for k ∈ [0..∞].

For the growing arrays we use the terms growing sequence, growing square and
growing cube.

For a, n ∈ [2..∞] the new alphabet size N(n, a) is

N(n, a) =
{

n, if any prime divisor of a divides n ,
nq, otherwise ,

(31.1)

where q is the product of the prime divisors of a not dividing n.
Note, that alphabet size n and new alphabet size N have the property that

n | N, furthermore, n = N holds in the most interesting case d = 3 and n = a1 =
a2 = a3 = 2.

The aim of this chapter is to prove the existence of a double cube. As a side-effect
we show that there exist (n, d, a)-growing arrays for any n, d and a.

31.2. Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a pattern,
the volume of M equals the number of the possible patterns. Since each pattern –
among others the pattern containing only zeros – can appear only once, any size of
M is greater then the corresponding size of the window. So we have the following
necessary condition [46, 103]: If M is an (n, d,a,b)-perfect array, then

|b| = n|a| (31.2)

and
bi > ai for i ∈ [1..d] . (31.3)

Different construction algorithms and other results concerning one and two di-
mensional perfect arrays can be found in the fourth volume of The Art of Computer
Programming written by D. E. Knuth [?]. E.g. a (2,1,5,32)-perfect array [?, page
22], a 36-length even sequence whose 4-length and 16-length prefixes are also even
sequences [?, page 62], a (2,2,2,4)-perfect array [?, page 38] and a (4,2,2,16)-perfect
array [?, page 63].

It is known [34, ?] that in the one-dimensional case the necessary condition (31.2)
is sufficient too. There are many construction algorithms, like the ones of Cock [46],
Fan, Fan, Ma and Siu [60], Martin [150] or any algorithm for constructing of directed
Euler cycles [?].

Chung, Diaconis and Graham [44] posed the problem to give a necessary and
sufficient condition of the existence of (n, 2,a,b)-perfect arrays.

The conditions (2) and (3) are sufficient for the existence of (2,2,a,b)-perfect
arrays [60] and (n,2,a,b)-perfect arrays [172]. Later Paterson in [173, 174] supplied
further sufficient conditions.

Hurlbert and Isaak [103] gave a construction for one and two dimensional growing
arrays.
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31.3. One-dimensional arrays

In the construction of one-dimensional perfect arrays we use the following algorithms.
Algorithm Martin generates one-dimensional perfect arrays. Its inputs are the

alphabet size n and the window size a. Its output is an n-ary perfect sequence of
length na. The output begins with a zeros and always continues with the maximal
permitted element of the alphabet.

31.3.1. Pseudocode of the algorithm Quick-Martin

A natural implementation of Martin’s algorithm can be found in the chapter Com-
plexity of words of this book. The following effective implementation of Martin is
due to M. Horváth and A. Iványi.

Quick-Martin(n, a)

1 for i = 0 to na−1 − 1
2 C[i] = n− 1
3 for i = 1 to a
4 w[i] = 0
5 for i = a+ 1 to na

6 k = w[i− a+ 1]
7 for j = 1 to a− 1
8 k = kn+ w[i− a+ j]
9 w[i] = C[k]
10 C[k] = C[k]− 1
11 return w

This algorithm runs in Θ(ana) time. The following implementation of Martin
algorithm requires even smaller time.

31.3.2. Pseudocode of the algorithm Optimal-Martin

Optimal-Martin(n, a)

1 for i = 0 to na−1 − 1
2 C[i] = n− 1
3 for i = 1 to a
4 w[i] = 0
5 for i = a+ 1 to na

6 k = w[i− a+ 1]
7 for j = 1 to a− 1
8 k = kn+ w[i− a+ j]
9 w[i] = C[k]
10 C[k] = C[k]− 1
11 return w

The running time of any algorithm which constructs a on??? perfect array is
Ω(na), since the sequance contains na elements. The running time of Optimal-
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Martin is Θ(na).

31.3.3. Pseudocode of the algorithm Shift

Algorithm Shift proposed by Cook in 1988 is a widely usable algorithm to construct
perfect arrays. We use it to transform cellular (N, d, a,b)-perfect arrays into (N, d+
1, a, c)-perfect arrays.

Shift(N, d, a, Pd, Pd+1)

1 Martin(Nad

, a− 1,w)
2 for j = 0 to Nad−ad−1 − 1
3 transform wi to an ad digit N -ary number
4 produce the (j + 1)-st layer of the output Pd+1 by multiple shifting

the jth layer of Pd by the transformed number (the first a digits
give the shift size for the first direction, then the next a2 − a digits
in the second direction etc.)

5 return Pd+1

31.3.4. Pseudocode of the algorithm Even

If N is even, then this algorithm generates the N2-length prefix of an even growing
sequence [103].

Even(N,w)

1 if N == 2
2 w[1] = 0
3 w[2] = 0
4 w[3] = 1
5 w[4] = 1
6 return w
7 for i = 1 to N/2− 1
8 for j = 0 to 2i− 1
9 w[4i2 + 2j + 1] = j
10 for j = 0 to i− 1
11 w[4i2 + 2 + 4j] = 2i
12 for j = 0 to i− 1
13 w[4i2 + 4 + 4j] = 2i+ 1
14 for j = 0 to 4i− 1
15 w[4i2 + 4i+ 1 + j] = w[4i2 + 4i− j]
16 w[4i2 + 8i+ 1] = 2i+ 1
17 w[4i2 + 8i+ 2] = 2i
18 w[4i2 + 8i+ 3] = 2i
19 w[4i2 + 8i+ 4] = 2i+ 1
20 return w

Algorithm Even [103] produces even de Bruijn sequences.
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31.4. One dimensional words with fixed length

31.5. Two-dimensional infinite arrays

Chung, Diaconis and Graham posed the problem to give a necessary and sufficient
condition of the existence of (n, 2,a,b)-perfect arrays.

As Fan, Fan and Siu proved in 1985, the conditions (2) and (3) are sufficient
for the existence of (2,2,a,b)-perfect arrays. Paterson proved the same in 1994 for
(n, 2, a, b)-perfect arrays. leter Paterson supplied further sufficient conditions.

Hurlbert and Isaak in 1993 gave a construction for one and two dimensional
growing arrays.

31.5.1. Pseudocode of the algorithm Mesh

The following implementation of Mesh is was proposed by Iványi and Tóth in 1988.

Mesh(N,w, S)

1 for i = 1 to N2

2 for j = 1 to N2

3 if i+ j is even
4 S[i, j] = w[i]
5 else S[i, j] = w[j]
6 return S

31.5.2. Pseudocode of the algorithm Cellular

This is an extension and combination of the known algorithms Shift, Martin,
Even and Mesh.

Cellular results cellular perfect arrays. Its input data are n, d and a, its
output is an (N, d,a,b)-perfect array, where b1 = Na1 and bi = Na1a2...ai−a1a2...ai−1

for i = 2, 3, . . . , d. Cellular consists of five parts:

1. Calculation (line 1 in the pseudocode) determining the new alphabet size N
using formula (31.1);

2. Walking (lines 2–3) if d = 1, then construction of a perfect symmetric sequence
S1 using algorithm Martin (walking in a de Bruijn graph);

3. Meshing (lines 4–6) if d = 2, N is even and a = 2, then first construct an
N -ary even perfect sequence e = 〈e1, e2, . . . , eN2〉 using Even, then construct
an N2 ×N2 sized N -ary square S1 using meshing function (??);

4. Shifting (lines 7–12) if d > 1 and (N is odd or a > 2), then use Martin once,
then use Shift d− 1 times, receiving a perfect array P ;

5. Combination (lines 13–16) if d > 2, N is even and a = 2, then construct an
even sequence with Even, construct a perfect square by Mesh and finally use
of Shift d− 2 times, results a perfect array P.
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Cellular(n, d, a,N,A)

1 N = N(n, a)
2 if d = 1
3 Martin(N, d, a,A)
4 return A
5 if d == 2 and a == 2 and N is even
6 Mesh(N, a,A)
7 return A
8 if N is odd or a 6= 2
9 Martin(N, a, P1)
10 for i = 1 to d− 1
11 Shift(N, i, Pi, Pi+1)
12 A = P1

13 return A
14 Mesh(N, a, P1)
15 for i = 2 to d− 1
16 Shift(N, i, Pi, Pi+1)
17 A← Pd

18 return Pd

31.6. Three-dimensional infinite cubes

31.6.1. Pseudocode of the algorithm Colour

Colour transforms cellular perfect arrays into larger cellular perfect arrays. Its
input data are

• d ≥ 1 – the number of dimensions;

• N ≥ 2 – the size of the alphabet;

• a – the window size;

• b – the size of the cellular perfect array A;

• A – a cellular (N, d,a,b)-perfect array.

• k ≥ 2 – the multiplication coefficient of the alphabet;

• 〈k1, k2, . . . , kd〉 – the extension vector having the property k|a| = k1×k2×· · ·×kd.

The output of Colour is

• a (kN)-ary cellular perfect array P of size b = 〈k1a1, k2a2, . . . , kdad〉.
Colour consists of three steps:

1. Blocking: (line 1) arranging k|a| copies (blocks) of a cellular perfect array A
into a rectangular array R of size k = k1×k2×· · ·×kd and indexing the blocks
lexicographically (by 0, 1, . . . , k|a| − 1);
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2. Indexing: (line 2) the construction of a lexicographic indexing scheme I con-
taining the elements 0, 1, . . . k|a|−1 and having the same structure as the array
R, then construction of a colouring matrix C, transforming the elements of I
into k-ary numbers consisting of |a| digits;

3. Colouring: (lines 3-4) colouring R into a symmetric perfect array P using the
colouring array C that is adding the N -fold of the j-th element of C to each cell
of the j-th block in R (considering the elements of the cell as lexicographically
ordered digits of a number).

The output P consists of blocks, blocks consist of cells and cells consists of el-
ements. If e = P [j] is an element of P, then the lexicographic index of the block
containing e is called the blockindex of e, the lexicographic index of the cell con-
taining e is called the cellindex and the lexicographic index of e in the cell is called
elementindex. E.g. the element S2[7, 6] = 2 in Table 3 has blockindex 5, cellindex
2 and elementindex 1.

Input parameters are N, d, a, k, k, a cellular (N, d, a,b)-perfect array A, the
output is a (kN, d,a, c)-perfect array P, where c = 〈a1k1, a2k2, . . . , adkd〉.

Colour(N, d,a, k,k, A, P )

1 arrange the copies of P into an array R of size
k1 × k2 × · · · × kd blocks

2 construct a lexicographic indexing scheme I containing the elements
of [0..kad − 1] and having the same structure as R

3 construct an array C transforming the elements of I into k-ary
numbers of v digits and multiplying them by N

4 produce the output S adding the j-th (j ∈ [0..kad − 1]) element of C
to each cell of the j-th block in R for each block of R

5 return S

31.6.2. Pseudocode of the algorithm Growing

Finally, algorithm Growing generates a prefix Sr of a growing array G. Its input
data are r, the number of required doubly perfect prefixes of the growing array G,
then n, d and a. It consists of the following steps:

1. Initialization: construction of a cellular perfect array P using Cellular;

2. Resizing: if the result of the initialization is not doubly symmetric, then con-
struction of a symmetric perfect array S1 using Colour, otherwise we take P
as S1;

3. Iteration: construction of the further r − 1 prefixes of the growing array G
repeatedly, using Colour.

Input parameters of Growing are n, d, a and r, the output is a doubly sym-
metric perfect array Sr, which is the rth prefix of an (n, d, a)-growing array.

Growing(n, d, a, r, Sr)
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1 Cellular(n, d, a,N, P )
2 calculation of N using formula (31.1)
3 if P is symmetric
4 S1 = P
5 if P is not symmetric
6 n1 = Nd/gcd(d,ad)

7 k = n1/N

8 k1 = (n1)ad/3/Na

9 for i = 2 to d

10 ki = (n1)ad/d/Nai−ai−1

11 Colour(n1, d, a, k,k, P, S1)
12 k = Nd/gcd(d, ad)
13 for i = 1 to d

14 ki = (n2)ad/d/Nai−ai−1

15 for i = 2 to r

16 ni = Ndi/gcd(d,ad)

17 Colour(ni, d,a, k,k, Si−1, Si)
18 return Sr

31.7. Examples of constructing growing arrays using
colouring

In this section particular constructions are presented.

31.7.1. Construction of growing sequences

As the first example let n = 2, a = 2 and r = 3. Cellular calculates N = 2 and
Martin produces the cellular (2,1,2,4)-perfect sequence P = 00|11.

Since P is symmetric, S1 = P. Now Growing chooses multiplication coefficient
k = n2/n1 = 2, extension vector k = 〈4〉 and uses Colour to construct a 4-ary
perfect sequence.

Colour arranges k1 = 4 copies into a 4 blocks sized arrray receiving

R = 00|11 || 00|11 || 00|11 || 00|11. (31.4)

Colouring receives the indexing scheme I = 0 1 2 3, and the colour-
ing matrix C transforming the elements of I into a digit length k-ary numbers:
C = 00 || 01 || 10 || 11.

Finally we colour the matrix R using C – that is multiply the elements of C by
n1 and adding the j-th (j = 0, 1, 2, 3) block of C1 = n1C to both cells of the j-th
copy in R:

S2 = 00|11 || 02|13 || 20|31 || 22|33. (31.5)

Since r = 3, we use Colour again with k = n3/n2 = 2 and get the (8,1,2,64)-
perfect sequence S3 repeating S2 4 times, using the same indexing array I and
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31.1. Table a) A (2,2,4,4)-square b) Indexing scheme I of size 4 × 4

column/row 1 2 3 4 column/row 1 2 3 4

1 0 0 0 1 1 0 1 2 3
2 0 0 1 0 2 4 5 6 7
3 1 0 1 1 3 8 9 10 11
4 0 1 1 1 4 12 13 14 15

31.2. Table Binary colouring matrix C of size 8 × 8

column/row 1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 1 1
3 0 1 0 1 0 1 0 1
4 0 0 0 1 1 0 1 1
5 1 0 1 0 1 0 1 0
6 0 0 0 1 1 0 1 1
7 1 1 1 1 1 1 1 1
8 0 0 0 1 1 0 1 1

colouring array C ′ = 2C.
Another example is a = 2, n = 3 and r = 2. To guarantee the cellular prop-

erty now we need a new alphabet size N = 6. Martin produces a (6,1,2,36)-perfect
sequence S1, then Colour results a (12,1,2,144)-perfect sequence S2.

31.7.2. Construction of growing squares

Let n = a = 2 and r = 3. Then N(2, 2) = 2. We construct the even sequence
W4 = e1e2e3e4 = 0 0 1 1 using Even and the symmetric perfect array A in Table
31.1.a using the meshing function (??). Since A is symmetric, it can be used as S1.
Now the greatest common divisor of a and ad is 2, therefore indeed n1 = N2/2 = 2.

Growing chooses k = n1/N = 2 and Colour returns the array R repeating
the array A k2 × k2 = 4× 4 times.

Colour uses the indexing scheme I containing k4 indices in the same 4 × 4
arrangement as it was used in R. Table 31.1.b shows I.

Transformation of the elements of I into 4-digit k-ary form results the colouring
matrix C represented in Table 31.2.

Colouring of array R using the colouring array 2C results the (4,2,2,16)-square
S2 represented in Table 31.3.

In the next iteration Colour constructs an 8-ary square repeating S2 4 × 4
times, using the same indexing scheme I and colouring by 4C. The result is S3, a
(8, 2, 2, 64)-perfect square.
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31.3. Table A (4,2,2,16)-square generated by colouring

column/row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
3 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
4 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

5 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3
6 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
7 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
8 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

9 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 1
10 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
11 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3 1
12 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

13 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3
14 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
15 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3
16 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

31.4. Table 8 layers of a (2,3,2,16)-perfect array

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1

31.7.3. Construction of growing cubes

If d = 3, then the necessary condition (2) is b3 = (n)a3

for double cubes, implying n
is a cube number or a is a multiple of 3. Therefore, either n ≥ 8 and then b ≥ 256,
or a ≥ 3 and so b ≥ 512, that is, the smallest possible perfect double cube is the (8,
3, 2, 256)-cube.

As an example, let n = 2, a = 2 and r = 2. Cellular computes N = 2, Mesh
constructs the (2, 2, 2, 4)-perfect square in Table 31.1.a, then Shift uses Martin
with N = 16 and a = 1 to get the shift sizes for the layers of the (2, 3, 2,b)-perfect
output P of Cellular, where b = 〈4, 4, 16〉. Shift uses P as zeroth layer and the
jth (j ∈ [1 : 15]) layer is generated by cyclic shifting of the previous layer downwards
by wi (div 4) and right by wi (mod 4), where w = 〈0 15 14 13 12 11 10 9 8 7 6 5 4
3 2 1〉. 8 layers of P are shown in Table 31.4.

Let A3 be a 4 × 4 × 16 sized perfect, rectangular matrix, whose 0. layer is the
matrix represented in Table 31.1, and the (2, 3, a,b)-perfect array P in Table 31.4,
where a = (2, 2, 2) and b = (4, 4, 8).

Growing uses Colour to retrieve a doubly symmetric cube. n1 = 8, thus
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b = 256, k = n1/N = 4 and k = 〈256/4, 256/4, 256/64〉, that is we construct the
matrix R repeating P 64× 64× 16 times.

I has the size 64 × 64 × 16 and I[i1, i2, i3] = 642(i1 − 1) + 64(i2 − 1) + i3 − 1.
Colour gets the colouring matrix C by transforming the elements of I into 8-digit
4-ary numbers – and arrange the elements into 2×2×2 sized cubes in lexicographic
order – that is in order (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1).
Finally colouring results a double cube S1.

S1 contains 224 elements therefore it is presented only in electronic form (on the
homepage of the corresponding author).

If we repeat the colouring again with k = 2, then we get a 64-ary 65536×64536×
64536 sized double cube S2.

31.8. Proof of the main result

The main result of this paper can be formulated as follows.

Theorem 31.1 If n ≥ 2, d ≥ 1, a ≥ 2, nj = Ndj/gcd(d,ad) with N = N(n, a) given
by (1) for j ∈ [0..∞], then there exists an (n, d, a)-growing array.

The proof is based on the following lemmas.

Lemma 31.2 (Cellular lemma) If n ≥ 2, d ≥ 1 and a ≥ 2, then algorithm Cel-
lular produces a cellular (N, d, a,b)-perfect array A, where N is determined by

formula (31.1), b1 = Na and bi = Nai−ai−1

(i ∈ [2..d]).

Proof It is known that algorithms Even+Mesh and Martin+Shift result perfect
outputs.

Since Mesh is used only for even alphabet size and for 2× 2 sized window, the
sizes of the constructed array are even numbers and so the output array is cellular.

In the case of Shift we exploit that all prime divisors of a divide the new
alphabet size N, and bi = N (a−1)(ai−1) and (a− 1)(ai−1) ≥ 1.

Lemma 31.3 (Indexing lemma) If n ≥ 2, d ≥ 2, k ≥ 2, C is a d dimensional
a-cellular array with |b| = k|a| cells and each cell of C contains the corresponding
cellindex as an |a| digit k-ary number, then any two elements of C having the same
elementindex and different cellindex are heads of different patterns.

Proof Let P1 and P2 be two such patterns and let us suppose they are identical. Let
the head of P1 in the cell have cellindex g and head of P2 in the cell have cellindex
h (both cells are in array C). Let g − h = u.

We show that u = 0 (mod k|b|). For example in Table 2 let the head of P1 be
(2, 2) and the head of P2 be (2, 6). Then these heads are in cells with cellindex 0 and
2 so here u = 2.

In both cells, let us consider the position containing the values having local value
1 of some number (in our example they are the elements (3,2) and (3,6) of C.) Since
these elements are identical, then k|u. Then let us consider the positions with local
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values k (in our example they are (3,1) and (3,5).) Since these elements are also
identical so k2|u. We continue this way up to the elements having local value k|b|

and get k|b||u, implying u = 0.
This contradicts to the conditon that the patterns are in different cells.

Lemma 31.4 (Colouring lemma) If k ≥ 2, ki ∈ [2..∞] (i ∈ [1..d]), A is a cellu-
lar (n, d,a,b)-perfect array, then algorithm Colour(N, d,a, k,k, A, S) produces a
cellular (kN, d,a, c)-perfect array P, where c = 〈k1a1, k2a2, . . . , kdad〉.

Proof The input array A is N -ary, therefore R is also N -ary. The colouring array
C contains the elements of [0..N(k − 1)], so elements of P are in [0..kN − 1].

The number of dimensions of S equals to the number of dimensions of P that
is, d.

Since A is cellular and ci is a multiple of bi (i ∈ [1..d]), P is cellular.
All that has to be shown is that the patterns in P are different.
Let’s consider two elements of P as heads of two windows and their contents –

patterns p and q. If these heads have different cellindex, then the considered patterns
are different due to the periodicity of R. E.g. in Table 31.3 P [11, 9] has cellindex
8, the pattern headed by P [9, 11] has cellindex 2, therefore they are different (see
parity of the elements).

If two heads have identical cellindex but different blockindex, then the indexing
lemma can be applied.

Proof of the main theorem. Lemma 18 implies that the first call of Colour in
line 10 of Growing results a doubly symmetric perfect output S1. In every iteration
step (in lines 14–16 of Growing) the nzeroth block of Si is the same as Si−1, since
the zeroth cell of the colouring array is filled up with zeros.

Thus S1 is transformed into a doubly symmetric perfect output Sr having the
required prefixes S1, S2, . . . , Sr−1.

31.9. Multi-dimensional infinite arrays
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32. Score Sets and Kings

The idea of comparison-based ranking has been discussed earlier in the chapter
Comparison based ranking, where score sequence was introduced as a way of ranking
vertices in a tournament. Oriented graphs are generalizations of tournaments. In fact,
just like one can think of a tournament as expressing the results of a round-robin
competition without ties (with vertices representing players and arrows pointing to
the defeated players), one can think of an oriented graph as a round-robin competi-
tion with ties allowed (ties are represented by not drawing the corresponding arcs).
Figure 32.1 shows the results of a round-robin competition involving 4 players a, b, c

Figure 32.1 A round-robin competition involving 4 players.

and d, with (a) ties not allowed and (b) ties allowed. In the first instance there is
always a winner and a loser whenever two players square off, while in the latter case
player a ties with player d and player b ties with player c.

In 2009 Antal Iványi studied directed graphs, in which every pair of different
vertices is connected with at least a and at most b arcs. He named them (a, b, n)-
tournaments or simply (a, b)-tournament.

If a = b = k, then the (a, b)-tournaments are called k-tournaments. In this chap-
ter we deal first of all with 1-tournaments and (0, 1)-tournaments. (0, 1)-tournaments
are in some sense equivalent with (2, 2)-tournaments. We use the simple notations
1-tournament T 1

n , 2-tournament T 2
n , . . . , k-tournament T k

n , . . . . It is worth mention-
ing that T 1

n is a classical tournament, while oriented graphs are (0, 1)-tournaments.
If we allow loops then every directed graph is some (a, b, n)-tournament (see the
Chapter ?? (Comparison Based Ranking) of this book).

We discuss two concepts related with (a, b)-tournaments, namely score sets and
kings. A score set is just the set of different scores (out-degrees) of vertices, while a
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king is a dominant vertex. We shall study both concepts for 1-tournaments first and
then extend these to the more general setting of oriented graphs.

Although we present algorithms for finding score sets and kings in 1-tournaments
and (0, 1)-tournaments, much of the focus is on constructing tournaments with spe-
cial properties such as having a prescribed score set or a fixed number of kings. Since
players in a tournament are represented by vertices, we shall use the words player
and vertex interchangeably throughout this chapter without affecting the meaning.

We adopt the standard notation T (V,A) to denote a tournament with vertex set
V and arc set A. We denote the number of vertices by n, and the out-degree matrix
byM, and the in-degree matrix by N. Furthermore, we use the term n-tournament
and the notation T k

n to represent a tournament with n vertices and exactly k arcs
between the elements of any pair of different vertices. In a similar way Rk

n and Nn

denote a regular, resp. a null graph. When there is no ambiguity we omit one or
even both indices shall refer to the corresponding tournaments as T, R. and N.

In Section 32.1 the score sets of 1-tournaments are discussed, while Section 32.2
deals with the sore sets of oriented graphs. In Section 32.3 the conditions of the
unique reconstruction of the score sets are considered at first for k-tournaments,
then in more details for 1-tournaments and 2-tournaments. In Section 32.4 and
Section 32.5 results connected with different kings of tournaments are presented.

Some long and accessible proofs are omitted. In these cases the Reader can find
the coordinates of the proof in Chapter notes and Bibliography.

32.1. Score sets in 1-tournaments

In a round-robin competition with no ties allowed, what are the sets of nonnegative
integers that can arise as scores of players? Note that here we are not interested in
the scores of individual players (the score sequence), rather we are looking for the
sets of nonnegative integers with each integer being the score of at least one player
in the tournament. This question motivates the study of score sets of tournaments.

The set of different scores of vertices of a tournament is called the score set
of the tournament. In other words, the score set is actually the score sequence of a
tournament with repetitions removed. For example the tournament given in Figure
32.2 has score sequence [0, 2, 2, 2], whereas the score set of this tournament is {0, 2}.
Figure 32.3 shows the out-degree matrix of the tournament represented on Figure
32.2.

32.1.1. Determining the score set

Determining the score set of a tournament T (V,A) is quite easy. The following
algorithm Set1 takes the data of a tournament T (V,A) as input and returns the
score set S of T.

The procedures of this chapter are written according to the third edition of the
textbook Introduction to Algorithms published by T. H. Cormen, C. E. Leiserson,
R. L. Rivest and C. Stein in 2009.
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Figure 32.2 A tournament with score set {0, 2}.

vertex/vertex a b c d Score
a — 0 0 0 0
b 1 — 1 0 2
c 1 0 — 1 2
d 1 1 0 — 2

Figure 32.3 Out-degree matrix of the tournament represented in Figure 32.2.

Set1(n, V,A)

1 S = ∅
2 for all vertex u ∈ V
3 s = 0
4 for all vertex v ∈ V
5 if (u, v) ∈ A // is (u, v) an arc of T?
6 s = s+ 1
7 if s /∈ S // is the found score new?
8 S = S ∪ {s}
9 return S

Since the scores of the vertices depend on n(n − 1) out-degrees, any algorithm
determining the score set requires Ω(n2) time. Due to the embedded loops in lines
02–08 the running time of Set1 is Ω(n2) even in the best case. The precise order of
the running time depends among others on the implementation of the if instruction
in line 07. E.g., if line 07 is implemented by the comparison of the actual score with
the elements of S, then the running time is Θ(n3) for a score sequence containing
different elements and is Θ(n2) for a regular tournament.

Out-degree matrix Mn×n = [mij ]n×n is a useful tool in the implementation of
graph algorithms. The input of the following algorithm Quick-Set1 is n and M,
and the output is the score sequence s as a nonincreasingly ordered sequence and the
score set S as an increasingly ordered sequence. Quick-Set1 calls the well-known
sorting procedure Insertion-Sort.
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Quick-Set1(n,M)

1 S = ∅
2 for i = 1 to n
3 si = 0
4 for j = 1 to n
5 si = si +mij // score sequence is computed
6 S1 = s1

7 Insertion-Sort(s) if s /∈ S // sorting of the score vector
8 for i = 2 to n
9 if si 6= si−1

10 Sk = si

11 k = k + 1
12 return s, S

Since the embedded loops in lines 02–05 need Θ(n2) time, and the remaining
part of the code requires less, the running time of Quick-Set1 is Θ(n2) in all cases.

32.1.2. Tournaments with prescribed score set

Constructing a tournament with a prescribed score set is more difficult than deter-
mining the score set. Quite surprisingly, if sufficiently many players participate in a
tournament then any finite set of nonnegative integers can arise as a score set. This
was conjectured by K. B. Reid in 1978 and turned out to be a relatively challenging
problem.

Reid proved the result when | S | = 1, 2 or 3, or if S contains consecutive terms
of an arithmetic or geometric progression. That is, Reid showed that any set of one,
two or three nonnegative integers is a score set of some tournament and additionally,
any set of the form {s, s+d, s+2d, . . . , s+pd} for s > 0, d > 1 or {s, sd, sd2, . . . , sdp}
for s ≥ 0, d > 0, is a score set of some tournament. Hager settled the cases |S| = 4
and |S| = 5 in 1986 and finally in 1987, T. Yao gave an existence proof of the general
Reid’s conjecture based on arithmetic analysis.

Theorem 32.1 (Yao, 1988) Every finite nonempty set S of nonnegative integers is
the score set of some tournament.

Let us try to formulate Reid’s conjecture purely as a statement about num-
bers. Let S = {s1, . . . , sp} be an increasing sequence of nonnegative integers. The
conjecture means that there exist positive integers x1, . . . , xp such that

S = (sx1

1 , . . . , sx2

2 . . . , sxp
p )

is the score sequence of some 1-tournament with
∑p

i=1 xi = n vertices. By Landau’s
theorem, a = (a1, . . . , an), with a1 ≤ · · · ≤ an, is the score sequence of some 1-

tournament Tn if and only if
∑k

i=1 ai ≥
(

k
2

)

, for k = 1, . . . , n−1 and
∑n

i=1 ai =
(

n
2

)

.

Thus it can be readily seen that Reid’s conjecture is equivalent to the following
statement.

For every nonempty set of nonnegative integers S = {s1, . . . , sp}, where s1 <
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Figure 32.4 Construction of tournament T with odd number of distinct scores.

· · · < sp, there exist positive integers x1, . . . , xp, such that

k
∑

i=1

sixi ≥
(

∑k
i=1 xi

2

)

, for k = 1, . . . , p− 1 , (32.1)

p
∑

i=1

sixi =
(∑p

i=1 xi

2

)

. (32.2)

It is this equivalent formulation of Reid’s conjecture that led to Yao’s proof. The
proof is not combinatorial in nature, but uses first of all some results of number
theory. Commenting on Yao’s proof Qiao Li wrote in 2006 in the Annals of New
York Academy of Sciences:

Yao’s proof is the first proof of the conjecture, but I do not think it
is the last one. I hope a shorter and simpler new proof will be coming in
the near future.

However, the prophecized constructive proof has not been discovered yet. This
is in sharp contrast with Landau’s theorem on score sequences, for which several
proofs have emerged over the years. Recently, S. Pirzada and T. A. Naikoo gave
a constructive combinatorial proof of a new special case of Reid’s theorem. Their
proof gives an algorithm for constructing a tournament with the prescribed score
set, provided the score increments are increasing.

Theorem 32.2 (Pirzada and Naikoo, 2008) If a1, a2, . . . , ap are nonnegative in-
tegers with a1 < a2 < · · · < ap, then there exists a 1-tournament T with score
set

S =

{

s1 = a1, s2 =
2
∑

i=1

ai, . . . , sp =
p
∑

i=1

ai

}

. (32.3)

Since any set of nonnegative integers can be written in the form of 32.3, the
above theorem is applicable to all sets of nonnegative integers S = {s1, s2, . . . , sp}
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Figure 32.5 Construction of tournament T with even number of distinct scores.

with increasing increments (i.e., s1 < s2 − s1 < s3 − s2 < · · · < sp − sp−1.) The
importance of Pirzada-Naikoo proof of Theorem 32.2 is augmented by the fact that
Yao’s original proof is not constructive and is not accessible to a broad audience1.

The following recursive algorithm is based on Pirzada and Naikoo’s proof of
Theorem 32.2. The algorithm takes the set of increments Ip = {a1 < a2 < · · · < ap}
of the score set S as input and returns a tournament T whose score set is S. Let
Xt = {a1 < a2 < · · · < at} for 1 ≤ t ≤ p. Let Rn denote the regular tournament on
n vertices and let T (1)⊕T (2) denote the vertex and arc disjoint union of tournaments
T (1) and T (2).

Score-Reconstruction1(p, Ip)

1 if p is odd
2 print Odd(p, Ip)
3 else print Even(p, Ip)

This algorithm calls one of the two following recursive procedures ODD and
Even according to the parity of p. The input of both algorithm is some prefix Xt of
the sequence of the increments a1, a2, . . . , at, and the output is a tournament having
the score set corresponding to the given increments.

1Yao’s proof originally appeared in Chinese in the journal Kexue Tongbao. Later in 1989, the proof
was published in English in the Chinese Science Bulletin. Unfortunately neither are accessible
through the world wide web, although the English version is available to subscribers of the Chinese
Science Bulletin. In Hungary this journal is accessible in the Library of Technical and Economical
University of Budapest.
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Odd(t,Xt)

1 if t == 1
2 return R2a1+1

3 else T
(3)
t = R(2(at−at−1+at−2−at−3+···+a3−a2+a1)+1)

4 T
(2)
t = R2(at−1−at−2+at−3−at−2+···+a4−a3+a2−a1−1)+1

5 t = t− 2
6 T

(1)
t = Odd(t,Xt)

7 Tt = T
(3)
t ⊕ T (2)

t ⊕ T (1)
t

8 Tt = T+ arcs such that
9 T

(2)
t dominates T (1)

t

10 T
(3)
t dominates T (1)

t

11 T
(3)
t dominates T (2)

t

12 return Tt

We can remark that the tournament constructed by the first execution of line 03
of Odd contains the vertices whose score is ap, while the tournament constructed
in line 04 contains the vertices whose score is ap−1 in the tournament appearing as
output. The vertices having smaller scores appear during the later execution of lines
03 and 04 with exception of the vertices having score a1 since those vertices will be
added to the output in line 02.

Even(t,Xt)

1 T
(2)
t = R2(at−at−1+at−2−at−3+···+a4−a3+a2−a1−1)+1

2 t = t− 1
3 T

(1)
t = Odd(t,Xt)

4 Tt = T
(2)
t ⊕ T (1)

t

5 Tt = T+ arcs such that T (2)
t dominates T (1)

t

6 return Tt

Since the algorithm is complicated, let’s consider an example.

Example 32.1 Let p = 5 and I5 = {0, 1, 2, 3, 4}. Since p is odd, Score-Reconstruction1
calls Odd in line 02 with parameters 5 and I5.

The first step of Odd is the construction of T
(3)
5 = T2(4−3+2−1+0)+1 = T5 in line 03.

Denoting the vertices of this regular 5-tournament by v1, v2, v3, v4, v5 and using the
result of Exercise 32.1-1 we get the out-degree matrix shown in Figure 32.6.

The second step of Odd is the construction of T
(2)
5 = T2(3−2+1−0−1)+1 = T3. Let v6, v7

and v8 be the vertices of this tournament.
The third step of Odd is the recursive call with parameters p = 3 and X3 = {2, 1, 0}.

The fourth action of Odd is the construction of T
(3)
3 = T2(2−1+0)+1 = T3. Let v9, v10

and v11 be the vertices of this tournament. The fifth step is the construction of T
(2)
3 =

T2(2−1+0−1)+1 = T1. Let v12 be the only vertex of this graph. The sixth action is the call
of Odd with parameters t = 1 and X1 = {0}. Now the number of increments equals to 1,

therefore the algorithm constructs T
(1)
1 = T1 in line 02.

The seventh step is the construction of T in line 07, then the eighth step is adding new
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vertex/vertex v1 v2 v3 v4 v5 Score
v1 — 1 1 0 0 2
v2 0 — 1 1 0 2
v3 0 0 — 1 1 2
v4 1 0 0 — 1 2
v5 1 1 0 — 0 2

Figure 32.6 Out-degree matrix of the tournament T
(3)
5 .

vertex/vertex v9 v10 v11 v12 v13 Score
v9 — 1 0 1 1 3
v10 0 — 1 1 1 3
v11 1 0 — 1 1 3
v12 0 0 0 — 1 1
v13 0 0 0 0 — 0

Figure 32.7 Out-degree matrix of the tournament T
(3)
5 .

v/v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 Score
v1 — 0 0 0 0 0 0 0 0 0 0 0 0 0
v2 1 — 0 0 0 0 0 0 0 0 0 0 0 1
v3 1 1 — 1 0 0 0 0 0 0 0 0 0 3
v4 1 1 0 — 1 0 0 0 0 0 0 0 0 3
v5 1 1 1 0 — 0 0 0 0 0 0 0 0 3
v6 1 1 1 1 1 — 1 0 0 0 0 0 0 6
v7 1 1 1 1 1 0 — 1 0 0 0 0 0 6
v8 1 1 1 1 1 1 0 — 0 0 0 0 0 6
v9 1 1 1 1 1 1 1 1 — 1 0 1 1 10
v10 1 1 1 1 1 1 1 1 0 — 1 1 0 10
v11 1 1 1 1 1 1 1 1 0 0 — 1 1 10
v12 1 1 1 1 1 1 1 1 1 0 0 — 1 10
v13 1 1 1 1 1 1 1 1 1 1 0 0 — 10

Figure 32.8 Out-degree matrix of the tournament T5.

arcs (according to lines 08–11) to the actual T constructed in line 07 and consisting from
3 regular tournaments having altogether 5 vertices (v13, v12, v11, v10, v9). The result is
shown in Figure 32.7.

Ninth step of Odd is joining the tournaments T5 and T3 to T and the final step is
adding of the domination arcs. The out-degree matrix of the output T5 of Odd is shown
in Figure 32.8.
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Correctness of the algorithm Let I = {a1, a2, . . . , ap} be a set of p nonnegative
integers with a1 < a2 < · · · < ap. Score-Reconstruction1 performs two types
of recursions: first if p is odd and the second if p is even. Assume p to be odd. For
p = 1, the set I contains one nonnegative integer a1 and the algorithm returns the
regular tournament T2a1+1 as output. Note that each vertex of T2a1+1 has score
(

2a1+1−1
2

)

= a1, so that score set of T2a1+1 is S = {s1 = a1}. This shows that the
algorithm is correct for p = 1.

If p = 3, then the set of increments I consists of three nonnegative integers
{a1, a2, a3} with a1 < a2 < a3. Now a3 > a2, therefore a3 − a2 > 0, so that
a3−a2 +a1 > 0 as a1 ≥ 0. Let T (3) be a regular tournament having 2(a3−a2 +a1)+1

vertices. Then each vertex of T (3) has score
(

2(a3−a2+a1)+1−1
2

)

= a3 − a2 + a1.

Again, since a2 > a1, therefore a2 − a1 > 0, so that a2 − a1 − 1 ≥ 0. Let T (2) be
a regular tournament having 2(a2 − a1 − 1) + 1 vertices. Then each vertex of T (2)

has score
(

2(a2−a1−1)+1−1
2

)

= a2 − a1 − 1. Also since a1 ≥ 0, let T (1) be a regular

tournament having 2a1+1 vertices. Then each vertex of T1 has score
(

2a1+1−1
2

)

= a1.
If p = 3, Score-Reconstruction1 outputs a tournament T whose vertex set

is the disjoint union of vertex sets of T (1), T (2) and T (3) and whose arc set contains
all the arcs of T (1), T (2) and T (3) such that every vertex of T (2) dominates each
vertex of T (1), and every vertex of T (3) dominates each vertex of T (1) and T (2).
Thus T has 2a1 +1+2(a2−a1−1)+1+2(a3−a2 +a1)+1 = 2(a1 +a3)+1 vertices
with score set

S = {a1, a2 − a1 − 1 + 2a1 + 1, a3 − a2 + a1 + 2(a2 − a1 − 1) + 1 + 2a1 + 1}

=

{

a1,
2
∑

i=1

ai,
3
∑

i=1

ai

}

.

This shows that the algorithm is correct for p = 3 too. When the set I of incre-
ments consists of an odd number of nonnegative integers, the algorithm recursively
builds the required tournament by using the procedure Odd. To see this, assume
that the algorithm works for all odd numbers upto p. That is, if a1, a2, . . . , ap are p
nonnegative integers with a1 < a2 < · · · < ap, then the algorithm outputs a tourna-
ment having 2(a1+a3+. . .+ap)+1 vertices with score set {a1,

∑2
i=1 ai, . . . ,

∑p
i=1 ai}.

Let us call this tournament T (1).
We now show how the algorithm constructs a tournament with p+2 vertices with

score set {a1,
∑2

i=1 ai, . . . ,
∑p+2

i=1 ai}, where a1, a2, . . . , ap+2 are p + 2 nonnegative
integers with a1 < a2 < · · · < ap+2.

Since a2 > a1, a4 > a3, . . . , ap−1 > ap−2, ap+1 > ap. therefore a2 − a1 > 0,
a4 − a3 > 0, . . . , ap−1 − ap−2 > 0, ap+1 − ap > 0, so that ap+1 − ap + ap−1 − ap−2 +
. . .+a4−a3+a2−a1 > 0, that is, ap+1−ap+ap−1−ap−2+. . .+a4−a3+a2−a1−1 ≥ 0.

The procedure Odd constructs T (2) as a regular tournament having 2(ap+1 −
ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1) + 1 vertices. Each vertex of T (2) has
score

2(ap+1 − ap + ap−1 − ap−2 + . . .+ a4 − a3 + a2 − a1 − 1) + 1− 1
2

= ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1 .
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Again, a3 > a2, . . . , ap > ap−1, ap+2 > ap+1, therefore a3 − a2 > 0, . . . , ap −
ap−1 > 0, ap+2 − ap+1 > 0, so that ap+2 − ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1 > 0
as a1 ≥ 0.

The procedure Odd constructs T (3) as a regular tournament having 2(ap+2 −
ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1) + 1 vertices. Each vertex of T (3) has score

2(ap+2 − ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1) + 1− 1
2

= ap+2 − ap+1 + ap − ap−1 + · · ·+ a3 − a2 + a1 .

Now Score-Reconstruction1 sets T = T (1)⊕T (2)⊕T (3) and adds additional
arcs in such a way that every vertex of T (2) dominates each vertex of T (1), and every
vertex of T (3) dominates each vertex of T (1) and T (2). Therefore T is a tournament
having

2(a1 + a3 + · · ·+ ap) + 1 + 2(ap+1ap + ap1ap2 + · · ·+ a4a3 + a2a1) + 1

+2(ap+2ap+1 + apap−1 + · · ·+ a3a2 + a1) + 1

= 2(a1 + a3 + · · ·+ ap+2) + 1

vertices with score set

S =

{

a1,

2
∑

i=1

ai, . . . ,

p
∑

i=1

ai,

p+1
∑

i=1

ai,

p+2
∑

i=1

ai

}

.

Hence by induction, the algorithm is correct for all odd p.
To prove the correctness for even case, note that if p is odd, then p+1 is even. Let

a1, a2, . . . , ap+1 be p+ 1 nonnegative integers with a1 < a2 < · · · < ap+1.. Therefore
a1 < a2 < · · · < ap, where p is odd. The procedure Even uses the procedure Odd
to generate a tournament T (1) having 2(a1 + a3 + · · · + ap) + 1 vertices with score
set S = {a1,

∑2
i=1 ai, . . . ,

∑p
i=1 ai}.

Also, since a2 > a1, a4 > a3, . . . , ap−1 > ap−2, ap+1 > ap, the procedure Even
generates a regular tournament T (2) having 2(ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 −
a3 +a2−a1−1)+1 vertices such that the score for each vertex is ap+1−ap +ap−1−
ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1.

Finally the algorithm generates the tournament T (1)⊕T (2) and adds additional
arcs so that every vertex of T (2) dominates each vertex of T (1). The resulting tour-
nament T consists of

2(a1 + a3 + · · ·+ ap−2 + ap) + 1

+2(ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1) + 1

= 2(a2 + a4 + · · ·+ ap+1)

vertices and has score set
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S = {a1,

2
∑

i=1

ai, . . . ,

p
∑

i=1

ai,

ap+1 − ap + ap−1 − ap−2 + · · ·+ a4 − a3 + a2 − a1 − 1

+2(a1 + a3 + · · ·+ ap−2 + ap) + 1}

= {a1,

2
∑

i=1

ai, . . . ,

p+1
∑

i=1

ai} .

This shows that the algorithm is correct for even p as well.

Computational complexity The running time of Score-Reconstruction1
depends on the size of the score set |S| as well as the largest increment ap = sp−sp−1.
The details are left as a problem for the Reader (see Exercise 32.1-1).

Exercises
32.1-1 The out-degree matrixM of a tournament is defined as a 0− 1 matrix with
(i, j) entry equal to 1 if player vi defeats player vj and 0 otherwise (see (32.13)).
A tournament is completely determined by its out-degree matrix. Write an O(n2)
algorithm to generate the out-degree matrix of a regular tournament on n vertices,
where n is any odd positive integer. Hint. Circularly place

(

n−1
2

)

ones in each row.

32.1-2 Use Exercise 32.1-1 and the discussion in this section to determine the worst-
case running time of Score-Reconstruction1.
32.1-3 Obtain the out-degree matrix of a tournament with score set {1, 3, 6}.
How many vertices does this tournament have? Draw this tournament and give
its outdegree-matrix.
32.1-4 Use the tournament obtained in Exercise 32.1-3 to generate the out-degree
matrix of a 1-tournament with score set {1, 3, 6, 10}. Write the score sequence of
your tournament.

32.2. Score sets in oriented graphs

Oriented graphs are generalizations of tournaments. Formally, an oriented graph
D(V,A) with vertex set V and arc set A is a digraph with no symmetric pairs of
directed arcs and without loops. In other words oriented graph is a directed graph in
which every pair of different vertices is connected with at most one arc, or oriented
graphs are (0, 1)-tournaments.

Figure 32.9 shows an oriented graph with score sequence [1, 3, 3, 5] and the
coressponding score set {1, 3, 5}.

Thus tournaments are complete oriented graphs, in the sense that any pair of
vertices in a tournament is joined exactly by one arc. Several concepts defined for
tournaments can be extended in a meaningful way to oriented graphs. For example
score of a player (vertex) in a tournament is defined as its out-degree, as a player
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Figure 32.9 An oriented graph with score sequence [1, 3, 3, 5] and score set {1, 3, 5}.

either wins (and earns one point) or looses (earning no points) a two-way clash. In
1991, Peter Avery introduced the score structure for oriented graphs based on the
intuition that in a round-robin competition with ties allowed, a player may earn two,
one or no points in case the player wins, looses or makes a tie respectively.

More precisely, the score of a vertex vi in a k-tournament D with n vertices is
defined as

a(vi) = ai = n− 1 + d+
vi
− d−

vi
,

where d+
vi

and d−
vi

are the out-degree and in-degree, respectively, of vi. The score
sequence of an oriented graph is formed by listing the vertex scores in non-decreasing
order. If we denote the number of non-arcs in D containing the vertex vi as d∗

vi
, then

ai = 2d+
vi

+ d∗
vi
.

With this score structure, an oriented graph can be interpreted as the result of a
round-robin competition in which ties (draws) are allowed, that is, the players play
each other once, with an arc from player u to v if and only if u defeats v. A player
receives two points for each win, and one point for each tie.

It is worth to remark that this is a sophisticated score structure comparing with
the simple and natural structure of 2-tournaments.

Avery gave a complete characterization of score sequences of oriented graphs
similar to Landau’s theorem.

Theorem 32.3 (Avery, 1991) A nondecreasing sequence A = [a1, . . . , an] of non-
negative integers is the score sequence of an oriented graph if and only if

k
∑

i=1

ai ≥ k(k − 1) (32.4)

for 1 ≤ k ≤ n with equality when k = n.

Proof This theorem is a special case of the theorem proved by Moon in 1963 or
the theorem proved by Kemnitz and Dulff in 1997 (see the theorem and its proof in
Chapter 27, that is chapter Comparison Based Ranking).
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Just as in the case of 1-tournaments, the score set of an oriented graph is
defined as the set of scores of its vertices. It is worth noting that a (0, 1)-tournament
has different score sets under Avery’s and Landau’s score structures. In fact, the score
of a vertex v under Avery’s score structure is twice the score of v under Landau’s
score structure. This is obviously due to Avery’s assumption that a win contributes
2 points to the score.

The score set of an oriented graph can be determined by adapting Quick-Set2
as follows:

Quick-Set2(n,M)

1 S = ∅
2 for i = 1 to n
3 si = 0
4 for j = 1 to n
5 si = si + 2mij

6 if mij==0 and mji == 0
7 si = si + 1 // score sequence is computed
8 S1 = s1

9 k = 2
10 for i = 2 to n
11 if si 6= si−1 // is the found score new?
12 Sk = si

13 k = k + 1
14 return s, S

The running time of Quick-Set2 is Θ(n2) since the nested loop in lines 02–07
requires Θ(n2) the remaining lines require Θ(n) time.

32.2.1. Oriented graphs with prescribed scoresets

In Section ?? we discussed score sets of tournaments and noted that every non-empty
set of nonnegative integers is the score set of some tournament. In this section we
study the corresponding question for oriented graphs, i.e., which sets of nonnegative
integers can arise as score sets of oriented graphs. Pirzada and Naikoo investigated
this question and gave two sufficient conditions for a set of nonnegative integers to
be the score set of some oriented graph.

Theorem 32.4 (Pirzada, Naikoo, 2008) Let a, d, n nonnegative integers, and S =
{a, ad, ad2, . . . , adn}, with d > 2 or d = 2 and n > 1. Then there exists an oriented
graph with score set A except for a = 1, d = 2, n > 0 and for a = 1, d = 3, n > 0.

Theorem 32.5 (Pirzada, Naikoo, 2008) If n is a positive integer and a1, a2, . . . , an

are nonnegative integers with a1 < a2 < · · · < an, then there exists an oriented graph
with an + 1 vertices and with score set S = {a′

1, a
′
2, . . . , a

′
n}, where

a′
i =

{

ai−1 + ai + 1 for i > 1 ,
ai for i = 1 .

(32.5)
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Thus any set of positive integers whose elements form a geometric progression is
the score set of some oriented graph with few exceptions and any set of nonnegative
integers whose elements are of the form (32.5) is also a score set. It follows that every
singleton set of nonnegative integers is the score set of some oriented graph. On the
other hand, for any positive integer n, the sets {1, 2, 22, . . . , 2n} and {1, 3, 32, . . . , 3n}
cannot be the score sets of an oriented graph. Therefore, unlike in the case of tour-
naments, not all sets of nonnegative integers are score sets of oriented graphs. So far
no complete characterization of score sets of oriented graphs is known.

The proof of Theorem 32.4 depends on the following auxiliary assertion.

Lemma 32.6 Naikoo, Pirzada, 2008) The number of vertices in an oriented graph
with at least two distinct scores does not exceed its largest score.

Proof This assertion is the special case k = 2 of Lemma ?? due to Iványi and
Phong.

Here we omit formal proofs of Theorems 32.4 and 32.5 since they can be found
on the internet and since we will implicitly prove these theorems when we check the
correctness of Geometric-Construction and Adding-Construction, respec-
tively.

We first present a recursive algorithm that takes positive integers a, d, and
n, satisfying the condition of Theorem ??, as input and generates a 2-tournament
D(V,A) with score set {a, ad, ad2, . . . , adn}. Let Np denote the null digraph on p
vertices, i.e., the digraph with n vertices and no arcs.

Geometric-Construction(a, d, n)

1 if a = 0 or n = 0
2 D = Na+1

3 return D
4 else
5 D(1) = Geometric-Construction(a, d, n− 1)
6 U = vertex set of D(1)

7 D = D(1) ⊕Nadn−2|U |+1

8 Add arcs to D such that
9 Nadn−2|U |+1 dominates D(1)

10 return D
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Geometric-Construction(a, d, n)

1 if n = 0
2 D = Na+1

3 return D
4 if n = 1
4 if n ≥ 2
5 n = n− 1
6 D(1) = Geometric(a,d,n)
6 U = vertex set D(1)
7 D = D(1)⊕N

Example 32.2 Let a = 2, d = 2 and n = 2. Then the prescribed score set is {2, 4, 8}. The
first step is the call of Geometric with parameters (2, 2, 2).

Algorithm description If n = 0, then the algorithm returns the null digraph
Na+1. Note that Na+1 is well-defined as a + 1 > 0. Each vertex of Na+1 has score
a+1−1+0−0 = a. Therefore the score set of Na+1 is S = {a}. Thus the algorithm
is correct for n = 0.

Now we prove the correctness of Geometric by induction. That is, we show
that if the algorithm is valid for n = 0, 1, . . . , p for some integer p ≥ 1 then it is also
valid for n = p + 1. Let a and d be positive integers with a > 0 and d > 1 such
that for a = 1, d 6= 2, 3. By the induction hypothesis the algorithm can construct an
oriented graph D(1) with score set {a, ad, . . . , adp} and a, ad, . . . , adp are the distinct
scores of the vertices of D(1). Let U be the vertex set of D(1).

There are three possibilities:

• a = 1 and d > 3,

• a > 1 and d = 2 or

• a > 1 and d > 2.

Obviously, for d > 1 in all the above cases we have adp+1 ≥ 2adp. Also the score set
of D(1), namely {a, ad, . . . , adp}, has at least two distinct scores for p ≥ 1. Therefore,
by Lemma 32.6 we have |U | ≤ adp. Hence adp+1 ≥ 2|U | so that adp+1−2|U |+1 > 0.

Let Nadp+1−2|U |+1 be the null digraph with vertex set X.. The algorithm now
generates the vertex and arc disjoint union D = D(1)⊕Nadp+1−2|U |+1 and adds an arc
directed from each vertex in Nadp+1−2|U vert+1 to every vertex of D(1). The output
D(V,A) of Geometric-Seq-Construction, therefore, has |V | = |U | + adp+1 −
2|U |+1 = adp+1−|U |+1 vertices. Moreover, a+ |X|−|X| = a,, ad+ |X|−|X| = ad.
ad2 +|X|−|X| = ad2, . . . , adp +|X|−|X| = adp are the distinct scores of the vertices
in U, while ax = |U |−1 + |V |−0 = adp+1−|V |+ 1−1 + |V | = adp+1 for all vertices
x ∈ X.

Therefore the score set of D is S = {a, ad, ad2, . . . , adp, adp+1} which shows that
the algorithm works for n = p + 1. Hence the algorithm is valid for all a, d and n
satisfying the hypothesis of Theorem ??.
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The recursive procedure Geometric runs n times and during its ith run the
procedure adds O(adn+1−i) arcs to the oriented graph D. The overall complexity of
the algorithm is therefore O(nadn).

As noted in Theorem ??, there exists no 1-tournament when either a = 1, d =
2, n > 0 or a = 1, d = 3, n > 0. It is quite interesting to investigate these
exceptional cases as it provides more insight into the problem.

Let us assume that S = {1, 2, 22, . . . , 2n} is a score set of some oriented graph
D for n > 0. Then there exist positive integers, say x1, x2, x3, . . . , xn+1 such that

S1 = [1x1 , 2x2 , . . . , (22)x3 , . . . , (2n)xn+1

is the score sequence of D. Therefore, by relations (32.4) of score sequences of 1-
tournaments, we have

x1 + 2x2 + 22x3 + · · ·+ 2nxn+1 =

(

n+1
∑

i=1

xi

)(

n+1
∑

i=1

xi − 1

)

,

which implies that x1 is even. However, x1 is a positive integer, therefore x1 ≥ 2.
Let the scores be a1 = 1, a2 = 1 and a3 ≥ 1. By inequalities (32.4) a1 + a2 + a3 ≥
3(3− 1) = 6, or in other words, a3 ≥ 4. This implies that x2 = 0, a contradiction.

The proof of the other exceptional case (S = {1, 3, 32, . . . , 3n}) is left as an
exercise (Exercise 32.2-1).

The next algorithm takes the set I = {a1 < a2 < · · · < an} consisting of n
nonnegative integers as input and recursively constructs a 2-tournament D(V,A)
the score set S = {a′

1, a
′
2, . . . , a

′
n} where a′

i are of the form 32.5.

Adding-Construction(n, In)

1 if n = 0
2 D = Na1+1

3 return D
4 n = n− 1
5 D(1) = Adding-Construction(n, In)
6 D = D1 ⊕Nan+1−an

7 Add arcs to D such that
8 Nn dominates D(1)
9 return D
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Adding-Construction(n, In)

1 if n = 0
2 D = Na1+1

3 else
4 D(1) = Adding-Construction(n− 1, In − {an})
5 D = D(1) ⊕Nan−an−1

7 Add arcs to D such that
8 Nan−an−1

dominates D(1)

9 return D

Algorithm description If n = 1, the algorithm returns the null digraph Na1+1.
Each vertex of Na1+1 has the score a1 + 1− 1 + 0− 0 = a1 = a′

1. Therefore the score
set of Na1+1 is S = {a′

1} as required.
We prove the correctness of General-Construction in general by induction

on n. Assume that the algorithm is valid for n = 1, 2, . . . , p, for some integer p ≥ 2.
We show that the algorithm is also valid for n = p + 1. Let a1, a2, . . . , ap+1 be
nonnegative integers with a1 < a2 < · · · < ap+1. Since a1 < a2 < · · · < ap, by the
induction hypothesis, the algorithm returns an oriented graph D(1) on ap +1 vertices
with score set {a′

1, a
′
2, . . . , a

′
p}, where a′

i is given by equations (32.5). That is, score
set of D(1) is {a1, a1 + a2 + 1, a2 + a3 + 1, . . . , ap−1 + ap + 1}. So a1, a1 + a2 + 1,
a2 +a3 +1, . . . , ap−1 +ap +1 are the distinct scores of the vertices of D. Let X be the
vertex set of D(1) so that |X| = ap +1. Since ap+1 > ap, ap+1−ap > 0, the algorithm
constructs a new oriented graph D = D(1)⊕Np+1 with vertex set V = X ∪Y, where
Y is the vertex set of Np+1 and |Y | = ap+1 − ap. Arcs are added to D such that
there is an arc directed from each vertex in Y to every vertex in X. Thus D has
|V | = |X|+ |Y | = ap +1+ap+1−ap = ap+1 +1 vertices. The distinct score of vertices
in X are a1 + |Y |−|Y | = a1 = a′

1, a1 +a2 +1+ |Y |−|Y | = a1 +a2 +1 = a′
2, a2 +a3 +

1 + |Y | − |Y | = a2 + a3 + 1 = a′
3, . . . , ap−1 + ap+ 1 + |Y | − |Y | = ap−1 + ap + 1 = a′

p,
while ay = |X| − 1 + |V | − 0 = ap+1 + 1− 1 + ap + 1 = ap + ap+1 + 1 = a′

p+1 for all
y ∈ Y.

Therefore the score set of D is S = {a′
1, a

′
2, . . . , a

′
p, a

′
p+1} which proves the va-

lidity of algorithm for n = p+ 1. Hence by induction, General-Construction is
valid for all n.

The analysis of computational complexity of General-Construction is left
as an exercise (Exercise 32.2-2).

Exercises
32.2-1 Prove that there exists no oriented graph with score set {1, 3, 32, . . . , 3n} for
any n > 0.
32.2-2 Adding-Construction is a recursive algorithm. Analyse its running time
and compare its performance with the performance of Geometric-Construction.

32.2-3 Implement Adding-Construction in a suitable programming language



1440 32. Score Sets and Kings

and use it to construct an oriented graph with score set {2, 4, 8}. Write the score
sequence of your oriented graph.
32.2-4 Implement Adding-Construction in a suitable programming language
and use it to construct an oriented graph with score set {1, 4, 6, 9}. Write the score
sequence of your oriented graph.
32.2-5 Give a proof of Lemma 32.6.
32.2-6 For any nonnegative integer n, what is the score set of the regular tourna-
ment T2n+1 when considered as an oriented graph.
32.2-7 Determine the score set of the oriented graph D = T3 ⊕ T5, where T5 domi-
nates T3, i.e., there is an arc directed from every vertex of T5 to every vertex of T3.

32.2-8 Write an O(n) algorithm to determine the score set of directed cycles (i.e.,
cycles with directed edges). How can we make this algorithm work for directed wheels
(note that a wheel is a cycle with an additional vertex joined to all the vertices on
the cycle).

32.3. Unicity of score sets

k-tournaments (multitournaments) are directed graphs in which each pair of ver-
tices is connected with exactly k arcs.

Reid formulated the following conjecture in [202].

Conjecture 32.7 Any set of nonnegative integers is the score set of some 1-
tournament T.

Using Landau’s theorem this conjecture can be formulated in the following arith-
metic form too.

Conjecture 32.8 If 0 ≤ r1 < r2 < · · · < rm, then there exist such positive integers
x1, x2, . . . , xm, that

j
∑

i=1

xiri ≥
(
∑j

i=1 xi)(
∑j

i=1 xi − 1)
2

, j ∈ [1 : m]

and
m
∑

i=1

xiri =
(
∑m

i=1 xi)(
∑m

i=1 xi − 1)
2

.

In this case we say that the sequence s = 〈s1, . . . , sn〉 = 〈rx1

1 , . . . , rxm
m 〉 realizes

the sequence r = 〈r1, . . . , rm〉 or s is a solution for r.
Reid gave a constructive proof of his conjecture for sets containing one, two or

three elements [202].
Later Hager published a constructive proof for sets with four and five elements

[86] and Yao [243] published the outline of a nonconstructive proof of the general
case.

A score set is called k-unique, if there exists exactly 1 score sequence of k-
tournaments generating the given set. In the talk we investigate the following ques-
tions:
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1. characterization of the unique score sets of 1-tournaments;

2. extension of the Reid’s conjecture to 2-tournaments.

32.3.1. 1-unique score sets

At first we formulate a useful necessary condition.

Lemma 32.9 (Iványi and Phong, 2004) If k ≥ 1, then for any (n, k)-tournament
holds that the sequence s is a solution for r, then in the case m = 1 we have

n = 2r1 + 1 (32.6)

and in the case m ≥ 2 we have

2r1

k
+ 1 < n <

2rm

k
+ 1 (32.7)

and
n ≥ rm + 1 . (32.8)

Proof If

This lemma implies the exact answer for the case m = 1.

Corollary 32.10 (Iványi and Phong, 2004) If r = 〈r1〉, then exactly the sequence
s = 〈r2r1+1

1 〉 is a solution for r.

Proof Lemma ?? implies that only this solution is acceptable. One can check that
it satisfies the required inequality and equality.

Now we present a useful method of the investigation of the uniqueness. Let
r = 〈a, a+ d〉. Then according to the Reid-equality we get

2ax+ 2(a+ d)y = n(n− 1)

implying

y =
n(n− 2a− 1)

2d
. (32.9)

But here only the values n = 2a+ 1 + i (i ∈ [1, 2d− 1]) are permitted where

i ≥ d+ 1− a . (32.10)

By substitution a = (q − 1)d from (32.9) we get

y =
(2qd− 2d+ 2r + 1 + i)i

2d
. (32.11)

Here y must be an integer, so transform this formula into

y = i(q − d) +
i(2r + 1 + i)

2d
. (32.12)



1442 32. Score Sets and Kings

Theorem 32.11 If 0 ≤ a < b, then there exist positive integers x and y satisfying

ax ≥ x(x− 1)
2

and

ax+ by =
(x+ y)(x+ y − 1)

2
.

In the following cases there is only one solution:

• a = 0;

• d = 1;

• d = 2.

In the following case there are at least two solutions:

• d is odd and 3 ≤ d ≤ a.

Proof a) Existence of a solution. Let d = b−a and i = 2d−2r−1. Then n = 2(b−r),
y = q(2d− 2r − 1), x = q(2r + 1) satisfy all requirements.

b) Uniqueness. If a = 0, then d = b, q = 1 and y is integer only if i = 2b− 1. So
we get the unique 〈01, b2b−1〉 solution.

If d = 1, then only i = 1 is permitted, implying the unique solution 〈ab, bb〉.
If d = 2 or d is odd, then we also can analyse formula (32.12).

This theorem left open the case when the difference d is odd and the investigated
set is sparse and also the case when the difference is an even number greater then 2.

32.3.2. 2-unique score sets

Now we present a new form of Reid-problem for 2-tournaments.
For a fixed sequence q[m] = 〈q1, . . . , qm〉 with q1 < · · · < qm of positive integers,

we shall denote by G(q[m]) the set G of sequences g = 〈g1, . . . , gm〉 such that

k
∑

i=1

qigi ≥
(

k
∑

i=1

gi

)2

, k ∈ [1 : m− 1]

and
m
∑

i=1

qigi =

(

m
∑

i=1

gi

)2

.

Here we also say that g is a solution for q.
We wish to give necessary and sufficient conditions for q[m] to have a solution

that is a nonempty G(q[m]).)

Theorem 32.12 For the sequence q[1] = 〈q1〉, we have G(q[1]) = 〈q1〉.
Proof If q[1] = 〈q1〉, then it is obvious that the solution of q1g1 = g2

1 is given in the
form g1 = q1. Hence we have G(q[1]) = 〈q1〉.
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Theorem 32.13 Let q[2] = 〈q1, q2〉 be a sequence of positive integers with d =
q2 − q1 > 0. Then G(q[2]) 6= ∅ if and only if either d 6 |(q1, q2) or d|(q1, q2) and there
is a prime p such that p2|d.

Proof According to the definition of G(q[m]), we need only find positive integers
g1, g2 such that q1 ≥ g1 and q1g1 + q2g2 = (g1 + g2)2.

Let q, r be integers for which q2 = qd+ r, where 0 ≤ r < d. If d 6 |(q1, q2), then
r 6= 0 and let g1 = rq and g2 = q2 − r(q + 1). Hence we have

g1 = rq = r
q2 − r
q2 − q1

= r + r
q1 − r
q2 − q1

< r + (R1 − r) = R1 ,

g2 = R2 − r(q + 1) =

q2 − (q2 − r)
r

q2 − q1
− r

> q2 − (q2 − r)− r = 0

and
q1g1 + q2g2 = q1rq + q2

2 − q2r(q + 1)

= q2
2 + r(q1q − q2q + q2)− 2q2r =

= (q2 − r)2 = (g1 + g2)2.

Now assume that d|(q1, q2) and there is a prime p such that p2|d. In this case r = 0
and we choose g1, g2 as follows:

g1 :=
q2

p
− d

p2
and g2 := g1(p− 1) .

It is obvious that
g1 > 0, g2 > 0 , g1 ≤ R1

and
q1g1 + q2g2 = g1(q1 + (p− 1)q2)

= g1(pq2 − d) =

= g1p
2(
q2

p
− d

p2
) = (g1p)2 = (g1 + g2)2.

Finally, assume that d = 1 or d|(q1, q2) and d is the product of distinct primes.
If there are positive integers g1, g2 such that q1 ≥ g1 and q1g1 + R2g2 = (g1 + g2)2,
then we have d|g1 + g2 and

1
d

(g1 + g2)2 − q1

d
(g1 + g2) = g2 > 0 ,

1
d

(g1 + g2)2 − R2

d
(g1 + g2) = −g1 < 0 ,
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consequently
q2

d
=
q1

d
+ 1 >

g1 + g2

d
>
q1

d
.

This is impossible.

Theorem 32.14 Iványi, Phong, 2004 Let q[2] =< q1, q2 > be the sequence of
positive integers with conditions q1 < R2, (q1, q2) = 1, 2q1 > q2 and d := q2−R1 has
s distinct prime factors. Then

|G(q[2])| = 2s − 1 .

Proof Since d = q2 − q1 < q1 and (q1, q2) = 1, the congruence x2 ≡ q2x (mod d)
has 2s − 1 solutions in positive integers less than d. For each solution x we set

g1 = x(q2−x)
d and g2 = (d − x) q2−x

d . One can check that g1, g2 satisfy conditions
q1 ≥ g1 and q1g1 + q2g2 = (g1 + g2)2.

Exercises
32.3-1 How many ?
32.3-2 Design an algorithm

32.4. Kings and serfs in tournaments

Sociologists are often interested in determining the most dominant actors in a social
network. Moreover, dominance in animal societies is an important theme in ecology
and population biology. Social networks are generally modelled as digraphs with
vertices representing actors and arcs representing dominance relations among ac-
tors. The concept of “king” is very closely related to dominance in digraphs. Kings
and serfs were initially introduced to study dominance in round-robin competitions.
These concepts were latter extended to more general families of digraphs such as
multipartite tournaments, quasi-transitive digraphs, semicomplete multipartite di-
graphs and oriented graphs. In this section our focus will be on algorithmic aspects of
kings and serfs in tournaments and their applications in majority preference voting.

A king in a tournament dominates every other vertex either directly or through
another vertex. To make the idea more formal we define a path of length k from
a vertex u to a vertex v in a tournament (or any digraph) as a sequence of arcs
e1, e2, . . . , ek where u is the initial vertex of e1, v is the terminal vertex of ek and the
terminal vertex of ei is the same as the initial vertex of ei+1, for all 1 ≤ i ≤ k − 1.
If there is a path of length 1 or 2 from a vertex u to a vertex v, then v is said to be
reachable from u within two steps. Analogously, if there is a path of length 1, 2, . . .
or r from u to v then v is said to be reachable from u within r steps. Let T be an
n-tournament. A vertex u in T is called an r-king, where 1 ≤ r ≤ n − 1, if every
other vertex v in the tournament is reachable within r steps from u. A vertex u is
called an r-serf if u is reachable within r if u is reachable within r steps from every
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Figure 32.10 A tournament with three kings {u, v, y} and three serfs {u, v, x}. Note that z is
neither a king nor a serf and {u.v} are both kings and serfs.

other vertex v in T. In particular, a 2-king is simply called a king and a 2-serf is
called a serf.

S. B. Maurer introduced the dual terms of king and serf in a delightful expo-
sition of a tournament model for dominance in flocks of chicken. In his influential
series of papers on dominance in animal societies, H. G. Landau proved that every
tournament has a king (although he did not use the word king). In fact, he showed
the following.

Theorem 32.15 (Landau, 1953) Every vertex of maximum score in a tournament
is a king.

The proof is quite intuitive. Suppose to the contrary that u is a vertex with maximum
score in a tournament T and u is not a king. Then there exists another vertex v in T
such that v is not reachable from u within 2 steps. But this means that u and all out-
neighbours of u are reachable from v in 1 step and so s(v) > s(u), a contradiction.
Another classical result by J. W. Moon states that

Theorem 32.16 (Moon, 1968) A tournament without transmitters (vertices with
in-degree 0) contains at least three kings.

It is natural to ask if the bound on the number of kings given in Theorem 32.16
is tight. The answer is yes, as demonstrated by the following example.

Example 32.3 Let T be a tournament with vertex set {v1, v2, . . . , v5}. Let us denote by
(u, v), an arc directed from u to v. Suppose that the arc set of T consists of the arcs
(v3, v5), (v4, v3), all arcs of the form (vj−1, vj), with 1 < j ≤ 5 and all arcs of the form
(vj+2, vj), (vj+3, vj), . . . , (vn, vj) with j = 1, 2, 4. Then it can be easily verified (Exercise
32.4-2) that T has no transmitters and v2, v3 and v4 are the only kings in T.

K. B. Reid proved the existence of a tournament with an arbitrary number of
vertices and an arbitrary number of kings, with few exceptions.

Theorem 32.17 (Reid, 1982) For all integers n ≥ k ≥ 1 there exists a tournament
on n vertices with exactly k kings except when k = 2 or when n = k = 4 (in which
case no such n-tournament exists).
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Hence no tournament has exactly two kings. The above theorems can be stated
just as well in terms of serfs. To see this, note that the converse T ′ of a tournament
T, obtained by reversing the arcs of T, is also a tournament and that the kings and
serfs of T and T ′ are interchanged.

The king set of a tournament consists of all kings in the tournament. We can
define the serf set analogously. The problem of determining the king set of a tour-
nament is very important both for theoretical and practical considerations. In voting
theory literature, political scientists often refer to the uncovered set in majority pref-
erence voting. This uncovered set is actually the king set for the tournament whose
vertices consist of the candidates to be elected and arcs represent the outcomes of
the two-way race between candidates. Here we present a simple polynomial time
algorithm for determining the king set of a tournament. Given an n-tournament T,
let us define an n× n matrix D+

T as

(D+
T )ij =

{

1 if (vi, vj) is an arc of T ,
0 otherwise .

(32.13)

We call D+
T , the out-degree matrix of T. When there is no danger of ambiguity

we will drop the subscript T and simply denote the out-degree matrix by D+. King-
Set takes a tournament T (V,A) as input, calculates the out-degree matrix D+ of T
and uses it to generate the king set K of T. Let O be the n× n zero matrix and let
I be the n× n identity matrix.

King-Set(V,A)

1 D+ =
2 K = ∅
3 for i = 1 to n
4 for j = 1 to n
5 if (vi, vj) ∈ A
6 (D+)ij = 1
7 M = I +D+ + (D+)2

8 K = {vi ∈ V |∀vj ∈ V, (M)ij 6= 0}
9 Nn dominates D(1)
9 return K

Algorithm description The algorithm works on the same principle as the
algorithm for finding the number of paths, from one vertex to another, in a digraph
(Exercise 32.4-1 asks you to derive this algorithm). The (i, j) entry of the matrix
(D+)2 is equal to the number of paths of length two from vertex vi to vertex vj

(check this!). Therefore, the (i, j) entry of matrix D+ + (D+)2 counts the number
of paths of length one or two from vi to vj ; and if vertex vi is a king, all entries in
the ith row of I +D+ + (D+)2 must be non-zero.

The computational complexity of Algorithm King-Set depends on the way
(D+

T )2 is computed. If naive matrix multiplication is used, the algorithm runs in
Θ(n3) time. However, using the fast matrix multiplication by Coppersmith and
Winograd, the running time can be reduced to O(n2.38). The Reader should note
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that by using the duality of kings and serfs, King-Set can be adapted for finding
the serf set of a tournament.

King sets in majority preference voting Kings frequently arise in political
science literature. A majority preference voting procedure asks each voter to
rank candidates in order of preference. The results can be modeled by a tournament
where vertices represent the candidates and arcs point toward the loser of each two
way race, where candidate u defeats candidate v if some majority of voters prefer
u to v. Political scientists are often interested in determining uncovered vertices in
the resulting tournament. A vertex u is said to cover another vertex v if u defeats v
and also defeats every vertex that v defeats.

The covering relation is clearly transitive and has maximal elements, called un-
covered vertices. An uncovered vertex u has the strategically important property
that u defeats any other vertex v in no more than two steps, i.e., either

1. u defeats v or

2. there is some third alternative w such that u defeats w and w defeats v.

Thus an uncovered vertex is actually a king. In fact the uncovered set, consisting of
all uncovered vertices, is precisely the set of all kings (see Exercise 32.4-8).

The idea behind finding kings in a tournament can be easily extended to finding
r-kings for any positive integer r.

rKing-Set(V,A, r)

1 D+ = 0
2 K = ∅
3 for i = 1 to n
4 for j = 1 to n
5 if (vi, vj) ∈ A
6 (D+)ij = 1
7 M = I +D+ + . . .+ (D+)r

8 K = {vi ∈ V |∀vj ∈ V, (M)ij 6= 0}
9 return K

The above algorithm runs in O(rn3) if the matrix multiplications are performed
naively, and in O(rn2.38) time if fast matrix multiplication is incorporated.

As we have seen, kings dominate in tournaments. However, there exists a stronger
notion of dominance in tournaments in the form of strong kings. Let us write u→ v
to denote that u defeats v in a tournament T, or in other words (u, v) is an arc of T. If
U1 and U2 are disjoint subsets of vertices of T then we write U1 → U2 to denote that
all vertices in U1 defeat all vertices in U2. We define BT (u, v) = {w ∈ V − {u, v} :
u→ w and w → v}, where V denotes the vertex set of T. Let bT (u, v) = |BT (u, v)|.
When no ambiguity arises, we drop the subscript T from the notation.

A vertex u in a tournament T is said to be a strong king if u→ v or b(u, v) >
b(v, u) for every other vertex v of T.



1448 32. Score Sets and Kings

Note that bT (u, v) is the number of paths of length two through which v is
reachable from u. Therefore, bT (vi, vj) = ((D+

T
)2)ij , where D+

T is the out-degree
matrix of T.

Obviously, it is not true that every king is a strong king. For example, Figure
32.11 demonstrates a tournament with three kings, namely x, y and z. However,
only x and y are strong kings as b(z, x) < b(x, z). Figure 32.11 also shows that when
searching for the most dominant vertex in real life applications, a king may not be
the best choice (vertex z is a king, but it defeats only one vertex and is defeated by
all other vertices). Therefore, choosing a strong king is a better option. This intuition
is further confirmed by the fact that, in the probabilistic sense it can be shown that
in almost all tournaments every vertex is a king.

Figure 32.11 A tournament with three kings and two strong kings

We have already shown that every tournament has a king. We now prove that
every tournament has a strong king.

Theorem 32.18 (???, ????) Every vertex with maximum score in a tournament
is a strong king.

Proof Suppose u is a vertex with maximum score in a tournament T that is not a
strong king. Then there is a vertex v in T such that v → u and b(u, v) ≤ b(v, u). Let
V be the vertex set of T. Define

W = {w ∈ V − {u, v} : u→ w and v → w} .

Then s(u) = b(u, v)+ |W | and s(v) = b(v, u)+ |W |+1. This implies that s(u) < s(v),
a contradiction.

The problem of finding strong kings is no harder than finding kings in tourna-
ments. Like King-Set, we present a polynomial time algorithm for finding all strong
kings in a tournament using the out-degree matrix D+.
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Strong-Kings(V,A)

1 D+ = 0
2 K = ∅
3 for i = 1 to n
4 for j = 1 to n
5 if (vi, vj) ∈ A
6 D+

ij = 1
7 M = D+ + (D+)2

8 K = {vi ∈ V | ∀j(1 ≤ j ≤ n and j 6= i),Mij > Mji}
9 return K

Strong-Kings has the same order of running time King-Set.
So far we have been focusing on finding certain type of dominant vertices (like

kings and strong kings) in a tournament. Another very important problem is to
construct tournaments with a certain number of dominant vertices. Maurer posed the
problem of determining all 4-tuples (n, k, s, b) for which there exists a tournament on
n vertices with exactly k kings and s serfs such that b of the kings are also serfs. Such
a tournament is called an (n, k, s, b)-tournament. For example the tournament given
in Figure ?? is a (5, 3, 3, 2)-tournament. Reid gave the following characterization of
such 4-tuples.

Theorem 32.19 Suppose that n ≥ k ≥ s ≥ b ≥ 0 and n > 0. There exists an
(n, k, s, b)-tournament if and only if the following conditions hold.

1. n ≥ k + s− b,

2. s 6= 2 and k 6= 2,

3. either n = k = s = b 6= 4 or n > k and s > b,

4. (n, k, s, b) is none of (n, 4, 3, 2), (5, 4, 1, 0), or (7, 6, 3, 2).

However, the corresponding problem for strong kings has been considered only
recently. For 1 ≤ k ≤ n, a tournament on n vertices is called an (n, k)-tournament if
it has exactly k strong kings. The construction of (n, k)- tournaments follows from
the results proved by Chen, Chang, Cheng and Wang in 2004. The results imply the
existence of (n, k)-tournaments for all 1 ≤ k ≤ n satisfying

k 6= n− 1, when n is odd (32.14)

k 6= n, when n is even . (32.15)

Algorithm nk-Tournament takes positive integers n and k as input satisfying
the constraints (26.2) and (26.3) and outputs an (n, k)-tournament and the set K of
its strong kings. Also for any vertex u of a tournament T, we adopt the notation of
Chen et al. in letting O(u) (respectively, I(u)) denote the set of vertices reachable
from u in one step (respectively, set of vertices from which u is reachable in one
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step). Note that O(u) and I(u) are often referred to as the first out-neighbourhood
and first in-neighbourhood of u respectively.

nk−Tournament(n, k)

1 K = ∅
3 T = null digraph on n verices
4 if k is odd
5 T = Tk

6 K = {v1, . . . , vk}
7 if n 6= k
8 for i = k + 1 to n
9 V = V ∪ {vi}

10 A = A ∪ {(u, vi) : u ∈ V − {vi}}
11 if k is even
12 T = Tk−1

13 V = V ∪ {x, y, z}
14 K = {v1, . . . , vk−3, x}
15 choose u ∈ V arbitrarily
16 A = A ∪ {(v, x) : v ∈ O(u)}
17 A = A ∪ {(x, v) : v ∈ {u, y} ∪ I(u)}
18 A = A ∪ {(v, y) : v ∈ {u} ∪ I(u) ∪O(u)}
19 A = A ∪ {(v, z) : v ∈ {u} ∪ I(u)}
20 A = A ∪ {(z, v) : v ∈ O(u)}
21 if n 6= k + 2
22 for i = k + 1 to n
23 V = V ∪ {vi}
24 A = A ∪ {(u, vi) : u ∈ V − {vi}}
25 return T,K

Algorithm description The algorithm consists of performing two separate
inductions to generate an (n, k)-tournament, one for odd k and one for even k.. If k
is odd then we start by letting T = Tk, the regular tournament on k vertices (which
always exists for odd k), and inductively add n−k vertices to T that are defeated by
all the vertices of Tk. Thus the resulting tournament has n vertices and k kings (the
vertices of Tk). The construction for even k is a bit more involved. We start with
T = Tk−1. Note that every vertex of Tk−1 has score m =

(

n−4
2

)

. We then add three
vertices x, y and z and several arcs to Tk−1 such that for a fixed existing vertex u
of Tk−1.

• O(u)→ {x} → {u, y} ∪ I(u),

• {u} ∪ I(u) ∪O(u)→ {y} → {x, z},
• {u} ∪ I(u)→ {z} → O(u).

The resulting tournament T (illustrated in Figure 32.12) has k+ 2 vertices with
scores s(x) = |I(x)| + 2 = m + 2, s(y) = 2, s(z) = |O(x)| = m and s(v) = m + 2,,
for all vertices v of Tk−1. Now by Theorem 32.18 all vertices v of Tk−1 and the new
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Figure 32.12 Construction of an (n, k)-tournament with even k.

vertex x are strong kings of T, while y and z are not (Exercise 32.4-9). Thus T is a
(k+ 2, k)-tournament that can now be extended to an (n, k)-tournament by adding
n− k − 2 more vertices that are defeated by all the existing vertices of T (just like
in the case of odd k).

nk-Tournament runs in quadratic time as it takes O(n2) operations to con-
struct a regular tournament and the remaining steps in the algorithm are completed
in linear time.

Exercises
32.4-1 The out-degree matrix D+ of an n-vertex oriented graph is an n×n matrix
whose (i, j) entry is given by dij = number of arcs directed from vi to vj . Describe
an algorithm based on the out-degree matrix for finding the number of paths of
length k < n between any two vertices of the graph.
32.4-2 Draw the tournament discussed in Example 32.3 and show that it has no
transmitters and exactly three kings.
32.4-3 Using the 5-tournament in Example 32.3 give the construction of an n-
tournament with no transmitters and exactly three kings.
32.4-4 For every odd number n ≥ 3, give an example of an n-tournament, in which
all vertices are serfs.
32.4-5 Prove that any tournament on 4 vertices contains a vertex which is not a
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king.
32.4-6 A bipartite tournament is an orientation of a complete bipartite graph. A
vertex v of a bipartite tournament is called a 4-king2 (or simply a king) if there is a
directed path of length 4 from v to every other vertex of the tournament. Derive an
algorithm to obtain all 4-kings in a bipartite tournament and compare its complexity
with the complexity of r-Kings for finding r-kings in ordinary tournaments.
32.4-7 As the name suggests a multipartite tournament is an orientation of a com-
plete multipartite graph. Extend the algorithm obtained in Exercise 32.4-6 to find
all 4-kings in multipartite tournaments. Again compare the performance of your al-
gorithms with r-Kings.
32.4-8 Prove that the uncovered set arising in majority preference voting is exactly
the king set of the majority preference tournament.
32.4-9 Show that when k is even, the output of nk-Tournament has exactly k
kings.

32.5. Weak kings in oriented graphs

In the previous section we studied dominance in tournaments and used the terms
kings and strong kings to describe the dominant vertices in a tournament. However,
in most practical applications the underlying digraph is not a tournament. Rather we
are interested in determining dominant vertices in an oriented graph. For instance,
in a social network, an arc (u, v) denotes that actor u has some relation with actor
v.. Since most social relations (such as hierarchy relations) are irreflexive and asym-
metric, a majority of social networks can be modelled as oriented graphs. Therefore,
we would like to generalize the concept of dominance from tournaments to oriented
graphs. In Section ??, we have already defined kings and r-kings in the context of
general digraphs. The same definitions are applicable to oriented graphs.

As stated in the beginning of the chapter, oriented graphs can be considered as
round-robin competitions in which ties are allowed. Thus the the classical notion
of king, that is a vertex that defeats every other vertex either directly or through
another vertex, is too strong for oriented graphs. To overcome this difficulty, the
study of the so-called “weak kings” was initiated in 2008 by S. Pirzada and N. A.
Shah. Here we follow their notation. For any two vertices u and v in an oriented
graph D,, one of the following possibilities exist.

1. An arc directed from u to v, denoted by u(1− 0)v (i.e., u defeats v).

2. An arc directed from v to u , denoted by u(0− 1)v (i.e., v defeats u).

3. There is no arc from u to v or from v to u , and is denoted by u(0− 0)v (i.e.,
there is a tie).

A triple in an oriented graph is an induced oriented subgraph with three vertices.

2Several bipartite and multipartite tournaments have no 2-king or 3-king. However, a multipartite
tournament with at least one vertex of in-degree zero contains a 4-king. Therefore it is logical to
look for 4-kings in a multipartite tournament.
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Figure 32.13 Six vertices and six weak kings.

For any three vertices u, v and w, the triples of the form u(1− 0)v(1− 0)w(1− 0)u,
u(1− 0)v(1− 0)w(0− 0)u, u(0− 0)v(1− 0)w(1− 0)u or u(1− 0)v(0− 0)w(1− 0)u
are said to be intransitive, while the triples of the form u(1− 0)v(1− 0)w(0− 1)u,
u(0 − 1)v(1 − 0)w(1 − 0)u, u(1 − 0)v(0 − 1)w(1 − 0)u, u(1 − 0)v(0 − 1)w(0 − 0)u,
u(0 − 1)v(0 − 0)w(1 − 0)u, u(0 − 0)v(1 − 0)w(0 − 1)u, u(1 − 0)v(0 − 0)w(0 − 1)u,
u(0 − 0)v(0 − 1)w(1 − 0)u, u(0 − 1)v(1 − 0)w(0 − 0)u, u(1 − 0)v(0 − 0)w(0 − 0)u,
u(0 − 1)v(0 − 0)w(0 − 0)u, u(0 − 0)v(1 − 0)w(0 − 0)u, u(0 − 0)v(0 − 1)w(0 − 0)u,
u(0−0)v(0−0)w(1−0)u or u(0−0)v(0−0)w(0−1)u are said to be transitive. An
oriented graph is said to be transitive if all its triples are transitive. The converse
D of an oriented graph D is obtained by reversing each arc of D.

Let u and v be vertices in an oriented graph D such that either u(1 − 0)v or
u(0− 0)v or u(1− 0)w(1− 0)v or u(1− 0)w(0− 0)v or u(0− 0)w(1− 0)v for some
vertex w in D. Then v is said to be weakly reachable within two steps from u. If
either u(1 − 0)v, or u(1 − 0)w(1 − 0)v for some w in D, then v is reachable within
two steps from u.

A vertex u in an oriented graph D is called a weak king if every other vertex
v in D is weakly reachable within two steps from u. A vertex u is called a king if
every other vertex v in D is reachable within two steps from u. A vertex u in an
oriented graph D is called a weak serf if u is weakly reachable within two steps
from every other vertex in D, and a vertex u in D is called a serf if u is reachable
within two steps from every other vertex v in D.

We note that there exist oriented graphs on n vertices with exactly k kings for
all integers n ≥ k ≥ 1, with the exception of n = k = 4. Theorem 32.17 guarantees
the existence of complete oriented graphs (tournaments) with n vertices and exactly
k kings for all integers n ≥ k ≥ 1, with the exceptions k = 2 and n = k = 4.
An oriented graph D with exactly two kings can be constructed as follows. Let
V = {v1, v2, . . . , vn} be the vertex set of D, with arcs defined as v1(1 − 0)vi, for
i = 2, 4, . . . , n; v1(0 − 1)v3; v2(1 − 0)v3 and v2(1 − 0)vi, for 4 ≤ i ≤ n; and for all
other i 6= j, vi(0 − 0)vj . The vertices v1 and v3 are the only kings in D (Exercise
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Figure 32.14 Six vertices and five weak kings.

Figure 32.15 Six vertices and four weak kings.

Figure 32.16 Six vertices and three weak kings.

32.5-1).
There do not exist any complete or incomplete oriented graphs with 4 vertices
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Figure 32.17 Six vertices and two weak kings.

and exactly 4 kings. Suppose to the contrary that this is the case and let D be
the incomplete oriented graph with 4 vertices, all of whom are kings. Then D can
be extended to a tournament on 4 vertices by inserting all the missing arcs with
arbitrary orientation. Clearly such a tournament contains 4 kings, which contradicts
Theorem 32.17.

The rest of the section is aimed at investigating weak kings in oriented graphs as
they present a more suitable notion of dominance in oriented graphs. The score of a
vertex in an oriented graph was defined in Section ??. Considering Theorem 32.15,
it is natural to ask if a vertex of maximum score in an oriented graph is a king. The
answer is negative as shown by the following example:

Example 32.4 Consider the oriented graph D shown in Figure 32.18. The scores of vertices
v1, v2, v3 and v4 are respectively 2, 3, 3 and 4. Clearly, v4 is a vertex of maximum score
but is not a king as v1 is not reachable within two steps from v4. However, v4 is a weak
king.

Now consider the oriented graph D∗ with vertices u1,, u2, u3, u4 and u5, and arcs
defined by u1(1 − 0)u2, u2(1 − 0)ui, for i = 3, 4, q5 and ui(0 − 0)uj for all other i 6= j.
Clearly, s(u1) = 5, s(u2) = 6, s(u3) = 3, s(u4) = 3, and s(u5) = 3. Evidently, u1 is a king
in D∗ whereas the vertex u2 of maximum score is not a king.

However, we do have the following weaker result.

Theorem 32.20 If u is a vertex with maximum score in a 2-tournament D, then
u is a weak king.

Proof Let u be a vertex of maximum score in D, and let X, Y and Z be respectively
the set of vertices x, y, and z such that u(1 − 0)x, u(0 − 0)y, and u(0 − 1)z. Let
|X| = n1, |Y | = n2 and |Z| = n3. Clearly, s(u) = 2n1 + n2. If n3 = 0, the result is
trivial. So assume that n3 6= 0. We claim that each z ∈ Z is weakly reachable within
two steps from u. If not, let z0 be a vertex in Z not weakly reachable within two
steps from u. Then for each x ∈ X and each y ∈ Y, z0(1 − 0)x, and z0(1 − 0)y or
z0(0 − 0)y. In case z0(1 − 0)x and z0(1 − 0)y for each x ∈ X and each y ∈ Y, then
s(z0) ≥ 2 + 2n1 + 2n2 = s(u) + n2 + 2 > s(u). which contradicts the choice of u. If
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Figure 32.18 Vertex of maximum score is not a king.

z0(1−0)x and z0(0−0)y for each x ∈ X and each y ∈ Y, then s(z0) ≥ 2+2n1 +n2 =
s(u) + 2 > s(u), again contradicting the choice of u. This establishes the claim, and
hence the proof is complete.

We now consider the problem of finding all weak kings in an oriented graph (as
kings can be determined by applying Algorithm ??). Let D− and D+ respectively
denote the in-degree and out-degree matrix of an oriented graph D(V,A) with n
vertices. Also let O and J denote the n× n zero matrix and all-ones matrix respec-
tively.
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Weak-Kings(V,A)

1 D+ = 0
2 D− = 0
3 K = ∅
4 for i = 1 to n and j = 1 to n
5 for j = 1 to n
6 if (vi, vj) ∈ A
7 D+

ij = 1
8 else if (vi, vj) ∈ A
9 D−

ij = 1
10 M = J −D−

11 M = D+ + (D+)2

12 N = M +MD+ +D+M
13 K = {vi ∈ V | ∀vj ∈ V, (N)ij 6= 0}
14 return K

Algorithm ?? returns the set of all weak kings of an oriented graph. Exercise
32.5-3 asks you to prove that the algorithm works correctly and to determine its
running time.

Indeed, it is also possible to extend Theorem 32.16 to weak kings in oriented
graphs as an oriented graph D without transmitters (vertices of in-degree 0) has at
least three weak kings. To see this let u be a vertex of maximum score in the oriented
graph D. Clearly, by Theorem 32.20, u is a weak king. As D has no transmitters,
there is at least one vertex v such that v(1− 0)u. Let S be the set of these vertices
v, and let v1 be a vertex of maximum score in S. Let X, Y and Z respectively be the
set of vertices x, y and z, other than u, with v1(1− 0)x, v1(0− 0)y and v1(0− 1)z.
Assume that |X| = n1, |Y | = n2, and |Z| = n3 so that s(v1) = 2n1 + n2 + 2. We
note that all vertices of Z are weakly reachable within two steps from v1. If this is
not the case, let z0 be a vertex which is not weakly reachable within two steps from
v1. Then z0(1 − 0)u, and (a) z0(1 − 0)x and (b) z0(1 − 0)y or z0(0 − 0)y for each
x ∈ X and each y ∈ Y.

If for each x in X and each y in Y, z0(1 − 0)x and z0(1 − 0)y, then s(z0) ≥
2n1 + 2n2 + 4 = s(v1) + n2 + 2 > s(v1). This contradicts the choice of v1. If for each
x in X and each y in Y, z0(1−0)x and z0(0−0)y, then s(z0) ≥ 2n1 +n2 +4 > s(v1),
again contradicting the choice of v1. This establishes the claim, and thus v1 is also
a weak king.

Now let W be set of vertices w with w(1 − 0)v1 and let w1 be the vertex of
maximum score in W. Then by the same argument as above, every other vertex in
D is weakly reachable within two steps from w1, and so w1 is a weak king. Since D
is asymmetric, and in D we have w1(1− 0)v1 and v1(1− 0)u, therefore u, v1 and w1

are necessarily distinct vertices. Hence D contains at least three weak kings.
Although, no oriented graph with 4 vertices and exactly 4 kings exists, it is

possible to generate an oriented graph on n vertices with exactly k weak kings, for
all integers n ≥ k ≥ 1. The following algorithm constructs such an oriented graph.
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kWeak-Kings(n, k)

1 V = {x, y, u1, u2, . . . , un−2}
2 x(0− 0)y
3 if k > 2
4 for i = 1 to n− 2
5 ui(1− 0)x
6 ui(0− 1)y
7
8 for i = n− 3 downto k − 2
9 un−2(1− 0)ui

10 for i = k − 3 downto 1
11 un−2(0− 0)ui

12 K = {x, y, un−2} ∪ {ui | i = 1, . . . , k − 3}
13 else if k = 2
14 for i = 1 to n− 2
15 x(1− 0)ui

16 y(1− 0)ui

17 for j = 1 to n− 2
18 if i 6= j
19 ui(0− 0)uj

20 K = {x, y}
21 else x(1− 0)ui

22 u1(1− 0)y
23 for i = 2 to n− 2
24 u1(1− 0)ui

25 x(1− 0)ui

26 y(1− 0)ui

27 K = {u1}
28 return V,A,K

Algorithm description When k = n, the algorithm defines the arcs of a 2-
tournament D with vertex set V = {x, y, u1, u2, · · · , un−2} as

x(0− 0)y,
ui(1− 0)x and ui(0− 1)y for all 1 ≤ i ≤ n− 2,
ui(0− 0)uj for all i 6= j and 1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 2,
Clearly, x is a weak king as x(0−0)y and x(0−0)y(1−0)ui for all 1 ≤ i ≤ n−2..

Also y is a weak king as y(0− 0)x and y(1− 0)ui for all 1 ≤ i ≤ n− 2. Finally, every
ui is a weak king, since ui(0−0)uj , for all i 6= j and ui(1−0)x and ui(1−0)x(0−0)y.
Thus D contains exactly n weak kings.

If n = k − 1, the algorithm creates one additional arc un−2(1 − 0)un−3 in D.
The resulting oriented graph contains exactly n − 1 weak kings, since now un−2 is
not weakly reachable within two steps from un−3 and so un−3 is not a weak king.

If n = k−2 then the algorithm creates two additional arcs in D. namely un−2(1−
0)un−3 and un−2(1− 0)un−4. Thus D now contains exactly n− 2 weak kings, with
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un−3 and un−4 not being weak kings.
Continuing in this way, for any 3 ≤ k ≤ n, the algorithm creates new arcs

un−2(1− 0)ui in D for all k− 2 ≤ i ≤ n− 3. The resulting graph D contains exactly
k weak kings.

If k = 2, then D is constructed so that x(0 − 0)y, x(1 − 0)ui. y(1 − 0)ui and
ui(0− 0)uj for all 1 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 2 and i 6= j. Thus D contains exactly
two weak kings x and y.

Finally, D has exactly one weak king if it is constructed such that x(0 − 0)y,
u1(1−0)x, u1(1−0)y and u1(1−0)ui, x(1−0)ui and y(1−0)ui for all 2 ≤ i ≤ n−2.

Due to the nested for loops the algorithm runs in O(n2) time.
Figure 32.13 shows a 6 vertex oriented graph with exactly 6 weak kings, Figure

32.14 shows a 6 vertex oriented graph with exactly 5 weak kings namely x, y, v1,
v2 and v4, Figure 32.15 shows a 6 vertex oriented graph with exactly 4 weak kings
namely x, y. v1 and v4. Figure 32.16 shows a 6 vertex oriented graph with exactly
3 weak kings namely x, y and v4 and Figure 32.17 shows a 6 vertex oriented graph
with exactly 2 weak kings namely x and y.

The directional dual of a weak king is a weak serf, and thus a vertex u is a weak
king of an oriented graph D if and only if u is a weak serf of D̄, the converse of
D. So by duality, there exists an oriented graph on n vertices with exactly s weak
serfs for all integers n ≥ s ≥ 1. If n = k ≥ 1, then every vertex in any such oriented
graph is both a weak king and a weak serf. Also if n > k ≥ 1, the oriented graph
described in algorithm kWeakKings contains vertices which are both weak kings
and weak serfs, and also contains vertices which are weak kings but not weak serfs
and vice versa. These ideas give rise to the following problem. For what 4-tuples
(n, k, s, b) does there exist an oriented graph with n vertices, exactly k weak kings,
s weak serfs and that exactly b of the weak kings are also serfs? By analogy with
(n, k, s, b)-tournaments, such oriented graphs are called (n, k, s, b)-oriented graphs.
Without loss of generality, we assume that k ≥ s. The following results by Pirzada
and Shah address this problem.

Theorem 32.21 Pirzada, Shah, 2008 If n > k ≥ s ≥ 0, then there exists no
(n, k, s, s)-oriented graph.

Theorem 32.22 Pirzada, Shah, 2008 There exist (n, k, s, b)-oriented graphs, n ≥
k ≥ s > b ≥ 0 and n > 0, n ≥ k + s− b.

Proof Let D1 be the oriented graph with vertex set {x1, y1, u1, u2, · · · , uk−b−2} and
x1(0− 0)y1, ui(1− 0)x1, ui(0− 1)y1 for all 1 ≤ i ≤ k− b− 2, and ui(0− 0)uj for all
i 6= j.

Take the oriented graph D2 with vertex set {x2, y2, v1, v2, . . . , vb−2} and arcs
defined as in D1. Let D3 be the oriented graph with vertex set {z1, z2, . . . , zs−b} and
zi(0−0)zj for all i, j. Let D be the oriented graph D1∪D2∪D3 (see Figure 32.19) with

zi(1− 0)y2 for 1 ≤ i ≤ s− b
zi(0− 0)x2 for 1 ≤ i ≤ s− b
zi(0− 0)vj for 1 ≤ i ≤ s− b, 1 ≤ j ≤ b− 2
x1(1− 0)zi, y1(1− 0)zi for 1 ≤ i ≤ s− b
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Figure 32.19 Construction of an (n, k, s, b)-oriented graph.

ur(0− 0)zi for 1 ≤ r ≤ k − b− 2, 1 ≤ i ≤ s− b
x1(1− 0)y2, y1(1− 0)y2

vr(1− 0)y2 for 1 ≤ r ≤ k − b− 2
x1(0− 0)x2, y1(0− 0)x2

vr(0− 0)vj , for 1 ≤ r ≤ k − b− 2, 1 ≤ j ≤ b− 2.
Clearly D contains exactly k weak kings and the weak king set is {x1, y1} ∪

{u1, u2, . . . , uk−b−2} ∪ {x2, y2} ∪ {v1, v2, . . . , vb−2}. D contains exactly s weak serfs
with the weak serf set as {x2, y2} ∪ {v1, v2, . . . , vb−2} ∪ {z1, z2, . . . , zs−b}. Also from
these k weak kings, exactly b are weak serfs. The weak king-serf set is {x2, y2} ∪
{v1, v2, . . . , vb−2}.

Exercise 32.5-5 asks the reader to derive an algorithm for generating an
(n, k, s, b)-oriented graph when the hypothesis of Theorem 32.22 is satisfied.

Exercises
32.5-1 Give an algorithm that generates an oriented graph with n vertices and
exactly 2 kings. Prove the correctness of your algorithm.
32.5-2 Draw the graph D∗ discussed in Example 32.4.
32.5-3 Prove that Weak-Kings is correct. Also determine its runtime.
32.5-4 Construct an oriented graph with six vertices and exactly one king.
32.5-5 Derive an algorithm that takes a 4-tuple (n, k, s, b) satisfying the hypothesis
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of Theorem 32.22 as input and generates an (n, k, s, b)-oriented graph. Analyze the
performance of your algorithm.

Problems

32-1 Optimal reconstruction of score sets
In connection with the reconstruction of graphs the basic questions are the existence
and the construction of at least one corresponding graph. These basic questions are
often solvable in polynomial time. In given sense optimal reconstruction is usually a
deeper problem.

a) Analyse Exercise 32.1-1 and try to find a smaller tournament with score set
{0, 1, 3, 6, 10}.

b) Write a back-track program which constructs the smallest tournament whose
score set is {0, 1, 3, 6, 10}.

c) Write a back-track program which constructs the smallest tournament arbi-
trary given score set.

d) Estimate the running time of your programmes.
Hint. Read Yoo’s proof.

32-2 Losing set
We define the losing score of a vertex as the in-degree of the vertex. The loosing
score set of a tournament is the set of in-degrees of its vertices.

a) Give an argument to show that any set of nonnegative integers is the loosing
score set of some tournament.

b) Given a set L = {r1, r2, . . . , rn} of nonnegative integers with r1 < r2 − r1 <
r3− r2 < · · · < rn− rn−1, write an algorithm to generate a tournament with loosing
score set L.
32-3 Imbalance set
Let
32-4 Unicity
Let

Chapter Notes

Many classical ans several contemporary graph theory textbooks are available to
Readers. Such books are e.g. the books of Claude Berge [21] and László Lovász
[?]. However, there is a dearth of books focusing on recent advances in the theory
of digraphs. The book due to Bang-Jensen and Gutin [13] probably comes closest
and the Reader can refer to it for a comprehensive treatment of the theoretical and
algorithmic aspects of digraphs.

The books by Harary, Norman and Cartwright [91], and Chartrand, Lesniak and
Zhang [38, 39], Gross and Yellen [84] present introductory material on tournaments
and score structures. Moon’s book on tournaments [160] is also a good resource but
is now out of print.
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The books A. Schrijver [214] and A. Frank [73] contain reach material on opti-
mization problems connected with directed graphs.

The algorithms discussed in this chapter are not commonly found in literature.
In particular the algorithms presented here for constructing tournaments and ori-
ented graphs with special properties are not available in textbooks. Most of these
algorithms are based on fairly recent research on tournaments and oriented graphs.

Majority of the researches connected with score sequences and score sets were
inspired by the work of H. G. Landau, K. B. Reid and J. W. Moon. For classical and
recent results in this area we refer to the excellent surveys by Reid [202, 205, 206].
Landau’s pioneering work on kings and score structure appeared in 1953 [139]. Reid
stated his famous score set conjecture in [202]. Partial results were proved by M.
Hager [86]. Yao’s proof of Reid’s conjecture appeared in English in 1989 [243]. The
comment of Q. Li on Reid’s conjecture and Yao’s proof was published in 2006 [141].
The construction of a new special tournament with a prescribed score set is due
to Pirzada and Naikoo [188]. The score structure for 1-tournaments was introduced
by H. G. Landau [139] and extended for k-tournaments by J. W. Moon in 1963.
This result of Moon later was reproved by Avery for k = 2 and for arbitrary k by
Kemnitz and Dolff [125]. Score sets of 2-tournaments were investigated by Pirzada
and Naikoo in 2008 [191].

Authors of a lot of papers investigated the score sets of different generalized
tournament, among others Pirzada, Naikoo and Chisthi in 2006 (bipartite graphs),
Pirzada and Naikoo in 2006 [189] (k-partite graphs), Pirzada and Naikoo in 2006
[190] (kpartite tournaments@k-partite tournaments).

The basic results on kings are due to K. Brooks Reid [203, 204, 205, 206] and
Vojislav Petrović [30, 179, 180, 181, 182].

The problem of the unicity of score sequences was posed and studied by Antal
Iványi and Bui Minh Phong [?]. Another unicity results connected with tournaments
was published e.g. by P. Tetali, J. W. Moon and recently by Chen et al. [40, 41, 161,
226].

The term king in tournaments was first used by Maurer [151]. Strong kings were
introduced by Ho and Chang [97] and studied later by Chen et al. [40, 41], while
Pirzada and Shah [195] introduced weak kings in oriented graphs. The problems con-
nected with 3-kings and 4-kings were discussed by Tan in [223] and the construction
of tournaments with given number of strong kings by Chen et al. in [41].

The difference of the out-degree and of the in-degree of a given vertex is called
the imbalance of the given vertex. The imbalance set of directed multigraphs were
studied by Pirzada, Naikoo, Samee and Iványi in [193], while the imbalance sets of
multipartite oriented graphs by Pirzada, Al-Assaf and Kayibi [186].

Problem 1
Problem 2
Problem 3
Problem 4
An interesting new direction is proposed by "L. B. Beasley, D. E. Brown, and.

K. B. Brooks in [17]: the problem is the reconstruction of tournaments on the base
of the partially given out-degree matrix.
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