


ALGORITHMS

OF INFORMATICS

Volume 2

AnTonCom
Budapest, 2010



This electronic book was prepared in the framework of project Eastern Hungarian
Informatics Books Repository no. TÁMOP-4.1.2-08/1/A-2009-0046.

This electronic book appeared with the support of European Union and with the
co-financing of European Social Fund.

Editor: Antal Iványi

Authors of Volume 1: László Lovász (Preface), Antal Iványi (Introduction), Zoltán
Kása (Chapter 1), Zoltán Csörnyei (Chapter 2), Ulrich Tamm (Chapter 3), Péter Gács

(Chapter 4), Gábor Ivanyos and Lajos Rónyai (Chapter 5), Antal Járai and Attila Kovács
(Chapter 6), Jörg Rothe (Chapters 7 and 8), Csanád Imreh (Chapter 9), Ferenc

Szidarovszky (Chapter 10), Zoltán Kása (Chapter 11), Aurél Galántai and András Jeney
(Chapter 12),

Validators of Volume 1: Zoltán Fülöp (Chapter 1), Pál Dömösi (Chapter 2), Sándor
Fridli (Chapter 3), Anna Gál (Chapter 4), Attila Pethő (Chapter 5), Lajos Rónyai
(Chapter 6), János Gonda (Chapter 7), Gábor Ivanyos (Chapter 8), Béla Vizvári

(Chapter 9), János Mayer (Chapter 10), András Recski (Chapter 11), Tamás Szántai
(Chapter 12), Anna Iványi (Bibliography)

Authors of Volume 2: Burkhard Englert, Dariusz Kowalski, Gregorz Malewicz, and
Alexander Shvartsman (Chapter 13), Tibor Gyires (Chapter 14), Claudia Fohry and

Antal Iványi (Chapter 15), Eberhard Zehendner (Chapter 16), Ádám Balogh and Antal
Iványi (Chapter 17), János Demetrovics and Attila Sali (Chapters 18 and 19), Attila Kiss

(Chapter 20), István Miklós (Chapter 21), László Szirmay-Kalos (Chapter 22), Ingo
Althöfer and Stefan Schwarz (Chapter 23)

Validators of Volume 2: István Majzik (Chapter 13), János Sztrik (Chapter 14), Dezső
Sima (Chapters 15 and 16), László Varga (Chapter 17), Attila Kiss (Chapters 18 and 19),
András Benczúr (Chapter 20), István Katsányi (Chapter 21), János Vida (Chapter 22),

Tamás Szántai (Chapter 23), Anna Iványi (Bibliography)

Cover art: Victor Vasarely, Dirac, 1978. With the permission of Museum of Fine Arts,
Budapest. The used film is due to GOMA ZRt.

Cover design by Antal Iványi

c© 2010 AnTonCom Infokommunikációs Kft.
Homepage: http://www.antoncom.hu/

http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.cs.elte.hu/~lovasz
http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
http://people.inf.elte.hu/csz/
http://www.tu-chemnitz.de/informatik/HomePages/ThIS/Tamm/
http://www.cs.bu.edu/fac/gacs/
http://www.sztaki.hu/~ivanyos/
http://www.sztaki.hu/~ronyai/
http://compalg.inf.elte.hu/~ajarai/
http://www.compalg.inf.elte.hu/attila
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.inf.u-szeged.hu/~cimreh/
http://www.sie.arizona.edu/faculty/szidar.html
http://www.sapientia.ro/hu/dr.-kasa-zoltan.html
mailto:matgal@gold.uni-miskolc.hu
mailto:matjy@gold.uni-miskolc.hu
http://www.inf.u-szeged.hu/~fulop/
http://www.inf.unideb.hu/~domosi/
mailto:http://numanal.inf.elte.hu/fridli.html
htpp://www.cs.utexas.edu/~panni
http://www.inf.unideb.hu/~pethoe/
http://www.sztaki.hu/~ronyai/
mailto:andog@compalg.inf.elte.hu
http://www.sztaki.hu/~ivanyos/
http://www.cs.elte.hu/vizvari
http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Mayer/Mayer.php
http://www.cs.bme.hu/recski
http://www.math.bme.hu/~szantai/
http://www.nimfea.hu/kapcsolat/programvez.htm
http://www.cecs.csulb.edu/~englert/
file:darek@mpi-sb.mpg.de
http://www.cs.ua.edu/$%$7Egreg/ad.html
http://www.engr.uconn.edu/~aas/
http://www.itk.ilstu.edu/faculty/tbgyires/tbgyires.htm
http://www.se.e-technik.uni-kassel.de/pm/leopoldE.html
http://people.inf.elte.hu/tony/
http://www2.informatik.uni-jena.de/~nez/
mailto:b_a_s@ludens.elte.hu
http://people.inf.elte.hu/tony/
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.jhtml
http://www.renyi.hu/~sali/
mailto:kiss@ullman.inf.elte.hu
http://www.iit.bme.hu/~szirmay/szirmay.html
http://www.minet.uni-jena.de/www/fakultaet/iam/l_althoefer.html
http://www.minet.uni-jena.de/www/fakultaet/iam/personen/stefan.html
http://it.math.klte.hu/user/jsztrik/
http://www.nik.hu/felepit.htm
mailto:varga@ludens.elte.hu
mailto:kiss@ullman.inf.elte.hu
mailto:
mailto:katsanyi@invitel.hu
http://aszt.inf.elte.hu/~jvida/
http://www.math.bme.hu/~szantai/
http://www.nimfea.hu/kapcsolat/programvez.htm
http://www.szepmuveszeti.hu/
http://www.goma.hu/
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/


Contents

IV. COMPUTER NETWORKS . . . . . . . . . . . . . . . . . . . . . . 591

13. Distributed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 592
13.1. Message passing systems and algorithms . . . . . . . . . . . . . . . 593

13.1.1. Modeling message passing systems . . . . . . . . . . . . . . 593
13.1.2. Asynchronous systems . . . . . . . . . . . . . . . . . . . . . 593
13.1.3. Synchronous systems . . . . . . . . . . . . . . . . . . . . . . 594

13.2. Basic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
13.2.1. Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
13.2.2. Construction of a spanning tree . . . . . . . . . . . . . . . . 596

13.3. Ring algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
13.3.1. The leader election problem . . . . . . . . . . . . . . . . . . 600
13.3.2. The leader election algorithm . . . . . . . . . . . . . . . . . 601
13.3.3. Analysis of the leader election algorithm . . . . . . . . . . . 604

13.4. Fault-tolerant consensus . . . . . . . . . . . . . . . . . . . . . . . . 607
13.4.1. The consensus problem . . . . . . . . . . . . . . . . . . . . . 607
13.4.2. Consensus with crash failures . . . . . . . . . . . . . . . . . 608
13.4.3. Consensus with Byzantine failures . . . . . . . . . . . . . . 609
13.4.4. Lower bound on the ratio of faulty processors . . . . . . . . 610
13.4.5. A polynomial algorithm . . . . . . . . . . . . . . . . . . . . 610
13.4.6. Impossibility in asynchronous systems . . . . . . . . . . . . 611

13.5. Logical time, causality, and consistent state . . . . . . . . . . . . . 612
13.5.1. Logical time . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
13.5.2. Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
13.5.3. Consistent state . . . . . . . . . . . . . . . . . . . . . . . . . 617

13.6. Communication services . . . . . . . . . . . . . . . . . . . . . . . . 619
13.6.1. Properties of broadcast services . . . . . . . . . . . . . . . . 619
13.6.2. Ordered broadcast services . . . . . . . . . . . . . . . . . . 621
13.6.3. Multicast services . . . . . . . . . . . . . . . . . . . . . . . . 625

13.7. Rumor collection algorithms . . . . . . . . . . . . . . . . . . . . . . 626
13.7.1. Rumor collection problem and requirements . . . . . . . . . 626
13.7.2. Efficient gossip algorithms . . . . . . . . . . . . . . . . . . . 627

13.8. Mutual exclusion in shared memory . . . . . . . . . . . . . . . . . . 634



Contents 585

13.8.1. Shared memory systems . . . . . . . . . . . . . . . . . . . . 634
13.8.2. The mutual exclusion problem . . . . . . . . . . . . . . . . 634
13.8.3. Mutual exclusion using powerful primitives . . . . . . . . . 635
13.8.4. Mutual exclusion using read/write registers . . . . . . . . . 636
13.8.5. Lamport’s fast mutual exclusion algorithm . . . . . . . . . . 640

14. Network Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
14.1. Types of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
14.2. The need for communications network modelling and simulation . . 645
14.3. Types of communications networks, modelling constructs . . . . . . 647
14.4. Performance targets for simulation purposes . . . . . . . . . . . . . 649
14.5. Traffic characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 652
14.6. Simulation modelling systems . . . . . . . . . . . . . . . . . . . . . 660

14.6.1. Data collection tools and network analysers . . . . . . . . . 660
14.6.2. Model specification . . . . . . . . . . . . . . . . . . . . . . . 660
14.6.3. Data collection and simulation . . . . . . . . . . . . . . . . 660
14.6.4. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
14.6.5. Network Analysers . . . . . . . . . . . . . . . . . . . . . . . 662
14.6.6. Sniffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

14.7. Model Development Life Cycle (MDLC) . . . . . . . . . . . . . . . 669
14.8. Modelling of traffic burstiness . . . . . . . . . . . . . . . . . . . . . 675

14.8.1. Model parameters . . . . . . . . . . . . . . . . . . . . . . . 680
14.8.2. Implementation of the Hurst parameter . . . . . . . . . . . 681
14.8.3. Validation of the baseline model . . . . . . . . . . . . . . . 683
14.8.4. Consequences of traffic burstiness . . . . . . . . . . . . . . . 686
14.8.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

14.9. Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
14.9.1. Measurements for link utilisation . . . . . . . . . . . . . . . 690
14.9.2. Measurements for message delays . . . . . . . . . . . . . . . 690

15. Parallel Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
15.1. Parallel architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 705

15.1.1. SIMD architectures . . . . . . . . . . . . . . . . . . . . . . . 705
15.1.2. Symmetric multiprocessors . . . . . . . . . . . . . . . . . . . 706
15.1.3. Cache-coherent NUMA architectures: . . . . . . . . . . . . . 707
15.1.4. Non-cache-coherent NUMA architectures: . . . . . . . . . . 707
15.1.5. No remote memory access architectures . . . . . . . . . . . 708
15.1.6. Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
15.1.7. Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

15.2. Performance in practice . . . . . . . . . . . . . . . . . . . . . . . . 709
15.3. Parallel programming . . . . . . . . . . . . . . . . . . . . . . . . . . 713

15.3.1. MPI programming . . . . . . . . . . . . . . . . . . . . . . . 714
15.3.2. OpenMP programming . . . . . . . . . . . . . . . . . . . . . 717
15.3.3. Other programming models . . . . . . . . . . . . . . . . . . 719

15.4. Computational models . . . . . . . . . . . . . . . . . . . . . . . . . 720
15.4.1. PRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
15.4.2. BSP, LogP and QSM . . . . . . . . . . . . . . . . . . . . . . 721



586 Contents

15.4.3. Mesh, hypercube and butterfly . . . . . . . . . . . . . . . . 722
15.5. Performance in theory . . . . . . . . . . . . . . . . . . . . . . . . . 724
15.6. PRAM algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

15.6.1. Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
15.6.2. Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
15.6.3. Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
15.6.4. Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
15.6.5. Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

15.7. Mesh algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
15.7.1. Prefix on chain . . . . . . . . . . . . . . . . . . . . . . . . . 749
15.7.2. Prefix on square . . . . . . . . . . . . . . . . . . . . . . . . 750

16. Systolic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
16.1. Basic concepts of systolic systems . . . . . . . . . . . . . . . . . . . 755

16.1.1. An introductory example: matrix product . . . . . . . . . . 755
16.1.2. Problem parameters and array parameters . . . . . . . . . . 756
16.1.3. Space coordinates . . . . . . . . . . . . . . . . . . . . . . . . 757
16.1.4. Serialising generic operators . . . . . . . . . . . . . . . . . . 758
16.1.5. Assignment-free notation . . . . . . . . . . . . . . . . . . . . 759
16.1.6. Elementary operations . . . . . . . . . . . . . . . . . . . . . 760
16.1.7. Discrete timesteps . . . . . . . . . . . . . . . . . . . . . . . 760
16.1.8. External and internal communication . . . . . . . . . . . . . 761
16.1.9. Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

16.2. Space-time transformation and systolic arrays . . . . . . . . . . . . 764
16.2.1. Further example: matrix product . . . . . . . . . . . . . . . 764
16.2.2. The space-time transformation as a global view . . . . . . . 765
16.2.3. Parametric space coordinates . . . . . . . . . . . . . . . . . 767
16.2.4. Symbolically deriving the running time . . . . . . . . . . . . 770
16.2.5. How to unravel the communication topology . . . . . . . . . 770
16.2.6. Inferring the structure of the cells . . . . . . . . . . . . . . . 771

16.3. Input/output schemes . . . . . . . . . . . . . . . . . . . . . . . . . 773
16.3.1. From data structure indices to iteration vectors . . . . . . . 774
16.3.2. Snapshots of data structures . . . . . . . . . . . . . . . . . . 775
16.3.3. Superposition of input/output schemes . . . . . . . . . . . . 776
16.3.4. Data rates induced by space-time transformations . . . . . . 777
16.3.5. Input/output expansion . . . . . . . . . . . . . . . . . . . . 777
16.3.6. Coping with stationary variables . . . . . . . . . . . . . . . 778
16.3.7. Interleaving of calculations . . . . . . . . . . . . . . . . . . . 779

16.4. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
16.4.1. Cells without control . . . . . . . . . . . . . . . . . . . . . . 781
16.4.2. Global control . . . . . . . . . . . . . . . . . . . . . . . . . . 782
16.4.3. Local control . . . . . . . . . . . . . . . . . . . . . . . . . . 783
16.4.4. Distributed control . . . . . . . . . . . . . . . . . . . . . . . 786
16.4.5. The cell program as a local view . . . . . . . . . . . . . . . 790

16.5. Linear systolic arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 794
16.5.1. Matrix-vector product . . . . . . . . . . . . . . . . . . . . . 794
16.5.2. Sorting algorithms . . . . . . . . . . . . . . . . . . . . . . . 795



Contents 587

16.5.3. Lower triangular linear equation systems . . . . . . . . . . . 796

V. DATA BASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798

17. Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
17.1. Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

17.1.1. Fixed partitions . . . . . . . . . . . . . . . . . . . . . . . . . 800
17.1.2. Dynamic partitions . . . . . . . . . . . . . . . . . . . . . . . 806

17.2. Page replacement algorithms . . . . . . . . . . . . . . . . . . . . . . 813
17.2.1. Static page replacement . . . . . . . . . . . . . . . . . . . . 815
17.2.2. Dynamic paging . . . . . . . . . . . . . . . . . . . . . . . . 822

17.3. Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
17.3.1. Page replacement . . . . . . . . . . . . . . . . . . . . . . . . 825
17.3.2. Scheduling with lists . . . . . . . . . . . . . . . . . . . . . . 826
17.3.3. Parallel processing with interleaved memory . . . . . . . . . 833
17.3.4. Avoiding the anomaly . . . . . . . . . . . . . . . . . . . . . 837

17.4. Optimal file packing . . . . . . . . . . . . . . . . . . . . . . . . . . 837
17.4.1. Approximation algorithms . . . . . . . . . . . . . . . . . . . 838
17.4.2. Optimal algorithms . . . . . . . . . . . . . . . . . . . . . . . 841
17.4.3. Shortening of lists (SL) . . . . . . . . . . . . . . . . . . . . 842
17.4.4. Upper and lower estimations (ULE) . . . . . . . . . . . . . 842
17.4.5. Pairwise comparison of the algorithms . . . . . . . . . . . . 843
17.4.6. The error of approximate algorithms . . . . . . . . . . . . . 845

18. Relational Data Base Design . . . . . . . . . . . . . . . . . . . . . . 850
18.1. Functional dependencies . . . . . . . . . . . . . . . . . . . . . . . . 851

18.1.1. Armstrong-axioms . . . . . . . . . . . . . . . . . . . . . . . 851
18.1.2. Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
18.1.3. Minimal cover . . . . . . . . . . . . . . . . . . . . . . . . . . 855
18.1.4. Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857

18.2. Decomposition of relational schemata . . . . . . . . . . . . . . . . . 859
18.2.1. Lossless join . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
18.2.2. Checking the lossless join property . . . . . . . . . . . . . . 860
18.2.3. Dependency preserving decompositions . . . . . . . . . . . . 864
18.2.4. Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . 867
18.2.5. Multivalued dependencies . . . . . . . . . . . . . . . . . . . 872

18.3. Generalised dependencies . . . . . . . . . . . . . . . . . . . . . . . 878
18.3.1. Join dependencies . . . . . . . . . . . . . . . . . . . . . . . . 878
18.3.2. Branching dependencies . . . . . . . . . . . . . . . . . . . . 879

19. Query Rewriting in Relational Databases . . . . . . . . . . . . . . 883
19.1. Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

19.1.1. Conjunctive queries . . . . . . . . . . . . . . . . . . . . . . . 885
19.1.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
19.1.3. Complexity of query containment . . . . . . . . . . . . . . . 898

19.2. Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902
19.2.1. View as a result of a query . . . . . . . . . . . . . . . . . . 902

19.3. Query rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905



588 Contents

19.3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 905
19.3.2. Complexity problems of query rewriting . . . . . . . . . . . 910
19.3.3. Practical algorithms . . . . . . . . . . . . . . . . . . . . . . 913

20. Semi-structured Databases . . . . . . . . . . . . . . . . . . . . . . . . 932
20.1. Semi-structured data and XML . . . . . . . . . . . . . . . . . . . . 932
20.2. Schemas and simulations . . . . . . . . . . . . . . . . . . . . . . . . 934
20.3. Queries and indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 939
20.4. Stable partitions and the PT-algorithm . . . . . . . . . . . . . . . . 945
20.5. A(k)-indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
20.6. D(k)- and M(k)-indexes . . . . . . . . . . . . . . . . . . . . . . . . 954
20.7. Branching queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
20.8. Index refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965

VI. APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972

21. Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
21.1. Algorithms on sequences . . . . . . . . . . . . . . . . . . . . . . . . 973

21.1.1. Distances of two sequences using linear gap penalty . . . . . 973
21.1.2. Dynamic programming with arbitrary gap function . . . . . 976
21.1.3. Gotoh algorithm for affine gap penalty . . . . . . . . . . . . 977
21.1.4. Concave gap penalty . . . . . . . . . . . . . . . . . . . . . . 977
21.1.5. Similarity of two sequences, the Smith-Waterman algorithm 980
21.1.6. Multiple sequence alignment . . . . . . . . . . . . . . . . . . 981
21.1.7. Memory-reduction with the Hirschberg algorithm . . . . . . 983
21.1.8. Memory-reduction with corner-cutting . . . . . . . . . . . . 984

21.2. Algorithms on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
21.2.1. The small parsimony problem . . . . . . . . . . . . . . . . . 986
21.2.2. The Felsenstein algorithm . . . . . . . . . . . . . . . . . . . 987

21.3. Algorithms on stochastic grammars . . . . . . . . . . . . . . . . . . 989
21.3.1. Hidden Markov Models . . . . . . . . . . . . . . . . . . . . 989
21.3.2. Stochastic context-free grammars . . . . . . . . . . . . . . . 991

21.4. Comparing structures . . . . . . . . . . . . . . . . . . . . . . . . . . 994
21.4.1. Aligning labelled, rooted trees . . . . . . . . . . . . . . . . . 994
21.4.2. Co-emission probability of two HMMs . . . . . . . . . . . . 995

21.5. Distance based algorithms for constructing evolutionary trees . . . 997
21.5.1. Clustering algorithms . . . . . . . . . . . . . . . . . . . . . 998
21.5.2. Neighbour joining . . . . . . . . . . . . . . . . . . . . . . . . 1001

21.6. Miscellaneous topics . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
21.6.1. Genome rearrangement . . . . . . . . . . . . . . . . . . . . . 1006
21.6.2. Shotgun sequencing . . . . . . . . . . . . . . . . . . . . . . . 1007

22. Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
22.1. Fundamentals of analytic geometry . . . . . . . . . . . . . . . . . . 1012

22.1.1. Cartesian coordinate system . . . . . . . . . . . . . . . . . . 1013
22.2. Description of point sets with equations . . . . . . . . . . . . . . . 1013

22.2.1. Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
22.2.2. Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014



Contents 589

22.2.3. Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
22.2.4. Normal vectors . . . . . . . . . . . . . . . . . . . . . . . . . 1016
22.2.5. Curve modelling . . . . . . . . . . . . . . . . . . . . . . . . 1017
22.2.6. Surface modelling . . . . . . . . . . . . . . . . . . . . . . . . 1022
22.2.7. Solid modelling with blobs . . . . . . . . . . . . . . . . . . . 1023
22.2.8. Constructive solid geometry . . . . . . . . . . . . . . . . . . 1024

22.3. Geometry processing and tessellation algorithms . . . . . . . . . . 1026
22.3.1. Polygon and polyhedron . . . . . . . . . . . . . . . . . . . . 1026
22.3.2. Vectorization of parametric curves . . . . . . . . . . . . . . 1027
22.3.3. Tessellation of simple polygons . . . . . . . . . . . . . . . . 1027
22.3.4. Tessellation of parametric surfaces . . . . . . . . . . . . . . 1029
22.3.5. Subdivision curves and meshes . . . . . . . . . . . . . . . . 1031
22.3.6. Tessellation of implicit surfaces . . . . . . . . . . . . . . . . 1033

22.4. Containment algorithms . . . . . . . . . . . . . . . . . . . . . . . . 1035
22.4.1. Point containment test . . . . . . . . . . . . . . . . . . . . . 1035
22.4.2. Polyhedron-polyhedron collision detection . . . . . . . . . . 1039
22.4.3. Clipping algorithms . . . . . . . . . . . . . . . . . . . . . . 1040

22.5. Translation, distortion, geometric transformations . . . . . . . . . . 1044
22.5.1. Projective geometry and homogeneous coordinates . . . . . 1045
22.5.2. Homogeneous linear transformations . . . . . . . . . . . . . 1049

22.6. Rendering with ray tracing . . . . . . . . . . . . . . . . . . . . . . . 1052
22.6.1. Ray surface intersection calculation . . . . . . . . . . . . . . 1054
22.6.2. Speeding up the intersection calculation . . . . . . . . . . . 1056

22.7. Incremental rendering . . . . . . . . . . . . . . . . . . . . . . . . . 1070
22.7.1. Camera transformation . . . . . . . . . . . . . . . . . . . . . 1071
22.7.2. Normalizing transformation . . . . . . . . . . . . . . . . . . 1073
22.7.3. Perspective transformation . . . . . . . . . . . . . . . . . . 1074
22.7.4. Clipping in homogeneous coordinates . . . . . . . . . . . . . 1076
22.7.5. Viewport transformation . . . . . . . . . . . . . . . . . . . . 1077
22.7.6. Rasterization algorithms . . . . . . . . . . . . . . . . . . . . 1078
22.7.7. Incremental visibility algorithms . . . . . . . . . . . . . . . 1084

23. Human-Computer Interaction . . . . . . . . . . . . . . . . . . . . . . 1093

23.1. Multiple-choice systems . . . . . . . . . . . . . . . . . . . . . . . . 1093
23.1.1. Examples of multiple-choice systems . . . . . . . . . . . . . 1094

23.2. Generating multiple candidate solutions . . . . . . . . . . . . . . . 1097
23.2.1. Generating candidate solutions with heuristics . . . . . . . . 1097
23.2.2. Penalty method with exact algorithms . . . . . . . . . . . . 1100
23.2.3. The linear programming - penalty method . . . . . . . . . . 1108
23.2.4. Penalty method with heuristics . . . . . . . . . . . . . . . . 1112

23.3. More algorithms for interactive problem solving . . . . . . . . . . . 1113
23.3.1. Anytime algorithms . . . . . . . . . . . . . . . . . . . . . . 1114
23.3.2. Interactive evolution and generative design . . . . . . . . . 1115
23.3.3. Successive fixing . . . . . . . . . . . . . . . . . . . . . . . . 1115
23.3.4. Interactive multicriteria decision making . . . . . . . . . . . 1115



590 Contents

23.3.5. Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . 1116

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129

Name Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140



IV. COMPUTER NETWORKS



13. Distributed Algorithms

We define a distributed system as a collection of individual computing devices that
can communicate with each other. This definition is very broad, it includes anything,
from a VLSI chip, to a tightly coupled multiprocessor, to a local area cluster of
workstations, to the Internet. Here we focus on more loosely coupled systems. In a
distributed system as we view it, each processor has its semi-independent agenda,
but for various reasons, such as sharing of resources, availability, and fault-tolerance,
processors need to coordinate their actions.
Distributed systems are highly desirable, but it is notoriously difficult to construct
efficient distributed algorithms that perform well in realistic system settings. These
difficulties are not just of a more practical nature, they are also fundamental in
nature. In particular, many of the difficulties are introduced by the three factors
of: asynchrony, limited local knowledge, and failures. Asynchrony means that global
time may not be available, and that both absolute and relative times at which
events take place at individual computing devices can often not be known precisely.
Moreover, each computing device can only be aware of the information it receives,
it has therefore an inherently local view of the global status of the system. Finally,
computing devices and network components may fail independently, so that some
remain functional while others do not.

We will begin by describing the models used to analyse distributed systems in the
message-passing model of computation. We present and analyze selected distributed
algorithms based on these models. We include a discussion of fault-tolerance in
distributed systems and consider several algorithms for reaching agreement in the
messages-passing models for settings prone to failures. Given that global time is
often unavailable in distributed systems, we present approaches for providing logical
time that allows one to reason about causality and consistent states in distributed
systems. Moving on to more advanced topics, we present a spectrum of broadcast
services often considered in distributed systems and present algorithms implementing
these services. We also present advanced algorithms for rumor gathering algorithms.
Finally, we also consider the mutual exclusion problem in the shared-memory model
of distributed computation.



13.1. Message passing systems and algorithms 593

13.1. Message passing systems and algorithms

We present our first model of distributed computation, for message passing sys-
tems without failures. We consider both synchronous and asynchronous systems
and present selected algorithms for message passing systems with arbitrary network
topology, and both synchronous and asynchronous settings.

13.1.1. Modeling message passing systems

In a message passing system, processors communicate by sending messages over
communication channels, where each channel provides a bidirectional connection
between two specific processors. We call the pattern of connections described by the
channels, the topology of the system. This topology is represented by an undirected
graph, where each node represents a processor, and an edge is present between two
nodes if and only if there is a channel between the two processors represented by
the nodes. The collection of channels is also called the network. An algorithm for
such a message passing system with a specific topology consists of a local program
for each processor in the system. This local program provides the ability to the
processor to perform local computations, to send and receive messages from each of
its neighbours in the given topology.

Each processor in the system is modeled as a possibly infinite state machine. A
configuration is a vector C = (q0, . . . , qn−1) where each qi is the state of a pro-
cessor pi. Activities that can take place in the system are modeled as events (or
actions) that describe indivisible system operations. Examples of events include local
computation events and delivery events where a processor receives a message. The
behaviour of the system over time is modeled as an execution, a (finite or infinite)
sequence of configurations (Ci) alternating with events (ai): C0, a1, C1, a2, C2, . . ..
Executions must satisfy a variety of conditions that are used to represent the cor-
rectness properties, depending on the system being modeled. These conditions can
be classified as either safety or liveness conditions. A safety condition for a system
is a condition that must hold in every finite prefix of any execution of the system.
Informally it states that nothing bad has happened yet. A liveness condition is a
condition that must hold a certain (possibly infinite) number of times. Informally it
states that eventually something good must happen. An important liveness condition
is fairness, which requires that an (infinite) execution contains infinitely many ac-
tions by a processor, unless after some configuration no actions are enabled at that
processor.

13.1.2. Asynchronous systems

We say that a system is asynchronous if there is no fixed upper bound on how long
it takes for a message to be delivered or how much time elapses between consecutive
steps of a processor. An obvious example of such an asynchronous system is the
Internet. In an implementation of a distributed system there are often upper bounds
on message delays and processor step times. But since these upper bounds are often
very large and can change over time, it is often desirable to develop an algorithm



594 13. Distributed Algorithms

that is independent of any timing parameters, that is, an asynchronous algorithm.
In the asynchronous model we say that an execution is admissible if each

processor has an infinite number of computation events, and every message sent is
eventually delivered. The first of these requirements models the fact that processors
do not fail. (It does not mean that a processor’s local program contains an infinite
loop. An algorithm can still terminate by having a transition function not change a
processors state after a certain point.)

We assume that each processor’s set of states includes a subset of terminated
states. Once a processor enters such a state it remains in it. The algorithm has
terminated if all processors are in terminated states and no messages are in transit.

The message complexity of an algorithm in the asynchronous model is the
maximum over all admissible executions of the algorithm, of the total number of
(point-to-point) messages sent.

A timed execution is an execution that has a nonnegative real number as-
sociated with each event, the time at which the event occurs. To measure the time
complexity of an asynchronous algorithm we first assume that the maximum message
delay in any execution is one unit of time. Hence the time complexity is the max-
imum time until termination among all timed admissible executions in which every
message delay is at most one. Intuitively this can be viewed as taking any execution
of the algorithm and normalising it in such a way that the longest message delay
becomes one unit of time.

13.1.3. Synchronous systems

In the synchronous model processors execute in lock-step. The execution is parti-
tioned into rounds so that every processor can send a message to each neighbour,
the messages are delivered, and every processor computes based on the messages
just received. This model is very convenient for designing algorithms. Algorithms
designed in this model can in many cases be automatically simulated to work in
other, more realistic timing models.

In the synchronous model we say that an execution is admissible if it is infi-
nite. From the round structure it follows then that every processor takes an infinite
number of computation steps and that every message sent is eventually delivered.
Hence in a synchronous system with no failures, once a (deterministic) algorithm
has been fixed, the only relevant aspect determining an execution that can change
is the initial configuration. On the other hand in an asynchronous system, there
can be many different executions of the same algorithm, even with the same initial
configuration and no failures, since here the interleaving of processor steps, and the
message delays, are not fixed.

The notion of terminated states and the termination of the algorithm is defined
in the same way as in the asynchronous model.

The message complexity of an algorithm in the synchronous model is the maxi-
mum over all admissible executions of the algorithm, of the total number of messages
sent.

To measure time in a synchronous system we simply count the number of rounds
until termination. Hence the time complexity of an algorithm in the synchronous



13.2. Basic algorithms 595

model is the maximum number of rounds in any admissible execution of the algo-
rithm until the algorithm has terminated.

13.2. Basic algorithms

We begin with some simple examples of algorithms in the message passing model.

13.2.1. Broadcast

We start with a simple algorithm Spanning-Tree-Broadcast for the (single mes-
sage) broadcast problem, assuming that a spanning tree of the network graph with n
nodes (processors) is already given. Later, we will remove this assumption. A proces-
sor pi wishes to send a message M to all other processors. The spanning tree rooted
at pi is maintained in a distributed fashion: Each processor has a distinguished chan-
nel that leads to its parent in the tree as well as a set of channels that lead to its
children in the tree. The root pi sends the message M on all channels leading to
its children. When a processor receives the message on a channel from its parent, it
sends M on all channels leading to its children.

Spanning-Tree-Broadcast

Initially M is in transit from pi to all its children in the spanning tree.
Code for pi:

1 upon receiving no message: // first computation event by pi

2 terminate

Code for pj , 0 ≤ j ≤ n− 1, j 6= i:
3 upon receiving M from parent:
4 send M to all children
5 terminate

The algorithm Spanning-Tree-Broadcast is correct whether the system is
synchronous or asynchronous. Moreover, the message and time complexities are the
same in both models.

Using simple inductive arguments we will first prove a lemma that shows that
by the end of round t, the message M reaches all processors at distance t (or less)
from pr in the spanning tree.

Lemma 13.1 In every admissible execution of the broadcast algorithm in the syn-
chronous model, every processor at distance t from pr in the spanning tree receives
the message M in round t.

Proof We proceed by induction on the distance t of a processor from pr. First let
t = 1. It follows from the algorithm that each child of pr receives the message in
round 1.

Assume that each processor at distance t− 1 received the message M in round



596 13. Distributed Algorithms

t − 1. We need to show that each processor pt at distance t receives the message
in round t. Let ps be the parent of pt in the spanning tree. Since ps is at distance
t − 1 from pr, by the induction hypothesis, ps received M in round t − 1. By the
algorithm, pt will hence receive M in round t.

By Lemma 13.1 the time complexity of the broadcast algorithm is d, where d is
the depth of the spanning tree. Now since d is at most n − 1 (when the spanning
tree is a chain) we have:

Theorem 13.2 There is a synchronous broadcast algorithm for n processors with
message complexity n − 1 and time complexity d, when a rooted spanning tree with
depth d is known in advance.

We now move to an asynchronous system and apply a similar analysis.

Lemma 13.3 In every admissible execution of the broadcast algorithm in the asyn-
chronous model, every processor at distance t from pr in the spanning tree receives
the message M by time t.

Proof We proceed by induction on the distance t of a processor from pr. First let
t = 1. It follows from the algorithm that M is initially in transit to each processor
pi at distance 1 from pr. By the definition of time complexity for the asynchronous
model, pi receives M by time 1.

Assume that each processor at distance t − 1 received the message M at time
t− 1. We need to show that each processor pt at distance t receives the message by
time t. Let ps be the parent of pt in the spanning tree. Since ps is at distance t− 1
from pr, by the induction hypothesis, ps sends M to pt when it receives M at time
t− 1. By the algorithm, pt will hence receive M by time t.

We immediately obtain:

Theorem 13.4 There is an asynchronous broadcast algorithm for n processors with
message complexity n − 1 and time complexity d, when a rooted spanning tree with
depth d is known in advance.

13.2.2. Construction of a spanning tree

The asynchronous algorithm called Flood, discussed next, constructs a spanning
tree rooted at a designated processor pr. The algorithm is similar to the Depth First
Search (DFS) algorithm. However, unlike DFS where there is just one processor with
“global knowledge” about the graph, in the Flood algorithm, each processor has
“local knowledge” about the graph, processors coordinate their work by exchanging
messages, and processors and messages may get delayed arbitrarily. This makes the
design and analysis of Flood algorithm challenging, because we need to show that
the algorithm indeed constructs a spanning tree despite conspiratorial selection of
these delays.



13.2. Basic algorithms 597

Algorithm description. Each processor has four local variables. The links
adjacent to a processor are identified with distinct numbers starting from 1 and
stored in a local variable called neighbours. We will say that the spanning tree
has been constructed. when the variable parent stores the identifier of the link
leading to the parent of the processor in the spanning tree, except that this variable
is none for the designated processor pr; children is a set of identifiers of the links
leading to the children processors in the tree; and other is a set of identifiers of all
other links. So the knowledge about the spanning tree may be “distributed” across
processors.

The code of each processor is composed of segments. There is a segment (lines
1–4) that describes how local variables of a processor are initialised. Recall that
the local variables are initialised that way before time 0. The next three segments
(lines 5–11, 12–15 and 16–19) describe the instructions that any processor executes
in response to having received a message: <adopt>, <approved> or <rejected>. The
last segment (lines 20–22) is only included in the code of processor pr. This segment is
executed only when the local variable parent of processor pr is nil. At some point of
time, it may happen that more than one segment can be executed by a processor (e.g.,
because the processor received <adopt> messages from two processors). Then the
processor executes the segments serially, one by one (segments of any given processor
are never executed concurrently). However, instructions of different processor may be
arbitrarily interleaved during an execution. Every message that can be processed is
eventually processed and every segment that can be executed is eventually executed
(fairness).

Flood

Code for any processor pk, 1 ≤ k ≤ n
1 initialisation
2 parent← nil
3 children← ∅
4 other← ∅

5 process message <adopt> that has arrived on link j
6 if parent = nil
7 then parent← j
8 send <approved> to link j
9 send <adopt> to all links in neighbours \ {j}

10 else send <rejected> to link j

11 process message <approved> that has arrived on link j
12 children← children ∪ {j}
13 if children ∪ other = neighbours \ {parent}
14 then terminate



598 13. Distributed Algorithms

15 process message <rejected> that has arrived on link j
16 other← other ∪ {j}
17 if children ∪ other = neighbours \ {parent}
18 then terminate

Extra code for the designated processor pr

19 if parent = nil
20 then parent← none
21 send <adopt> to all links in neighbours

Let us outline how the algorithm works. The designated processor sends an
<adopt> message to all its neighbours, and assigns none to the parent variable
(nil and none are two distinguished values, different from any natural number), so
that it never again sends the message to any neighbour.

When a processor processes message <adopt> for the first time, the processor
assigns to its own parent variable the identifier of the link on which the message
has arrived, responds with an <approved> message to that link, and forwards an
<adopt> message to every other link. However, when a processor processes message
<adopt> again, then the processor responds with a <rejected> message, because
the parent variable is no longer nil.

When a processor processes message <approved>, it adds the identifier of the
link on which the message has arrived to the set children. It may turn out that
the sets children and other combined form identifiers of all links adjacent to the
processor except for the identifier stored in the parent variable. In this case the
processor enters a terminating state.

When a processor processes message <rejected>, the identifier of the link is
added to the set other. Again, when the union of children and other is large enough,
the processor enters a terminating state.

Correctness proof. We now argue that Flood constructs a spanning tree. The
key moments in the execution of the algorithm are when any processor assigns a
value to its parent variable. These assignments determine the “shape” of the spanning
tree. The facts that any processor eventually executes an instruction, any message
is eventually delivered, and any message is eventually processed, ensure that the
knowledge about these assignments spreads to neighbours. Thus the algorithm is
expanding a subtree of the graph, albeit the expansion may be slow. Eventually,
a spanning tree is formed. Once a spanning tree has been constructed, eventually
every processor will terminate, even though some processors may have terminated
even before the spanning tree has been constructed.

Lemma 13.5 For any 1 ≤ k ≤ n, there is time tk which is the first moment
when there are exactly k processors whose parent variables are not nil, and these
processors and their parent variables form a tree rooted at pr.

Proof We prove the statement of the lemma by induction on k. For the base case,
assume that k = 1. Observe that processor pr eventually assigns none to its parent



13.2. Basic algorithms 599

variable. Let t1 be the moment when this assignment happens. At that time, the
parent variable of any processor other than pr is still nil, because no <adopt>
messages have been sent so far. Processor pr and its parent variable form a tree
with a single node and not arcs. Hence they form a rooted tree. Thus the inductive
hypothesis holds for k = 1.

For the inductive step, suppose that 1 ≤ k < n and that the inductive hypothesis
holds for k. Consider the time tk which is the first moment when there are exactly
k processors whose parent variables are not nil. Because k < n, there is a non-tree
processor. But the graph G is connected, so there is a non-tree processor adjacent to
the tree. (For any subset T of processors, a processor pi is adjacent to T if and only
if there an edge in the graph G from pi to a processor in T .) Recall that by definition,
parent variable of such processor is nil. By the inductive hypothesis, the k processors
must have executed line 7 of their code, and so each either has already sent or will
eventually send <adopt> message to all its neighbours on links other than the parent
link. So the non-tree processors adjacent to the tree have already received or will
eventually receive <adopt> messages. Eventually, each of these adjacent processors
will, therefore, assign a value other than nil to its parent variable. Let tk+1 > tk be
the first moment when any processor performs such assignment, and let us denote
this processor by pi. This cannot be a tree processor, because such processor never
again assigns any value to its parent variable. Could pi be a non-tree processor that
is not adjacent to the tree? It could not, because such processor does not have a
direct link to a tree processor, so it cannot receive <adopt> directly from the tree,
and so this would mean that at some time t′ between tk and tk+1 some other non-
tree processor pj must have sent <adopt> message to pi, and so pj would have to
assign a value other than nil to its parent variable some time after tk but before
tk+1, contradicting the fact the tk+1 is the first such moment. Consequently, pi is
a non-tree processor adjacent to the tree, such that, at time tk+1, pi assigns to its
parent variable the index of a link leading to a tree processor. Therefore, time tk+1

is the first moment when there are exactly k + 1 processors whose parent variables
are not nil, and, at that time, these processors and their parent variables form a
tree rooted at pr. This completes the inductive step, and the proof of the lemma.

Theorem 13.6 Eventually each processor terminates, and when every processor
has terminated, the subgraph induced by the parent variables forms a spanning tree
rooted at pr.

Proof By Lemma 13.5, we know that there is a moment tn which is the first moment
when all processors and their parent variables form a spanning tree.

Is it possible that every processor has terminated before time tn? By inspecting
the code, we see that a processor terminates only after it has received <rejected>
or <approved> messages from all its neighbours other than the one to which parent
link leads. A processor receives such messages only in response to <adopt> messages
that the processor sends. At time tn, there is a processor that still has not even sent
<adopt> messages. Hence, not every processor has terminated by time tn.

Will every processor eventually terminate? We notice that by time tn, each
processor either has already sent or will eventually send <adopt> message to all



600 13. Distributed Algorithms

its neighbours other than the one to which parent link leads. Whenever a processor
receives <adopt> message, the processor responds with <rejected> or <approved>,
even if the processor has already terminated. Hence, eventually, each processor will
receive either <rejected> or <approved> message on each link to which the processor
has sent <adopt> message. Thus, eventually, each processor terminates.

We note that the fact that a processor has terminated does not mean that a
spanning tree has already been constructed. In fact, it may happen that processors
in a different part of the network have not even received any message, let alone
terminated.

Theorem 13.7 Message complexity of Flood is O(e), where e is the number of
edges in the graph G.

The proof of this theorem is left as Problem 13-1.

Exercises
13.2-1 It may happen that a processor has terminated even though a processor has
not even received any message. Show a simple network and how to delay message
delivery and processor computation to demonstrate that this can indeed happen.
13.2-2 It may happen that a processor has terminated but may still respond to a
message. Show a simple network and how to delay message delivery and processor
computation to demonstrate that this can indeed happen.

13.3. Ring algorithms

One often needs to coordinate the activities of processors in a distributed system.
This can frequently be simplified when there is a single processor that acts as a
coordinator. Initially, the system may not have any coordinator, or an existing co-
ordinator may fail and so another may need to be elected. This creates the problem
where processors must elect exactly one among them, a leader. In this section we
study the problem for special types of networks—rings. We will develop an asyn-
chronous algorithm for the problem. As we shall demonstrate, the algorithm has
asymptotically optimal message complexity. In the current section, we will see a
distributed analogue of the well-known divide-and-conquer technique often used in
sequential algorithms to keep their time complexity low. The technique used in dis-
tributed systems helps reduce the message complexity.

13.3.1. The leader election problem

The leader election problem is to elect exactly leader among a set of processors. For-
mally each processor has a local variable leader initially equal to nil. An algorithm
is said to solve the leader election problem if it satisfies the following conditions:

1. in any execution, exactly one processor eventually assigns true to its leader
variable, all other processors eventually assign false to their leader variables,



13.3. Ring algorithms 601

and

2. in any execution, once a processor has assigned a value to its leader variable,
the variable remains unchanged.

Ring model. We study the leader election problem on a special type of network—
the ring. Formally, the graph G that models a distributed system consists of n nodes
that form a simple cycle; no other edges exist in the graph. The two links adjacent
to a processor are labeled CW (Clock-Wise) and CCW (Counter Clock-Wise).
Processors agree on the orientation of the ring i.e., if a message is passed on in CW
direction n times, then it visits all n processors and comes back to the one that
initially sent the message; same for CCW direction. Each processor has a unique
identifier that is a natural number, i.e., the identifier of each processor is different
from the identifier of any other processor; the identifiers do not have to be consecutive
numbers 1, . . . , n. Initially, no processor knows the identifier of any other processor.
Also processors do not know the size n of the ring.

13.3.2. The leader election algorithm

Bully elects a leader among asynchronous processors p1, . . . , pn. Identifiers of pro-
cessors are used by the algorithm in a crucial way. Briefly speaking, each processor
tries to become the leader, the processor that has the largest identifier among all
processors blocks the attempts of other processors, declares itself to be the leader,
and forces others to declare themselves not to be leaders.

Let us begin with a simpler version of the algorithm to exemplify some of the
ideas of the algorithm. Suppose that each processor sends a message around the
ring containing the identifier of the processor. Any processor passes on such message
only if the identifier that the message carries is strictly larger than the identifier of
the processor. Thus the message sent by the processor that has the largest identifier
among the processors of the ring, will always be passed on, and so it will eventually
travel around the ring and come back to the processor that initially sent it. The
processor can detect that such message has come back, because no other processor
sends a message with this identifier (identifiers are distinct). We observe that, no
other message will make it all around the ring, because the processor with the
largest identifier will not pass it on. We could say that the processor with the largest
identifier “swallows” these messages that carry smaller identifiers. Then the processor
becomes the leader and sends a special message around the ring forcing all others to
decide not to be leaders. The algorithm has Θ(n2) message complexity, because each
processor induces at most n messages, and the leader induces n extra messages; and
one can assign identifiers to processors and delay processors and messages in such
a way that the messages sent by a constant fraction of n processors are passed on
around the ring for a constant fraction of n hops. The algorithm can be improved
so as to reduce message complexity to O(n lg n), and such improved algorithm will
be presented in the remainder of the section.

The key idea of the Bully algorithm is to make sure that not too many mes-
sages travel far, which will ensure O(n lg n) message complexity. Specifically, the



602 13. Distributed Algorithms

activity of any processor is divided into phases. At the beginning of a phase, a pro-
cessor sends “probe” messages in both directions: CW and CCW. These messages
carry the identifier of the sender and a certain “time-to-live” value that limits the
number of hops that each message can make. The probe message may be passed
on by a processor provided that the identifier carried by the message is larger than
the identifier of the processor. When the message reaches the limit, and has not
been swallowed, then it is “bounced back”. Hence when the initial sender receives
two bounced back messages, each from each direction, then the processor is certain
that there is no processor with larger identifier up until the limit in CW nor CCW
directions, because otherwise such processor would swallow a probe message. Only
then does the processor enter the next phase through sending probe messages again,
this time with the time-to-live value increased by a factor, in an attempt to find if
there is no processor with a larger identifier in twice as large neighbourhood. As a
result, a probe message that the processor sends will make many hops only when
there is no processor with larger identifier in a large neighbourhood of the proces-
sor. Therefore, fewer and fewer processors send messages that can travel longer and
longer distances. Consequently, as we will soon argue in detail, message complexity
of the algorithm is O(n lg n).

We detail the Bully algorithm. Each processor has five local variables. The
variable id stores the unique identifier of the processor. The variable leader stores
true when the processor decides to be the leader, and false when it decides not
to be the leader. The remaining three variables are used for bookkeeping: asleep
determines if the processor has ever sent a <probe,id,0,0> message that carries the
identifier id of the processor. Any processor may send <probe,id,phase,2phase−1>
message in both directions (CW and CCW) for different values of phase. Each time a
message is sent, a <reply, id, phase> message may be sent back to the processor. The
variables CWreplied and CCWreplied are used to remember whether the replies
have already been processed the processor.

The code of each processor is composed of five segments. The first segment
(lines 1–5) initialises the local variables of the processor. The second segment (lines
6–8) can only be executed when the local variable asleep is true. The remaining
three segments (lines 9–17, 1–26, and 27–31) describe the actions that the processor
takes when it processes each of the three types of messages: <probe, ids, phase, ttl>,
<reply, ids, phase> and <terminate> respectively. The messages carry parameters
ids, phase and ttl that are natural numbers.

We now describe how the algorithm works. Recall that we assume that the local
variables of each processor have been initialised before time 0 of the global clock.
Each processor eventually sends a <probe,id,0,0> message carrying the identifier
id of the processor. At that time we say that the processor enters phase number
zero. In general, when a processor sends a message <probe,id,phase,2phase − 1>, we
say that the processor enters phase number phase. Message <probe,id,0,0> is never
sent again because false is assigned to asleep in line 7. It may happen that by the
time this message is sent, some other messages have already been processed by the
processor.

When a processor processes message <probe, ids, phase, ttl> that has arrived on
link CW (the link leading in the clock-wise direction), then the actions depend on



13.3. Ring algorithms 603

the relationship between the parameter ids and the identifier id of the processor. If
ids is smaller than id, then the processor does nothing else (the processor swallows
the message). If ids is equal to id and processor has not yet decided, then, as we
shall see, the probe message that the processor sent has circulated around the entire
ring. Then the processor sends a <terminate> message, decides to be the leader,
and terminates (the processor may still process messages after termination). If ids
is larger than id, then actions of the processor depend on the value of the parameter
ttl (time-to-live). When the value is strictly larger than zero, then the processor
passes on the probe message with ttl decreased by one. If, however, the value of
ttl is already zero, then the processor sends back (in the CW direction) a reply
message. Symmetric actions are executed when the <probe, ids, phase, ttl> message
has arrived on link CCW, in the sense that the directions of sending messages are
respectively reversed – see the code for details.

Bully

Code for any processor pk, 1 ≤ k ≤ n
1 initialisation
2 asleep← true
3 CWreplied← false
4 CCWreplied← false
5 leader← nil

6 if asleep
7 then asleep←false
8 send <probe,id,0,0> to links CW and CCW

9 process message <probe, ids, phase, ttl> that has arrived
on link CW (resp. CCW)

10 if id = ids and leader = nil
11 then send <terminate> to link CCW
12 leader← true
13 terminate
14 if ids > id and ttl > 0
15 then send < probe,ids,phase,ttl− 1 >

to link CCW (resp. CW)
16 if ids > id and ttl = 0
17 then send <reply,ids,phase> to link CW (resp. CCW)



604 13. Distributed Algorithms

18 process message <reply,ids,phase> that has arrived on link CW (resp. CCW)
19 if id 6= ids
20 then send <reply,ids,phase> to link CCW (resp. CW)
21 else CWreplied← true (resp. CCWreplied)
22 if CWreplied and CCWreplied
23 then CWreplied← false
24 CCWreplied← false
25 send <probe,id,phase+1,2phase+1 − 1>

to links CW and CCW

26 process message <terminate> that has arrived on link CW
27 if leader nil
28 then send <terminate> to link CCW
29 leader← false
30 terminate

When a processor processes message <reply, ids, phase> that has arrived on link
CW, then the processor first checks if ids is different from the identifier id of the
processor. If so, the processor merely passes on the message. However, if ids = id,
then the processor records the fact that a reply has been received from direction CW,
by assigning true to CWreplied. Next the processor checks if both CWreplied and
CCWreplied variables are true. If so, the processor has received replies from both
directions. Then the processor assigns false to both variables. Next the processor
sends a probe message. This message carries the identifier id of the processor, the
next phase number phase+ 1, and an increased time-to-live parameter 2phase+1− 1.
Symmetric actions are executed when <reply,ids,phase> has arrived on link CCW.

The last type of message that a processor can process is <terminate>. The
processor checks if it has already decided to be or not to be the leader. When no
decision has been made so far, the processor passes on the <terminate> message
and decides not to be the leader. This message eventually reaches a processor that
has already decided, and then the message is no longer passed on.

13.3.3. Analysis of the leader election algorithm

We begin the analysis by showing that the algorithm Bully solves the leader election
problem.

Theorem 13.8 Bully solves the leader election problem on any ring with asyn-
chronous processors.

Proof We need to show that the two conditions listed at the beginning of the section
are satisfied. The key idea that simplifies the argument is to focus on one processor.
Consider the processor pi with maximum id among all processors in the ring. This
processor eventually executes lines 6–8. Then the processor sends <probe,id,0,0>
messages in CW and CCW directions. Note that whenever the processor sends
<probe,id,phase,2phase − 1> messages, each such message is always passed on by



13.3. Ring algorithms 605

other processors, until the ttl parameter of the message drops down to zero, or the
message travels around the entire ring and arrives at pi. If the message never arrives
at pi, then a processor eventually receives the probe message with ttl equal to zero,
and the processor sends a response back to pi. Then, eventually pi receives mes-
sages <reply,id,phase> from each directions, and enters phase number phase+ 1 by
sending probe messages <probe,id,phase+1,2phase+1 − 1> in both directions. These
messages carry a larger time-to-live value compared to the value from the previous
phase number phase. Since the ring is finite, eventually ttl becomes so large that
processor pi receives a probe message that carries the identifier of pi. Note that pi

will eventually receive two such messages. The first time when pi processes such mes-
sage, the processor sends a <terminate> message and terminates as the leader. The
second time when pi processes such message, lines 11–13 are not executed, because
variable leader is no longer nil. Note that no other processor pj can execute lines
11–13, because a probe message originated at pj cannot travel around the entire
ring, since pi is on the way, and pi would swallow the message; and since identifiers
are distinct, no other processor sends a probe message that carries the identifier of
processor pj . Thus no processor other than pi can assign true to its leader variable.
Any processor other than pi will receive the <terminate> message, assign false
to its leader variable, and pass on the message. Finally, the <terminate> message
will arrive at pi, and pi will not pass it anymore. The argument presented thus far
ensures that eventually exactly one processor assigns true to its leader variable,
all other processors assign false to their leader variables, and once a processor has
assigned a value to its leader variable, the variable remains unchanged.

Our next task is to give an upper bound on the number of messages sent by
the algorithm. The subsequent lemma shows that the number of processors that can
enter a phase decays exponentially as the phase number increases.

Lemma 13.9 Given a ring of size n, the number k of processors that enter phase
number i ≥ 0 is at most n/2i−1.

Proof There are exactly n processors that enter phase number i = 0, because each
processor eventually sends <probe,id,0,0> message. The bound stated in the lemma
says that the number of processors that enter phase 0 is at most 2n, so the bound
evidently holds for i = 0. Let us consider any of the remaining cases i.e., let us assume
that i ≥ 1. Suppose that a processor pj enters phase number i, and so by definition
it sends message <probe,id,i,2i − 1>. In order for a processor to send such message,
each of the two probe messages <probe,id,i-1,2i−1 − 1> that the processor sent in
the previous phase in both directions must have made 2i−1 hops always arriving at a
processor with strictly lower identifier than the identifier of pj (because otherwise, if
a probe message arrives at a processor with strictly larger or the same identifier, than
the message is swallowed, and so a reply message is not generated, and consequently
pj cannot enter phase number i). As a result, if a processor enters phase number
i, then there is no other processor 2i−1 hops away in both directions that can ever
enter the phase. Suppose that there are k ≥ 1 processors that enter phase i. We can
associate with each such processor pj , the 2i−1 consecutive processors that follow
pj in the CW direction. This association assigns 2i−1 distinct processors to each of



606 13. Distributed Algorithms

the k processors. So there must be at least k + k · 2i−1 distinct processor in the
ring. Hence k(1 + 2i−1) ≤ n, and so we can weaken this bound by dropping 1, and
conclude that k · 2i−1 ≤ n, as desired.

Theorem 13.10 The algorithm Bully has O(n lg n) message complexity, where n
is the size of the ring.

Proof Note that any processor in phase i, sends messages that are intended to travel
2i away and back in each direction (CW and CCW). This contributes at most 4 · 2i

messages per processor that enters phase number i. The contribution may be smaller
than 4 · 2i if a probe message gets swallowed on the way away from the processor.
Lemma 13.9 provides an upper bound on the number of processors that enter phase
number k. What is the highest phase that a processor can ever enter? The number
k of processors that can be in phase i is at most n/2i−1. So when n/2i−1 < 1, then
there can be no processor that ever enters phase i. Thus no processor can enter any
phase beyond phase number h = 1+dlog2 ne, because n < 2(h+1)−1. Finally, a single
processor sends one termination message that travels around the ring once. So for
the total number of messages sent by the algorithm we get the

n+
1+dlog2 ne∑

i=0

(
n/2i−1 · 4 · 2i

)
= n+

1+dlog2 ne∑

i=0

8n = O(n lg n)

upper bound.

Burns furthermore showed that the asynchronous leader election algorithm is
asymptotically optimal: Any uniform algorithm solving the leader election problem
in an asynchronous ring must send the number of messages at least proportional to
n lg n.

Theorem 13.11 Any uniform algorithm for electing a leader in an asynchronous
ring sends Ω(n lg n) messages.

The proof, for any algorithm, is based on constructing certain executions of the
algorithm on rings of size n/2. Then two rings of size n/2 are pasted together in
such a way that the constructed executions on the smaller rings are combined, and
Θ(n) additional messages are received. This construction strategy yields the desired
logarithmic multiplicative overhead.

Exercises
13.3-1 Show that the simplified Bully algorithm has Ω(n2) message complexity,
by appropriately assigning identifiers to processors on a ring of size n, and by deter-
mining how to delay processors and messages.
13.3-2 Show that the algorithm Bully has Ω(n lg n) message complexity.



13.4. Fault-tolerant consensus 607

13.4. Fault-tolerant consensus

The algorithms presented so far are based on the assumption that the system on
which they run is reliable. Here we present selected algorithms for unreliable dis-
tributed systems, where the active (or correct) processors need to coordinate their
activities based on common decisions.

It is inherently difficult for processors to reach agreement in a distributed set-
ting prone to failures. Consider the deceptively simple problem of two failure-free
processors attempting to agree on a common bit using a communication medium
where messages may be lost. This problem is known as the two generals problem.
Here two generals must coordinate an attack using couriers that may be destroyed
by the enemy. It turns out that it is not possible to solve this problem using a fi-
nite number of messages. We prove this fact by contradiction. Assume that there
is a protocol used by processors A and B involving a finite number of messages.
Let us consider such a protocol that uses the smallest number of messages, say k
messages. Assume without loss of generality that the last kth message is sent from
A to B. Since this final message is not acknowledged by B, A must determine the
decision value whether or not B receives this message. Since the message may be
lost, B must determine the decision value without receiving this final message. But
now both A and B decide on a common value without needing the kth message. In
other words, there is a protocol that uses only k − 1 messages for the problem. But
this contradicts the assumption that k is the smallest number of messages needed
to solve the problem.

In the rest of this section we consider agreement problems where the commu-
nication medium is reliable, but where the processors are subject to two types of
failures: crash failures, where a processor stops and does not perform any further
actions, and Byzantine failures, where a processor may exhibit arbitrary, or even
malicious, behaviour as the result of the failure.

The algorithms presented deal with the so called consensus problem, first in-
troduced by Lamport, Pease, and Shostak. The consensus problem is a fundamental
coordination problem that requires processors to agree on a common output, based
on their possibly conflicting inputs.

13.4.1. The consensus problem

We consider a system in which each processor pi has a special state component xi,
called the input and yi, called the output (also called the decision). The variable
xi initially holds a value from some well ordered set of possible inputs and yi is
undefined. Once an assignment to yi has been made, it is irreversible. Any solution
to the consensus problem must guarantee:

• Termination: In every admissible execution, yi is eventually assigned a value,
for every nonfaulty processor pi.

• Agreement: In every execution, if yi and yj are assigned, then yi = yj , for all
nonfaulty processors pi and pj . That is nonfaulty processors do not decide on
conflicting values.



608 13. Distributed Algorithms

• Validity: In every execution, if for some value v, xi = v for all processors pi,
and if yi is assigned for some nonfaulty processor pi, then yi = v. That is, if all
processors have the same input value, then any value decided upon must be that
common input.

Note that in the case of crash failures this validity condition is equivalent to
requiring that every nonfaulty decision value is the input of some processor. Once a
processor crashes it is of no interest to the algorithm, and no requirements are put
on its decision.

We begin by presenting a simple algorithm for consensus in a synchronous mes-
sage passing system with crash failures.

13.4.2. Consensus with crash failures

Since the system is synchronous, an execution of the system consists of a series of
rounds. Each round consists of the delivery of all messages, followed by one com-
putation event for every processor. The set of faulty processors can be different in
different executions, that is, it is not known in advance. Let F be a subset of at
most f processors, the faulty processors. Each round contains exactly one computa-
tion event for the processors not in F and at most one computation event for every
processor in F . Moreover, if a processor in F does not have a computation event in
some round, it does not have such an event in any further round. In the last round in
which a faulty processor has a computation event, an arbitrary subset of its outgoing
messages are delivered.

Consensus-with-Crash-Failures

Code for processor pi, 0 ≤ i ≤ n− 1.
Initially V = {x}
round k, 1 ≤ k ≤ f + 1

1 send {v ∈ V : pi has not already sent v} to all processors
2 receive Sj from pj , 0 ≤ j ≤ n− 1, j 6= i

3 V ← V ∪⋃n−1
j=0 Sj

4 if k = f + 1
5 then y ← min(V )

In the previous algorithm, which is based on an algorithm by Dolev and Strong,
each processor maintains a set of the values it knows to exist in the system. Initially,
the set contains only its own input. In later rounds the processor updates its set by
joining it with the sets received from other processors. It then broadcasts any new
additions to the set of all processors. This continues for f + 1 rounds, where f is the
maximum number of processors that can fail. At this point, the processor decides
on the smallest value in its set of values.

To prove the correctness of this algorithm we first notice that the algorithm
requires exactly f + 1 rounds. This implies termination. Moreover the validity con-



13.4. Fault-tolerant consensus 609

dition is clearly satisfied since the decision value is the input of some processor. It
remains to show that the agreement condition holds. We prove the following lemma:

Lemma 13.12 In every execution at the end of round f + 1, Vi = Vj, for every
two nonfaulty processors pi and pj.

Proof We prove the claim by showing that if x ∈ Vi at the end of round f + 1 then
x ∈ Vj at the end of round f + 1.

Let r be the first round in which x is added to Vi for any nonfaulty processor
pi. If x is initially in Vi let r = 0. If r ≤ f then, in round r + 1 ≤ f + 1 pi sends x
to each pj , causing pj to add x to Vj , if not already present.

Otherwise, suppose r = f + 1 and let pj be a nonfaulty processor that receives
x for the first time in round f + 1. Then there must be a chain of f + 1 processors
pi1
, . . . pif+1

that transfers the value x to pj . Hence pi1
sends x to pi2

in round one
etc. until pif+1

sends x to pj in round f + 1. But then pi1
, . . . , pif+1

is a chain of
f + 1 processors. Hence at least one of them, say pik

must be nonfaulty. Hence pik

adds x to its set in round k − 1 < r, contradicting the minimality of r.

This lemma together with the before mentioned observations hence implies the
following theorem.

Theorem 13.13 The previous consensus algorithm solves the consensus problem
in the presence of f crash failures in a message passing system in f + 1 rounds.

The following theorem was first proved by Fischer and Lynch for Byzantine
failures. Dolev and Strong later extended it to crash failures. The theorem shows
that the previous algorithm, assuming the given model, is optimal.

Theorem 13.14 There is no algorithm which solves the consensus problem in less
than f + 1 rounds in the presence of f crash failures, if n ≥ f + 2.

What if failures are not benign? That is can the consensus problem be solved in
the presence of Byzantine failures? And if so, how?

13.4.3. Consensus with Byzantine failures

In a computation step of a faulty processor in the Byzantine model, the new state of
the processor and the message sent are completely unconstrained. As in the reliable
case, every processor takes a computation step in every round and every message sent
is delivered in that round. Hence a faulty processor can behave arbitrarily and even
maliciously. For example, it could send different messages to different processors.
It can even appear that the faulty processors coordinate with each other. A faulty
processor can also mimic the behaviour of a crashed processor by failing to send any
messages from some point on.

In this case, the definition of the consensus problem is the same as in the message
passing model with crash failures. The validity condition in this model, however, is
not equivalent with requiring that every nonfaulty decision value is the input of
some processor. Like in the crash case, no conditions are put on the output of faulty
processors.



610 13. Distributed Algorithms

13.4.4. Lower bound on the ratio of faulty processors

Pease, Shostak and Lamport first proved the following theorem.

Theorem 13.15 In a system with n processors and f Byzantine processors, there
is no algorithm which solves the consensus problem if n ≤ 3f .

13.4.5. A polynomial algorithm

The following algorithm uses messages of constant size, takes 2(f + 1) rounds, and
assumes that n > 4f . It was presented by Berman and Garay.

This consensus algorithm for Byzantine failures contains f + 1 phases, each
taking two rounds. Each processor has a preferred decision for each phase, initially
its input value. At the first round of each phase, processors send their preferences to
each other. Let vk

i be the majority value in the set of values received by processor
pi at the end of the first round of phase k. If no majority exists, a default value v⊥
is used. In the second round of the phase processor pk, called the king of the phase,
sends its majority value vk

k to all processors. If pi receives more than n/2 + f copies
of vk

i (in the first round of the phase) then it sets its preference for the next phase
to be vk

i ; otherwise it sets its preference to the phase kings preference, vk
k received

in the second round of the phase. After f + 1 phases, the processor decides on its
preference. Each processor maintains a local array pref with n entries.

We prove correctness using the following lemmas. Termination is immediate. We
next note the persistence of agreement:

Lemma 13.16 If all nonfaulty processors prefer v at the beginning of phase k, then
they all prefer v at the end of phase k, for all k, 1 ≤ k ≤ f + 1.

Proof Since all nonfaulty processors prefer v at the beginning of phase k, they all
receive at least n− f copies of v (including their own) in the first round of phase k.
Since n > 4f , n− f > n/2 + f , implying that all nonfaulty processors will prefer v
at the end of phase k.

Consensus-with-Byzantine-failures

Code for processor pi, 0 ≤ i ≤ n− 1.
Initially pref[j] = v⊥, for any j 6= i
round 2k − 1, 1 ≤ k ≤ f + 1

1 send 〈pref[i]〉 to all processors
2 receive 〈vj〉 from pj and assign to pref[j], for all 0 ≤ j ≤ n− 1, j 6= i
3 let maj be the majority value of pref[0],. . . ,pref[n− 1](v⊥ if none)
4 let mult be the multiplicity of maj



13.4. Fault-tolerant consensus 611

round 2k, 1 ≤ k ≤ f + 1
5 if i = k
6 then send 〈maj〉 to all processors
7 receive 〈king-maj〉 from pk (v⊥ if none)

8 if mult >
n

2
+ f

9 then pref[i]← maj
10 else pref[i]← king −maj
11 if k = f + 1
12 then y ←pref[i]

This implies the validity condition: If they all start with the same input v they
will continue to prefer v and finally decide on v in phase f+1. Agreement is achieved
by the king breaking ties. Since each phase has a different king and there are f + 1
phases, at least one round has a nonfaulty king.

Lemma 13.17 Let g be a phase whose king pg is nonfaulty. Then all nonfaulty
processors finish phase g with the same preference.

Proof Suppose all nonfaulty processors use the majority value received from the
king for their preference. Since the king is nonfaulty, it sends the same message and
hence all the nonfaulty preferences are the same.

Suppose a nonfaulty processor pi uses its own majority value v for its preference.
Thus pi receives more than n/2 + f messages for v in the first round of phase g.
Hence every processor, including pg receives more than n/2 messages for v in the first
round of phase g and sets its majority value to v. Hence every nonfaulty processor
has v for its preference.

Hence at phase g+1 all processors have the same preference and by Lemma 13.16
they will decide on the same value at the end of the algorithm. Hence the algorithm
has the agreement property and solves consensus.

Theorem 13.18 There exists an algorithm for n processors which solves the con-
sensus problem in the presence of f Byzantine failures within 2(f + 1) rounds using
constant size messages, if n > 4f .

13.4.6. Impossibility in asynchronous systems

As shown before, the consensus problem can be solved in synchronous systems in
the presence of both crash (benign) and Byzantine (severe) failures. What about
asynchronous systems? Under the assumption that the communication system is
completely reliable, and the only possible failures are caused by unreliable processors,
it can be shown that if the system is completely asynchronous then there is no
consensus algorithm even in the presence of only a single processor failure. The
result holds even if the processors only fail by crashing. The impossibility proof
relies heavily on the system being asynchronous. This result was first shown in a



612 13. Distributed Algorithms

breakthrough paper by Fischer, Lynch and Paterson. It is one of the most influential
results in distributed computing.

The impossibility holds for both shared memory systems if only read/write reg-
isters are used, and for message passing systems. The proof first shows it for shared
memory systems. The result for message passing systems can then be obtained
through simulation.

Theorem 13.19 There is no consensus algorithm for a read/write asynchronous
shared memory system that can tolerate even a single crash failure.

And through simulation the following assertion can be shown.

Theorem 13.20 There is no algorithm for solving the consensus problem in an
asynchronous message passing system with n processors, one of which may fail by
crashing.

Note that these results do not mean that consensus can never be solved in
asynchronous systems. Rather the results mean that there are no algorithms that
guarantee termination, agreement, and validity, in all executions. It is reasonable to
assume that agreement and validity are essential, that is, if a consensus algorithm
terminates, then agreement and validity are guaranteed. In fact there are efficient and
useful algorithms for the consensus problem that are not guaranteed to terminate in
all executions. In practice this is often sufficient because the special conditions that
cause non-termination may be quite rare. Additionally, since in many real systems
one can make some timing assumption, it may not be necessary to provide a solution
for asynchronous consensus.

Exercises
13.4-1 Prove the correctness of algorithm Consensus-Crash.
13.4-2 Prove the correctness of the consensus algorithm in the presence of Byzantine
failures.
13.4-3 Prove Theorem 13.20.

13.5. Logical time, causality, and consistent state

In a distributed system it is often useful to compute a global state that consists of
the states of all processors. Having access to the global can allows us to reason about
the system properties that depend on all processors, for example to be able to detect
a deadlock. One may attempt to compute global state by stopping all processors,
and then gathering their states to a central location. Such a method is will-suited for
many distributed systems that must continue computation at all times. This section
discusses how one can compute global state that is quite intuitive, yet consistent, in
a precise sense. We first discuss a distributed algorithm that imposes a global order
on instructions of processors. This algorithm creates the illusion of a global clock
available to processors. Then we introduce the notion of one instruction causally
affecting other instruction, and an algorithm for computing which instruction affects
which. The notion turns out to be very useful in defining a consistent global state of



13.5. Logical time, causality, and consistent state 613

distributed system. We close the section with distributed algorithms that compute
a consistent global state of distributed system.

13.5.1. Logical time

The design of distributed algorithms is easier when processors have access to (New-
tonian) global clock, because then each event that occurs in the distributed system
can be labeled with the reading of the clock, processors agree on the ordering of any
events, and this consensus can be used by algorithms to make decisions. However,
construction of a global clock is difficult. There exist algorithms that approximate
the ideal global clock by periodically synchronising drifting local hardware clocks.
However, it is possible to totally order events without using hardware clocks. This
idea is called the logical clock.

Recall that an execution is an interleaving of instructions of the n programs.
Each instruction can be either a computational step of a processor, or sending a
message, or receiving a message. Any instruction is performed at a distinct point of
global time. However, the reading of the global clock is not available to processors.
Our goal is to assign values of the logical clock to each instruction, so that these
values appear to be readings of the global clock. That is, it possible to postpone
or advance the instants when instructions are executed in such a way, that each
instruction x that has been assigned a value tx of the logical clock, is executed
exactly at the instant tx of the global clock, and that the resulting execution is a
valid one, in the sense that it can actually occur when the algorithm is run with the
modified delays.

The Logical-Clock algorithm assigns logical time to each instruction. Each
processor has a local variable called counter. This variable is initially zero and it
gets incremented every time processor executes an instruction. Specifically, when a
processor executes any instruction other than sending or receiving a message, the
variable counter gets incremented by one. When a processor sends a message, it in-
crements the variable by one, and attaches the resulting value to the message. When
a processor receives a message, then the processor retrieves the value attached to the
message, then calculates the maximum of the value and the current value of counter,
increments the maximum by one, and assigns the result to the counter variable. Note
that every time instruction is executed, the value of counter is incremented by at
least one, and so it grows as processor keeps on executing instructions. The value
of logical time assigned to instruction x is defined as the pair (counter, id), where
counter is the value of the variable counter right after the instruction has been
executed, and id is the identifier of the processor. The values of logical time form
a total order, where pairs are compared lexicographically. This logical time is also
called Lamport time. We define tx to be a quotient counter + 1/(id+ 1), which is an
equivalent way to represent the pair.

Remark 13.21 For any execution, logical time satisfies three conditions:
(i) if an instruction x is performed by a processor before an instruction y is performed
by the same processor, then the logical time of x is strictly smaller than that of y,
(ii) any two distinct instructions of any two processors get assigned different logical
times,



614 13. Distributed Algorithms

(iii) if instruction x sends a message and instruction y receives this message, then
the logical time of x is strictly smaller than that of y.

Our goal now is to argue that logical clock provides to processors the illusion of
global clock. Intuitively, the reason why such an illusion can be created is that we
can take any execution of a deterministic algorithm, compute the logical time tx of
each instruction x, and run the execution again delaying or speeding up processors
and messages in such a way that each instruction x is executed at the instant tx
of the global clock. Thus, without access to a hardware clock or other external
measurements not captured in our model, the processors cannot distinguish the
reading of logical clock from the reading of a real global clock. Formally, the reason
why the re-timed sequence is a valid execution that is indistinguishable from the
original execution, is summarised in the subsequent corollary that follows directly
from Remark 13.21.

Corollary 13.22 For any execution α, let T be the assignment of logical time to
instructions, and let β be the sequence of instructions ordered by their logical time in
α. Then for each processor, the subsequence of instructions executed by the processor
in α is the same as the subsequence in β. Moreover, each message is received in β
after it is sent in β.

13.5.2. Causality

In a system execution, an instruction can affect another instruction by altering the
state of the computation in which the second instruction executes. We say that one
instruction can causally affect (or influence) another, if the information that one
instruction produces can be passed on to the other instruction. Recall that in our
model of distributed system, each instruction is executed at a distinct instant of
global time, but processors do not have access to the reading of the global clock. Let
us illustrate causality. If two instructions are executed by the same processor, then
we could say that the instruction executed earlier can causally affect the instruc-
tion executed later, because it is possible that the result of executing the former
instruction was used when the later instruction was executed. We stress the word
possible, because in fact the later instruction may not use any information produced
by the former. However, when defining causality, we simplify the problem of captur-
ing how processors influence other processors, and focus on what is possible. If two
instructions x and y are executed by two different processors, then we could say that
instruction x can causally affect instruction y, when the processor that executes x
sends a message when or after executing x, and the message is delivered before or
during the execution of y at the other processor. It may also be the case that influ-
ence is passed on through intermediate processors or multiple instructions executed
by processors, before reaching the second processor.

We will formally define the intuition that one instruction can causally affect
another in terms of a relation called happens before, and that relates pairs of
instructions. The relation is defined for a given execution, i.e., we fix a sequence
of instructions executed by the algorithm and instances of global clock when the
instructions were executed, and define which pairs of instructions are related by the



13.5. Logical time, causality, and consistent state 615

happens before relation. The relation is introduced in two steps. If instructions x
and y are executed by the same processor, then we say that x happens before y if
and only if x is executed before y. When x and y are executed by two different
processors, then we say that x happens before y if and only if there is a chain of
instructions and messages

snd1

↘
rcv2 . . . snd2

↘
. . .

↘
rcvk−1 . . . sndk−1

↘
rcvk

for k ≥ 2, such that snd1 is either equal to x or is executed after x by the same
processor that executes x; rcvk is either equal to y or is executed before y by the
same processor that executes y; rcvh is executed before sndh by the same processor,
2 ≤ h < k; and sndh sends a message that is received by rcvh+1 , 1 ≤ h < k. Note
that no instruction happens before itself. We write x <

HB
y when x happens before

y. We omit the reference to the execution for which the relation is defined, because it
will be clear from the context which execution we mean. We say that two instructions
x and y are concurrent when neither x <

HB
y nor y <

HB
x. The question stands

how processors can determine if one instruction happens before another in a given
execution according to our definition. This question can be answered through a gen-
eralisation of the Logical-Clock algorithm presented earlier. This generalisation
is called vector clocks.

The Vector-Clocks algorithm allows processors to relate instructions, and
this relation is exactly the happens before relation. Each processor pi maintains
a vector Vi of n integers. The j-th coordinate of the vector is denoted by Vi[j].
The vector is initialised to the zero vector (0, . . . , 0). A vector is modified each
time processor executes an instruction, in a way similar to the way counter was
modified in the Logical-Clock algorithm. Specifically, when a processor pi ex-
ecutes any instruction other than sending or receiving a message, the coordi-
nate Vi[i] gets incremented by one, and other coordinates remain intact. When
a processor sends a message, it increments Vi[i] by one, and attaches the result-
ing vector Vi to the message. When a processor pj receives a message, then the
processor retrieves the vector V attached to the message, calculates coordinate-
wise maximum of the current vector Vj and the vector V , except for coordinate
Vj [j] that gets incremented by one, and assigns the result to the variable Vj .

Vj [j]← Vj [j] + 1
for all k ∈ [n] \ {j}

Vj [k]← max{Vj [k], V [k]}



616 13. Distributed Algorithms

We label each instruction x executed by processor pi with the value of the vector
Vi right after the instruction has been executed. The label is denoted by V T (x)
and is called vector timestamp of instruction x. Intuitively, V T (x) represents the
knowledge of processor pi about how many instructions each processor has executed
at the moment when pi has executed instruction x. This knowledge may be obsolete.

Vector timestamps can be used to order instructions that have been executed.
Specifically, given two instructions x and y, and their vector timestamps V T (x) and
V T (y), we write that x ≤

V T
y when the vector V T (x) is majorised by the vector

V T (y) i.e., for all k, the coordinate V T (x)[k] is at most the corresponding coordinate
V T (y)[k]. We write x <

V T
y when x ≤

V T
y but V T (x) 6= V T (y).

The next theorem explains that the Vector-Clocks algorithm indeed imple-
ments the happens before relation, because we can decide if two instructions happen
or not before each other, just by comparing the vector timestamps of the instructions.

Theorem 13.23 For any execution and any two instructions x and y, x <
HB

y if
and only if x <

V T
y.

Proof We first show the forward implication. Suppose that x <
HB

y. Hence x and
y are two different instructions. If the two instructions are executed on the same
processor, then x must be executed before y. Only finite number of instructions
have been executed by the time y has been executed. The Vector-Clock algorithm
increases a coordinate by one as it calculates vector timestamps of instructions from
x until y inclusive, and no coordinate is ever decreased. Thus x <

V T
y. If x and

y were executed on different processors, then by the definition of happens before
relation, there must be a finite chain of instructions and messages leading from x to
y. But then by the Vector-Clock algorithm, the value of a coordinate of vector
timestamp gets increased at each move, as we move along the chain, and so again
x <

V T
y.

Now we show the reverse implication. Suppose that it is not the case that x <
HB

y. We consider a few subcases always concluding that it is not that case that x <
V T

y.
First, it could be the case that x and y are the same instruction. But then obviously
vector clocks assigned to x and y are the same, and so it cannot be the case that
x <

V T
y. Let us, therefore, assume that x and y are different instructions. If they

are executed by the same processor, then x cannot be executed before y, and so x
is executed after y. Thus, by monotonicity of vector timestamps, y <

V T
x, and so

it is not the case that x <
V T

y. The final subcase is when x and y are executed by
two distinct processors pi and pj . Let us focus on the component i of vector clock
Vi of processor pi right after x was executed. Let its value be k. Recall that other
processors can only increase the value of their components i by adopting the value
sent by other processors. Hence, in order for the value of component i of processor pj

to be k or more at the moment y is executed, there must be a chain of instructions
and messages that passes a value at least k, originating at processor pi. This chain
starts at x or at an instruction executed by pi subsequent to x. But the existence of
such chain would imply that x happens before y, which we assumed was not the case.
So the component i of vector clock V T (y) is strictly smaller than the component i
of vector clock V T (x). Thus it cannot be the case that x <

V T
y.



13.5. Logical time, causality, and consistent state 617

This theorem tells us that we can decide if two distinct instructions x and y are
concurrent, by checking that it is not the case that V T (x) < V T (y) nor is it the
case that V T (x) > V T (y).

13.5.3. Consistent state

The happens before relation can be used to compute a global state of distributed
system, such that this state is in some sense consistent. Shortly, we will formally
define the notion of consistency. Each processor executes instructions. A cut K is
defined as a vector K = (k1, . . . , kn) of non-negative integers. Intuitively, the vector
K denotes the states of processors. Formally, ki denotes the number of instructions
that processor pi has executed. Not all cuts correspond to collections of states of
distributed processors that could be considered natural or consistent. For example, if
a processor pi has received a message from pj and we record the state of pi in the cut
by making ki appropriately large, but make kj so small that the cut contains the state
of the sender before the moment when the message was sent, then we could say that
such cut is not natural—there are instructions recorded in the cut that are causally
affected by instructions that are not recorded in the cut. Such cuts we consider not
consistent and so undesirable. Formally, a cut K = (k1, . . . , kn) is inconsistent when
there are processors pi and pj such that the instruction number ki of processor pi is
causally affected by an instruction subsequent to instruction number kj of processor
pj . So in an inconsistent cut there is a message that “crosses” the cut in a backward
direction. Any cut that is not inconsistent is called a consistent cut,

The Consistent-Cut algorithm uses vector timestamps to find a consistent
cut. We assume that each processor is given the same cut K = (k1, . . . , kn) as
an input. Then processors must determine a consistent cut K ′ that is majorised
by K. Each processor pi has an infinite table V Ti[0, 1, 2, . . .] of vectors. Processor
executes instructions, and stores vector timestamps in consecutive entries of the
table. Specifically, entry m of the table is the vector timestamp V Ti[m] of the m-
th instruction executed by the processor; we define V Ti[0] to be the zero vector.
Processor pi begins calculating a cut right after the moment when the processor
has executed instruction number ki. The processor determines the largest number
k′

i ≥ 0 that is at most ki, such that the vector V Ti[k′
i] is majorised by K. The vector

K ′ = (k′
1, . . . , k

′
n) that processors collectively find turns out to be a consistent cut.

Theorem 13.24 For any cut K, the cut K ′ computed by the Consistent-Cut
algorithm is a consistent cut majorised by K.

Proof First observe that there is no need to consider entries of V Ti further than ki.
Each of these entries is not majorised by K, because the i-th coordinate of any of
these vectors is strictly larger than ki. So we can indeed focus on searching among
the first ki entries of V Ti. Let k′

i ≥ 0 be the largest entry such that the vector V Ti[k′
i]

is majorised by the vector K. We know that such vector exists, because V Ti[0] is a
zero vector, and such vector is majorised by any cut K.

We argue that (k′
1, . . . , k

′
n) is a consistent cut by way of contradiction. Suppose

that the vector (k′
1, . . . , k

′
n) is an inconsistent cut. Then, by definition, there are

processors pi and pj such that there is an instruction x of processor pi subsequent to



618 13. Distributed Algorithms

instruction number k′
i, such that x happens before instruction number k′

j of processor
pj . Recall that k′

i is the furthest entry of V Ti majorised by K. So entry k′
i + 1 is not

majorised by K, and since all subsequent entries, including the one for instruction
x, can have only larger coordinates, the entries are not majorised by K either. But,
x happens before instruction number k′

j , so entry k′
j can only have lager coordinates

than respective coordinates of the entry corresponding to x, and so V Tj [k′
j ] cannot

be majorised by K either. This contradicts the assumption that V Tj [k′
j ] is majorised

by K. Therefore, (k′
1, . . . , k

′
n) must be a consistent cut.

There is a trivial algorithm for finding a consistent cut. The algorithm picks
K ′ = (0, . . . , 0). However, the Consistent-Cut algorithm is better in the sense
that the consistent cut found is maximal. That this is indeed true, is left as an
exercise.

There is an alternative way to find a consistent cut. The Consistent Cut algo-
rithm requires that we attach vector timestamps to messages and remember vector
timestamps for all instructions executed so far by the algorithm A which consistent
cut we want to compute. This may be too costly. The algorithm called Distributed-
Snapshot avoids this cost. In the algorithm, a processor initiates the calculation
of consistent cut by flooding the network with a special message that acts like a
sword that cuts the execution of algorithm A consistently. In order to prove that
the cut is indeed consistent, we require that messages are received by the recipient
in the order they were sent by the sender. Such ordering can be implemented using
sequence number.

In the Distributed-Snapshot algorithm, each processor pi has a variable
called counter that counts the number of instructions of algorithm A executed by the
processor so far. In addition the processor has a variable ki that will store the i-th co-
ordinate of the cut. This variable is initialised to ⊥. Since the variables counter only
count the instructions of algorithm A, the instructions of Distributed-Snapshot
algorithm do not affect the counter variables. In some sense the snapshot algorithm
runs in the “background”. Suppose that there is exactly one processor that can decide
to take a snapshot of the distributed system. Upon deciding, the processor “floods”
the network with a special message <Snapshot>. Specifically, the processor sends
the message to all its neighbours and assigns counter to ki. Whenever a proces-
sor pj receives the message and the variable kj is still ⊥, then the processor sends
<Snapshot> message to all its neighbours and assigns current to kj . The sending
of <Snapshot> messages and assignment are done by the processor without execut-
ing any instruction of A (we can think of Distributed-Snapshot algorithm as an
“interrupt”). The algorithm calculates a consistent cut.

Theorem 13.25 Let for any processors pi and pj, the messages sent from pi to
pj be received in the order they are sent. The Distributed-Snapshot algorithm
eventually finds a consistent cut (k1, . . . , kn). The algorithm sends O(e) messages,
where e is the number of edges in the graph.

Proof The fact that each variable ki is eventually different from ⊥ follows from our
model, because we assumed that instructions are eventually executed and messages
are eventually received, so the <Snapshot> messages will eventually reach all nodes.



13.6. Communication services 619

Suppose that (k1, . . . , kn) is not a consistent cut. Then there is a processor pj

such that instruction number kj + 1 or later sends a message <M> other than
<Snapshot>, and the message is received on or before a processor pi executes in-
struction number ki. So the message <M> must have been sent after the message
<Snapshot> was sent from pj to pi. But messages are received in the order they
are sent, so pi processes <Snapshot> before it processes <M>. But then message
<M> arrives after snapshot was taken at pi. This is a desired contradiction.

Exercises
13.5-1 Show that logical time preserves the happens before (<

HB
) relation. That

is, show that if for events x and y it is the case that x <
HB

y, then LT (x) < LT (y),
where LT (·) is the logical time of an event.
13.5-2 Show that any vector clock that captures concurrency between n processors
must have at least n coordinates.
13.5-3 Show that the vector K ′ calculated by the algorithm Consistent-Cut is
in fact a maximal consistent cut majorised by K. That is that there is no K ′′ that
majorises K ′ and is different from K ′, such that K ′′ is majorised by K.

13.6. Communication services

Among the fundamental problems in distributed systems where processors commu-
nicate by message passing are the tasks of spreading and gathering information.
Many distributed algorithms for communication networks can be constructed using
building blocks that implement various broadcast and multicast services. In this sec-
tion we present some basic communication services in the message-passing model.
Such services typically need to satisfy some quality of service requirements dealing
with ordering of messages and reliability. We first focus on broadcast services, then
we discuss more general multicast services.

13.6.1. Properties of broadcast services

In the broadcast problem, a selected processor pi, called a source or a sender, has
the message m, which must be delivered to all processors in the system (including
the source). The interface of the broadcast service is specified as follows:

bc-sendi(m, qos) : an event of processor pi that sends a message m to all processors.

bc-recvi(m, j, qos) : an event of processor pi that receives a message m sent by
processor pj .

In above definitions qos denotes the quality of service provided by the system.
We consider two kinds of quality service:

Ordering: how the order of received messages depends on the order of messages
sent by the source?

Reliability: how the set of received messages depends on the failures in the system?



620 13. Distributed Algorithms

The basic model of a message-passing distributed system normally does not guaran-
tee any ordering or reliability of messaging operations. In the basic model we only
assume that each pair of processors is connected by a link, and message delivery is
independent on each link — the order of received messages may not be related to
the order of the sent messages, and messages may be lost in the case of crashes of
senders or receivers.

We present some of the most useful requirements for ordering and reliability of
broadcast services. The main question we address is how to implement a stronger
service on top of the weaker service, starting with the basic system model.

Variants of ordering requirements. Applying the definition of happens before
to messages, we say that message m happens before message m′ if either m and m′

are sent by the same processor and m is sent before m′, or the bc-recv event for m
happens before the bc-send event for m′.

We identify four common broadcast services with respect to the message ordering
properties:

Basic Broadcast: no order of messages is guaranteed.

Single-Source FIFO (first-in-first-out): messages sent by one processor are re-
ceived by each processor in the same order as sent; more precisely, for all proces-
sors pi, pj and messages m,m′, if processor pi sends m before it sends m′ then
processor pj does not receive message m′ before message m.

Causal Order: messages are received in the same order as they happen; more pre-
cisely, for all messages m,m′ and every processor pi, if m happens before m′

then pi does not receive m′ before m.

Total Order: the same order of received messages is preserved in each processor;
more precisely, for all processors pi, pj and messages m,m′, if processor pi re-
ceives m before it receives m′ then processor pj does not receive message m′

before message m.

It is easy to see that Causal Order implies Single-Source FIFO requirements (since
the relation “happens before” for messages includes the order of messages sent by
one processor), and each of the given services trivially implies Basic Broadcast.
There are no additional relations between these four services. For example, there
are executions that satisfy Single-Source FIFO property, but not Causal Order.
Consider two processors p0 and p1. In the first event p0 broadcasts message m,
next processor p1 receives m, and then p1 broadcasts message m′. It follows that m
happens before m′. But if processor p0 receives m′ before m, which may happen,
then this execution violates Causal Order. Note that trivially Single-Source FIFO
requirement is preserved, since each processor broadcasts only one message.

We denote by bb the Basic Broadcast service, by ssf the Single-Source FIFO, by
co the Causal Order and by to the Total Order service.

Reliability requirements. In the model without failures we would like to
guarantee the following properties of broadcast services:



13.6. Communication services 621

Integrity: each message m received in event bc-recv has been sent in some bc-send
event.

No-Duplicates: each processor receives a message not more than once.

Liveness: each message sent is received by all processors.

In the model with failures we define the notion of reliable broadcast service, which
satisfies Integrity, No-Duplicates and two kinds of Liveness properties:

Nonfaulty Liveness: each message m sent by non-faulty processor pi must be
received by every non-faulty processor.

Faulty Liveness: each message sent by a faulty processor is either received by all
non-faulty processors or by none of them.

We denote by rbb the Reliable Basic Broadcast service, by rssf the Reliable
Single-Source FIFO, by rco the Reliable Causal Order, and by rto the Reliable
Total Order service.

13.6.2. Ordered broadcast services

We now describe implementations of algorithms for various broadcast services.

Implementing basic broadcast on top of asynchronous point-to-point
messaging. The bb service is implemented as follows. If event bc-sendi(m, bb)
occurs then processor pi sends message m via every link from pi to pj , where
0 ≤ i ≤ n − 1. If a message m comes to processor pj then it enables event bc-
recvj(m, i, bb).

To provide reliability we do the following. We build the reliable broadcast on
the top of basic broadcast service. When bc-sendi(m, rbb) occurs, processor pi en-
ables event bc-sendi(〈m, i〉, bb). If event bc-recvj(〈m, i〉, k, bb) occurs and message-
coordinate m appears for the first time then processor pj first enables event bc-
sendj(〈m, i〉, bb) (to inform other non-faulty processors about message m in case
when processor pi is faulty), and next enables event bc-recvj(m, i, rbb).

We prove that the above algorithm provides reliability for the basic broadcast
service. First observe that Integrity and No-Duplicates properties follow directly
from the fact that each processor pj enables bc-recvj(m, i, rbb) only if message-
coordinate m is received for the first time. Nonfaulty liveness is preserved since
links between non-faulty processors enables events bc-recvj(·, ·, bb) correctly. Faulty
Liveness is guaranteed by the fact that if there is a non-faulty processor pj which
receives message m from the faulty source pi, then before enabling bc-recvj(m, i, rbb)
processor pj sends message m using bc-sendj event. Since pj is non-faulty, each non-
faulty processor pk gets message m in some bc-recvk(〈m, i〉, ·, bb) event, and then
accepts it (enabling event bc-recvk(m, i, rbb)) during the first such event.

Implementing single-source FIFO on top of basic broadcast service.
Each processor pi has its own counter (timestamp), initialised to 0. If event bc-
sendi(m, ssf) occurs then processor pi sends message m with its current timestamp
attached, using bc-sendi(< m, timestamp >, bb). If an event bc-recvj(< m, t >,



622 13. Distributed Algorithms

i, bb) occurs then processor pj enables event bc-recvj(m, i, ssf) just after events bc-
recvj(m0, i, ssf), . . . , bc-recvj(mt−1, i, ssf) have been enabled, where m0, . . . ,mt−1

are the messages such that events bc-recvj(< m0, 0 >, i, bb),. . . ,bc-recvj(< mt−1, t−
1 >, i, bb) have been enabled.

Note that if we use reliable Basic Broadcast instead of Basic Broadcast as the
background service, the above implementation of Single-Source FIFO becomes Re-
liable Single-Source FIFO service. We leave the proof to the reader as an exercise.

Implementing causal order and total order on the top of single-source
FIFO service. We present an ordered broadcast algorithm which works in the
asynchronous message-passing system providing single-source FIFO broadcast ser-
vice. It uses the idea of timestamps, but in more advanced way than in the imple-
mentation of ssf. We denote by cto the service satisfying causal and total orders
requirements.

Each processor pi maintains in a local array T its own increasing counter (times-
tamp), and the estimated values of timestamps of other processors. Timestamps are
used to mark messages before sending—if pi is going to broadcast a message, it
increases its timestamp and uses it to tag this message (lines 11-13). During the
execution processor pi estimates values of timestamps of other processors in the
local vector T—if processor pi receives a message from processor pj with a tag t
(timestamp of pj), it puts t into T [j] (lines 23–32). Processor pi sets its current
timestamp to be the maximum of the estimated timestamps in the vector T plus
one (lines 24–26). After updating the timestamp processor sends an update message.
Processor accepts a message m with associated timestamp t from processor j if pair
(t, j) is the smallest among other received messages (line 42), and each processor
has at least as large a timestamp as known by processor pi (line 43). The details are
given in the code below.

Ordered-Broadcast

Code for any processor pi, 0 ≤ i ≤ n− 1
01 initialisation
02 T [j]← 0 for every 0 ≤ j ≤ n− 1

11 if bc-sendi(m, cto) occurs
12 then T [i]← T [i] + 1
13 enable bc-sendi(< m,T [i] >, ssf)

21 if bc-recvi(< m, t >, j, ssf) occurs
22 then add triple (m, t, j) to pending
23 T [j]← t
24 if t > T [i]
25 then T [i]← t
26 enable bc-sendi(< update, T [i] >, ssf)



13.6. Communication services 623

31 if bc-recvi(< update, t >, j, ssf) occurs
32 then T [j]← t

41 if
42 (m, t, j) is the pending triple with the smallest (t, j) and

t ≤ T [k] for every 0 ≤ k ≤ n− 1
43 then enable bc-recvi(m, j, cto)
44 remove triple (m, t, j) from pending

Ordered-Broadcast satisfies the causal order requirement. We leave the proof
to the reader as an exercise (in the latter part we show how to achieve stronger
reliable causal order service and provide the proof for that stronger case).

Theorem 13.26 Ordered-Broadcast satisfies the total order requirement.

Proof Integrity follows from the fact that each processor can enable event bc-
recvi(m, j, cto) only if the triple (m, t, j) is pending (lines 41–45), which may happen
after receiving a message m from processor j (lines 21–22). No-Duplicates property
is guaranteed by the fact that there is at most one pending triple containing message
m sent by processor j (lines 13 and 21–22).

Liveness follows from the fact that each pending triple satisfies conditions in
lines 42–43 in some moment of the execution. The proof of this fact is by induction
on the events in the execution — suppose to the contrary that (m, t, j) is the triple
with smallest (t, j) which does not satisfy conditions in lines 42–43 at any moment
of the execution. It follows that there is a moment from which triple (m, t, j) has
smallest (t, j) coordinates among pending triples in processor pi. Hence, starting
from this moment, it must violate condition in line 43 for some k. Note that k 6= i, j,
by updating rules in lines 23–25. It follows that processor pi never receives a message
from pk with timestamp greater than t − 1, which by updating rules in lines 24-26
means that processor pk never receives a message < m, t > from j, which contradicts
the liveness property of ssf broadcast service.

To prove Total Order property it is sufficient to prove that for every processor pi

and messages m,m′ sent by processors pk, pl with timestamps t, t′ respectively, each
of the triples (m, t, k), (m′, t′, l) are accepted according to the lexicographic order of
(t, k), (t′, l). There are two cases.

Case 1. Both triples are pending in processor pi at some moment of the execu-
tion. Then condition in line 42 guarantees acceptance in order of (t, k), (t′, l).

Case 2. Triple (m, t, k) (without loss of generality) is accepted by processor
pi before triple (m′, t′, l) is pending. If (t, k) < (t′, l) then still the acceptance is
according to the order of (t, k), (t′, l). Otherwise (t, k) > (t′, l), and by condition in
line 43 we get in particular that t ≤ T [l], and consequently t′ ≤ T [l]. This can not
happen because of the ssf requirement and the assumption that processor pi has
not yet received message < m′, t′ > from l via the ssf broadcast service.

Now we address reliable versions of Causal Order and Total Order services. A
Reliable Causal Order requirements can be implemented on the top of Reliable



624 13. Distributed Algorithms

Basic Broadcast service in asynchronous message-passing system with processor
crashes using the following algorithm. It uses the same data structures as pre-
vious Ordered-Bbroadcast. The main difference between reliable Causally-
Ordered-Broadcast and Ordered-Broadcast are as follows: instead of using
integer timestamps processors use vector timestamps T , and they do not estimate
timestamps of other processors, only compare in lexicographic order their own (vec-
tor) timestamps with received ones. The intuition behind vector timestamp of pro-
cessor pi is that it stores information how many messages have been sent by pi and
how many have been accepted by pi from every pk, where k 6= i.

In the course of the algorithm processor pi increases corresponding position i
in its vector timestamp T before sending a new message (line 12), and increases
jth position of its vector timestamp after accepting new message from processor pj

(line 38). After receiving a new message from processor pj together with its vector
timestamp T̂ , processor pi adds triple (m, T̂ , j) to pending and accepts this triple if
it is first not accepted message received from processor pj (condition in line 33) and
the number of accepted messages (from each processor pk 6= pi) by processor pj was
not bigger in the moment of sending m than it is now in processor pi (condition in
line 34). Detailed code of the algorithm follows.

Reliable-Causally-Ordered-Broadcast

Code for any processor pi, 0 ≤ i ≤ n− 1
01 initialisation
02 T [j]← 0 for every 0 ≤ j ≤ n− 1
03 pending list is empty

11 if bc-sendi(m, rco) occurs
12 then T [i]← T [i] + 1
13 enable bc-sendi(< m,T >, rbb)

21 if bc-recvi(< m, T̂ >, j, rbb) occurs
22 then add triple (m, T̂ , j) to pending

31 if (m, T̂ , j) is the pending triple, and
32 T̂ [j] = T [j] + 1, and
33 T̂ [k] ≤ T [k] for every k 6= i
34 then enable bc-recvi(m, j, rco)
35 remove triple (m, T̂ , j) from pending
36 T [j]← T [j] + 1

We argue that the algorithm Reliable-Causally-Ordered-Broadcast pro-
vides Reliable Causal Order broadcast service on the top of the system equipped
with the Reliable Basic Broadcast service. Integrity and No-Duplicate properties
are guaranteed by rbb broadcast service and facts that each message is added to
pending at most once and non-received message is never added to pending. Non-
faulty and Faulty Liveness can be proved by one induction on the execution, using



13.6. Communication services 625

facts that non-faulty processors have received all messages sent, which guarantees
that conditions in lines 33-34 are eventually satisfied. Causal Order requirement
holds since if message m happens before message m′ then each processor pi accepts
messages m,m′ according to the lexicographic order of T̂ , T̂ ′, and these vector-arrays
are comparable in this case. Details are left to the reader.

Note that Reliable Total Order broadcast service can not be implemented in the
general asynchronous setting with processor crashes, since it would solve consensus in
this model — first accepted message would determine the agreement value (against
the fact that consensus is not solvable in the general model).

13.6.3. Multicast services

Multicast services are similar to the broadcast services, except each multicast mes-
sage is destined for a specified subset of all processors.In the multicast service we
provide two types of events, where qos denotes a quality of service required:

mc-sendi(m,D, qos) : an event of processor pi which sends a message m together
with its id to all processors in a destination set D ⊆ {0, . . . , n− 1}.

mc-recvi(m, j, qos) : an event of processor pi which receives a message m sent by
processor pj .

Note that the event mc-recv is similar to bc-recv.
As in case of a broadcast service, we would like to provide useful ordering and

reliable properties of the multicast services. We can adapt ordering requirements
from the broadcast services. Basic Multicast does not require any ordering properties.
Single-Source FIFO requires that if one processor multicasts messages (possibly to
different destination sets), then the messages received in each processors (if any)
must be received in the same order as sent by the source. Definition of Causal
Order remains the same. Instead of Total Order, which is difficult to achieve since
destination sets may be different, we define another ordering property:

Sub-Total Order: orders of received messages in all processors may be extended to
the total order of messages; more precisely, for any messagesm,m′ and processors
pi, pj , if pi and pj receives both messages m,m′ then they are received in the
same order by pi and pj .

The reliability conditions for multicast are somewhat different from the condi-
tions for reliable broadcast.

Integrity: each message m received in event mc-recvi was sent in some mc-send
event with destination set containing processor pi.

No Duplicates: each processor receives a message not more than once.

Nonfaulty Liveness: each message m sent by non-faulty processor pi must be
received in every non-faulty processor in the destination set.

Faulty Liveness: each message sent by a faulty processor is either received by all
non-faulty processors in the destination set or by none of them.

One way of implementing ordered and reliable multicast services is to use the
corresponding broadcast services (for Sub-Total Order the corresponding broad-



626 13. Distributed Algorithms

cast requirement is Total Order). More precisely, if event mc-sendi(m,D, qos) oc-
curs processor pi enables event bc-sendi(< m,D >, qos). When an event bc-
recvj(< m,D >, i, qos) occurs, processor pj enables event mc-recvj(m, i, qos) if
pj ∈ D, otherwise it ignores this event. The proof that such method provides required
multicast quality of service is left as an exercise.

13.7. Rumor collection algorithms

Reliable multicast services can be used as building blocks in constructing algorithms
for more advanced communication problems. In this section we illustrate this method
for the problem of collecting rumors by synchronous processors prone to crashes.
(Since we consider only fair executions, we assume that at least one processor remains
operational to the end of the computation).

13.7.1. Rumor collection problem and requirements

The classic problem of collecting rumors, or gossip, is defined as follows:

At the beginning, each processor has its distinct piece of information,
called a rumor, the goal is to make every processor know all the rumors.

However in the model with processor crashes we need to re-define the gossip problem
to respect crash failures of processors. Both Integrity and No-Duplicates properties
are the same as in the reliable broadcast service, the only difference (which follows
from the specification of the gossip problem) is in Liveness requirements:

Non-faulty Liveness: the rumor of every non-faulty processor must be known by
each non-faulty processor.

Faulty Liveness: if processor pi has crashed during execution then each non-faulty
processor either knows the rumor of pi or knows that pi is crashed.

The efficiency of gossip algorithms is measured in terms of time and message
complexity. Time complexity measures number of (synchronous) steps from the be-
ginning to the termination. Message complexity measures the total number of point-
to-point messages sent (more precisely, if a processor sends a message to three other
processors in one synchronous step, it contributes three to the message complexity).

The following simple algorithm completes gossip in just one synchronous step:
each processor broadcasts its rumor to all processors. The algorithm is correct, be-
cause each message received contains a rumor, and a message not received means
the failure of its sender. A drawback of such a solution is that a quadratic number
of messages could be sent, which is quite inefficient.

We would like to perform gossip not only quickly, but also with fewer point-to-
point messages. There is a natural trade-off between time and communication. Note
that in the system without processor crashes such a trade-off may be achieved, e.g.,
sending messages over the (almost) complete binary tree, and then time complexity is
O(lgn), while the message complexity is O(n lg n). Hence by slightly increasing time
complexity we may achieve almost linear improvement in message complexity. How-



13.7. Rumor collection algorithms 627

ever, if the underlying communication network is prone to failures of components,
then irregular failure patterns disturb a flow of information and make gossiping last
longer. The question we address in this section is what is the best trade-off between
time and message complexity in the model with processor crashes?

13.7.2. Efficient gossip algorithms

In this part we describe the family of gossip algorithms, among which we can find
some efficient ones. They are all based on the same generic code, and their efficiency
depends on the quality of two data structures put in the generic algorithm. Our goal
is to prove that we may find some of those data structures that obtained algorithm
is always correct, and efficient if the number of crashes in the execution is at most
f , where f ≤ n− 1 is a parameter.

We start with description of these structures: communication graph and com-
munication schedules.

Communication graph. A graph G = (V,E) consists of a set V of vertices
and a set E of edges. Graphs in this paper are always simple, which means that
edges are pairs of vertices, with no direction associated with them. Graphs are used
to describe communication patterns. The set V of vertices of a graph consists of
the processors of the underlying distributed system. Edges in E determine the pairs
of processors that communicate directly by exchanging messages, but this does not
necessarily mean an existence of a physical link between them. We abstract form
the communication mechanism: messages that are exchanged between two vertices
connected by an edge in E may need to be routed and traverse a possibly long path
in the underlying physical communication network. Graph topologies we use, for a
given number n of processors, vary depending on an upper bound f on the number
of crashes we would like to tolerate in an execution. A graph that matters, at a given
point in an execution, is the one induced by the processors that have not crashed
till this step of the execution.

To obtain an efficient gossip algorithm, communication graphs should satisfy
some suitable properties, for example the following property R(n, f):

Definition 13.27 Let f < n be a pair of positive integers. Graph G is said to
satisfy property R(n, f), if G has n vertices, and if, for each subgraph R ⊆ G of size
at least n− f , there is a subgraph P (R) of G, such that the following hold:

1 : P (R) ⊆ R
2 : |P (R)| = |R|/7
3 : The diameter of P (R) is at most 2 + 30 lnn
4 : If R1 ⊆ R2, then P (R1) ⊆ P (R2)

In the above definition, clause (1.) requires the existence of subgraphs P (R)
whose vertices has the potential of (informally) inheriting the properties of the ver-
tices of R, clause (2.) requires the subgraphs to be sufficiently large, linear in size,
clause (3.) requires the existence of paths in the subgraphs that can be used for
communication of at most logarithmic length, and clause (4.) imposes monotonicity



628 13. Distributed Algorithms

on the required subgraphs.
Observe that graph P (R) is connected, even if R is not, since its diameter is

finite. The following result shows that graphs satisfying property R(n, f) can be
constructed, and that their degree is not too large.

Theorem 13.28 For each f < n, there exists a graph G(n, f) satisfying prop-

erty R(n, f). The maximum degree ∆ of graph G(n, f) is O
(

n
n−f

)1.837
.

Communication schedules. A local permutation is a permutation of all the
integers in the range [0 . . n−1]. We assume that prior the computation there is given
set Π of n local permutations. Each processor pi has such a permutation πi from
Π. For simplicity we assume that πi(0) = pi. Local permutation is used to collect
rumor in systematic way according to the order given by this permutation, while
communication graphs are rather used to exchange already collected rumors within
large and compact non-faulty graph component.

Generic algorithm. We start with specifying a goal that gossiping algorithms
need to achieve. We say that processor pi has heard about processor pj if either
pi knows the original input rumor of pj or p knows that pj has already failed. We
may reformulate correctness of a gossiping algorithm in terms of hearing about other
processors: algorithm is correct if Integrity and No-Duplicates properties are satisfied
and if each processor has hard about any other processor by the termination of the
algorithm.

The code of a gossiping algorithm includes objects that depend on the number n
of processors in the system, and also on the bound f < n on the number of failures
which are “efficiently tolerated” (if the number of failures is at most f then message
complexity of design algorithm is small). The additional parameter is a termination
threshold τ which influences time complexity of the specific implementation of the
generic gossip scheme. Our goal is to construct the generic gossip algorithm which
is correct for any additional parameters f, τ and any communication graph and set
of schedules, while efficient for some values f, τ and structures G(n, f) and Π.

Each processor starts gossiping as a collector. Collectors seek actively informa-
tion about rumors of the other processors, by sending direct inquiries to some of
them. A collector becomes a disseminator after it has heard about all the proces-
sors. Processors with this status disseminate their knowledge by sending local views
to selected other processors.
Local views. Each processor pi starts with knowing only its ID and its input
information rumori. To store incoming data, processor pi maintains the following
arrays:

Rumorsi, Activei and Pendingi,

each of size n. All these arrays are initialised to store the value nil. For an array Xi

of processor pi, we denote its jth entry by Xi[j] - intuitively this entry contains some
information about processor pj . The array Rumor is used to store all the rumors that
a processor knows. At the start, processor pi sets Rumorsi[i] to its own input rumori.
Each time processor pi learns some rumorj , it immediately sets Rumorsi[j] to this



13.7. Rumor collection algorithms 629

value. The array Active is used to store a set of all the processors that the owner
of the array knows as crashed. Once processor pi learns that some processor pj has
failed, it immediately sets Activei[j] to failed. Notice that processor pi has heard
about processor pj , if one among the values Rumorsi[j] and Activei[j] is not equal
to nil.

The purpose of using the array Pending is to facilitate dissemination. Each
time processor pi learns that some other processor pj is fully informed, that is,
it is either a disseminator itself or has been notified by a disseminator, then it
marks this information in Pendingi[j]. Processor pi uses the array Pendingi to send
dissemination messages in a systematic way, by scanning Pendingi to find those
processors that possibly still have not heard about some processor.

The following is a useful terminology about the current contents of the arrays
Active and Pending. Processor pj is said to be active according to pi, if pi has not
yet received any information implying that pj crashed, which is the same as having
nil in Activei[j]. Processor pj is said to need to be notified by pi if it is active
according to pi and Pendingi[j] is equal to nil.
Phases. An execution of a gossiping algorithm starts with the processors initialising
all the local objects. Processor pi initialises its list Rumorsi with nil at all the
locations, except for the ith one, which is set equal to rumori. The remaining part of
execution is structured as a loop, in which phases are iterated. Each phase consists
of three parts: receiving messages, local computation, and multicasting messages.
Phases are of two kinds: regular phase and ending phase. During regular phases
processor: receives messages, updates local knowledge, checks its status, sends its
knowledge to neighbours in communication graphs as well as inquiries about rumors
and replies about its own rumor. During ending phases processor: receives messages,
sends inquiries to all processors from which it has not heard yet, and replies about its
own rumor. The regular phases are performed τ times; the number τ is a termination
threshold. After this, the ending phase is performed four times. This defines a generic
gossiping algorithm.

Generic-Gossip

Code for any processor pi, 0 ≤ i ≤ n− 1
01 initialisation
02 processor pi becomes a collector
03 initialisation of arrays Rumorsi, Activei and Pendingi

11 repeat τ times
12 perform regular phase

20 repeat 4 times
21 perform ending phase

Now we describe communication and kinds of messages used in regular and
ending phases.
Graph and range messages used during regular phases. A processor pi may
send a message to its neighbour in the graph G(n, f), provided that it is is still active



630 13. Distributed Algorithms

according to pi. Such a message is called a graph one. Sending these messages only is
not sufficient to complete gossiping, because the communication graph may become
disconnected as a result of node crashes. Hence other messages are also sent, to cover
all the processors in a systematic way. In this kind of communication processor pi

considers the processors as ordered by its local permutation πi, that is, in the order
πi(0), πi(1), . . . , πi(n−1). Some of additional messages sent in this process are called
range ones.

During regular phase processors send the following kind of range messages: in-
quiring, reply and notifying messages. A collector pi sends an inquiring message
to the first processor about which pi has not heard yet. Each recipient of such a
message sends back a range message that is called a reply one.

Disseminators send range messages also to subsets of processors. Such messages
are called notifying ones. The target processor selected by disseminator pi is the
first one that still needs to be notified by pi. Notifying messages need not to be
replied to: a sender already knows the rumors of all the processors, that are active
according to it, and the purpose of the message is to disseminate this knowledge.

Regular-Phase

Code for any processor pi, 0 ≤ i ≤ n− 1
01 receive messages

11 perform local computation
12 update the local arrays
13 if pi is a collector, that has already heard about all the processors
14 then pi becomes a disseminator
15 compute set of destination processors: for each processor pj

16 if pj is active according to pi and pj is a neighbour of pi in graph G(n, t)
17 then add pj to destination set for a graph message
18 if pi is a collector and pj is the first processor

about which pi has not heard yet
19 then send an inquiring message to pj

20 if pi is a disseminator and pj is the first processor
that needs to be notified by pi

21 then send a notifying message to pj

22 if pj is a collector, from which an inquiring message was received
in the receiving step of this phase

23 then send a reply message to pj

30 send graph/inquiring/notifying/reply messages to corresponding destination sets

Last-resort messages used during ending phases. Messages sent during the
ending phases are called last-resort ones. These messages are categorised into in-
quiring, replying, and notifying, similarly as the corresponding range ones, which is
because they serve a similar purpose. Collectors that have not heard about some
processors yet send direct inquiries to all of these processors simultaneously. Such
messages are called inquiring ones. They are replied to by the non-faulty recipients



13.7. Rumor collection algorithms 631

in the next step, by way of sending reply messages. This phase converts all the col-
lectors into disseminators. In the next phase, each disseminator sends a message to
all the processors that need to be notified by it. Such messages are called notifying
ones.

The number of graph messages, sent by a processor at a step of the regular phase,
is at most as large as the maximum node degree in the communication graph. The
number of range messages, sent by a processor in a step of the regular phase, is at
most as large as the number of inquiries received plus a constant - hence the global
number of point-to-point range messages sent by all processors during regular phases
may be accounted as a constant times the number of inquiries sent (which is one
per processor per phase). In contrast to that, there is no a priori upper bound on
the number of messages sent during the ending phase. By choosing the termination
threshold τ to be large enough, one may control how many rumors still needs to be
collected during the ending phases.
Updating local view. A message sent by a processor carries its current local
knowledge. More precisely, a message sent by processor pi brings the following:
the ID pi, the arrays Rumorsi, Activei, and Pendingi, and a label to notify the
recipient about the character of the message. A label is selected from the fol-
lowing: graph_message, inquiry_from_collector, notification_from_disseminator,
this_is_a_reply, their meaning is self-explanatory. A processor pi scans a newly
received message from some processor pj to learn about rumors, failures, and the
current status of other processors. It copies each rumor from the received copy of
Rumorsj into Rumorsi, unless it is already there. It sets Activei[k] to failed, if this
value is at Activej [k]. It sets Pendingi[k] to done, if this value is at Pendingj [k]. It
sets Pendingi[j] to done, if pj is a disseminator and the received message is a range
one. If pi is itself a disseminator, then it sets Pendingi[j] to done immediately after
sending a range message to pj . If a processor pi expects a message to come from
processor pj , for instance a graph one from a neighbour in the communication graph,
or a reply one, and the message does not arrive, then pi knows that processor pj has
failed, and it immediately sets Activei[j] to failed.

Ending-Phase

Code for any processor pi, 0 ≤ i ≤ n− 1
01 receive messages

11 perform local computation
12 update the local arrays
13 if pi is a collector, that has already heard about all the processors
14 then pi becomes a disseminator
15 compute set of destination processors: for each processor pj

16 if pi is a collector and it has not heard about pj yet
17 then send an inquiring message to pj

18 if pi is a disseminator and pj needs to be notified by pi

19 then send a notifying message to pj



632 13. Distributed Algorithms

20 if an inquiring message was received from pj

in the receiving step of this phase
21 then send a reply message to pj

30 send inquiring/notifying/reply messages to corresponding destination sets

Correctness. Ending phases guarantee correctness, as is stated in the next fact.

Lemma 13.29 Generic-Gossip is correct for every communication graph
G(n, f) and set of schedules Π.

Proof Integrity and No-Duplicates properties follow directly from the code and the
multicast service in synchronous message-passing system. It remains to prove that
each processor has heard about all processors. Consider the step just before the first
ending phases. If a processor pi has not heard about some other processor pj yet,
then it sends a last-resort message to pj in the first ending phase. It is replied to
in the second ending phase, unless processor pj has crashed already. In any case, in
the third ending phase, processor pi either learns the input rumor of pj or it gets to
know that pj has failed. The fourth ending phase provides an opportunity to receive
notifying messages, by all the processors that such messages were sent to by pi.

The choice of communication graph G(n, f), set of schedules Π and termination
threshold τ influences however time and message complexities of the specific imple-
mentation of Generic Gossip Algorithm. First consider the case when G(n, f) is a
communication graph satisfying property R(n, f) from Definition 13.27, Π contains
n random permutations, and τ = c log2 n for sufficiently large positive constant c.
Using Theorem 13.28 we get the following result.

Theorem 13.30 For every n and f ≤ c · n, for some constant 0 ≤ c < 1, there
is a graph G(n, f) such that the implementation of the generic gossip scheme with
G(n, f) as a communication graph and a set Π of random permutations completes
gossip in expected time O(log2 n) and with expected message complexity O(n log2 n),
if the number of crashes is at most f .

Consider a small modification of Generic Gossip scheme: during regular phase ev-
ery processor pi sends an inquiring message to the first ∆ (instead of one) processors
according to permutation πi, where ∆ is a maximum degree of used communication
graph G(n, f). Note that it does not influence the asymptotic message complexity,
since besides inquiring messages in every regular phase each processor pi sends ∆
graph messages.

Theorem 13.31 For every n there are parameters f ≤ n−1 and τ = O(log2 n) and
there is a graph G(n, f) such that the implementation of the modified Generic Gossip
scheme with G(n, f) as a communication graph and a set Π of random permutations
completes gossip in expected time O(log2 n) and with expected message complexity
O(n1.838), for any number of crashes.



13.7. Rumor collection algorithms 633

Since in the above theorem set Π is selected prior the computation, we obtain
the following existential deterministic result.

Theorem 13.32 For every n there are parameters f ≤ n − 1 and τ = O(lgn)
and there are graph G(n, f) and set of schedules Π such that the implementation
of the modified Generic Gossip scheme with G(n, f) as a communication graph and
schedules Π completes gossip in time O(lgn) and with message complexity O(n1.838),
for any number of crashes.

Exercises
13.7-1 Design executions showing that there is no relation between Causal Order
and Total Order and between Single-Source FIFO and Total Order broadcast ser-
vices. For simplicity consider two processors and two messages sent.
13.7-2 Does broadcast service satisfying Single-Source FIFO and Causal Order re-
quirements satisfy a Total Order property? Does broadcast service satisfying Single-
Source FIFO and Total Order requirements satisfy a Causal Order property? If yes
provide a proof, if not show a counterexample.
13.7-3 Show that using reliable Basic Broadcast instead of Basic Broadcast in the
implementation of Single-Source FIFO service, then we obtain reliable Single-Source
FIFO broadcast.
13.7-4 Prove that the Ordered Broadcast algorithm implements Causal Order ser-
vice on a top of Single-Source FIFO one.
13.7-5 What is the total number of point-to-point messages sent in the algorithm
Ordered-Broadcast in case of k broadcasts?
13.7-6 Estimate the total number of point-to-point messages sent during the exe-
cution of Reliable-Causally-Ordered-Broadcast, if it performs k broadcast
and there are f < n processor crashes during the execution.
13.7-7 Show an execution of the algorithm Reliable-Causally-Ordered-
Broadcast which violates Total Order requirement.
13.7-8 Write a code of the implementation of reliable Sub-Total Order multicast
service.
13.7-9 Show that the described method of implementing multicast services on the
top of corresponding broadcast services is correct.
13.7-10 Show that the random graph G(n, f) - in which each node selects indepen-
dently at random n

n−f log n edges from itself to other processors - satisfies property
R(n, f) from Definition 13.27 and has degree O( n

n−f lgn) with probability at least
1−O(1/n).
13.7-11 Leader election problem is as follows: all non-faulty processors must elect
one non-faulty processor in the same synchronous step. Show that leader election
can not be solved faster than gossip problem in synchronous message-passing system
with processors crashes.



634 13. Distributed Algorithms

13.8. Mutual exclusion in shared memory

We now describe the second main model used to describe distributed systems, the
shared memory model. To illustrate algorithmic issues in this model we discuss
solutions for the mutual exclusion problem.

13.8.1. Shared memory systems

The shared memory is modeled in terms of a collection of shared variables, commonly
referred to as registers. We assume the system contains n processors, p0, . . . , pn−1,
and m registers R0, . . . , Rm−1. Each processor is modeled as a state machine. Each
register has a type, which specifies:

1. the values it can hold,

2. the operations that can be performed on it,

3. the value (if any) to be returned by each operation, and

4. the new register value resulting from each operation.

Each register can have an initial value.
For example, an integer valued read/write register R can take on all integer

values and has operations read(R,v) and write(R,v). The read operation returns the
value v of the last preceding write, leaving R unchanged. The write(R,v) operation
has an integer parameter v, returns no value and changes R’s value to v. A config-
uration is a vector C = (q0, . . . , qn−1, r0, . . . , rm−1), where qi is a state of pi and rj

is a value of register Rj . The events are computation steps at the processors where
the following happens atomically (indivisibly):

1. pi chooses a shared variable to access with a specific operation, based on pi’s
current state,

2. the specified operation is performed on the shared variable,

3. pi’s state changes based on its transition function, based on its current state
and the value returned by the shared memory operation performed.

A finite sequence of configurations and events that begins with an initial con-
figuration is called an execution. In the asynchronous shared memory system, an
infinite execution is admissible if it has an infinite number of computation steps.

13.8.2. The mutual exclusion problem

In this problem a group of processors need to access a shared resource that cannot
be used simultaneously by more than a single processor. The solution needs to have
the following two properties. (1) Mutual exclusion: Each processor needs to execute a
code segment called a critical section so that at any given time at most one processor



13.8. Mutual exclusion in shared memory 635

is executing it (i.e., is in the critical section). (2) Deadlock freedom: If one or more
processors attempt to enter the critical section, then one of them eventually succeeds
as long as no processor stays in the critical section forever. These two properties
do not provide any individual guarantees to any processor. A stronger property
is (3) No lockout: A processor that wishes to enter the critical section eventually
succeeds as long as no processor stays in the critical section forever. Original solutions
to this problem relied on special synchronisation support such as semaphores and
monitors. We will present some of the distributed solutions using only ordinary shared
variables.

We assume the program of a processor is partitioned into the following sections:

• Entry / Try: the code executed in preparation for entering the critical section.

• Critical: the code to be protected from concurrent execution.

• Exit: the code executed when leaving the critical section.

• Remainder: the rest of the code.

A processor cycles through these sections in the order: remainder, entry, critical
and exit. A processor that wants to enter the critical section first executes the entry
section. After that, if successful, it enters the critical section. The processor releases
the critical section by executing the exit section and returning to the remainder
section. We assume that a processor may transition any number of times from the
remainder to the entry section. Moreover, variables, both shared and local, accessed
in the entry and exit section are not accessed in the critical and remainder section.
Finally, no processor stays in the critical section forever. An algorithm for a shared
memory system solves the mutual exclusion problem with no deadlock (or no lockout)
if the following hold:

• Mutual Exclusion: In every configuration of every execution at most one pro-
cessor is in the critical section.

• No deadlock: In every admissible execution, if some processor is in the entry
section in a configuration, then there is a later configuration in which some
processor is in the critical section.

• No lockout: In every admissible execution, if some processor is in the entry
section in a configuration, then there is a later configuration in which that same
processor is in the critical section.

In the context of mutual exclusion, an execution is admissible if for every pro-
cessor pi, pi either takes an infinite number of steps or pi ends in the remainder
section. Moreover, no processor is ever stuck in the exit section (unobstructed exit
condition).

13.8.3. Mutual exclusion using powerful primitives

A single bit suffices to guarantee mutual exclusion with no deadlock if a powerful
test&set register is used. A test&set variable V is a binary variable which supports
two atomic operations, test&set and reset, defined as follows:

test&set(V : memory address) returns binary value:



636 13. Distributed Algorithms

temp← V
V ← 1
return (temp)

reset(V : memory address):
V ← 0

The test&set operation atomically reads and updates the variable. The reset
operation is merely a write. There is a simple mutual exclusion algorithm with no
deadlock, which uses one test&set register.

Mutual exclusion using one test&set register

Initially V equals 0

〈Entry〉:
1 wait until test&set(V ) = 0
〈Critical Section〉
〈Exit〉:

2 reset(V )
〈Remainder〉

Assume that the initial value of V is 0. In the entry section, processor pi repeat-
edly tests V until it returns 0. The last such test will assign 1 to V , causing any
following test by other processors to return 1, prohibiting any other processor from
entering the critical section. In the exit section pi resets V to 0; another processor
waiting in the entry section can now enter the critical section.

Theorem 13.33 The algorithm using one test &set register provides mutual exclu-
sion without deadlock.

13.8.4. Mutual exclusion using read/write registers

If a powerful primitive such as test&set is not available, then mutual exclusion must
be implemented using only read/write operations.

The bakery algorithm Lamport’s bakery algorithm for mutual exclusion is
an early, classical example of such an algorithm that uses only shared read/write
registers. The algorithm guarantees mutual exclusion and no lockout for n processors
using O(n) registers (but the registers may need to store integer values that cannot
be bounded ahead of time).

Processors wishing to enter the critical section behave like customers in a bakery.
They all get a number and the one with the smallest number in hand is the next
one to be “served”. Any processor not standing in line has number 0, which is not
counted as the smallest number.

The algorithm uses the following shared data structures: Number is an array of n
integers, holding in its i-th entry the current number of processor pi. Choosing is an
array of n boolean values such that Choosing[i] is true while pi is in the process of ob-



13.8. Mutual exclusion in shared memory 637

taining its number. Any processor pi that wants to enter the critical section attempts
to choose a number greater than any number of any other processor and writes it
into Number[i]. To do so, processors read the array Number and pick the greatest
number read +1 as their own number. Since however several processors might be
reading the array at the same time, symmetry is broken by choosing (Number[i], i)
as i’s ticket. An ordering on tickets is defined using the lexicographical ordering on
pairs. After choosing its ticket, pi waits until its ticket is minimal: For all other pj ,
pi waits until pj is not in the process of choosing a number and then compares their
tickets. If pj ’s ticket is smaller, pi waits until pj executes the critical section and
leaves it.

Bakery

Code for processor pi, 0 ≤ i ≤ n− 1.
Initially Number[i] = 0 and
Choosing[i] = false, for 0 ≤ i ≤ n− 1

〈Entry〉:
1 Choosing[i]← true
2 Number[i]← max(Number [0], . . . ,Number [n− 1]) + 1
3 Choosing[i]← false
4 for j ← 1 to n (6= i) do
5 wait until Choosing[j] = false
6 wait until Number[j] = 0 or (Number[j],j > (Number[i],i) 〈Critical Section〉
〈Exit〉:

7 Number[i]← 0
〈Remainder〉

We leave the proofs of the following theorems as Exercises 13.8-2 and 13.8-3.

Theorem 13.34 Bakery guarantees mutual exclusion.

Theorem 13.35 Bakery guarantees no lockout.

A bounded mutual exclusion algorithm for n processors Lamports Bak-
ery algorithm requires the use of unbounded values. We next present an algorithm
that removes this requirement. In this algorithm, first presented by Peterson and
Fischer, processors compete pairwise using a two-processor algorithm in a tourna-
ment tree arrangement. All pairwise competitions are arranged in a complete binary
tree. Each processor is assigned to a specific leaf of the tree. At each level, the winner
in a given node is allowed to proceed to the next higher level, where it will compete
with the winner moving up from the other child of this node (if such a winner exists).
The processor that finally wins the competition at the root node is allowed to enter
the critical section.

Let k = dlog ne − 1. Consider a complete binary tree with 2k leaves and a total
of 2k+1 − 1 nodes. The nodes of the tree are numbered inductively in the following



638 13. Distributed Algorithms

manner: The root is numbered 1; the left child of node numbered m is numbered 2m
and the right child is numbered 2m+ 1. Hence the leaves of the tree are numbered
2k, 2k + 1,. . . ,2k+1 − 1.

With each node m, three binary shared variables are associated: Wantm[0],
Wantm[1], and Prioritym. All variables have an initial value of 0. The algorithm
is recursive. The code of the algorithm consists of a procedure Node(m, side) which
is executed when a processor accesses node m, while assuming the role of processor
side. Each node has a critical section. It includes the entry section at all the nodes
on the path from the nodes parent to the root, the original critical section and the
exit code on all nodes from the root to the nodes parent. To begin, processor pi

executes the code of node (2k + bi/2c, i mod 2).

Tournament-Tree

procedure Node(m: integer; side: 0 . . 1)
1 Wantm[side]← 0
2 wait until (Wantm[1− side] = 0 or Prioritym = side)
3 Wantm[side]← 1
4 if Prioritym = 1−side
5 then if Wantm[1− side] = 1)
6 then goto line 1
7 else wait until Wantm[1− side] = 0
8 if v = 1
9 then 〈Critical Section〉

10 else Node(bm/2c,m mod 2)
11 Prioritym = 1− side
12 Wantm[side]← 0

end procedure

This algorithm uses bounded values and as the next theorem shows, satisfies the
mutual exclusion, no lockout properties:

Theorem 13.36 The tournament tree algorithm guarantees mutual exclusion.

Proof Consider any execution. We begin at the nodes closest to the leaves of the
tree. A processor enters the critical section of this node if it reaches line 9 (it moves
up to the next node). Assume we are at a node m that connects to the leaves where
pi and pj start. Assume that two processors are in the critical section at some point.
It follows from the code that then Wantm[0] = Wantm[1] = 1 at this point. Assume,
without loss of generality that pi’s last write to Wantm[0] before entering the critical
section follows pj ’s last write to Wantm[1] before entering the critical section. Note
that pi can enter the critical section (of m) either through line 5 or line 6. In both
cases pi reads Wantm[1] = 0. However pi’s read of Wantm[1], follows pj ’s write to
Wantm[0], which by assumption follows pj ’s write to Wantm[1]. Hence pi’s read of
Wantm[1] should return 1, a contradiction.

The claim follows by induction on the levels of the tree.



13.8. Mutual exclusion in shared memory 639

Theorem 13.37 The tournament tree algorithm guarantees no lockout.

Proof Consider any admissible execution. Assume that some processor pi is starved.
Hence from some point on pi is forever in the entry section. We now show that pi

cannot be stuck forever in the entry section of a node m. The claim then follows by
induction.

Case 1: Suppose pj executes line 10 setting Prioritym to 0. Then Prioritym

equals 0 forever after. Thus pi passes the test in line 2 and skips line 5. Hence pi

must be waiting in line 6, waiting for Wantm[1] to be 0, which never occurs. Thus pj

is always executing between lines 3 and 11. But since pj does not stay in the critical
section forever, this would mean that pj is stuck in the entry section forever which
is impossible since pj will execute line 5 and reset Wantm[1] to 0.

Case 2: Suppose pj never executes line 10 at some later point. Hence pj must
be waiting in line 6 or be in the remainder section. If it is in the entry section, pj

passes the test in line 2 (Prioritym is 1). Hence pi does not reach line 6. Therefore pi

waits in line 2 with Wantm[0] = 0. Hence pj passes the test in line 6. So pj cannot
be forever in the entry section. If pj is forever in the remainder section Wantm[1]
equals 0 henceforth. So pi cannot be stuck at line 2, 5 or 6, a contradiction.

The claim follows by induction on the levels of the tree.

Lower bound on the number of read/write registers So far, all deadlock-
free mutual exclusion algorithms presented require the use of at least n shared vari-
ables, where n is the number of processors. Since it was possible to develop an
algorithm that uses only bounded values, the question arises whether there is a way
of reducing the number of shared variables used. Burns and Lynch first showed that
any deadlock-free mutual exclusion algorithm using only shared read/write registers
must use at least n shared variables, regardless of their size. The proof of this theo-
rem allows the variables to be multi-writer variables. This means that each processor
is allowed to write to each variable. Note that if the variables are single writer, that
the theorem is obvious since each processor needs to write something to a (sepa-
rate) variable before entering the critical section. Otherwise a processor could enter
the critical section without any other processor knowing, allowing another processor
to enter the critical section concurrently, a contradiction to the mutual exclusion
property.

The proof by Burns and Lynch introduces a new proof technique, a covering
argument: Given any no deadlock mutual exclusion algorithm A, it shows that there
is some reachable configuration of A in which each of the n processors is about to
write to a distinct shared variable. This is called a covering of the shared variables.
The existence of such a configuration can be shown using induction and it exploits
the fact that any processor before entering the critical section, must write to at
least one shared variable. The proof constructs a covering of all shared variables. A
processor then enters the critical section. Immediately thereafter the covering writes
are released so that no processor can detect the processor in the critical section.
Another processor now concurrently enters the critical section, a contradiction.

Theorem 13.38 Any no deadlock mutual exclusion algorithm using only read/write



640 13. Distributed Algorithms

registers must use at least n shared variables.

13.8.5. Lamport’s fast mutual exclusion algorithm

In all mutual exclusion algorithms presented so far, the number of steps taken by
processors before entering the critical section depends on n, the number of processors
even in the absence of contention (where multiple processors attempt to concurrently
enter the critical section), when a single processor is the only processor in the entry
section. In most real systems however, the expected contention is usually much
smaller than n.

A mutual exclusion algorithm is said to be fast if a processor enters the critical
section within a constant number of steps when it is the only processor trying to
enter the critical section. Note that a fast algorithm requires the use of multi-writer,
multi-reader shared variables. If only single writer variables are used, a processor
would have to read at least n variables.

Such a fast mutual exclusion algorithm is presented by Lamport.

Fast-Mutual-Exclusion

Code for processor pi, 0 ≤ i ≤ n− 1. Initially Fast-Lock and Slow-Lock are 0, and
Want[i] is false for all i, 0 ≤ i ≤ n− 1

〈 Entry 〉:
1 Want[i]← true
2 Fast-Lock← i
3 if Slow-Lock 6= 0
4 then Want[i]← false
5 wait until Slow-Lock =0
6 goto 1
7 Slow-Lock← i
8 if Fast-Lock 6= i
9 then Want[i]← false

10 for all j, wait until Want[j] = false
11 if Slow-Lock 6= i
12 then wait until Slow-Lock = 0
13 goto 1
〈Critical Section〉
〈Exit〉:

14 Slow-Lock← 0
15 Want[i]← false
〈Remainder〉

Lamport’s algorithm is based on the correct combination of two mechanisms, one
for allowing fast entry when no contention is detected, and the other for providing
deadlock freedom in the case of contention. Two variables, Fast-Lock and Slow-



13.8. Mutual exclusion in shared memory 641

Lock are used for controlling access when there is no contention. In addition, each
processor pi has a boolean variable Want[i] whose value is true if pi is interested in
entering the critical section and false otherwise. A processor can enter the critical
section by either finding Fast-Lock = i - in this case it enters the critical section on
the fast path - or by finding Slow-Lock = i in which case it enters the critical section
along the slow path.

Consider the case where no processor is in the critical section or in the entry
section. In this case, Slow-Lock is 0 and all Want entries are 0. Once pi now enters
the entry section, it sets Want[i] to 1 and Fast-Lock to i. Then it checks Slow-Lock
which is 0. then it checks Fast-Lock again and since no other processor is in the entry
section it reads i and enters the critical section along the fast path with three writes
and two reads.

If Fast-Lock 6= i then pi waits until all Want flags are reset. After some processor
executes the for loop in line 10, the value of Slow-Lock remains unchanged until
some processor leaving the critical section resets it. Hence at most one processor pj

may find Slow-Lock= j and this processor enters the critical section along the slow
path. Note that the Lamport’s Fast Mutual Exclusion algorithm does not guarantee
lockout freedom.

Theorem 13.39 Algorithm Fast-Mutual-Exclusion guarantees mutual exclu-
sion without deadlock.

Exercises
13.8-1 An algorithm solves the 2-mutual exclusion problem if at any time at most
two processors are in the critical section. Present an algorithm for solving the 2-
mutual exclusion problem using test & set registers.
13.8-2 Prove that bakery algorithm satisfies the mutual exclusion property.
13.8-3 Prove that bakery algorithm provides no lockout.
13.8-4 Isolate a bounded mutual exclusion algorithm with no lockout for two proces-
sors from the tournament tree algorithm. Show that your algorithm has the mutual
exclusion property. Show that it has the no lockout property.
13.8-5 Prove that algorithm Fast-Mutual-Exclusion has the mutual exclusion
property.
13.8-6 Prove that algorithm Fast-Mutual-Exclusion has the no deadlock prop-
erty.
13.8-7 Show that algorithm Fast-Mutual-Exclusion does not satisfy the no
lockout property, i.e. construct an execution in which a processor is locked out of
the critical section.
13.8-8 Construct an execution of algorithm Fast-Mutual-Exclusion in which
two processors are in the entry section and both read at least Ω(n) variables before
entering the critical section.



642 13. Distributed Algorithms

Problems

13-1 Number of messages of the algorithm Flood
Prove that the algorithm Flood sends O(e) messages in any execution, given a
graph G with n vertices and e edges. What is the exact number of messages as a
function of the number of vertices and edges in the graph?
13-2 Leader election in a ring
Assume that messages can only be sent in CW direction, and design an asynchronous
algorithm for leader election on a ring that has O(n lg n) message complexity. Hint.
Let processors work in phases. Each processor begins in the active mode with
a value equal to the identifier of the processor, and under certain conditions can
enter the relay mode, where it just relays messages. An active processor waits
for messages from two active processors, and then inspects the values sent by the
processors, and decides whether to become the leader, remain active and adopt one
of the values, or start relaying. Determine how the decisions should be made so as
to ensure that if there are three or more active processors, then at least one will
remain active; and no matter what values active processors have in a phase, at most
half of them will still be active in the next phase.
13-3 Validity condition in asynchronous systems
Show that the validity condition is equivalent to requiring that every nonfaulty
processor decision be the input of some processor.
13-4 Single source consensus
An alternative version of the consensus problem requires that the input value of one
distinguished processor (the general) be distributed to all the other processors (the
lieutenants). This problem is also called single source consensus problem. The
conditions that need to be satisfied are:

• Termination: Every nonfaulty lieutenant must eventually decide,

• Agreement: All the nonfaulty lieutenants must have the same decision,

• Validity: If the general is nonfaulty, then the common decision value is the
general’s input.

So if the general is faulty, then the nonfaulty processors need not decide on the
general’s input, but they must still agree with each other. Consider the synchronous
message passing system with Byzantine faults. Show how to transform a solution to
the consensus problem (in Subsection 13.4.5) into a solution to the general’s problem
and vice versa. What are the message and round overheads of your transformation?
13-5 Bank transactions
Imagine that there are n banks that are interconnected. Each bank i starts with an
amount of money mi. Banks do not remember the initial amount of money. Banks
keep on transferring money among themselves by sending messages of type <10>
that represent the value of a transfer. At some point of time a bank decides to
find the total amount of money in the system. Design an algorithm for calculating
m1 + · · ·+mn that does not stop monetary transactions.



Notes for Chapter 13 643

Chapter Notes

The definition of the distributed systems presented in the chapter are derived from
the book by Attiya and Welch [17]. The model of distributed computation, for mes-
sage passing systems without failures, was proposed by Attiya, Dwork, Lynch and
Stockmeyer [16].

Modeling the processors in the distributed systems in terms of automata follows
the paper of Lynch and Fisher [170].

The concept of the execution sequences is based on the papers of Fischer, Gries,
Lamport and Owicki [170, 195, 196].

The definition of the asynchronous systems reflects the presentation in the papers
of Awerbuch [18], and Peterson and Fischer [?].

The algorithm Spanning-Tree-Broadcast is presented after the paper due
to Segall [224].

The leader election algorithm Bully was proposed by Hector Garcia-Molina in
1982 [92]. The asymptotic optimality of this algorithm was proved by Burns [?].

The two generals problem is presented as in the book of Gray [?].
The consensus problem was first studied by Lamport, Pease, and Shostak [154,

202]. They proved that the Byzantine consensus problem is unsolvable if n ≤ 3f
[202].

One of the basic results in the theory of asynchronous systems is that the con-
sensus problem is not solvable even if we have reliable communication systems, and
one single faulty processor which fails by crashing. This result was first shown in a
breakthrough paper by Fischer, Lynch and Paterson [80].

The algorithm Consensus-with-Crash-Failures is based on the paper of
Dolev and Strong [65].

Berman and Garay [29] proposed an algorithm for the solution of the Byzantine
consensus problem for the case n > 4f . Their algorithm needs 2(f + 1) rounds.

The bakery algorithm [152] for mutual exclusion using only shared read/write
registers to solve mutual exclusion is due to Lamport [152]. This algorithm requires
arbitrary large values. This requirement is removed by Peterson and Fischer [?]. After
this Burns and Lynch proved that any deadlock-free mutual exclusion algorithm
using only shared read/write registers must use at least n shared variables, regardless
of their size [38].

The algorithm Fast-Mutual-Exclusion is presented by Lamport [153].
The source of the problems 13-3, 13-4, 13-5 is the book of Attiya and Welch [17].
Important textbooks on distributed algorithms include the monumental volume

by Nancy Lynch [169] published in 1997, the book published by Gerard Tel [246]
in 2000, and the book by Attiya and Welch [17]. Also of interest is the monograph
by Claudia Leopold [162] published in 2001, and the book by Nicola Santoro [223],
which appeared in 2006.

A recent book on the distributed systems is due to A. D. Kshemkalyani and M.
[149].

Finally, several important open problems in distributed computing can be found
in a recent paper of Aspnes et al. [14].



14. Network Simulation

In this chapter we discuss methods and techniques to simulate the operations of
computer network systems and network applications in real-world environment. Sim-
ulation is one of the most widely used techniques in network design and management
to predict the performance of a network system or network application before the
network is physically built or the application is rolled out.

14.1. Types of simulation

A network system is a set of network elements, such as routers, switches, links,
users, and applications working together to achieve some tasks. The scope of a
simulation study may only be a system that is part of another system as in the case
of subnetworks. The state of a network system is the set of relevant variables and
parameters that describe the system at a certain time that comprise the scope of the
study. For instance, if we are interested in the utilisation of a link, we want to know
only the number of bits transmitted via the link in a second and the total capacity
of the link, rather than the amount of buffers available for the ports in the switches
connected by the link.

Instead of building a physical model of a network, we build a mathematical
model representing the behaviour and the logical and quantitative relations between
network elements. By changing the relations between network elements, we can anal-
yse the model without constructing the network physically, assuming that the model
behaves similarly to the real system, i.e., it is a valid model. For instance, we can
calculate the utilisation of a link analytically, using the formula U = D/T , where
D is the amount of data sent at a certain time and T is the capacity of the link in
bits per second. This is a very simple model that is very rare in real world prob-
lems. Unfortunately, the majority of real world problems are too complex to answer
questions using simple mathematical equations. In highly complex cases simulation
technique is more appropriate.

Simulation models can be classified in many ways. The most common classifica-
tions are as follows:

• Static and dynamic simulation models: A static model characterises a system
independently of time. A dynamic model represents a system that changes over
time.



14.2. The need for communications network modelling and simulation 645

• Stochastic and deterministic models: If a model represents a system that includes
random elements, it is called a stochastic model. Otherwise it is deterministic.
Queueing systems, the underlying systems in network models, contain random
components, such as arrival time of packets in a queue, service time of packet
queues, output of a switch port, etc.

• Discrete and continuous models: A continuous model represents a system with
state variables changing continuously over time. Examples are differential equa-
tions that define the relationships for the extent of change of some state variables
according to the change of time. A discrete model characterises a system where
the state variables change instantaneously at discrete points in time. At these
discrete points some event or events may occur, changing the state of the system.
For instance, the arrival of a packet at a router at a certain time is an event that
changes the state of the port buffer in the router.

In our discussion, we assume dynamic, stochastic, and discrete network models.
We refer to these models as discrete-event simulation models.

Due to the complex nature of computer communications, network models tend
to be complex as well. The development of special computer programs for a certain
simulation problem is a possibility, but it may be very time consuming and inefficient.
Recently, the application of simulation and modelling packages has become more
customary, saving coding time and allowing the modeller to concentrate on the
modelling problem in hand instead of the programming details. At first glance, the
use of such network simulation and modelling packages, as COMNET, OPNET, etc.,
creates the risk that the modeller has to rely on modelling techniques and hidden
procedures that may be proprietary and may not be available to the public. In the
following sections we will discuss the simulation methodology on how to overcome
the fear of this risk by using validation procedures to make sure that the real network
system will perform the same way as it has been predicted by the simulation model.

14.2. The need for communications network
modelling and simulation

In a world of more and more data, computers, storage systems, and networks, the
design and management of systems are becoming an increasingly challenging task. As
networks become faster, larger, and more complex, traditional static calculations are
no longer reasonable approaches for validating the implementation of a new network
design and multimillion dollar investments in new network technologies. Complex
static calculations and spreadsheets are not appropriate tools any more due to the
stochastic nature of network traffic and the complexity of the overall system.

Organisations depend more and more on new network technologies and network
applications to support their critical business needs. As a result, poor network per-
formance may have serious impacts on the successful operation of their businesses.
In order to evaluate the various alternative solutions for a certain design goal, net-
work designers increasingly rely on methods that help them evaluate several design
proposals before the final decision is made and the actual systems is built. A widely



646 14. Network Simulation

accepted method is performance prediction through simulation. A simulation model
can be used by a network designer to analyse design alternatives and study the be-
haviour of a new system or the modifications to an existing system without physically
building it. A simulation model can also represent the network topology and tasks
performed in a network in order to obtain statistical results about the network’s
performance.

It is important to understand the difference between simulation and emulation.
The purpose of emulation is to mimic the original network and reproduce every event
that happens in every network element and application. In simulation, the goal is to
generate statistical results that represent the behaviour of certain network elements
and their functions. In discrete event simulation, we want to observe events as they
happen over time, and collect performance measures to draw conclusions on the
performance of the network, such as link utilisation, response times, routers’ buffer
sizes, etc.

Simulation of large networks with many network elements can result in a large
model that is difficult to analyse due to the large amount of statistics generated
during simulation. Therefore, it is recommended to model only those parts of the
network which are significant regarding the statistics we are going to obtain from the
simulation. It is crucial to incorporate only those details that are significant for the
objectives of the simulation. Network designers typically set the following objectives:

• Performance modelling: Obtain statistics for various performance parameters of
links, routers, switches, buffers, response time, etc.

• Failure analysis: Analyse the impacts of network element failures.
• Network design: Compare statistics about alternative network designs to evalu-

ate the requirements of alternative design proposals.
• Network resource planning: Measure the impact of changes on the network’s

performance, such as addition of new users, new applications, or new network
elements.

Depending on the objectives, the same network might need different simulation
models. For instance, if the modeller wants to determine the overhead of a new service
of a protocol on the communication links, the model’s links need to represent only
the traffic generated by the new service. In another case, when the modeller wants
to analyse the response time of an application under maximum offered traffic load,
the model can ignore the traffic corresponding to the new service of the protocol
analysed in the previous model.

Another important question is the granularity of the model, i.e., the level of
details at which a network element is modelled. For instance, we need to decide
whether we want to model the internal architecture of a router or we want to model
an entire packet switched network. In the former case, we need to specify the internal
components of a router, the number and speed of processors, types of buses, number
of ports, amount of port buffers, and the interactions between the router’s compo-
nents. But if the objective is to analyse the application level end-to-end response
time in the entire packet switched network, we would specify the types of applica-
tions and protocols, the topology of the network and link capacities, rather then
the internal details of the routers. Although the low level operations of the routers



14.3. Types of communications networks, modelling constructs 647

affect the overall end-to-end response time, modelling the detailed operations do not
significantly contribute to the simulation results when looking at an entire network.
Modelling the details of the routers’ internal operations in the order of magnitude
of nanoseconds does not contribute significantly to the end-to-end delay analysis in
the higher order of magnitude of microseconds or seconds. The additional accuracy
gained from higher model granularity is far outweighed by the model’s complexity
and the time and effort required by the inclusion of the routers’ details.

Simplification can also be made by applying statistical functions. For instance,
modelling cell errors in an ATM network does not have to be explicitly modelled
by a communication link by changing a bit in the cell’s header, generating a wrong
CRC at the receiver. Rather, a statistical function can be used to decide when a cell
has been damaged or lost. The details of a cell do not have to be specified in order
to model cell errors.

These examples demonstrate that the goal of network simulation is to reproduce
the functionality of a network pertinent to a certain analysis, not to emulate it.

14.3. Types of communications networks, modelling
constructs

A communications network consists of network elements, nodes (senders and re-
ceivers) and connecting communications media. Among several criteria for classifying
networks we use two: transmission technology and scale. The scale or distance also
determines the technique used in a network: wireline or wireless. The connection of
two or more networks is called internetwork. The most widely known internetwork
is the Internet.

According to transmission technology we can broadly classify networks as broad-
cast and point-to-point networks:

• In broadcast networks a single communication channel is shared by every node.
Nodes communicate by sending packets or frames received by all the other nodes.
The address field of the frame specifies the recipient or recipients of the frame.
Only the addressed recipient(s) will process the frame. Broadcast technologies
also allow the addressing of a frame to all nodes by dedicating it as a broadcast
frame processed by every node in the network. It is also possible to address a
frame to be sent to all or any members of only a group of nodes. The operations
are called multicasting and any casting, respectively.

• Point-to-point networks consist of many connections between pairs of nodes. A
packet or frame sent from a source to a destination may have to first traverse
intermediate nodes where they are stored and forwarded until it reaches the final
destination.

Regarding our other classification criterion, the scale of the network, we can
classify networks by their physical area coverage:

• Personal Area Networks (PANs) support a person’s needs. For instance, a wire-
less network of a keyboard, a mouse, and a personal digital assistant (PDA) can
be considered as a PAN.



648 14. Network Simulation

• Local area networks (LANs), typically owned by a person, department, a smaller
organisation at home, on a single floor or in a building, cover a limited geographic
area. LANs connect workstations, servers, and shared resources. LANs can be
further classified based on the transmission technology, speed measured in bits
per second, and topology. Transmissions technologies range from traditional 10
Mbps LANs to today’s 10 Gbps LANs. In terms of topology, there are bus and
ring networks and switched LANs.

• Metropolitan area networks (MANs) span a larger area, such as a city or a
suburb. A widely deployed MAN is the cable television network distributing not
just one-way TV programs but two-way Internet services as well in the unused
portion of the transmission spectrum. Other MAN technologies are the Fiber
Distributed Data Interface (FDDI) and IEEE wireless technologies as discussed
below.

• Wide area networks (WANs) cover a large geographical area, a state, a country
or even a continent. A WAN consists of hosts (clients and servers) connected
by subnets owned by communications service providers. The subnets deliver
messages from the source host to the destination host. A subnet may contain
several transmission lines, each one connecting a pair of specialised hardware
devices called routers. Transmission lines are made of various media; copper wire,
optical fiber, wireless links, etc. When a message is to be sent to a destination
host or hosts, the sending host divides the message into smaller chunks, called
packets. When a packet arrives on an incoming transmission line, the router
stores the packet before it selects an outgoing line and forwards the packet via
that line. The selection of the outgoing line is based on a routing algorithm. The
packets are delivered to the destination host(s) one-by-one where the packets
are reassembled into the original message.

Wireless networks can be categorised as short-range radio networks, wireless
LANs, and wireless WANs.

• In short range radio networks, for instance Bluetooth, various components, digi-
tal cameras, Global Positioning System (GPS) devices, headsets, computers,
scanners, monitors, and keyboards are connected via short-range radio connec-
tions within 20–30 feet. The components are in primary-secondary relation. The
main system unit, the primary component, controls the operations of the sec-
ondary components. The primary component determines what addresses the
secondary devices use, when and on what frequencies they can transmit.

• A wireless LAN consists of computers and access points equipped with a radio
modem and an antenna for sending and receiving. Computers communicate with
each other directly in a peer-to-peer configuration or via the access point that
connects the computers to other networks. Typical coverage area is around 300
feet. The wireless LAN protocols are specified under the family of IEEE 802.11
standards for a range of speed from 11 Mbps to 108 Mbps.

• Wireless WANs comprise of low bandwidth and high bandwidth networks. The
low bandwidth radio networks used for cellular telephones have evolved through
three generations. The first generation was designed only for voice communi-
cations utilising analog signalling. The second generation also transmitted only



14.4. Performance targets for simulation purposes 649

voice but based on digital transmission technology. The current third generation
is digital and transmits both voice and data at most 2Mbps. Fourth and fur-
ther generation cellular systems are under development. High-bandwidth WANs
provides high-speed access from homes and businesses bypassing the telephone
systems. The emerging IEEE 802.16 standard delivers services to buildings, not
mobile stations, as the IEEE 802.11 standards, and operates in much higher 10-
66 GHz frequency range. The distance between buildings can be several miles.

• Wired or wireless home networking is getting more and more popular connecting
various devices together that can be accessible via the Internet. Home networks
may consists of PCs, laptops, PDAs, TVs, DVDs, camcorders, MP3 players,
microwaves, refrigerator, A/C, lights, alarms, utility meters, etc. Many homes
are already equipped with high-speed Internet access (cable modem, DSL, etc.)
through which people can download music and movies on demand.

The various components and types of communications networks correspond to the
modelling constructs and the different steps of building a simulation model. Typi-
cally, a network topology is built first, followed by adding traffic sources, destinations,
workload, and setting the parameters for network operation. The simulation control
parameters determine the experiment and the running of the simulation. Prior to
starting a simulation various statistics reports can be activated for analysis during
or after the simulation. Statistical distributions are available to represent specific
parameterisations of built-in analytic distributions. As the model is developed, the
modeller creates new model libraries that can be reused in other models as well.

14.4. Performance targets for simulation purposes

In this section we discuss a non-exhausting list of network attributes that have a
profound effect on the perceived network performance and are usual targets of net-
work modelling. These attributes are the goals of the statistical analysis, design, and
optimisation of computer networks. Fundamentally, network models are constructed
by defining the statistical distribution of the arrival and service rate in a queueing
system that subsequently determines these attributes.

• Link capacity
Channel or link capacity is the number of messages per unit time handled by
a link. It is usually measured in bits per second. One of the most famous of all
results of information theory is Shannon’s channel coding theorem: “For a given
channel there exists a code that will permit the error-free transmission across
the channel at a rate R, provided R ≤ C, where C is the channel capacity.”
Equality is achieved only when the Signal-to-noise Ratio (SNR) is infinite. See
more details in textbooks on information and coding theory.

• Bandwidth
Bandwidth is the difference between the highest and lowest frequencies avail-
able for network signals. Bandwidth is also a loose term used to describe the
throughput capacity of a specific link or protocol measured in Kilobits, Megabits,
Gigabits, Terabits, etc., in a second.



650 14. Network Simulation

• Response time
The response time is the time it takes a network system to react to a cer-
tain source’s input. The response time includes the transmission time to the
destination, the processing time at both the source and destination and at the
intermediate network elements along the path, and the transmission time back
to the source. Average response time is an important measure of network perfor-
mance. For users, the lower the response time the better. Response time statistics
(mean and variation) should be stationary; it should not dependent on the time
of the day. Note that low average response time does not guarantee that there
are no extremely long response times due to network congestions.

• Latency
Delay or latency is the amount of time it takes for a unit of data to be
transmitted across a network link. Latency and bandwidth are the two factors
that determine the speed of a link. It includes the propagation delay (the time
taken for the electrical or optical signals to travel the distance between two
points) and processing time. For instance, the latency, or round-time delay be-
tween a ground station of a satellite communication link and back to another
ground station (over 34,000 km each way) is approximately 270 milliseconds.
The round-time delay between the east and west coast of the US is around 100
ms, and transglobal is about 125 ms. The end-to-end delay of a data path be-
tween source and destination spanning multiple segments is affected not only by
the media’ signal speed, but also by the network devices, routers, switches along
the route that buffer, process, route, switch, and encapsulate the data payload.
Erroneous packets and cells, signal loss, accidental device and link failures and
overloads can also contribute to the overall network delay. Bad cells and packets
force retransmission from the initial source. These packets are typically dropped
with the expectation of a later retransmission resulting in slowdowns that cause
packets to overflow buffers.

• Routing protocols
The route is the path that network traffic takes from the source to the destina-
tion. The path in a LAN is not a critical issue because there is only one path
from any source to any destination. When the network connects several enter-
prises and consists of several paths, routers, and links, finding the best route
or routes becomes critical. A route may traverse through multiple links with
different capacities, latencies, and reliabilities. Routes are established by routing
protocols. The objective of the routing protocols is to find an optimal or near
optimal route between source and destination avoiding congestions.

• Traffic engineering
A new breed of routing techniques is being developed using the concept of traffic
engineering. Traffic engineering implies the use of mechanisms to avoid conges-
tion by allocating network resources optimally, rather than continually increasing
network capacities. Traffic engineering is accomplished by mapping traffic flows
to the physical network topology along predetermined paths. The optimal allo-
cation of the forwarding capacities of routers and switches are the main target of
traffic engineering. It provides the ability to diverge traffic flows away from the



14.4. Performance targets for simulation purposes 651

optimal path calculated by the traditional routing protocols into a less congested
area of the network. The purpose of traffic engineering is to balance the offered
load on the links, routers, and switches in a way that none of these network
elements is over or under utilised.

• Protocol overhead
Protocol messages and application data are embedded inside the protocol data
units, such as frames, packets, and cells. A main interest of network designers
is the overhead of protocols. Protocol overhead concerns the question: How fast
can we really transmit using a given communication path and protocol stack,
i.e., how much bandwidth is left for applications? Most protocols also introduce
additional overhead associated with in-band protocol management functions.
Keep-alive packets, network alerts, control and monitoring messages, poll, select,
and various signalling messages are transmitted along with the data streams.

• Burstiness
The most dangerous cause of network congestion is the burstiness of the net-
work traffic. Recent results make evident that high-speed Internet traffic is more
bursty and its variability cannot be predicted as assumed previously. It has been
shown that network traffic has similar statistical properties on many time scales.
Traffic that is bursty on many or all time scales can be described statistically
using the notion of long-range dependency. Long-range dependent traffic has ob-
servable bursts on all time scales. One of the consequences is that combining
the various flows of data, as it happens in the Internet, does not result in the
smoothing of traffic. Measurements of local and wide area network traffic have
proven that the widely used Markovian process models cannot be applied for
today’s network traffic. If the traffic were Markovian process, the traffic’s burst
length would be smoothed by averaging over a long time scale, contradicting
the observations of today’s traffic characteristics. The harmful consequences of
bursty traffic will be analysed in a case study in Section 14.9.

• Frame size
Network designers are usually worried about large frames because they can fill
up routers’ buffers much faster than smaller frames resulting in lost frames and
retransmissions. Although the processing delay for larger frames is the same as
for smaller ones, i.e., larger packets are seemingly more efficient, routers and
switches can process internal queues with smaller packets faster. Larger frames
are also target for fragmentation by dividing them into smaller units to fit in
the Maximum Transmission Unit (MTU). MTU is a parameter that determines
the largest datagram than can be transmitted by an IP interface. On the other
hand, smaller frames may create more collision in an Ethernet network or have
lower utilisation on a WAN link.

• Dropped packet rate
Packets may be dropped by the data link and network layers of the OSI ar-
chitecture. The transport layer maintains buffers for unacknowledged packets
and retransmits them to establish an error-free connection between sender and
receiver. The rate of dropping packets at the lower layers determines the rate
of retransmitting packets at the transport layer. Routers and switches may also



652 14. Network Simulation

drop packets due to the lack of internal buffers. Buffers fill up quicker when WAN
links get congested which causes timeouts and retransmissions at the transport
layer. The TCP’s slow start algorithm tries to avoid congestions by continually
estimating the round-trip propagation time and adjusting the transmission rate
according to the measured variations in the roundtrip time.

14.5. Traffic characterisation

Communications networks transmit data with random properties. Measurements of
network attributes are statistical samples taken from random processes, for instance,
response time, link utilisation, interarrival time of messages, etc. In this section we
review basic statistics that are important in network modelling and performance pre-
diction. After a family of statistical distributions has been selected that corresponds
to a network attribute under analysis, the next step is to estimate the parameters
of the distribution. In many cases the sample average or mean and the sample vari-
ance are used to estimate the parameters of a hypothesised distribution. Advanced
software tools include the computations for these estimates. The mean is interpreted
as the most likely value about which the samples cluster. The following equations
can be used when discrete or continues raw data available. Let X1,X2, . . . ,Xn are
samples of size n. The mean of the sample is defined by

X =
∑n

i=1 Xi

n
.

The sample variance S2 is defined by

S2 =
∑n

i=1 Xi
2 − nX2

n− 1
.

If the data are discrete and grouped in a frequency distribution, the equations above
are modified as

X =

k∑
j=1

fjXj

n
,

S2 =

k∑
j=1

fjXj
2 − nX2

n− 1
,

where k is the number of different values of X and fj is the frequency of the value
Xj of X. The standard deviation S is the square root of the variance S2.

The variance and standard deviation show the deviation of the samples around
the mean value. Small deviation from the mean demonstrates a strong central ten-
dency of the samples. Large deviation reveals little central tendency and shows large
statistical randomness.

Numerical estimates of the distribution parameters are required to reduce the
family of distributions to a single distribution and test the corresponding hypothesis.



14.5. Traffic characterisation 653

distribution parameter(s) estimator(s)
Poisson α α̂ = X

exponential λ λ̂ = 1/X

uniform b b̂ = ((n + 1)/n)[max(X)] (unbiased)
normal µ, σ2 µ̂ = X

σ̂2 = S2 (unbiased)

Figure 14.1 Estimation of the parameters of the most common distributions.

Figure 14.1 describes estimators for the most common distributions occurring in net-
work modelling. If α denotes a parameter, the estimator is denoted by α̂. Except for
an adjustment to remove bias in the estimates of σ2 for the normal distribution and
in the estimate of b of the uniform distribution, these estimators are the maximum
likelihood estimators based on the sample data.

Probability distributions describe the random variations that occur in the real
world. Although we call the variations random, randomness has different degrees; the
different distributions correspond to how the variations occur. Therefore, different
distributions are used for different simulation purposes. Probability distributions are
represented by probability density functions. Probability density functions show how
likely a certain value is. Cumulative density functions give the probability of selecting
a number at or below a certain value. For example, if the cumulative density function
value at 1 was equal to 0.85, then 85% of the time, selecting from this distribution
would give a number less than 1. The value of a cumulative density function at a
point is the area under the corresponding probability density curve to the left of
that value. Since the total area under the probability density function curve is equal
to one, cumulative density functions converge to one as we move toward the positive
direction. In most of the modelling cases, the modeller does not need to know all
details to build a simulation model successfully. He or she has only to know which
distribution is the most appropriate one for the case.

Below, we summarise the most common statistical distributions. We use the
simulation modelling tool COMNET to depict the respective probability density
functions (PDF). From the practical point of view, a PDF can be approximated by
a histogram with all the frequencies of occurrences converted into probabilities.

• Normal distribution
It typically models the distribution of a compound process that can be described
as the sum of a number of component processes. For instance, the time to trans-
fer a file (response time) sent over the network is the sum of times required to
send the individual blocks making up the file. In modelling tools the normal
distribution function takes two positive, real numbers: mean and standard devi-
ation. It returns a positive, real number. The stream parameter x specifies which
random number stream will be used to provide the sample. It is also often used
to model message sizes. For example, a message could be described with mean
size of 20,000 bytes and a standard deviation of 5,000 bytes.



654 14. Network Simulation

0.00 1.00 2.00 3.00 4.000.50 1.50 2.50 3.50
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

std. dev. = 0.2

std. dev. = 0.4

std. dev. = 0.6

x

Normal(1, standard deviation, x)

Figure 14.2 An example normal distribution.

Figure 14.3 An example Poisson distribution.

• Poisson distribution
It models the number of independent events occurring in a certain time interval;
for instance, the number of packets of a packet flow received in a second or a
minute by a destination. In modelling tools, the Poisson distribution function
takes one positive, real number, the mean. The ”number" parameter in Figure
14.3 specifies which random number stream will be used to provide the sample.
This distribution, when provided with a time interval, returns an integer which is
often used to represent the number of arrivals likely to occur in that time interval.
Note that in simulation, it is more useful to have this information expressed as
the time interval between successive arrivals. For this purpose, the exponential
distribution is used.



14.5. Traffic characterisation 655

0

0.2

0.4

0.6

0.8

1.0

0.1

0.3

0.5

0.7

0.9

0 2 41 3 50.5 1.5 2.5 3.5 4.5
x

Exponential(main, stream)

Exponential(1, x)

Figure 14.4 An example exponential distribution.

0
0

0.1

0.2

0.05

0.15

0.25

1 2 3 4 5 6 7 8

Uniform(3, 7, x)

x

Figure 14.5 An example uniform distribution.

• Exponential distribution
It models the time between independent events, such as the interarrival time
between packets sent by the source of a packet flow. Note, that the number
of events is Poisson, if the time between events is exponentially distributed. In
modelling tools, the Exponential distribution function 14.4 takes one positive,
real number, the mean and the stream parameter x that specifies which random
number stream will be used to provide the sample. Other application areas in-
clude: Time between data base transactions, time between keystrokes, file access,
emails, name lookup request, HTTP lookup, X-window protocol exchange, etc.

• Uniform distribution
Uniform distribution models (see Figure 14.5) data that range over an interval
of values, each of which is equally likely. The distribution is completely deter-
mined by the smallest possible value min and the largest possible value max.
For discrete data, there is a related discrete uniform distribution as well. Packet
lengths are often modelled by uniform distribution. In modelling tools the Uni-
form distribution function takes three positive, real numbers: min, max, and
stream. The stream parameter x specifies which random number stream will be
used to provide the sample.



656 14. Network Simulation

0 2 4 6 8 10 12 14

1.4

1.6

1.2

1

0.8

0.6

0.4

0.2

0

Pareto Distribution
(offset=0)

location=1, shape=1.5

location=1, shape=0.95

location=5, shape=0.95

P
ar

et
o 

(lo
ca

tio
n,

 s
ha

pe
, o

ffs
et

, x
)

x

Pareto(location, shape, offset, stream)

Figure 14.6 An example Pareto distribution.

• Pareto distribution
The Pareto distribution (see 14.6) is a power-law type distribution for modelling
bursty sources (not long-range dependent traffic). The distribution is heavily
peaked but the tail falls off slowly. It takes three parameters: location, shape,
and offset. The location specifies where the distribution starts, the shape specifies
how quickly the tail falls off, and the offset shifts the distribution.

A common use of probability distribution functions is to define various network
parameters. A typical network parameter for modelling purposes is the time between
successive instances of messages when multiple messages are created. The specified
time is from the start of one message to the start of the next message. As it is
discussed above, the most frequent distribution to use for interarrival times is the
exponential distribution (see Figure 14.7).

The parameters entered for the exponential distribution are the mean value and



14.5. Traffic characterisation 657

Figure 14.7 Exponential distribution of interarrival time with 10 sec on the average.

the random stream number to use. Network traffic is often described as a Poisson
process. This generally means that the number of messages in successive time in-
tervals has been observed and the distribution of the number of observations in an
interval is Poisson distributed. In modelling tools, the number of messages per unit
of time is not entered. Rather, the interarrival time between messages is required.
It may be proven that if the number of messages per unit time interval is Poisson-
distributed, then the interarrival time between successive messages is exponentially
distributed. The interarrival distribution in the following dialog box for a message
source in COMNET is defined by Exp (10.0). It means that the time from the start
of one message to the start of the next message follows an exponential distribution
with 10 seconds on the average. Figure 14.8 shows the corresponding probability
density function.

Many simulation models focus on the simulation of various traffic flows. Traffic
flows can be simulated by either specifying the traffic characteristics as input to
the model or by importing actual traffic traces that were captured during certain
application transactions under study. The latter will be discussed in a subsequent
section on Baselining.

Network modellers usually start the modelling process by first analysing the cap-
tured traffic traces to visualise network attributes. It helps the modeller understand
the application level processes deep enough to map the corresponding network events
to modelling constructs. Common tools can be used before building the model. After
the preliminary analysis, the modeller may disregard processes, events that are not
important for the study in question. For instance, the capture of traffic traces of
a database transaction reveals a large variation in frame lengths. Figure 14.9 helps
visualise the anomalies:



658 14. Network Simulation

Figure 14.8 Probability density function of the Exp (10.0) interarrival time.

Figure 14.9 Visualisation of anomalies in packet lengths.

The analysis of the same trace (Figure 14.10) also discloses a large deviation of
the interarrival times of the same frames (delta times):

Approximating the cumulative probability distribution function by a histogram



14.5. Traffic characterisation 659

Figure 14.10 Large deviations between delta times.

Figure 14.11 Histogram of frame lengths.

of the frame lengths of the captured traffic trace (Figure 14.11) helps the modeller
determine the family of the distribution:



660 14. Network Simulation

14.6. Simulation modelling systems

14.6.1. Data collection tools and network analysers

The section summaries the main features of the widely used discrete event simula-
tion tools, OPNET and COMNET, and the supporting network analysers, Network
Associates’ Sniffer and OPNET’s Application Characterisation Environment.

OPtimized Network Engineering Tools (OPNET) is a comprehensive simulation
system capable of modelling communication networks and distributed systems with
detailed protocol modelling and performance analysis. OPNET consists of a number
of tools that fall into three categories corresponding to the three main phases of mod-
elling and simulation projects: model specification, data collection and simulation,
and analysis.

14.6.2. Model specification

During model specification the network modeller develops a representation of the
network system under study. OPNET implements the concept of model reuse, i.e.,
models are based on embedded models developed earlier and stored in model li-
braries. The model is specified at various levels of details using specification editors.
These editors categorise the required modelling information corresponding to the hi-
erarchical structure of an actual network system. The highest level editor, the Project
Editor develops network models consisting of network topology, subnets, links, and
node models specified in the Node Editor . The Node Editor describes nodes’ internal
architecture, functional elements and data flow between them. Node models in turn,
consist of modules with process models specified by the Process Editor . The lowest
level of the network hierarchy, the process models, describes the module’s behaviour
in terms of protocols, algorithms, and applications using finite state machines and
a high-level language.

There are several other editors to define various data models referenced by
process- or node-level models, e.g., packet formats and control information between
processes. Additional editors create, edit, and view probability density functions
(PDFs) to control certain events, such as the interarrival time of sending or receiv-
ing packets, etc. The model-specification editors provide a graphical interface for
the user to manipulate objects representing the models and the corresponding pro-
cesses. Each editor can specify objects and operations corresponding to the model’s
abstraction level. Therefore, the Project Editor specifies nodes and link objects of
a network, the Node Editor specifies processors, queues, transmitters, and receivers
in the network nodes, and the Process Editor specifies the states and transitions in
the processes. Figure 14.12 depicts the abstraction level of each editor:

14.6.3. Data collection and simulation

OPNET can produce many types of output during simulation depending on how the
modeller defined the types of output. In most cases, modellers use the built in types
of data: output vectors, output scalars, and animation:



14.6. Simulation modelling systems 661

Figure 14.12 The three modelling abstraction levels specified by the Project, Node, and Process
editors.

• Output vectors represent time-series simulation data consisting of list of entries,
each of which is a time-value pair. The first value in the entries can be considered
as the independent variable and the second as the dependent variable.

• Scalar statistics are individual values derived from statistics collected during
simulation, e.g., average transmission rate, peak number of dropped cells, mean
response time, or other statistics.

• OPNET can also generate animations that are viewed during simulation or re-
play after simulation. The modeller can define several forms of animations, for
instance, packet flows, state transitions, and statistics.

14.6.4. Analysis

Typically, much of the data collected during simulations is stored in output scalar
and output vector files. In order to analyse these data OPNET provides the Anal-
ysis Tool which is a collection of graphing and numerical processing functions. The
Analysis Tool presents data in the form of graphs or traces. Each trace consists of
a list of abscissa X and ordinate Y pairs. Traces are held and displayed in analysis
panels. The Analysis Tool supports a variety of methods for processing simulation
output data and computing new traces. Calculations, such as histograms, PDF,



662 14. Network Simulation

Figure 14.13 Example for graphical representation of scalar data (upper graph) and vector data
(lower graph).

CDF, and confidence intervals are included. Analysis Tool also supports the use of
mathematical filters to process vector or trace data. Mathematical filters are defined
as hierarchical block diagrams based on a predefined set of calculus, statistical, and
arithmetic operators. The example diagrams below (Figures 14.13 and 14.14) shows
graphs generated by the Analysis Tool:

Figure 14.14 Analysis Tool Showing Four Graphs.
COMNET is another popular discrete-event simulation system. We will discuss

it briefly and demonstrate its features in Section 14.9.

14.6.5. Network Analysers

There is an increasing interest in predicting, measuring, modelling, and diagnosing
application performance across the application lifecycle from development through
deployment to production. Characterising the application’s performance is extremely
important in critical application areas, like in eCommerce. In the increasingly com-
petitive eCommerce, the application’s performance is critical, especially where the
competition is just "one click" away. Application performance affects revenue. When
an application performs poorly it is always the network that is blamed rather than
the application. These performance problems may result from several areas including
application design or slow database servers. Using tools, like ACE and Network As-
sociates’ Sniffer, network modellers can develop methodologies to identify the source



14.6. Simulation modelling systems 663

Figure 14.14 Figure 14.14 shows four graphs represented by the Analysis Tool.

of application slowdowns and resolve their causes. After analysing the applications,
modellers can make recommendations for performance optimisation. The result is
faster applications and better response times. The Application Characterisation En-
vironment (ACE) is a tool for visualising, analysing, and troubleshooting network
applications. Network managers and application developers can use ACE to

• Locate network and application bottlenecks.

• Diagnose network and application problems.

• Analyse the affect of anticipated network changes on the response time of existing
applications.

• Predict application performance under varying configurations and network con-
ditions.

The performance of an application is determined by network attributes that are
affected by the various components of a communication network. The following list
contains some example for these attributes and the related network elements:

• Network media

– Bandwidth (Congestion, Burstiness)
– Latency (TCP window size, High latency devices, Chatty applications)



664 14. Network Simulation

• Nodes

• Clients

– User time
– Processing time
– Starved for data

• Servers

– Processing time
– Multi-tier waiting data
– Starved for data

• Application

– Application turns (Too many turns – Chatty applications)
– Threading (Single vs. multi-threaded)
– Data profile (Bursty, Too much data processing)

Analysis of an application requires two phases:

• Capture packet traces while an application is running to build a baseline for
modelling an application. We can use the ACE’s capturing tool or any other
network analysers to capture packet traces. The packet traces can be captured
by strategically deployed capture agents.

• Import the capture file to create a representation of the application’s transactions
called an application task for further analysis of the messages and protocol data
units generated by the application.

After creating the application task, we can perform the following operations over
the captured traffic traces:

• View and edit the captured packet traces on different levels of the network
protocol stack in different windows. We can also use these windows to remove
or delete sections of an application task. In this way, we focus on transactions
of our interest.

• Perform application level analysis by identifying and diagnosing bottlenecks. We
can measure the components of the total response time in terms of application
level time, processing time, and network time and view detailed statistics on
the network and application. We can also decode and analyse the network and
application protocol data units from the contents of the packet traces.

• Predict application performance in ”what-if" scenarios and for testing projected
changes.

Without going into specific details we illustrate some of the features above
through a simple three-tier application. We want to determine the reason or rea-
sons of the slow response time from a Client that remotely accesses an Application
Server (App Server) to retrieve information from a Database Server (DB Server).
The connection is over an ADSL line between the client and the Internet, and a
100Mbps Ethernet connection between the App Server and the DB Server. We want



14.6. Simulation modelling systems 665

Figure 14.15 Data Exchange Chart.

to identify the cause of the slow response time and recommend solutions. We de-
ployed capture agents at the network segments between the client and the App Server
and between the servers. The agents captured traffic traces simultaneously during a
transaction between the client and the App Server and the App Server and the DB
Server respectively. Then, the traces were merged and synchronised to obtain the
best possible analysis of delays at each tier and in the network.

After importing the trace into ACE, we can analyse the transaction in the Data
Exchange Chart, which depicts the flow of application messages among tiers over
time.

The Data Exchange Chart shows packets of various sizes being transmitted be-
tween the Client and the servers. The overall transaction response time is approxi-
mately 6 seconds. When the ”Show Dependencies" checkbox is checked, the white de-
pendency lines indicate large processing delays on the Application Server and Client
tiers. For further analysis, we generate the ”Summary of Delays" window showing
how the total response time of the application is divided into four general categories:
Application delay, Propagation delay, Transmission delay and Protocol/Congestion
delay. Based on this chart we can see the relation between application and network
related delays during the transaction between the client and the servers. The chart
clearly shows that the application delay far outweighs the Propagation, Transmis-
sion, and Protocol/Congestion delays slowing down the transaction.

The ”Diagnosis" function (Figure 14.17) provides a more granular analysis of
possible bottlenecks by analysing factors that often cause performance problems in
networked applications. Values over a specified threshold are marked as bottlenecks
or potential bottlenecks.



666 14. Network Simulation

Figure 14.16 Summary of Delays.

Figure 14.17 Diagnosis window.

The diagnosis of the transaction confirms that the primary bottleneck is due
to Processing Delay on the Application Server. The processing delay is due to the
file I/O, CPU processing, or memory access. It also reveals another bottleneck: the
chattiness of the application that leads us to the next step. We investigate the



14.6. Simulation modelling systems 667

Figure 14.18 Statistics window.

application behaviour in terms of application turns that can be obtained from the
transaction statistics. An application turn is a change in direction of the application-
message flow.

The statistics of the transaction (Figure 14.18) disclose that the number of ap-
plication turns is high, i.e., the data sent by the transaction at a time is small. This
may cause significant application and network delays. Additionally, a significant
portion of application processing time can be spent processing the many requests
and responses. The Diagnosis window indicates a ”Chattiness" bottleneck without a
”Network Cost of Chattiness" bottleneck, which means the following:

• The application does not create significant network delays due to chattiness.

• The application creates significant processing delays due to overhead associated
with handling many small application level requests and responses.

• The application’s ”Network Cost of Chattiness" could dramatically increase in
a high-latency network.

The recommendation is that the application should send fewer, larger application
messages. This will utilise network and tier resources more efficiently. For example,
a database application should avoid sending a set of records one record at a time.

Would the response time decrease significantly if we added more bandwidth to
the link between the client and the APP Server (Figure 14.19)? Answering this ques-
tion is important because adding more bandwidth is expensive. Using the prediction
feature we can answer the question. In the following chart we selected the bandwidth
from 128K to 10Mbps. The chart shows that beyond approximately 827 Kbps there



668 14. Network Simulation

Figure 14.19 Impact of adding more bandwidth on the response time.

Figure 14.20 Baseline model for further simulation studies.

is no significant improvement in response time, i.e., for this application the recom-
mended highest bandwidth is no more than 827Kbps, which can be provided by a
higher speed DSL line.

After the analysis of the application’s performance, we can immediately create
the starting baseline model from the captured traffic traces for further simulation
studies as illustrated in Figure 14.20.



14.7. Model Development Life Cycle (MDLC) 669

14.6.6. Sniffer

Another popular network analyser is Network Associates’ Sniffer . (Network Asso-
ciates has recently renamed it to Netasyst.) It is a powerful network visualisation
tool consisting of a set of functions to:

• Capture network traffic for detailed analysis.

• Diagnose problems using the Expert Analyzer.

• Monitor network activity in real time.

• Collect detailed utilisation and error statistics for individual stations, conversa-
tions, or any portion of your network.

• Save historical utilisation and error information for baseline analysis.

• Generate visible and audible real-time alarms and notify network administrators
when troubles are detected.

• Probe the network with active tools to simulate traffic, measure response times,
count hops, and troubleshoot problems.

For further details we refer the reader to the vendors’ documentations on
http://www.nai.com.

14.7. Model Development Life Cycle (MDLC)

There are several approaches for network modelling. One possible approach is the
creation of a starting model that follows the network topology and approximates the
assumed network traffic statistically. After some changes are made, the modeller can
investigate the impact of the changes of some system parameters on the network or
application performance. This is an approach when it is more important to inves-
tigate the performance difference between two scenarios rather than starting from
a model based on real network traffic. For instance, assuming certain client/server
transactions, we want to measure the change of the response time as the function of
the link utilisation 20%, 40%, 60%, etc. In this case it is not extremely important to
start from a model based on actual network traffic. It is enough to specify certain
amount of data transmission estimated by a frequent user or designer. We investi-
gate, for this amount of data, how much the response time will increase as the link
utilisation increases relative to the starting scenario.

The most common approach for network modelling follows the methodologies
of proactive network management. It implies the creation of a network model us-
ing actual network traffic as input to simulate current and future behaviour of the
network and predict the impact of the addition of new applications on the network
performance. By making use of modelling and simulation tools network managers
can change the network model by adding new devices, workstations, servers, and
applications. Or they can upgrade the links to higher speed network connections
and perform”what-if" scenarios before the implementation of the actual changes.
We follow this approach in our further discussions because this approach has been
widely accepted in the academia, corporate world, and the industry. In the sub-



670 14. Network Simulation

sequent paragraphs we elaborate a sequence of modelling steps, called the Model
Development Life Cycle – MDLC that the author has applied in various real life
scenarios of modelling large enterprise networks. The MDLC has the following steps:

• Identification of the topology and network components.

• Data collection.

• Construction and validation of the baseline model. Perform network simulation
studies using the baseline.

• Creation of the application model using the details of the traffic generated by
the applications.

• Integration of the application and baseline model and completion of simulation
studies.

• Further data gathering as the network growths and changes and as we know
more about the applications.

• Repeat the same sequence.

In the following, we expand the steps above:

Identification of the topology and network components. Topology data
describes the physical network components (routers, circuits, and servers) and how
they are connected. It includes the location and configuration description of each in-
ternetworking device, how those devices are connected (the circuit types and speeds),
the type of LANs and WANs, the location of the servers, addressing schemes, a list
of applications and protocols, etc.

Data collection. In order to build the baseline model we need to acquire topology
and traffic data. Modellers can acquire topology data either by entering the data
manually or by using network management tools and network devices’ configuration
files. Several performance management tools use the Simple Network Management
Protocol – SNMP to query the Management Information Base (MIB) maintained
by SNMP agents running in the network’s routers and other internetworking devices.
This process is known as an SNMP discovery. We can import topology data from
routers’ configuration files to build a representation of the topology for the network
in question. Some performance management tools can import data using the map
file from a network management platform, such as HP OpenView or IBM NetView.
Using the network management platform’s export function, the map file can be
imported by modelling.

The network traffic input to the baseline model can be derived from various
sources: Traffic descriptions from interviews and network documents, design or
maintenance documents, MIB/SNMP reports and network analyser and Remote
Monitoring—traffic traces. RMON is a network management protocol that allows
network information to be gathered at a single node. RMON traces are collected
by RMON probes that collect data at different levels of the network architecture
depending on the probe’s standard. Figure 14.21 includes the most widely used
standards and the level of data collection:

Network traffic can be categorised as usage-based data and application-based



14.7. Model Development Life Cycle (MDLC) 671

RMON1 RMON2 Enterprise RMON
Ethernet/Token Ring X X X
MAC Layer Monitoring X X X
Network Layer Monitoring X X
Application Layer Monitoring X X
Switched LAN, Frame Relay, ATM X
VLAN Support X
Application response time X

Figure 14.21 Comparison of RMON Standards.

data. The primary difference between usage- and application-based data is the degree
of details that the data provides and the conclusions that can be made based on the
data. The division can be clearly specified by two adjacent OSI layers, the Transport
layer and the Session layer: usage-based data is for investigating the performance
issues through the transport layer; application-based data is for analysing the rest
of the network architecture above the Transport layer. (In Internet terminology this
is equivalent to the cut between the TCP level and the applications above the TCP
level.)

The goal of collecting usage-based data is to determine the total traffic volume
before the applications are implemented on the network. Usage-based data can be
gathered from SNMP agents in routers or other internetworking devices. SNMP
queries sent to the routers or switches provide statistics about the exact number of
bytes that have passed through each LAN interface, WAN circuit, or (Permanent
Virtual Circuit – PVC) interfaces. We can use the data to calculate the percentage
of utilisation of the available bandwidth for each circuit.

The purpose of gathering application-based data is to determine the amount of
data generated by an application and the type of demand the application makes.
It allows the modeller to understand the behaviour of the application and to char-
acterise the application level traffic. Data from traffic analysers or from RMON2-
compatible probes, Sniffer, NETScout Manager, etc., provide specifics about the
application traffic on the network. Strategically placed data collection devices can
gather enough data to provide clear insight into the traffic behaviour and flow pat-
terns of the network applications. Typical application level data collected by traffic
analysers:

• The type of applications.

• Hosts communicating by network layer addresses (i.e., IP addresses).

• The duration of the network conversation between any two hosts (start time and
end time).

• The number of bytes in both the forward and return directions for each network
conversation.

• The average size of the packets in the forward and return directions for each
network conversation.

• Traffic burstiness.



672 14. Network Simulation

• Packet size distributions.

• Packet interarrival distributions.

• Packet transport protocols.

• Traffic profile, i.e., message and packet sizes, interarrival times, and processing
delays.

• Frequency of executing application for a typical user.

• Major interactions of participating nodes and sequences of events.

Construction and validation of the baseline model. Perform network
simulation studies using the baseline. The goal of building a baseline model
is to create an accurate model of the network as it exists today. The baseline model
reflects the current ”as is" state of the network. All studies will assess changes to the
baseline model. This model can most easily be validated since its predictions should
be consistent with current network measurements. The baseline model generally only
predicts basic performance measures such as resource utilisation and response time.

The baseline model is a combination of the topology and usage-based traffic
data that have been collected earlier. It has to be validated against the performance
parameters of the current network, i.e., we have to prove that the model behaves
similarly to the actual network activities. The baseline model can be used either for
analysis of the current network or it can serve as the basis for further application and
capacity planning. Using the import functions of a modelling tool, the baseline can
be constructed by importing first the topology data gathered in the data collection
phase of the modelling life cycle. Topology data is typically stored in topology files
(.top or .csv) created by Network Management Systems, for instance HP OpenView
or Network Associate’s Sniffer. Traffic files can be categorised as follows:

• Conversation pair traffic files that contain aggregated end-to-end network load
information, host names, packet counts, and byte counts for each conversation
pair. The data sets allow the modelling tool to preserve the bursty nature of the
traffic. These files can be captured by various data collection tools.

• Event trace traffic files that contain network load information in the form of
individual conversations on the network rather than summarised information.
During simulation the file can replay the captured network activity on an event
by event basis.

Before simulation the modeller has to decide on the following simulation param-
eters:

• Run length: Runtime length must exceed the longest message delay in the
network. During this time the simulation should produce sufficient number of
events to allow the model to generate enough samples of every event.

• Warm-up period: The simulation warm-up period is the time needed to ini-
tialise packets, buffers, message queues, circuits, and the various elements of
the model. The warm-up period is equal to a typical message delay between
hosts. Simulation warm-up is required to ensure that the simulation has reached
steady-state before data collection begins.



14.7. Model Development Life Cycle (MDLC) 673

• Multiple replications: There may be a need for multiple runs of the same model
in cases when statistics are not sufficiently close to true values. We also need
multiple runs prior to validation when we execute multiple replicates to deter-
mine variation of statistics between replications. A common cause of variation
between replications is rare events.

• Confidence interval: A confidence interval is an interval used to estimate the
likely size of a population parameter. It gives an estimated range of values that
has a specified probability of containing the parameter being estimated. Most
commonly used intervals are the 95% and 99% confidence intervals that have
.95 and .99 probabilities respectively of containing the parameter. In simulation,
confidence interval provides an indicator of the precision of the simulation results.
Fewer replications result in a broader confidence interval and less precision.

In many modelling tools, after importing both the topology and traffic files, the
baseline model is created automatically. It has to be checked for construction errors
prior to any attempts at validation by performing the following steps:

• Execute a preliminary run to confirm that all source-destination pairs are present
in the model.

• Execute a longer simulation with warm-up and measure the sent and received
message counts and link utilisation to confirm that correct traffic volume is being
transmitted.

Validating the baseline model is the proof that the simulation produces the same
performance parameters that are confirmed by actual measurements on the physical
network. The network parameters below can usually be measured in both the model
and in the physical network:

• Number of packets sent and received

• Buffer usage

• Packet delays

• Link utilisation

• Node’s CPU utilisation

Confidence intervals and the number of independent samples affect how close a
match between the model and the real network is to be expected. In most cases, the
best that we can expect is an overlap of the confidence interval of predicted values
from the simulation and the confidence interval of the measured data. A very close
match may require too many samples of the network and too many replications of
the simulation to make it practical.

Creation of the application model using the details of the traffic gener-
ated by the applications. Application models are studied whenever there is a
need to evaluate the impact of a networked application on the network performance
or to evaluate the application’s performance affected by the network. Application
models provide traffic details between network nodes generated during the execution
of the application. The steps of building an application model are similar to the ones
for baseline models.



674 14. Network Simulation

• Gather data on application events and user profiles.

• Import application data into a simulation model manually or automatically.

• Identify and correct any modelling errors.

• Validate the model.

Integration of the application and baseline models and completion of
simulation studies. The integration of the application model(s) and baseline
model follows the following steps:

• Start with the baseline model created from usage-based data.

• Use the information from the application usage scenarios (locations of users,
number of users, transaction frequencies) to determine where and how to load
the application profiles onto the baseline model.

• Add the application profiles generated in the previous step to the baseline model
to represent the additional traffic created by the applications under study.

Completion of Simulation studies consists of the following steps:

• Use a modelling tool to run the model or simulation to completion.

• Analyse the results: Look at the performance parameters of the target transac-
tions in comparison to the goals established at the beginning of the simulation.

• Analyse the utilisation and performance of various network elements, especially
where the goals are not being met.

Typical simulation studies include the following cases:

• Capacity analysis

Capacity analysis studies the changes of network parameters, for instance:

– Changes in the number and location of users.
– Changes in network elements capacity.
– Changes in network technologies.

A modeller may be interested in the effect of the changes above on the following
network parameters:

– Switches and routers’ utilisation
– Communications link utilisation
– Buffer utilisation
– Retransmitted and lost packets

• Response time analysis

The scope of response time analysis is the study of message and packet trans-
mission delay:

– Application and network level packet end-to-end delay.
– Packet round trip delay.
– Message/packet delays.



14.8. Modelling of traffic burstiness 675

– Application response time.

• Application Analysis

The scope of application studies is the ratio of the total application response
time relative to the individual components of network and application delay.
Application’s analysis provides statistics of various measures of network and
application performance in addition to the items discussed in a previous section.

Further data gathering as the network growths and as we know more
about the applications The goal of this phase is to analyse or predict how a
network will perform both under current conditions and when changes to traffic load
(new applications, users, or network structure) are introduced:

• Identify modifications to the network infrastructure that will alter capacity usage
of the network’s resources.

• A redesign can include increasing or decreasing capacity, relocating network
elements among existing network sites, or changing communications technology.

• Modify the models to reflect these changes.

• Assess known application development or deployment plans in terms of projected
network impact.

• Assess business conditions and plans in terms of their impact on the network
from projected additional users, new sites, and other effects of the plans.

• Use ongoing Baselining techniques to watch usage trends over time, especially
related to Internet and intranet usage.

14.8. Modelling of traffic burstiness

Recent measurements of local area network traffic and wide-area network traffic
have proved that the widely used Markovian process models cannot be applied for
today’s network traffic. If the traffic were a Markovian process, the traffic’s burst
length would be smoothed by averaging over a long time scale, contradicting the
observations of today’s traffic characteristics. Measurements of real traffic also prove
that traffic burstiness is present on a wide range of time scales. Traffic that is bursty
on many or all time scales can be characterised statistically using the concept of
self-similarity. Selfsimilarity is often associated with objects in fractal geometry,
objects that appear to look alike regardless of the scale at which they are viewed.
In case of stochastic processes like time series, the term self-similarity refers to the
process’ distribution, which, when viewed at varying time scales, remains the same.
Self-similar time series has noticeable bursts, which have long periods with extremely
high values on all time scales. Characteristics of network traffic, such as packets/sec,
bytes/sec, or length of frames, can be considered as stochastic time series. Therefore,
measuring traffic burstiness is the same as characterising the self-similarity of the
corresponding time series.



676 14. Network Simulation

The self-similarity of network traffic has also been observed in studies in numer-
ous papers. These and other papers show that packet loss, buffer utilisation, and
response time are totally different when simulations use either real traffic data or
synthetic data that include self-similarity.

Background. Let X = (Xt : t = 0, 1, 2, . . .) be a covariance station-
ary stochastic process. Such a process has a constant mean µ = E [Xt], fi-
nite variance σ2 = E

[
(Xt − µ)2

]
, and an autocorrelation function r(k) =

E [(Xt − µ)(Xt+k − µ)] /E
[
(Xt − µ)2

]
(k = 0, 1, 2, . . .), that depends only on k. It

is assumed that X has an autocorrelation function of the form:

r(k) ∼ αk−β , k →∞ (14.1)

where 0 < β < 1 and α is a positive constant. Let X(m) = (X(m)
(k) : k = 1, 2, 3, m =

1, 2, 3, . . .) represent a new time series obtained by averaging the original series X
over nonoverlapping blocks of size m. For each m = 1, 2, 3, . . . ,X(m) is specified by
X

(m)
k = (Xkm−m+1 + · · · + Xkm)/m, (k ≥ 1). Let r(m) denote the autocorrelation

function of the aggregated time series X(m).

Definition of self-similarity. The process X called exactly self-similar with
self-similarity parameter H = 1 − β/2 if the corresponding aggregated processes
X(m) have the same correlation structure as X, i.e. r(m)(k) = r(k) for all m =
1, 2, . . . (k = 1, 2, 3, . . .).

A covariance stationary process X is called asymptotically self-similar with
self-similarity parameter H = 1 − β/2, if for all k large enough r(m)(k) → r(k), as
m→∞, 0.5 ≤ H ≤ 1.

Definition of long-range dependency. A stationary process is called long-
range dependent if the sum of the autocorrelation values approaches infinity:∑

k r(k) → ∞. Otherwise, it is called short-range dependent. It can be derived
from the definitions that while short-range dependent processes have exponentially
decaying autocorrelations, the autocorrelations of long-range dependent processes
decay hyperbolically; i.e., the related distribution is heavy-tailed. In practical terms,
a random variable with heavy-tail distribution generates extremely large values with
high probability. The degree of self-similarity is expressed by the parameter H or
Hurst-parameter. The parameter represents the speed of decay of a process’ au-
tocorrelation function. As H → 1 the extent of both self-similarity and long-range
dependence increases. It can also be shown that for self-similar processes with long-
range dependency H > 0.5.

Traffic models. Traffic modelling originates in traditional voice networks. Most
of the models have relied on the assumption that the underlying processes are Marko-
vian (or more general, short-range dependent). However, today’s high-speed digital
packet networks are more complex and bursty than traditional voice traffic due to
the diversity of network services and technologies.

Several sophisticated stochastic models have been developed as a reaction to



14.8. Modelling of traffic burstiness 677

Figure 14.22 The self-similar nature of Internet network traffic.

new developments, such as Markov-modulated Poisson processes, fluid flow models,
Markovian arrival processes, batched Markovian arrival process models, packet train
models, and Transform-Expand-Sample models . These models mainly focus on the
related queueing problem analytically. They are usually not compared to real traffic
patterns and not proven to match the statistical property of actual traffic data.

Another category of models attempts to characterise the statistical properties
of actual traffic data. For a long time, the area of networking research has lacked
adequate traffic measurements. However, during the past years, large quantities of
network traffic measurements have become available and collected in the Web and
high-speed networks. Some of these data sets consist of high-resolution traffic mea-
surements over hours, days, or weeks. Other data sets provide information over
time periods ranging from weeks to months and years. Statistical analyses of these
high time-resolution traffic measurements have proved that actual traffic data from
packet networks reveal self-similarity. These results point out the difference between
traditional models and measured traffic data. While the assumed processes in tradi-
tional packet traffic models are short-range dependent, measured packet traffic data
show evidence of long-range dependency. Figure 14.22 illustrates the difference be-
tween Internet traffic and voice traffic for different numbers of aggregated users. As
the number of voice flows increases, the traffic becomes more and more smoothed
contrary to the Internet traffic.

Quite the opposite to the well developed field of short-range dependent queueing
models, fewer theoretical results exist for queueing systems with long-range depen-
dence. For some of the results. In terms of modelling, the two major groups of
self-similar models are fractional Gaussian noises and fractional ARIMA processes.
The Gaussian models accurately represent aggregation of many traffic streams. An-
other well-known model, the M/Pareto model has been used in modelling network
traffic that is not sufficiently aggregated for the Gaussian model to apply.

Black box vs. structural models. We share the opinion calling the approach
of traditional time series analysis as black box modelling as opposite to the struc-



678 14. Network Simulation

tural modelling that concentrates on the environment in which the models’ data
was collected; i.e., the complex hierarchies of network components that make up
today’s communications systems. While the authors admit that black box models
can be and are useful in other contexts, they argue that black box models are of
no use for understanding the dynamic and complex nature of the traffic in mod-
ern packet networks. Black box models have not much use in designing, managing
and controlling today’s networks either. In order to provide physical explanations
for empirically observed phenomena such as long-range dependency, we need to re-
place black box models with structural models. The attractive feature of structural
traffic models is that they take into account the details of the layered architecture
of today’s networks and can analyse the interrelated network parameters that ulti-
mately determine the performance and operation of a network. Time series models
usually handle these details as black boxes. Because actual networks are complex
systems, in many cases, black box models assume numerous parameters to represent
a real system accurately. For network designers, who are important users of traffic
modelling, black box models are not very useful. It is rarely possible to measure or
estimate the model’s numerous parameters in a complex network environment. For
a network designer, a model ought to be simple, meaningful in a particular network.
It can relay on actual network measurements, and the result ought to be relevant to
the performance and the operation of a real network.

For a long time, traffic models were developed independently of traffic data
collected in real networks. These models could not be applied in practical network
design. Today the availability of huge data sets of measured network traffic and the
increasing complexity of the underlying network structure emphasise the application
of the Ockham’ Razer in network modelling. (Ockham’s Razor is a principle of
the mediaeval philosopher William Ockham. According to his principle, modellers
should not make more assumptions than the minimum needed. This principle is also
called the Principle of Parsimony and motivates all scientific modelling and theory
building. It states that modellers should choose the simplest model among a set of
otherwise equivalent models of a given phenomenon. In any given model, Ockham’s
Razor helps modellers include only those variables that are really needed to explain
the phenomenon. Following the principle, model development will become easier,
reducing the possibilities for inconsistencies, ambiguities and redundancies.)

Structural models are presented, for instance in different papers, which demon-
strate how the self-similar nature of aggregated network traffic of all conversations
between hosts explains the details of the traffic dynamics at the level generated by
the individual hosts. The papers introduce structural traffic models that have a phys-
ical meaning in the network context and underline the predominance of long-range
dependence in the packet arrival patterns generated by the individual conversations
between hosts. The models provide insight into how individual network connections
behave in local and wide area networks. Although the models go beyond the black
box modelling methodology by taking into account the physical structure of the
aggregated traffic patterns, they do not include the physical structure of the in-
tertwined structure of links, routers, switches, and their finite capacities along the
traffic paths.

Crovella and Stavros demonstrated that World Wide Web traffic shows charac-



14.8. Modelling of traffic burstiness 679

teristics that are consistent with self-similarity. They show that transmission times
may be heavy tailed, due to the distribution of available file sizes in the Web. It is
also shown that silent times may also be heavy-tailed; primarily due to the effect of
user ”think time". Similarly to the structural models due to Willinger at al., their
paper lacks of analysing the impact of selfsimilar traffic on the parameters of the
links and the routers’ buffers that ultimately determine a network’s performance.

This chapter describes a traffic model that belongs to the structural model cate-
gory above. We implement the M/Pareto model within the discrete event simulation
package COMNET that allows the analysis of the negative impact of self-similar
traffic on not just one single queue, but on the overall performance of various in-
terrelated network components, such as link, buffers, response time, etc. The com-
mercially available package does not readily provide tools for modelling self-similar,
long-range dependent network traffic. The model-generated traffic is based on mea-
surements collected from a real ATM network. The choice of the package emphasises
the need for integrated tools that could be useful not just for theoreticians, but also
for network engineers and designers. Our paper intends to narrow the gap between
existing, well-known theoretical results and their applicability in everyday, practical
network analysis and modelling. It is highly desirable that appropriate traffic models
should be accessible from measuring, monitoring, and controlling tools. Our model
can help network designers and engineers, the ultimate users of traffic modelling,
understand the dynamic nature of network traffic and assist them to design, mea-
sure, monitor, and control today’s complex, high-speed networks in their everyday’s
practice.

Implications of burstiness on high-speed networks. Various papers discuss
the impact of burstiness on network congestion. Their conclusions are:

• Congested periods can be quite long with losses that are heavily concentrated.

• Linear increases in buffer size do not result in large decreases in packet drop
rates.

• A slight increase in the number of active connections can result in a large increase
in the packet loss rate.

Results show that packet traffic ”spikes" (which cause actual losses) ride on
longerterm ”ripples", which in turn ride on still longer-term ”swells".

Another area where burstiness can affect network performance is a link with
priority scheduling between classes of traffic. In an environment, where the higher
priority class has no enforced bandwidth limitations (other than the physical band-
width), interactive traffic might be given priority over bulk-data traffic. If the higher
priority class is bursty over long time scales, then the bursts from the higher priority
traffic could obstruct the lower priority traffic for long periods of time.

The burstiness may also have an impact on networks where the admission control
mechanism is based on measurements of recent traffic, rather than on policed traffic
parameters of individual connections. Admission control that considers only recent
traffic patterns can be misled following a long period of fairly low traffic rates.



680 14. Network Simulation

14.8.1. Model parameters

Each transaction between a client and a server consists of active periods followed
by inactive periods. Transactions consist of groups of packets sent in each direc-
tion. Each group of packets is called a burst. The burstiness of the traffic can be
characterised by the following time parameters:

• Transaction Interarrival Time (TIAT): The time between the first packet
in a transaction and the first packet of the next immediate transaction.

• Burst Interarrival Time, 1/λ, λ arrival rate of bursts: The time between
bursts.

• Packet Interarrival Time, 1/r, r: arrival rate of packets: The time be-
tween packets in a burst.

The Hurst parameter. It is anticipated that the rapid and ongoing aggrega-
tion of more and more traffic onto integrated multiservice networks will eventually
result in traffic smoothing. Once the degree of aggregation is sufficient, the process
can be modelled by Gaussian process. Currently, network traffic does not show char-
acteristics that close to Gaussian. In many networks the degree of aggregation is
not enough to balance the negative impact of bursty traffic. However, before traffic
becomes Gaussian, existing methods can still provide accurate measurement and
prediction of bursty traffic.

Most of the methods are based on the estimate of the Hurst parameter H - the
higher the value of H, the higher the burstiness, and consequently, the worse the
queueing performance of switches and routers along the traffic path. Some are more
reliable than others. The reliability depends on several factors; e.g., the estimation
technique, sample size, time scale, traffic shaping or policing, etc. Based on published
measurements we investigated methods with the smallest estimation error*. 1 Among
those, we chose the Rescaled Adjusted Range (R/S) method because we found it
implemented in the Benoit package. The Hurst parameter calculated by the package
is input to our method.

The M/Pareto traffic model and the Hurst parameter. Recent results have
proven that the M/Pareto model is appropriate for modelling long-range dependent
traffic flow characterised by long bursts. Originally, the model was introduced and
applied in the analysis of ATM buffer levels. The M/Pareto model was also used to
predict the queueing performance of Ethernet, VBR video, and IP packet streams in
a single server queue. We apply the M/Pareto model not just for a single queue, but
also for predicting the performance of an interconnected system of links, switches
and routers affecting the individual network elements’ performance.

The M/Pareto model is a Poisson process of overlapping bursts with arrival
rate λ. A burst generates packets with arrival rate r. Each burst, from the time of
its interval, will continue for a Pareto-distributed time period. The use of Pareto
distribution results in generating extremely long bursts that characterise long-range

1 Variance, Aggregated Variance, Higuchi, Variance of Residuals, Rescaled Adjusted Range (R/S),
Whittle Estimator, Periodogram, Residuals of Regression.



14.8. Modelling of traffic burstiness 681

dependent traffic.
The probability that a Pareto-distributed random variable X exceeds threshold

x is:

Pr {X > x} =

{(
x
δ

)
γ, x ≥ δ

1, otherwise ,
(14.2)

1 < γ < 2, δ > 0 .

The mean of X, the mean duration of a burst µ = δγ/(γ − 1) and its variance
is infinite. Assuming a t time interval, the mean number of packets M in the time
interval t is:

M = λtrδγ/(γ − 1) , (14.3)

where

λ =
M(γ − 1)
trδγ

. (14.4)

The M/Pareto model is asymptotically self-similar and it is shown that for the
Hurst parameter the following equation holds:

H =
3− γ

2
. (14.5)

14.8.2. Implementation of the Hurst parameter

We implemented the Hurst parameter and a modified version of the M/Pareto model
in the discrete event simulation system COMNET. By using discrete event simulation
methodology, we can get realistic results in measuring network parameters, such
as utilisation of links and the queueing performance of switches and routers. Our
method can model and measure the harmful consequences of aggregated bursty
traffic and predict its impact on the overall network’s performance.

Traffic measurements. In order to build the baseline model, we collected traf-
fic traces in a large corporate network by the Concord Network Health network
analyser system. We took measurements from various broadband and narrow band
links including 45Mbps ATM, 56Kbps, and 128 Kbps frame relay connections. The
Concord Network Health system can measure the traffic in certain time intervals
at network nodes, such as routers and switches. We set the time intervals to 6000
seconds and measured the number of bytes and packets sent and received per sec-
ond, packet latency, dropped packets, discard eligible packets, etc. Concord Network
Health cannot measure the number of packets in a burst and the duration of the
bursts as it is assumed in the M/Pareto model above. Due to this limitation of our
measuring tool, we slightly modify our traffic model according to the data available.
We took snapshots of the traffic in every five minutes from a narrow band frame
relay connection between a remote client workstation and a server at the corporate
headquarters as traffic destination in the following format:

The mean number of bytes, the message delay from the client to server, the
input buffer level at the client’s local router, the number of blocked packets, the
mean utilisations of the 56Kbps frame relay, the DS-3 segment of the ATM network,



682 14. Network Simulation

Delta Time Average Bandwidth Bytes Total/ Bytes in/ Bytes out/
(sec) utilisation % sec sec sec
299 2.1 297.0 159.2 137.8
300 2.2 310.3 157.3 153.0
301 2.1 296.8 164.4 132.4
302 2.7 373.2 204.7 168.5
... ... ... ... ...

Figure 14.23 Traffic traces.

Bytes Message Buffer level Dropped Links’ Mean Bandwidth utilisation (%)
average delay (byte) packets 56 Kbps ATM DS-3 100 Mbps
number (ms) number Frame Relay segment Ethernet
440.4279 78.687 0.04 0 3.14603 0.06 0.0031

Figure 14.24 Measured network parameters.

and the 100Mbps Ethernet link at the destination are summarised in Figure 14.24.
COMNET represents a transaction by a message source, a destination, the size

of the message, communication devices, and links along the path. The rate at which
messages are sent is specified by an interarrival time distribution, the time between
two consecutive packets. The Poisson distribution in the M/Pareto model generates
bursts or messages with arrival rate λ, the number of arrivals, which are likely to
occur in a certain time interval. In simulation, this information is expressed by the
time interval between successive arrivals 1/λ. For this purpose, we use the Exponen-
tial distribution. Using the Exponential distribution for interarrival time will result
in an arrival pattern characterised by the Poisson distribution. In COMNET, we
implemented the interarrival time with the function Exp(1/λ). The interarrival time
in the model is set to one second matching the sampling time interval set in Concord
Network Health and corresponding to an arrival rate λ = 1/sec.

In the M/Pareto model, each burst continues for a Pareto-distributed time pe-
riod. The Concord Network Health cannot measure the duration of a burst; hence,
we assume that a burst is characterised by the number of bytes in a message sent or
received in a second. Since the ATM cell rate algorithm ensures that equal length
messages are processed in equal time, then longer messages require longer processing
time. So we can say that the distribution of the duration of bursts is the same as the
distribution of the length of bursts. Hence, we can modify the M/Pareto model by
substituting the Pareto-distributed duration of bursts with the Pareto-distributed
length of bursts. We derive δ of the Pareto distribution not from the mean duration
of bursts, but from the mean length of bursts.

The Pareto distributed length of bursts is defined in COMNET by two
parameters- the location and the shape. The location parameter corresponds to
the δ, the shape parameter corresponds to the δ parameter of the M/Pareto model
in (1) and can be calculated from the relation (4) as

γ = 3− 2H . (14.6)

The Pareto distribution can have infinite mean and variance. If the shape param-
eter is greater than 2, both the mean and variance are finite. If the shape parameter



14.8. Modelling of traffic burstiness 683

is greater than 1, but less than or equal to 2, the mean is finite, but then the vari-
ance is infinite. If the shape parameter is less than or equal to 1, both the mean and
variance are infinite.

From the mean of the Pareto distribution we get:

δ =
µ · (γ − 1)

γ
. (14.7)

The relations (5) and (6) allow us to model bursty traffic based on real traffic
traces by performing the following steps:

a. Collect traffic traces using the Concord Network Health network analyser.

b. Compute the Hurst parameter H by making use of the Benoit package with the
traffic trace as input.

c. Use the Exponential and Pareto distributions in the COMNET modelling tool
with the parameters calculated above to specify the distribution of the interar-
rival time and length of messages.

d. Generate traffic according to the modified M/Pareto model and measure network
performance parameters.

The traffic generated according to the steps above is bursty with parameter H
calculated from real network traffic.

14.8.3. Validation of the baseline model

We validate our baseline model by comparing various model parameters of a 56Kbps
frame relay and a 6Mbps ATM connection with the same parameters of a real net-
work as the Concord Network Health network analyser traced it. For simplicity, we
use only the ”Bytes Total/sec" column of the trace, i.e., the total number of bytes
in the ”Bytes Total/sec" column is sent in one direction only from the client to the
server. The Hurst parameter of the real traffic trace is H = 0.55 calculated by the
Benoit package. The topology is as follows:

The ”Message sources" icon is a subnetwork that represents a site with a token
ring network, a local router, and a client A sending messages to the server B in the
”Destination" subnetwork:

The interarrival time and the length of messages are defined by the Exponential
and Pareto functions Exp (1) and Par (208.42, 1.9) respectively. The Pareto distri-
bution’s location (208.42) and shape (1.9) are calculated from formulas (5) and (6)
by substituting the mean length of bursts (440 bytes from Table 2.) and H = 0.55.

The corresponding heavy-tailed Pareto probability distribution and cumulative
distribution functions are illustrated in Figure 14.28 (The X − axis represents the
number of bytes):

The ”Frame Relay" icon represents a frame relay cloud with 56K committed
information rate (CIR). The ”Conc" router connects the frame relay network to a
6Mbps ATM network with variable rate control (VBR) as shown in Figures 14.29
and 14.30:

The ”Destination" icon denotes a subnetwork with server B:



684 14. Network Simulation

Figure 14.25 Part of the real network topology where the measurements were taken.

Figure 14.26 ”Message Source" remote client.

The results of the model show almost identical average for the utilisation of the
frame relay link (0.035 ∼3.5%) and the utilisation of the real measurements (3.1%):

The message delay in the model is also very close to the measured delay between
the client and the server (78 msec):

The input buffer level of the remote client’s router in the model is almost identical
with the measured buffer level of the corresponding router:

Similarly, the utilisations of the model’s DS-3 link segment of the ATM network
and the Ethernet link in the destination network closely match with the measure-
ments of the real network:

It can also be shown from the model’s traffic trace that for the model generated



14.8. Modelling of traffic burstiness 685

Figure 14.27 Interarrival time and length of messages sent by the remote client.

Figure 14.28 The Pareto probability distribution for mean 440 bytes and Hurst parameter H =
0.55.

messages the Hurst parameter H = 0.56, i.e., the model generates almost the same
bursty traffic as the real network. Furthermore, the number of dropped packets in the
model was zero similarly to the number of dropped packets in the real measurements.
Therefore, we start from a model that closely represents the real network.



686 14. Network Simulation

Figure 14.29 The internal links of the 6Mbps ATM network with variable rate control (VBR).

Figure 14.30 Parameters of the 6Mbps ATM connection.

14.8.4. Consequences of traffic burstiness

In order to illustrate our method, we developed a COMNET simulation model to
measure the consequences of bursty traffic on network links, message delays, routers’
input buffers, and the number of dropped packets due to the aggregated traffic of
large number of users. The model implements the Hurst parameter as it has been



14.8. Modelling of traffic burstiness 687

Figure 14.31 The ”Destination" subnetwork.

Figure 14.32 utilisation of the frame relay link in the baseline model.

Figure 14.33 Baseline message delay between the remote client and the server.

described in Section 3. We repeated the simulation for 6000 sec, 16000 sec and 18000
sec to allow infrequent events to occur a reasonable number of times. We found that
the results are very similar in each simulation.

Topology of bursty traffic sources. The ”Message Source" subnetworks
transmit messages as in the baseline model above, but with different burstiness:



688 14. Network Simulation

Figure 14.34 Input buffer level of remote router.

Figure 14.35 Baseline utilisations of the DS-3 link and Ethernet link in the destination.

H = 0.95,H = 0.75,H = 0.55, and with fixed size. Initially, we simulate four sub-
networks and four users per subnetwork each sending the same volume of data (mean
440 bytes per second) as in the validating model above:

Link utilisation and message delay. First, we are going to measure and illus-
trate the extremely high peaks in frame relay link utilisation and message delay. The
model traffic is generated with message sizes determined by various Hurst param-
eters and fixed size messages for comparison. The COMNET modelling tool has a
trace option to capture its own model generated traffic. It has been verified that for
the model-generated traffic flows with various Hurst parameters the Benoit package
computed similar Hurst parameters for the captured traces.

The following table shows the simulated average and peak link utilisation of the
different cases. The utilisation is expressed in the [0, 1] scale not in percentages:

The enclosed charts in Appendix A clearly demonstrate that even though the
average link utilisation is almost identical, the frequency and the size of the peaks
increase with the burstiness, causing cell drops in routers and switches. We received



14.8. Modelling of traffic burstiness 689

Figure 14.36 Network topology of bursty traffic sources with various Hurst parameters.

Fixed size messages H = 0.55 H = 0.75 H = 0.95
Average utilisation 0.12 0.13 0.13 0.14
Peak utilisation 0.18 0.48 1 1

Figure 14.37 Simulated average and peak link utilisation.

Fixed size messages H = 0.55 H = 0.75 H = 0.95
Average response time (ms) 75.960 65.61 87.880 311.553
Peak response time (ms) 110.06 3510.9 32418.7 112458.08
Standard deviation 0.470 75.471 716.080 4341.24

Figure 14.38 Response time and burstiness.

Fixed size message H = 0.55 H = 0.75 H = 0.95
Packets accepted 13282 12038 12068 12622
Packets blocked 1687 3146 3369 7250
Average buffer use in bytes 56000858 61001835 62058222 763510495

Figure 14.39 Relation between the number of cells dropped and burstiness.

the following results for response time measurements:
The charts in the Appendix A graphically illustrate the relation between response

times and various Hurst parameters.

Input buffer level for large number of users. We also measured the number
of cells dropped at a router’s input buffer in the ATM network due to surge of bursty
cells. We simulated the aggregated traffic of approximately 600 users each sending
the same number of bytes in a second as in the measured real network. The number
of blocked packets is summarised in the following table:



690 14. Network Simulation

14.8.5. Conclusion

Theis chapter presented a discrete event simulation methodology to measure vari-
ous network performance parameters while transmitting bursty traffic. It has been
proved in recent studies that combining bursty data streams will also produce bursty
combined data flow. The studies imply that the methods and models used in tradi-
tional network design require modifications. We categorise our modelling methodol-
ogy as a structural model contrary to a black box model. Structural models focus
on the environment in which the models’ data was collected; i.e., the complex hi-
erarchies of network components that make up today’s communications systems.
Although black box models are useful in other contexts, they are not easy to use
in designing, managing and controlling today’s networks. We implemented a well-
known model, the M/Pareto model within the discrete event simulation package
COMNET that allows the analysis of the negative impact of self-similar traffic on
not just one single queue, but on the overall performance of various interrelated
network components as well. Using real network traces, we built and validated a
model by which we could measure and graphically illustrate the impact of bursty
traffic on link utilisation, message delays, and buffer performance of Frame Relay
and ATM networks. We illustrated that increasing burstiness results in extremely
high link utilisation, response time, and dropped packets, and measured the various
performance parameters by simulation.

The choice of the package emphasises the need for integrated tools that could be
useful not just for theoreticians, but also for network engineers and designers. Our
paper intends to narrow the gap between existing, well-known theoretical results
and their applicability in everyday, practical network analysis and modelling. It is
highly desirable that appropriate traffic models should be accessible from measur-
ing, monitoring, and controlling tools. Our model can help network designers and
engineers, the ultimate users of traffic modelling, understand the dynamic nature of
network traffic and assist them in their everyday practice.

14.9. Appendix A

14.9.1. Measurements for link utilisation

The following charts demonstrate that even though the average link utilisation for
the various Hurst parameters is almost identical, the frequency and the size of the
peaks increase with the burstiness, causing cell drops in routers and switches. The
utilisation is expressed in the [0, 1] scale not in percentages:

14.9.2. Measurements for message delays

Figures 14.43–14.45 illustrate the relation between response time and various Hurst
parameters:

Exercises
14.9-1 Name some attributes, events, activities and state variables that belong to



14.9. Appendix A 691

Figure 14.40 Utilisation of the frame relay link for fixed size messages.

Figure 14.41 Utilisation of the frame relay link for Hurst parameter H = 0.55.

Figure 14.42 Utilisation of the frame relay link for Hurst parameter H = 0.95 (many high peaks).

the following concepts:

• Server

• Client

• Ethernet

• Packet switched network



692 14. Network Simulation

Figure 14.43 Message delay for fixed size message.

Figure 14.44 Message delay for H = 0.55 (longer response time peaks).

Figure 14.45 Message delay for H = 0.95 (extremely long response time peak).

• Call set up in cellular mobile network

• TCP Slow start algorithm

14.9-2 Read the article about the application of the network simulation and write
a report about how the article approaches the validation of the model.
14.9-3 For this exercise it is presupposed that there is a network analyser software



14.9. Appendix A 693

(e.g., LAN Analyzer for Windows or any similar) available to analyse the network
traffic. We use the mentioned software thereinafter.

• Let’s begin to transfer a file between a client and a server on the LAN. Observe
the detailed statistics of the utilisation of the datalink and the number of packets
per second then save the diagram.

• Read the Capturing and analysing Packet chapter in the Help of LAN Analyzer.

• Examine the packets between the client and the server during the file transfer.

• Save the captured trace information about the packets in .csv format. Analyse
this file using spreadsheet manager. Note if there are any too long time intervals
between two packets, too many bad packets, etc. in the unusual protocol events.

14.9-4 In this exercise we examine the network analysing and baseline maker func-
tions of the Sniffer. The baseline defines the activities that characterise the network.
By being familiar with this we can recognise the non-normal operation. This can
be caused by a problem or the growing of the network. Baseline data has to be col-
lected in case of typical network operation. For statistics like bandwidth utilization
and number of packets per second we need to make a chart that illustrates the infor-
mation in a given time interval. This chart is needed because sampled data of a too
short time interval can be false. After adding one or more network component a new
baseline should be made, so that later the activities before and after the expansion
can be compared. The collected data can be exported to be used in spreadsheet
managers and modelling tools, that provides further analysing possibilities and is
helpful in handling gathered data.

Sniffer is a very effective network analysing tool. It has several integrated func-
tions.

• Gathering traffic-trace information for detailed analysis.

• Problem diagnosis with Expert Analyzer.

• Real-time monitoring of the network activities.

• Collecting detailed error and utilization statistics of nodes, dialogues or any parts
of the network.

• Storing the previous utilization and fault information for baseline analysis.

• When a problem occurs it creates visible or audible alert notifications for the
administrators.

• For traffic simulation monitoring of the network with active devices, measuring
the response time, hop counting and faults detection.

• The Histroy Samples option of the Monitor menu allows us to record the network
activities within a given time interval. This data can be applied for baseline
creation that helps to set some thresholds. In case of non-normal operation by
exceeding these thresholds some alerts are triggered. Furthermore this data is
useful to determine the long-period alteration of the network load, therefore
network expansions can be planned forward.

• Maximum 10 of network activities can be monitored simultaneously. Multiple



694 14. Network Simulation

statistics can be started for a given activity, accordingly short-period and long-
period tendencies can be analysed concurrently. Network activities that are avail-
able for previous statistics depends on the adapter selected in the Adapter dia-
logue box. For example in case of a token ring network the samples of different
token ring frame types (e.g, Beacon frames), in Frame Relay networks the sam-
ples of different Frame Relay frame types (e.g, LMI frames) can be observed.
The available events depend on the adapter.

Practices:

• Set up a filter (Capture/Define filter) between your PC and a remote Worksta-
tion to sample the IP traffic.

• Set up the following at the Monitor/History Samples/Multiple History:
Octets/sec, utilization, Packets/sec, Collisions/sec and Broadcasts/sec.

• Configure sample interval for 1 sec. (right click on the Multiple icon and Prop-
erties/Sample).

• Start network monitoring (right click on the Multiple icon and Start Sample).

• Simulate a typical network traffic, e.g, download a large file from a server.

• Record the ”Multiple History" during this period of time. This can be considered
as baseline.

• Set the value of the Octets/sec tenfold of the baseline value at the
Tools/Options/MAC/Threshold. Define an alert for the Octets/sec: When this
threshold exceeded, a message will be sent to our email address. On Figure 14.46
we suppose that this threshold is 1,000.

• Alerts can be defined as shown in Figure 14.47.

• Set the SMTP server to its own local mail server (Figure 14.48).

• Set the Severity of the problem to Critical (Figure 14.49).

• Collect tracing information (Capture/Start) about network traffic during file
download.

• Stop capture after finished downloading (Capture/Stop then Display).

• Analyse the packets’ TCP/IP layers with the Expert Decode option.

• Check the ”Alert message" received from Sniffer Pro. Probably a similar message
will be arrived that includes the octets/sec threshold exceeded:

From: ...

Subject: Octets/s: current value = 22086, High Threshold = 9000

To: ...

This event occurred on ...

Save the following files:

• The ”Baseline screens"

• The Baseline Multiple History.csv file

• The ”alarm e-mail".



14.9. Appendix A 695

Figure 14.46 Settings.

14.9-5 The goal of this practice is to build and validate a baseline model using a
network modelling tool. It’s supposed that a modelling tool such as COMNET or
OPNET is available for the modeller.

First collect response time statistics by pinging a remote computer. The ping
command measures the time required for a packet to take a round trip between
the client and the server. A possible format of the command is the following: ping
hostname -n x -l y -w z > filename where ”x" is the number of packet to be sent,
”y" is the packet length in bytes, ”z" is the time value and ”filename" is the name of
the file that includes the collected statistics.

For example the ping 138.87.169.13 -n 5 -l 64 > c:
ping.txt command results the following file:

Pinging 138.87.169.13 with 64 bytes of data:

Reply from 138.87.169.13: bytes=64 time=178ms TTL=124

Reply from 138.87.169.13: bytes=64 time=133ms TTL=124

Reply from 138.87.169.13: bytes=64 time=130ms TTL=124

Reply from 138.87.169.13: bytes=64 time=127ms TTL=124



696 14. Network Simulation

Figure 14.47 New alert action.

Figure 14.48 Mailing information.



14.9. Appendix A 697

Figure 14.49 Settings.

Reply from 138.87.169.13: bytes=64 time=127ms TTL=124

• Create a histogram for these time values and the sequence number of the packets
by using a spreadsheet manager.

• Create a histogram about the number of responses and the response times.

• Create the cumulative density function of the response times indicating the de-
tails at the tail of the distribution.

• Create the baseline model of the transfers. Define the traffic attributes by the
density function created in the previous step.

• Validate the model.

• How much is the link utilization in case of messages with length of 32 and 64
bytes?

14.9-6 It is supposed that a modelling tool (e.g., COMNET, OPNET, etc.) is
available for the modeller. In this practice we intend to determine the place of some
frequently accessed image file in a lab. The prognosis says that the addition of clients
next year will triple the usage of these image files. These files can be stored on the
server or on the client workstation. We prefer storing them on a server for easier
administration. We will create a baseline model of the current network, we measure
the link-utilization caused by the file transfers. Furthermore we validate the model



698 14. Network Simulation

with the correct traffic attributes. By scaling the traffic we can create a forecast
about the link- utilization in case of trippled traffic after the addition of the new
clients.

• Create the topology of the baseline model.

• Capture traffic trace information during the transfer and import them.

• Run and validate the model (The number of transferred messages in the model
must be equal to the number in the trace file, the time of simulation must be
equal to the sum of the Interpacket Times and the link utilization must be equal
to the average utilization during capture).

• Print reports about the number of transferred messages, the message delays, the
link utilization of the protocols and the total utilization of the link.

• Let’s triple the traffic.

• Print reports about the number of transferred messages, the message delay, the
link utilization of the protocols and the total utilization of the link.

• If the link-utilization is under the baseline threshold then we leave the images
on the server otherwise we move them to the workstations.

• What is your recommendation: Where is better place to store the image files,
the client or the server?

14.9-7 The aim of this practice to compare the performance of the shared and the
switched Ethernet. It can be shown that transformation of the shared Ethernet to
switched one is only reasonable if the number of collisions exceeds a given threshold.

a. Create the model of a client/server application that uses shared Ethernet LAN.
The model includes 10Base5 Ethernet that connects one Web server and three group
of workstations. Each group has three PCs, furthermore each group has a source
that generates ”Web Request" messages. The Web server application of the server
responds to them. Each ”Web Request" generates traffic toward the server. When
the ”Web Request" message is received by the server a ”Web Response" message is
generated and sent to the appropriate client.

• Each ”Web Request" means a message with 10,000 bytes of length sent by the
source to the Web Server every Exp(5) second. Set the text of the message to
”Web Request".

• The Web server sends back a message with the ”Web Response" text. The size
of the message varies between 10,000 and 100,000 bytes that determined by the
Geo(10000, 100000) distribution. The server responds only to the received ”Web
Request" messages. Set the reply message to ”Web Response".

• For the rest of the parameters use the default values.

• Select the ”Channel Utilization" and the (”Collision Stats") at the (”Links Re-
ports").

• Select the ”Message Delay" at the (”Message + Response Source Report").

• Run the simulation for 100 seconds. Animation option can be set.



14.9. Appendix A 699

• Print the report that shows the ”Link Utilization", the ”Collision Statistics" and
the report about the message delays between the sources of the traffic.

b. In order to reduce the response time transform the shared LAN to switched
LAN. By keeping the clien/server parameters unchanged, deploy an Ethernet switch
between the clients and the server. (The server is connected to the switch with full
duplex 10Base5 connection.)

• Print the report of ”Link Utilization" and ”Collision Statistics", furthermore the
report about the message delays between the sources of the traffic.

c. For all of the two models change the 10Base5 connections to 10BaseT. Un-
like the previous situations we will experience a non-equivalent improvement of the
response times. We have to give explanation.

14.9-8 A part of a corporate LAN consists of two subnets. Each of them serves a
department. One operates according to IEEE 802.3 CSMA/CD 10BaseT Ethernet
standard, while the other communicates with IEEE 802.5 16Mbps Token Ring stan-
dard. The two subnets are connected with a Cisco 2500 series router. The Ethernet
LAN includes 10 PCs, one of them functions as a dedicated mail server for all the two
departments. The Token Ring LAN includes 10 PC’s as well, one of them operates
as a file server for the departments.

The corporation plans to engage employees for both departments. Although
the current network configuration won’t be able to serve the new employees, the
corporation has no method to measure the network utilization and its latency. Before
engaging the new employees the corporation would like to estimate these current
baseline levels. Employees have already complained about the slowness of download
from the file server.

According to a survey, most of the shared traffic flown through the LAN origi-
nates from the following sources: electronic mailing, file transfers of applications and
voice based messaging systems (Leaders can send voice messages to their employees).
The conversations with the employees and the estimate of the average size of the
messages provides the base for the statistical description of the message parameters.

E-mailing is used by all employees in both departments. The interviews revealed
that the time interval of the mail sending can be characterised with an Exponential
distribution. The size of the mails can be described with an Uniform distribution
accordingly the mail size is between 500 and 2,000 bytes. All of the emails are
transferred to the email server located in the Ethernet LAN, where they are be
stored in the appropriate user’s mailbox.

The users are able to read messages by requesting them from the email server.
The checking of the mailbox can be characterised with a Poisson distribution whose
mean value is 900 seconds. The size of the messages used for this transaction is 60
bytes. When a user wants to download an email, the server reads the mailbox file
that belongs to the user and transfers the requested mail to the user’s PC. The time
required to read the files and to process the messages inside can be described with
an Uniform distribution that gathers its value from the interval of 3 and 5 seconds.
The size of the mails can be described with a normal distribution whose mean value
is 40,000 bytes and standard deviation is 10,000 bytes.



700 14. Network Simulation

Figure 14.50 Network topology.

Both departments have 8 employees, each of them has their own computer,
furthermore they download files from the file server. Arrival interval of these requests
can be described as an Exponential distribution with a mean value of 900 ms. The
requests’ size follows Uniform distribution, with a minimum of 10 bytes minimum
and a maximum of 20 bytes. The requests are only sent to the file server located in
the Token Ring network. When a request arrives to the server, it read the requested
file and send to the PC. This processing results in a very low latency. The size of the
files can be described with a normal distribution whose mean value is 20,000 bytes
and standard deviation is 25,000 bytes.

Voice-based messaging used only by the heads of the two departments, sending
such messages only to theirs employees located in the same department. The sender
application makes connection to the employee’s PC. After successful connection the
message will be transferred. The size of these messages can be described by normal
distribution with a mean value of 50,000 bytes and a standard deviation of 1,200
bytes. Arrival interval can be described with a Normal distribution whose mean
value is 1,000 seconds and standard deviation is 10 bytes.

TCP/IP is used by all message sources, and the estimated time of packet
construction is 0.01 ms.

The topology of the network must be similar to the one in COMNET, Figure
14.50.

The following reports can be used for the simulation:

• Link Reports: Channel Utilization and Collision Statistics for each link.

• Node Reports: Number of incoming messages for the node.



Notes for Chapter 14 701

• Message and Response Reports: The delay of the messages for each node.

• Session Source Reports: Message delay for each node.

By running the model, a much higher response time will be observed at the file
server. What type of solution can be proposed to reduce the response time when the
quality of service level requires a lower response time? Is it a good idea to set up a
second file server on the LAN? What else can be modified?

Chapter Notes

Law and Kelton’s monography [157] provides a good overview about the network
systems e.g. we definition of the networks in Section 14.1 is taken from it.

About the classification of computer networks we propose two monography,
whose authors are Sima, Fountain és Kacsuk [231], and Tanenbaum [240]

Concerning the basis of probability the book of Alfréd, Rényi [215] is recom-
mended. We have summarised the most common statistical distribution by the book
of Banks et al. [21]. The review of COMNET simulation modelling tool used to de-
pict the density functions can be found in two publications of CACI (Consolidated
Analysis Centers, Inc.) [39, 135].

Concerning the background of mathematical simulation the monography of Ross
[219], and concerning the queueing theory the book of Kleinrock [143] are useful.

The definition of channel capacity can be found in the dictionaries that are
available on the Internet [?, ?]. Information and code theory related details can be
found in Jones and Jones’ book [134].

Taqqu and Co. [161, 243] deal with long-range dependency.
Figure 14.1 that describes the estimations of the most common distributions in

network modelling is taken from the book of Banks, Carson és Nelson könyvéből
[21].

The OPNET software and its documentation can be downloaded from the ad-
dress found in [?]. Each phase of simulation is discussed fully in this document.

The effect of traffic burstiness is analysed on the basis of Tibor Gyires’s and H.
Joseph Wenn’s articles [112, 113].

Leland and Co. [160, ?], Crovella and Bestavros [55] report measurements about
network traffic.

The self-similarity of networks is dealt by Erramilli, Narayan and Willinger [72],
Willinger and Co. [265], and Beran [27]. Mandelbrot [175], Paxson és Floyd [201],
furthermore the long-range dependent processes was studied by Mandelbrot and van
Ness [176].

Traffic routing models can be found in the following publications: [12, 116, 130,
?, 190, 191, 200, 265]. Neuts, Marcel F.

Figure 14.22 is from the article of Listanti, Eramo and Sabella [165] The papers
[28, 67, 108, 201] contains data on traffic.

Long-range dependency was analysed by Addie, Zukerman and Neame [3],
Duffield and O’Connell [66], and Narayan and Willinger [72].

The expression of black box modelling was introduced by Willinger and Paxson



702 14. Network Simulation

[263] in 1997.
Information about the principle of Ockham’s Razor can be found on the web page

of Francis Heylighen [?]. More information about Sniffer is on Network Associates’
web site [?].

Willinger, Taqqu, Sherman and Wilson [264] analyse a structural model. Crovella
and Bestavros [55] analysed the traffic of World Wide Web.

The effect of burstiness to network congestion is dealt by Neuts [190], and Mol-
nár, Vidács, and Nilsson [?].

The pareto-model and the effect of the Hurst parameter is studied by Addie,
Zukerman and Neame [3].

The Benoit-package can be downloaded from the Internet [250].



15. Parallel Computations

Parallel computations is concerned with solving a problem faster by using multi-
ple processors in parallel. These processors may belong to a single machine, or to
different machines that communicate through a network. In either case, the use of
parallelism requires to split the problem into tasks that can be solved simultaneously.

In the following, we will take a brief look at the history of parallel computing,
and then discuss reasons why parallel computing is harder than sequential comput-
ing. We explain differences from the related subjects of distributed and concurrent
computing, and mention typical application areas. Finally, we outline the rest of this
chapter.

Although the history of parallel computing can be followed back even longer,
the first parallel computer is commonly said to be Illiac IV, an experimental 64-
processor machine that became operational in 1972. The parallel computing area
boomed in the late 80s and early 90s when several new companies were founded
to build parallel machines of various types. Unfortunately, software was difficult to
develop and non-portable at that time. Therefore, the machines were only adopted
in the most compute-intensive areas of science and engineering, a market too small
to commence for the high development costs. Thus many of the companies had to
give up.

On the positive side, people soon discovered that cheap parallel computers can
be built by interconnecting standard PCs and workstations. As networks became
faster, these so-called clusters soon achieved speeds of the same order as the special-
purpose machines. At present, the Top 500 list, a regularly updated survey of the
most powerful computers worldwide, contains 42% clusters. Parallel computing also
profits from the increasing use of multiprocessor machines which, while designed as
servers for web etc., can as well be deployed in parallel computing. Finally, software
portability problems have been solved by establishing widely used standards for
parallel programming. The most important standards, MPI and OpenMP, will be
explained in Subsections 15.3.1 and 15.3.2 of this book.

In summary, there is now an affordable hardware basis for parallel computing.
Nevertheless, the area has not yet entered the mainstream, which is largely due
to difficulties in developing parallel software. Whereas writing a sequential program
requires to find an algorithm, that is, a sequence of elementary operations that solves



704 15. Parallel Computations

the problem, and to formulate the algorithm in a programming language, parallel
computing poses additional challenges:

• Elementary operations must be grouped into tasks that can be solved concur-
rently.

• The tasks must be scheduled onto processors.
• Depending on the architecture, data must be distributed to memory modules.
• Processes and threads must be managed, i.e., started, stopped and so on.
• Communication and synchronisation must be organised.

Of course, it is not sufficient to find any grouping, schedule etc. that work, but it
is necessary to find solutions that lead to fast programs. Performance measures and
general approaches to performance optimisation will be discussed in Section 15.2,
where we will also elaborate on the items above. Unlike in sequential computing,
different parallel architectures and programming models favour different algorithms.

In consequence, the design of parallel algorithms is more complex than the design
of sequential algorithms. To cope with this complexity, algorithm designers often use
simplified models. For instance, the Parallel Random Access Machine (see Subsection
15.4.1) provides a model in which opportunities and limitations of parallelisation can
be studied, but it ignores communication and synchronisation costs.

We will now contrast parallel computing with the related fields of distributed
and concurrent computing. Like parallel computing, distributed computing uses in-
terconnected processors and divides a problem into tasks, but the purpose of division
is different. Whereas in parallel computing, tasks are executed at the same time, in
distributed computing tasks are executed at different locations, using different re-
sources. These goals overlap, and many applications can be classified as both parallel
and distributed, but the focus is different. Parallel computing emphasises homoge-
neous architectures, and aims at speeding up applications, whereas distributed com-
puting deals with heterogeneity and openness, so that applications profit from the
inclusion of different kinds of resources. Parallel applications are typically stand-
alone and predictable, whereas distributed applications consist of components that
are brought together at runtime.

Concurrent computing is not bound to the existence of multiple processors, but
emphasises the fact that several sub-computations are in progress at the same time.
The most important issue is guaranteeing correctness for any execution order, which
can be parallel or interleaved. Thus, the relation between concurrency and paral-
lelism is comparable to the situation of reading several books at a time. Reading the
books concurrently corresponds to having a bookmark in each of them and to keep
track of all stories while switching between books. Reading the books in parallel, in
contrast, requires to look into all books at the same time (which is probably impos-
sible in practice). Thus, a concurrent computation may or may not be parallel, but a
parallel computation is almost always concurrent. An exception is data parallelism,
in which the instructions of a single program are applied to different data in parallel.
This approach is followed by SIMD architectures, as described below.

For the emphasis on speed, typical application areas of parallel computing are
science and engineering, especially numerical solvers and simulations. These appli-
cations tend to have high and increasing computational demands, since more com-



15.1. Parallel architectures 705

puting power allows one to work with more detailed models that yield more accurate
results. A second reason for using parallel machines is their higher memory capacity,
due to which more data fit into a fast memory level such as cache.

The rest of this chapter is organised as follows: In Section 15.1, we give a brief
overview and classification of current parallel architectures. Then, we introduce basic
concepts such as task and process, and discuss performance measures and general
approaches to the improvement of efficiency in Section 15.2. Next, Section 15.3
describes parallel programming models, with focus on the popular MPI and OpenMP
standards. After having given this general background, the rest of the chapter delves
into the subject of parallel algorithms from a more theoretical perspective. Based on
example algorithms, techniques for parallel algorithm design are introduced. Unlike
in sequential computing, there is no universally accepted model for parallel algorithm
design and analysis, but various models are used depending on purpose. Each of the
models represents a different compromise between the conflicting goals of accurately
reflecting the structure of real architectures on one hand, and keeping algorithm
design and analysis simple on the other. Section 15.4 gives an overview of the models,
Section 15.5 introduces the basic concepts of parallel algorithmics, Sections 15.6 and
15.7 explain deterministic example algorithms for PRAM and mesh computational
model.

15.1. Parallel architectures

A simple, but well-known classification of parallel architectures has been given in
1972 by Michael Flynn. He distinguishes computers into four classes: SISD, SIMD,
MISD, and MIMD architectures, as follows:

• SI stands for “single instruction”, that is, the machine carries out a single in-
struction at a time.

• MI stands for “multiple instruction”, that is, different processors may carry out
different instructions at a time.

• SD stands for “single data”, that is, only one data item is processed at a time.

• MD stands for “multiple data”, that is, multiple data items may be processed
at a time.

SISD computers are von-Neumann machines. MISD computers have probably never
been built. Early parallel computers were SIMD, but today most parallel computers
are MIMD. Although the scheme is of limited classification power, the abbreviations
are widely used.

The following more detailed classification distinguishes parallel machines into
SIMD, SMP, ccNUMA, nccNUMA, NORMA, clusters, and grids.

15.1.1. SIMD architectures

As depicted in Figure 15.1, a SIMD computer is composed of a powerful control
processor and several less powerful processing elements (PEs). The PEs are typically
arranged as a mesh so that each PE can communicate with its immediate neighbours.



706 15. Parallel Computations

Control

Processor

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

Figure 15.1 SIMD architecture.

A program is a single thread of instructions. The control processor, like the processor
of a sequential machine, repeatedly reads a next instruction and decodes it. If the
instruction is sequential, the control processor carries out the instruction on data in
its own memory. If the instruction is parallel, the control processor broadcasts the
instruction to the various PEs, and these simultaneously apply the instruction to
different data in their respective memories. As an example, let the instruction be
LD reg, 100. Then, all processors load the contents of memory address 100 to reg,
but memory address 100 is physically different for each of them. Thus, all processors
carry out the same instruction, but read different values (therefore “SIMD”). For
a statement of the form if test then if_branch else else_branch, first all
processors carry out the test simultaneously, then some carry out if_branch while
the rest sits idle, and finally the rest carries out else_branch while the formers
sit idle. In consequence, SIMD computers are only suited for applications with a
regular structure. The architectures have been important historically, but nowadays
have almost disappeared.

15.1.2. Symmetric multiprocessors

Symmetric multiprocessors (SMP) contain multiple processors that are connected to
a single memory. Each processor may access each memory location through standard
load/store operations of the hardware. Therefore, programs, including the operat-
ing system, must only be stored once. The memory can be physically divided into
modules, but the access time is the same for each pair of a processor and a memory
module (therefore “symmetric”). The processors are connected to the memory by
a bus (see Figure 15.2), by a crossbar, or by a network of switches. In either case,
there is a delay for memory accesses which, partially due to competition for network
resources, grows with the number of processors.

In addition to main memory, each processor has one or several levels of cache



15.1. Parallel architectures 707

P

C

M

P

C

M

P

C

M

P

C

M

Bus

Figure 15.2 Bus-based SMP architecture.

P

M

C

P

M

C

P

M

C...

Interconnection Network

Figure 15.3 ccNUMA architecture.

with faster access. Between memory and cache, data are moved in units of cache lines.
Storing a data item in multiple caches (and writing to it) gives rise to coherency
problems. In particular, we speak of false sharing if several processors access the
same cache line, but use different portions of it. Since coherency mechanisms work
at the granularity of cache lines, each processor assumes that the other would have
updated its data, and therefore the cache line is sent back and forth.

15.1.3. Cache-coherent NUMA architectures:

NUMA stands for Non-Uniform Memory Access, and contrasts with the symmetry
property of the previous class. The general structure of ccNUMA architectures is
depicted in Figure 15.3. As shown in the figure, each processor owns a local memory,
which can be accessed faster than the rest called remote memory. All memory is
accessed through standard load/store operations, and hence programs, including
the operating system, must only be stored once. As in SMPs, each processor owns
one or several levels of cache; cache coherency is taken care of by the hardware.

15.1.4. Non-cache-coherent NUMA architectures:

nccNUMA (non cache coherent Non-Uuniform Memory Access) architectures differ
from ccNUMA architectures in that the hardware puts into a processor’s cache only



708 15. Parallel Computations

data from local memory. Access to remote memory can still be accomplished through
standard load/store operations, but it is now up to the operating system to first move
the corresponding page to local memory. This difference simplifies hardware design,
and thus nccNUMA machines scale to higher processor numbers. On the backside,
the operating system gets more complicated, and the access time to remote memory
grows. The overall structure of Figure 15.3 applies to nccNUMA architectures as
well.

15.1.5. No remote memory access architectures

NORMA (NO Remote Memory Acess) architectures differ from the previous class
in that the remote memory must be accessed through slower I/O operations as
opposed to load/store operations. Each node, consisting of processor, cache and local
memory, as depicted in Figure 15.3, holds an own copy of the operating system, or at
least of central parts thereof. Whereas SMP, ccNUMA, and nccNUMA architectures
are commonly classified as shared memory machines, SIMD architectures, NORMA
architectures, clusters, and grids (see below) fall under the heading of distributed
memory.

15.1.6. Clusters

According to Pfister, a cluster is a type of parallel or distributed system that consists
of a collection of interconnected whole computers that are used as a single, unified
computing resource. Here, the term “whole computer” denotes a PC, workstation or,
increasingly important, SMP, that is, a node that consists of processor(s), memory,
possibly peripheries, and operating system. The use as a single, unified computing
resource is also denoted as single system image SSI. For instance, we speak of SSI if
it is possible to login into the system instead of into individual nodes, or if there is a
single file system. Obviously, the SSI property is gradual, and hence the borderline
to distributed systems is fuzzy. The borderline to NORMA architectures is fuzzy as
well, where the classification depends on the degree to which the system is designed
as a whole instead of built from individual components.

Clusters can be classified according to their use for parallel computing, high
throughput computing, or high availability. Parallel computing clusters can be fur-
ther divided into dedicated clusters, which are solely built for the use as parallel
machines, and campus-wide clusters, which are distributed systems with part-time
use as a cluster. Dedicated clusters typically do not contain peripheries in their
nodes, and are interconnected through a high-speed network. Nodes of campus-wide
clusters, in contrast, are often desktop PCs, and the standard network is used for
intra-cluster communication.

15.1.7. Grids

A grid is a hardware/software infrastructure for shared usage of resources and prob-
lem solution. Grids enable coordinated access to resources such as processors, mem-
ories, data, devices, and so on. Parallel computing is one out of several emerging
application areas. Grids differ from other parallel architectures in that they are



15.2. Performance in practice 709

large, heterogeneous, and dynamic. Management is complicated by the fact that
grids cross organisational boundaries.

15.2. Performance in practice

As explained in the introduction, parallel computing splits a problem into tasks that
are solved independently. The tasks are implemented as either processes or threads.
A detailed discussion of these concepts can be found in operating system textbooks
such as Tanenbaum. Briefly stated, processes are programs in execution. For each
process, information about resources such as memory segments, files, and signals
is stored, whereas threads exist within processes such that multiple threads share
resources. In particular, threads of a process have access to shared memory, while
processes (usually) communicate through explicit message exchange. Each thread
owns a separate PC and other register values, as well as a stack for local variables.
Processes can be considered as units for resource usage, whereas threads are units
for execution on the CPU. As less information needs to be stored, it is faster to
create, destroy and switch between threads than it is for processes.

Whether threads or processes are used, depends on the architecture. On shared-
memory machines, threads are usually faster, although processes may be used for
program portability. On distributed memory machines, only processes are a priori
available. Threads can be used if there is a software layer (distributed shared mem-
ory) that implements a shared memory abstraction, but these threads have higher
communication costs.

Whereas the notion of tasks is problem-related, the notions of processes and
threads refer to implementation. When designing an algorithm, one typically iden-
tifies a large number of tasks that can potentially be run in parallel, and then maps
several of them onto the same process or thread.

Parallel programs can be written in two styles that can also be mixed: With data
parallelism, the same operation is applied to different data at a time. The operation
may be a machine instruction, as in SIMD architectures, or a complex operation such
as a function application. In the latter case, different processors carry out different
instructions at a time. With task parallelism, in contrast, the processes/threads
carry out different tasks. Since a function may have an if or case statement as the
outermost construct, the borderline between data parallelism and task parallelism
is fuzzy.

Parallel programs that are implemented with processes can be further classi-
fied as using Single Program Multiple Data (SPMD) or Multiple Program Multi-
ple Data (MPMD) coding styles. With SPMD, all processes run the same pro-
gram, whereas with MPMD they run different programs. MPMD programs are task-
parallel, whereas SPMD programs may be either task-parallel or data-parallel. In
SPMD mode, task parallelism is expressed through conditional statements.

As the central goal of parallel computing is to run programs faster, performance
measures play an important role in the field. An obvious measure is execution time,
yet more frequently the derived measure of speedup is used. For a given problem,



710 15. Parallel Computations

Speedup

linear speedup

superlinear speedup

typical speedup

p

Figure 15.4 Ideal, typical, and super-linear speedup curves.

speedup is defined by

speedup(p) =
T1

Tp
,

where T1 denotes the running time of the fastest sequential algorithm, and Tp de-
notes the running time of the parallel algorithm on p processors. Depending on
context, speedup may alternatively refer to using p processes or threads instead of
p processors. A related, but less frequently used measure is efficiency, defined by

efficiency(p) =
speedup(p)

p
.

Unrelated to this definition, the term efficiency is also used informally as a synonym
for good performance.

Figure 15.4 shows ideal, typical, and super-linear speedup curves. The ideal curve
reflects the assumption that an execution that uses twice as many processors requires
half of the time. Hence, ideal speedup corresponds to an efficiency of one. Super-
linear speedup may arise due to cache effects, that is, the use of multiple processors
increases the total cache size, and thus more data accesses can be served from cache
instead of from slower main memory.

Typical speedup stays below ideal speedup, and grows up to some number of pro-
cessors. Beyond that, use of more processors slows down the program. The difference
between typical and ideal speedups has several reasons:

• Amdahl’s law states that each program contains a serial portion s that is not
amenable to parallelisation. Hence, Tp > s, and thus speedup(p) < T1/s, that is,
the speedup is bounded from above by a constant. Fortunately, another observa-
tion, called Gustafson-Barsis law reduces the practical impact of Amdahl’s law.
It states that in typical applications, the parallel variant does not speed up a
fixed problem, but runs larger instances thereof. In this case, s may grow slower
than T1, so that T1/s is no longer constant.

• Task management, that is, the starting, stopping, interrupting and scheduling
of processes and threads, induces a certain overhead. Moreover, it is usually
impossible, to evenly balance the load among the processes/threads.



15.2. Performance in practice 711

• Communication and synchronisation slow down the program. Communication
denotes the exchange of data, and synchronisation denotes other types of coor-
dination such as the guarantee of mutual exclusion. Even with high-speed net-
works, communication and synchronisation costs are orders of magnitude higher
than computation costs. Apart from physical transmission costs, this is due to
protocol overhead and delays from competition for network resources.

Performance can be improved by minimising the impact of the factors listed above.
Amdahl’s law is hard to circumvent, except that a different algorithm with smaller
s may be devised, possibly at the price of larger T1. Algorithmic techniques will be
covered in later sections; for the moment, we concentrate on the other performance
factors.

As explained in the previous section, tasks are implemented as processes or
threads such that a process/thread typically carries out multiple tasks. For high
performance, the granularity of processes/threads should be chosen in relation to
the architecture. Too many processes/threads unnecessarily increase the costs of
task management, whereas too few processes/threads lead to poor machine usage.
It is useful to map several processes/threads onto the same processor, since the pro-
cessor can switch when it has to wait for I/O or other delays. Large-granularity
processes/threads have the additional advantage of a better communication-to-
computation ratio, whereas fine-granularity processes/threads are more amenable
to load balancing.

Load balancing can be accomplished with static or dynamic schemes. If the run-
ning time of the tasks can be estimated in advance, static schemes are preferable. In
these schemes, the programmer assigns to each process/thread some number of tasks
with about the same total costs. An example of a dynamic scheme is master/slave.
In this scheme, first a master process assigns one task to each slave process. Then,
repeatedly, whenever a slave finishes a task, it reports to the master and is assigned
a next task, until all tasks have been processed. This scheme achieves good load
balancing at the price of overhead for task management.

The highest impact on performance usually comes from reducing communica-
tion/synchronisation costs. Obvious improvements result from changes in the archi-
tecture or system software, in particular from reducing latency, that is, the delay
for accessing a remote data item, and bandwidth, that is, the amount of data that
can be transferred per unit of time.

The algorithm designer or application programmer can reduce communica-
tion/synchronisation costs by minimising the number of interactions. An important
approach to achieve this minimisation is locality optimisation. Locality, a property
of (sequential or parallel) programs, reflects the degree of temporal and spatial con-
centration of accesses to the same data. In distributed-memory architectures, for
instance, data should be stored at the processor that uses the data. Locality can be
improved by code transformations, data transformations, or a combination thereof.



712 15. Parallel Computations

P1

P2

P3

a)
P1

P2

P3

b)

Figure 15.5 Locality optimisation by data transformation.

As an example, consider the following program fragment to be executed on three
processors:

for (i=0; i<N; i++) in parallel

for (j=0; j<N; j++)

f(A[i][j]);

Here, the keyword “in parallel” means that the iterations are evenly distributed
among the processors so that P0 runs iterations i = 0, . . . , N/3, P1 runs iterations
i = N/3 + 1, . . . , 2N/3, and P2 runs iterations i = 2N/3 + 1, . . . , N − 1 (rounded if
necessary). The function f is supposed to be free of side effects.

With the data distribution of Figure 15.5a), locality is poor, since many accesses
refer to remote memory. Locality can be improved by changing the data distribution
to that of Figure 15.5b) or, alternatively, by changing the program into

for (j=0; j<N; j++) in parallel

for (i=0; i<N; i++)

f(A[i][j]);

The second alternative, code transformations, has the advantage of being appli-
cable selectively to a portion of code, whereas data transformations influence the
whole program so that an improvement in one part may slow down another. Data
distributions are always correct, whereas code transformations must respect data
dependencies, which are ordering constraints between statements. For instance, in

a = 3; (1)

b = a; (2)

a data dependence occurs between statements (1) and (2). Exchanging the state-
ments would lead to an incorrect program.

On shared-memory architectures, a programmer does not the specify data distri-
bution, but locality has a high impact on performance, as well. Programs run faster
if data that are used together are stored in the same cache line. On shared-memory
architectures, the data layout is chosen by the compiler, e.g. row-wise in C. The pro-
grammer has only indirect influence through the manner in which he or she declares
data structures.

Another opportunity to reduce communication costs is replication. For instance,
it pays off to store frequently used data at multiple processors, or to repeat short
computations instead of communicating the result.



15.3. Parallel programming 713

Synchronisations are necessary for correctness, but they slow down program ex-
ecution, first because of their own execution costs, and second because they cause
processes to wait for each other. Therefore, excessive use of synchronisation should be
avoided. In particular, critical sections (in which processes/threads require exclusive
access to some resource) should be kept at a minimum. We speak of sequentiali-
sation if only one process is active at a time while the others are waiting.

Finally, performance can be improved by latency hiding, that is, parallelism
between computation and communication. For instance, a process can start a remote
read some time before it needs the result (prefetching), or write data to remote
memory in parallel to the following computations.

Exercises
15.2-1 For standard matrix multiplication, identify tasks that can be solved in par-
allel. Try to identify as many tasks as possible. Then, suggest different opportunities
for mapping the tasks onto (a smaller number of) threads, and compare these map-
pings with respect to their efficiency on a shared-memory architecture.
15.2-2 Consider a parallel program that takes as input a number n and computes
as output the number of primes in range 2 ≤ p ≤ n. Task Ti of the program should
determine whether i is a prime, by systematically trying out all potential factors,
that is, dividing by 2, . . . ,

√
i. The program is to be implemented with a fixed num-

ber of processes or threads. Suggest different opportunities for this implementation
and discuss their pros and cons. Take into account both static and dynamic load
balancing schemes.
15.2-3 Determine the data dependencies of the following stencil code:

for (t=0; t<tmax; t++)

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] += a[i-1][j] + a[i][j-1]

Restructure the code so that it can be parallelised.
15.2-4 Formulate and prove the bounds of the speedup known as Amdahl law and
Gustafson-Barsis law. Explain the virtual contradiction between these laws. What
can you say on the practical speedup?

15.3. Parallel programming

Partly due to the use of different architectures and the novelty of the field, a large
number of parallel programming models has been proposed. The most popular mod-
els today are message passing as specified in the Message Passing Interface standard
(MPI), and structured shared-memory programming as specified in the OpenMP
standard. These programming models are discussed in Subsections 15.3.1 and 15.3.2,
respectively. Other important models such as threads programming, data parallelism,
and automatic parallelisation are outlined in Subsection 15.3.3.



714 15. Parallel Computations

15.3.1. MPI programming

As the name says, MPI is based on the programming model of message passing.
In this model, several processes run in parallel and communicate with each other
by sending and receiving messages. The processes do not have access to a shared
memory, but accomplish all communication through explicit message exchange. A
communication involves exactly two processes: one that executes a send operation,
and another that executes a receive operation. Beyond message passing, MPI in-
cludes collective operations and other communication mechanisms.

Message passing is asymmetric in that the sender must state the identity of the
receiver, whereas the receiver may either state the identity of the sender, or declare
its willingness to receive data from any source. As both sender and receiver must
actively take part in a communication, the programmer must plan in advance when a
particular pair of processes will communicate. Messages can be exchanged for several
purposes:

• exchange of data with details such as the size and types of data having been
planned in advance by the programmer

• exchange of control information that concerns a subsequent message exchange,
and

• synchronisation that is achieved since an incoming message informs the receiver
about the sender’s progress. Additionally, the sender may be informed about the
receiver’s progress, as will be seen later. Note that synchronisation is a special
case of communication.

The MPI standard has been introduced in 1994 by the MPI forum, a group
of hardware and software vendors, research laboratories, and universities. A signifi-
cantly extended version, MPI-2, appeared in 1997. MPI-2 has about the same core
functionality as MPI-1, but introduces additional classes of functions.

MPI describes a set of library functions with language binding to C, C++, and
Fortran. With notable exceptions in MPI-2, most MPI functions deal with interpro-
cess communication, leaving issues of process management such as facilities to start
and stop processes, open. Such facilities must be added outside the standard, and are
consequently not portable. For this and other reasons, MPI programs typically use
a fixed set of processes that are started together at the beginning of a program run.
Programs can be coded in SPMD or MPMD styles. It is possible to write parallel
programs using only six base functions:

• MPI_Init must be called before any other MPI function.

• MPI_Finalize must be called after the last MPI function.

• MPI_Comm_size yields the total number of processes in the program.

• MPI_Comm_rank yields the number of the calling process, with processes being
numbered starting from 0.



15.3. Parallel programming 715

#include <stdio.h>

#include <string.h>

#include "mpi.h"

int main (int argc, char **argv) {

char msg[20];

int me, total, tag=99;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

MPI_Comm_size(MPI_COMM_WORLD, &total);

if (me==0) {

strcpy(msg, "Hello");

MPI_Send(msg, strlen(msg)+1, MPI_CHAR, 1, tag,

MPI_COMM_WORLD);

}

else if (me==1) {

MPI_Recv(msg, 20, MPI_CHAR, 0, tag, MPI_COMM_WORLD,

&status);

printf("Received: %s \n", msg);

}

MPI_Finalize();

return 0;

}

Figure 15.6 A simple MPI program.

• MPI_Send sends a message. The function has the following parameters:

– address, size, and data type of the message,
– number of the receiver,
– message tag, which is a number that characterises the message in a similar

way like the subject characterises an email,
– communicator, which is a group of processes as explained below.

• MPI_Recv receives a message. The function has the same parameters as
MPI_Send, except that only an upper bound is required for the message size, a
wildcard may be used for the sender, and an additional parameter called status
returns information about the received message, e.g. sender, size, and tag.

Figure 15.6 depicts an example MPI program.
Although the above functions are sufficient to write simple programs, many

more functions help to improve the efficiency and/or structure MPI programs. In
particular, MPI-1 supports the following classes of functions:



716 15. Parallel Computations

• Alternative functions for pairwise communication: The base MPI_Send function,
also called standard mode send, returns if either the message has been delivered
to the receiver, or the message has been buffered by the system. This decision is
left to MPI. Variants of MPI_Send enforce one of the alternatives: In synchronous
mode, the send function only returns when the receiver has started receiving the
message, thus synchronising in both directions. In buffered mode, the system is
required to store the message if the receiver has not yet issued MPI_Recv.

On both the sender and receiver sides, the functions for standard, synchronous,
and buffered modes each come in blocking and nonblocking variants. Blocking
variants have been described above. Nonblocking variants return immediately
after having been called, to let the sender/receiver continue with program exe-
cution while the system accomplishes communication in the background. Non-
blocking communications must be completed by a call to MPI_Wait or MPI_Test
to make sure the communication has finished and the buffer may be reused. Vari-
ants of the completion functions allow to wait for multiple outstanding requests.

MPI programs can deadlock, for instance if a process P0 first issues a send to
process P1 and then a receive from P1; and P1 does the same with respect to
P0. As a possible way-out, MPI supports a combined send/receive function.

In many programs, a pair of processes repeatedly exchanges data with the same
buffers. To reduce communication overhead in these cases, a kind of address
labels can be used, called persistent communication. Finally, MPI functions
MPI_Probe and MPI_Iprobe allow to first inspect the size and other charac-
teristics of a message before receiving it.

• Functions for Datatype Handling: In simple forms of message passing, an array of
equally-typed data (e.g. float) is exchanged. Beyond that, MPI allows to combine
data of different types in a single message, and to send data from non-contiguous
buffers such as every second element of an array. For these purposes, MPI defines
two alternative classes of functions: user-defined data types describe a pattern of
data positions/types, whereas packaging functions help to put several data into
a single buffer. MPI supports heterogeneity by automatically converting data if
necessary.

• Collective communication functions: These functions support frequent patterns
of communication such as broadcast (one process sends a data item to all
other processes). Although any pattern can be implemented by a sequence of
sends/receives, collective functions should be preferred since they improve pro-
gram compactness/understandability, and often have an optimised implemen-
tation. Moreover, implementations can exploit specifics of an architecture, and
so a program that is ported to another machine may run efficiently on the new
machine as well, by using the optimised implementation of that machine.

• Group and communicator management functions: As mentioned above, the send
and receive functions contain a communicator argument that describes a group
of processes. Technically, a communicator is a distributed data structure that
tells each process how to reach the other processes of its group, and contains
additional information called attributes. The same group may be described by



15.3. Parallel programming 717

different communicators. A message exchange only takes place if the commu-
nicator arguments of MPI_Send and MPI_Recv match. Hence, the use of com-
municators partitions the messages of a program into disjoint sets that do not
influence each other. This way, communicators help structuring programs, and
contribute to correctness. For libraries that are implemented with MPI, commu-
nicators allow to separate library traffic from traffic of the application program.
Groups/communicators are necessary to express collective communications. The
attributes in the data structure may contain application-specific information
such as an error handler. In addition to the (intra)communicators described
so far, MPI supports intercommunicators for communication between different
process groups.

MPI-2 adds four major groups of functions:

• Dynamic process management functions: With these functions, new MPI pro-
cesses can be started during a program run. Additionally, independently started
MPI programs (each consisting of multiple processes) can get into contact with
each other through a client/server mechanism.

• One-sided communication functions: One-sided communication is a type of
shared-memory communication in which a group of processes agrees to use part
of their private address spaces as a common resource. Communication is ac-
complished by writing into and reading from that shared memory. One-sided
communication differs from other shared-memory programming models such as
OpenMP in that explicit function calls are required for the memory access.

• Parallel I/O functions: A large set of functions allows multiple processes to
collectively read from or write to the same file.

• Collective communication functions for intercommunicators: These functions
generalise the concept of collective communication to intercommunicators. For
instance, a process of one group may broadcast a message to all processes of
another group.

15.3.2. OpenMP programming

OpenMP derives its name from being an open standard for multiprocessing, that is
for architectures with a shared memory. Because of the shared memory, we speak of
threads (as opposed to processes) in this section.

Shared-memory communication is fundamentally different from message passing:
Whereas message passing immediately involves two processes, shared-memory com-
munication uncouples the processes by inserting a medium in-between. We speak
of read/write instead of send/receive, that is, a thread writes into memory, and
another thread later reads from it. The threads need not know each other, and a
written value may be read by several threads. Reading and writing may be separated
by an arbitrary amount of time. Unlike in message passing, synchronisation must
be organised explicitly, to let a reader know when the writing has finished, and to
avoid concurrent manipulation of the same data by different threads.

OpenMP is one type of shared-memory programming, while others include one-
sided communication as outlined in Subsection 15.3.1, and threads programming as



718 15. Parallel Computations

Figure 15.7 Structure of an OpenMP program.

outlined in Subsection 15.3.3. OpenMP differs from other models in that it enforces
a fork-join structure, which is depicted in Figure 15.7. A program starts execution
as a single thread, called master thread, and later creates a team of threads in a
so-called parallel region. The master thread is part of the team. Parallel regions may
be nested, but the threads of a team must finish together. As shown in the figure,
a program may contain several parallel regions in sequence, with possibly different
numbers of threads.

As another characteristic, OpenMP uses compiler directives as opposed to li-
brary functions. Compiler directives are hints that a compiler may or may not take
into account. In particular, a sequential compiler ignores the directives. OpenMP
supports incremental parallelisation, in which one starts from a sequential program,
inserts directives at the most performance-critical sections of code, later inserts more
directives if necessary, and so on.

OpenMP has been introduced in 1998, version 2.0 appeared in 2002. In addi-
tion to compiler directives, OpenMP uses a few library functions and environment
variables. The standard is available for C, C++, and Fortran.

Programming OpenMP is easier than programming MPI since the compiler does
part of the work. An OpenMP programmer chooses the number of threads, and then
specifies work sharing in one of the following ways:

• Explicitly: A thread can request its own number by calling the library function
omp_get_thread_num. Then, a conditional statement evaluating this number
explicitly assigns tasks to the threads, similar as in SPMD-style MPI programs.

• Parallel loop: The compiler directive #pragma omp parallel for indicates that the
following for loop may be executed in parallel so that each thread carries out
several iterations (tasks). An example is given in Figure 15.8. The programmer
can influence the work sharing by specifying parameters such as schedule(static)
or schedule(dynamic). Static scheduling means that each thread gets an about
equal-sized block of consecutive iterations. Dynamic scheduling means that first
each thread is assigned one iteration, and then, repeatedly, a thread that has fin-



15.3. Parallel programming 719

#include <omp.h>

#define N 100

double a[N][N], b[N], c[N];

int main() {

int i, j;

double h;

/* initialisation omitted */

omp_set_num_threads(4);

#pragma omp parallel for shared(a,b,c) private(j)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

c[i] += a[i][j] * b[j];

/* output omitted */

}

Figure 15.8 Matrix-vector multiply in OpenMP using a parallel loop.

ished an iteration gets the next one, as in the master/slave paradigma described
before for MPI. Different from master/slave, the compiler decides which thread
carries out which tasks, and inserts the necessary communications.

• Task-parallel sections: The directive #pragma omp parallel sections allows to spec-
ify a list of tasks that are assigned to the available threads.

Threads communicate through shared memory, that is, they write to or read from
shared variables. Only part of the variables are shared, while others are private to
a particular thread. Whether a variable is private or shared is determined by rules
that the programmer can overwrite.

Many OpenMP directives deal with synchronisation that is necessary for mutual
exclusion, and to provide a consistent view of shared memory. Some synchronisations
are inserted implicitly by the compiler. For instance, at the end of a parallel loop all
threads wait for each other before proceeding with a next loop.

15.3.3. Other programming models

While MPI and OpenMP are the most popular models, other approaches have prac-
tical importance as well. Here, we outline threads programming, High Performance
Fortran, and automatic parallelisation.

Like OpenMP, threads programming or by Java threads uses shared memory.
Threads operate on a lower abstraction level than OpenMP in that the programmer
is responsible for all details of thread management and work sharing. In particular,
threads are created explicitly, one at a time, and each thread is assigned a function to
be carried out. Threads programming focuses on task parallelism, whereas OpenMP
programming focuses on data parallelism. Thread programs may be unstructured,
that is, any thread may create and stop any other. OpenMP programs are often
compiled into thread programs.

Data parallelism provides for a different programming style that is explicitly
supported by languages such as High Performance Fortran (HPF). While data par-



720 15. Parallel Computations

allelism can be expressed in MPI, OpenMP etc., data-parallel languages center on the
approach. As one of its major constructs, HPF has a parallel loop whose iterations
are carried out independently, that is, without communication. The data-parallel
style makes programs easier to understand since there is no need to take care of con-
current activities. On the backside, it may be difficult to force applications into this
structure. HPF is targeted at single address space distributed memory architectures,
and much of the language deals with expressing data distributions. Whereas MPI
programmers distribute data by explicitly sending them to the right place, HPF pro-
grammers specify the data distribution on a similar level of abstraction as OpenMP
programmers specify the scheduling of parallel loops. Details are left to the compiler.
An important concept of OpenMP is the owner-computes rule, according to which
the owner of the left-hand side variable of an assignment carries out an operation.
Thus, data distribution implies the distribution of computations.

Especially for programs from scientific computing, a significant performance po-
tential comes from parallelising loops. This parallelisation can often be accomplished
automatically, by parallelising compilers. In particular, these compilers check for
data dependencies. that prevent parallelisation. Many programs can be restructured
to circumvent the dependence, for instance by exchanging outer and inner loops.
Parallelising compilers find these restructuring for important classes of programs.

Exercises
15.3-1 Sketch an MPI program for the prime number problem of Exercise 15.2-3.
The program should deploy the master/slave paradigma. Does your program use
SPMD style or MPMD style?
15.3-2 Modify your program from Exercise 15.3-1 so that it uses collective commu-
nication.
15.3-3 Compare MPI and OpenMP with respect to programmability, that is, give
arguments why or to which extent it is easier to program in either MPI or OpenMP.
15.3-4 Sketch an OpenMP program that implements the stencil code example of
Exercise 15.2-3.

15.4. Computational models

15.4.1. PRAM

The most popular computational model is the Parallel Random Access Machine
(PRAM) which is a natural generalisation of the Random Access Machine (RAM).

The PRAM model consists of p synchronised processors P1, P2, . . . , Pp, a shared
memory with memory cells M [1], M [2], . . . , M [m] and memories of the processors.
Figure 15.9. shows processors and the shared random access memory

There are variants of this model. They differ in whether multiple processors are
allowed to access the same memory cell in a step, and in how the resulting conflicts
are resolved. In particular the following variants are distinguished:

Types on the base of the properties of read/write operations are

• EREW (Exclusive-Read Exclusive-Write) PRAM,



15.4. Computational models 721

P1 P2 Pp

shared memory

processors

3 4 m21 . . .

Figure 15.9 Parallel random access machine.

P2P1 P3 P4 P5

shared-memory

P2P1 P3 P4 P5

shared-memory

a
cb

d e a
b c

d e

P2P1 P3 P4 P5

shared-memoryshared-memory

P1 P2 P3 P4 P5

X Y X Y

(a) (b)

(c) (d)

Figure 15.10 Types of parallel random access machines.

• ERCW (Exclusive-Read Concurrent-Write) PRAM,

• CREW (Concurrent-Read Exclusive-Write) PRAM,

• CRCW (Concurrent-Read Concurrent-Write) PRAM.

Figure 15.10(a) shows the case when at most one processor has access a memory
cell (ER), and Figure 15.10(d) shows, when multiple processors have access the same
cell (CW).

Types of concurrent writing are common, priority, arbitrary, combined.

15.4.2. BSP, LogP and QSM

Here we consider the models BSP, LogP and QSM.
Bulk-synchronous Parallel Model (BSP) describes a computer as a collection of

nodes, each consisting of a processor and memory. BSP supposes the existence of a
router and a barrier synchronisation facility. The router transfers messages between
the nodes, the barrier synchronises all or a subset of nodes. According to BSP compu-



722 15. Parallel Computations

P1 P2 P3 P4 P5 P6

Figure 15.11 A chain consisting of six processors.

tation is partitioned into supersteps. In a superstep each processor independently
performs computations on data in its own memory, and initiates communications
with other processors. The communication is guaranteed to complete until the be-
ginning of the next superstep.

g is defined such that gh is the time that is takes to route an h-relation under
continuous traffic conditions. An h-relation is a communication pattern in which
each processor sends and receives up to h messages.

The cost of a superstep is determined as x + gh + l, where x is the maximum
number of communications initiated by any processor. The cost of a program is the
sum of the costs of the individual supersteps.

BSP contains a cost model that involves three parameters: the number of proces-
sors (p), the cost of a barrier synchronisation (l) and a characteristics of the available
bandwidth (g).

LogP model was motivated by inaccuracies of BSP and the restrictive require-
ment to follow the superstep structure.

While LogP improves on BSP with respect to reflectivity, QSM improves on it
with respect to simplicity. In contrast to BSP, QSM is a shared-memory model. As
in BSP, the computation is structured into supersteps, and each processor has its
own local memory. In a superstep, a processor performs computations on values in
the local memory, and initiates read/write operations to the shared memory. All
shared-memory accesses complete until the beginning of the next superstep. QSM
allows for concurrent reads and writes. Let the maximum number of accesses to any
cell in a superstep be k. Then QSM charges costs max(x, gh, k), with x, g, and h
being defined in BSP.

15.4.3. Mesh, hypercube and butterfly

Mesh also is a popular computational model. A d-dimensional mesh is an a1 ×
a2 × · · · × ad sized grid having a processor in each grid point. The edges are the
communication lines, working in two directions. Processors are labelled by d-tuples,
as Pi1,i2,...,id

.
Each processor is a RAM, having a local memory. The local memory of the pro-

cessor Pi1,i2,...,id
is M [i1, . . . , id, 1], . . . ,M [i1, . . . , id,m]. Each processor can execute

in one step such basic operations as adding, subtraction, multiplication, division,
comparison, read and write from/into the local memory, etc. Processors work in
synchronised way, according to a global clock.

The simplest mesh is the chain, belonging to the value d = 1. Figure 15.11
shows a chain consisting of 6 processors.

The processors of a chain are P1, . . . , Pp. P1 is connected with Pp−1, Pp is con-
nected with Pp−1, the remaining processors Pi are connected with Pi−1 and Pi+1.



15.4. Computational models 723

P4,4

P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4

P4,1 P4,2 P4,3

Figure 15.12 A square of size 4 × 4.

P212 P222

P112 P122

P211 P221

P111 P121

Figure 15.13 A 3-dimensional cube of size 2 × 2 × 2.

If d = 2, then we get a rectangle. If now a1 = a2 =
√
p, then we get a square.

Figure 15.12 shows a square of size 4× 4.
A square contains several chains consisting of a processors. The processors having

identical first index, form a row of processors, and the processors having the same
second index form a column of processors. Algorithms running on a square often
consists of such operations, executed only by processors of some rows or columns.

If d = 3, then the corresponding mesh is a brick. In the special case a1 = a2 =
a3 =3√p the mesh is called cube. Figure 15.13 shows a cube of size 2× 2× 2.

The next model of computation is the d-dimensional hypercube Hd. This
model can be considered as the generalisation of the square and cube: the square
represented on Figure 15.12 is a 2-dimensional, and the cube, represented on Figure
15.13 is a 3-dimensional hypercube. The processors of Hd can be labelled by a binary
number consisting of d bits. Two processors of Hd are connected iff the Hamming-
distance of their labels equals to 1. Therefore each processors ofHd has d neighbours,
and the of Hd is d. Figure 15.14 represents H4.

The butterfly model Bd consists of p = (d + 1)2d processors and 2dd+1 edges.
The processors can be labelled by a pair 〈r, l〉, where r is the columnindex and l is



724 15. Parallel Computations

Figure 15.14 A 4-dimensional hypercube H4.

level 0

level 1

level 2

level 3

Figure 15.15 A butterfly model.

the level of the given processor. Figure 15.15 shows a butterfly model B3 containing
32 processors in 8 columns and in 4 levels.

Finally Figure 15.16 shows a ring containing 6 processors.

15.5. Performance in theory

In the previous section we considered the performance measures used in the practice.
In the theoretical investigations the algorithms are tested using abstract com-

puters called computation models.



15.5. Performance in theory 725

P1

P2

P3

P4

P5

P6

Figure 15.16 A ring consisting of 6 processors.

The required quantity of resources can be characterised using absolute and rel-
ative measures.

Let W (n, π,A), resp. W (n, π, p,P) denote the time necessary in worst case to
solve the problem π of size n by the sequential algorithm A, resp. parallel algorithm
P (using p processors).

In a similar way let B(n, π,A), resp. B(n, π, p,P) the time necessary for algo-
rithm A, resp. P in best case to solve the problem π of size n (algorithm P can use
p processors).

Let N(n, π), resp. N(n, π, p) the time needed by any sequential, resp. parallel
algorithm to solve problem π of size n (algorithm P can use p processors). These
times represent a lower bound of the corresponding running time.

Let suppose the distribution function D(n, π) of the problem π of size n is given.
Then let E(n, π,A), resp. E(n, π, p,P) the expected value of the time necessary for
algorithm A, resp. P to solve problem π of size n (algorithm P uses p processors).

In the analysis it is often supposed that the input data of equal size have equal
probability. For such cases we use the notation A(n,A), resp. A(n,P, p) and termin
average running time.

The value of the performance measures W,B,N,E and A depend on the used
computation model too. For the simplicity of notations we suppose that the algo-
rithms determine the computation model.

Usually the context shows in a unique way the investigated problem. If so, then
the parameter π is omitted.

Among these performance measures hold the following inequalities:

N(n) ≤ B(n,A) (15.1)

≤ E(n,A) (15.2)

≤ W (n,A) . (15.3)



726 15. Parallel Computations

In a similar way for the characteristic data of the parallel algorithms the following
inequalities are true:

N(n, p) ≤ B(n,P, p) (15.4)

≤ E(n,P, p) (15.5)

≤ W (n,P, p) . (15.6)

For the expected running time we have

B(n,A) ≤ A(n,A) (15.7)

≤ W (n,A) , (15.8)

and

B(n,P, p) ≤ A(n,P, p) (15.9)

≤ W (n,P, p) . (15.10)

These notations can be used not only for the running time, but also for any
other resource, as memory requirement, number of messages, etc.

Now we define some relative performance measures.
Speedup shows, how many times is smaller the running time of a parallel algo-

rithm, than the running time of the parallel algorithm solving the same problem.
The speedup (or relative number of steps or relative speed) of a given parallel

algorithm P, comparing it with a given sequential algorithm A, is defined as

g(n,A,P) =
W (n,A)
W (n,P, p)

. (15.11)

If for a sequential algorithm A and a parallel algorithm P holds

W (n,A)
W (n, p,P)

= Θ(p) , (15.12)

then the speedup of P comparing with A is linear, if

W (n,A)
W (n,P, p)

= o(p) , (15.13)

then the speedup of P comparing with A is sublinear, and if

W (n,A)
W (n,P, p)

= ω(p) , (15.14)

then the speedup of P comparing with A is superlinear.
In the case of parallel algorithms it is a very important performance measure

the work w(n, p,P), defined by the product of the running time and the number of
the used processors:

w(n, p,P) = pW (n,P, p) . (15.15)



15.5. Performance in theory 727

This definition is used even then if some processors work only in a small fraction
of the running time. Therefore the real work can be much smaller, then given by the
formula 15.15).

The efficiency h(n, p,P,A) is a measure of the fraction of time for which the
processors are usefully employed; it is defined as the ratio of the work of the sequen-
tial algorithm to the work of the parallel algorithm P:

e(n, p,P,A) =
W (n,A)

pW (n,P, p)
. (15.16)

One can observe, that the ratio of the speedup and the number of the used parallel
processors results the same value. If the parallel work is not less than the sequential
one, then efficiency is between zero and one, and the relatively large values are
beneficial.

In connection with the analysis of the parallel algorithms the work-efficiency is
a central concept. If for a parallel algorithm P and sequential algorithm A holds

pW (n,P, p) = O(W (n,A)) , (15.17)

then algorithm P work-optimal comparing with A.
This definition is equivalent with the equality

pW (n,P, p)
W (n,A)

= O(1). (15.18)

According to this definition a parallel algorithm is work-optimal only if the order
of its total work is not greater, than the order of the total work of the considered
sequential algorithm.

A weaker requirement is the following. If there exists a finite positive integer k
such that

pW (n,P, p) = O(W (n,A(lgn)k) , (15.19)

then algorithm P is work-efficient comparing with A.
If a sequential algorithm A, resp. a parallel algorithm P uses only O(N(n)), resp.

O(N(n, p)) units of a given resource, then A, resp. P is called—for the given resource
and the considered model of computation—asymptotically optimal.

If an A sequential or a P parallel algorithm uses only the necessary amount of
some resource for all possible size n ≥ 1 of the input, that is N(n,A), resp. N(n, p,A)
units, and so we have

W (n,A) = N(n,A) , (15.20)

for A and
W (n,P, p) = N(n,P, p) , (15.21)

for P, then we say, that the given algorithm is absolute optimal for the given
resource and the given computation model. In this case we say, that W (n,P, p) =
N(n,P, p) is the accurate complexity of the given problem.

Comparing two algorithms and having

W (n,A) = Θ(W (n,B)) (15.22)



728 15. Parallel Computations

we say, that the speeds of the growths of algorithms A and B asymptotically have
the same order.

Comparing the running times of two algorithms A and B (e.g. in worst case)
sometime the estimation depends on n: for some values of n algorithm A, while for
other values of n algorithm B is the better. A possible formal definition is as follows.
If the functions f(n) and g(n) are defined for all positive integer n, and for some
positive integer v hold

1. f(v) = g(v);

2. (f(v − 1)− g(v − 1))(f(v + 1)− g(v + 1)) < 0,

then the number v is called crossover point of the functions f(n) and g(n).
For example multiplying two matrices according to the definition and algorithm

of Strassen we get one crossover point, whose value is about 20.

Exercises
15.5-1 Suppose that the parallel algorithms P and Q solve the selection problem.
Algorithm P uses n0.5 processors and its running time is W (n,P, p) = Θ(n0.5). Algo-
rithm Q uses n processors and its running time is W (n,P, p) = Θ(lgn). Determine
the work, speedup and efficiency for both algorithms. Are these algorithms work-
optimal or at least work-efficient?
15.5-2 Analyse the following two assertions.

a) Running time of algorithm P is at least O(n2).
b) Since the running time of algorithm P is O(n2), and the running time of

algorithm B is O(n lg n), therefore algorithm B is more efficient.
15.5-3 Extend the definition of the crossover point to noninteger v values and
parallel algorithms.

15.6. PRAM algorithms

In this section we consider parallel algorithms solving simple problems as prefix
calculation, ranking of the elements of an array, merging, selection and sorting.

In the analysis of the algorithms we try to give the accurate order of the running
time in the worst case and try to decide whether the presented algorithm is work-
optimal or at least work-efficient or not. When parallel algorithms are compared
with sequential algorithms, always the best known sequential algorithm is chosen.

To describe these algorithms we use the following pseudocode conventions.



15.6. PRAM algorithms 729

Pi in parallel for i← 1 to p
do 〈 command 1 〉

〈 command 2 〉
.
.
.
〈 command u 〉

For m2 PRAM ordered into a square grid of size m×m the instruction begin with

Pi,j in parallel for i← 1 to m, j ← 1 to m
do

For a k-dimensional mesh of size m1×· · ·mk the similar instruction begins with

Pi1,i2,...,ik
in parallel for i1 ← 1 to m1, . . . , ik ← 1 to mk

do

It is allowed that in this commands Pi represents a group of processors.

15.6.1. Prefix

Let ⊕ be a binary associative operator defined over a set Σ. We suppose that the
operator needs only one set and the set is closed for this operation.

A binary operation ⊕ is associative on a Σ set, if for all x, y, z ∈ Σ holds

((x⊕ y)⊕ z) = (x⊕ (y ⊕ z)) . (15.23)

Let the elements of the sequence X = x1, x2, . . . , xp be elements of the set Σ.
Then the input data are the elements of the sequence X, and the prefix problem
is the computation of the elements x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ x3 ⊕ . . .⊕ xp. These
elements are called prefixes.

It is worth to remark that in other topics of parallel computations the starting
sequences x1, x2, . . . , xk of the sequence X are called prefixes.

Example 15.1 Associative operations. If Σ is the set of integer numbers, ⊕ means addition
and the sequence of the input data is X = 3,−5, 8, 2, 5, 4, then the sequence of the prefixes
is Y = 3,−2, 6, 8, 13, 17. If the alphabet and the input data are the same, but the operation
is the multiplication, then Y = 3,−15,−120,−240,−1200,−4800. If the operation is the
minimum (it is also an associative operation), then Y = 3,−5,−5,−5,−5,−5. In this case
the last prefix is the minimum of the input data.

The prefix problem can be solved by sequential algorithms in O(p) time. Any
sequential algorithm A requires Ω(p) time to solve the prefix problem. There are
parallel algorithms for different models of computation resulting a work-optimal
solution of the prefix problem.

In this subsection at first the algorithm CREW-Prefix is introduced, which
solves the prefix problem in Θ(lg p) time, using p CREW PRAM processors.



730 15. Parallel Computations

Next is algorithm EREW-Prefix, having similar quantitative characteristics,
but requiring only EREW PRAM processors.

These algorithms solve the prefix problem quicker, then the sequential algo-
rithms, but the order of the necessary work is larger.

Therefore interesting is algorithm Optimal-Prefix, which uses only dp/ lg pe
CREW PRAM processors, and makes only Θ(lg p) steps. The work of this algorithm
is only Θ(p), therefore its efficiency is Θ(1), and so it is work-optimal. The speedup
of this algorithm equals to Θ(n/ lg n).

For the sake of simplicity in the further we write usually p/ lg p instead of
dp/ lg pe.

A CREW PRAM algorithm. As first parallel algorithm a recursive algorithm
is presented, which runs on CREW PRAM model of computation, uses p processors
and Θ(lg p) time. Designing parallel algorithm it is often used the principle divide-
and-conquer, as we we will see in the case of the next algorithm too

Input is the number of processors (p) and the array X[1 . . p], output data are
the array Y [1 . . p]. We suppose p is a power of 2. Since we use the algorithms always
with the same number of processors, therefore we omit the number of processors
from the list of input parameters. In the mathematical descriptions we prefer to
consider X and Y as sequences, while in the pseudocodes sometimes as arrays.

CREW-Prefix(X)

1 if p = 1
2 then y1 ← x1

3 return Y
4 if p > 1
5 then Pi in parallel for i← 1 to p/2

do compute recursive y1, y2, . . . , yp/2,
the prefixes, belonging to x1, x2, . . . , xp/2

Pi in parallel for i← p/2 + 1 to p
do compute recursive yp/2+1, yp/2+2, . . . , yp

the prefixes, belonging to xp/2+1, xp/2+2, . . . , xp

6 Pi in parallel for p/2 + 1 ≤ i ≤ p
do read yp/2 from the global memory and compute yp/2 ⊕ yp/2+i

7 return Y

Example 15.2 Calculation of prefixes of 8 elements on 8 processors. Let n = 8 and p = 8.
The input data of the prefix calculation are 12, 3, 6, 8, 11, 4, 5 and 7, the associative
operation is the addition.

The run of the recursive algorithm consists of rounds. In the first round (step 4) the
first four processors get the input data 12, 3, 6, 8, and compute recursively the prefixes 12,
15, 21, 29 as output. At the same time the other four processors get the input data 11, 4,
5, 7, and compute the prefixes 11, 15, 20, 27.

According to the recursive structure P1, P2, P3 and P4 work as follows. P1 and P2

get x1 and x2, resp. P3 and P4 get x3 and x4 as input. Recursivity mean for P1 and P2,
that P1 gets x1 and P2 gets x2, computing at first y1 = x1 and y2 = x2, then P2 updates



15.6. PRAM algorithms 731

y2 = y1 ⊕ y2. After this P3 computes y3 = y2 ⊕ y3 and y4 = y4 ⊕ y4.
While P1, P2, P3 and P4, according to step 4, compute the final values y1, y2, y3 and

y4, P5, P6, P7 and P8 compute the local provisional values of y5, y6, y7 and y8.
In the second round (step 5) the first four processors stay, the second four processors

compute the final values of y5, y6, y7 and y8, adding y4 = 29 to the provisional values 11,
15, 20 and 27 and receiving 40, 44, 49 and 56.

In the remaining part of the section we use the notation W (n) instead of W (n, p)
and give the number of used processors in verbal form. If p = n, then we usually
prefer to use p.

Theorem 15.1 Algorithm CREW-Prefix uses Θ(lg p) time on p CREW PRAM
processors to compute the prefixes of p elements.

Proof The lines 4–6 require W (p/2) steps, the line 7 does Θ(1) steps. So we get the
following recurrence:

W (p) = W (p/2) + Θ(1). (15.24)

Solution of this recursive equation is W (p) = Θ(lg p).

CREW-prefix is not work-optimal, since its work is Θ(p lg p) and we know
sequential algorithm requiring only O(p) time, but it is work-effective, since all se-
quential prefix algorithms require Ω(p) time.

An EREW PRAM algorithm. In the following algorithm we use exclu-
sive write instead of the parallel one, therefore it can be implemented on the
EREW PRAM model. Its input is the number of processors p and the sequence
X = x1, x2, . . . , xp, and its output is the sequence Y = y1, y2, . . . , yp containing
the prefixes.

EREW-Prefix(X)

1 Y [1]← X[1]
2 Pi in parallel for i← 2 to p
3 do Y [i]← X[i− 1]⊕X[i]
4 k ← 2
5 while k < p
6 do Pi in parallel for i← k + 1 to p
7 do Y [i]← Y [i− k]⊕ Y [i]
8 k ← k + k
9 return Y

Theorem 15.2 Algorithm EREW-Prefix computes the prefixes of p elements on
p EREW PRAM processors in Θ(lg p) time.

Proof The commands in lines 1–3 and 9 are executed in O(1) time. Lines 4–7 are
executed so many times as the assignment in line 8, that is Θ(p) times.



732 15. Parallel Computations

A work-optimal algorithm. Next we consider a recursive work-optimal al-
gorithm, which uses p/ lg p CREW PRAM processors. Input is the length of the
input sequence (p) and the sequence X = x1, x2, . . . , xp, output is the sequence
Y = y1, y2, . . . , yp, containing the computed prefixes.

Optimal-Prefix(p,X)

1 Pi in parallel for i← 1 to p/ lg p
2 do compute recursive z(i−1) lg p+1, z(i−1) lg p+2, . . . , zi lg p,

the prefixes of the following lg p input data
x(i−1) lg p+1, x(i−1) lg p+2, . . . , xi lg p

3 Pi in parallel for i← 1 to p/ lg p
4 do using CREW-Prefix compute wlg p, w2 lg p, w3 lg p, . . . , wp,

the prefixes of the following p/ lg p elements:
zlg p, z2 lg p, z3 lg p, . . . , , zp

5 Pi in parallel for i← 2 to p/ lg p
6 do for j ← 1 to p
7 do Y [(i− 1) lg p+ j]← w(i−1) lg p ⊕ z(i−1) lg p+j

8 P1 for j ← 1 to p
9 do Y [j]← zj

10 return Y

This algorithm runs in logarithmic time. The following two formulas help to
show it:

z(i−1) lg p+k =
i lg p∑

j=(i−1) lg p+1

xj (k = 1, 2, . . . , lg p) (15.25)

and

wi lg p =
i∑

j=1

zj lg p (i = 1, 2, . . . , ), (15.26)

where summing goes using the corresponding associative operation.

Theorem 15.3 (parallel prefix computation in Θ(lg p) time). Algorithm Opti-
mal-Prefix computes the prefixes of p elements on p/ lg p CREW PRAM
processors in Θ(lg p) time.

Proof Line 1 runs in Θ(lg p) time, line 2 runs O(lg(p/ lg p)) = O(lg p) time, line 3
runs Θ(lg p) time.

This theorem imply that the work of Optimal-Prefix is Θ(p), therefore
Optimal-Prefix is a work-optimal algorithm.

Let the elements of the sequence X = x1, x2, . . . , xp be the elements of the
alphabet Σ. Then the input data of the prefix computation are the elements of the
sequence X, and the prefix problem is the computation of the elements x1, x1 ⊕
x2, . . . , x1 ⊕ x2 ⊕ x3 ⊕ . . .⊕ xp. These computable elements are called prefixes.

We remark, that in some books on parallel programming often the elements of



15.6. PRAM algorithms 733

3, 12, 17, 19 3, 12, 23, 35 1, 6, 12, 19 10, 14, 17, 22

3, 12, 17, 19 3, 12, 23, 35 1, 6, 12, 19 10, 14, 17, 22

3, 9, 5, 2 3, 9, 11, 12 1, 5, 6, 7 10, 4, 3, 5

19, 35, 19, 22

19, 54, 73, 95

3, 12, 17, 19 22, 31, 42, 54 55, 60, 66, 73 83, 87, 90, 95

Processor 1 Processor 2 Processor 3 Processor 4

Step 1

Step 2

Step 3

Figure 15.17 Computation of prefixes of 16 elements using Optimal-Prefix.

the sequence X are called prefixes.

Example 15.3 Associative operations. If Σ is the set of integers, ⊕ denotes the addition
and the sequence of the input data is 3, -5, 8, 2, 5, 4, then the prefixes are 3, -2, 6, 8, 13,
17. If the alphabet and the input data are the same, the operation is the multiplication,
then the output data (prefixes) are 3, -15, -120, -240, -1200, -4800. If the operation is the
minimum (it is also associative), then the prefixes are 3, -5, -5, -5, -5, -5. The last prefix
equals to the smallest input data.

Sequential prefix calculation can be solved in O(p) time. Any A sequential al-
gorithm needs N(p,A) = Ω(n) time. There exist work-effective parallel algorithms
solving the prefix problem.

Our first parallel algorithm is CREW-Prefix, which uses p CREW PRAM
processors and requires Θ(lg p) time. Then we continue with algorithm EREW-
Prefix, having similar qualitative characteristics, but running on EREW PRAM
model too.



734 15. Parallel Computations

These algorithms solve the prefix problem quicker, than the sequential algo-
rithms, but the order of their work is larger.



15.6. PRAM algorithms 735

5 4 2 0 3 1

A[1] A[2] A[3] A[4] A[5] A[6]

A[6] A[1] A[5] A[3] A[2] A[4]

Figure 15.18 Input data of array ranking and the the result of the ranking.

Algorithm Optimal-Prefix requires only dp/ lg pe CREW PRAM processors
and in spite of the reduced numbers of processors requires only O(lg p) time. So its
work is O(p), therefore its efficiency is Θ(1) and is work-effective. The speedup of
the algorithm is Θ(n/ lg n).

15.6.2. Ranking

The input of the list ranking problem is a list represented by an array A[1 . . p]:
each element contains the index of its right neighbour (and maybe further data).
The task is to determine the rank of the elements. The rank is defined as the number
of the right neighbours of the given element.

Since the further data are not necessary to find the solution, for the simplicity we
suppose that the elements of the array contain only the index of the right neighbour.
This index is called pointer. The pointer of the rightmost element equals to zero.

Example 15.4 Input of list ranking. Let A[1 . . 6] be the array represented in the first row
of Figure 15.18. Then the right neighbour of the element A[1] is A[5], the right neighbour
of A[2] is A[4]. A[4] is the last element, therefore its rank is 0. The rank of A[2] is 1,
since only one element, A[4] is to right from it. The rank of A[1] is 4, since the elements
A[5], A[3], A[2] and A[4] are right from it. The second row of Figure 15.18 shows the elements
of A in decreasing order of their ranks.

The list ranking problem can be solved in linear time using a sequential algo-
rithm. At first we determine the head of the list which is the unique A[i] having
the property that does not exist an index j (1 ≤ j ≤ p) with A[j] = i. In our case
the head of A is A[6]. The head of the list has the rank p − 1, its right neighbour
has a rank p− 2, . . . and finally the rank of the last element is zero.

In this subsection we present a deterministic list ranking algorithm, which uses
p EREW PRAM processors and in worst case Θ(lg p) time. The pseudocode of
algorithm Det-Ranking is as follows.

The input of the algorithm is the number of the elements to be ranked (p), the
array N [1 . . p] containing the index of the right neighbour of the elements of A,
output is the array R[1 . . p] containing the computed ranks.



736 15. Parallel Computations

5 4 2 0 3 1

3 0 4 0 2 5

4 0 0 0 0 2

0 0 0 0 00

1 1 1 0 1 1

2 2 0 2 21

4 1 2 0 3 4

4 1 2 0 3 5

neighbour rank

q = 3

q = 2

q = 1

(initial state)

Figure 15.19 Work of algorithm Det-Ranking on the data of Example 15.4.

Det-Ranking(p,N)

1 Pi in parallel for i← 1 to p
2 do if N [i] = 0
3 then R[i]← 0
4 else R[i]← 1
5 for j ← 1 to dlg pe
6 do Pi in parallel for i← 1 to p
7 do if N [i] 6= 0
8 then R[i]← R[i] +R[N [i]]
9 N [i]← N [N [i]]

10 return R

The basic idea behind the algorithm Det-Ranking is the pointer jumping.
According to this algorithm at the beginning each element contains the index of its
right neighbour, and accordingly its provisional rank equal to 1 (with exception of the
last element of the list, whose rank equals to zero). This initial state is represented
in the first row of Figure 15.19.

Then the algorithm modifies the element so, that each element points to the
right neighbour of its right neighbour (if it exist, otherwise to the end of the list).
This state is represented in the second row of Figure 15.19.

If we have p processors, then it can be done in O(1) time.
After this each element (with exception of the last one) shows to the element

whose distance was originally two. In the next step of the pointer jumping the
elements will show to such other element whose distance was originally 4 (if there
is no such element, then to the last one), as it is shown in the third row of Figure
15.19.

In the next step the pointer part of the elements points to the neighbour of
distance 8 (or to the last element, if there is no element of distance 8), according to
the last row of Figure 15.19.

In each step of the algorithm each element updates the information on the num-



15.6. PRAM algorithms 737

ber of elements between itself and the element pointed by the pointer. Let R[i], resp.
N [i] the rank, resp. neighbour field of the element A[i]. The initial value of R[i] is
1 for the majority of the elements, but is 0 for the rightmost element (R(4) = 0 in
the first line of Figure 15.19). During the pointer jumping R[i] gets the new value
(if N [i] 6= 0) gets the new value R[i] + R[N [i]], if N [i] 6= 0. E.g. in the second row
of Figure 15.19) R[1] = 1 + 1 = 2, since its previous rank is 1, and the rank of its
right neighbour is also 1. After this N [i] will be modified to point to N [N [i]]. E.g.
in the second row of Figure 15.19 N [1] = 3, since the right neighbour of the right
neighbour of A[1] is A[3].

Theorem 15.4 Algorithm Det-Ranking computes the ranks of an array consist-
ing of p elements on p EREW PRAM processors in Θ(lg p) time.

Since the work of Det-Ranking is Θ(p lg p), this algorithm is not work-optimal,
but it is work-efficient.

The list ranking problem corresponds to a list prefix problem, where each element
is 1, but the last element of the list is 0. One can easily modify Det-Ranking to
get a prefix algorithm.

15.6.3. Merge

The input of the merging problem is two sorted sequences X1 and X2 and the
output is one sorted sequence Y containing the elements of the input.

If the length of the input sequences is p, then the merging problem can be
solved in O(p) time using a sequential processor. Since we have to investigate all
elements and write them into the corresponding element of Y , the running time of
any algorithm is Ω(p). We get this lower bound even in the case when we count only
the number of necessary comparisons.

Merge in logarithmic time. Let X1 = x1, x2, . . . , xm and X2 =
xm+1, xm+2, . . . , x2m be the input sequences. For the shake of simplicity let m be
the power of two and let the elements be different.

To merge two sequences of length m it is enough to know the ranks of the keys,
since then we can write the keys—using p = 2m processors—into the correspond-
ing memory locations with one parallel write operation. The running time of the
following algorithm is a logarithmic, therefore it is called Logarithmic-Merge.

Theorem 15.5 Algorithm Logarithmic-Merge merges two sequences of length
m on 2m CREW PRAM processors in Θ(lgm) time.

Proof Let the rank of element x be r1 (r2) in X1 (in X2). If x = xj ∈ X1, then let
r1 = j. If we assign a single processor P to the element x, then it can determine,
using binary search, the number q of elements in X2, which are smaller than x. If
q is known, then P computes the rank rj in the union of X1 and X2, as j + q. If x
belongs to X2, the method is the same.

Summarising the time requirements we get, that using one CREW PRAM pro-
cessor per element, that is totally 2m processors the running time is Θ(lgm).



738 15. Parallel Computations

This algorithm is not work-optimal, only work-efficient.

Odd-even merging algorithm. This following recursive algorithm Odd-Even-
Merge follows the classical divide-and-conquer principle.

Let X1 = x1, x2, . . . , xm and X2 = xm+1, xm+2, . . . , x2m be the two input se-
quences. We suppose that m is a power of 2 and the elements of the arrays are
different. The output of the algorithm is the sequence Y = y1, . . . , y2m, containing
the merged elements. This algorithm requires 2m EREW PRAM processors.

Odd-Even-Merge(X1,X2)

1 if m = 1
2 then get Y by merging x1 and x2 with one comparison
3 return Y
4 if m > 1
5 then Pi in parallel for i← 1 to m
6 do merge recursively Xodd

1 = x1, x3, . . . , xm−1 and
7 Xodd

2 = xm+1, xm+3, . . . , x2m−1 to get L1 = l1, l2, . . . , lm
8 Pi in parallel for 1← m+ 1 to 2m
9 do merge recursively Xeven

1 = x2, x4, . . . , xm and
10 Xeven

2 = xm+2, xm+4, . . . , x2m to get L2 = lm+1, lm+2, . . . , l2m

11 Pi in parallel for i← 1 to m
12 do y2i−1 ← li
13 y2i ← lm+i

14 if y[2i] > y[2i+ 1]
13 then z ← y[2i]
14 y[2i]← y[2i+ 1]
15 y[2i+ 1]← z
15 return Y

Example 15.5 Merge of twice eight numbers. Let X1 = 1, 5, 8, 11, 13, 16, 21, 26 and X2

= 3, 9, 12, 18, 23, 27, 31, 65. Figure 15.20 shows the sort of 16 numbers.
At first elements of X1 with odd indices form the sequence Xodd

1 and elements with
even indices form the sequence Xeven

1 , and in the same way we get the sequences Xodd
2

and Xeven
2 . Then comes the recursive merge of the two odd sequences resulting L1 and the

recursive merge of the even sequences resulting L2.
After this Odd-Even-Merge shuffles L1 and L2, resulting the sequence Y =

y1, . . . , y2m: the elements of Y with odd indices come from L1 and the elements with
even indices come from L2.

Finally we compare the elements of Y with even index and the next element (that is
Y [2] with Y [3], Y [4] with Y [5] etc.) and if necessary (that is they are not in the good order)
they are changed.

Theorem 15.6 (merging in Θ(lgm) time). Algorithm Odd-Even-Merge merges
two sequences of length m elements in Θ(lgm) time using 2m EREW PRAM pro-
cessors.



15.6. PRAM algorithms 739

X1 = 1, 5, 8, 11, 13, 16, 21, 26 X2 = 3, 9, 12, 18, 23, 27, 31, 65

1, 8, 13, 21 5, 11, 16, 26 3, 12, 23, 31 9, 18, 27, 65

Xodd
1

L1 = 1, 3, 8, 12, 13, 21, 23, 31 L2 = 5, 9, 11, 16, 18, 26, 27, 65

Xodd
2

L = 1, 5, 3, 9, 8, 11, 12, 16, 13, 18, 21, 26, 23, 27, 31, 65

Xeven
1 Xeven

2

merge merge

shuffle

compare-exchange

1, 3, 5, 8, 9, 11, 12, 13, 16, 18, 21, 23, 26, 27, 31, 65

Figure 15.20 Sorting of 16 numbers by algorithm Odd-Even-Merge.

Proof Let denote the running time of the algorithm by W (m). Step 1 requires Θ(1)
time, Step 2 m/2 time. Therefore we get the recursive equation

W (m) = W (m/2) + Θ(1), (15.27)

having the solution W (m) = Θ(lgm).

We prove the correctness of this algorithm using the zero-one principle.
A comparison-based sorting algorithm is oblivious, if the sequence of compar-

isons is fixed (elements of the comparison do not depend on the results of the earlier
comparisons). This definition means, that the sequence of the pairs of elements to
be compared (i1, j1), (i2, j2), . . . , (im, jm) is given.

Theorem 15.7 (zero-one principle). If a simple comparison-based sorting algo-
rithm correctly sorts an arbitrary 0-1 sequence of length n, then it sorts also correctly
any sequence of length n consisting of arbitrary keys.

Proof Let A be a comparison-based oblivious sorting algorithm and let S be such
a sequence of elements, sorted incorrectly by A. Let suppose A sorts in increasing
order the elements of S. Then the incorrectly sorted sequence S′ contains an element
x on the i-th (1 ≤ i ≤ n− 1) position in spite of the fact that S contains at least i
keys smaller than x.



740 15. Parallel Computations

Let x be the first (having the smallest index) such element of S. Substitute in
the input sequence the elements smaller than x by 0’s and the remaining elements
by 1’s. This modified sequence is a 0-1 sequence therefore A sorts it correctly. This
observation implies that in the sorted 0-1 sequence at least i 0’s precede the 1,
written on the place of x.

Now denote the elements of the input sequence smaller than x by red colour,
and the remaining elements by blue colour (in the original and the transformed
sequence too). We can show by induction, that the coloured sequences are identical
at the start and remain identical after each comparison. According to colours we
have three types of comparisons: blue-blue, red-red and blue-red. If the compared
elements have the same colour, in both cases (after a change or not-change) the
colours remain unchanged. If we compare elements of different colours, then in both
sequences the red element occupy the position with smaller index. So finally we get
a contradiction, proving the assertion of the theorem.

Example 15.6 A non comparison-based sorting algorithm. Let x1, x2, . . . , xn be a bit
sequence. We can sort this sequence simply counting the zeros, and if we count z zeros,
then write z zeros, then n− z ones. Of course, the general correctness of this algorithm is
not guaranteed. Since this algorithm is not comparison-based, therefore this fact does not
contradict to the zero-one principle.

But merge is sorting, and Odd-Even-Merge is an oblivious sorting algorithm.

Theorem 15.8 Algorithm Odd-Even-Merge sorts correctly sequences consisting
of arbitrary numbers.

Proof Let X1 and X2 sorted 0-1 sequences of length m. Let q1 (q2) the number
of zeros at the beginning of X1 (X2). Then the number of zeros in Xodd

1 equals
to dq1/2e, while the number of zeros in Xeven

1 is bq1/2c. Therefore the number of
zeros in L1 equals to z1 = dq1/2e+ dq2/2e and the number of zeros in L2 equals to
z2 = bq1/2c+ bq2/2c.

The difference of z1 and z2 is at most 2. This difference is exactly then 2, if q1

and q2 are both odd numbers. Otherwise the difference is at most 1. Let suppose,
that |z1 − z2| = 2 (the proof in the other cases is similar). In this cases L1 contains
two additional zeros. When the algorithm shuffles L1 and L2, L begins with an even
number of zeros, end an even number of ones, and between the zeros and ones is
a short “dirty" part, 0, 1. After the comparison and change in the last step of the
algorithm the whole sequence become sorted.

A work-optimal merge algorithm. Algorithm Work-Optimal-Merge uses
only d2m/ lgme processors, but solves the merging in logarithmic time. This algo-
rithm divides the original problem into m/ lgm parts so, that each part contains
approximately lgm elements.

Let X1 = x1, x2, . . . , xm and X2 = xm+1, xm+2, . . . , xm+m be the input se-
quences. Divide X1 into M = dm/ lgme parts so, that each part contain at most



15.6. PRAM algorithms 741

A1 A2 A3 AM

B1 B2 B3 BM+1

X2

X1

Figure 15.21 A work-optimal merge algorithm Optimal-Merge.

dlgme elements. Let the parts be denoted by A1, A2, . . . , AM . Let the largest element
in A1 be li (i = 1, 2, . . . ,M).

Assign a processor to each li element. These processors determine (by binary
search) the correct place (according to the sorting) of li in X2. These places divide
X2 to M + 1 parts (some of these parts can be empty). Let denote these parts by
B1, B2, . . . , BM+1. We call Bi the subset corresponding to Ai in X2 (see Figure
15.21).

The algorithm gets the merged sequence merging at first A1 with B1, A2 with
B2 and so on, and then joining these merged sequences.

Theorem 15.9 Algorithm Optimal-Merging merges two sorted sequences of
length m in O(lgm) time on d2m/ lgme CREW PRAM processors.

Proof We use the previous algorithm.
The length of the parts Ai is lgm, but the length of the parts Bi can be much

larger. Therefore we repeat the partition. Let Ai, Bi an arbitrary pair. If |Bi| =
O(lgm), then Ai and Bi can be merged using one processor in O(lgm) time. But
if |Bi| = ω(lgm), then divide Bi into |Bi|/ lgm parts—then each part contains at
most lgm keys. Assign a processor to each part. This assigned processor finds the
subset corresponding to this subsequence in Ai: O(lg lgm) time is sufficient to do
this. So the merge of Ai and Bi can be reduced to |Bi|/ lgm subproblems, where
each subproblem is the merge of two sequences of O(lgm) length.

The number of the used processors is
∑M

i=1 d|Bi|/ lgme, and this is at most
m/ lgm+M , what is not larger then 2M .

This theorem imply, that Optimal-Merging is work-optimal.

Corollary 15.10 Optimal-Merging is work-optimal.

15.6.4. Selection

In the selection problem n ≥ 2 elements and a positive integer i (1 ≤ i ≤ n) are
given and the i-th smallest element is to be selected.

Since selection requires the investigation of all elements, and our operations can



742 15. Parallel Computations

handle at most two elements, so N(n) = Ω(n).
Since it is known sequential algorithm A requiring only W (n,A) = O(n) time,

so A is asymptotically optimal.
The search problem is similar: in that problem the algorithm has to decide,

whether a given element appears in the given sequence, and if yes, then where. Here
negative answer is also possible and the features of any element decide, whether it
corresponds the requirements or not.

We investigate three special cases and work-efficient algorithms to solve them.

Selection in constant time using n2 processors. Let i = n, that is we wish
to select the largest key. Algorithm Quadratic-Select solves this task in Θ(1)
time using n2 CRCW processors.

The input (n different keys) is the sequence X = x1, x2, . . . , xn, and the
selected largest element is returned as y.

Quadratic-Select(X)

1 if n = 1
2 then y ← x1

3 return y
4 Pij in parallel for i← 1 to n, j ← 1 to n

do if ki < kj

5 then xi,j ← false
6 else xi,j ← true
7 Pi1 in parallel for i← 1 to n
8 do Li ← true
9 Pij in parallel for i← 1 to n, j ← 1 to n

10 if xi,j = false
11 then Li ← false
12 Pi1 in parallel for i← 1 to n
13 do if Li = true
14 then y ← xi

15 return y

In the first round (lines 4–6) the keys are compared in parallel manner, using
all the n2 processors. Pij (1 ≤ i, j ≤ n) so, that processor Pij computes the logical
value xi,j = xi < xj . We suppose that the keys are different. If the elements are
not different, then we can use instead of xi the pair (xi, i) (this solution requires
an additional number of length (lgn) bits. Since there is a unique key for which all
comparison result false, this unique key can be found with a logical or operation
is lines 7–11.

Theorem 15.11 (selection in Θ(1) time). Algorithm Quadratic-Select deter-
mines the largest key of n different keys in Θ(1) time using n2 CRCW common
PRAM processors.

Proof First and third rounds require unit time, the second round requires Θ(1)
time, so the total running time is Θ(1).



15.6. PRAM algorithms 743

The speedup of this algorithm is Θ(n). The work of the algorithm is w = Θ(n2).
So the efficiency is E = Θ(n)/Θ(n2) = Θ(1/n). It follows that this algorithm is not
work-optimal, even it is not work-effective.

Selection in logarithmic time on n processors. Now we show that the
maximal element among n keys can be found, using even only n common CRCW
PRAM processors and Θ(lg lgn) time. The used technique is the divide-and-conquer.
For the simplicity let n be a square number.

The input and the output are the same as at the previous algorithm.

Quick-Selection(X, y)

1 if p = 1
2 then y ← x1

3 return y
4 if p > 1
5 then divide the input into groups G1, G2, . . . , Ga and

divide the processors into groups Q1, Q2, . . . , Qa

6 Qi in parallel for i← 1 to a
6 do recursively determines the maximal element Mi of the group Gi

7 Quadratic-Select(M)
8 return y

The algorithm divides the input into
√
p = a groups (G1, G2, . . . , Ga) so, that

each group contains a elements (x(i−1)a+1, x(i−1)a+2, . . . , xia), and divides the pro-
cessors into a groups (Q1, Q2, . . . , Qa) so, that group Qi contains a processors
P(i−1)a+1, P(i−1)a+2, . . . , Pia. Then the group of processors Qi computes recursively
the maximum Mi of group Gi. Finally the previous algorithm Quadratic-Select
gets as input the sequence M = M1, . . . ,Ma and finds the maximum y of the input
sequence X.

Theorem 15.12 (selection in Θ(lg lg p) time). Algorithm Quick-Select deter-
mines the largest of p different elements in O(lg lg p) time using n common CRCW
PRAM processors.

Proof Let the running time of the algorithm denoted by W (n). Step 1 requires
W (
√
n) time, step 2 requires Θ(1) time. Therefore W (p) satisfies the recursive equa-

tion
W (p) = W (

√
p) + Θ(1), (15.28)

having the solution Θ(lg lg p).

The total work of algorithm Quick-Select is Θ(p lg lg p), so its efficiency is
Θ(p)/Θ(p lg lg p) = Θ(1/ lg lg p), therefore Quick-Select is not work-optimal, it is
only work-effective.

Selection from integer numbers. If the problem is to find the maximum of n
keys when the keys consist of one bit, then the problem can be solved using a logical



744 15. Parallel Computations

lg n
2 bit lg n

2 bit lg n
2 bit

k1

k2

kn

Figure 15.22 Selection of maximal integer number.

or operation, and so requires only constant time using n processors. Now we try to
extend this observation.

Let c be a given positive integer constant, and we suppose the keys are integer
numbers, belonging to the interval [0, nc]. Then the keys can be represented using at
most c lg n bits. For the simplicity we suppose that all the keys are given as binary
numbers of length c lg n bits.

The following algorithm Integer-Selection requires only constant time and
n CRCW PRAM processors to find the maximum.

The basic idea is to partition the b1, b2, . . . , b2c bits of the numbers
into parts of length (lgn)/2. The i-th part contains the bits b(i−1)+1,
b(i−1)+2, . . . , b(i−1)+b(i−1)+(lg n)/2

, the number of the parts is 2c. Figure 15.22 shows
the partition.

The input of Integer-Selection is the number of processors (n) and the
sequence X = x1, x2, . . . , xn containing different integer numbers, and output is
the maximal number y.

Integer-Selection(p,X)

1 for i← 1 to 2c
2 do compute the maximum (M) of the remaining numbers on the base of

their i-th part
3 delete the numbers whose i-th part is smaller than M
4 y ← one of the remaining numbers
5 return y



15.6. PRAM algorithms 745

The algorithm starts with searching the maximum on the base of the first part
of the numbers. Then it delete the numbers, whose first part is smaller, than the
maximum. Then this is repeated for the second, ..., last part of the numbers. Any
of the non deleted numbers is maximal.

Theorem 15.13 (selection from integer numbers). If the numbers are integers
drawn from the interval [0, nc], then algorithm Integer-Selection determines the
largest number among n numbers for any positive c in Θ(1) time using n CRCW
PRAM processors.

Proof Let suppose that we start with the selection of numbers, whose (lg n)/2 most
significant bits are maximal. Let this maximum in the first part denoted by M . It is
sure that the numbers whose first part is smaller than M are not maximal, therefore
can be deleted. If we execute this basis operation for all parts (that is 2c times),
then exactly those numbers will be deleted, what are not maximal, and all maximal
element remain.

If a key contains at most (lgn)/2 bits, then its value is at most
√
n − 1. So

algorithm Integer-Select in its first step determines the maximum of integer
numbers taken from the interval [0,

√
n−1]. The algorithm assigns a processor to each

number and uses
√
n common memory locations (M1,M2, . . . ,M√

n−1), containing
initially −∞. In one step processor Pi writes ki into Mki

. Later the maximum of all
numbers can be determined from

√
n memory cells using n processors by Theorem

15.11 in constant time.

General selection. Let the sequence X = x1, x2, . . . , xn contain different
numbers and the problem is to select the kth smallest element of X. Let we have
p = n2/ lg n CREW processors.

General-Selection(X)

1 divide the n2/ lg n processors into n groups G1, . . . , Gn so, that group Gi

contains the processors Pi,1, Pi,2, . . . , Pi,n/ lg n and divide
the n elements into n/ lg n groups (X1,X2, . . . ,Xn/ lg n) so, that group Xi

contains the elements x(i−1) lg n)+1, x(i−1) lg n)+2, . . . , x(i−1) lg n)+lg n

2 Pij in parallel for i← 1 to n
3 do determine hij (how many elements of Xj are smaller, than xi)
4 Gi in parallel for i← 1 to n
5 do using Optimal-Prefix determine si

(how many elements of X are smaller, than xi)
6 Pi,1 in parallel for i← 1 to n
7 do if si = k − 1
8 then return xi

Theorem 15.14 (general selection). The algorithm General-Selection deter-
mines the i-th smallest of n different numbers in Θ(lgn) time using n2/ lg n proces-
sors.



746 15. Parallel Computations

Proof In lines 2–3 Pij works as a sequential processor, therefore these lines require
Θlgn time. Lines 4–5 require Θ lgn time according to Theorem 15.3. Lines 6–8 can
be executed in constant time, so the total running time is Θ(lgn).

The work of General-Selection is Θ(n2), therefore this algorithm is not
work-effective.

15.6.5. Sorting

Given a sequence X = x1, x2, . . . , xn the sorting problem is to rearrange the
elements of X e.g. in increasing order.

It is well-known that any A sequential comparison-based sorting algorithm needs
N(n,A) = Ω(n lg n) comparisons, and there are comparison-based sorting algorithms
with O(n lg n) running time.

There are also algorithms, using special operations or sorting numbers with spe-
cial features, which solve the sorting problem in linear time. If we have to investigate
all elements of X and permitted operations can handle at most 2 elements, then we
get N(n) = Ω(n). So it is true, that among the comparison-based and also among
the non-comparison-based sorting algorithms are asymptotically optimal sequential
algorithms.

In this subsection we consider three different sorting algorithm.

Sorting in logarithmic time using n2 processors. Using the ideas of algo-
rithms Quadratic-Selection and Optimal-Prefix we can sort n elements using
n2 processors in lg n time.

Quadratic-Sort(K)

1 if n = 1
2 then y ← x1

3 return Y
4 Pij in parallel for i← 1 to n, j ← 1 to n

do if xi < xj

5 then xi,j ← 0
6 else xi,j ← 1
7 divide the processors into n groups (G1, G2, . . . , Gn) so, that group Gi contains

processors Pi,1, Pi,2, . . . , Pi,n

8 Gi in parallel for i← 1 to n
9 do compute si = xi,1 + xi,2 + · · ·+ xi,n

10 Pi1 in parallel for i← 1 to n
11 do ysi+1 ← xi

12 return Y

In lines 4–7 the algorithm compares all pairs of the elements (as Quadratic-
Selection), then in lines 7–9 (in a similar way as Optimal-Prefix works) it
counts, how many elements of X is smaller, than the investigated xi, and finally in
lines 10–12 one processor of each group writes the final result into the corresponding



15.6. PRAM algorithms 747

memory cell.

Theorem 15.15 (sorting in Θ(lgn) time). Algorithm Quadratic-Sort sorts n
elements using n2 CRCW PRAM processors in Θ(lg n) time.

Proof Lines 8–9 require Θ(lgn) time, and the remaining lines require only constant
time.

Since the work of Quadratic-Sort is Θ(n2 lg n), this algorithm is not work-
effective.

Odd-even algorithm with O(lgn) running time. The next algorithm uses
the Odd-Even-Merge algorithm and the classical divide-and-conquer principle.
The input is the sequence X = x1, . . . , xp, containing the numbers to be sorted,
and the output is the sequence Y = y1, . . . , yp, containing the sorted numbers.

Odd-Even-Sort(X)

1 if n = 1
2 then Y ← X
3 if n > 1
4 then let X1 = x1, x2, . . . , xn/2 and X2 = xn/2+1, xn/2+2, . . . , xn.
5 Pi in parallel for i← 1 to n/2
6 do sort recursively X1 to get Y1

7 Pi in parallel for i← n/2 + 1 to n
8 do sort recursively X2 to get Y2

9 Pi in parallel for i← 1 to n
10 do merge Y1 and Y2 using Odd-Even-Merge(Y1, Y2)
11 return Y

The running time of this EREW PRAM algorithm is O(lg2 n).

Theorem 15.16 (sorting in Θ(lg2 n) time). Algorithm Odd-Even-Sort sorts n
elements in Θ(lg2 n) time using n EREW PRAM processors.

Proof Let W (n) be the running time of the algorithm. Lines 3–4 require Θ(1) time,
Lines 5–8 require W (n/2) time, and lines 9–10 require Θ(lgn) time, line 11 require
Θ(1) time. Therefore W (n) satisfies the recurrence

W (n) = Θ(1) +W (n/2) + Θ(lgn), (15.29)

having the solution W (n) = Θ(lg2 n).

Example 15.7 Sorting on 16 processors. Sort using 16 processors the following
numbers: 62, 19, 8, 5, 1, 13, 11, 16, 23, 31, 9, 3, 18, 12, 27, 34. At first we
get the odd and even parts, then the first 8 processors gets the sequence X1 =
62, 19, 8, 5, 1, 13, 11, 16, while the other 8 processors get X2 = 23, 31, 9, 4, 18, 12, 27, 34.



748 15. Parallel Computations

The output of the first 8 processors is Y1 = 1, 5, 8, 11, 13, 16, 19, 62, while the output
of the second 8 processors is Y2 = 3, 9, 12, 18, 23, 27, 31, 34. The merged final result is
Y = 1, 3, 5, 8, 9, 11, 12, 13, 16, 18, 19, 23, 27, 31, 34, 62.

The work of the algorithm is Θ(n lg2 n), its efficiency is Θ(1/ lg n), and its
speedup is Θ (n/ lg n). The algorithm is not work-optimal, but it is work-effective.

Algorithm of Preparata with Θ(lgn) running time. If we have more pro-
cessors, then the running time can be decreased. The following recursive algorithm
due to Preparata uses n lg n CREW PRAM processors and lgn time. Input is the
sequence X = x1, x2, . . . , xn, and the output is the sequence Y = y1, y2, . . . , yn

containing the sorted elements.

Preparata(X)

1 if n ≤ 20
2 then sort X using n processors and Odd-Even-Sort
3 return Y
4 divide the n elements into lgn parts (X1, X2, . . . , Xlg n) so, that each part

contains n/ lg n elements, and divide the processors into lgn groups
(G1, G2, . . . , Gn) so, that each group contains n processors

5 Gi in parallel for i← 1 to lg n
6 do sort the part Xi recursively to get a sorted sequence Si

7 divide the processors into (lg n)2 groups (H1,1,H1,2, . . . ,H(lg n,lg n))
containing n/ lg n processors

8 Hi,j in parallel for i← 1 to lg n, j ← 1 to lg n
9 do merge Si and Sj

10 divide the processors into n groups (J1, J2, . . . , Jn) so, that each group
contains lgn processors

11 Ji in parallel for i← 1 to n
12 do determine the ranks of the xi element in X using the local ranks

received in line 9 and using the algorithm Optimal-Prefix
13 Yi ← the elements of X having a rank i
14 return Y

This algorithm uses the divide-and-conquer principle. It divides the input into
lg n parts, then merges each pair of parts. This merge results local ranks of the
elements. The global rank of the elements can be computed summing up these local
ranks.

Theorem 15.17 (sorting in Θ(lgn) time). Algorithm Preparata sorts n ele-
ments in Θ(lgn) time using n lg n CREW PRAM processors.

Proof Let the running time be W (n). Lines 4–6 require W (n/ lg n) time, lines 7–12
together Θ(lg lgn). Therefore W (n) satisfies the equation

W (n) = W (n/ lg n) + Θ(lg lgn), (15.30)

having the solution W (n) = Θ(lgn).



15.7. Mesh algorithms 749

The work of Preparata is the same, as the work of Odd-Even-Sort, but the
speedup is better: Θ(n). The efficiency of both algorithms is Θ(1/ lg n).

Exercises
15.6-1 The memory cell M1 of the global memory contains some data. Design an
algorithm, which copies this data to the memory cells M2,M3, . . . , Mn in O(lgn)
time, using n EREW PRAM processors.
15.6-2 Design an algorithm which solves the previous Exercise 15.6-1 using only
n/ lg n EREW PRAM processors saving the O(lg n) running time.
15.6-3 Design an algorithm having O(lg lgn) running time and determining the
maximum of n numbers using n/ lg lgn common CRCW PRAM processors.
15.6-4 Let X be a sequence containing n keys. Design an algorithm to determine
the rank of any k ∈ X key using n/ lg n CREW PRAM processors and O(lgn) time.
15.6-5 Design an algorithm having O(1) running time, which decides using n com-
mon CRCW PRAM processors, whether element 5 is contained by a given array
A[1 . . n], and if is contained, then gives the largest index i, for which A[i] = 5 holds.
15.6-6 Design algorithm to merge two sorted sequence of length m in O(1) time,
using n2 CREW PRAM processors.
15.6-7 Determine the running time, speedup, work, and efficiency of all algorithms,
discussed in this section.

15.7. Mesh algorithms

To illustrate another model of computation we present two algorithms solving the
prefix problem on meshes.

15.7.1. Prefix on chain

Let suppose that processor Pi (i = 1, 2, . . . , p) of the chain L = {P1, P2, . . . , Pp}
stores element xi in its local memory, and after the parallel computations the prefix
yi will be stored in the local memory of Pi.

At first we introduce a naive algorithm. Its input is the sequence of elements
X = x1, x2, . . . , xp, and its output is the sequence Y = y1, y2, . . . , yp, containing
the prefixes.



750 15. Parallel Computations

Chain-Prefix(X)

1 P1 sends y1 = x1 to P2

2 Pi in parallel for i← 2 to p− 1
3 for i← 2top− 1
4 do gets yi−1 from Pi−1, then computes and stores yi ← yi−1 ⊕ xi

stores zi = zp−1 ⊕ xp, and sends zi to Pi+1

5 Pa gets zp−1 from Pp−1, then computes and stores ya = ya−1 ⊕ xa

Saying the truth, this is not a real parallel algorithm.

Theorem 15.18 Algorithm Chain-Prefix determines the prefixes of p elements
using a chain Cp in Θ(p) time.

Proof The cycle in lines 2–5 requires Θ(p) time, line 1 and line 6 requires Θ(1)
time.

Since the prefixes can be determined in O(p) time using a sequential proces-
sor, and w(p, p,Chain-Prefix) = pW (p, p,Chain-Prefix) = Θ(p2), so CHAIN-
Prefix is not work-effective.

15.7.2. Prefix on square

An algorithm, similar to Chain-Prefix, can be developed for a square too.
Let us consider a square of size a× a. We need an indexing of the processors.

There are many different indexing schemes, but for the next algorithm Square-
Prefix sufficient is the one of the simplest solutions, the row-major indexing
scheme, where processor Pi,j gets the index a(i− 1) + j.

The input and the output are the same, as in the case of Chain-Prefix.
The processors Pi−1)a+1, P(i−1)a+2), ...P(i−1)a)+a form the processor row Ri(1 ≤

i ≤ a) and the processors Pa+j , P2a+j , . . . Pa(a−1)+j form the processor column
Cj (1 ≤ j ≤ a). The input stored by the processors of row Ri is denoted by Xi, and
the similar output is denoted by Yi.

The algorithm works in 3 rounds. In the first round (lines 1–8) processor rows
Ri (1 ≤ i ≤ a) compute the row-local prefixes (working as processors of Chain-
Prefix). In the second round (lines 9–17) the column Ca computes the prefixes using
the results of the first round, and the processors of this column Pja (1 ≤ j ≤ a− 1)
send the computed prefix to the neighbour P(j+1)a). Finally in the third round the
rows Ri (2 ≤ i ≤ a) determine the final prefixes.

Square-Prefix(X)

1 Pj,1 in parallel for j ← 1 to a
2 do sends yj,1 = xj,1 to Pj,2



Notes for Chapter 15 751

3 Pj,i in parallel for i← 1 to a− 1
4 for i← 2toa− 1

5 do gets yj,i−1 from Pj,i−1, then computes and
6 stores yj,i = yj,p−1 ⊕ xj,p, and sends yj,i to Pj,i+1

7 Pj,a in parallel for j ← 1 to a
8 do gets yj,a−1 from Pj,a−1, then computes and stores y1,a = y1,a−1 ⊕ x1,a

9 P1,a sends y1,a to P2,a

10 Pj,a in parallel for j ← 2 to a− 1
11 for j ← 2toa− 1

12 do gets yj−1,a from Pj−1,a, then computes and stores
stores yj,a = yj−1,a ⊕ yj,a, and sends yj,a to Pj+1,a

13 Pa,a gets ya−1,a from Pa−1,a, then computes and stores ya,a = ya−1,a ⊕ ya,a

14 Pj,a in parallel for j ← 1 to a− 1
15 do send yj,a to Pj+1,a

16 Pj,a in parallel for j ← 2 to a
17 do sends yj,a to Pj,a−1

18 Pj,i in parallel for i← a− 1 downto 2
19 for j ← 2toa
20 do gets yj,a from Pj,i+1, then computes and
21 stores yj,i = yj,i+1 ⊕ yj,i, and sends yj,a to Pj,i−1

22 Pj,1 in parallel for j ← 2 to a− 1
23 do gets yj,a from Pj,2, then computes and stores yj,1 = yj,a ⊕ yj,1

Theorem 15.19 Algorithm Square-Prefix solves the prefix problem using a
square of size a× a, major row indexing in 3a+ 2 = Θ(a) time.

Proof In the first round lines 1–2 contain 1 parallel operation, lines 3–6 require a−1
operations, and line 8 again 1 operation, that is all together a + 1 operations. In a
similar way in the third round lines 18–23 require a+ 1 time units, and in round 2
lines 9–17 require a time units. The sum of the necessary time units is 3s+ 2.

Example 15.8 Prefix computation on square of size 4× 4 Figure 15.23(a) shows 16 input
elements. In the first round Square-Prefix computes the row-local prefixes, part (b) of the
figure show the results. Then in the second round only the processors of the fourth column
work, and determine the column-local prefixes – results are in part (c) of the figure. Finally
in the third round algorithm determines the final results shown in part (d) of the figure.

Chapter Notes

Basic sources of this chapter are for architectures and models the book of Leopold
[162], and the book of Sima, Fountaine and Kacsuk [231], for parallel programming



752 15. Parallel Computations

4

8

11

17

(a) (b)

(c) (d)

0 1 1 2

1 0 2 1

1 0 0 2

0 1 2 3

0 1 2 4

1 1 3 4

1 1 1 3

0 1 3 6

0 1 2 4

1 1 3 4

1 1 1 3

0 1 3 6

0 1 2 4

5 5 7 8

9 9 9 11

11 12 14 17

Figure 15.23 Prefix computation on square.

the book due to Kumar et al. [103] and [162], for parallel algorithms the books
of Berman and Paul, [30] Cormen, Leiserson and Rivest [50], the book written by
Horowitz, Sahni and Rajasekaran [121] and the book [127], and the recent book due
to Casanova, Legrand and Robert [42].

The website [?] contains the Top 500 list, a regularly updated survey of the most
powerful computers worldwide [?]. It contains 42% clusters.

Described classifications of computers are proposed by Flynn [83], and Leopold
[162]. The Figures 15.1, 15.2, 15.3, 15.4, 15.5, 15.7 are taken from the book of Leopold
[162], the program 15.6 from the book written by Gropp et al. [106].

The clusters are characterised using the book of Pfister [206], grids are presented
on the base of the book and manuscript of Foster and Kellerman [85, ?].

With the problems of shared memory deal the book written by Hwang and Xu
[125], the book due to Kleiman, Shah, and Smaalders [142], and the textbook of
Tanenbaum and van Steen [241].

Details on concepts as tasks, processes and threads can be found in many text-
book, e.g. in [230, 239]. Decomposition of the tasks into smaller parts is analysed
by Tanenbaum and van Steen [241].

The laws concerning the speedup were described by Amdahl [?], Gustafson-
Barsis [111] and Brent [35]. Kandemir, Ramanujam and Choudray review the dif-
ferent methods of the improvement of locality [136]. Wolfe [?] analyses in details
the connection between the transformation of the data and the program code. In
connection with code optimisation the book published by Kennedy and Allen [140]
is a useful source.

The MPI programming model is presented according to Gropp, Snir, Nitzberg,
and Lusk [106], while the base of the description of the OpenMP model is the paper



Notes for Chapter 15 753

due to Chandra, Dragum, Kohr, Dror, McDonald and Menon [44], further a review
found on the internet [?].

Lewis and Berg [163] discuss pthreads, while Oaks and Wong [193] the Java
threads in details. Description of High Performance Fortran can be found in the
book Koelbel et al. [147]. Among others Wolfe [?] studied the parallelising compilers.

The concept of PRAM is due to Fortune and Wyllie and is known since 1978
[?]. BSP was proposed in 1990 by Valiant [258]. LogP has been suggested as an
alternative of BSP by Culler et al. in 1993 [56]. QSM was introduced in 1999 by
Gibbons, Matias and Ramachandran [97].

The majority of the pseudocode conventions used in Section 15.6 and the descrip-
tion of crossover points and comparison of different methods of matrix multiplication
can be found in [51].

The Readers interested in further programming models, as skeletons, parallel
functional programming, languages of coordination and parallel mobile agents, can
find a detailed description in [162]. Further problems and parallel algorithms are
analysed in the books of Leighton [158, 159] and in the chapter Memory Management
of this book [?]. and in the book of Horowitz, Sahni and Rajasekaran [121] A model
of scheduling of parallel processes is discussed in [96, 128, 266].

Cost-optimal parallel merge is analysed by Wu and Olariu in [267]. New ideas
(as the application of multiple comparisons to get a constant time sorting algoritm)
of parallel sorting can be found in the paper of Gararch, Golub, and Kruskal [91].



16. Systolic Systems

Systolic arrays probably constitute a perfect kind of special purpose computer. In
their simplest appearance, they may provide only one operation, that is repeated
over and over again. Yet, systolic arrays show an abundance of practice-oriented
applications, mainly in fields dominated by iterative procedures: numerical mathe-
matics, combinatorial optimisation, linear algebra, algorithmic graph theory, image
and signal processing, speech and text processing, et cetera.

For a systolic array can be tailored to the structure of its one and only algorithm
thus accurately! So that time and place of each executed operation are fixed once
and for all. And communicating cells are permanently and directly connected, no
switching required. The algorithm has in fact become hardwired. Systolic algorithms
in this respect are considered to be hardware algorithms.

Please note that the term systolic algorithms usually does not refer to a set of
concrete algorithms for solving a single specific computational problem, as for in-
stance sorting. And this is quite in contrast to terms like sorting algorithms. Rather,
systolic algorithms constitute a special style of specification, programming, and com-
putation. So algorithms from many different areas of application can be systolic in
style. But probably not all well-known algorithms from such an area might be suited
to systolic computation.

Hence, this chapter does not intend to present all systolic algorithms, nor will it
introduce even the most important systolic algorithms from any field of application.
Instead, with a few simple but typical examples, we try to lay the foundations for
the Readers’ general understanding of systolic algorithms.

The rest of this chapter is organised as follows: Section 16.1 shows some basic
concepts of systolic systems by means of an introductory example. Section 16.2 ex-
plains how systolic arrays formally emerge from space-time transformations. Section
16.3 deals with input/output schemes. Section 16.4 is devoted to all aspects of con-
trol in systolic arrays. In Section 16.5 we study the class of linear systolic arrays,
raising further questions.



16.1. Basic concepts of systolic systems 755

16.1. Basic concepts of systolic systems

The designation systolic follows from the operational principle of the systolic archi-
tecture. The systolic style is characterised by an intensive application of both pipelin-
ing and parallelism, controlled by a global and completely synchronous clock. Data
streams pulsate rhythmically through the communication network, like streams of
blood are driven from the heart through the veins of the body. Here, pipelining is
not constrained to a single space axis but concerns all data streams possibly moving
in different directions and intersecting in the cells of the systolic array.

A systolic system typically consists of a host computer, and the actual systolic
array. Conceptionally, the host computer is of minor importance, just controlling the
operation of the systolic array and supplying the data. The systolic array can be
understood as a specialised network of cells rapidly performing data-intensive com-
putations, supported by massive parallelism. A systolic algorithm is the program
collaboratively executed by the cells of a systolic array.

Systolic arrays may appear very differently, but usually share a couple of key
features: discrete time scheme, synchronous operation, regular (frequently two-
dimensional) geometric layout, communication limited to directly neighbouring cells,
and spartan control mechanisms.

In this section, we explain fundamental phenomena in context of systolic ar-
rays, driven by a running example. A computational problem usually allows several
solutions, each implemented by a specific systolic array. Among these, the most at-
tractive designs (in whatever respect) may be very complex. Note, however, that
in this educational text we are less interested in advanced solutions, but strive to
present important concepts compactly and intuitively.

16.1.1. An introductory example: matrix product

Figure 16.1 shows a rectangular systolic array consisting of 15 cells for multiplying
a 3 ×N matrix A by an N × 5 matrix B. The parameter N is not reflected in the
structure of this particular systolic array, but in the input scheme and the running
time of the algorithm.

The input scheme depicted is based on the special choice of parameter N = 4.
Therefore, Figure 16.1 gives a solution to the following problem instance:

A ·B = C ,

where

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 ,

B =




b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45


 ,



756 16. Systolic Systems

C =




c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35


 ,

and

cij =
4∑

k=1

aik · bkj (1 ≤ i ≤ 3, 1 ≤ j ≤ 5) .

The cells of the systolic array can exchange data through links, drawn as arrows
between the cells in Figure 16.1(a). Boundary cells of the systolic array can also
communicate with the outside world. All cells of the systolic array share a common
connection pattern for communicating with their environment. The completely
regular structure of the systolic array (placement and connection pattern of the
cells) induces regular data flows along all connecting directions.

Figure 16.1(b) shows the internal structure of a cell. We find a multiplier, an
adder, three registers, and four ports, plus some wiring between these units. Each
port represents an interface to some external link that is attached to the cell. All
our cells are of the same structure.

Each of the registers A, B, C can store a single data item. The designations of
the registers are suggestive here, but arbitrary in principle. Registers A and B get
their values from input ports, shown in Figure 16.1(b) as small circles on the left
resp. upper border of the cell.

The current values of registers A and B are used as operands of the multiplier
and, at the same time, are passed through output ports of the cell, see the circles
on the right resp. lower border. The result of the multiplication is supplied to the
adder, with the second operand originating from register C. The result of the addition
eventually overwrites the past value of register C.

16.1.2. Problem parameters and array parameters

The 15 cells of the systolic array are organised as a rectangular pattern of three
rows by five columns, exactly as with matrix C. Also, these dimensions directly
correspond to the number of rows of matrix A and the number of columns of matrix
B. The size of the systolic array, therefore, corresponds to the size of some data
structures for the problem to solve. If we had to multiply an N1 ×N3 matrix A by
an N3 ×N2 matrix B in the general case, then we would need a systolic array with
N1 rows and N2 columns.

The quantities N1, N2, N3 are parameters of the problem to solve, because the
number of operations to perform depends on each of them; they are thus problem
parameters. The size of the systolic array, in contrast, depends on the quantities
N1 and N2, only. For this reason, N1 and N2 become also array parameters, for
this particular systolic array, whereas N3 is not an array parameter.

Remark. For matrix product, we will see another systolic array in Section 16.2,
with dimensions dependent on all three problem parameters N1, N2, N3.



16.1. Basic concepts of systolic systems 757

+*

(b)(a)

A

B

C0

0 0

0 0

0

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

Figure 16.1 Rectangular systolic array for matrix product. (a) Array structure andinput scheme.
(b)Cell structure.

An N1×N2 systolic array as shown in Figure 16.1 would also permit to multiply
an M1 ×M3 matrix A by an M3 ×M2 matrix B, where M1 ≤ N1 and M2 ≤ N2.
This is important if we intend to use the same systolic array for the multiplication of
matrices of varying dimensions. Then we would operate on a properly dimensioned
rectangular subarray, only, consisting of M1 rows and M2 columns, and located, for
instance, in the upper left corner of the complete array. The remaining cells would
also work, but without any contribution to the solution of the whole problem; they
should do no harm, of course.

16.1.3. Space coordinates

Now let’s assume that we want to assign unique space coordinates to each cell
of a systolic array, for characterising the geometric position of the cell relative to
the whole array. In a rectangular systolic array, we simply can use the respective
row and column numbers, for instance. The cell marked with c11 in Figure 16.1 thus
would get the coordinates (1,1), the cell marked with c12 would get the coordinates
(1,2), cell c21 would get (2,1), and so on. For the remainder of this section, we take
space coordinates constructed in such a way for granted.

In principle it does not matter where the coordinate origin lies, where the
axes are pointing to, which direction in space corresponds to the first coordinate,
and which to the second. In the system presented above, the order of the coordi-
nates has been chosen corresponding to the designation of the matrix components.
Thus, the first coordinate stands for the rows numbered top to bottom from posi-
tion 1, the second component stands for the columns numbered left to right, also
from position 1.

Of course, we could have made a completely different choice for the coordinate
system. But the presented system perfectly matches our particular systolic array: the
indices of a matrix element cij computed in a cell agree with the coordinates of this
cell. The entered rows of the matrix A carry the same number as the first coordinate



758 16. Systolic Systems

of the cells they pass; correspondingly for the second coordinate, concerning the
columns of the matrix B. All links (and thus all passing data flows) are in parallel
to some axis, and towards ascending coordinates.

It is not always so clear how expressive space coordinates can be determined; we
refer to the systolic array from Figure 16.3(a) as an example. But whatsoever the
coordinate system is chosen: it is important that the regular structure of the systolic
array is obviously reflected in the coordinates of the cells. Therefore, almost always
integral coordinates are used. Moreover, the coordinates of cells with minimum Eu-
clidean distance should differ in one component, only, and then with distance 1.

16.1.4. Serialising generic operators

Each active cell (i, j) from Figure 16.1 computes exactly the element cij of the result
matrix C. Therefore, the cell must evaluate the dot product

4∑

k=1

aik · bkj .

This is done iteratively: in each step, a product aik ·bkj is calculated and added to
the current partial sum for cij . Obviously, the partial sum has to be cleared—or set
to another initial value, if required—before starting the accumulation. Inspired by
the classical notation of imperative programming languages, the general proceeding
could be specified in pseudocode as follows:

Matrix-Product(N1, N2, N3)

1 for i← 1 to N1

2 do for j ← 1 to N2

3 do c(i, j)← 0
4 for k ← 1 to N3

5 do c(i, j)← c(i, j) + a(i, k) · b(k, j)
6 return C

If N1 = N2 = N3 = N , we have to perform N3 multiplications, additions, and
assignments, each. Hence the running time of this algorithm is of order Θ(N3) for
any sequential processor.

The sum operator
∑

is one of the so-called generic operators, that combine
an arbitrary number of operands. In the systolic array from Figure 16.1, all additions
contributing to a particular sum are performed in the same cell. However, there are
plenty of examples where the individual operations of a generic operator are spread
over several cells—see, for instance, the systolic array from Figure 16.3.

Remark. Further examples of generic operators are: product, minimum, maxi-
mum, as well as the Boolean operators and, or, and exclusive or.

Thus, generic operators usually have to be serialised before the calculations to
perform can be assigned to the cells of the systolic array. Since the distribution of
the individual operations to the cells is not unique, generic operators generally must



16.1. Basic concepts of systolic systems 759

be dealt with in another way than simple operators with fixed arity, as for instance
the dyadic addition.

16.1.5. Assignment-free notation

Instead of using an imperative style as in algorithm Matrix-product, we better
describe systolic programs by an assignment-free notation which is based on
an equational calculus. Thus we avoid side effects and are able to directly express
parallelism. For instance, we may be bothered about the reuse of the program vari-
able c(i, j) from algorithm Matrix-product. So, we replace c(i, j) with a sequence
of instances c(i, j, k), that stand for the successive states of c(i, j). This approach
yields a so-called recurrence equation We are now able to state the general matrix
product from algorithm Matrix-product by the following assignment-free expres-
sions:

input operations

c(i, j, 0) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 .

calculations

c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

output operations

cij = c(i, j, N3) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 .

(16.1)

System (16.1) explicitly describes the fine structure of the executedsystolic al-
gorithm. The first equation specifies all input data, the third equation all output
data. The systolic array implements these equations byinput/output operations.
Only the second equation corresponds to real calculations.

Each equation of the system is accompanied, on the right side, by a quantifi-
cation. The quantification states the set of values the iteration variables i and j
(and, for the second equation, also k) should take. Such a set is called a domain.
The iteration variables i, j, k of the second equation can be combined in an iteration
vector (i, j, k). For the input/output equations, the iteration vector would consist of
the components i and j, only. To get a closed representation, we augment this vector
by a third component k, that takes a fixed value. Inputs then are characterised by
k = 0, outputs by k = N3. Overall we get the following system:

input operations

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations

c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

output operations

cij = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(16.2)



760 16. Systolic Systems

Note that although the domains for the input/output equations now are formally
also of dimension 3, as a matter of fact they are only two-dimensional in the classical
geometric sense.

16.1.6. Elementary operations

From equations as in system (16.2), we directly can infer the atomic entities to
perform in the cells of the systolic array. We find these operations by instantiating
each equation of the system with all points of the respective domain. If an equation
contains several suboperations corresponding to one point of the domain, these are
seen as a compound operation, and are always processed together by the same
cell in one working cycle.

In the second equation of system (16.2), for instance, we find the multiplica-
tion a(i, k) · b(k, j) and the successive addition c(i, j, k) = c(i, j, k − 1) + · · · . The
corresponding elementary operations—multiplication and addition—are indeed
executed together as a multiply-add compound operation by the cell of the systolic
array shown in Figure 16.1(b).

Now we can assign a designation to each elementary operation, also called co-
ordinates. A straight-forward method to define suitable coordinates is provided by
the iteration vectors (i, j, k) used in the quantifications.

Applying this concept to system (16.1), we can for instance assign the tuple of
coordinates (i, j, k) to the calculation c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j). The
same tuple (i, j, k) is assigned to the input operation c(i, j, k) = 0, but with setting
k = 0. By the way: all domains are disjoint in this example.

If we always use the iteration vectors as designations for the calculations and
the input/output operations, there is no further need to distinguish between coor-
dinates and iteration vectors. Note, however, that this decision also mandates that
all operations belonging to a certain point of the domain together constitute a com-
pound operation—even when they appear in different equations and possibly are
not related. For simplicity, we always use the iteration vectors as coordinates in the
sequel.

16.1.7. Discrete timesteps

The various elementary operations always happen in discrete timesteps in the
systolic cells. All these timesteps driving a systolic array are of equal duration.
Moreover, all cells of a systolic array work completely synchronous, i.e., they all
start and finish their respective communication and calculation steps at the same
time. Successive timesteps controlling a cell seamlessly follow each other.

Remark. But haven’t we learned from Albert Einstein that strict simultaneity is
physically impossible? Indeed, all we need here are cells that operate almost simul-
taneously. Technically this is guaranteed by providing to all systolic cells a common
clock signal that switches all registers of the array. Within the bounds of the usu-
ally achievable accuracy, the communication between the cells happens sufficiently
synchronised, and thus no loss of data occurs concerning send and receive operations.
Therefore, it should be justified to assume a conceptional simultaneity for theoretical



16.1. Basic concepts of systolic systems 761

reasoning.
Now we can slice the physical time into units of a timestep, and number the

timesteps consecutively. The origin on the time axis can be arbitrarily chosen, since
time is running synchronously for all cells. A reasonable decision would be to take
t = 0 as the time of the first input in any cell. Under this regime, the elementary
compound operation of system (16.1) designated by (i, j, k) would be executed at
time i+ j+ k− 3. On the other hand, it would be evenly justified to assign the time
i+ j + k to the coordinates (i, j, k); because this change would only induce a global
time shift by three time units.

So let us assume for the following that the execution of an instance (i, j, k) starts
at time i+j+k. The first calculation in our example then happens at time t = 3, the
last at time t = N1 +N2 +N3. The running time thus amounts to N1 +N2 +N3− 2
timesteps.

16.1.8. External and internal communication

Normally, the data needed for calculation by the systolic array initially are not yet
located inside the cells of the array. Rather, they must be infused into the array from
the outside world. The outside world in this case is a host computer, usually
a scalar control processor accessing a central data storage. The control processor,
at the right time, fetches the necessary data from the storage, passes them to the
systolic array in a suitable way, and eventually writes back the calculated results
into the storage.

Each cell (i, j) must access the operands aik and bkj during the timestep con-
cerning index value k. But only the cells of the leftmost column of the systolic array
from Figure 16.1 get the items of the matrix A directly as input data from the out-
side world. All other cells must be provided with the required values aik from a
neighbouring cell. This is done via the horizontal links between neighbouring cells,
see Figure 16.1(a). The item aik successively passes the cells (i, 1), (i, 2), . . . , (i,N2).
Correspondingly, the value bkj enters the array at cell (1, j), and then flows through
the vertical links, reaching the cells (2, j), (3, j), . . . up to cell (N1, j). An arrowhead
in the figure shows in which direction the link is oriented.

Frequently, it is considered problematic to transmit a value over large distances
within a single timestep, in a distributed or parallel architecture. Now suppose that,
in our example, cell (i, j) got the value aik during timestep t from cell (i, j − 1), or
from the outside world. For the reasons described above, aik is not passed from cell
(i, j) to cell (i, j + 1) in the same timestep t, but one timestep later, i.e., at time
t+1. This also holds for the values bkj . The delay is visualised in the detail drawing
of the cell from Figure 16.1(b): input data flowing through a cell always pass one
register, and each passed register induces a delay of exactly one timestep.

Remark. For systolic architectures, it is mandatory that any path between two
cells contains at least one register—even when forwarding data to a neighbouring
cell, only. All registers in the cells are synchronously switched by the global clock
signal of the systolic array. This results in the characteristic rhythmical traffic on all
links of the systolic array. Because of the analogy with pulsating veins, the medical
term systole has been reused for the name of the concept.



762 16. Systolic Systems

To elucidate the delayed forwarding of values, we augment system (16.1) with
further equations. Repeatedly used values like aik are represented by separate in-
stances, one for each access. The result of this proceeding—that is very characteristic
for the design of systolic algorithms—is shown as system (16.3).

input operations

a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bkj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding

a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i− 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1)
+ a(i, j − 1, k) · b(i− 1, j, k)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

output operations

cij = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(16.3)

Each of the partial sums c(i, j, k) in the progressive evaluation of cij is calculated
in a certain timestep, and then used only once, namely in the next timestep. There-
fore, cell (i, j) must provide a register (named C in Figure 16.1(b)) where the value
of c(i, j, k) can be stored for one timestep. Once the old value is no longer needed, the
register holding c(i, j, k) can be overwritten with the new value c(i, j, k + 1). When
eventually the dot product is completed, the register contains the value c(i, j,N3),
that is the final result cij . Before performing any computation, the register has to
be cleared, i.e., preloaded with a zero value—or any other desired value.

In contrast, there is no need to store the values aik and bkj permanently in cell
(i, j). As we can learn from Figure 16.1(a), each row of the matrix A is delayed
by one timestep with respect to the preceding row. And so are the columns of the
matrix B. Thus the values a(i, j − 1, k) and b(i− 1, j, k) arrive at cell (i, j) exactly
when the calculation of c(i, j, k) is due. They are put to the registers A resp. B,
then immediately fetched from there for the multiplication, and in the same cycle
forwarded to the neighbouring cells. The values aik and bkj are of no further use for
cell (i, j) after they have been multiplied, and need not be stored there any longer.
So A and B are overwritten with new values during the next timestep.

It should be obvious from this exposition that we urgently need to make economic
use of the memory contained in a cell. Any calculation and any communication must
be coordinated in space and time in such a way that storing of values is limited to
the shortest-possible time interval. This goal can be achieved by immediately using
and forwarding the received values. Besides the overall structure of the systolic array,
choosing an appropriateinput/output scheme and placing the corresponding number
of delays in the cells essentially facilitates the desired coordination. Figure 16.1(b)
in this respect shows the smallest possible delay by one timestep.



16.1. Basic concepts of systolic systems 763

Geometrically, the input scheme of the example resulted from skewing the matri-
ces A and B. Thereby some places in the input streams for matrix A became vacant
and had to be filled with zero values; otherwise, the calculation of the cij would have
been garbled. The input streams in length depend on the problem parameter N3.

As can been seen in Figure 16.1, the items of matrix C are calculated sta-
tionary, i.e., all additions contributing to an item cij happen in the same cell.
Stationary variables don’t move at all during the calculation in the systolic ar-
ray. Stationary results eventually must be forwarded to a border of the array in
a supplementary action for getting delivered to the outside world. Moreover, it is
necessary to initialise the register for item cij . Performing these extra tasks requires
a high expenditure of runtime and hardware. We will further study this problem in
Section 16.4.

16.1.9. Pipelining

The characteristic operating style with globally synchronised discrete timesteps of
equal duration and the strict separation in time of the cells by registers suggest
systolic arrays to be special cases of pipelined systems. Here, the registers of the
cells correspond to the well-known pipeline registers. However, classical pipelines
come as linear structures, only, whereas systolic arrays frequently extend into more
spatial dimensions—as visible in our example. A multi-dimensional systolic array
can be regarded as a set of interconnected linear pipelines, with some justification.
Hence it should be apparent that basic properties of one-dimensional pipelining also
apply to multi-dimensional systolic arrays.

A typical effect of pipelining is the reduced utilisation at startup and during
shut-down of the operation. Initially, the pipe is empty, no pipeline stage active.
Then, the first stage receives data and starts working; all other stages are still idle.
During the next timestep, the first stage passes data to the second stage and it-
self receives new data; only these two stages do some work. More and more stages
become active until all stages process data in every timestep; the pipeline is now
fully utilised for the first time. After a series of timesteps at maximum load, with
duration dependent on the length of the data stream, the input sequence ceases;
the first stage of the pipeline therefore runs out of work. In the next timestep, the
second stage stops working, too. And so on, until eventually all stages have been
fallen asleep again. Phases of reduced activity diminish the average performance of
the whole pipeline, and the relative contribution of this drop in productivity is all
the worse, the more stages the pipeline has in relation to the length of the data
stream.

We now study this phenomenon to some depth by analysing the two-dimensional
systolic array from Figure 16.1. As expected, we find a lot of idling cells when starting
or finishing the calculation. In the first timestep, only cell (1, 1) performs some useful
work; all other cells in fact do calculations that work like null operations—and that’s
what they are supposed to do in this phase. In the second timestep, cells (1, 2) and
(2, 1) come to real work, see Figure 16.2(a). Data is flooding the array until eventually
all cells are doing work. After the last true data item has left cell (1, 1), the latter is
no longer contributing to the calculation but merely reproduces the finished value



764 16. Systolic Systems

(b)(a)

x

x

xa13a14

a22a23

a31a32

b13b22

b23

b31

b32b41

c15

c24 c25

c33 c34

a12 ∗ b21 a11 ∗ b12

a21 ∗ b11

a34 ∗ b45

Figure 16.2 Two snapshots for the systolic array from Figure 16.1.

of c11. Step by step, more and more cells drop off. Finally, only cell (N1, N2) makes
a last necessary computation step; Figure 16.2(b) shows this concluding timestep.

Exercises
16.1-1 What must be changed in the input scheme from Figure 16.1(a) to multiply
a 2× 6 matrix by a 6× 3 matrix on the same systolic array? Could the calculations
be organised such that the result matrix would emerge in the lower right corner of
the systolic array?
16.1-2 Why is it necessary to clear spare slots in the input streams for matrix A,
as shown in Figure 16.1? Why haven’t we done the same for matrix B also?
16.1-3 If the systolic array from Figure 16.1 should be interpreted as a pipeline:
how many stages would you suggest to adequately describe the behaviour?

16.2. Space-time transformation and systolic arrays

Although the approach taken in the preceding section should be sufficient for a
basic understanding of the topic, we have to work harder to describe and judge
the properties of systolic arrays in a quantitative and precise way. In particular the
solution of parametric problems requires a solid mathematical framework. So, in this
section, we study central concepts of a formal theory on uniform algorithms, based
on linear transformations.

16.2.1. Further example: matrix product

System (16.3) can be computed by a multitude of other systolic arrays, besides that
from Figure 16.1. In Figure 16.3, for example, we see such an alternative systolic
array. Whereas the same function is evaluated by both architectures, the appearance



16.2. Space-time transformation and systolic arrays 765

+*

(b)(a)

A
B

C

Figure 16.3 Hexagonal systolic array for matrix product. (a) Array structure and principle of the
data input/output. (b) Cell structure.

of the array from Figure 16.3 is very different:

• The number of cells now is considerably larger, altogether 36, instead of 15.

• The shape of the array is hexagonal, instead of rectangular.

• Each cell now has three input ports and three output ports.

• The input scheme is clearly different from that of Figure 16.1(a).

• And finally: the matrix C here also flows through the whole array.

The cell structure from Figure 16.3(b) at first view does not appear essentially
distinguished from that in Figure 16.1(b). But the differences matter: there are no
cyclic paths in the new cell, thus stationary variables can no longer appear. Instead,
the cell is provided with three input ports and three output ports, passing items of
all three matrices through the cell. The direction of communication at the ports on
the right and left borders of the cell has changed, as well as the assignment of the
matrices to the ports.

16.2.2. The space-time transformation as a global view

How system (16.3) is related to Figure 16.3? No doubt that you were able to fully
understand the operation of the systolic array from Section 16.1 without any special
aid. But for the present example this is considerably more difficult—so now you may
be sufficiently motivated for the use of a mathematical formalism.

We can assign two fundamental measures to each elementary operation of an
algorithm for describing the execution in the systolic array: the time when the op-
eration is performed, and the position of the cell where the operation is performed.



766 16. Systolic Systems

As will become clear in the sequel, after fixing the so-called space-time transfor-
mation there are hardly any degrees of freedom left for further design: practically
all features of the intended systolic array strictly follow from the chosen space-time
transformation.

As for the systolic array from Figure 16.1, the execution of an instance (i, j, k) in
the systolic array from Figure 16.3 happens at time t = i+ j + k. We can represent
this expression as the dot product of a time vector

π =
(

1 1 1
)

(16.4)

by the iteration vector
v =

(
i j k

)
, (16.5)

hence
t = π · v ; (16.6)

so in this case

t =
(

1 1 1
)
·




i
j
k


 = i+ j + k . (16.7)

The space coordinates z = (x, y) of the executed operations in the example
from Figure 16.1 can be inferred as z = (i, j) from the iteration vector v = (i, j, k)
according to our decision in Subsection 16.1.3. The chosen map is a projection of
the space R3 along the k axis. This linear map can be described by a projection
matrix

P =
(

1 0 0
0 1 0

)
. (16.8)

To find the space coordinates, we multiply the projection matrix P by the iteration
vector v, written as

z = P · v . (16.9)

The projection direction can be represented by any vector u perpendicular to
all rows of the projection matrix,

P · u = ~0 . (16.10)

For the projection matrix P from (16.8), one of the possible projection vectors
would be u = (0, 0, 1).

Projections are very popular for describing the space coordinates when designing
a systolic array. Also in our example from Figure 16.3(a), the space coordinates are
generated by projecting the iteration vector. Here, a feasible projection matrix is
given by

P =
(

0 −1 1
−1 1 0

)
. (16.11)

A corresponding projection vector would be u = (1, 1, 1).
We can combine the projection matrix and the time vector in a matrix T , that



16.2. Space-time transformation and systolic arrays 767

fully describes the space-time transformation,

(
z
t

)
=
(
P
π

)
· v = T · v . (16.12)

The first and second rows of T are constituted by the projection matrix P , the third
row by the time vector π.

For the example from Figure 16.1, the matrix T giving the space-time transfor-
mation reads as

T =




1 0 0
0 1 0
1 1 1


 ; (16.13)

for the example from Figure 16.3 we have

T =




0 −1 1
−1 1 0

1 1 1


 . (16.14)

Space-time transformations may be understood as a global view to the systolic
system. Applying a space-time transformation—that is linear, here, and described
by a matrix T—to a system of recurrence equations directly yields the external
features of the systolic array, i.e., its architecture—consisting of space coordinates,
connection pattern, and cell structure.

Remark. Instead of purely linear maps, we alternatively may consider general
affine maps, additionally providing a translative component, T · v + h. Though as
long as we treat all iteration vectors with a common space-time transformation,
affine maps are not really required.

16.2.3. Parametric space coordinates

If the domains are numerically given and contain few points in particular, we can
easily calculate the concrete set of space coordinates via equation (16.9). But when
the domains are specified parametrically as in system (16.3), the positions of the cells
must be determined by symbolic evaluation. The following explanation especially
dwells on this problem.

Suppose that each cell of the systolic array is represented geometrically by a
point with space coordinates z = (x, y) in the two-dimensional space R2. From each
iteration vector v of the domain S, by equation (16.9) we get the space coordinates
z of a certain processor, z = P · v: the operations denoted by v are projected onto
cell z. The set P (S) = {P · v : v ∈ S} of space coordinates states the positions of all
cells in the systolic array necessary for correct operation.

To our advantage, we normally use domains that can be described as the set of
all integer points inside a convex region, here a subset of R3—called dense convex
domains. The convex hull of such a domain with a finite number of domain points
is a polytope, with domain points as vertices. Polytopes map to polytopes again
by arbitrary linear transformations. Now we can make use of the fact that each
projection is a linear transformation. Vertices of the destination polytope then are



768 16. Systolic Systems

(1−N2, N2 −N1) (1−N2, N2 − 1)

(N3 −N2, N2 −N1)

(0, 1−N1) (N3 −N2, N2 − 1)

(0, 0)

(N3 − 1, 1−N1) (N3 − 1, 0)

Figure 16.4 Image of a rectangular domain under projection. Most interior points have been
suppressed for clarity. Images of previous vertex points are shaded.

images of vertices of the source polytope.
Remark. But not all vertices of a source polytope need to be projected to vertices

of the destination polytope, see for instance Figure 16.4.
When projected by an integer matrix P , the lattice Z3 maps to the lattice Z2 if

P can be extended by an integer time vector π to a unimodularspace-time matrix
T . Practically any dense convex domain, apart from some exceptions irrelevant to
usual applications, thereby maps to another dense convex set of space coordinates,
that is completely characterised by the vertices of the hull polytope. To determine
the shape and the size of the systolic array, it is therefore sufficient to apply the
matrix P to the vertices of the convex hull of S.

Remark. Any square integer matrix with determinant ±1 is called unimodular.
Unimodular matrices have unimodular inverses.

We apply this method to the integer domain

S = [1, N1]× [1, N2]× [1, N3] (16.15)

from system (16.3). The vertices of the convex hull here are

(1, 1, 1), (N1, 1, 1), (1, N2, 1), (1, 1, N3),

(1, N2, N3), (N1, 1, N3), (N1, N2, 1), (N1, N2, N3) .
(16.16)

For the projection matrix P from (16.11), the vertices of the corresponding image



16.2. Space-time transformation and systolic arrays 769

N1

N2

N3

Figure 16.5 Partitioning of the space coordinates.

have the positions

(N3 − 1, 0), (N3 − 1, 1−N1), (0, 1−N1) ,

(1−N2, N2 −N1), (1−N2, N2 − 1), (N3 −N2, N2 −N1) .
(16.17)

Since S has eight vertices, but the image P (S) only six, it is obvious that two
vertices of S have become interior points of the image, and thus are of no relevance for
the size of the array; namely the vertices (1, 1, 1) and (N1, N2, N3). This phenomenon
is sketched in Figure 16.4.

The settings N1 = 3, N2 = 5, and N3 = 4 yield the vertices (3,0), (3,-2), (0,-2),
(-4,2), (-4,4), and (-1,4). We see that space coordinates in principle can be negative.
Moreover, the choice of an origin—that here lies in the interior of the polytope—
might not always be obvious.

As the image of the projection, we get a systolic array with hexagonal shape
and parallel opposite borders. On these, we find N1, N2, and N3 integer points,
respectively; cf. Figure 16.5. Thus, as opposed to our first example, all problem
parameters here are also array parameters.

The area function of this region is of order Θ(N1 · N2 + N1 · N3 + N2 · N3),
and thus depends on all three matrix dimensions. So this is quite different from the
situation in Figure 16.1(a), where the area function—for the same problem—is of
order Θ(N1 ·N2).

Improving on this approximate calculation, we finally count the exact number
of cells. For this process, it might be helpful to partition the entire region into
subregions for which the number of cells comprised can be easily determined; see
Figure 16.5. The points (0,0), (N3 − 1, 0), (N3 − 1, 1−N1), and (0, 1−N1) are the
vertices of a rectangle with N1 ·N3 cells. If we translate this point set up by N2 − 1
cells and right by N2 − 1 cells, we exactly cover the whole region. Each shift by one
cell up and right contributes just another N1 + N3 − 1 cells. Altogether this yields
N1 ·N3 + (N2− 1) · (N1 +N3− 1) = N1 ·N2 +N1 ·N3 +N2 ·N3− (N1 +N2 +N3) + 1
cells.

For N1 = 3, N2 = 5, and N3 = 4 we thereby get a number of 36 cells, as we have
already learned from Figure 16.3(a).



770 16. Systolic Systems

16.2.4. Symbolically deriving the running time

The running time of a systolic algorithm can be symbolically calculated by an ap-
proach similar to that in Subsection 16.2.3. The time transformation according to
formula (16.6) as well is a linear map. We find the timesteps of the first and the
last calculations as the minimum resp. maximum in the set π(S) = {π · v : v ∈ S}
of execution timesteps. Following the discussion above, it thereby suffices to vary v
over the vertices of the convex hull of S.

The running time is then given by the formula

tΣ = 1 + maxP (S)−minP (S) . (16.18)

Adding one is mandatory here, since the first as well as the last timestep belong
to the calculation.

For the example from Figure 16.3, the vertices of the polytope as enumerated in
(16.16) are mapped by (16.7) to the set of images

{3, 2 +N1, 2 +N2, 2 +N3, 1 +N1 +N2, 1 +N1 +N3, 1 +N2 +N3, N1 +N2 +N3} .

With the basic assumption N1, N2, N3 ≥ 1, we get a minimum of 3 and a maxi-
mum of N1 +N2 +N3, thus a running time of N1 +N2 +N3−2 timesteps, as for the
systolic array from Figure 16.1—no surprise, since the domains and the time vectors
agree.

For the special problem parameters N1 = 3, N2 = 5, and N3 = 4, a running
time of 12− 3 + 1 = 10 timesteps can be derived.

If N1 = N2 = N3 = N , the systolic algorithm shows a running time of order
Θ(N), using Θ(N2) systolic cells.

16.2.5. How to unravel the communication topology

The communication topology of the systolic array is induced by applying the
space-time transformation to the data dependences of the algorithm. Each data de-
pendence results from a direct use of a variable instance to calculate another instance
of the same variable, or an instance of another variable.

Remark. In contrast to the general situation where a data dependence analysis
for imperative programming languages has to be performed by highly optimising
compilers, data dependences here always are flow dependences. This is a direct con-
sequence from the assignment-free notation employed by us.

The data dependences can be read off the quantified equations in our
assignment-free notation by comparing their right and left sides. For example, we
first analyse the equation c(i, j, k) = c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) from
system (16.3).

The value c(i, j, k) is calculated from the values c(i, j, k − 1), a(i, j − 1, k), and
b(i − 1, j, k). Thus we have a data flow from c(i, j, k − 1) to c(i, j, k), a data flow
from a(i, j − 1, k) to c(i, j, k), and a data flow from b(i− 1, j, k) to c(i, j, k).

All properties of such a data flow that matter here can be covered by a de-
pendence vector, which is the iteration vector of the calculated variable instance
minus the iteration vector of the correspondingly used variable instance.



16.2. Space-time transformation and systolic arrays 771

The iteration vector for c(i, j, k) is (i, j, k); that for c(i, j, k − 1) is (i, j, k − 1).
Thus, as the difference vector, we find

dC =




i
j
k


−




i
j

k − 1


 =




0
0
1


 . (16.19)

Correspondingly, we get

dA =




i
j
k


−




i
j − 1
k


 =




0
1
0


 (16.20)

and

dB =




i
j
k


−




i− 1
j
k


 =




1
0
0


 . (16.21)

In the equation a(i, j, k) = a(i, j − 1, k) from system (16.3), we cannot directly
recognise which is the calculated variable instance, and which is the used variable
instance. This example elucidates the difference between equations and assignments.
When fixing that a(i, j, k) should follow from a(i, j−1, k) by a copy operation, we
get the same dependence vector dA as in (16.20). Correspondingly for the equation
b(i, j, k) = b(i− 1, j, k).

A variable instance with iteration vector v is calculated in cell P · v. If for this
calculation another variable instance with iteration vector v′ is needed, implying a
data dependence with dependence vector d = v − v′, the used variable instance is
provided by cell P · v′. Therefore, we need a communication from cell z′ = P · v′ to
cell z = P · v. In systolic arrays, all communication has to be via direct static links
between the communicating cells. Due to the linearity of the transformation from
(16.9), we have z − z′ = P · v − P · v′ = P · (v − v′) = P · d.

If P ·d = ~0, communication happens exclusively inside the calculating cell, i.e., in
time, only—and not in space. Passing values in time is via registers of the calculating
cell.

Whereas for P ·d 6= ~0, a communication between different cells is needed. Then a
link along the flow direction P ·d must be provided from/to all cells of the systolic
array. The vector −P · d, oriented in counter flow direction, leads from space point
z to space point z′.

If there is more than one dependence vector d, we need an appropriate link for
each of them at every cell. Take for example the formulas (16.19), (16.20), and (16.21)
together with (16.11), then we get P · dA = (−1, 1), P · dB = (0,−1), and P · dC =
(1, 0). In Figure 16.3(a), terminating at every cell, we see three links corresponding to
the various vectors P ·d. This results in a hexagonal communication topology—
instead of the orthogonal communication topology from the first example.

16.2.6. Inferring the structure of the cells

Now we apply the space-related techniques from Subsection 16.2.5 to time-related
questions. A variable instance with iteration vector v is calculated in timestep π · v.



772 16. Systolic Systems

If this calculation uses another variable instance with iteration vector v′, the former
had been calculated in timestep π · v′. Hence communication corresponding to the
dependence vector d = v − v′ must take exactly π · v − π · v′ timesteps.

Since (16.6) describes a linear map, we have π · v − π · v′ = π · (v − v′) = π · d.
According to the systolic principle, each communication must involve at least one
register. The dependence vectors d are fixed, and so the choice of a time vector π is
constrained by

π · d ≥ 1 . (16.22)

In case P · d = ~0, we must provide registers for stationary variables in all cells.
But each register is overwritten with a new value in every timestep. Hence, if π·d ≥ 2,
the old value must be carried on to a further register. Since this is repeated for π · d
timesteps, the cell needs exactly π · d registers per stationary variable. The values of
the stationary variable successively pass all these registers before eventually being
used. If P · d 6= ~0, the transport of values analogously goes by π · d registers, though
these are not required to belong all to the same cell.

For each dependence vector d, we thus need an appropriate number of registers.
In Figure 16.3(b), we see three input ports at the cell, corresponding to the depen-
dence vectors dA, dB , and dC . Since for these we have P · d 6= ~0. Moreover, π · d = 1
due to (16.7) and (16.4). Thus, we need one register per dependence vector. Finally,
the regularity of system (16.3) forces three output ports for every cell, opposite to
the corresponding input ports.

Good news: we can infer in general that each cell needs only a few registers,
because the number of dependence vectors d is statically bounded with a system like
(16.3), and for each of the dependence vectors the amount of registers π · d has a
fixed and usually small value.

The three input and output ports at every cell now permit the use of three
moving matrices. Very differently from Figure 16.1, a dot product

∑4
k=1 aik · bkj

here is not calculated within a single cell, but dispersed over the systolic array. As a
prerequisite, we had to dissolve the sum into a sequence of single additions. We call
this principle a distributed generic operator.

Apart from the three input ports with their registers, and the three output ports,
Figure 16.3(b) shows a multiplier chained to an adder. Both units are induced in
each cell by applying the transformation (16.9) to the domain S of the equation
c(i, j, k) = c(i, j, k− 1) + a(i, j− 1, k) · b(i− 1, j, k) from system (16.3). According to
this equation, the addition has to follow the calculation of the product, so the order
of the hardware operators as seen in Figure 16.3(b) is implied.

The source cell for each of the used operands follows from the projection of
the corresponding dependence vector. Here, variable a(i, j − 1, k) is related to the
dependence vector dA = (0, 1, 0). The projection P · dA = (−1, 1) constitutes the
flow direction of matrix A. Thus the value to be used has to be expected, as observed
by the calculating cell, in opposite direction (1,−1), in this case from the port in
the lower left corner of the cell, passing through register A. All the same, b(i −
1, j, k) comes from the right via register B, and c(i, j, k − 1) from above through
register C. The calculated values a(i, j, k), b(i, j, k), and c(i, j, k) are output into the
opposite directions through the appropriate ports: to the upper right, to the left,
and downwards.



16.3. Input/output schemes 773

If alternatively we use the projection matrix P from (16.8), then for dC we get
the direction (0, 0). The formula π · dC = 1 results in the requirement of exactly one
register C for each item of the matrix C. This register provides the value c(i, j, k−1)
for the calculation of c(i, j, k), and after this calculation receives the value c(i, j, k).
All this reasoning matches with the cell from Figure 16.1(b). Figure 16.1(a) corre-
spondingly shows no links for matrix C between the cells: for the matrix is stationary.

Exercises
16.2-1 Each projection vector u induces several corresponding projection mat-
rices P .

a. Show that

P =
(

0 1 −1
−1 0 1

)

also is a projection matrix fitting with projection vector u = (1, 1, 1).

b. Use this projection matrix to transform the domain from system (16.3).

c. The resulting space coordinates differ from that in Subsection 16.2.3. Why, in
spite of this, both point sets are topologically equivalent?

d. Analyse the cells in both arrangements for common and differing features.

16.2-2 Apply all techniques from Section 16.2 to system (16.3), employing a space-
time matrix

T =




1 0 1
0 1 1
1 1 1


 .

16.3. Input/output schemes

In Figure 16.3(a), the input/output scheme is only sketched by the flow directions
for the matrices A,B,C. The necessary details to understand the input/output op-
erations are now provided by Figure 16.6.

The input/output scheme in Figure 16.6 shows some new phenomena when
compared with Figure 16.1(a). The input and output cells belonging to any matrix
are no longer threaded all on a single straight line; now, for each matrix, they lie
along two adjacent borders, that additionally may differ in the number of links to the
outside world. The data structures from Figure 16.6 also differ from that in Figure
16.1(a) in the angle of inclination. Moreover, the matrices A and B from Figure 16.6
arrive at the boundary cells with only one third of the data rate, compared to Figure
16.1(a).

Spending some effort, even here it might be possible in principle to construct—
item by item—the appropriate input/output scheme fitting the present systolic array.
But it is much more safe to apply a formal derivation. The following subsections are
devoted to the presentation of the various methodical steps for achieving our goal.



774 16. Systolic Systems

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 16.6 Detailed input/output scheme for the systolic array from Figure 16.3(a).

16.3.1. From data structure indices to iteration vectors

First, we need to construct a formal relation between the abstract data structures
and the concrete variable instances in the assignment-free representation.

Each item of the matrix A can be characterised by a row index i and a column
index k. These data structure indices can be comprised in a data structure
vector w = (i, k). Item aik in system (16.3) corresponds to the instances a(i, j, k),
with any j. The coordinates of these instances all lie on a line along direction q =
(0, 1, 0) in space R3. Thus, in this case, the formal change from data structure vector
(i, k) to coordinates (i, j, k) can be described by the transformation




i
j
k


 =




1 0
0 0
0 1


 ·

(
i
k

)
+ j ·




0
1
0


+




0
0
0


 . (16.23)

In system (16.3), the coordinate vector (i, j, k) of every variable instance equals
the iteration vector of the domain point representing the calculation of this variable
instance. Thus we also may interpret formula (16.23) as a relation between data
structure vectors and iteration vectors. Abstractly, the desired iteration vectors v



16.3. Input/output schemes 775

can be inferred from the data structure vector w by the formula

v = H · w + λ · q + p . (16.24)

The affine vector p is necessary in more general cases, though always null in our
example.

Because of b(i, j, k) = bkj , the representation for matrix B correspondingly is



i
j
k


 =




0 0
0 1
1 0


 ·

(
k
j

)
+ i ·




1
0
0


+




0
0
0


 . (16.25)

Concerning matrix C, each variable instance c(i, j, k) may denote a different
value. Nevertheless, all instances c(i, j, k) to a fixed index pair (i, j) can be regarded
as belonging to the same matrix item cij , since they all stem from the serialisation
of the sum operator for the calculation of cij . Thus, for matrix C, following formula
(16.24) we may set




i
j
k


 =




1 0
0 1
0 0


 ·

(
i
j

)
+ k ·




0
0
1


+




0
0
0


 . (16.26)

16.3.2. Snapshots of data structures

Each of the three matrices A,B,C is generated by two directions with regard to the
data structure indices: along a row, and along a column. The difference vector (0,1)
thereby describes a move from an item to the next item of the same row, i.e., in the
next column: (0, 1) = (x, y+ 1)− (x, y). Correspondingly, the difference vector (1,0)
stands for sliding from an item to the next item in the same column and next row:
(1, 0) = (x+ 1, y)− (x, y).

Input/output schemes of the appearance shown in Figures 16.1(a) and 16.6 de-
note snapshots: all positions of data items depicted, with respect to the entire
systolic array, are related to a common timestep.

As we can notice from Figure 16.6, the rectangular shapes of the abstract data
structures are mapped to parallelograms in the snapshot, due to the linearity of
the applied space-time transformation. These parallelograms can be described by
difference vectors along their borders, too.

Next we will translate difference vectors ∆w from data structure vectors into
spatial difference vectors ∆z for the snapshot. Therefore, by choosing the parameter
λ in formula (16.24), we pick a pair of iteration vectors v, v′ that are mapped to
the same timestep under our space-time transformation. For the moment it is not
important which concrete timestep we thereby get. Thus, we set up

π · v = π · v′ with v = H · w + λ · q + p and v′ = H · w′ + λ′ · q + p , (16.27)

implying
π ·H · (w − w′) + (λ− λ′) · π · q = 0 , (16.28)



776 16. Systolic Systems

and thus

∆λ = (λ− λ′) =
−π ·H · (w − w′)

π · q . (16.29)

Due to the linearity of all used transformations, the wanted spatial difference
vector ∆z hence follows from the difference vector of the data structure ∆w = w−w′

as
∆z = P ·∆v = P ·H ·∆w + ∆λ · P · q , (16.30)

or

∆z = P ·H ·∆w − π ·H ·∆w
π · q · P · q . (16.31)

With the aid of formula (16.31), we now can determine the spatial difference
vectors ∆z for matrix A. As mentioned above, we have

H =




1 0
0 0
0 1


 , q =




0
1
0


 , P =

(
0 −1 1
−1 1 0

)
, π =

(
1 1 1

)
.

Noting π · q = 1, we get

∆z =
(

0 1
−1 0

)
·∆w + ∆λ ·

(
−1

1

)
with ∆λ = −

(
1 1

)
·∆w .

For the rows, we have the difference vector ∆w = (0, 1), yielding the spatial
difference vector ∆z = (2,−1). Correspondingly, from ∆w = (1, 0) for the columns
we get ∆z = (1,−2). If we check with Figure 16.6, we see that the rows of A in fact
run along the vector (2,−1), the columns along the vector (1,−2).

Similarly, we get ∆z = (−1, 2) for the rows of B, and ∆z = (1, 1) for the columns
of B; as well as ∆z = (−2, 1) for the rows of C, and ∆z = (−1,−1) for the columns
of C.

Applying these instruments, we are now able to reliably generate appropriate
input/output schemes—although separately for each matrix at the moment.

16.3.3. Superposition of input/output schemes

Now, the shapes of the matrices A,B,C for the snapshot have been fixed. But we
still have to adjust the matrices relative to the systolic array—and thus, also relative
to each other. Fortunately, there is a simple graphical method for doing the task.

We first choose an arbitrary iteration vector, say v = (1, 1, 1). The latter we map
with the projection matrix P to the cell where the calculation takes place,

z =
(

0 −1 1
−1 1 0

)
·




1
1
1


 =

(
0
0

)
.

The iteration vector (1,1,1) represents the calculations a(1, 1, 1), b(1, 1, 1), and
c(1, 1, 1); these in turn correspond to the data items a11, b11, and c11. We now lay
the input/output schemes for the matrices A,B,C on the systolic array in a way



16.3. Input/output schemes 777

that the entries a11, b11, and c11 all are located in cell z = (0, 0).
In principle, we would be done now. Unfortunately, our input/output schemes

overlap with the cells of the systolic array, and are therefore not easily perceivable.
Thus, we simultaneously retract the input/output schemes of all matrices in counter
flow direction, place by place, until there is no more overlapping. With this method,
we get exactly the input/output scheme from Figure 16.6.

As an alternative to this nice graphical method, we also could formally calculate
an overlap-free placement of the various input/output schemes.

Only after specifying the input/output schemes, we can correctly calculate the
number of timesteps effectively needed. The first relevant timestep starts with the
first input operation. The last relevant timestep ends with the last output of a result.
For the example, we determine from Figure 16.6 the beginning of the calculation with
the input of the data item b11 in timestep 0, and the end of the calculation after
output of the result c35 in timestep 14. Altogether, we identify 15 timesteps—five
more than with pure treatment of the real calculations.

16.3.4. Data rates induced by space-time transformations

The input schemes of the matrices A and B from Figure 16.1(a) have a dense layout:
if we drew the borders of the matrices shown in the figure, there would be no spare
places comprised.

Not so in Figure 16.6. In any input data stream, each data item is followed by
two spare places there. For the input matrices this means: the boundary cells of the
systolic array receive a proper data item only every third timestep.

This property is a direct result of the employed space-time transformation. In
both examples, the abstract data structures themselves are dense. But how close
the various items really come in the input/output scheme depends on the absolute
value of the determinant of the transformation matrix T : in every input/output data
stream, the proper items follow each other with a spacing of exactly |det(T )| places.
Indeed |det(T )| = 1 for Figure 16.1; as for Figure 16.6, we now can rate the fluffy
spacing as a practical consequence of |det(T )| = 3.

What to do with spare places as those in Figure 16.6? Although each cell of the
systolic array from Figure 16.3 in fact does useful work only every third timestep, it
would be nonsense to pause during two out of three timesteps. Strictly speaking, we
can argue that values on places marked with dots in Figure 16.6 have no influence
on the calculation of the shown items cij , because they never reach an active cell at
time of the calculation of a variable c(i, j, k). Thus, we may simply fill spare places
with any value, no danger of disturbing the result. It is even feasible to execute three
different matrix products at the same time on the systolic array from Figure 16.3,
without interference. This will be our topic in Subsection 16.3.7.

16.3.5. Input/output expansion

When further studying Figure 16.6, we can identify another problem. Check, for
example, the itinerary of c22 through the cells of the systolic array. According to the
space-time transformation, the calculations contributing to the value of c22 happen



778 16. Systolic Systems

in the cells (−1, 0), (0, 0), (1, 0), and (2, 0). But the input/output scheme from Figure
16.6 tells us that c22 also passes through cell (−2, 0) before, and eventually visits
cell (3, 0), too.

This may be interpreted as some spurious calculations being introduced into
the system (16.3) by the used space-time transformation, here, for example, at the
new domain points (2,2,0) and (2,2,5). The reason for this phenomenon is that the
domains of the input/output operations are not in parallel to the chosen projection
direction. Thus, some input/output operations are projected onto cells that do not
belong to the boundary of the systolic array. But in the interior of the systolic array,
no input/output operation can be performed directly. The problem can be solved by
extending the trajectory, in flow or counter flow direction, from these inner cells up to
the boundary of the systolic array. But thereby we introduce some new calculations,
and possibly also some new domain points. This technique is called input/output
expansion.

We must avoid that the additional calculations taking place in the cells (-2,0)
and (3,0) corrupt the correct value of c22. For the matrix product, this is quite
easy—though the general case is more difficult. The generic sum operator has a
neutral element, namely zero. Thus, if we can guarantee that by new calculations
only zero is added, there will be no harm. All we have to do is providing always at
least one zero operand to any spurious multiplication; this can be achieved by filling
appropriate input slots with zero items.

Figure 16.7 shows an example of a properly extended input/output scheme.
Preceding and following the items of matrix A, the necessary zero items have been
filled in. Since the entered zeroes count like data items, the input/output scheme
from Figure 16.6 has been retracted again by one place. The calculation now begins
already in timestep −1, but ends as before with timestep 14. Thus we need 16
timesteps altogether.

16.3.6. Coping with stationary variables

Let us come back to the example from Figure 16.1(a). For inputting the items
of matrices A and B, no expansion is required, since these items are always used
in boundary cells first. But not so with matrix C! The items of C are calculated
in stationary variables, hence always in the same cell. Thus most results cij are
produced in inner cells of the systolic array, from where they have to be moved—in
a separate action—to boundary cells of the systolic array.

Although this new challenge, on the face of it, appears very similar to the prob-
lem from Subsection 16.3.5, and thus very easy to solve, in fact we here have a
completely different situation. It is not sufficient to extend existing data flows for-
ward or backward up to the boundary of the systolic array. Since for stationary
variables the dependence vector is projected to the null vector, which constitutes
no extensible direction, there can be no spatial flow induced by this dependency.
Possibly, we can construct some auxiliary extraction paths, but usually there are
many degrees of freedom. Moreover, we then need a control mechanism inside the
cells. For all these reasons, the problem is further dwelled on in Section 16.4.



16.3. Input/output schemes 779

0

0

0
0

0

0

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 16.7 Extended input/output scheme, correcting Figure 16.6.

16.3.7. Interleaving of calculations

As can be easily noticed, the utilisation of the systolic array from Figure 16.3 with
input/output scheme from Figure 16.7 is quite poor. Even without any deeper study
of the starting phase and the closing phase, we cannot ignore that the average
utilisation of the array is below one third—after all, each cell at most in every third
timestep makes a proper contribution to the calculation.

A simple technique to improve this behaviour is to interleave calculations. If we
have three independent matrix products, we can successively input their respective
data, delayed by only one timestep, without any changes to the systolic array or
its cells. Figure 16.8 shows a snapshot of the systolic array, with parts of the corre-
sponding input/output scheme. Now we must check by a formal derivation whether



780 16. Systolic Systems

32 21

32 22

33 23

23

22 21

23 31

13

24

12 21

13 31

14 41

14

41

13 32

0 * b31 42

0 * b32 32
1

2

3

2

3

1

3

1

2

1

2

1

3

3 1 2

1

2

1 2

1

3

1

2

1

3

2a

a

a

a

a

a

a

a

a

a

aa

aa

a b

b

b

∗ b

∗ b

∗ b

∗ b

∗ b

∗ b∗ b

∗ 0∗ 0

∗ 0

Figure 16.8 Interleaved calculation of three matrix products on the systolic array from Figure
16.3.

this idea is really working. Therefore, we slightly modify system (16.3). We augment
the variables and the domains by a fourth dimension, needed to distinguish the three
matrix products:

input operations

a(i, j, k, l) = al
ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

b(i, j, k, l) = bl
kj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

c(i, j, k, l) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0, 1 ≤ l ≤ 3 .

calculations and forwarding

a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

b(i, j, k, l) = b(i− 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

c(i, j, k, l) = c(i, j, k − 1, l)
+ a(i, j − 1, k, l)
· b(i− 1, j, k, l)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 .

output operations

cl
ij = c(i, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3, 1 ≤ l ≤ 3 .

(16.32)

Obviously, in system (16.32), problems with different values of l are not related.
Now we must preserve this property in the systolic array. A suitable space-time
matrix would be

T =




0 −1 1 0
−1 1 0 0

1 1 1 1


 . (16.33)

Notice that T is not square here. But for calculating the space coordinates, the



16.4. Control 781

fourth dimension of the iteration vector is completely irrelevant, and thus can simply
be neutralised by corresponding zero entries in the fourth column of the first and
second rows of T .

The last row of T again constitutes the time vector π. Appropriate choice of
π embeds the three problems to solve into the space-time continuum, avoiding any
intersection. Corresponding instances of the iteration vectors of the three problems
are projected to the same cell with a respective spacing of one timestep, because the
fourth entry of π equals 1.

Finally, we calculate the average utilisation—with or without interleaving—for
the concrete problem parameters N1 = 3, N2 = 5, and N3 = 4. For a single matrix
product, we have to perform N1 ·N2 ·N3 = 60 calculations, considering a multipli-
cation and a corresponding addition as a compound operation, i.e., counting both
together as only one calculation; input/output operations are not counted at all.
The systolic array has 36 cells.

Without interleaving, our systolic array altogether takes 16 timesteps for calcu-
lating a single matrix product, resulting in an average utilisation of 60/(16 · 36) ≈
0.104 calculations per timestep and cell. When applying the described interleaving
technique, the calculation of all three matrix products needs only two timesteps
more, i.e., 18 timesteps altogether. But the number of calculations performed
thereby has tripled, so we get an average utilisation of the cells amounting to
3 · 60/(18 · 36) ≈ 0.278 calculations per timestep and cell. Thus, by interleaving,
we were able to improve the utilisation of the cells to 267 per cent!

Exercises
16.3-1 From equation (16.31), formally derive the spatial difference vectors of ma-
trices B and C for the input/output scheme shown in Figure 16.6.
16.3-2 Augmenting Figure 16.6, draw an extended input/output scheme that forces
both operands of all spurious multiplications to zero.
16.3-3 Apply the techniques presented in Section 16.3 to the systolic array from
Figure 16.1.
16.3-4? Proof the properties claimed in Subsection 16.3.7 for the special space-time
transformation (16.33) with respect to system (16.32).

16.4. Control

So far we have assumed that each cell of a systolic array behaves in completely the
same way during every timestep. Admittedly there are some relevant examples of
such systolic arrays. However, in general the cells successively have to work in several
operation modes, switched to by some control mechanism. In the sequel, we study
some typical situations for exerting control.

16.4.1. Cells without control

The cell from Figure 16.3(b) contains the registers A, B, and C, that—when activated
by the global clock signal—accept the data applied to their inputs and then reliably



782 16. Systolic Systems

+*

(b)(a)

A

B

C

Figure 16.9 Resetting registers via global control. (a) Array structure. (b) Cell structure.

reproduce these values at their outputs for one clock cycle. Apart from this system-
wide activity, the function calculated by the cell is invariant for all timesteps: a
fused multiply-add operation is applied to the three input operands A, B, and C,
with result passed to a neighbouring cell; during the same cycle, the operands A and
B are also forwarded to two other neighbouring cells. So in this case, the cell needs
no control at all.

The initial values c(i, j, 0) for the execution of the generic sum operator—which
could also be different from zero here—are provided to the systolic array via the input
streams, see Figure 16.7; the final results c(i, j,N3) continue to flow into the same
direction up to the boundary of the array. Therefore, the input/output activities for
the cell from Figure 16.3(b) constitute an intrinsic part of the normal cell function.
The price to pay for this extremely simple cell function without any control is a
restriction in all three dimensions of the matrices: on a systolic array like that from
Figure 16.3, with fixed array parameters N1, N2, N3, an M1×M3 matrix A can only
be multiplied by an M3 ×M2 matrix B if the relations M1 ≤ N1, M2 ≤ N2, and
M3 ≤ N3 hold.

16.4.2. Global control

In this respect, constraints for the array from Figure 16.1 are not so restrictive:
though the problem parameters M1 and M2 also are bounded by M1 ≤ N1 and
M2 ≤ N2, there is no constraint for M3. Problem parameters unconstrained in spite
of fixed array parameters can only emerge in time but not in space, thus mandating
the use of stationary variables.

Before a new calculation can start, each register assigned to a stationary variable
has to be reset to an initial state independent from the previously performed cal-
culations. For instance, concerning the systolic cell from Figure 16.3(b), this should
be the case for register C. By a global signal similar to the clock, register C can be
cleared in all cells at the same time, i.e., reset to a zero value. To prevent a corrup-
tion of the reset by the current values of A or B, at least one of the registers A or B



16.4. Control 783

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 16.10 Output scheme with delayed output of results.

must be cleared at the same time, too. Figure 16.9 shows an array structure and a
cell structure implementing this idea.

16.4.3. Local control

Unfortunately, for the matrix product the principle of the global control is not suf-
ficient without further measures. Since the systolic array presented in Figure 16.1
even lacks another essential property: the results cij are not passed to the boundary
but stay in the cells.

At first sight, it seems quite simple to forward the results to the boundary: when
the calculation of an item cij is finished, the links from cell (i, j) to the neighbouring
cells (i, j + 1) and (i + 1, j) are no longer needed to forward items of the matrices
A and B. These links can be reused then for any other purpose. For example, we
could pass all items of C through the downward-directed links to the lower border
of the systolic array.

But it turns out that leading through results from the upper cells is hampered
by ongoing calculations in the lower parts of the array. If the result cij , finished in
timestep i+ j+N3, would be passed to cell (i+ 1, j) in the next timestep, a conflict
would be introduced between two values: since only one value per timestep can be
sent from cell (i+ 1, j) via the lower port, we would be forced to keep either cij or
ci+1 j , the result currently finished in cell (i+ 1, j). This effect would spread over all
cells down.

To fix the problem, we could slow down the forwarding of items cij . If it would
take two timesteps for cij to pass a cell, no collisions could occur. Then, the results
stage a procession through the same link, each separated from the next by one
timestep. From the lower boundary cell of a column, the host computer first receives
the result of the bottom row, then that of the penultimate row; this procedure
continues until eventually we see the result of the top row. Thus we get the output
scheme shown in Figure 16.10.

How can a cell recognise when to change from forwarding items of matrix B to
passing items of matrix C through the lower port? We can solve this task by an
automaton combining global control with local control in the cell:



784 16. Systolic Systems

+

*

(b)(a)

R

SQ

Q

counter

A

B

C

i+j−1

Figure 16.11 Combined local/global control. (a) Array structure. (b) Cell structure.

If we send a global signal to all cells at exactly the moment when the last
items of A and B are input to cell (1, 1), each cell can start a countdown process:
in each successive timestep, we decrement a counter initially set to the number of
the remaining calculation steps. Thereby cell (i, j) still has to perform i + j − 1
calculations before changing to propagation mode. Later, the already mentioned
global reset signal switches the cell back to calculation mode.

Figure 16.11 presents a systolic array implementing this local/global principle.
Basically, the array structure and the communication topology have been preserved.
But each cell can run in one of two states now, switched by a control logic:

1. In calculation mode, as before, the result of the addition is written to register
C. At the same time, the value in register B—i.e., the operand used for the
multiplication—is forwarded through the lower port of the cell.

2. In propagation mode, registers B and C are connected in series. In this mode,
the only function of the cell is to guide each value received at the upper port
down to the lower port, thereby enforcing a delay of two timesteps.

The first value output from cell (i, j) in propagation mode is the currently calcu-
lated value cij , stored in register C. All further output values are results forwarded
from cells above. A formal description of the algorithm implemented in Figure 16.11
is given by the assignment-free system (16.34).



16.4. Control 785

input operations

a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bkj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding

a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i− 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1)
+ a(i, j − 1, k)
· b(i− 1, j, k)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

propagation

b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3 ,

c(i, j, k) = b(i− 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i− 1 + N3 ,

output operations

c1+N1+N3−k,j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(16.34)

It rests to explain how the control signals in a cell are generated in this model.
As a prerequisite, the cell must contain a state flip-flop indicating the current
operation mode. The output of this flip-flop is connected to the control inputs of
both multiplexors, see Figure 16.11(b). The global reset signal clears the state flip-
flop, as well as the registers A and C : the cell now works in calculation mode.

The global ready signal starts the countdown in all cells, so in every timestep
the counter is diminished by 1. The counter is initially set to the precalculated value
i+ j − 1, dependent on the position of the cell. When the counter reaches zero, the
flip-flop is set: the cell switches to propagation mode.

If desisting from a direct reset of the register C, the last value passed, before the
reset, from register B to register C of a cell can be used as a freely decidable initial
value for the next dot product to evaluate in the cell. We then even calculate, as
already in the systolic array from Figure 16.3, the more general problem

C = A ·B +D , (16.35)

detailed by the following equation system:



786 16. Systolic Systems

input operations

a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bkj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = dij 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding

a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i− 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1)
+ a(i, j − 1, k)
· b(i− 1, j, k)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

propagation

b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3 ,

c(i, j, k) = b(i− 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i− 1 + N3 .

output operations

c1+N1+N3−k,j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(16.36)

16.4.4. Distributed control

The method sketched in Figure 16.11 still has the following drawbacks:

1. The systolic array uses global control signals, requiring a high technical accu-
racy.

2. Each cell needs a counter with counting register, introducing a considerable
hardware expense.

3. The initial value of the counter varies between the cells. Thus, each cell must
be individually designed and implemented.

4. The input data of any successive problem must wait outside the cells until all
results from the current problem have left the systolic array.

These disadvantages can be avoided, if control signals are propagated like data—
meaning a distributed control. Therefore, we preserve the connections of the reg-
isters B and C with the multiplexors from Figure 16.11(b), but do not generate
any control signals in the cells; also, there will be no global reset signal. Instead, a
cell receives the necessary control signal from one of the neighbours, stores it in a
new one-bit register S, and appropriately forwards it to further neighbouring cells.
The primary control signals are generated by the host computer, and infused into
the systolic array by boundary cells, only. Figure 16.12(a) shows the required array



16.4. Control 787

structure, Figure 16.12(b) the modified cell structure.
Switching to the propagation mode occurs successively down one cell in a column,

always delayed by one timestep. The delay introduced by register S is therefore
sufficient.

Reset to the calculation mode is performed via the same control wire, and thus
also happens with a delay of one timestep per cell. But since the results cij sink
down at half speed, only, we have to wait sufficiently long with the reset: if a cell is
switched to calculation mode in timestep t, it goes to propagation mode in timestep
t+N3, and is reset back to calculation mode in timestep t+N1 +N3.

So we learned that in a systolic array, distributed control induces a different
macroscopic timing behaviour than local/global control. Whereas the systolic array
from Figure 16.12 can start the calculation of a new problem (16.35) every N1 +N3

timesteps, the systolic array from Figure 16.11 must wait for 2 ·N1 + N2 + N3 − 2
timesteps. The time difference N1 +N3 resp. 2 ·N1 +N2 +N3−2 is called the period,
its reciprocal being the throughput.

System (16.37 and 16.38), divided into two parts during the typesetting, formally
describes the relations between distributed control and calculations. We thereby as-
sume an infinite, densely packed sequence of matrix product problems, the additional
iteration variable l being unbounded. The equation headed variables with alias de-
scribes but pure identity relations.

control

s(i, j, k, l) = 0 i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

s(i, j, k, l) = 1 i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 ,

s(i, j, k, l) = s(i− 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

input operations

a(i, j, k, l) = al
ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k, l) = bl
kj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k, l) = dl+1
N1+N3+1−k,j i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

variables with alias

c(i, j, k, l) = c(i, j, N1 + N3, l − 1)1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

(16.37)



788 16. Systolic Systems

+

*

(b)(a)

A

B

C

S

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 16.12 Matrix product on a rectangular systolic array, with output of results and distributed
control. (a) Array structure. (b) Cell structure.

calculations and forwarding

a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

b(i, j, k, l) =





b(i− 1, j, k, l),
if s(i− 1, j, k, l) = 0

c(i, j, k − 1, l),
if s(i− 1, j, k, l) = 1

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

c(i, j, k, l) =





c(i, j, k − 1, l)
+ a(i, j − 1, k, l)
· b(i− 1, j, k, l),
if s(i− 1, j, k, l) = 0

b(i− 1, j, k, l),
if s(i− 1, j, k, l) = 1

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

output operations

cl
1+N1+N3−k,j = b(i, j, k, l) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(16.38)

Formula (16.39) shows the corresponding space-time matrix. Note that one entry
of T is not constant but depends on the problem parameters:

T =




1 0 0 0
0 1 0 0
1 1 1 N1 +N3 .


 (16.39)

Interestingly, also the cells in a row switch one timestep later when moving one
position to the right. Sacrificing some regularity, we could use this circumstance to



16.4. Control 789

+

*

(b)

+

*

(c)(a)

A

A

B

B

C

C

S

S

0 0 0 0 1 1 1
a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 16.13 Matrix product on a rectangular systolic array, with output of results and distributed
control. (a) Array structure. (b) Cell on the upper border. (c) Regular cell.

relieve the host computer by applying control to the systolic array at cell (1,1), only.
We therefore would have to change the control scheme in the following way:

control

s(i, j, k, l) = 0 i = 1, j = 0, 1 ≤ k ≤ N3 ,

s(i, j, k, l) = 1 i = 1, j = 0, 1 + N3 ≤ k ≤ N1 + N3 ,

s(i, j, k, l) = s(i− 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

variables with alias

s(i, j, k, l) = s(i + 1, j − 1, k, l) i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

(16.40)

Figure 16.13 shows the result of this modification. We now need cells of two kinds:
cells on the upper border of the systolic array must be like that in Figure 16.13(b);
all other cells would be as before, see Figure 16.13(c). Moreover, the communication
topology on the upper border of the systolic array would be slightly different from
that in the regular area.



790 16. Systolic Systems

16.4.5. The cell program as a local view

The chosen space-time transformation widely determines the architecture of the
systolic array. Mapping recurrence equations to space-time coordinates yields an
explicit view to the geometric properties of the systolic array, but gives no real
insight into the function of the cells. In contrast, the processes performed inside
a cell can be directly expressed by a cell program. This approach is particularly
of interest if dealing with a programmable systolic array, consisting of cells indeed
controlled by a repetitive program.

Like the global view, i.e., the structure of the systolic array, the local view
given by a cell program in fact is already fixed by the space-time transformation.
But, this local view is only induced implicitly here, and thus, by a further mathe-
matical transformation, an explicit representation must be extracted, suitable as a
cell program.

In general, we denote instances of program variables with the aid of index
expressions, that refer to iteration variables. Take, for instance, the equation

c(i, j, k) = c(i, j, k−1)+a(i, j−1, k)·b(i−1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

from system (16.3). The instance c(i, j, k − 1) of the program variable c is specified
using the index expressions i, j, and k − 1, which can be regarded as functions of
the iteration variables i, j, k.

As we have noticed, the set of iteration vectors (i, j, k) from the quantification
becomes a set of space-time coordinates (x, y, t) when applying a space-time trans-
formation (16.12) with transformation matrix T from (16.14),




x
y
t


 = T ·




i
j
k


 =




0 −1 1
−1 1 0

1 1 1


 ·




i
j
k


 . (16.41)

Since each cell is denoted by space coordinates (x, y), and the cell program must
refer to the current time t, the iteration variables i, j, k in the index expressions
for the program variables are not suitable, and must be translated into the new
coordinates x, y, t. Therefore, using the inverse of the space-time transformation
from (16.41), we express the iteration variables i, j, k as functions of the space-time
coordinates (x, y, t),




i
j
k


 = T−1 ·




x
y
t


 =

1
3
·



−1 −2 1
−1 1 1

2 1 1


 ·




x
y
t


 . (16.42)

The existence of such an inverse transformation is guaranteed if the space-time
transformation is injective on the domain—and that it should always be: if not,
some instances must be calculated by a cell in the same timestep. In the example,
reversibility is guaranteed by the square, non singular matrix T , even without referral
to the domain. With respect to the time vector π and any projection vector u, the
property π · u 6= 0 is sufficient.

Replacing iteration variables by space-time coordinates, which might be inter-
preted as a transformation of the domain, frequently yields very unpleasant



16.4. Control 791

index expressions. Here, for example, from c(i, j, k − 1) we get

c((−x− 2 · y + t)/3, (−x+ y + t)/3, (2 · x+ y + t)/3) .

But, by a successive transformation of the index sets, we can relabel the in-
stances of the program variables such that the reference to cell and time appears more
evident. In particular, it seems worthwhile to transform the equation system back
into output normal form, i.e., to denote the results calculated during timestep
t in cell (x, y) by instances (x, y, t) of the program variables. We best gain a real
understanding of this approach via an abstract mathematical formalism, that we
can fit to our special situation.

Therefore, let

r(ψr(v)) = F(. . . , s(ψs(v)), . . .) v ∈ S (16.43)

be a quantified equation over a domain S, with program variables r and s. The index
functions ψr and ψs generate the instances of the program variables as tuples of
index expressions.

By transforming the domain with a function ϕ that is injective on S, equation
(16.43) becomes

r(ψr(ϕ−1(e))) = F(. . . , s(ψs(ϕ−1(e))), . . .) e ∈ ϕ(S) , (16.44)

where ϕ−1 is a function that constitutes an inverse of ϕ on ϕ(S). The new index
functions are ψr ◦ ϕ−1 and ψs ◦ ϕ−1. Transformations of index sets don’t touch the
domain; they can be applied to each program variable separately, since only the
instances of this program variable are renamed, and in a consistent way. With such
renamings ϑr and ϑs, equation (16.44) becomes

r(ϑr(ψr(ϕ−1(e)))) = F(. . . , s(ϑs(ψs(ϕ−1(e)))), . . .) e ∈ ϕ(S) . (16.45)

If output normal form is desired, ϑr ◦ ψr ◦ ϕ−1 has to be the identity.
In the most simple case (as for our example), ψr is the identity, and ψs is

an affine transformation of the form ψs(v) = v − d, with constant d—the already
known dependence vector. ψr then can be represented in the same way, with d = ~0.
Transformation of the domains happens by the space-time transformation ϕ(v) =
T ·v, with an invertible matrix T . For all index transformations, we choose the same
ϑ = ϕ. Thus equation (16.45) becomes

r(e) = F(. . . , s(e− T · d), . . .) e ∈ T (S) . (16.46)

For the generation of a cell program, we have to know the following informa-
tion for every timestep: the operation to perform, the source of the data, and the
destination of the results—known from assembler programs as opc, src, dst.

The operation to perform (opc) follows directly from the function F . For a
cell with control, we must also find the timesteps when to perform this individ-
ual function F . The set of these timesteps, as a function of the space coordinates, can



792 16. Systolic Systems

be determined by projecting the set T (S) onto the time axis; for general poly-
hedric S with the aid of a Fourier-Motzkin elimination, for example.

In system (16.46), we get a new dependence vector T · d, consisting of two com-
ponents: a (vectorial) spatial part, and a (scalar) timely part. The spatial part ∆z,
as a difference vector, specifies which neighbouring cell has calculated the operand.
We directly can translate this information, concerning the input of operands to cell
z, into a port specifier with port position −∆z, serving as the src operand of the
instruction. In the same way, the cell calculating the operand, with position z−∆z,
must write this value to a port with port position ∆z, used as the dst operand in
the instruction.

The timely part of T · d specifies, as a time difference ∆t, when the calculation
of the operand has been performed. If ∆t = 1, this information is irrelevant, because
the reading cell z always gets the output of the immediately preceding timestep
from neighbouring cells. However, for ∆t > 1, the value must be buffered for ∆t− 1
timesteps, either by the producer cell z−∆z, or by the consumer cell z—or by both,
sharing the burden. This need can be realised in the cell program, for example, with
∆t−1 copy instructions executed by the producer cell z−∆z, preserving the value of
the operand until its final output from the cell by passing it through ∆t−1 registers.

Applying this method to system (16.37 and 16.38), with transformation matrix
T as in (16.39), yields

s(x, y, t) = s(x− 1, y, t− 1)

a(x, y, t) = a(x, y − 1, t− 1)

b(x, y, t) =





b(x− 1, y, t− 1),
if s(x− 1, y, t− 1) = 0

c(x, y, t− 1),
if s(x− 1, y, t− 1) = 1

c(x, y, t) =





c(x, y, t− 1) + a(x, y − 1, t− 1) · b(x− 1, y, t− 1) ,

if s(x− 1, y, t− 1) = 0

b(x− 1, y, t− 1),
if s(x− 1, y, t− 1) = 1 .

(16.47)

The iteration variable l, being relevant only for the input/output scheme, can
be set to a fixed value prior to the transformation. The cell program for the systolic
array from Figure 16.12, performed once in every timestep, reads as follows:

Cell-Program

1 S← C(−1, 0)(0)
2 A← C(0,−1)
3 B← C(−1, 0)(1 : N)
4 C(1, 0)(0)← S

5 C(0, 1)← A



16.4. Control 793

6 if S = 1
7 then C(1, 0)(1 : N)← C

8 C← B

9 else C(1, 0)(1 : N)← B

10 C← C + A · B

The port specifiers stand for local input/output to/from the cell. For each, a
pair of qualifiers is derived from the geometric position of the ports relative to the
centre of the cell. Port C(0,−1) is situated on the left border of the cell, C(0, 1)
on the right border; C(−1, 0) is above the centre, C(1, 0) below. Each port specifier
can be augmented by a bit range: C(−1, 0)(0) stands for bit 0 of the port, only;
C(−1, 0)(1 : N) denotes the bits 1 to N . The designations A, B, . . . without port
qualifiers stand for registers of the cell.

By application of matrix T from (16.13) to system (16.36), we get

a(x, y, t) = a(x, y − 1, t− 1) 1 + x + y ≤ t ≤ x + y + N3 ,

b(x, y, t) = b(x− 1, y, t− 1) 1 + x + y ≤ t ≤ x + y + N3 ,

c(x, y, t) = c(x, y, t− 1)
+ a(x, y − 1, t− 1)
· b(x− 1, y, t− 1)

1 + x + y ≤ t ≤ x + y + N3 ,

b(x, y, t) = c(x, y, t− 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y + N3 ,

c(x, y, t) = b(x− 1, y, t− 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y − 1 + N3 .

(16.48)

Now the advantages of distributed control become obvious. The cell program
for (16.47) can be written with referral to the respective timestep t, only. And thus,
we need no reaction to global control signals, no counting register, no counting
operations, and no coding of the local cell coordinates.

Exercises
16.4-1 Specify appropriate input/output schemes for performing, on the systolic
arrays presented in Figures 16.11 and 16.12, two evaluations of system (16.36) that
follow each other closest in time.
16.4-2 How could we change the systolic array from Figure 16.12, to efficiently
support the calculation of matrix products with parameters M1 < N1 or M2 < N2?
16.4-3 Write a cell program for the systolic array from Figure 16.3.
16.4-4? Which throughput allows the systolic array from Figure 16.3 for the as-
sumed values of N1, N2, N3? Which for general N1, N2, N3?
16.4-5? Modify the systolic array from Figure 16.1 such that the results stored in
stationary variables are output through additional links directed half right down,
i.e., from cell (i, j) to cell (i + 1, j + 1). Develop an assignment-free equation sys-
tem functionally equivalent to system (16.36), that is compatible with the extended
structure. How looks the resulting input/output scheme? Which period is obtained?



794 16. Systolic Systems

min

max

(b)(a)

X

M

S

01 1 1 1
MAXMAXMAXMAXMAX

x1

x2

x3

x4

x5

m1

m2

m3

m4

m5

Figure 16.14 Bubble sort algorithm on a linear systolic array. (a) Array structure with in-
put/output scheme. (b) Cell structure.

16.5. Linear systolic arrays

Explanations in the sections above heavily focused on two-dimensional systolic ar-
rays, but in principle also apply to one-dimensional systolic arrays, called linear
systolic arrays in the sequel. The most relevant difference between both kinds
concerns the boundary of the systolic array. Linear systolic arrays can be regarded
as consisting of boundary cells, only; under this assumption, input from and output
to the host computer needs no special concern. However, the geometry of a linear
systolic array provides one full dimension as well as one fictitious dimension, and
thus communication along the full-dimensional axis may involve similar questions as
in Subsection 16.3.5. Eventually, the boundary of the linear systolic array can also
be defined in a radically different way, namely to consist of both end cells, only.

16.5.1. Matrix-vector product

If we set one of the problem parameters N1 or N2 to value 1 for a systolic array as
that from Figure 16.1, the matrix product means to multiply a matrix by a vector,
from left or right. The two-dimensional systolic array then degenerates to a one-
dimensional systolic array. The vector by which to multiply is provided as an input
data stream through an end cell of the linear systolic array. The matrix items are
input to the array simultaneously, using the complete broadside.

As for full matrix product, results emerge stationary. But now, they either can
be drained along the array to one of the end cells, or they are sent directly from
the producer cells to the host computer. Both methods result in different control
mechanisms, time schemes, and running time.

Now, would it be possible to provide all inputs via end cells? The answer is
negative if the running time should be of complexity Θ(N). Matrix A contains
Θ(N2) items, thus there are Θ(N) items per timestep to read. But the number
of items receivable through an end cell during one timestep is bounded. Thus, the
input/output data rate—of order Θ(N), here—may already constrain the possible
design space.



16.5. Linear systolic arrays 795

16.5.2. Sorting algorithms

For sorting, the task is to bring the elements from a set {x1, . . . , xN}, subset of a
totally ordered basic set G, into an ascending order {mi}i=1,...,N where mi ≤ mk

for i < k. A solution to this problem is described by the following assignment-free
equation system, where MAX denotes the maximum in G:

input operations

x(i, j) = xi 1 ≤ i ≤ N, j = 0 ,

m(i, j) = MAX 1 ≤ j ≤ N, i = j − 1 .

calculations

m(i, j) = min{x(i, j − 1), m(i− 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i ,

x(i, j) = max{x(i, j − 1), m(i− 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i .

output operations

m(i, j) = mj 1 ≤ j ≤ N, i = N .

(16.49)

By completing a projection along direction u = (1, 1) to a space-time transfor-
mation (

x
t

)
=
(

1 −1
1 1

)
·
(
i
j

)
, (16.50)

we get the linear systolic array from Figure 16.14, as an implementation of the bubble
sort algorithm.

Correspondingly, the space-time matrix

T =
(

0 1
1 1

)
(16.51)

would induce another linear systolic array, that implements insertion sort. Eventu-
ally, the space-time matrix

T =
(

1 0
1 1

)
(16.52)

would lead to still another linear systolic array, this one for selection sort.
For the sorting problem, we have Θ(N) input items, Θ(N) output items, and

Θ(N) timesteps. This results in an input/output data rate of order Θ(1). In contrast
to the matrix-vector product from Subsection 16.5.1, the sorting problem with any
prescribed input/output data rate in principle allows to perform the communication
exclusively through the end cells of a linear systolic array.

Note that, in all three variants of sorting described so far, direct input is nec-
essary to all cells: the values to order for bubble sort, the constant values MAX
for insertion sort, and both for selection sort. However, instead of inputting the
constants, the cells could generate them, or read them from a local memory.

All three variants require a cell control: insertion sort and selection sort use
stationary variables; bubble sort has to switch between the processing of input data
and the output of calculated values.



796 16. Systolic Systems

16.5.3. Lower triangular linear equation systems

System (16.53) below describes a localised algorithm for solving the linear equation
system A · x = b, where the N ×N matrix A is a lower triangular matrix.

input operations

a(i, j) = ai,j+1 1 ≤ i ≤ N, 0 ≤ j ≤ i− 1 ,

u(i, j) = bi 1 ≤ i ≤ N, j = 0 .

calculations and forwarding

u(i, j) = u(i, j − 1)− a(i, j − 1) · x(i− 1, j) 2 ≤ i ≤ N, 1 ≤ j ≤ i− 1 ,

x(i, j) = u(i, j − 1)/a(i, j − 1) 1 ≤ i ≤ N, j = i ,

x(i, j) = x(i− 1, j) 2 ≤ i ≤ N − 1, 1 ≤ j ≤ i− 1 .

output operations

xi = x(i, j) 1 ≤ i ≤ N, j = i .

(16.53)

All previous examples had in common that, apart from copy operations, the same
kind of calculation had to be performed for each domain point: fused multiply/add
for the matrix algorithms, minimum and maximum for the sorting algorithms. In
contrast, system (16.53) contains some domain points where multiply and subtract
is required, as well as some others needing division. When projecting system (16.53)
to a linear systolic array, depending on the chosen projection direction we get fixed
or varying cell functions. Peculiar for projecting along u = (1, 1), we see a single
cell with divider; all other cells need a multiply/subtract unit. Projection along
u = (1, 0) or u = (0, 1) yields identical cells, all containing a divider as well as
a multiply/subtract unit. Projection vector u = (1,−1) results in a linear systolic
array with three different cell types: both end cells need a divider, only; all other
cells contain a multiply/subtract unit, with or without divider, alternatingly. Thus,
a certain projection can introduce inhomogeneities into a systolic array—that may
be desirable, or not.

Exercises
16.5-1 For both variants of matrix-vector product as in Subsection 16.5.1—output
of the results by an end cell versus communication by all cells—specify a suitable
array structure with input/output scheme and cell structure, including the necessary
control mechanisms.
16.5-2 Study the effects of further projection directions on system (16.53).
16.5-3 Construct systolic arrays implementing insertion sort and selection sort, as
mentioned in Subsection 16.5.2. Also draw the corresponding cell structures.
16.5-4? The systolic array for bubble sort from Figure 16.14 could be operated
without control by cleverly organising the input streams. Can you find the trick?
16.5-5? What purpose serves the value MAX in system (16.49)? How system (16.49)
could be formulated without this constant value? Which consequences this would
incur for the systolic arrays described?



Notes for Chapter 16 797

Problems

16-1 Band matrix algorithms
In Sections 16.1, 16.2, and Subsections 16.5.1, and 16.5.3, we always assumed full
input matrices, i.e., each matrix item aij used could be nonzero in principle. (Though
in a lower triangular matrix, items above the main diagonal are all zero. Note,
however, that these items are not inputs to any of the algorithms described.)

In contrast, practical problems frequently involve band matrices, cf.
Kung/Leiserson [?]. In such a matrix, most diagonals are zero, left alone a small
band around the main diagonal. Formally, we have aij = 0 for all i, j with i− j ≥ K
or j− i ≥ L, where K and L are positive integers. The band width, i.e., the number
of diagonals where nonzero items may appear, here amounts to K + L− 1.

Now the question arises whether we could profit from the band structure in one
or more input matrices to optimise the systolic calculation. One opportunity would
be to delete cells doing no useful work. Other benefits could be shorter input/output
data streams, reduced running time, or higher throughput.

Study all systolic arrays presented in this chapter for improvements with respect
to these criteria.

Chapter Notes

The term systolic array has been coined by Kung and Leiserson in their seminal
paper [?].

Karp, Miller, and Winograd did some pioneering work [138] for uniform recur-
rence equations.

Essential stimuli for a theory on the systematic design of systolic arrays have
been Rao’s PhD dissertation [?] and the work of Quinton [?].

The contribution of Teich and Thiele [245] shows that a formal derivation of the
cell control can be achieved by methods very similar to those for a determination of
the geometric array structure and the basic cell function.

The up-to-date book by Darte, Robert, and Vivien [57] joins advanced methods
from compiler design and systolic array design, dealing also with the analysis of data
dependences.

The monograph [?] still seems to be the most comprehensive work on systolic
systems.

Each systolic array can also be modelled as a cellular automaton. The regis-
ters in a cell together hold the state of the cell. Thus, a factorised state space
is adequate. Cells of different kind, for instance with varying cell functionality or
position-dependent cell control, can be described with the aid of further components
of the state space.

Each systolic algorithm also can be regarded as a PRAM algorithm with the
same timing behaviour. Thereby, each register in a systolic cell corresponds to a
PRAM memory cell, and vice versa. The EREW PRAM model is sufficient, because
in every timestep exactly one systolic cell reads from this register, and then exactly



one systolic cell writes to this register.
Each systolic system also is a special kind of synchronous network as defined by

Lynch [169]. Time complexity measures agree. Communication complexity usually
is no topic with systolic arrays. Restriction to input/output through boundary cells,
frequently demanded for systolic arrays, also can be modelled in a synchronous
network. The concept of failures is not required for systolic arrays.

The book written by Sima, Fountain and Kacsuk [231] considers the systolic
systems in details.

V. DATA BASES



17. Memory Management

The main task of computers is to execute programs (even usually several programs
running simultaneously). These programs and their data must be in the main mem-
ory of the computer during the execution.

Since the main memory is usually too small to store all these data and programs,
modern computer systems have a secondary storage too for the provisional storage
of the data and programs.

In this chapter the basic algorithms of memory management will be covered. In
Section 17.1 static and dynamic partitioning, while in Section 17.2 the most popular
paging methods will be discussed.

In Section 17.3 the most famous anomaly of the history of operating systems—
the stunning features of FIFO page changing algorithm, interleaved memory and
processing algorithms with lists—will be analysed.

Finally in Section 17.4 the discussion of the optimal and approximation algo-
rithms for the optimisation problem in which there are files with given size to be
stored on the least number of disks can be found.

17.1. Partitioning

A simple way of sharing the memory between programs is to divide the whole address
space into slices, and assign such a slice to every process. These slices are called
partitions. The solution does not require any special hardware support, the only
thing needed is that programs should be ready to be loaded to different memory
addresses, i.e., they should be relocatable. This must be required since it cannot
be guaranteed that a program always gets into the same partition, because the total
size of the executable programs is usually much more than the size of the whole
memory. Furthermore, we cannot determine which programs can run simultaneously
and which not, for processes are generally independent of each other, and in many
cases their owners are different users. Therefore, it is also possible that the same
program is executed by different users at the same time, and different instances
work with different data, which can therefore not be stored in the same part of
the memory. Relocation can be easily performed if the linker does not work with



800 17. Memory Management

absolute but with relative memory addresses, which means it does not use exact
addresses in the memory but a base address and an offset. This method is called
base addressing, where the initial address is stored in the so called base register.
Most processors know this addressing method, therefore, the program will not be
slower than in the case using absolute addresses. By using base addressing it can
also be avoided that—due to an error or the intentional behaviour of a user—the
program reads or modifies the data of other programs stored at lower addresses
of the memory. If the solution is extended by another register, the so called limit
register which stores the biggest allowed offset, i.e. the size of the partition, then
it can be assured that the program cannot access other programs stored at higher
memory addresses either.

Partitioning was often used in mainframe computer operating systems before.
Most of the modern operating systems, however, use virtual memory management
which requires special hardware support.

Partitioning as a memory sharing method is not only applicable in operating
systems. When writing a program in a language close to machine code, it can hap-
pen that different data structures with variable size—which are created and can-
celled dynamically—have to be placed into a continuous memory space. These data
structures are similar to processes, with the exception that security problems like ad-
dressing outside their own area do not have to be dealt with. Therefore, most of the
algorithms listed below with some minor modifications can be useful for application
development as well.

Basically, there are two ways of dividing the address space into partitions. One
of them divides the initially empty memory area into slices, the number and size of
which is predetermined at the beginning, and try to place the processes and other
data structures continuously into them, or remove them from the partitions if they
are not needed any more. These are called fixed partitions, since both their place
and size have been fixed previously, when starting the operating system or the ap-
plication. The other method is to allocate slices from the free parts of the memory
to the newly created processes and data structures continuously, and to deallocate
the slices again when those end. This solution is called dynamic partitioning, since
partitions are created and destroyed dynamically. Both methods have got advan-
tages as well as disadvantages, and their implementations require totally different
algorithms. These will be discussed in the following.

17.1.1. Fixed partitions

Using fixed partitions the division of the address space is fixed at the beginning,
and cannot be changed later while the system is up. In the case of operating systems
the operator defines the partition table which is activated at next reboot. Before
execution of the first application, the address space is already partitioned. In the
case of applications partitioning has to be done before creation of the first data
structure in the designated memory space. After that data structures of different
sizes can be placed into these partitions.

In the following we examine only the case of operating systems, while we leave
to the Reader the rewriting of the problem and the algorithms according to given



17.1. Partitioning 801

applications, since these can differ significantly depending on the kind of the appli-
cations.

The partitioning of the address space must be done after examination of the
sizes and number of possible processes running on the system. Obviously, there is a
maximum size, and programs exceeding it cannot be executed. The size of the largest
partition corresponds to this maximum size. To reach the optimal partitioning, often
statistic surveys have to be carried out, and the sizes of the partitions have to be
modified according to these statistics before restarting the system next time. We do
not discuss the implementation of this solution now.

Since there are a constant number (m) of partitions, their data can be stored
in one or more arrays with constant lengths. We do not deal with the particular
place of the partitions on this level of abstraction either; we suppose that they are
stored in a constant array as well. When placing a process in a partition, we store
the index of that partition in the process header instead of its starting address.
However, concrete implementation can differ from this method, of course. The sizes
of the partitions are stored in array size[1 . .m]. Our processes are numbered from 1
to n. The array part[1 . .m] keeps track of the processes executed in the individual
partitions, while its inverse, array place[1 . . n] stores the places where individual
processes are executed. A process is either running, or waiting for a partition. This
information is stored in Boolean array waiting[1 . . n]: if process number i is waiting,
then waiting[i] = true, else waiting[i] = false. The space requirements of the
processes are different. Array spacereq[1 . . n] stores the minimum sizes of partitions
required to execute the individual processes.

Having partitions of different sizes and processes with different space require-
ments, we obviously would not like small processes to be placed into large partitions,
while smaller partitions are empty, in which larger processes do not fit. Therefore,
our goal is to assign each partition to a process fitting into it in a way that there
is no larger process that would fit into it as well. This is ensured by the following
algorithm:

Largest-Fit(place,spacereq,size,part,waiting)

1 for j← 1 to m
2 do if part[j] = 0
3 then Load-Largest(place,spacereq,size,j,part,waiting)

Finding the largest process the whose space requirement is not larger than a par-
ticular size is a simple conditional maximum search. If we cannot find any processes
meeting the requirements, we must leave the the partition empty.

Load-Largest(place,spacereq,size,p,part,waiting)

1 max← 0
2 ind← 0



802 17. Memory Management

3 for i← 1 to n
4 do if waiting[i] and spacereq[i] ≤ size[p] and spacereq[i] > max
5 then ind← i
6 max← spacereq[i]
7 if ind > 0
8 then part[p]← ind
9 place[ind]← p

10 waiting[ind]← false

The basic criteria of the correctness of all the algorithms loading the processes
into the partitions is that they should not load a process into a partition which
does not fit. This requirement is fulfilled by the above algorithm, since it can be
derived from the conditional maximum search theorem exactly with the mentioned
condition.

Another essential criterion is that it should not load more than one processes into
the same partition, and also should not load one single process into more partitions
simultaneously. The first case can be excluded, because we call the Load-Largest
algorithm only for the partitions for which part[j] = 0 and if we load a process into
partition number p, then we give part[p] the index of the loaded process as a value,
which is a positive integer. The second case can be proved similarly: the condition of
the conditional maximum search excludes the processes for which waiting[i] = false,
and if the process number ind is loaded into one of the partitions, then the value of
waiting[ind] is set to false.

However, the fact that the algorithm does not load a process into a partition
where it does not fit, does not load more then one processes into the same partition,
or one single process into more partitions simultaneously is insufficient. These re-
quirements are fulfilled even by an empty algorithm. Therefore, we have to require
something more: namely that it should not leave a partition empty, if there is a
process that would fit into it. To ensure this, we need an invariant, which holds
during the whole loop, and at the end of the loop it implies our new requirement.
Let this invariant be the following: after examination of j partitions, there is no
positive k ≤ j, for which part[k] = 0, and for which there is a positive i ≤ n, such
as waiting[i] = true, and spacereq[i] ≤ size[k].

Initialisation: At the beginning of the algorithm we have examined j = 0 parti-
tions, so there is not any positive k ≤ j.

Maintenance: If the invariant holds for j at the beginning of the loop, first we
have to check whether it holds for the same j at the end of the loop as well.
It is obvious, since the first j partitions are not modified when examining the
(j + 1)-th one, and for the processes they contain waiting[i] = false, which
does not satisfy the condition of the conditional maximum search in the Load-
Largest algorithm. The invariant holds for the (j + 1)-th partition at the end
of the loop as well, because if there is a process which fulfills the condition,
the conditional maximum search certainly finds it, since the condition of our
conditional maximum search corresponds to the requirement of our invariant set
on each partition.



17.1. Partitioning 803

Termination: Since the loop traverses a fixed interval by one, it will certainly
stop. Since the loop body is executed exactly as many times as the number of
the partitions, after the end of the loop there is no positive k ≤ m, for which
part[k] = 0„ and for which there is a positive i ≤ n, such that waiting[i] = true
and spacereq[i] ≤ size[k], which means that we did not fail to fill any partitions
that could be assigned to a process fitting into it.

The loop in rows 1–3 of the Largest-Fit algorithm is always executed in
its entirety, so the loop body is executed Θ(m) times. The loop body performs
a conditional maximum search on the empty partitions – or on partitions for which
part[j] = 0. Since the condition in row 4 of the Load-Largest algorithm has to be
evaluated for each j, the conditional maximum search runs in Θ(n). Although the
loading algorithm will not be called for partitions for which part[j] > 0, as far as
running time is concerned, in the worst case even all the partitions might be empty,
therefore the time complexity of our algorithm is Θ(mn).

Unfortunately, the fact that the algorithm fills all the empty partitions with
waiting processes fitting into them whenever possible is not always sufficient. A very
usual requirement is that the execution of every process should be started within a
determined time limit. The above algorithm does not ensure it, even if there is an
upper limit for the execution time of the processes. The problem is that whenever
the algorithm is executed, there might always be new processes that prevent the
ones waiting for long from execution. This is shown in the following example.

Example 17.1 Suppose that we have two partitions with sizes of 5 kB and 10 kB. We also
have two processes with space requirements of 8 kB and 9 kB. The execution time of both
processes is 2 seconds. But at the end of the first second a new process appears with space
requirement of 9 kB and execution time of 2 seconds again, and the same happens in every
2 seconds, i. e., in the third, fifth, etc. second. If we have a look at our algorithm, we can
see that it always has to choose between two processes, and the one with space requirement
of 9 kB will always be the winner. The other one with 8 kB will never get into the memory,
although there is no other partition into which it would fit.

To be able to fulfill this new requirement mentioned above, we have to slightly
modify our algorithm: the long waiting processes must be preferred over all the other
processes, even if their space requirement is smaller than that of the others. Our new
algorithm will process all the partitions, just like the previous one.

Largest-or-Long-Waiting-Fit(place,spacereq,threshold,size,part,waiting)

1 for j← 1 to m
2 do if part[j] = 0
3 then Load-Largest-or-Long-Waiting( place,spacereq,threshold,

size,j,part,waiting)

However, this time we keep track on the waiting time of each process. Since
the algorithm is only executed when one or more partitions become free, we cannot
examine the concrete time, but the number of cases where the process would have
fit into a partition but we have chosen another process to fill it. To implement this,



804 17. Memory Management

the conditional maximum search algorithm has to be modified: operations have to
be performed also on items that meet the requirement (they are waiting for memory
and they would fit), but they are not the largest ones among those. This operation
is a simple increment of the value of a counter. We assume that the value of the
counter is 0 when the process starts. The condition of the search has to be modified
as well: if the value of the counter of a process is too high, (i. e., higher than a
certain threshold), and it is higher than the value of the counter of the process with
the largest space requirement found so far, then we replace it with this new process.
The pseudo code of the algorithm is the following:

Load-Largest-or-Long-Waiting(place,spacereq,threshold,size,p,part,waiting)

1 max← 0
2 ind← 0
3 for i← 1 to n
4 do if waiting[i] and spacereq[i] ≤ size[p]
5 then if (points[i] > threshold and points[i] > points[ind]) or

spacereq[i] > max
6 then points[ind]← points[ind] + 1
7 ind← i
8 max← spacereq[i]
9 else points[i]← points[i] + 1

10 if ind > 0
11 then part[p]← ind
12 place[ind]← p
13 waiting[ind]← false

The fact that the algorithm does not place multiple processes into the same
partition can be proved the same way as for the previous algorithm, since the outer
loop and the condition of the branch has not been changed. To prove the other two
criteria (namely that a process will be placed neither into more then one partitions,
nor into a partition into which it does not fit), we have to see that the condition
of the conditional maximum search algorithm has been modified in a way that this
property stays. It is easy to see that the condition has been split into two parts,
so the first part corresponds exactly to our requirement, and if it is not satisfied,
the algorithm certainly does not place the process into the partition. The property
that there are no partitions left empty also stays, since the condition for choosing a
process has not been restricted, but extended. Therefore, if the previous algorithm
found all the processes that met the requirements, the new one finds them as well.
Only the order of the processes fulfilling the criteria has been altered. The time
complexity of the loops has not changed either, just like the condition, according to
which the inner loop has to be executed. So the time complexity of the algorithm is
the same as in the original case.

We have to examine whether the algorithm satisfies the condition that a process
can wait for memory only for a given time, if we suppose that there is some p upper
limit for the execution time of the processes (otherwise the problem is insoluble, since
all the partitions might be taken by an infinite loop). Furthermore, let us suppose



17.1. Partitioning 805

that the system is not overloaded, i. e., we can find a q upper estimation for the
number of the waiting processes in every instant of time. Knowing both limits it is
easy to see that in the worst case to get assigned to a given partition a process has to
wait for the processes with higher counters than its own one (at most q many), and
at most threshold many processes larger than itself. Therefore, it is indeed possible
to give an upper limit for the maximum waiting time for memory in the worst case:
it is (q + threshold)p.

Example 17.2 In our previous example the process with space requirement of 8 kB has to
wait for threshold + 1 = k other processes, all of which lasts for 2 seconds, i. e., the process
with space requirement of 8 kB has to wait exactly for 2k seconds to get into the partition
with size of 10 kB.

In our algorithms so far the absolute space requirement of the processes served as
the basis of their priorities. However this method is not fair: if there is a partition, into
which two processes would fit, and neither of them fits into a smaller partition, then
the difference in their size does not matter, since sooner or later also the smaller one
has to be placed into the same, or into another, but not smaller partition. Therefore,
instead of the absolute space requirement, the size of the smallest partition into
which the given process fits should be taken into consideration when determining
the priorities. Furthermore, if the partitions are increasingly ordered according to
their sizes, then the index of the smallest partition in this ordered list is the priority
of the process. It is called the rank of the process. The following algorithm calculates
the ranks of all the processes.

Calculate-Rank(spacereq,size,rank)

1 order← Sort(size)
2 for i← 1 to n
3 do u← 1
4 v← m
5 rank[i]← b(u+ v)/2c
6 while order[rank[i]] < spacereq[i] or order[rank[i] + 1] > spacereq[i]
7 do if order[rank[i]] < spacereq[i]
8 then u← rank[i] + 1
9 else v← rank[i]− 1

10 rank[i]← b(u+ v)/2c

It is easy to see that this algorithm first orders the partitions increasingly ac-
cording to their sizes, and then calculates the rank for each process. However, this
has to be done only at the beginning, or when a new process comes. In the latter
case the inner loop has to be executed only for the new processes. Ordering of the
partitions does not have to be performed again, since the partitions do not change.
The only thing that must be calculated is the smallest partition the process fits
into. This can be solved by a logarithmic search, an algorithm whose correctness is
proved. The time complexity of the rank calculation is easy to determine: the order-
ing of the partition takes Θ(m log2 m) steps, while the logarithmic search Θ(log2 m),



806 17. Memory Management

which has to be executed for n processes. Therefore the total number of steps is
Θ((n+m) log2 m).

After calculating the ranks we have to do the same as before, but for ranks
instead of space requirements.

Long-Waiting-or-Not-Fit-Smaller(place,spacereq,threshold,size,part,waiting)

1 for j← 1 to m
2 do if part[j] = 0
3 then Load-Long-Waiting-or-Not-Smaller( place,spacereq,

threshold,size,j,
part,waiting)

In the loading algorithm, the only difference is that the conditional maximum
search has to be executed not on array size, but on array rank:

Load-Long-Waiting-or-Not-Smaller(place,spacereq,threshold,size,p,part,waiting)

1 mx← 0
2 ind← 0
3 for i← 1 to n
4 do if waiting[i] and spacereq[i] ≤ size[p]
5 then if (points[i] > threshold and points[i] > points[ind]) or

rank[i] > max
6 then points[ind]← points[ind] + 1
7 ind← i
8 max← rank[i]
9 else points[i]← points[i] + 1

10 if ind > 0
11 then part[p]← ind
12 place[ind]← p
13 waiting[ind]← false

The correctness of the algorithm follows from the previous version of the algo-
rithm and the algorithm calculating the rank. The time complexity is the same as
that of the previous versions.

Example 17.3 Having a look at the previous example it can be seen that both the processes
with space requirement of 8 kB and 9 kB can fit only into the partition with size of 10 kB,
and cannot fit into the 5 kB one. Therefore their ranks will be the same (it will be two),
so they will be loaded into the memory in the order of their arrival, which means that the
8 kB one will be among the first two.

17.1.2. Dynamic partitions

Dynamic partitioning works in a totally different way from the fixed one. Us-
ing this method we do not search for the suitable processes for every empty partition,



17.1. Partitioning 807

but search for suitable memory space for every waiting process, and there we create
partitions dynamically. This section is restricted to the terminology of operating
systems as well, but of course, the algorithms can be rewritten to solve problems
connected at the application level as well.

If all the processes would finish at the same time, there would not be any prob-
lems, since the empty memory space could be filled up from the bottom to the top
continuously. Unfortunately, however, the situation is more complicated in the prac-
tice, as processes can differ significantly from each other, so their execution time
is not the same either. Therefore, the allocated memory area will not always be
contiguous, but there might be free partitions between the busy ones. Since copying
within the memory is an extremely expensive operation, in practice it is not effective
to collect the reserved partitions into the bottom of the memory. Collecting the par-
titions often cannot even be carried out due to the complicated relative addressing
methods often used. Therefore, the free area on which the new processes have to
be placed is not contiguous. It is obvious, that every new process must be assigned
to the beginning of a free partition, but the question is, which of the many free
partitions is the most suitable.

Partitions are the simplest to store in a linked list. Naturally, many other, maybe
more efficient data structures could be found, but this is sufficient for the presen-
tation of the algorithms listed below. The address of the first element of linked list
P is stored in head[P ]. The beginning of the partition at address p is stored in
beginning[p], its size in size[p], and the process assigned to it is stored in variable
part[p]. If the identifier of a process is 0, then it is an empty one, otherwise it is a
allocated. In the linked list the address of the next partition is next[p].

To create a partition of appropriate size dynamically, first we have to divide a
free partition, which is at least as big as needed into two parts. This is done by the
next algorithm.

Split-Partition(border,beginning,next,size,p,q)

1 beginning[q]← beginning[p] + border
2 size[q]← size[p]− border
3 size[p]← border
4 next[q]← next[p]
5 next[q]← q

In contrast to the algorithms connected to the method of fixed partitions, where
processes were chosen to partitions, here we use a reverse approach. Here we inspect
the list of the processes, and try to find to each waiting process a free partition into
which it fits. If we found one, we cut the required part off from the beginning of
the partition, and allocate it to the process by storing its beginning address in the
process header. If there is no such free partition, then the process remains in the
waiting list.



808 17. Memory Management

Place(P,head,next,last,beginning,size,part,spacereq,place)

1 for i← 1 to n
2 do if waiting[i] = true
3 then ?-Fit(P,head,next,last,beginning,size,part,spacereq,place,

waiting, i)

The ? in the pseudo code is to be replaced by one of the words First, Next,
Best, Limited-Best, Worst or Limited-Worst.

There are several possibilities for choosing the suitable free partition. The more
simple idea is to go through the list of the partitions from the beginning until we
find the first free partition into which it fits. This can easily be solved using linear
searching.

First-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 p← head[P]
2 while waiting[f] = true and p 6= nil
3 do if part[p] = 0 and size[p] ≥ spacereq[f]
4 then Split-Partition(p,q,spacereq[f ])
5 part[p]← f
6 place[f]← p
7 waiting[f]← false
8 p← next[p]

To prove the correctness of the algorithm several facts have to be examined.
First, we should not load a process into a partition into which it does not fit. This
is guaranteed by the linear search theorem, since this criteria is part of the property
predicate.

Similarly to the fixed partitioning, the most essential criteria of correctness is
that one single process should not be placed into multiple partitions simultaneously,
and at most one processes may be placed into one partition. The proof of this criteria
is word by word the same as the one stated at fixed partitions. The only difference
is that instead of the conditional maximum search the linear search must be used.

Of course, these conditions are not sufficient in this case either, since they are
fulfilled by even the empty algorithm. We also need prove that the algorithm finds
a place for every process that fits into any of the partitions. For this we need an
invariant again: after examining j processes, there is no positive k ≤ j, for which
waiting[k], and for which there is a p partition, such that part[p] = 0, and size[p] ≥
spacereq[k].

Initialisation: At the beginning of the algorithm we have examined j = 0 many
partitions, so there is no positive k ≤ j.

Maintenance: If the invariant holds for j at the beginning of the loop, first we
have to check whether it holds for the same j at the end of the loop as well.
It is obvious, since the first j processes are not modified when examining the
(j + 1)-th one, and for the partitions containing them part[p] > 0, which does
not satisfy the predicate of the linear search in the First-Fit algorithm. The



17.1. Partitioning 809

invariant statement holds for the (j + 1)-th process at the end of the loop as
well, since if there is a free memory slice which fulfills the condition, the linear
search certainly finds it, because the condition of our linear search corresponds
to the requirement of our invariant set on each partition.

Termination: Since the loop traverses a fixed interval by one, it certainly stops.
Since the loop body is executed exactly as many times as the number of the
processes, after the loop has finished, it holds that there is no positive k ≤ j,
for which waiting[k], and for which there is a p partition, such that part[p] = 0,
and size[p] ≥ spacereq[i], which means that we did not keep any processes fitting
into any of the partitions waiting.

Again, the time complexity of the algorithm can be calculated easily. We examine
all the n processes in any case. If, for instance, all the processes are waiting, and the
partitions are all reserved, the algorithm runs in Θ(nm).

However, when calculating the time complexity, we failed to take some impor-
tant points of view into consideration. One of them is that m is not constant, but
executing the algorithm again and again it probably increases, since the processes
are independent of each other, start and end in different instances of time, and their
sizes can differ considerably. Therefore, we split a partition into two more often than
we merge two neighbouring ones. This phenomenon is called fragmentation the
memory. Hence, the number of steps in the worst case is growing continuously
when running the algorithm several times. Furthermore, linear search divides al-
ways the first partition with appropriate size into two, so after a while there will
be a lot of small partitions at the beginning of the memory area, unusable for most
processes. Therefore the average execution time will grow as well. A solution for the
latter problem is to not always start searching at the beginning of the list of the
partitions, but from the second half of the partition split last time. When reaching
the end of the list, we can continue at the beginning until finding the first suitable
partition, or reaching the starting partition again. This means we traverse the list
of the partitions cyclically.

Next-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 if last[P] 6= nil
2 then p← next[last[P]]
3 else p← head[P]
4 while waiting[f] and p 6= last[P]
5 do if p = nil
6 then p← head[P]
7 if part[p] = 0 and size[p] ≥ spacereq[f]
8 then Split-Partition(p,q,spacereq[f ])
9 part[p]← f

10 place[f]← p
11 waiting[f]← false
12 last[P]← p
13 p← next[p]



810 17. Memory Management

The proof of the correctness of the algorithm is basically the same as that of
the First-Fit, as well as its time complexity. Practically, there is a linear search
in the inner loop again, only the interval is always rotated in the end. However,
this algorithm traverses the list of the free areas evenly, so does not fragment the
beginning of the list. As a consequence, the average execution time is expected to
be smaller than that of the First-Fit.

If the only thing to be examined about each partition is whether a process fits
into it, then it can easily happen that we cut off large partitions for small processes,
so that there would not be partitions with appropriate sizes for the later arriving
larger processes. Splitting unnecessarily large partitions can be avoided by assigning
each process to the smallest possible partition into which it fits.

Best-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 min←∞
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and size[p] < min
6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

All the criteria of the correctness of the algorithm can be proved in the same way
as previously. The only difference from the First-Fit is that conditional minimum
search is applied instead of linear search. It is also obvious that this algorithm will
not split a partition larger than minimally required.

However, it is not always efficient to place each process into the smallest space
into which it fits. It is because the remaining part of the partition is often too
small, unsuitable for most of the processes. It is disadvantageous for two reasons.
On the one hand, these partitions are still on the list of free partitions, so they are
examined again and again whenever searching for a place for a process. On the other
hand, many small partitions together compose a large area that is useless, since it
is not contiguous. Therefore, we have to somehow avoid the creation of too small
free partitions. The meaning of too small can be determined by either a constant
or a function of the space requirement of the process to be placed. (For example,
the free area should be twice as large as the space required for the process.) Since
this limit is based on the whole partition and not only its remaining part, we will
always consider it as a function depending on the process. Of course, if there is no
partition to fulfill this extra condition, then we should place the process into the
largest partition. So we get the following algorithm.



17.1. Partitioning 811

Limited-Best-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 min←∞
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and

((size[p] < min and size[p] ≥ Limit(f))
or ind = nil or (min < Limit(f) and size[p] > min))

6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

This algorithm is more complicated than the previous ones. To prove its correct-
ness we have to see that the inner loop is a conditional minimum searching. The first
part of the condition, i. e. that part[p] = 0, and size[p] ≥ spacereq[f ] means that we
try to find a free partition suitable for the process. The second part is a disjunction:
we replace the item found so far with the newly examined one in three cases. The
first case is when size[p] < min, and size[p] ≥ Limit(spacereq[f ]), which means that
the size of the examined partition is at least as large as the described minimum, but
it is smaller than the the smallest one found so far. If there were no more conditions,
this would be a conditional minimum search for the conditions of which we added
that the size of the partition should be above a certain limit. But there are two other
cases, when we replace the previously found item to the new one. One of the cases is
that ind = nil, i. e., the newly examined partition is the first one which is free, and
into which the process fits. This is needed because we stick to the requirement that if
there is a free partition suitable for the process, then the algorithm should place the
process into such a partition. Finally, according to the third condition, we replace the
previously found most suitable item to the current one, if min < Limit(spacereq[f ])
and size[p] > min, which means that the minimum found so far did not reach the
described limit, and the current item is bigger than this minimum. This condition
is important for two reasons. First, if the items examined so far do not fulfill the
most recent condition, but the current one does, then we replace it, since in this
case min < Limit(spacereq[f ]) ≤ size[p], i. e., the size of the current partition is
obviously larger. Second, if neither the size of partition found so far, nor that of the
current one reaches the described limit, but the currently examined one approaches
it better from below, then min < size[p] < Limit(spacereq[f ]) holds, therefore, also
in this case we replace the item found so far by the current one. Hence, if there are
partitions at least as large as the described limit, then the algorithm places each
process into the smallest one among them, and if there is no such partition, then in
the largest suitable one.

There are certain problems, where the only requirement is that the remaining



812 17. Memory Management

free spaces should be the largest possible. It can be guaranteed if each process is
placed into the largest free partition:

Worst-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 max← 0
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and size[p] > max
6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

We can prove the correctness of the algorithm similarly to the Best-Fit algo-
rithm; the only difference is that maximum search has to be used instead of con-
ditional maximum search. As a consequence, it is also obvious that the sizes of the
remaining free areas are maximal.

The Worst-Fit algorithm maximises the smallest free partition, i. e. there will
be only few partitions which are too small for most of the processes. It follows from
the fact that it always splits the largest partitions. However, it also often prevents
large processes from getting into the memory, so they have to wait on an auxiliary
storage. To avoid this we may extend our conditions with an extra an one, similarly
to the Best-Fit algorithm. In this case, however, we give an upper limit instead
of a lower one. The algorithm only tries to split partitions smaller than a certain
limit. This limit also depends on the space requirement of the process. (For example
the double of the space requirement.) If the algorithm can find such partitions, then
it chooses the largest one to avoid creating too small partitions. If it finds only
partitions exceeding this limit, then it splits the smallest one to save bigger ones for
large processes.

Limited-Worst-Fit(f,beginning,head,place,spacereq,next,size,part,waiting,waiting)

1 max← 0
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and

((size[p] > max and size[p] ≤ Limit(f )) or ind = nil or
(max > Limit(f ) and size[p] < max))



17.2. Page replacement algorithms 813

6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

It is easy to see that this algorithm is very similar to the Limited-Best-Fit,
only the relation signs are reversed. The difference is not significant indeed. In both
algorithms the same two conditions are to be fulfilled: there should not be too small
partitions, and large free partitions should not be wasted for small processes. The
only difference is which condition is taken account in the first place and which in
the second. The actual problem decides which one to use.

Exercises
17.1-1 We have a system containing two fixed partitions with sizes of 100 kB,
one of 200 kB and one of 400 kB. All of them are empty at the beginning. One
second later five processes arrive almost simultaneously, directly after each other
without significant delay. Their sizes are 80 kB, 70 kB, 50 kB, 120 kB and 180 kB
respectively. The process with size of 180 kB ends in the fifth second after its ar-
rival, but by that time another process arrives with space requirement of 280 kB.
Which processes are in which partitions in the sixth second after the first arrivals,
if we suppose that other processes do not end until that time, and the Largest-
Fit algorithm is used? What is the case if the Largest-or-Long-Waiting-Fit or
the Long-Waiting-or-Not-Fit-Smaller algorithm is used with threshold value
of 4?
17.1-2 In a system using dynamic partitions the list of free partition consists of the
following items: one with size of 20 kB, followed by one of 100 kB, one of 210 kB,
one of 180 kB, one of 50 kB, one of 10 kB, one of 70 kB, one of 130 kB and one of
90 kB respectively. The last process was placed into the partition preceding the one
of 180 kB. A new process with space requirement of 40 kB arrives into the system.
Into which partition is it to be placed using the First-Fit, Next-Fit, Best-Fit,
Limited-Best-Fit, Worst-Fit or the Limited-Worst-Fit algorithms?
17.1-3 An effective implementation of the Worst-Fit algorithm is when the par-
titions are stored in a binary heap instead of a linear linked list. What is the time
complexity of the Place algorithm perform in this case?

17.2. Page replacement algorithms

As already mentioned, the memory of the modern computer systems consists of
several levels. These levels usually are organised into a seemingly single-level memory,
called virtual memory. Users do not have to know this structure with several levels



814 17. Memory Management

in detail: operating systems manage these levels.
The most popular methods to control this virtual memory are paging and seg-

mentation. Paging divides both memory levels into fixed-sized units, called frames.
In this case programs are also divided into parts of the same size as frams have:
these parts of the programs (and data) are called pages. Segmentation uses parts
of a program with changing size—these parts are called segments.

For the simplicity let us suppose that the memory consists of only two levels:
the smaller one with shorter access time is called main memory (or memory for
short), and the larger one with larger access time is called backing memory.

At the beginning, the main memory is empty, and there is only one program
consisting of n parts in the backing memory. Suppose that during the run of the
program there are instructions to be executed, and the execution of each instruction
there requires an access to a certain page of the program. After processing the
reference string, the following problems have to be solved.

1. Where should we place the segment of the program responsible for executing
the next instruction in the main memory (if it is not there)?

2. When should we place the segments of the program in the main memory?

3. How should we deallocate space for the segments of the program to be placed
into the main memory?

It is the placing algorithms that give the answer to the first question: as far as
paging is concerned, the answer is simply anywhere—since the page frames of the
main memory are of the same size and access time. During segmentation there
are program segments and free memory areas, called holes alternating in the main
memory–and it is the segment placing algorithms that gives the answer to the first
question.

To the second question the answer is given by the transferring algorithms: in
working systems the answer is on demand in most of the cases, which means that a
new segment of the program starts to be loaded from the backing memory when it
turns out that this certain segment is needed. Another solution would be preloading,
but according to the experiences it involves a lot of unnecessary work, so it has not
become wide-spread.

It is the replacement algorithms that give the answer to the third question: as
far as paging is concerned, these are the page replacement algorithms, which we
present in this section. Segment replacement algorithms used by segmentation apply
basically the ideas of page replacement algorithms—completed them according to
the different sizes of the segments.

Let us suppose that the size of the physical memory is m page frames, while
that of the backing memory is n page frames. Naturally the inequality 1 ≤ m ≤ n
holds for the parameters. In practice, n is usually many times bigger than m. At the
beginning the main memory is empty, and there is only one program in the backing
memory. Suppose that during the run of the program there are p instructions to be
executed, and to execute the t-th instruction (1 ≤ t ≤ p) the page rt is necessary,
and the result of the execution of the instruction also can be stored in the same



17.2. Page replacement algorithms 815

page, i. e., we are modelling the execution of the program by reference string
R = 〈r1, r2, . . . , rp〉. In the following we examine only the case of demand paging, to
be more precise, only the page replacement algorithms within it.

If it is important to differentiate reading from writing, we will use writing array
W = 〈w1, w2, . . . , wp〉 besides array R. Entry wt of array W is true if we are writing
onto page rt, otherwise w1 = false.

Demand paging algorithms fall into two groups; there are static and dynamic
algorithms. At the beginning of the running of the program both types fill the
page frames of the physical memory with pages, but after that static algorithms
keep exactly m page frames reserved until the end of the running, while dynamic
algorithms allocate at most m page frames.

17.2.1. Static page replacement

The input data of static page replacement algorithms are: the size of the main mem-
ory measured in number of the page frames (m), the size of the program measured
in number of of pages (n), the running time of the program measured in number of
instructions (p) and the reference string (R); while their output is the number of
the page faults. (pagefault)

Static algorithms are based on managing the page table. The page table is a
matrix with size of n × 2, the i-th (i ∈ [0 . . n − 1]) row of which refers to the i-
th page. The first entry of the row is a logical variable (present/absent bit), the
value of which keeps track of whether the page is in the main memory in that certain
instant of time: if the i-th page is in the main memory, then pagetable[i, 1] = true
and pagetable[i, 2] = j, where j ∈ [0 . .m − 1] shows us that the page is in the j-th
page frame of the main memory. If the i-th page is not in the main memory, then
pagetable[i, 1] = false and pagetable[i, 2] is non-defined. Work variable busy contains
the number of the busy page frames
indexframe!free of the main memory.

If the size of the pages is z, then the physical address f can be calculated
from virtual address v so that j = bv/zc gives us the index of the virtual page
frame, and v − zbv/zc gives us offset s referring to virtual address v. If the j-th
page is in the main memory in the given instant of time—which is indicated by
pagetable[i, 1] = true—, then f = s+ z · pagetable[i, 2]. If, however, the i-th page is
not in the main memory, then a page fault occurs. In this case we choose one of the
page frames of the main memory using the page replacement algorithm, load the
j-th page into it, refresh the j-th row of the page table and then calculate f .

The operation of the demand paging algorithms can be described by a Mealy
automaton having an initial status. This automaton can be given as (Q, q0,X, Y, δ, λ),
where Q is the set of the control states, qo ∈ Q is the initial control state, X is the
input alphabet, Y is the output alphabet, δ : Q × X → Q is the state transition
function and λ : Q×X → Y is the output function.

We do not discuss the formalisation of how the automaton stop.
Sequence Rp = 〈r1, r2, . . . , rp〉 (or Rp = 〈r1, r2, . . . , r∞〉) is called reference

string.
The description of the algorithms can be simplified introducing memory states



816 17. Memory Management

St (t = 1, 2, . . .): this state is the set of the pages stored in the main memory of the
automat after processing the t-th input sign. In the case of static demand paging
algorithms S0 = ∅. If the new memory status differs from the old one (which means
that a new page had to be swapped in), then a page fault has occurred. Consequently,
both a swapping of a page into an empty frame and page replacement are called page
fault.

In case of page replacement algorithms—according to Denning’s proposition—
instead of λ and δ we use the state transition function gP : Q×M×X → Q×Y . Since
for the page replacement algorithms X = {0, 1, . . . , n − 1} and Y = X ∪ ∅, holds,
these two items can be omitted from the definition, so page replacement algorithm
P can be described by the triple (Q, q0, gP ).

Our first example is one of the simplest page replacement algorithms, the FIFO
(First In First Out), which replaces the pages in the order of their loading in. Its
definition is the following: q0 = 〈〉 and

gFIFO(S, q, x) =





(S, q, ε), if x ∈ S ,
(S ∪ {x}, q′, ε), if x /∈ S, |S| = k < m ,

(S \ {y1} ∪ {x}, q”, y1), if x /∈ S and |S| = k = m ,

(17.1)

where q = 〈y1, y2, . . . , yk〉, q′ = 〈y1, y2, . . . , yk, x〉 and q′′ = 〈y2, y3, . . . , ym, x〉.
Running of the programs is carried out by the following ∗-Run algorithm. In

this section the ∗ in the name of the algorithms has to be replaced by the name of
the page replacement algorithm to be applied (FIFO, LRU OPT, LFU or NRU). In
the pseudocodes it is supposed that the called procedures know the values of the
variable used in the calling procedure, and the calling procedure accesses to the new
values.

∗-Run(m,n, p,R, faultnumber, pagetable)

1 faultnumber← 0
2 busy← 0
3 for i← 0 to n− 1 � Preparing the pagetable.
4 do pagetable[i, 1]← false
5 *-Prepare(pagetable)
6 for i← 1 to p � Run of the program.
7 do *-Executes(pagetable, i)
8 return faultnumber

The following implementation of the algorithm keeps track of the order of loading
in the pages by queue Q. The preparing algorithm has to create the empty queue, i.
e., to execute the instruction Q← ∅.

In the following pseudocode swap-out is the index of the page to be replaced,
and swap-in is the index of the page of the main memory into which the new page
is going to be swapped in.



17.2. Page replacement algorithms 817

FIFO-Executes(pagetable, t),

1 if pagetable[rt, 1] = true � The next page is in.
2 then nil
3 if pagetable[rt, 1] = false � The next page is out.
4 then pagefault← pagefault + 1
5 if busy < m � Main memory is not full.
6 then Inqueue(Q, rt)
7 swap-in← busy
8 busy← busy + 1
9 if busy = m � Main memory is full.

10 then replaces← Enqueue(Q)
11 pagetable[swap-out, 1]← false
12 swap-in← pagetable[swap-out, 2]
13 Write(swap-in, swap-out)
14 Read(rt, load) � Reading.
15 pagetable[rt, 1]← true � Updating of the data.
16 pagetable[rt, 2]← loads

Procedure writing writes the page chosen to be swapped out into the backing
memory: its first parameter answers the question where from (from which page frame
of the memory) and its second parameter answers where to (to which page frame
of the backing memory). Procedure Reading reads the page needed to execute the
next instruction from the backing memory into the appropriate page frame of the
physical memory: its first parameter is where from (from which page frame of the
backing memory) and its second parameter is where to (to which page frame of the
memory). When giving the parameters of both the procedures we use the fact that
the page frames are of the same size, therefore, the initial address of the j-th page
frame is j-times the page size z in both memories. Most of the page replacement
algorithms do not need to know the other entries of reference string R to process
reference rt, so when calculating space requirement we do not have to take the space
requirement of the series into consideration. An exception for this is algorithm OPT
for example. The space requirement of the FIFO-RUN algorithm is determined by
the size of the page frame - this space requirement is O(m). The running time of the
FIFO-RUN algorithm is de-termined by the loop. Since the procedure called in rows
6 and 7 performs only a constant number of steps (provided that queue-handling
operations can be performed in O(1), the run-ning time of the FIFO-RUN algorithm
is O(p). Note that some of the pages do not change while being in the memory, so if
we assign a modified bit to the pages in the memory, then we can spare the writing
in row 12 in some of the cases.

Our next example is one of the most popular page replacement algorithms,
the LRU (Least Recently Used), which replaces the page used least recently. Its
definition is the following: q0 = () and

gLRU(S, q, x) =





(S, q′′′, ε), if x ∈ S ,
(S ∪ {x}, q′, ε), if x /∈ S, |S| = k < m ,

(S \ {y1} ∪ {x}, q”, y1), if x /∈ S and |S| = k = m ,

(17.2)



818 17. Memory Management

where q = 〈y1, y2, . . . , yk〉, q′ = 〈y1, y2, . . . , yk, x〉, q′′ = 〈y2, y3, . . . , ym,x〉 and if
x = yk, then q′′′ = 〈y1, y2, . . . , yk−1, . . . , yk+1 . . . ym, yk〉.

The next implementation of LRU does not need any preparations. We keep a
record of the time of the last usage of the certain pages in array last-call[0..n − 1],
and when there is a replacement needed, the least recently used page can be found
with linear search.

LRU-Executes(pagetable, t)

1 if pagetable[rt, 1] = true � The next page is in.
2 then last-ref[rt]← t
3 if pagetable[rt, 1] = false � The next page is not in.
4 then pagefault← pagefault + 1
5 if busy < m � The physical memory is not full.
6 then swap-in← busy
7 busy← busy + 1
8 if busy = m � The physical memory is full.
9 then swap-out← rt−1

10 for i← 0 to n− 1
11 do if pagetable[i, 1] = true and

last-ref[i] < last-ref[swap-out]
12 then swap-out← last-ref[i]
13 pagetable[swap-out, 1]← false
14 swap-in← pagetable[swap-out, 2]
15 Write(swap-in, swap-out)
16 Read(rt, swap-in) � Reading.
17 pagetable[rt, 1]← true � Updating.
18 pagetable[rt, 2]← swap-in
19 last-ref[rt]← t

If we consider the values of both n and p as variables, then due to the linear
search in rows 10–11, the running time of the LRU-RUN algorithm is O(np).

The following algorithm is optimal in the sense that with the given conditions
(fixed m and n) it causes a minimal number of page faults. This algorithm chooses
the page from the ones in the memory, which is going to be used at the latest (if
there are several page that are not needed any more, then we choose the one at the
lowest memory address from them) to be replaced. This algorithm does not need
any preparations either.

OPT-Executes(t, pagetable, R)

1 if pagetable[rt, 1] = true � The next page is in.
2 then nil
3 if pagetable[rt, 1] = false � The next page is not in.
4 then pagefault← pagefault + 1



17.2. Page replacement algorithms 819

5 if busy < m � The main memory is not full.
6 then swap-in← busy
7 busy← busy + 1
8 if busy = m � The main memory is full.
9 then OPT-Swap-Out(t, R)

10 pagetable[swap-out, 1]← false
11 swap-in← pagetable[swap-out, 2]
12 Write(swap-in, swap-out)
13 Read(rt, swap-in) � Reading.
14 pagetable[rt, 1]← true � Updating.
15 pagetable[rt, 2]← swap-in

Procedure OPT-Swap-Out determines the index of the page to be replaced.

OPT-Swap-Out(t, R)

1 guarded← 0 � Preparation.
2 for j ← 0 to m− 1
3 do frame[j]← false
4 s← t+ 1 � Determining the protection of the page frames.
5 while s ≤ p and pagetable[rs, 1] = true and frame[pagetable[rs, 2]] = false and

guarded < m− 1
6 do guarded← guarded + 1
7 frame[rs]← true
8 s← s+ 1
9 swap-out← m− 1 � Finding the frame containing the page to be replaced.

10 j ← 0
11 while frame[j] = true
12 do j ← j + 1
13 swap-out← j
14 return swap-out

Information about pages in the main memory is stored in frame[0 . .m − 1]:
frame[j] = true means that the page stored in the j-th frame is protected from
being replaced due to its going to be used soon. Variable protected keeps track of
how many protected pages we know about. If we either find m−1 protected pages or
reach the end of R, then we will choose the unprotected page at the lowest memory
address for the page to be replaced.

Since the OPT algorithm needs to know the entire array R, its space requirement
is O(p). Since in rows 5–8 of the OPT-Swap-Out algorithm at most the remaining
part of R has to be looked through, the running time of the OPT-Swap-Out
algorithm is O(p2). The following LFU (Least Frequently Used) algorithm chooses
the least frequently used page to be replaced. So that the page replacement would
be obvious we suppose that in the case of equal frequencies we replace the page at
the lowest address of the physical memory. We keep a record of how many times
each page has been referenced since it was loaded into the physical memory with



820 17. Memory Management

the help of array frequency[1..n - 1]. This algorithm does not need any preparations
either.

LFU-Executes(pagetable, t)

1 if pagetable[rt, 1] = true � The next page is in.
2 then frequency[rt]← frequency[rt] + 1
3 if pagetable[rt, 1] = false � The next page is not in.
4 then pagefault← pagefault + 1
5 if busy < m � The main memory is not full.
6 then swap-in← busy
7 busy← busy + 1
8 if busy = m � The physical memory is full.
9 then swap-out← rt−1

10 for i← n− 1 downto 0
11 do if pagetable[i, 1] = true and

frequency[i] ≤ frequency[swap-out]
12 then swap-out← last-ref[i]
13 pagetable[swap-out, 1]← false
14 swap-in← pagetable[swap-out, 2]
15 Kiír(swap-in, swap-out)
16 Read(rt, pagetable[swap-out, 2]) � Reading.
17 pagetable[rt, 1]← true � Updating.
18 pagetable[rt, 2]← swap-in
19 frequency[rt]← 1

Since the loop body in rows 11–13 of the LFU-Executes algorithm has to be
executed at most n-times, the running time of the algorithm is O(np). There are
certain operating systems in which there are two status bits belonging to the pages
in the physical memory. The referenced bit is set to true whenever a page is refer-
enced (either for reading or writing), while the dirty bit is set to true whenever
modifying (i.e. writing) a page. When starting the program both of the status bits of
each page is set to false. At stated intervals (e. g. after every k-th instruction) the
operating system sets the referenced bit of the pages which has not been referenced
since the last setting to false. Pages fall into four classes according to the values
of their two status bits: class 0 contains the pages not referenced and not modified,
class 1 the not referenced but modified, class 2 the referenced, but not modified, and
finally, class 3 the referenced and modified ones.

The NRU (Not Recently Used) algorithm chooses a page to be replaced from
the nonempty class with the smallest index. So that the algorithm would be deter-
ministic, we suppose that the NRU algorithm stores the elements of each class in a
row.

The preparation of this algorithm means to fill arrays referenced and dirty con-
taining the indicator bits with false values, to zero the value of variable performed
showing the number of the operations performed since the last zeroing and to create
four empty queues.



17.2. Page replacement algorithms 821

NRU-Prepares(n)

1 for i← 0 to n− 1
2 do referenced[j]← false
3 dirty[j]← false
4 Q0 ← ∅
5 Q1 ← ∅
6 Q2 ← ∅
7 Q3 ← ∅

NRU-Executes(referenced, dirty, k, R,W )

1 if pagetable[rt, 1] = true � The next page is in.
2 then if W [rt] = true
3 then dirty[rt]← true
4 if pagetable[rt, 1] = false � The next page is not in.
5 then pagefault← pagefault + 1
6 if busy < m � The main memory is not full.
7 then swap-in← busy
8 busy← busy + 1
9 referenced[rt]← true

10 if W [rt] = true
11 then dirty[rt]← true
12 if busy = m � The main memory is full.
13 then NRU-Swap-Out(t, swap-out)
14 pagetable[swap-out, 1]← false
15 swap-in← pagetable[swap-out, 2]
16 if dirty[sap-out] = true
17 then Write(swap-in, swap-out)
18 Read(rt, pagetable[swap-in, 2]) � Reading.
19 pagetable[rt, 1]← true � Updating.
20 pagetable[rt, 2]← swap-in
21 if t/k = bt/kc
22 then for i← 0 to n− 1
23 do if referenced[i] = false
24 then dirty[i]← false

Choosing the page to be replaced is based on dividing the pages in the physical
memory into four queues (Q1, Q2, Q3, Q4).

NRU-Swap-Out(time)

1 for i← 0 to n− 1 � Classifying the pages.
2 do if referenced[i] = false
3 then if dirty[i] = false
4 then Enqueue(Q1,i)
5 else Enqueue(Q2,i)



822 17. Memory Management

6 elseif dirty[i] = false
7 then Enqueue(Q3,i)
8 else Enqueue(Q4,i)
9 if Q1 6= ∅ � Choosing the page to be replaced.

10 then swap-out← Dequeue(Q1)
11 else if Q2NE∅
12 then swap-out← Dequeue(Q2)
13 else if Q3 6= ∅
14 then swap-out← Dequeue(Q3)
15 else swap-out← Dequeue(Q4)
16 return swap-out

The space requirement of the RUN-NRU algorithm is O(m) and its running time
is O(np). The Second-Chance algorithm is a modification of FIFO. Its main point
is that if the referenced bit of the page to be replaced is false according to FIFO,
then we swap it out. If, however, its referenced bit is true, then we set it to false
and put the page from the beginning of the queue to the end of the queue. This is
repeated until a page is found at the be-ginning of the queue, the referenced bit of
which is false. A more efficient implementation of this idea is the Clock algorithm
which stores the in-dices of the m pages in a circular list, and uses a hand to point
to the next page to be replaced.

The essence of the LIFO (Last In First Out) algorithm is that after filling in the
physical memory according to the requirements we always replace the last arrived
page, i. e., after the initial period there are m−1 pages constantly in the memory—
and all the replacements are performed in the page frame with the highest address.

17.2.2. Dynamic paging

It is typical of most of the computers that there are multiple programs running
simultane-ously on them. If there is paged virtual memory on these computers, it
can be managed both locally and globally. In the former case each program’s demand
is dealt with one by one, while in the latter case a program’s demand can be satisfied
even at other programs’ expenses. Static page replacement algorithms using local
management have been discussed in the last section. Now we present two dynamic
algorithms. The WS (Working-Set) algorithm is based on the experience that
when a program is run-ning, in relatively short time there are only few of its pages
needed. These pages form the working set belonging to the given time interval. This
working set can be defined for example as the set of the pages needed for the last h
instructions. The operation of the algorithm can be illustrated as pushing a "window"
with length of h along reference array R, and keeping the pages seen through this
window in the memory.



17.2. Page replacement algorithms 823

WS(pagetable, t, h)

1 if pagetable[rt, 1] = false � The next page is not in.
2 then WS-swap-out(t)
3 Write(pagetable[swap-out, 2], swap-out)
4 pagetable[rt, 1]← true
5 pagetable[rt, 2]← swap-out
6 if t > h � Does rt−h in the memory?
7 then j ← h− 1
8 while rj 6= rt−h and j < t
9 do j ← j + 1

10 if j > t
11 then pagetable[rt−h, 1]← false

When discussing the WS algorithm, to make it as simple as possible, we suppose
that h ≤ n,, therefore, storing the pages seen through the window in the memory is
possible even if all the h references are different (in practice, h is usually significantly
bigger than n due to the many repetitions in the reference string).

The WS-Swap-Oout algorithm can be a static page replacement algorithm, for
instance, which chooses the page to be replaced from all the pages in the memory—i.
e., globally. If, for example, the FIFO algorithm with running time Θ(p) is used for
this purpose, then the running time of the WS algorithm will be Θ(hp), since in
the worst case it has to examine the pages in the window belonging to every single
instruction.

The PFF (Page Frequency Fault) algorithm uses a parameter as well. This
algorithm keeps record of the number of the instructions executed since the last page
fault. If this number is smaller when the next page fault occurs than a previously
determined value of parameter d, then the program will get a new page frame to
be able to load the page causing page fault. If, however, the number of instructions
executed without any page faults reaches value d, then first all the page frames
containing pages that have not been used since the last page fault will be taken
away from the program, and after that it will be given a page frame for storing the
page causing page fault.

PFF(pagetable, t, d)

1 counter← 0 � Preparation.
2 for i← 1 to n
3 do pagetable[i, 1]← false
4 referenced[i]← false
5 for j ← 1 to p � Running.
6 do if pagetable[rt, 1] = true
7 then counter← counter + 1
8 else PFF-Swap-In(t, d, swap-out)
9 Write(pagetable[swap-out, 2], swap-out)

10 pagetable[rt, 1]← true



824 17. Memory Management

11 for i← to n
12 do if referenced[i] = false
13 then pagetable[i, 1]← false
14 referenced[i]← false

Exercises
17.2-1 Consider the following reference string: R = 〈1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2,
3, 7, 6, 3, 2, 1, 2, 3, 6〉. How many page faults will occur when using FIFO, LRU or
OPT algorithm on a computer with main memory containing k (1 ≤ k ≤ 8) page
frames?
17.2-2 Implement the FIFO algorithm using a pointer—instead of queue Q—
pointing to the page frame of the main memory, which is the next one to load a
page.
17.2-3 What would be the advantages and disadvantages of the page replacement
algorithms’ using an m×2 page map—besides the page table—the j-th row of which
indicating whether the j-th row of the physical memory is reserved, and also reflect-
ing its content?
17.2-4 Write and analyse the pseudo code pseudocode of Second-Chance, Clock
and LIFO algorithms.
17.2-5 Is it possible to decrease the running time of the NFU algorithm (as far as
its order of magnitude is concerned) if the pages are not classed only after each page
faults, but the queues are maintained continuously?
17.2-6 Another version, NFU’, of the NRU algorithm is also known, which uses four
sets for classing the pages, and it chooses the page to be replaced from the nonempty
set with the smallest index by chance. Write the pseudo code of operations In-Set
and From-Set needed for this algorithm, and calculate the space requirement and
running time of the NFU’ algorithm.
17.2-7? Extend the definition of the page replacement automat so that it would
stop after processing the last entry of the finite reference sequence. Hint. Complete
the set of incoming signs with an ’end of the sequence’ sign.

17.3. Anomalies

When the first page replacement algorithms were tested in the IBM Watson Research
Institute at the beginning of the 1960’s, it caused a great surprise that in certain
cases increasing the size of the memory leads to an increase in running time of the
programs. In computer systems the phenomenon, when using more recourses leads
to worse results is called anomaly. Let us give three concrete examples. The first one
is in connection with the FIFO page replacement algorithm, the second one with the
List-Scheduling algorithm used for processor scheduling, and the third one with
parallel program execution in computers with interleaved memories.

Note that in two examples out of the three ones a very rare phenomenon can be
observed, namely that the degree of the anomaly can be any large.



17.3. Anomalies 825

17.3.1. Page replacement

Let m, M , n and p be positive integers (1 ≤ m ≤ n <∞), k a non-negative integer,
A = {a1, a2, . . . , an} a finite alphabet. Ak is the set of the words over A with length
k, and A∗ the words over A with finite length. Let m be the number of page frames
in the main memory of a small, and M a big computer. The FIFO algorithm has
already been defined in the previous section. Since in this subsection only the FIFO
page replacement algorithm is discussed, the sign of the page replacement algorithm
can be omitted from the notations.

Let us denote the number of the page faults by fP (R,m). The event, when
M > m and fP (R,M) > fP (R,m) is called anomaly. In this case the quotient
fP (R,M)/fP (R,m) is the degree of the anomaly. The efficiency of algorithm P is
measured by paging speed EP (R,m) which is defined as

EP (R,m) =
fP (R,m)

p
, (17.3)

for a finite reference string R = 〈r1, r2, . . .〉, while for an infinite reference string
R = 〈r1, r2, . . .〉 by

EP (R,m) = lim inf
k→∞

fP (Rk,m)

k
. (17.4)

Let 1 ≤ m < n and let C = (1, 2, . . . , n)∗ be an infinite, circular reference
sequence. In this case EFIFO(C,m) = 1.

If we process the reference string R = 〈1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5〉, then we will
get 9 page faults in the case of m = 3, and 10 ones in the case of m = 4, therefore,
fFIFO(R,m) = 10/9. Bélády, Nelson and Shedler has given the following necessary
and sufficient condition for the existing of the anomaly.

Theorem 17.1 There exists a reference sequence R for which the FIFO page re-
placement algorithm causes an anomaly if, and only if m < M < 2m− 1.

The following has been proved as far as the degree of the anomaly is concerned.

Theorem 17.2 If m < M < 2m− 1, then for every ε > 0 there exists a reference
sequence R = 〈r1, r2, . . . , rp〉 for which

f(R,M)

f(R,m)
> 2− ε . (17.5)

Bélády, Nelson and Shedler had the following conjecture.

Conjecture 17.3 For every reference sequence R and memory sizes M > m ≥ 1

fFIFO(R,M)

fFIFO(R,m)
≤ 2 . (17.6)

This conjecture can be refuted e. g. by the following example. Let m = 5, M =
6, n = 7, k ≥ 1, and R = UV k, where V = (1, 2, 3, 4, 5, 6, 7)3 and U = 〈1, 2,



826 17. Memory Management

3, 4, 5, 6, 7, 1, 2, 4, 5, 6, 7, 3, 1, 2, 4, 5, 7, 3, 6, 2, 1, 4, 7, 3, 6, 2, 5, 7, 3, 6, 2, 5〉. If execution
sequence U is executed using a physical memory with m = 5 page frames, then there
will be 29 page faults, and the processing results in controlling status (7,3,6,2,5). Af-
ter that every execution of reference sequence V causes 7 new page faults and results
in the same controlling status.

If the reference string U is executed using a main memory with M = 6 page
frames, then we get control state 〈2, 3, 4, 5, 6, 7〉 and 14 page faults. After that every
execution of reference sequence V causes 21 new page faults and results in the same
control state.

Choosing k = 7 the degree of the anomaly will be (14 + 7× 21)/(29 + 7× 7) =
161/78 > 2. As we increment the value of k, the degree of the anomaly will go to
three. Even more than that is true: according to the following theorem by Péter
Fornai and Antal Iványi the degree of the anomaly can be any arbitrarily large.

Theorem 17.4 For any large number L it is possible to give parameters m, M and
R so that the following holds:

f(R,M)

f(R,m)
> L . (17.7)

17.3.2. Scheduling with lists

Suppose that we would like to execute n tasks on p processors. By the execution
the priority order of the programs has to be taken into consideration. The processors
operate according to First Fit, and the execution is carried out according to a given
list L. E. G. Coffman jr. wrote in 1976 that decreasing the number of processors,
decreasing execution time ti of the tasks, reducing the precedence restrictions,
and altering the list can each cause an anomaly. Let the vector of the execution
times of the tasks denoted by t, the precedence relation by <, the list by L, and
execution time of all the tasks with a common list on p equivalent processors by
C(p, L,<, t).

The degree of the anomaly is measured by the ratio of the execution time C ′ at
the new parameters and execution time C at the original parameters. First let us
show four examples for the different types of the anomaly.

Example 17.4 Consider the following task system τ1 and its scheduling S1 received using
list L = (T1, T2, . . . , T9) on m = 3 equivalent processors. In this case Cmax(S1) = 12 (see
Figure 17.1), which can be easily proved to be the optimal value.

Example 17.5 Schedule the previous task system τ1 for m = 3 equivalent processors with
list L′ = 〈T1, T2, T4, T5, T6, T3, T9, T7, T8〉. In this case for the resulting scheduling S2 we
get Cmax(S2) = 14 (see Figure 17.2).

Example 17.6 Schedule the task system τ1 with list L for m′ = 4 processors. It results in
Cmax(S3) = 15 (see Figure 17.3).



17.3. Anomalies 827

T1/3 T2/2 T3/2 T4/2

T9/9 T5/4 T6/4 T7/4 T8/4

S1 :
P1

P2

P3

T1 T9

T2 T4 T5 T7

T3 - T6 T8

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 17.1 Task system τ1, and its optimal schedule.

S2 :
P1

P2

P3

T1 T3 T9

T2 T5 T7 -
T4 T6 T8 -

0 1 2 3 4 5 6 7 8 9 10 11 13 12 14

Figure 17.2 Scheduling of the task system τ1 at list L′.

S3 :

P1

P2

P3

P4

T1 T8 -
T2 T5 T9

T3 T6 -
T4 T7 -

0 1 2 3 4 5 6 7 8 9 10 11 13 12 14 15

Figure 17.3 Scheduling of the task system τ1 using list L on m′ = 4 processors.

S4 :
P1

P2

P3

T1 T5 T8 -
T2 T4 T6 T9

T3 - T7 -
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 17.4 Scheduling of τ2 with list L on m = 3 processors.

Example 17.7 Decrement the executing times by one in τ1. Schedule the resulting task
system τ2 with list L for m = 3 processors. The result is: Cmax(S4) = 13 (see Figure 17.4).

Example 17.8 Reduce the precedence restrictions: omit edges (T4, T5) and (T4, T6) from
the graph. The result of scheduling S5 of the resulting task system τ3 can be seen in Figure
17.5: Cmax(S5) = 16.

The following example shows that the increase of maximal finishing time in the
worst case can be caused not only by a wrong choice of the list.



828 17. Memory Management

S5 :
P1

P2

P3

T1 T6 T9

T2 T4 T7 -
T3 T5 T8 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 17.5 Scheduling task system τ3 on m = 3 processors.

Example 17.9 Let task system τ and its optimal scheduling SOPT be as showed by Figure
17.6. In this case Cmax(SOPT) = 19.

T1/4 T2/2

T3/2

T4/5T5/5 T6/10

T7/10

SOP T :
P1

P2

T1 T4 T6

T2 T3 T5 T7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 17.6 Task system τ and its optimal scheduling SOPT on two processors.

We can easily prove that if the executing times are decremented by one, then
in the resulting task system τ ′ we cannot reach a better result than Cmax(S6) = 20
with any lists (see Figure 17.7).

After these examples we give a relative limit reflecting the effects of the schedul-
ing parameters. Suppose that for given task systems τ and τ ′ we have T′ = T,
<′⊆<, t′ ≤ t. Task system τ is scheduled with the help of list L, and τ ′ with L′—
the former on m, while the latter on m′ equivalent processors. For the resulting
schedulings S and S′ let C(S) = C and C(S′) = C ′.

Theorem 17.5 (scheduling limit). . With the above conditions

C ′

C
≤ 1 +

m− 1

m′ . (17.8)

Proof Consider scheduling diagram D′ for the parameters with apostrophes (for S′).
Let the definition of two subsets—A and B—of the interval [0, C ′) be the following:
A = {t ∈ [0, C ′)| all the processors are busy in time t}, B = [0, C ′) \ A. Note that
both sets are unions of disjoint, half-open (closed from the left and open from the
right) intervals.



17.3. Anomalies 829

S6 :
P1

P2

T1 T4 T5 T7

T2 T3 T6 -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 17.7 Optimal list scheduling of task system τ ′.

Let Tj1
be a task the execution of which ends in C ′ instant of time according to

D1 (i. e., fj1
= C ′). In this case there are two possibilities: Starting point sj1

of task
Tj1

is either an inner point of B, or not.

1. If sj1
is an inner point of B, then according to the definition of B there is a

processor for which with ε > 0 it holds that it does not work in the interval
[sj1
− ε, sj1

). This can only occur if there is a task Tj2
for which Tj2

<′ Tj1

and fj2
= sj1

(case a).

2. If sj1
is not an inner point of B, then either sj1

= 0 (case b), or sj1
> 0.

If B has got a smaller element than sj1
(case c), then let x1 = sup{x | x <

sj1
and x ∈ B}, else let x1 = 0 (case d). If x1 > 0, then it follows from the

construction of A and B that there is a processor for which a task Tj2
can be

found the execution of which is still in progress in this time interval, and for
which Tj2

<′ Tj1
.

Summarising the two cases we can say that either there is a task Tj2
<′ Tj1

for
which in the case of y ∈ [fj2

, sj1
) holds y ∈ A (case a or c), or for every number

x < sj1
x ∈ A or x < 0 holds (case a or d).

Repeating this procedure we get a task chain Tjr
,Tjr−1

, . . . ,Tj1
for which it

holds that in the case of x < sjr
either x ∈ A or x < 0. This proves that there are

tasks for which
Tjr

<′ Tjr−1
<′ · · · <′ Tj1

, (17.9)

and in every instant of time t there is a processor which is working, and is executing
one of the elements of the chain. It yields

∑

φ∈S′

t′(φ) ≤ (m′ − 1)

r∑

k=1

t′jk
, (17.10)

where f denotes the empty periods, so the sum on the left hand side refers to all
the empty periods in S′.

Based on (11.9) and <′⊆<, therefore,

C ≥
r∑

k=1

tjk
≥

r∑

k=1

t′jk
. (17.11)

Since

mC ≥
n∑

i=1

ti ≥
n∑

i=1

t′i , (17.12)



830 17. Memory Management

S7 :

T1 Tm+1

T2 Tm+2

...
...

Tm−1 T2m−1

Tm

Figure 17.8 Scheduling S7(τ4) belonging to list L = (T1, . . . , Tn).

and

C ′ =
1

m′




n∑

i=1

t′i +
∑

φ∈S′

t′(φ)


 ,

így (17.10), (17.11) and (17.12)

C ′ ≤ 1

m′

(
mC + (m′ − 1)C

)
,

based on (17.10), (17.11) and (17.12) we get

C ′ ≤ 1

m′

(
mC + (m′ − 1)C

)
,

implying C ′/C ≤ 1 + (m− 1)/m′.

The following examples show us not only that the limit in the theory is the best
possible, but also that we can get the given limit (at least asymptotically) by altering
any of the parameters.

Example 17.10 In this example the list has changed, < is empty, m is arbitrary. Execution
times are the following:

ti =

{
1, if i = 1, . . . , m− 1 ,
m, if i = m ,
m− 1, if i = m + 1, . . . , 2m− 1 .

If this task system τ4 is scheduled for m processors with list L = (T1, . . . , T2m−1n),
then we get the optimal scheduling S7(τ4) which can be seen in Figure 17.8.

If we use the list L′ = (Tm+1, . . . , T2m−1, T1, . . . , Tm−1, Tm) instead of list L, then we
get scheduling S8(τ4) which can be seen in Figure 17.9.

In this case C = (S7) = m, C′(S8) = 2m− 1, therefore C′/C = 2− 1/m; which means
that altering the list results in the theorem holding with equality, i.e., the expression on
the right hand side of the ≤ sign cannot be decreased.

Example 17.11 In this example we decrease the execution times. We use list L = L′ =
〈T1, . . . , T3m〉. in both cases. Here as well as in the remaining part of the chapter ε denotes



17.3. Anomalies 831

S8 :

Tm+1 Tm

Tm+2 -
...

...
T2m−1 -

T1 T2 . . . Tm−1 -

Figure 17.9 Scheduling S8(τ4) belonging to list L′.

...

...

...

...T1 T2 Tm−1 Tm

Tm+1 Tm+2 T2m−1 T2m

T2m+1

T2m+2 T2m+3 T3m

Figure 17.10 Identical graph of task systems τ5 and τ ′
5.

an arbitrarily small positive number. Original execution times are stored in vector t =
(t1, . . . , tn), where

ti =

{
2ε, if i = 1, . . . , m ,
1, if i = m + 1, . . . , 2m ,
m− 1, if i = 2m + 1, . . . , 3m .

The new execution times are

t′
i =

{
ti − ε, if i = 1, . . . , m− 1 ,
ti, if i = m, . . . , 3m .

The precedence graph of task system τ5, and its modification τ ′
5 are shown in Figure

17.10, while optimal scheduling S9(τ5) and scheduling S10(τ ′
5) can be seen in Figure 17.11.

Here C = Cmax(S9(τ5)) = m+2ε and C′ = Cmax(S10(τ ′
5) = 2m−1+εC = Cmax, therefore,

increasing ε C′/C goes to value 2−1/m (limε→0 C′/C = 2−1/m). This means that altering
the execution times we can approach the limit in the theorem arbitrarily closely.

Example 17.12 In this example we reduce the precedence restrictions. The precedence
graph of task system τ6 is shown in Figure 17.12.

The execution times of the tasks are: t1 = ε, ti = 1, if i = 1, . . . , m2 − m + 1,
and tm2−m+2 = m. The optimal scheduling S11(τ6) of τ6 belonging to list L =
(T1, . . . , Tm2−m+2) can be seen in Figure 17.13.

Omitting all the precedence restrictions from τ6 we get the task system τ ′
6. Scheduling

S12(τ ′
6) is shown in Figure 17.14.

Example 17.13 This time the number of the processors will be increased from m to m′.



832 17. Memory Management

S9 :

T1 Tm+1 T2m+1

T2 Tm+2 T2m+2

...
...

...
Tm−1 T2m−1 T3m−1

Tm T2m T3m

S10 :

T1 T2m+2 T2m−1 T2m+1

T2 T2m+3 -
...

...
...

Tm−1 T3m -
Tm Tm+1 . . . T2m−1 -

Figure 17.11 Schedulings S9(τ5) and S10(τ ′
5).

 
...

T1

T2 T3 T
m

2
−m+1

T
m

2
−m+2

Figure 17.12 Graph of the task system τ6.

S11 :

T1 T2 Tm+1 . . . Tm2−2m+2

Tm2−m+2 -
- T3 Tm+2 . . . Tm2−2m+3

...
...

...
. . .

...
- Tm T2m−1 . . . Tm2−m+1

Figure 17.13 Optimal scheduling S11(τ6).

S12 :

T1 Tm+1 . . . Tm2−m+1 -
T2 Tm+2 . . . Tm2−m+2

T3 Tm+3 . . . -
...

...
. . .

...
Tm−1 T2m+1 . . . -

Tm T2m
. . . -

Figure 17.14 Scheduling S12(τ ′
6).

The graph of task system τ7 is shown by Figure 17.15, and the running times are

ti =

{
ε, if i = 1, . . . , m + 1 ,
1, if i = m + 2, . . . , mm′ −m′ + m + 1 ,
m′, if i = mm′ −m′ + m + 2 .



17.3. Anomalies 833

...

...T1 T2 Tm Tm+1

Tm+2 Tm+3 Tmm
′
−m

′+m+1Tmm
′
−m

′+m+2

Figure 17.15 Precedence graph of task system τ7.

S13 :

T1 Tm+1 Tm+2 . . . Ta

T2 Tmm′−m′+2 -
T3 - Tm+3 . . . Tb

...
...

...
. . .

...
Tm - T2m

. . . Tc

Figure 17.16 The optimal scheduling S13(τ7) (a = mm′ −m′ +3, b = a+1, c = mm′ −m′ +m+1).

S14 :

T1 Tm+2 . . . Ta Tmm′−m′+m+2

T2 Tm+3 . . . Ta+1 -
...

...
. . .

...
...

Tb Tc
. . . Td -

-
...

. . .
...

...
- Te

. . . Tf -

Figure 17.17 The optimal scheduling S14(τ7) (a = mm′ − 2m′ + m + 2, b = m + 1, c = 2m + 2,
d = mm′ − 2m′ + 2m + 2, e = m + m′ + 1, f = mm′ − m′ + m + 1).

The optimal scheduling of the task system on m, and m′ processors is shown by Figure
17.16 and Figure 17.17.

Comparing the C = Cmax(S13(τ7)) = m′ +2ε, and C′ = Cmax(S14(τ7)) = m′ +m−1+ε
maximal finishing times we get the ratio C′/C = 1 + (m− 1− ε)(m′ + 2ε) and so again the
required asymptotic value: limε→0 C′/C = 1 + (m− 1)/m′

With the help of these examples we proved the following statement.

Theorem 17.6 (sharpness of the scheduling limit). The limit given for the relative
speed (11.8) is asymptotically sharp for the changing of (any of the) parameters m,
t, < and L.

17.3.3. Parallel processing with interleaved memory

We describe the parallel algorithm modelling the operating of computers with in-
terleaved memory in a popular way. The sequence of dumplings is modelling the



834 17. Memory Management

reference string, the giants the processors and the bites the commands executed si-
multaneously. Dwarfs D0, D1, . . . , Dr (r ≥ 0) cook dumplings of n different types.
Every dwarf creates an infinite sequence of dumplings.

These sequences are usually given as random variables with possible values 1,
2, . . . , n. For the following analysis of the extreme cases deterministic sequences are
used.

The dumplings eating giants Gb (b = 1, 2, . . .) eat the dumplings. The units of
the eating are the bits.

The appetite of the different giants is characterised by the parameter b. Giant
]b is able to eat up most b dumplings of the same sort at one bite.

Giant Gb eats the following way. He chooses for his first bite from the beginning
from the beginning of the dumpling sequence of dwarf T0 so many dumplings, as
possible (at most b of the same sort), and he adds to these dumplings so many ones
from the beginning of the sequences of the dwarfs D1, D2, . . . , as possible.

After assembling the first bite the giant eats it, then he assembles and eats the
second, third, . . . bites.

Example 17.14 To illustrate the model let us consider an example. We have two dwarfs
(D0 and D1) and the giant G2. The dumpling sequences are

12121233321321321
24444444,

(17.13)

or in a shorter form
(12)(3)2(321)∗

2(4)∗,
(17.14)

where the star (*) denotes a subsequence repeated infinitely many times.
For his first bite G2 chooses from the first sequence the first four dumlings 1212 (because

the fifth dumpling is the third one of the sort 1) and no dumpling from the second sequence
(because the beginning element is 2, and two dumplings of this sort is chosen already). The
second bite contains the subsequence 1233 from the first sequence, and the dumplings 244
from the second one. The other bites are identical: 321321 from the first sequence and 44
from the second one. In a short form the bites are as follows:

‖1212 ‖1233 ‖321321 ‖∗

‖ − − ‖244 ‖44 ‖
(17.15)

(bites are separated by double lines).

For given dumpling sequences and a given giant Gb let Bt (t = 1, 2, . . .) denote
the number of dumplings in the t-th bite. According to the eating-rules b ≤ Bt ≤ bn
holds for every t.

Considering the elements of the dumpling sequences as random variables with
possible values 1, 2, . . . ,n and given distribution we define the dumpling-eating speed
Sb (concerning the given sequences) of Gb as the average number of dumplings in
one bite for a long time, more precisely

Sb = lim inf
t→∞

E

(∑t
i=1 Bi

t

)
, (17.16)



17.3. Anomalies 835

where E(ξ) denotes the expected value of the random variable ξ.
One can see that the defined limit always exists.

Maximal and minimal speed-ratio Let us consider the case, when we have
at least one dumpling sequence, at least one type of dumplings, and two different
giants, that is let r ≥ 0, n ≥ 1, b > c ≥ 1. Let the sequences be deterministic.

Since for every bite-size Bt (t = 1, 2, . . .) of Gb holds b ≤ Bt ≤ bn, the same
bounds are right for every average value (

∑
Bi)

t
i=1)/t and for every expected value

E((
∑t

i=1 Bi)/t), too. From this it follows, that the limits Sb and Sc defined in (17.16)
also must lie between these bounds, that is

b ≤ Sb ≤ bn, g ≤ Sc ≤ cn . (17.17)

Choosing the maximal value of Sb and the minimal value of Sc and vice versa
we get the following trivial upper and lower bounds for the speed ratio Sb/Sc:

b

cn
≤ Sb

Sc
≤ bn

c
. (17.18)

Now we show that in many cases these trivial bounds cannot be improved (and
so the dumpling eating speed of a small giant can be any times bigger than that of
a big giant).

Theorem 17.7 If r ≥ 1, n ≥ 3, b > c ≥ 1, then there exist dumpling sequences,
for which

Sb

Sc
=

b

cn
, (17.19)

further
Sb

Sc
=
bn

c
. (17.20)

Proof To see the sharpness of the lower limit in the inequality (17.18) giving the
natural limits let consider the following sequences:

1b22b+11∗

1b+1(23 . . . n)∗ .
(17.21)

Giant Gb eats these sequences in the following manner:

‖1b2b ‖2b ‖21b ‖1b ‖∗

‖ − − ‖1b ‖ − − ‖ − − ‖. (17.22)

Here B1 = 2b, B2 = 2b, B3 = b+ 1, Bt = b (for t = 4, 5, . . ..
For the given sequences we have

Sb = lim
t→∞

2b+ 1 + tb

t
= b. (17.23)



836 17. Memory Management

Gc eats these sequences as follows:

‖1c ‖α 1c12c ‖2c ‖β 2c ‖2c ‖γ 2c41c ‖1c ‖∗

‖ − − ‖1c2 ‖1c ‖1c3 ‖ − − ‖(23 . . .)c3 ‖(23 . . .)c ‖. (17.24)

Here

α =

⌈
b− c
c

⌉
; c1 = b− αc; c2 = c− c1 ;

β =

⌈
b+ 1− c2 − c

c

⌉
; c3 = b+ 1− c2 − βc ;

γ =

⌈
2b+ 1− c(β + 2)

c

⌉
; c4 = 2b+ 1− c(β + γ + 2) ;

c5 = c− c4.

In this case we get (in a similar way, as we have got Sb)

Sc = cn (17.25)

and therefore
Sb

Sc
=

b

cn
. (17.26)

In order to derive the exact upper bound, we consider the following sequence:

122b+11∗

1b−132b1b(23 . . . n)∗ .
(17.27)

Gb eats these sequences as follows:

‖12b ‖2b ‖21b ‖1b ‖∗

‖1b−13b ‖3b1b ‖(23 . . .)b−1 ‖(23 . . . n)b ‖ . (17.28)

From here we get

Sb = lim
t→∞

3b+ 3b+ n(b− 1) + 2 + (t− 3)bn

t
= bn . (17.29)

Gc’c eating is characterised by

‖12c ‖2c ‖α2c ‖2c ‖β 2c31c ‖1c ‖1c ‖1c ‖∗

‖1c1 ‖1c ‖1c23c ‖3c ‖3c ‖3c ‖3c4 ‖ − − ‖ , (17.30)

where

c1 = c− 1; α =

⌈
b− c− c1

c

⌉
; c2 = b− 1− c1 − αc ;

β =

⌈
2b+ 1− c(α+ β)

c

⌉
; γ =

⌈
2b− c(β + 2)

c

⌉
;



17.4. Optimal file packing 837

c4 = 2b− c(β + γ + 2)c3 = 2b+ 1− c(α+ β + 2) .

Since Bt = c for t = α+ β + γ + 5, t = α+ β + γ + 6, . . . , therefore Sc = c, and
so Sb/Sc = bn/c.

α =

⌈
b− c
c

⌉
; c1 = b− αc; c2 = c− c1 ;

β =

⌈
b+ 1− c2 − c

c

⌉
; c3 = b+ 1− c2 − βc ;

γ =

⌈
2b+ 1− c(β + 2)

c

⌉
; c4 = 2b+ 1− c(β + γ + 2) ;

c5 = c− c4.

17.3.4. Avoiding the anomaly

We usually try to avoid anomalies.
For example at page replacing the sufficient condition of avoiding it is that the

replacing algorithm should have the stack property: if the same reference string is
run on computers with memory sizes of m and m + 1, then after every reference it
holds that the bigger memory contains all the pages that the smaller does. At the
examined scheduling problem it is enough not to require the scheduling algorithm’s
using a list.

Exercises
17.3-1 Give parameters m,M,n, p and R so that the FIFO algorithm would cause
at least three more page faults with a main memory of size M than with that of size
m.
17.3-2 Give such parameters that using scheduling with list when increasing the
number of processors the maximal stopping time increases at least to half as much
again.
17.3-3 Give parameters with which the dumpling eating speed of a small giant is
twice as big as that of a big giant.

17.4. Optimal file packing

In this section we will discuss a memory managing problem in which files with given
sizes have to be placed onto discs with given sizes. The aim is to minimise the number
of the discs used. The problem is the same as the bin-packing problem that can be
found among the problems in Section Approximation algorithms in the book titled
Introduction to Algorithms. Also scheduling theory uses this model in connection
with minimising the number of processors. There is the number n of the files given,
and array vector t = (t1, t2, . . . , tn) containing the sizes of the files to be stored,
for the elements of which 0 < ti ≤ 1 holds (i = 1, 2, . . . , n). The files have to be
placed onto the discs taking into consideration that they cannot be divided and the
capacity of the discs is a unit.



838 17. Memory Management

17.4.1. Approximation algorithms

The given problem is NP-complete. Therefore, different approaching algorithms are
used in practice. The input data of these algorithms are: the number n of files, a
vector t = 〈t1, t2, . . . , tn〉 with the sizes of the files to be placed. And the output data
are the number of discs needed (discnumber) and the level array h = (h1, h2, . . . , hn)
of discs.

Linear Fit (LF) According to Linear Fit file Fi is placed to disc Di. The
pseudocode of LF is the following.

LF(n, t)

1 for i← 1 to n
2 do h[i]← t[i]
3 number-of-discs← n
4 return number-of-discs

Both the running time and the place requirement of this algorithm are O(n). If,
however, reading the sizes and printing the levels are carried out in the loop in rows
2–3, then the space requirement can be decreased to O(1).

Next Fit (NF) Next Fit packs the files onto the disc next in line as long as
possible. Its pseudocode is the following.

NF(n, t)

1 h[1]← t[1]
2 number-of-discs← 1
3 for i← 2 to n
4 do if h[number-of-discs] + t[i] ≤ 1
5 then h[number-of-discs]← h[number-of-discs] + t[i]
6 else number-of-discs← number-of-discs + 1
7 h[number-of-discs]← t[i]
8 return number-of-discs

Both the running time and the place requirement of this algorithm are O(n).
If, however, reading the sizes and taking the levels out are carried out in the loop
in rows 3–6, then the space requirement can be decreased to O(1), but the running
time is still O(n).

First Fit (FF) First Fit packs each files onto the first disc onto which it fits.



17.4. Optimal file packing 839

FF(n, t)

1 number-of-discs ← 1
2 for i← 1 to n
3 do h[i]← 0
3 for i← 1 to n
4 do k ← 1
5 while t[i] + h[k] > 1
6 do k ← k + 1
7 h[k]← h[k] + t[i]
8 if k > number-of-discs
9 then number-of-discs← number-of-discs + 1

10 return number-of-discs

The space requirement of this algorithm is O(n), while its time requirement is
O(n2). If, for example, every file size is 1, then the running time of the algorithm is
Θ(n2).

Best Fit (BF) Best Fit places each file onto the first disc on which the remaining
capacity is the smallest.

BF(n, t)

1 number-of-discs← 1
2 for i← 1 to n
3 do h[i]← 0
4 for i← 1 to n
5 do free← 1.0
6 ind← 0
7 for k ← 1 to number-of-discs
8 doif h[k] + t[i] ≤ 1 and 1− h[k]− t[i] < free
9 then ind← k

10 szabad← 1− h[k]− t[i]
11 if ind > 0
12 then h[ind]← h[ind] + t[i]
13 else number-of-discs← number-of-discs + 1
14 h[number-of-discs]← t[i]
15 return number-of-discs

The space requirement of this algorithm is O(n), while its time requirement is
O(n2).

Pairwise Fit (PF) Pairwise Fit creates a pair of the first and the last element
of the array of sizes, and places the two files onto either one or two discs—according
to the sum of the two sizes. In the pseudocode there are two auxiliary variables:
bind is the index of the first element of the current pair, and eind is the index of the
second element of the current pair.



840 17. Memory Management

PF(n, t)

1 number-of-discs← 0
2 beg-ind← 1
3 end-ind← n
4 while end-ind ≥ beg-ind
5 do if end-ind− beg-ind ≥ 1
6 then if t[beg-ind] + t[end-ind] > 1
7 then number-of-discs← number-of-discs + 2
8 h[number-of-discs− 1]← t[bind]
9 h[number-of-discs]← t[eind]

10 else number-of-discs← number-of-discs + 1
11 h[number-of-discs]← t[beg-ind] + t[eind]
12 if end-ind = beg-ind
13 then number-of-discs← number-of-discs + 1
14 h[number-of-discs]← t[end-ind]
15 beg-ind← beg-ind + 1
16 end-ind← end-ind− 1
17 return number-of-discs

The space requirement of this algorithm is O(n), while its time requirement is
O(n2). If, however, reading the sizes and taking the levels of the discs out are carried
out online, then the space requirement will only be O(1).

Next Fit Decreasing (NFD) The following five algorithms consist of two parts:
first they put the tasks into decreasing order according to their executing time, and
then they schedule the ordered tasks. Next Fit Decreasing operates according to
NF after ordering. Therefore, both its space and time requirement are made up of
that of the applied ordering algorithm and NF.

First Fit Decreasing (FFD) First Fit Decreasing operates according to First
Fit (FF) after ordering, therefore its space requirement is O(n) and its time require-
ment is O(n2).

Best Fit Decreasing (BFD) Best Fit Decreasing operates according to Best
Fit (BF) after ordering, therefore its space requirement is O(n) and its time require-
ment is O(n2).

Pairwise Fit Decreasing (PFD) Pairwise Fit Decreasing creates pairs of the
first and the last tasks one after another, and schedules them possibly onto the same
processor (if the sum of their executing time is not bigger than one). If it is not
possible, then it schedules the given pair onto two processors.

Quick Fit Decreasing (QFD) Quick Fit Decreasing places the first file after
ordering onto the next empty disc, and then adds the biggest possible files (found
from the end of the ordered array of sizes) to this file as long as possible. The
auxiliary variables used in the pseudocode are: bind is the index of the first file to



17.4. Optimal file packing 841

be examined, and eind is the index of the last file to be examined.

QFD(n, s)

1 beg-ind← 1
2 end-ind← n
4 number-of-discs← 0
5 while end-ind ≥ beg-ind
6 do number-of-discs← number-of-discs + 1
7 h[number-of-discs]← s[bind]
8 beg-ind← beg-ind + 1
9 while end-ind ≥ beg-ind and h[number-of-discs] + s[eind] ≤ 1

10 do ind← end-ind
11 while ind > beg-ind and h[number-of-discs] + s[ind− 1] ≤ 1
12 do ind← ind− 1
13 h[number-of-discs]← h[number-of-discs] + s[ind]
14 if end-ind > ind
15 then for i← ind to end-ind− 1
16 do s[i]← s[i+ 1]
17 end-ind← end-ind− 1
18 return number-of-discs

The space requirement of this program is O(n), and its running time in worst
case is Θ(n2), but in practice—in case of executing times of uniform distribution—it
is (n lg n).

17.4.2. Optimal algorithms

Simple Power (SP) This algorithm places each file—independently of each
other—on each of the n discs, so it produces nn placing, from which it chooses an
optimal one. Since this algorithm produces all the different packing (supposing that
two placing are the same if they allocate the same files to all of the discs), it certainly
finds one of the optimal placing.

Factorial Algorithm (FACT) This algorithm produces the permutations of
all the files (the number of which is n!), and then it places the resulted lists using
NF.

The algorithm being optimal can be proved as follows. Consider any file system
and its optimal packing is SOPT(t). Produce a permutation P of the files based
on SOPT(t) so that we list the files placed onto P1, P2, . . . , POPT(t) respectively.
If permutation P is placed by NF algorithm, then we get either SOPT or another
optimal placing (certain tasks might be placed onto processors with smaller indices).

Quick Power (QP) This algorithm tries to decrease the time requirement of
SP by placing ’large’ files (the size of which is bigger than 0.5) on separate discs,
and tries to place only the others (the ’small’ ones) onto all the n discs. Therefore,
it produces only nK placing instead of nn, where K is the number of small files.



842 17. Memory Management

Economic Power (EP) This algorithm also takes into consideration that two
small files always fit onto a disc—besides the fact that two large ones do not fit.
Therefore, denoting the number of large files by N and that of the small ones by K
it needs at most N + (K+ 1)/2 discs. So first we schedule the large discs to separate
discs, and then the small ones to each of the discs of the number mentioned above.
If, for instance, N = K = n/2, then according to this we only have to produce
(0.75n)0.5n.

17.4.3. Shortening of lists (SL)

With certain conditions it holds that list t can be split into lists t1 and t2 so that
OPT(t1) + OPT(t2) ≤ OPT(t) (in these cases the formula holds with equality).
Its advantage is that usually shorter lists can be packed optimally in a shorter time
than the original list. For example, let us assume that ti + tj = 1. Let t1 = (ti, tj)
and t2 = t \ t1. In this case OPT(t1) = 1 and OPT(t2) = OPT(t) − 1. To prove
this, consider the two discs onto which the elements of list t1 have been packed by
an optimal algorithm. Since next to them there can be files whose sum is at most
1 − t1 and 1 − t2, their executing time can sum up to at most 2 − (t1 + t2), i.e., 1.
Examining the lists on both ends at the same time we can sort out the pairs of files
the sum of whose running time is 1 in O(n). After that we order the list t. Let the
ordered list be s. If, for example s1 + sn < 1, then the first file will be packed onto
a different disc by every placing, so t1 = (t1, tj) and t2 = t \ t1 is a good choice.
If for the ordered list s1 + sn < 1 and s1 + sn−1 + sn > 1 hold, then let sj be the
largest element of the list that can be added to s1 without exceeding one. In this
case with choices t1 = (t1, tj) and t2 = t \ t1 list t2 is two elements shorter than list
t. With the help of the last two operations lists can often be shortened considerably
(in favourable case they can be shortened to such an extent that we can easily get
the optimal number of processors for both lists). Naturally, the list remained after
shortening has to be processed—for example with one of the previous algorithms.

17.4.4. Upper and lower estimations (ULE)

Algorithms based on upper and lower estimations operate as follows. Using one of
the approaching algorithms they produce an upper estimation A(t) of OPT(t), and
then they give a lower estimation for the value of OPT(t as well. For this—among
others—the properties of packing are suitable, according to which two large files
cannot be placed onto the same disc, and the sum of the size cannot be more than
1 on any of the discs. Therefore, both the number of the large files and the sum
of the size of the files, and so also their maximum MAX(t) is suitable as a lower
estimation. If A(t = MAX(t), then algorithm A produced an optimal scheduling.
Otherwise it can be continued with one of the time-consuming optimum searching
algorithms.



17.4. Optimal file packing 843

LF NF FF BF PF NFD FFD BFD PFD QFD OPT
t1 4 3 3 3 3 3 2 2 2 2 2
t2 6 2 2 2 3 3 3 3 3 3 2
t3 7 3 2 3 4 3 2 3 4 2 2
t4 8 3 3 2 4 3 3 2 4 3 2
t5 5 3 3 3 3 2 2 2 3 2 2
t6 4 3 2 2 2 3 2 2 2 2 2
t7 4 3 3 3 2 3 2 2 2 2 2

Figure 17.18 Summary of the numbers of discs.

17.4.5. Pairwise comparison of the algorithms

If there are several algorithms known for a scheduling (or other) problem, then a
simple way of comparing the algorithms is to examine whether the values of the
parameters involved can be given so that the chosen output value is more favourable
in the case of one algorithm than in the case of the other one.

In the case of the above discussed placing algorithm the number of processors
discs allocated to size array t by algorithm A and B is denoted by A(t and B(t,
and we examine whether there are arrays t1 and t2 for which A(t1) < B(t1) and
A(t2) > B(t2) hold. We answer this question in the case of the above defined ten
approaching algorithms and for the optimal one. It follows from the definition of the
optimal algorithms that for each t and each algorithm A holds OPT(t ≤ A(t). In
the following the elements of the arrays in the examples will be twentieth.

Consider the following seven lists:

t1 = (12/20, 6/20, 8/20, 14/20),
t2 = (8/20, 6/20, 6/20, 8/20, 6/20, 6/20),
t3 = (15/20, 8/20, 8/20, 3/20, 2/20, 2/20, 2/20),
t4 = (14/20, 8/20, 7/20, 3/20, 2/20, 2/20, 2/20, 2/20),
t5 = (10/20, 8/20, 10/20, 6/20, 6/20),
t6 = (12/20, 12/20, 8/20, 8/20),
t7 = (8/20, 8/20, 12/20, 12/20).

The packing results of these lists are summarised in Figure 17.18.
As shown in Figure 17.18, LF needs four discs for the first list, while the others

need fewer than that. In addition, the row of list t1 shows that FFD, BFD, PFD,
QFD and OPT need fewer discs than NF, FF, BF, PF and NFD. Of course, there
are no lists for which any of the algorithms would use fewer discs than OPT. It is
also obvious that there are no lists for which LF would use fewer discs than any of
the other ten algorithms.

These facts are shown in Figure 17.19. In the figure symbols X in the main
diagonal indicate that the algorithms are not compared to themselves. Dashes in the
first column indicate that for the algorithm belonging to the given row there is no list
which would be processed using more disc by this algorithm than by the algorithm
belonging to the given column, i.e., LF. Dashes in the last column show that there



844 17. Memory Management

LF NF FF BF PF NFD FFD BFD PFD QFD OPT
LF X 1 1 1 1 1 1 1 1 1 1
NF – X 1 1 1 1 1
FF – X 1 1 1 1 1
BF – X 1 1 1 1 1
PF – X 1 1 1 1 1
NFD – X 1 1 1 1 1
FFD – X
BFD – X
PFD – X
QFD – X
OPT – – – – – – – – – – X

Figure 17.19 Pairwise comparison of algorithms.

LF NF FF BF PF NFD FFD BFD PFD QFD OPT
LF X 1 1 1 1 1 1 1 1 1 1
NF – X 3 4 7 5 1 1 1 1 1
FF – – X 4 7 5 1 1 1 1 1
BF – – 3 X 8 5 1 1 1 1 1
PF – 2 2 2 X 3 1 1 1 1 1
NFD – 2 2 2 6 X 1 1 1 1 1
FFD – 2 2 2 – X 4 – 2
BFD – 2 2 2 – 3 X 3 2
PFD – 2 2 2 3 3 3 3 X 3 2
QFD – 2 2 2 – – 4 X 2
OPT – – – – – – – – – – X

Figure 17.20 Results of the pairwise comparison of algorithms.

is no list for which the optimal algorithm would use more discs than any of the
examined algorithms. Finally, 1’s indicate that for list t1 the algorithm belonging to
the row of the given cell in the figure needs more discs than the algorithm belonging
to the column of the given cell.

If we keep analysing the numbers of discs in Figure 17.19, we can make up this
figure to Figure 17.20.

Since the first row and the first column of the table is filled, we do not deal more
with algorithm LF.

For list t2 NF, FF, BF and OPT use two discs, while the other 6 algorithms
use three ones. Therefore we write 2’s in the points of intersection of the columns
of the ’winners’ and the rows of the ’losers’ (but we do not rewrite the 1’s given in
the points of intersection of PF and OPT, and NFD and OPT, so we write 2’s in
4× 6− 2 = 22 cells. Since both the row and the column of OPT have been filled in,
it is not dealt with any more in this section. The third list is disadvantageous for
PF and PFD, therefore we write 3’s in the empty cells in their rows. This list shows
an example also for the fact that NF can be worse than FF, BF can be worse than



17.4. Optimal file packing 845

FF, and BFD than FFD and QFD.
The fourth list can be processed only by BF and BFD optimally, i.e., using two

discs. Therefore we can write 4’s in the empty cells in the columns of these two
algorithms. For the fifth list NFD, FFD, BFD and QFD use only two, while NF,
FF, BF, PF and PDF use three discs. So we can fill the suitable cells with 5’s. The
’losers’ of list t6 are NF and NFD—therefore, we write 6’s in the empty cells in their
rows. PF performs better when processing list t7 than FF. The following theorem
helps us filling in the rest of the cells.

Theorem 17.8 If t ∈ D, then

FF(t) ≤ NF(t) .

Proof We perform an induction according to the length of the list. Let t =
〈t1, t2, . . . , tn〉 and ti = 〈t1, t2, . . . , ti〉 (i = 1, 2, . . . , n). Let NF(ti) = Ni and FF(ti) =
Fi, and let ni be the level of the last disc according to NF, which means the sum of
the lengths of the files placed onto the non empty disc with the higher index, when
NF has just processed ti. Similarly, let fi be the level of the last disc according to
FF. We are going to prove the following invariant property for each i: either Fi < Ni,
or Fi = Ni and fi ≤ ni. If i = 1, then F1 = N1 and f1 = n1 = t1, i.e., the second
part of the invariant property holds. Suppose that the property holds for the value
1 ≤ i < n. If the first part of the invariant property holds before packing ti+1, then
either inequality Fi < Ni stays true, or the numbers of discs are equal, and fi < ni

holds. If the numbers of discs were equal before packing of ti+1, then after placing
it either the number of discs of FF is smaller, or the numbers of discs are equal and
the level of the last disc of FF is at most as big as that of NF.

A similar statement can be proved for the pairs of algorithms NF-BF, NFD-
FFD and NFD-BFD. Using an induction we could prove that FFD and QFD need
the same number of discs for every list. The previous statements are summarised in
Figure 11.20.

17.4.6. The error of approximate algorithms

The relative efficiency of two algorithms (A and B) is often described by the ratio
of the values of the chosen efficiency measures, this time the relative number of
processors A(t)/B(t). Several different characteristics can be defined using this ratio.
These can be divided into two groups: in the first group there are the quantities
describing the worst case, while in the other group there are those describing the
usual case. Only the worst case is going to be discussed here (the discussion of the
usual case is generally much more difficult). Let Dn denote the real list of n elements
and D the set of all the real lists, i.e.,

D = ∪∞
i=1Di .

Let And be the set of algorithms, determining the number of discs, that is of
algorithms, connecting a nonnegative real number to each list t ∈ D, so implementing



846 17. Memory Management

the mapping D → R+
0 ).

Let Aopt be the set of the optimal algorithms, that is of algorithms ordering
the optimal number of discs to each list, and OPT an element of this set (i.e., an
algorithm that gives the number of discs sufficient and necessary to place the files
belonging to the list for each list t ∈ D).

Let Aapp be the set of the approximation algorithms, that is of algorithms A ∈
And for which A(t) ≥ OPT(t) for each list t ∈ D, and there is a list t ∈ D, for
which A(t) > OPT(t)..

Let Aest be the set of estimation algorithms, that is of algorithms E ∈ Alsz for
which E(t) ≤ OPT(t) for each list t ∈ D, and there is a list t ∈ D, for which
E(t) < OPT(t).. Let Fn denote the set of real lists for which OPT(t) = n,, i.e.,
Fn = {t|t ∈ D and OPT(t) = n} (n = 1, 2, . . .).. In the following we discuss only
algorithms contained inAnd. We define (A, B ∈ A)RA,B,n error function,RA,B error
(absolute error) and RA,∞ asymptotic error of algorithms A and B (A, B ∈ A) as
follows:

RA,B,n = sup
t∈Fn

A(t)

B(t)
,

RA,B = sup
t∈D

A(t)

B(t)
,

RA,B,∞ = lim sup
n→∞

RA,B,n .

These quantities are interesting especially if B ∈ Aopt. In this case, to be as sim-
ple as possible, we omit B from the denotations, and speak about the error function,
error and asymptotic error of algorithms A ∈ A, and E ∈ A. The characteristic
values of NF file placing algorithm are known.

Theorem 17.9 If t ∈ Fn, then

n = OPT(t) ≤ NF(t) ≤ 2OPT(t)− 1 = 2n− 1 . (17.31)

Furthermore, if k ∈ Z,, then there are lists uk and vk for which

k = OPT(uk) = NF(uk) (17.32)

and

k = OPT(vk) and NF(vk) = 2k − 1 . (17.33)

From this statement follows the error function, absolute error and asymptotic
error of NF placing algorithm.

Corollary 17.10 If n ∈ Z, then

RNF,n = 2− 1

n
, (17.34)

and

RNF = RNF,∞ = 2 . (17.35)



Notes for Chapter 17 847

The following statement refers to the worst case of the FF and BF file packing
algorithms.

Theorem 17.11 If t ∈ Fn, then

OPT(t) ≤ FF(t), BF(t) ≤ 1.7OPT(t) + 2 . (17.36)

Furthermore, if k ∈ Z,, then there are lists uk and vk for which

k = OPT(uk) = FF(uk) = BF(uk) (17.37)

and
k = OPT(vk) and FF(vk) = BF(vk) = b1.7kc . (17.38)

For the algorithm FF holds the following stronger upper bound too.

Theorem 17.12 If t ∈ Fn, then

OPT(t) ≤ FF(t) < 1.7OPT(t) + 1 . (17.39)

From this statement follows the asymptotic error of FF and BF, and the good
estimation of their error function.

Corollary 17.13 If n ∈ Z, then

b1.7nc
n

≤ RFF,n ≤
d1.7ne
n

(17.40)

and
b1.7nc
n

≤ RBF,n ≤
b1.7n+ 2c

n
(17.41)

further
RFF,∞ = RBF,∞ = 1.7 . (17.42)

If n is divisible by 10, then the upper and lower limits in inequality (17.40) are
equal, thus in this case 1.7 = RFF,n = RBF,n.

Exercises
17.4-1 Prove that the absolute error of the FF and BF algorithms is at least 1.7
by an example.
17.4-2 Implement the basic idea of the FF and BF algorithms so that the running
time would be O(n lg n).
17.4-3 Complete Figure 11.20.

Problems

17-1 Smooth process selection for an empty partition
Modify the Long-Waiting-or-Not-Fit-Smaller algorithm in a way that instead



848 17. Memory Management

of giving priority to processes with points above the threshold, selects the process
with the highest rank + points among the processes fitting into the partition. Prove
the correctness of the algorithm and give an upper bound for the waiting time of a
process.
17-2 Partition search algorithms with restricted scope
Modify the Best-Fit, Limited-Best-Fit, Worst-Fit, Limited-Worst-Fit al-
gorithms to only search for their optimal partitions among the next m suitable one
following the last split partition, where m is a fixed positive number. Which algo-
rithms do we get in the m = 1 and m =∞ cases. Simulate both the original and the
new algorithms, and compare their performance regarding execution time, average
number of waiting processes and memory fragmentation.
17-3 Avoiding page replacement anomaly
Class the discussed page replacement algorithms based on whether they ensure to
avoid the anomaly or not.
17-4 Optimal page replacement algorithm
Prove that for each demanding page replacement algorithm A, memory size m and
reference string R holds

fA(m,R) ≤ fOPT(m,R) .

17-5 Anomaly
Plan (and implement) an algorithm with which it can occur that a given problem
takes longer to solve on q > p processors than on p > 1 ones.
17-6 Error of file placing algorithms
Give upper and lower limits for the error of the BF, BFD, FF and FFD algorithms.

Chapter Notes

The basic algorithms for dynamic and fixed partitioning and page replacement are
discussed according to textbooks by Silberschatz, Galvin and Gagne [230], and
Tanenbaum and Woodhull [242].

Defining page replacement algorithms by a Mealy-automat is based on the sum-
marising article by Denning [64], and textbooks by Ferenc Gécseg and István Peák
[95], Hopcroft, Motwani and Ullman [120].

Optimizing the MIN algorithm was proved by Mihnovskiy and Shor in 1965
[183], after that by Mattson, Gecsei, Slutz and Traiger in 1970 [177].

The anomaly experienced in practice when using FIFO page replacement algo-
rithm was first described by László Bélády [32] in 1966, after that he proved in a
constructive way that the degree of the anomaly can approach two arbitrarily closely
in his study he wrote together with Shedler. The conjecture that it cannot actually
reach two can be found in the same article (written in 1969).

Péter Formai and Antal Iványi [?] showed that the ratio of the numbers of page
replacements needed on a big and on a smaller computer can be arbitrarily large in
2002.

Examples for scheduling anomalies can be found in the books by Coffman [49],



Notes for Chapter 17 849

Iványi and Smelyanskiy [129] and Roosta [218], and in the article by Lai and Sahni
[150].

Analysis of the interleaved memory derives from the article [?].
The bound NF(t) ≤ 2OPT(t) + 2 can be found in D. S. Johnson’s PhD dis-

sertation [?], the precise Theorem 17.9. comes from [126]. The upper limit for FF
and BF is a result by Johnson, Demers, Ullman, Garey and Graham [133], while the
proof of the accuracy of the limit is that by [126, ?]. The source of the upper limit
for FFD and BFD is [133], and that of the limit for NFD is [20]. The proof of the
NP-completeness of the file packing problem—leading it back to the problem of par-
tial sum—can be found in the chapter on approximation algorithms in Introduction
to Algorithms [51].



18. Relational Database Design

The relational datamodel was introduced by Codd in 1970. It is the most widely
used datamodel—extended with the possibilities of the World Wide Web—, because
of its simplicity and flexibility. The main idea of the relational model is that data
is organised in relational tables, where rows correspond to individual records and
columns to attributes. A relational schema consists of one or more relations and
their attribute sets. In the present chapter only schemata consisting of one relation
are considered for the sake of simplicity. In contrast to the mathematical concept
of relations, in the relational schema the order of the attributes is not important,
always sets of attributes are considered instead of lists. Every attribute has an
associated domain that is a set of elementary values that the attribute can take
values from. As an example, consider the following schema.

Employee(Name,Mother’s name,Social Security Number,Post,Salary)

The domain of attributes Name and Mother’s name is the set of finite charac-
ter strings (more precisely its subset containing all possible names). The domain
of Social Security Number is the set of integers satisfying certain formal and
parity check requirements. The attribute Post can take values from the set {Direc-
tor,Section chief,System integrator,Programmer,Receptionist,Janitor,Handyman}.
An instance of a schema R is a relation r if its columns correspond to the at-
tributes of R and its rows contain values from the domains of attributes at the
attributes’ positions. A typical row of a relation of the Employee schema could be

(John Brown,Camille Parker,184-83-2010,Programmer,$172,000)

There can be dependencies between different data of a relation. For example, in an
instance of the Employee schema the value of Social Security Number determines
all other values of a row. Similarly, the pair (Name,Mother’s name) is a unique
identifier. Naturally, it may occur that some set of attributes do not determine all
attributes of a record uniquely, just some of its subsets.

A relational schema has several integrity constraints attached. The most im-
portant kind of these is functional dependency. Let U and V be two sets of
attributes. V functionally depends on U , U → V in notation, means that when-
ever two records are identical in the attributes belonging to U , then they must agree
in the attribute belonging to V , as well. Throughout this chapter the attribute set
{A1, A2, . . . , Ak} is denoted by A1A2 . . . Ak for the sake of convenience.



18.1. Functional dependencies 851

Example 18.1 Functional dependencies Consider the schema

R(Pprofessor,Subject,Room,Student,Grade,Time) .

The meaning of an individual record is that a given student got a given grade of a given
subject that was taught by a given professor at a given time slot. The following functional
dependencies are satisfied.

Su→P: One subject is taught by one professor.
PT→R: A professor teaches in one room at a time.
StT→R: A student attends a lecture in one room at a time.
StT→Su: A student attends a lecture of one subject at a time.
SuSt→G: A student receives a unique final grade of a subject.

In Example 18.1 the attribute set StT uniquely determines the values of all other
attributes, furthermore it is minimal such set with respect to containment. This kind
attribute sets are called keys. If all attributes are functionally dependent on a set of
attributes X, then X is called a superkey. It is clear that every superkey contains
a key and that any set of attributes containing a superkey is also a superkey.

18.1. Functional dependencies

Some functional dependencies valid for a given relational schema are known already
in the design phase, others are consequences of these. The StT→P dependency
is implied by the StT→Su and Su→P dependencies in Example 18.1. Indeed, if
two records agree on attributes St and T, then they must have the same value in
attribute Su. Agreeing in Su and Su→P implies that the two records agree in P,
as well, thus StT→P holds.

Definition 18.1 Let R be a relational schema, F be a set of functional depen-
dencies over R. The functional dependency U → V is logically implied by F , in
notation F |= U → V , if each instance of R that satisfies all dependencies of F also
satisfies U → V . The closure of a set F of functional dependencies is the set F+

given by
F+ = {U → V : F |= U → V } .

18.1.1. Armstrong-axioms

In order to determine keys, or to understand logical implication between functional
dependencies, it is necessary to know the closure F+ of a set F of functional depen-
dencies, or for a given X → Z dependency the question whether it belongs to F+

must be decidable. For this, inference rules are needed that tell that from a set of
functional dependencies what others follow. The Armstrong-axioms form a sys-
tem of sound and complete inference rules. A system of rules is sound if only valid
functional dependencies can be derived using it. It is complete, if every dependency
X → Z that is logically implied by the set F is derivable from F using the inference
rules.



852 18. Relational Database Design

Armstrong-axioms

(A1) Reflexivity Y ⊆ X ⊆ R implies X → Y .

(A2) Augmentation If X → Y , then for arbitrary Z ⊆ R, XZ → Y Z holds.

(A3) Transitivity If X → Y and Y → Z hold, then X → Z holds, as well.

Example 18.2 Derivation by the Armstrong-axioms. Let R = ABCD and F = {A →
C, B → D}, then AB is a key:

1. A→ C is given.

2. AB → ABC 1. is augmented by (A2) with AB.

3. B → D is given.

4. ABC → ABCD 3. is augmented by (A2) with ABC.

5. AB → ABCD transitivity (A3) is applied to 2. and 4..

Thus it is shown that AB is superkey. That it is really a key, follows from algorithm
Closure(R, F, X).

There are other valid inference rules besides (A1)–(A3). The next lemma lists some,
the proof is left to the Reader (Exercise 18.1-5).

Lemma 18.2

1. Union rule {X → Y,X → Z} |= X → Y Z.

2. Pseudo transitivity {X → Y,WY → Z} |= XW → Y Z.

3. Decomposition If X → Y holds and Z ⊆ Y , then X → Z holds, as well.

The soundness of system (A1)–(A3) can be proven by easy induction on the length
of the derivation. The completeness will follow from the proof of correctness of
algorithm Closure(R,F,X) by the following lemma. Let X+ denote the closure
of the set of attributes X ⊆ R with respect to the family of functional dependencies
F , that is X+ = {A ∈ R : X → A follows from F by the Armstrong-axioms}.

Lemma 18.3 The functional dependency X → Y follows from the family of func-
tional dependencies F by the Armstrong-axioms iff Y ⊆ X+.

Proof Let Y = A1A2 . . . An where Ai’s are attributes, and assume that Y ⊆ X+.
X → Ai follows by the Armstrong-axioms for all i by the definition of X+. Applying
the union rule of Lemma 18.2 X → Y follows. On the other hand, assume that
X → Y can be derived by the Armstrong-axioms. By the decomposition rule of
Lemma 18.2 X → Ai follows by (A1)–(A3) for all i. Thus, Y ⊆ X+.

18.1.2. Closures

Calculation of closures is important in testing equivalence or logical implication
between systems of functional dependencies. The first idea could be that for a given



18.1. Functional dependencies 853

family F of functional dependencies in order to decide whether F |= {X → Y }, it is
enough to calculate F+ and check whether {X → Y } ∈ F+ holds. However, the size
of F+ could be exponential in the size of input. Consider the family F of functional
dependencies given by

F = {A→ B1, A→ B2, . . . , A→ Bn} .

F+ consists of all functional dependencies of the form A → Y , where Y ⊆
{B1, B2, . . . , Bn}, thus |F+| = 2n. Nevertheless, the closure X+ of an attribute
set X with respect to F can be determined in linear time of the total length of func-
tional dependencies in F . The following is an algorithm that calculates the closure
X+ of an attribute set X with respect to F . The input consists of the schema R,
that is a finite set of attributes, a set F of functional dependencies defined over R,
and an attribute set X ⊆ R.

Closure(R,F ,X)

1 X(0) ← X
2 i← 0
3 G← F � Functional dependencies not used yet.
4 repeat
5 X(i+1) ← X(i)

6 for all Y → Z in G
7 do if Y ⊆ X(i)

8 then X(i+1) ← X(i+1) ∪ Z
9 G← G \ {Y → Z}

10 i← i+ 1
11 until X(i−1) = X(i)

It is easy to see that the attributes that are put into any of the X(j)’s by
Closure(R,F ,X) really belong to X+. The harder part of the correctness proof of
this algorithm is to show that each attribute belonging to X+ will be put into some
of the X(j)’s.

Theorem 18.4 Closure(R,F ,X) correctly calculates X+.

Proof First we prove by induction that if an attribute A is put into an X(j) during
Closure(R,F ,X), then A really belongs to X+.
Base case: j = 0. I this case A ∈ X and by reflexivity (A1) A ∈ X+.
Induction step: Let j > 0 and assume that X(j−1) ⊆ X+. A is put into X(j), because
there is a functional dependency Y → Z in F , where Y ⊆ X(j−1) and A ∈ Z. By
induction, Y ⊆ X+ holds, which implies using Lemma 18.3 that X → Y holds, as
well. By transitivity (A3) X → Y and Y → Z implies X → Z. By reflexivity (A1)
and A ∈ Z, Z → A holds. Applying transitivity again, X → A is obtained, that is
A ∈ X+.

On the other hand, we show that if A ∈ X+, then A is contained in the result
of Closure(R,F ,X). Suppose in contrary that A ∈ X+, but A 6∈ X(i), where
X(i) is the result of Closure(R,F ,X). By the stop condition in line 9 this means



854 18. Relational Database Design

X(i) = X(i+1). An instance r of the schema R is constructed that satisfies every
functional dependency of F , but X → A does not hold in r if A 6∈ X(i). Let r be the
following two-rowed relation:

Attributes of X(i) Other attributes
︷ ︸︸ ︷
1 1 . . . 1

︷ ︸︸ ︷
1 1 . . . 1

1 1 . . . 1 0 0 . . . 0

Let us suppose that the above r violates a U → V functional dependency of F , that
is U ⊆ X(i), but V is not a subset of X(i). However, in this case Closure(R,F ,X)
could not have stopped yet, since X(i)NEX(i+1).

A ∈ X+ implies using Lemma 18.3 that X → A follows from F by the
Armstrong-axioms. (A1)–(A3) is a sound system of inference rules, hence in ev-
ery instance that satisfies F , X → A must hold. However, the only way this could
happen in instance r is if A ∈ X(i).

Let us observe that the relation instance r given in the proof above provides
the completeness proof for the Armstrong-axioms, as well. Indeed, the closure X+

calculated by Closure(R,F ,X) is the set of those attributes for which X → A
follows from F by the Armstrong-axioms. Meanwhile, for every other attribute B,
there exist two rows of r that agree on X, but differ in B, that is F |= X → B does
not hold.

The running tome of Closure(R,F ,X) is O(n2), where n is the length of
he input. Indeed, in the repeat – until loop of lines 4–11 every not yet used
dependency is checked, and the body of the loop is executed at most |R \ X| + 1
times, since it is started again only if X(i−1)NEX(i), that is a new attribute is
added to the closure of X. However, the running time can be reduced to linear with
appropriate bookkeeping.

1. For every yet unused W → Z dependency of F it is kept track of how many
attributes of W are not yet included in the closure (i[W,Z]).

2. For every attribute A those yet unused dependencies are kept in a doubly
linked list LA whose left side contains A.

3. Those not yet used dependencies W → Z are kept in a linked list J , whose left
side W ’s every attribute is contained in the closure already, that is for which
i[W,Z] = 0.

It is assumed that the family of functional dependencies F is given as a set of
attribute pairs (W,Z), representing W → Z. The Linear-Closure(R,F ,X) algo-
rithm is a modification of Closure(R,F ,X) using the above bookkeeping, whose
running time is linear. R is the schema, F is the given family of functional depen-
dencies, and we are to determine the closure of attribute set X.

Algorithm Linear-Closure(R,F ,X) consists of two parts. In the initialisation
phase (lines 1–13) the lists are initialised. The loops of lines 2–5 and 6–8, respectively,



18.1. Functional dependencies 855

take O(
∑

(W,Z)∈F |W |) time. The loop in lines 9–11 means O(|F |) steps. If the length
of the input is denoted by n, then this is O(n) steps altogether.

During the execution of lines 14–23, every functional dependency (W,Z) is ex-
amined at most once, when it is taken off from list J . Thus, lines 15–16 and 23 take
at most |F | steps. The running time of the loops in line 17–22 can be estimated by
observing that the sum

∑
i[W,Z] is decreased by one in each execution, hence it

takes O(
∑
i0[W,Z]) steps, where i0[W,Z] is the i[W,Z] value obtained in the ini-

tialisation phase. However,
∑
i0[W,Z] ≤ ∑(W,Z)∈F |W |, thus lines 14–23 also take

O(n) time in total.

Linear-Closure(R,F,X)

1 � Initialisation phase.
2 for all (W,Z) ∈ F
3 do for all A ∈W
4 do add (W,Z) to list LA

5 i[W,Z]← 0
6 for all A ∈ R \X
7 do for all (W,Z) of list LA

8 do i[W,Z]← i[W,Z] + 1
9 for all (W,Z) ∈ F

10 do if i[W,Z] = 0
11 then add (W,Z) to list J
12 X+ ← X
13 � End of initialisation phase.
14 while J is nonempty
15 do (W,Z)← head(J)
16 delete (W,Z) from list J
17 for all A ∈ Z \X+

18 do for all (W,Z) of list LA

19 do i[W,Z]← i[W,Z]− 1
20 if i[W,Z] = 0
21 then add (W,Z) to list J
22 delete (W,Z)from list LA

23 X+ ← X+ ∪ Z
24 return X+

18.1.3. Minimal cover

Algorithm Linear-Closure(R,F,X) can be used to test equivalence of systems of
dependencies. Let F and G be two families of functional dependencies. F and G are
said to be equivalent, if exactly the same functional dependencies follow from both,
that is F+ = G+. It is clear that it is enough to check for all functional dependencies
X → Y in F whether it belongs to G+, and vice versa, for all W → Z in G, whether
it is in F+. Indeed, if some of these is not satisfied, say X → Y is not in G+,
then surely F+NEG+. On the other hand, if all X → Y are in G+, then a proof



856 18. Relational Database Design

of a functional dependency U → V from F+ can be obtained from dependencies
in G in such a way that to the derivation of the dependencies X → Y of F from
G, the derivation of U → V from F is concatenated. In order to decide that a
dependency X → Y from F is in G+, it is enough to construct the closure X+(G)
of attribute set X with respect to G using Linear-Closure(R,G,X), then check
whether Y ⊆ X+(G) holds. The following special functional dependency system
equivalent with F is useful.

Definition 18.5 The system of functional dependencies G is a minimal cover of
the family of functional dependencies F iff G is equivalent with F , and

1. functional dependencies of G are in the form X → A, where A is an attribute
and A 6∈ X,

2. no functional dependency can be dropped from G, i.e., (G−{X → A})+ & G+,

3. the left sides of dependencies in G are minimal, that is X → A ∈ G, Y &
X =⇒ ((G− {X → A}) ∪ {Y → A})+

NEG+.

Every set of functional dependencies have a minimal cover, namely algorithm
Minimal-cover(R,F ) constructs one.

Minimal-Cover(R,F )

1 G← ∅
2 for all X → Y ∈ F
3 do for all A ∈ Y −X
4 do G← G ∪X → A
5 � Each right hand side consists of a single attribute.
6 for all X → A ∈ G
7 do while there exists B ∈ X : A ∈ (X −B)+(G)
8 X ← X −B
9 � Each left hand side is minimal.

10 for all X → A ∈ G
11 do if A ∈ X+(G− {X → A})
12 then G← G− {X → A}
13 � No redundant dependency exists.

After executing the loop of lines 2–4, the right hand side of each dependency in
G consists of a single attribute. The equality G+ = F+ follows from the union rule
of Lemma 18.2 and the reflexivity axiom. Lines 6–8 minimise the left hand sides. In
line 11 it is checked whether a given functional dependency of G can be removed
without changing the closure. X+(G − {X → A}) is the closure of attribute set X
with respect to the family of functional dependencies G− {X → A}.
Claim 18.6 Minimal-Cover(R,F ) calculates a minimal cover of F .

Proof It is enough to show that during execution of the loop in lines 10–12, no
functional dependency X → A is generated whose left hand side could be decreased.



18.1. Functional dependencies 857

Indeed, if a X → A dependency would exist, such that for some Y & X Y → A ∈ G+

held, then Y → A ∈ G′+ would also hold, where G′ is the set of dependencies
considered when X → A is checked in lines 6–8. G ⊆ G′, which implies G+ ⊆ G′+

(see Exercise 18.1-1). Thus, X should have been decreased already during execution
of the loop in lines 6–8.

18.1.4. Keys

In database design it is important to identify those attribute sets that uniquely
determine the data in individual records.

Definition 18.7 Let (R,F ) be a relational schema. The set of attributes X ⊆ R is
called a superkey, if X → R ∈ F+. A superkey X is called a key, if it is minimal
with respect to containment, that is no proper subset Y & X is key.

The question is how the keys can be determined from (R,F )? What makes this
problem hard is that the number of keys could be super exponential function of the
size of (R,F ). In particular, Yu and Johnson constructed such relational schema,
where |F | = k, but the number of keys is k!. Békéssy and Demetrovics gave a
beautiful and simple proof of the fact that starting from k functional dependencies,
at most k! key can be obtained. (This was independently proved by Osborne and
Tompa.)

The proof of Békéssy and Demetrovics is based on the operation ∗ they intro-
duced, which is defined for functional dependencies.

Definition 18.8 Let e1 = U → V and e2 = X → Y be two functional dependen-
cies. The binary operation ∗ is defined by

e1 ∗ e2 = U ∪ ((R− V ) ∩X)→ V ∪ Y .

Some properties of operation ∗ is listed, the proof is left to the Reader (Exer-
cise 18.1-3). Operation ∗ is associative, furthermore it is idempotent in the sense
that if e = e1 ∗ e2 ∗ · · · ∗ ek and e′ = e ∗ ei for some 1 ≤ i ≤ k, then e′ = e.

Claim 18.9 (Békéssy and Demetrovics). Let (R,F ) be a relational schema and let
F = {e1, e2, . . . , ek} be a listing of the functional dependencies. If X is a key, then
X → R = eπ1

∗ eπ2
∗ . . . ∗ eπs

∗ d, where (π1, π2, . . . , πs) is an ordered subset of the
index set {1, 2, . . . , k}, and d is a trivial dependency in the form D → D.

Proposition 18.9 bounds in some sense the possible sets of attributes in the search
for keys. The next proposition gives lower and upper bounds for the keys.

Claim 18.10 Let (R,F ) be a relational schema and let F = {Ui → Vi : 1 ≤ i ≤ k}.
Let us assume without loss of generality that Ui ∩ Vi = ∅. Let U =

⋃k
i=1 Ui and

V =
⋃k

i=1 Vi. If K is a key in the schema (R,F ), then

HL = R− V ⊆ K ⊆ (R− V) ∪ U = HU .



858 18. Relational Database Design

The proof is not too hard, it is left as an exercise for the Reader (Exercise 18.1-4).
The algorithm List-keys(R,F ) that lists the keys of the schema (R,F ) is based on
the bounds of Proposition 18.10. The running time can be bounded by O(n!), but
one cannot expect any better, since to list the output needs that much time in worst
case.

List-Keys(R,F )

1 � Let U and V be as defined in Proposition 18.10
2 if U ∩ V = ∅
3 then return R− V
4 � R− V is the only key.
5 if (R− V)+ = R
6 then return R− V
7 � R− V is the only key.
8 K ← ∅
9 for all permutations A1, A2, . . . Ah of the attributes of U ∩ V

10 do K ← (R− V) ∪ U
11 for i← 1 to h
12 do Z ← K −Ai

13 if Z+ = R
14 then K ← Z
15 K ← K ∪ {K}
16 return K

Exercises
18.1-1 Let R be a relational schema and let F and G be families of functional
dependencies over R. Show that

a. F ⊆ F+.
b. (F+)

+
= F+.

c. If F ⊆ G, then F+ ⊆ G+.
Formulate and prove similar properties of the closure X+ – with respect to F –

of an attribute set X.
18.1-2 Derive the functional dependency AB → F from the set of dependencies
G = {AB → C,A→ D,CD → EF} using Armstrong-axioms (A1)–(A3).
18.1-3 Show that operation ∗ is associative, furthermore if for functional depen-
dencies e1, e2, . . . , ek we have e = e1 ∗ e2 ∗ · · · ∗ ek and e′ = e ∗ ei for some 1 ≤ i ≤ k,
then e′ = e.
18.1-4 Prove Proposition 18.10.
18.1-5 Prove the union, pseudo transitivity and decomposition rules of Lemma
18.2.



18.2. Decomposition of relational schemata 859

18.2. Decomposition of relational schemata

A decomposition of a relational schema R = {A1, A2, . . . , An} is a collection ρ =
{R1, R2, . . . , Rk} of subsets of R such that

R = R1 ∪R2 ∪ · · · ∪Rk .

The Ri’s need not be disjoint, in fact in most application they must not be. One
important motivation of decompositions is to avoid anomalies.

Example 18.3 Anomalies Consider the following schema

SUPPLIER-INFO(SNAME,ADDRESS,ITEM,PRICE)

This schema encompasses the following problems:

1. Redundancy. The address of a supplier is recorded with every item it supplies.

2. Possible inconsistency (update anomaly). As a consequence of redundancy, the
address of a supplier might be updated in some records and might not be in some
others, hence the supplier would not have a unique address, even though it is expected
to have.

3. Insertion anomaly. The address of a supplier cannot be recorded if it does not
supply anything at the moment. One could try to use NULL values in attributes ITEM
and PRICE, but would it be remembered that it must be deleted, when a supplied
item is entered for that supplier? More serious problem that SNAME and ITEM
together form a key of the schema, and the NULL values could make it impossible to
search by an index based on that key.

4. Deletion anomaly This is the opposite of the above. If all items supplied by a
supplier are deleted, then as a side effect the address of the supplier is also lost.

All problems mentioned above are eliminated if schema SUPPLIER-INFO is replaced by
two sub-schemata:

SUPPLIER(SNAME,ADDRESS),
SUPPLIES(SNAME,ITEM,PRICE).

In this case each suppliers address is recorded only once, and it is not necessary that the
supplier supplies a item in order its address to be recorded. For the sake of convenience
the attributes are denoted by single characters S (SNAME), A (ADDRESS), I (ITEM), P
(PRICE).

Question is that is it correct to replace the schema SAIP by SA and SIP? Let
r be and instance of schema SAIP . It is natural to require that if SA and SIP
is used, then the relations belonging to them are obtained projecting r to SA and
SIP , respectively, that is rSA = πSA(r) and rSIP = πSIP (r). rSA and rSIP contains
the same information as r, if r can be reconstructed using only rSA and rSIP . The
calculation of r from rSA and rSIP can bone by the natural join operator.

Definition 18.11 The natural join of relations ri of schemata Ri (i = 1, 2, . . . n)
is the relation s belonging to the schema ∪n

i=1Ri, which consists of all rows µ that
for all i there exists a row νi of relation ri such that µ[Ri] = νi[Ri]. In notation
s =1

n
i=1ri.



860 18. Relational Database Design

Example 18.4 Let R1 = AB, R2 = BC, r1 = {ab, a′b′, ab′′} and r2{bc, bc′, b′c′′}. The
natural join of r1 and r2 belongs to the schema R = ABC, and it is the relation r1 1 r2 =
{abc, abc′, a′b′c′′}.

If s is the natural join of rSA and rSIP , that is s = rSA 1 rSIP , then πSA(s) =
rSA és πSIP (s) = rSIP by Lemma 18.12. If rNEs, then the original relation could
not be reconstructed knowing only rSA and rSIP .

18.2.1. Lossless join

Let ρ = {R1, R2, . . . , Rk} be a decomposition of schema R, furthermore let F be
a family of functional dependencies over R. The decomposition ρ is said to have
lossless join property (with respect to F ), if every instance r of R that satisfies
F also satisfies

r = πR1
(r) 1 πR2

(r) 1 · · · 1 πRk
(r) .

That is, relation r is the natural join of its projections to attribute sets Ri, i =
1, 2, . . . , k. For a decomposition ρ = {R1, R2, . . . , Rk}, let mρ denote the the mapping
which assigns to relation r the relation mρ(r) =1

k
i=1 πRi

(r). Thus, the lossless join
property with respect to a family of functional dependencies means that r = mρ(r)
for all instances r that satisfy F .

Lemma 18.12 Let ρ = {R1, R2, . . . , Rk} be a decomposition of schema R, and let
r be an arbitrary instance of R. Furthermore, let ri = πRi

(r). Then

1. r ⊆ mρ(r).

2. If s = mρ(r), then πRi
(s) = ri.

3. mρ(mρ(r)) = mρ(r).

The proof is left to the Reader (Exercise 18.2-7).

18.2.2. Checking the lossless join property

It is relatively not hard to check that a decomposition ρ = {R1, R2, . . . , Rk} of
schema R has the lossless join property. The essence of algorithm Join-Test(R,F, ρ)
is the following.
A k × n array T is constructed, whose column j corresponds to attribute Aj , while
row i corresponds to schema Ri. T [i, j] = 0 if Aj ∈ Ri, otherwise T [i, j] = i.

The following step is repeated until there is no more possible change in the array.
Consider a functional dependency X → Y from F . If a pair of rows i and j agree
in all attributes of X, then their values in attributes of Y are made equal. More
precisely, if one of the values in an attribute of Y is 0, then the other one is set to
0, as well, otherwise it is arbitrary which of the two values is set to be equal to the
other one. If a symbol is changed, then each of its occurrences in that column must
be changed accordingly. If at the end of this process there is an all 0 row in T , then
the decomposition has the lossless join property, otherwise, it is lossy.



18.2. Decomposition of relational schemata 861

Join-Test(R,F, ρ)

1 � Initialisation phase.
2 for i← 1 to |ρ|
3 do for j ← 1 to |R|
4 do if Aj ∈ Ri

5 then T [i, j]← 0
6 else T [i, j]← i
7 � End of initialisation phase.
8 S ← T
9 repeat

10 T ← S
11 for all {X → Y } ∈ F
12 do for i← 1 to |ρ| − 1
13 do for j ← i+ 1 to |R|
14 do if for all Ah in X (S[i, h] = S[j, h])
15 then Equate(i, j, S, Y )
16 until S = T
17 if there exist an all 0 row in S
18 then return “Lossless join”
19 else return “Lossy join”

Procedure Equate(i, j, S, Y ) makes the appropriate symbols equal.

Equate(i, j, S, Y )

1 for Al ∈ Y
2 do if S[i, l] · S[j, l] = 0
3 then
4 for d← 1 to k
5 do if S[d, l] = S[i, l] ∨ S[d, l] = S[j, l]
6 then S[d, l]← 0
7 else
8 for d← 1 to k
9 do if S[d, l] = S[j, l]

10 then S[d, l]← S[i, l]

Example 18.5 Checking lossless join property Let R = ABCDE, R1 = AD, R2 = AB,
R3 = BE, R4 = CDE, R5 = AE, furthermore let the functional dependencies be {A →
C, B → C, C → D, DE → C, CE → A}. The initial array is shown on Figure 18.1(a).
Using A→ C values 1,2,5 in column C can be equated to 1. Then applying B → C value 3
of column C again can be changed to 1. The result is shown on Figure 18.1(b). Now C → D
can be used to change values 2,3,5 of column D to 0. Then applying DE → C (the only
nonzero) value 1 of column C can be set to 0. Finally, CE → A makes it possible to change
values 3 and 4 in column A to be changed to 0. The final result is shown on Figure 18.1(c).
The third row consists of only zeroes, thus the decomposition has the lossless join property.



862 18. Relational Database Design

A B C D E
0 1 1 0 1
0 0 2 2 2
3 0 3 3 0
4 4 0 0 0
0 5 5 5 0

(a)
A B C D E
0 1 1 0 1
0 0 1 2 2
3 0 1 3 0
4 4 0 0 0
0 5 1 5 0

(b)
A B C D E
0 1 0 0 1
0 0 0 2 2
0 0 0 0 0
0 4 0 0 0
0 5 0 0 0

(c)

Figure 18.1 Application of Join-test(R,F ,ρ).

It is clear that the running time of algorithm Join-test(R,F ,ρ) is polynomial
in the length of the input. The important thing is that it uses only the schema,
not the instance r belonging to the schema. Since the size of an instance is larger
than the size of the schema by many orders of magnitude, the running time of an
algorithm using the schema only is negligible with respect to the time required by
an algorithm processing the data stored.

Theorem 18.13 Procedure Join-test(R,F ,ρ) correctly determines whether a
given decomposition has the lossless join property.

Proof Let us assume first that the resulting array T contains no all zero row. T itself
can be considered as a relational instance over the schema R. This relation satisfies
all functional dependencies from F , because the algorithm finished since there was
no more change in the table during checking the functional dependencies. It is true
for the starting table that its projections to every Ri’s contain an all zero row, and
this property does not change during the running of the algorithm, since a 0 is never
changed to another symbol. It follows, that the natural join mρ(T ) contains the all
zero row, that is TNEmρ(T ). Thus the decomposition is lossy. The proof of the other
direction is only sketched.

Logic, domain calculus is used. The necessary definitions can be found in the
books of Abiteboul, Hull and Vianu, or Ullman, respectively. Imagine that variable
aj is written in place of zeroes, and bij is written in place of i’s in column j, and



18.2. Decomposition of relational schemata 863

Join-test(R,F ,ρ) is run in this setting. The resulting table contains row a1a2 . . . an,
which corresponds to the all zero row. Every table can be viewed as a shorthand
notation for the following domain calculus expression

{a1a2 . . . an | (∃b11) . . . (∃bkn) (R(w1) ∧ · · · ∧ R(wk))} , (18.1)

where wi is the ith row of T . If T is the starting table, then formula (18.1) defines mρ

exactly. As a justification note that for a relation r,mρ(r) contains the row a1a2 . . . an

iff r contains for all i a row whose jth coordinate is aj if Aj is an attribute of Ri,
and arbitrary values represented by variables bil in the other attributes.

Consider an arbitrary relation r belonging to schema R that satisfies the de-
pendencies of F . The modifications (equating symbols) of the table done by Join-
test(R,F ,ρ) do not change the set of rows obtained from r by (18.1), if the mod-
ifications are done in the formula, as well. Intuitively it can be seen from the fact
that only such symbols are equated in (18.1), that can only take equal values in a
relation satisfying functional dependencies of F . The exact proof is omitted, since it
is quiet tedious.

Since in the result table of Join-test(R,F ,ρ) the all a’s row occurs, the domain
calculus formula that belongs to this table is of the following form:

{a1a2 . . . an | (∃b11) . . . (∃bkn) (R(a1a2 . . . an) ∧ · · · )} . (18.2)

It is obvious that if (18.2) is applied to relation r belonging to schema R, then the
result will be a subset of r. However, if r satisfies the dependencies of F , then (18.2)
calculates mρ(r). According to Lemma 18.12, r ⊆ mρ(r) holds, thus if r satisfies F ,
then (18.2) gives back r exactly, so r = mρ(r), that is the decomposition has the
lossless join property.

Procedure Join-test(R,F ,ρ) can be used independently of the number of parts
occurring in the decomposition. The price of this generality is paid in the running
time requirement. However, if R is to be decomposed only into two parts, then
Closure(R,F ,X) or Linear-closure(R,F ,X) can be used to obtain the same
result faster, according to the next theorem.

Theorem 18.14 Let ρ = (R1, R2) be a decomposition of R, furthermore let F be
a set of functional dependencies. Decomposition ρ has the lossless join property with
respect to F iff

(R1 ∩R2)→ (R1 −R2) or (R1 ∩R2)→ (R2 −R1) .

These dependencies need not be in F , it is enough if they are in F+.

Proof The starting table in procedure Join-test(R,F ,ρ) is the following:

R1 ∩R2 R1 −R2 R2 −R1

row of R1 00 . . . 0 00 . . . 0 11 . . . 1
row of R2 00 . . . 0 22 . . . 2 00 . . . 0

(18.3)

It is not hard to see using induction on the number of steps done by Join-
test(R,F ,ρ) that if the algorithm changes both values of the column of an attribute



864 18. Relational Database Design

A to 0, then A ∈ (R1 ∩R2)
+. This is obviously true at the start. If at some time

values of column A must be equated, then by lines 11–14 of the algorithm, there
exists {X → Y } ∈ F , such that the two rows of the table agree on X, and A ∈ Y .
By the induction assumption X ⊆ (R1 ∩R2)

+ holds. Applying Armstrong-axioms
(transitivity and reflexivity), A ∈ (R1 ∩R2)

+ follows.
On the other hand, let us assume that A ∈ (R1 ∩R2)

+, that is (R1 ∩R2)→ A.
Then this functional dependency can be derived from F using Armstrong-axioms.
By induction on the length of this derivation it can be seen that procedure Join-
test(R,F ,ρ) will equate the two values of column A, that is set them to 0. Thus,
the row of R1 will be all 0 iff (R1 ∩R2) → (R2 −R1), similarly, the row of R2 will
be all 0 iff (R1 ∩R2)→ (R1 −R2).

18.2.3. Dependency preserving decompositions

The lossless join property is important so that a relation can be recovered from
its projections. In practice, usually not the relation r belonging to the underly-
ing schema R is stored, but relations ri = r[Ri] for an appropriate decomposition
ρ = (R1, R2, . . . , Rk), in order to avoid anomalies. The functional dependencies F
of schema R are integrity constraints of the database, relation r is consistent if
it satisfies all prescribed functional dependencies. When during the life time of the
database updates are executed, that is rows are inserted into or deleted from the
projection relations, then it may happen that the natural join of the new projec-
tions does not satisfy the functional dependencies of F . It would be too costly to
join the projected relations – and then project them again – after each update to
check the integrity constraints. However, the projection of the family of functional
dependencies F to an attribute set Z can be defined: πZ(F ) consists of those func-
tional dependencies {X → Y } ∈ F+, where XY ⊆ Z. After an update, if relation
ri is changed, then it is relatively easy to check whether πRi

(F ) still holds. Thus, it
would be desired if family F would be logical implication of the families of functional
dependencies πRi

(F ) i = 1, 2, . . . , k. Let πρ(F ) =
⋃k

i=1 πRi
(F ).

Definition 18.15 The decomposition ρ is said to be dependency preserving. if

πρ(F )+ = F+.

Note that πρ(F ) ⊆ F+, hence πρ(F )+ ⊆ F+ always holds. Consider the following
example.

Example 18.6 Let R = (City,Street,Zip code) be the underlying schema, furthermore
let F = {CS → Z, Z → C} be the functional dependencies. Let the decomposition ρ
be ρ = (CZ, SZ). This has the lossless join property by Theorem 18.14. πρ(F ) consists
of Z → C besides the trivial dependencies. Let R1 = CZ and R2 = SZ. Two rows are
inserted into each of the projections belonging to schemata R1 and R2, respectively, so
that functional dependencies of the projections are satisfied:

R1 C Z

F ort W ayne 46805
F ort W ayne 46815

R2 S Z

Coliseum Blvd 46805
Coliseum Blvd 46815



18.2. Decomposition of relational schemata 865

In this case R1 and R2 satisfy the dependencies prescribed for them separately, however in
R1 1 R2 the dependency CS → Z does not hold.

It is true as well, that none of the decompositions of this schema preserves the depen-
dency CS → Z. Indeed, this is the only dependency that contains Z on the right hand side,
thus if it is to be preserved, then there has to be a subschema that contains C, S, Z, but then
the decomposition would not be proper. This will be considered again when decomposition
into normal forms is treated.

Note that it may happen that decomposition ρ preserves functional depen-
dencies, but does not have the lossless join property. Indeed, let R = ABCD,
F = {A→ B,C → D}, and let the decomposition be ρ = (AB,CD).

Theoretically it is very simple to check whether a decomposition ρ =
(R1, R2, . . . Rk) is dependency preserving. Just F+ needs to be calculated, then
projections need to be taken, finally one should check whether the union of the pro-
jections is equivalent with F . The main problem with this approach is that even
calculating F+ may need exponential time.

Nevertheless, the problem can be solved without explicitly determining F+. Let
G = πρ(F ). G will not be calculated, only its equivalence with F will be checked.
For this end, it needs to be decidable for all functional dependencies {X → Y } ∈ F
that if X+ is taken with respect to G, whether it contains Y . The trick is that X+

is determined without full knowledge of G by repeatedly taking the effect to the
closure of the projections of F onto the individual Ri’s. That is, the concept of S-
operation on an attribute set Z is introduced, where S is another set of attributes:
Z is replaced by Z ∪ ((Z ∩ S)+ ∩ S), where the closure is taken with respect to F .
Thus, the closure of the part of Z that lies in S is taken with respect to F , then
from the resulting attributes those are added to Z, which also belong to S.

It is clear that the running time of algorithm Preserve(ρ, F ) is polynomial
in the length of the input. More precisely, the outermost for loop is executed at
most once for each dependency in F (it may happen that it turns out earlier that
some dependency is not preserved). The body of the repeat–until loop in lines 3–7.
requires linear number of steps, it is executed at most |R| times. Thus, the body of
the for loop needs quadratic time, so the total running time can be bounded by the
cube of the input length.

Preserve(ρ, F )

1 for all (X → Y ) ∈ F
2 do Z ← X
3 repeat
4 W ← Z
5 for i← 1 to k
6 do Z ← Z ∪ (Linear-closure(R,F,Z ∩Ri) ∩Ri)
7 until Z = W
8 if Y 6⊆ Z
9 then return “Not dependency preserving”

10 return “Dependency preserving”



866 18. Relational Database Design

Example 18.7 Consider the schema R = ABCD, let the decomposition be ρ =
{AB, BC, CD}, and dependencies be F = {A → B, B → C, C → D, D → A}. That
is, by the visible cycle of the dependencies, every attribute determines all others. Since D
and A do not occur together in the decomposition one might think that the dependency
D → A is not preserved, however this intuition is wrong. The reason is that during the
projection to AB, not only the dependency A→ B is obtained, but B → A, as well, since
not F , but F + is projected. Similarly, C → B and D → C are obtained, as well, but
D → A is a logical implication of these by the transitivity of the Armstrong axioms. Thus
it is expected that Preserve(ρ, F ) claims that D → A is preserved.

Start from the attribute set Y = {D}. There are three possible operations, the AB-
operation, the BC-operation and the CD-operation. The first two obviously does not add
anything to {D}+, since {D} ∩ {A, B} = {D} ∩ {B, C} = ∅, that is the closure of the
empty set should be taken, which is empty (in the present example). However, using the
CD-operation:

Z = {D} ∪
(
({D} ∩ {C, D})+ ∩ {C, D}

)

= {D} ∪
(
{D}+ ∩ {C, D}

)

= {D} ∪ ({A, B, C, D} ∩ {C, D})

= {C, D}.

In the next round using the BC-operation the actual Z = {C, D} is changed to Z =
{B, C, D}, finally applying the AB-operation on this, Z = {A, B, C, D} is obtained. This
cannot change, so procedure Preserve(ρ, F ) stops. Thus, with respect to the family of
functional dependencies

G = πAB(F ) ∪ πBC(F ) ∪ πCD(F ) ,

{D}+ = {A, B, C, D} holds, that is G |= D → A. It can be checked similarly that the other
dependencies of F are in G+ (as a fact in G).

Theorem 18.16 The procedure Preserve(ρ, F ) determines correctly whether the
decomposition ρ is dependency preserving.

Proof It is enough to check for a single functional dependency X → Y whether
whether the procedure decides correctly if it is in G+. When an attribute is added to
Z in lines 3–7, then Functional dependencies from G are used, thus by the soundness
of the Armstrong-axioms if Preserve(ρ, F ) claims that X → Y ∈ G+, then it is
indeed so.

On the other hand, if X → Y ∈ G+, then Linear-closure(R,F,X) (run by G
as input) adds the attributes of Y one-by-one to X. In every step when an attribute
is added, some functional dependency U → V of G is used. This dependency is in
one of πRi

(F )’s, since G is the union of these. An easy induction on the number
of functional dependencies used in procedure Linear-closure(R,F,X) shows that
sooner or later Z becomes a subset of U , then applying theRi-operation all attributes
of V are added to Z.



18.2. Decomposition of relational schemata 867

18.2.4. Normal forms

The goal of transforming (decomposing) relational schemata into normal forms
is to avoid the anomalies described in the previous section. Normal forms of many
different strengths were introduced in the course of evolution of database theory,
here only the Boyce–Codd normal formát (BCNF) and the third, furthermore
fourth normal form (3NF and 4NF) are treated in detail, since these are the most
important ones from practical point of view.

Boyce-Codd normal form

Definition 18.17 Let R be relational schema, F be a family of functional depen-
dencies over R. (R,F ) is said to be in Boyce-Codd normal form if X → A ∈ F+

and A 6⊆ X implies that A is a superkey.

The most important property of BCNF is that it eliminates redundancy. This is
based on the following theorem whose proof is left to the Reader as an exercise
(Exercise 18.2-8).

Theorem 18.18 Schema (R,F ) is in BCNF iff for arbitrary attribute A ∈ R
and key X ⊂ R there exists no Y ⊆ R, for which X → Y ∈ F+; Y → X 6∈ F+;
Y → A ∈ F+ and A 6∈ Y .

In other words, Theorem 18.18 states that “BCNF ⇐⇒ There is no transitive de-
pendence on keys”. Let us assume that a given schema is not in BCNF, for example
C → B and B → A hold, but B → C does not, then the same B value could occur
besides many different C values, but at each occasion the same A value would be
stored with it, which is redundant. Formulating somewhat differently, the meaning
of BCNF is that (only) using functional dependencies an attribute value in a row
cannot be predicted from other attribute values. Indeed, assume that there exists a
schema R, in which the value of an attribute can be determined using a functional
dependency by comparison of two rows. That is, there exists two rows that agree
on an attribute set X, differ on the set Y and the value of the remaining (unique)
attribute A can be determined in one of the rows from the value taken in the other
row.

X Y A
x y1 a
x y2 ?

If the value ? can be determined by a functional dependency, then this value can only
be a, the dependency is Z → A, where Z is an appropriate subset of X. However,
Z cannot be a superkey, since the two rows are distinct, thus R is not in BCNF.

3NF Although BCNF helps eliminating anomalies, it is not true that every
schema can be decomposed into subschemata in BCNF so that the decomposition is
dependency preserving. As it was shown in Example 18.6, no proper decomposition
of schema CSZ preserves the CS → Z dependency. At the same time, the schema
is clearly not in BCNF, because of the Z → C dependency.

Since dependency preserving is important because of consistency checking of



868 18. Relational Database Design

a database, it is practical to introduce a normal form that every schema has de-
pendency preserving decomposition into that form, and it allows minimum possible
redundancy. An attribute is called prime attribute, if it occurs in a key.

Definition 18.19 The schema (R,F ) is in third normal form, if whenever X →
A ∈ F+, then either X is a superkey, or A is a prime attribute.

The schema SAIP of Example 18.3 with the dependencies SI → P and S → A
is not in 3NF, since SI is the only key and so A is not a prime attribute. Thus,
functional dependency S → A violates the 3NF property.

3NF is clearly weaker condition than BCNF, since “or A is a prime attribute”
occurs in the definition. The schema CSZ in Example 18.6 is trivially in 3NF,
because every attribute is prime, but it was already shown that it is not in BCNF.

Testing normal forms Theoretically every functional dependency in F+ should
be checked whether it violates the conditions of BCNF or 3NF, and it is known that
F+ can be exponentially large in the size of F . Nevertheless, it can be shown that if
the functional dependencies in F are of the form that the right hand side is a single
attribute always, then it is enough to check violation of BCNF, or 3NF respectively,
for dependencies of F . Indeed, let X → A ∈ F+ be a dependency that violates the
appropriate condition, that is X is not a superkey and in case of 3NF, A is not
prime. X → A ∈ F+ ⇐⇒ A ∈ X+. In the step when Closure(R,F,X) puts A
into X+ (line 8) it uses a functional dependency Y → A from F that Y ⊂ X+ and
A 6∈ Y . This dependency is non-trivial and A is (still) not prime. Furthermore, if Y
were a superkey, than by R = Y + ⊆ (X+)+ = X+, X would also be a superkey.
Thus, the functional dependency Y → A from F violates the condition of the normal
form. The functional dependencies easily can be checked in polynomial time, since
it is enough to calculate the closure of the left hand side of each dependency. This
finishes checking for BCNF, because if the closure of each left hand side is R, then
the schema is in BCNF, otherwise a dependency is found that violates the condition.
In order to test 3NF it may be necessary to decide about an attribute whether it is
prime or not. However this problem is NP-complete, see Problem 18-4.

Lossless join decomposition into BCNF Let (R,F ) be a relational schema
(where F is the set of functional dependencies). The schema is to be decomposed into
union of subschemata R1, R2, . . . , Rk, such that the decomposition has the lossless
join property, furthermore each Ri endowed with the set of functional dependencies
πRi

(F ) is in BCNF. The basic idea of the decomposition is simple:

• If (R,F ) is in BCNF, then ready.
• If not, it is decomposed into two proper parts (R1, R2), whose join is lossless.
• Repeat the above for R1 and R2.

In order to see that this works one has to show two things:

• If (R,F ) is not in BCNF, then it has a lossless join decomposition into smaller
parts.

• If a part of a lossless join decomposition is further decomposed, then the new
decomposition has the lossless join property, as well.



18.2. Decomposition of relational schemata 869

Lemma 18.20 Let (R,F ) be a relational schema (where F is the set of functional
dependencies), ρ = (R1, R2, . . . , Rk) be a lossless join decomposition of R. Further-
more, let σ = (S1, S2) be a lossless join decomposition of R1 with respect to πR1

(F ).
Then (S1, S2, R2, . . . , Rk) is a lossless join decomposition of R.

The proof of Lemma 18.20 is based on the associativity of natural join. The details
are left to the Reader (Exercise 18.2-9).

This can be applied for a simple, but unfortunately exponential time algorithm
that decomposes a schema into subschemata of BCNF property. The projections in
lines 4–5 of Naïv-BCNF(S,G) may be of exponential size in the length of the input.
In order to decompose schema (R,F ), the procedure must be called with parameters
R,F . Procedure Naïv-BCNF(S,G) is recursive, S is the actual schema with set of
functional dependencies G. It is assumed that the dependencies in G are of the form
X → A, where A is a single attribute.

Naiv-BCNF(S,G)

1 while there exists {X → A} ∈ G, that violates BCNF
2 do S1 ← {XA}
3 S2 ← S −A
4 G1 ← πS1

(G)
5 G2 ← πS2

(G)
6 return (Naiv-BCNF(S1, G1),Naiv-BCNF(S2, G2))
7 return S

However, if the algorithm is allowed overdoing things, that is to decompose a
schema even if it is already in BCNF, then there is no need for projecting the
dependencies. The procedure is based on the following two lemmae.

Lemma 18.21

1. A schema of only two attributes is in BCNF.

2. If R is not in BCNF, then there exists two attributes A and B in R, such that
(R−AB)→ A holds.

Proof If the schema consists of two attributes, R = AB, then there are at most two
possible non-trivial dependencies, A → B and B → A. It is clear, that if some of
them holds, then the left hand side of the dependency is a key, so the dependency
does not violate the BCNF property. However, if none of the two holds, then BCNF
is trivially satisfied.

On the other hand, let us assume that the dependency X → A violates the
BCNF property. Then there must exists an attribute B ∈ R− (XA), since otherwise
X would be a superkey. For this B, (R−AB)→ A holds.



870 18. Relational Database Design

Let us note, that the converse of the second statement of Lemma 18.21 is not
true. It may happen that a schema R is in BCNF, but there are still two attributes
{A,B} that satisfy (R − AB) → A. Indeed, let R = ABC, F = {C → A,C → B}.
This schema is obviously in BCNF, nevertheless (R−AB) = C → A.

The main contribution of Lemma 18.21 is that the projections of functional
dependencies need not be calculated in order to check whether a schema obtained
during the procedure is in BCNF. It is enough to calculate (R − AB)+ for pairs
{A,B} of attributes, which can be done by Linear-closure(R,F,X) in linear
time, so the whole checking is polynomial (cubic) time. However, this requires a way
of calculating (R − AB)+ without actually projecting down the dependencies. The
next lemma is useful for this task.

Lemma 18.22 Let R2 ⊂ R1 ⊂ R and let F be the set of functional dependencies
of scheme R. Then

πR2
(πR1

(F )) = πR2
(F ) .

The proof is left for the Reader (Exercise 18.2-10). The method of lossless join BCNF
decomposition is as follows. Schema R is decomposed into two subschemata. One
is XA that is in BCNF, satisfying X → A. The other subschema is R − A, hence
by Theorem 18.14 the decomposition has the lossless join property. This is applied
recursively to R − A, until such a schema is obtained that satisfies property 2 of
Lemma 18.21. The lossless join property of this recursively generated decomposition
is guaranteed by Lemma 18.20.

Polynomial-BCNF(R,F )

1 Z ← R
2 � Z is the schema that is not known to be in BCNF during the procedure.
3 ρ← ∅
4 while there exist A,B in Z, such that A ∈ (Z −AB)+ and |Z| > 2
5 do Let A and B be such a pair
6 E ← A
7 Y ← Z −B
8 while there exist C,D in Y , such that C ∈ (Z − CD)+

9 do Y ← Y −D
10 E ← C
11 ρ← ρ ∪ {Y }
12 Z ← Z − E
13 ρ← ρ ∪ {Z}
14 return ρ

The running time of Polynomial-BCNF(R,F ) is polynomial, in fact it can
be bounded by O(n5), as follows. During each execution of the loop in lines 4–12
the size of Z is decreased by at least one, so the loop body is executed at most n
times. (Z − AB)+ is calculated in line 4 for at most O(n2) pairs that can be done
in linear time using Linear-closure that results in O(n3) steps for each execution
of the loop body. In lines 8–10 the size of Y is decreased in each iteration, so during
each execution of lines 3–12, they give at most n iteration. The condition of the



18.2. Decomposition of relational schemata 871

command while of line 8 is checked for O(n2) pairs of attributes, each checking is
done in linear time. The running time of the algorithm is dominated by the time
required by lines 8–10 that take n · n ·O(n2) ·O(n) = O(n5) steps altogether.

Dependency preserving decomposition into 3NF We have seen already
that its is not always possible to decompose a schema into subschemata in BCNF
so that the decomposition is dependency preserving. Nevertheless, if only 3NF is
required then a decomposition can be given using Minimal-Cover(R,F ). Let R be
a relational schema and F be the set of functional dependencies. Using Minimal-
Cover(R,F ) a minimal cover G of F is constructed. Let G = {X1 → A1,X2 →
A2, . . . ,Xk → Ak}.
Theorem 18.23 The decomposition ρ = (X1A1,X2A2, . . . ,XkAk) is dependency
preserving decomposition of R into subschemata in 3NF.

Proof Since G+ = F+ and the functional dependency Xi → Ai is in πRi
(F ), the

decomposition preserves every dependency of F . Let us suppose indirectly, that the
schema Ri = XiAi is not in 3NF, that is there exists a dependency U → B that
violates the conditions of 3NF. This means that the dependency is non-trivial and
U is not a superkey in Ri and B is not a prime attribute of Ri. There are two cases
possible. If B = Ai, then using that U is not a superkey U & Xi follows. In this case
the functional dependency U → Ai contradicts to that Xi → Ai was a member of
minimal cover, since its left hand side could be decreased. In the case when BNEAi,
B ∈ Xi holds. B is not prime in Ri, thus Xi is not a key, only a superkey. However,
then Xi would contain a key Y such that Y & Xi. Furthermore, Y → Ai would hold,
as well, that contradicts to the minimality of G since the left hand side of Xi → Ai

could be decreased.

If the decomposition needs to have the lossless join property besides being de-
pendency preserving, then ρ given in Theorem 18.23 is to be extended by a key X of
R. Although it was seen before that it is not possible to list all keys in polynomial
time, one can be obtained in a simple greedy way, the details are left to the Reader
(Exercise 18.2-11).

Theorem 18.24 Let (R,F ) be a relational schema, and let G = {X1 → A1,X2 →
A2, . . . ,Xk → Ak} be a minimal cover of F . Furthermore, let X be a key in (R,F ).
Then the decomposition τ = (X,X1A1,X2A2, . . . ,XkAk) is a lossless join and de-
pendency preserving decomposition of R into subschemata in 3NF.

Proof It was shown during the proof of Theorem 18.23 that the subschemata Ri =
XiAi are in 3NF for i = 1, 2, . . . , k. There cannot be a non-trivial dependency in the
subschema R0 = X, because if it were, then X would not be a key, only a superkey.

The lossless join property of τ is shown by the use of Join-test(R,G, ρ) proce-
dure. Note that it is enough to consider the minimal cover G of F . More precisely,
we show that the row corresponding to X in the table will be all 0 after running
Join-test(R,G, ρ). Let A1, A2, . . . , Am be the order of the attributes of R − X
as Closure(R,G,X) inserts them into X+. Since X is a key, every attribute of
R −X is taken during Closure(R,G,X). It will be shown by induction on i that



872 18. Relational Database Design

the element in row of X and column of Ai is 0 after running Join-test(R,G, ρ).
The base case of i = 0 is obvious. Let us suppose that the statement is true for i−

and consider when and why Ai is inserted into X+. In lines 6–8 of Closure(R,G,X)
such a functional dependency Y → Ai is used where Y ⊆ X ∪ {A1, A2, . . . , Ai−1}.
Then Y → Ai ∈ G, Y Ai = Rj for some j. The rows corresponding to X and
Y Ai = Rj agree in columns of X (all 0 by the induction hypothesis), thus the
entries in column of Ai are equated by Join-test(R,G, ρ). This value is 0 in the
row corresponding to Y Ai = Rj , thus it becomes 0 in the row of X, as well.

It is interesting to note that although an arbitrary schema can be decomposed
into subschemata in 3NF in polynomial time, nevertheless it is NP-complete to decide
whether a given schema (R,F ) is in 3NF, see Problem 18-4. However, the BCNF
property can be decided in polynomial time. This difference is caused by that in
order to decide 3NF property one needs to decide about an attribute whether it is
prime. This latter problem requires the listing of all keys of a schema.

18.2.5. Multivalued dependencies

Example 18.8 Besides functional dependencies, some other dependencies hold in Exam-
ple 18.1, as well. There can be several lectures of a subject in different times and rooms.
Part of an instance of the schema could be the following.

Professor Subject Room Student Grade Time
Caroline Doubtfire Analysis MA223 John Smith A− Monday 8–10
Caroline Doubtfire Analysis CS456 John Smith A− Wednesday 12–2
Caroline Doubtfire Analysis MA223 Ching Lee A+ Monday 8–10
Caroline Doubtfire Analysis CS456 Ching Lee A+ Wednesday 12–2

A set of values of Time and Room attributes, respectively, belong to each given value of
Subject, and all other attribute values are repeated with these. Sets of attributes SR and
StG are independent, that is their values occur in each combination.

The set of attributes Y is said to be multivalued dependent on set of attributes
X, in notation X � Y , if for every value on X, there exists a set of values on Y
that is not dependent in any way on the values taken in R − X − Y . The precise
definition is as follows.

Definition 18.25 The relational schema R satisfies the multivalued depen-
dency X � Y , if for every relation r of schema R and arbitrary tuples t1, t2 of
r that satisfy t1[X] = t2[X], there exists tuples t3, t4 ∈ r such that

• t3[XY ] = t1[XY ]

• t3[R−XY ] = t2[R−XY ]

• t4[XY ] = t2[XY ]

• t4[R−XY ] = t1[R−XY ]

holds.1

1It would be enough to require the existence of t3, since the existence of t4 would follow. However,
the symmetry of multivalued dependency is more apparent in this way.



18.2. Decomposition of relational schemata 873

In Example 18.8 S�TR holds.

Remark 18.26 Functional dependency is equality generating dependency, that
is from the equality of two objects it deduces the equality of other other two objects.
On the other hand, multivalued dependency is tuple generating dependency, that
is the existence of two rows that agree somewhere implies the existence of some other
rows.

There exists a sound and complete axiomatisation of multivalued dependencies sim-
ilar to the Armstrong-axioms of functional dependencies. Logical implication and
inference can be defined analogously. The multivalued dependency X � Y is logi-
cally implied by the set M of multivalued dependencies, in notation M |= X � Y ,
if every relation that satisfies all dependencies of M also satisfies X � Y .

Note, that X → Y implies X � Y . The rows t3 and t4 of Definition 18.25
can be chosen as t3 = t2 and t4 = t1, respectively. Thus, functional dependencies
and multivalued dependencies admit a common axiomatisation. Besides Armstrong-
axioms (A1)–(A3), five other are needed. Let R be a relational schema.

(A4) Complementation: {X � Y } |= X � (R−X − Y ).
(A5) Extension: If X � Y holds, and V ⊆W , then WX � V Y .
(A6) Transitivity: {X � Y, Y � Z} |= X � (Z − Y ).
(A7) {X → Y } |= X � Y .
(A8) If X � Y holds, Z ⊆ Y , furthermore for some W disjoint from Y W → Z
holds, then X → Z is true, as well.

Beeri, Fagin and Howard proved that (A1)–(A8) is sound and complete system of
axioms for functional and Multivalued dependencies together. Proof of soundness
is left for the Reader (Exercise 18.2-12), the proof of the completeness exceeds the
level of this book. The rules of Lemma 18.2 are valid in exactly the same way as
when only functional dependencies were considered. Some further rules are listed in
the next Proposition.

Claim 18.27 The followings are true for multivalued dependencies.

1. Union rule: {X � Y,X � Z} |= X � Y Z.

2. Pseudotransitivity: {X � Y,WY � Z} |= WX � (Z −WY ).

3. Mixed pseudotransitivity: {X � Y,XY → Z} |= X → (Z − Y ).

4. Decomposition rule for multivalued dependencies: ha X � Y and X � Z
holds, then X � (Y ∩ Z), X � (Y − Z) and X � (Z − Y ) holds, as well.

Th proof of Proposition 18.27 is left for the Reader (Exercise 18.2-13).

Dependency basis Important difference between functional dependencies and
multivalued dependencies is that X → Y immediately implies X → A for all A in Y ,
however X � A is deduced by the decomposition rule for multivalued dependencies
from X � Y only if there exists a set of attributes Z such that X � Z and
Z ∩ Y = A, or Y − Z = A. Nevertheless, the following theorem is true.



874 18. Relational Database Design

Theorem 18.28 Let R be a relational schema, X ⊂ R be a set of attributes. Then
there exists a partition Y1, Y2, . . . , Yk of the set of attributes R − X such that for
Z ⊆ R −X the multivalued dependency X � Z holds if and only if Z is the union
of some Yi’s.

Proof We start from the one-element partition W1 = R −X. This will be refined
successively, while the property that X �Wi holds for all Wi in the actual decom-
position, is kept. If X � Z and Z is not a union of some of the Wi’s, then replace
every Wi such that neither Wi ∩ Z nor Wi − Z is empty by Wi ∩ Z and Wi − Z.
According to the decomposition rule of Proposition 18.27, both X � (Wi ∩Z) and
X � (Wi − Z) hold. Since R −X is finite, the refinement process terminates after
a finite number of steps, that is for all Z such that X � Z holds, Z is the union
of some blocks of the partition. In order to complete the proof one needs to observe
only that by the union rule of Proposition 18.27, the union of some blocks of the
partition depends on X in multivalued way.

Definition 18.29 The partition Y1, Y2, . . . , Yk constructed in Theorem 18.28 from
a set D of functional and multivalued dependencies is called the dependency basis
of X (with respect to D).

Example 18.9 Consider the familiar schema

R(Professor,Subject,Room,Student,Grade,Time)

of Examples 18.1 and 18.8. Su�RT was shown in Example 18.8. By the complementation
rule Su�PStG follows. Su→P is also known. This implies by axiom (A7) that Su�P.
By the decomposition rule Su�Stg follows. It is easy to see that no other one-element
attribute set is determined by Su via multivalued dependency. Thus, the dependency basis
of Su is the partition{P,RT,StG}.

We would like to compute the set D+ of logical consequences of a given set D of
functional and multivalued dependencies. One possibility is to apply axioms (A1)–
(A8) to extend the set of dependencies repeatedly, until no more extension is possible.
However, this could be an exponential time process in the size of D. One cannot
expect any better, since it was shown before that even D+ can be exponentially
larger than D. Nevertheless, in many applications it is not needed to compute the
whole set D+, one only needs to decide whether a given functional dependency
X → Y or multivalued dependency X � Y belongs to D+ or not. In order to decide
about a multivalued dependency X � Y , it is enough to compute the dependency
basis of X, then to check whether Z −X can be written as a union of some blocks
of the partition. The following is true.

Theorem 18.30 (Beeri). In order to compute the dependency basis of a set of
attributes X with respect to a set of dependencies D, it is enough to consider the
following set M of multivalued dependencies:

1. All multivalued dependencies of D and



18.2. Decomposition of relational schemata 875

2. for every X → Y in D the set of multivalued dependencies X � A1,X �

A2, . . . ,X � Ak, where Y = A1A2 . . . Ak, and the Ai’s are single attributes.

The only thing left is to decide about functional dependencies based on the depen-
dency basis. Closure(R,F ,X) works correctly only if multivalued dependencies are
not considered. The next theorem helps in this case.

Theorem 18.31 (Beeri). Let us assume that A 6∈ X and the dependency basis of
X with respect to the set M of multivalued dependencies obtained in Theorem 18.30
is known. X → A holds if and only if

1. A forms a single element block in the partition of the dependency basis, and

2. There exists a set Y of attributes that does not contain A, Y → Z is an element
of the originally given set of dependencies D, furthermore A ∈ Z.

Based on the observations above, the following polynomial time algorithm can be
given to compute the dependency basis of a set of attributes X.

Dependency-Basis(R,M,X)

1 S ← {R−X} � The collection of sets in the dependency basis is S.
2 repeat
3 for all V �W ∈M
4 do if there exists Y ∈ S such that Y ∩WNE∅ ∧ Y ∩ V = ∅
5 then S ← S − {{Y }} ∪ {{Y ∩W}, {Y −W}}
6 until S does not change
7 return S

It is immediate that if S changes in lines 3–5. of Dependency-basis(R,M,X),
then some block of the partition is cut by the algorithm. This implies that the run-
ning time is a polynomial function of the sizes of M and R. In particular, by careful
implementation one can make this polynomial to O(|M | · |R|3), see Problem 18-5.

Fourth normal form 4NF The Boyce-Codd normal form can be generalised
to the case where multivalued dependencies are also considered besides functional
dependencies, and one needs to get rid of the redundancy caused by them.

Definition 18.32 Let R be a relational schema, D be a set of functional and mul-
tivalued dependencies over R. R is in fourth normal form (4NF), if for arbitrary
multivalued dependency X � Y ∈ D+ for which Y 6⊆ X and RNEXY , holds that
X is superkey in R.

Observe that 4NF=⇒BCNF. Indeed, if X → A violated the BCNF condition, then
A 6∈ X, furthermore XA could not contain all attributes of R, because that would
imply that X is a superkey. However, X → A implies X � A by (A8), which in
turn would violate the 4NF condition.



876 18. Relational Database Design

Schema R together with set of functional and multivalued dependencies D can
be decomposed into ρ = (R1, R2, . . . , Rk), where each Ri is in 4NF and the decom-
position has the lossless join property. The method follows the same idea as the
decomposition into BCNF subschemata. If schema S is not in 4NF, then there exists
a multivalued dependency X � Y in the projection of D onto S that violates the
4NF condition. That is, X is not a superkey in S, Y neither is empty, nor is a subset
of X, furthermore the union of X and Y is not S. It can be assumed without loss
of generality that X and Y are disjoint, since X � (Y −X) is implied by X � Y
using (A1), (A7) and the decomposition rule. In this case S can be replaced by
subschemata S1 = XY and S2 = S−Y , each having a smaller number of attributes
than S itself, thus the process terminates in finite time.

Two things has to be dealt with in order to see that the process above is correct.

• Decomposition S1, S2 has the lossless join property.

• How can the projected dependency set πS(D) be computed?

The first problem is answered by the following theorem.

Theorem 18.33 The decomposition ρ = (R1, R2) of schema R has the lossless
join property with respect to a set of functional and multivalued dependencies D iff

(R1 ∩R2) � (R1 −R2).

Proof The decomposition ρ = (R1, R2) of schema R has the lossless join property iff
for any relation r over the schema R that satisfies all dependencies from D holds that
if µ and ν are two tuples of r, then there exists a tuple ϕ satisfying ϕ[R1] = µ[R1]
and ϕ[R2] = ν[R2], then it is contained in r. More precisely, ϕ is the natural join of
the projections of µ on R1 and of ν on R2, respectively, which exist iff µ[R1 ∩R2] =
ν[R1 ∩ R2]. Thus the fact that ϕ is always contained in r is equivalent with that
(R1 ∩R2) � (R1 −R2).

To compute the projection πS(D) of the dependency setD one can use the follow-
ing theorem of Aho, Beeri and Ullman. πS(D) is the set of multivalued dependencies
that are logical implications of D and use attributes of S only.

Theorem 18.34 (Aho, Beeri és Ullman). πS(D) consists of the following depen-
dencies:

• For all X → Y ∈ D+, if X ⊆ S, then X → (Y ∩ S) ∈ πS(D).

• For all X � Y ∈ D+, if X ⊆ S, then X � (Y ∩ S) ∈ πS(D).

Other dependencies cannot be derived from the fact that D holds in R.

Unfortunately this theorem does not help in computing the projected dependencies
in polynomial time, since even computing D+ could take exponential time. Thus, the
algorithm of 4NF decomposition is not polynomial either, because the 4NF condition
must be checked with respect to the projected dependencies in the subschemata.
This is in deep contrast with the case of BCNF decomposition. The reason is, that
to check BCNF condition one does not need to compute the projected dependencies,



18.2. Decomposition of relational schemata 877

only closures of attribute sets need to be considered according to Lemma 18.21.

Exercises
18.2-1 Are the following inference rules sound?

a. If XW → Y and XY → Z, then X → (Z −W ).
b. If X � Y and Y � Z, then X � Z.
c. If X � Y and XY → Z, then X → Z.

18.2-2 Prove Theorem 18.30, that is show the following. Let D be a set of functional
and multivalued dependencies, and let m(D) = {X � Y : X � Y ∈ D} ∪ {X �

A : A ∈ Y for some X → Y ∈ D}. Then
a. D |= X → Y =⇒ m(D) |= X � Y , and
b.D |= X � Y ⇐⇒ m(D) |= X � Y .
Hint. Use induction on the inference rules to prove b.

18.2-3 Consider the database of an investment firm, whose attributes are as fol-
lows: B (stockbroker), O (office of stockbroker), I (investor), S (stock), A (amount
of stocks of the investor), D (dividend of the stock). The following functional de-
pendencies are valid: S → D, I → B, IS → A, B → O.

a. Determine a key of schema R = BOISAD.
b. How many keys are in schema R?
c. Give a lossless join decomposition of R into subschemata in BCNF.
d. Give a dependency preserving and lossless join decomposition of R into sub-

schemata in 3NF.
18.2-4 The schema R of Exercise 18.2-3 is decomposed into subschemata SD, IB,
ISA and BO. Does this decomposition have the lossless join property?
18.2-5 Assume that schema R of Exercise 18.2-3 is represented by ISA, IB, SD and
ISO subschemata. Give a minimal cover of the projections of dependencies given
in Exercise 18.2-3. Exhibit a minimal cover for the union of the sets of projected
dependencies. Is this decomposition dependency preserving?
18.2-6 Let the functional dependency S → D of Exercise 18.2-3 be replaced by
the multivalued dependency S � D. That is , D represents the stock’s dividend
“history”.

a. Compute the dependency basis of I.
b. Compute the dependency basis of BS.
c. Give a decomposition of R into subschemata in 4NF.

18.2-7 Consider the decomposition ρ = {R1, R2, . . . , Rk} of schema R. Let ri =
πRi

(r), furthermore mρ(r) =1
k
i=1πRi

(r). Prove:
a. r ⊆ mρ(r).
b. If s = mρ(r), then πRi

(s) = ri.
c. mρ(mρ(r)) = mρ(r).

18.2-8 Prove that schema (R,F ) is in BCNF iff for arbitrary A ∈ R and key
X ⊂ R, it holds that there exists no Y ⊆ R, for which X → Y ∈ F+; Y → X 6∈ F+;
Y → A ∈ F+ and A 6∈ Y .
18.2-9 Prove Lemma 18.20.
18.2-10 Let us assume that R2 ⊂ R1 ⊂ R and the set of functional dependencies
of schema R is F . Prove that πR2

(πR1
(F )) = πR2

(F ).



878 18. Relational Database Design

18.2-11 Give a O(n2) running time algorithm to find a key of the relational schema
(R,F ). Hint. Use that R is superkey and each superkey contains a key. Try to drop
attributes from R one-by-one and check whether the remaining set is still a key.
18.2-12 Prove that axioms (A1)–(A8) are sound for functional and multivalued
dependencies.
18.2-13 Derive the four inference rules of Proposition 18.27 from axioms (A1)–
(A8).

18.3. Generalised dependencies

Two such dependencies will be discussed in this section that are generalizations of
the previous ones, however cannot be axiomatised with axioms similar to (A1)–(A8).

18.3.1. Join dependencies

Theorem 18.33 states that multivalued dependency is equivalent with that some
decomposition the schema into two parts has the lossless join property. Its generali-
sation is the join dependency.

Definition 18.35 Let R be a relational schema and let R =
⋃k

i=1 Xi. The relation
r belonging to R is said to satisfy the join dependency

1[X1,X2, . . . ,Xk]

if
r =1

k
i=1πXi

(r) .

In this setting r satisfies multivalued dependency X � Y iff it satisfies the join
dependency 1[XY,X(R − Y )]. The join dependency 1[X1,X2, . . . ,Xk] expresses
that the decomposition ρ = (X1,X2, . . . ,Xk) has the lossless join property. One can
define the fifth normal form, 5NF .

Definition 18.36 The relational schema R is in fifth normal form, if it is in
4NF and has no non-trivial join dependency.

The fifth normal form has theoretical significance primarily. The schemata used in
practice usually have primary keys. Using that the schema could be decomposed
into subschemata of two attributes each, where one of the attributes is a superkey
in every subschema.

Example 18.10 Consider the database of clients of a bank (Client-
number,Name,Address,accountBalance). Here C is unique identifier, thus the schema could
be decomposed into (CN,CA,CB), which has the lossless join property. However, it is not
worth doing so, since no storage place can be saved, furthermore no anomalies are avoided
with it.

There exists an axiomatisation of a dependency system if there is a finite set
of inference rules that is sound and complete, i.e. logical implication coincides with
being derivable by using the inference rules. For example, the Armstrong-axioms
give an axiomatisation of functional dependencies, while the set of rules (A1)–(A8)



18.3. Generalised dependencies 879

is the same for functional and multivalued dependencies considered together. Unfor-
tunately, the following negative result is true.

Theorem 18.37 The family of join dependencies has no finite axiomatisation.

In contrary to the above, Abiteboul, Hull and Vianu show in their book that
the logical implication problem can be decided by an algorithm for the family of
functional and join dependencies taken together. The complexity of the problem is
as follows.

Theorem 18.38

• It is NP-complete to decide whether a given join dependency is implied by another
given join dependency and a functional dependency.

• It is NP-hard to decide whether a given join dependency is implied by given set
of multivalued dependencies.

18.3.2. Branching dependencies

A generalisation of functional dependencies is the family of branching dependen-
cies. Let us assume that A,B ⊂ R and there exists no q + 1 rows in relation r over
schema R, such that they contain at most p distinct values in columns of A, but
all q + 1 values are pairwise distinct in some column of B. Then B is said to be

(p, q)-dependent on A, in notation A
p,q−−→ B. In particular, A

1,1−−→ B holds if and
only if functional dependency A→ B holds.

Example 18.11 Consider the database of the trips of an international transport truck.

• One trip: four distinct countries.
• One country has at most five neighbours.
• There are 30 countries to be considered.

Let x1, x2, x3, x4 be the attributes of the countries reached in a trip. In this case xi
1,1
−−→ xi+1

does not hold, however another dependency is valid:

xi
1,5
−−→ xi+1 .

The storage space requirement of the database can be significantly reduced using these
dependencies. The range of each element of the original table consists of 30 values, names of
countries or some codes of them (5 bits each, at least). Let us store a little table (30×5×5 =
750 bits) that contains a numbering of the neighbours of each country, which assigns to them
the numbers 0,1,2,3,4 in some order. Now we can replace attribute x2 by these numbers
(x∗

2), because the value of x1 gives the starting country and the value of x∗
2 determines the

second country with the help of the little table. The same holds for the attribute x3, but
we can decrease the number of possible values even further, if we give a table of numbering
the possible third countries for each x1, x2 pair. In this case, the attribute x∗

3 can take only
4 different values. The same holds for x4, too. That is, while each element of the original
table could be encoded by 5 bits, now for the cost of two little auxiliary tables we could
decrease the length of the elements in the second column to 3 bits, and that of the elements
in the third and fourth columns to 2 bits.



880 18. Relational Database Design

The (p, q)-closure of an attribute set X ⊂ R can be defined:

Cp,q(X) = {A ∈ R : X
p,q−−→ A} .

In particular, C1,1(X) = X+. In case of branching dependencies even such basic
questions are hard as whether there exists an Armstrong-relation for a given
family of dependencies.

Definition 18.39 Let R be a relational schema, F be a set of dependencies of some
dependency family F defined on R. A relation r over schema R is Armstrong-
relation for F , if the set of dependencies from F that r satisfies is exactly F , that
is F = {σ ∈ F : r |= σ}.
Armstrong proved that for an arbitrary set of functional dependencies F there exists
Armstrong-relation for F+. The proof is based on the three properties of closures of
attributes sets with respect to F , listed in Exercise 18.1-1 For branching dependencies
only the first two holds in general.

Lemma 18.40 Let 0 < p ≤ q, furthermore let R be a relational schema. For
X,Y ⊆ R one has

1. X ⊆ Cp,q(X) and

2. X ⊆ Y =⇒ Cp,q(X) ⊆ Cp,q(Y ).

There exists such C : 2R → 2R mapping and natural numbers p, q that there exists
no Armstrong-relation for C in the family if (p, q)-dependencies.

Grant Minker investigated numerical dependencies that are similar to
branching dependencies. For attribute sets X,Y ⊆ R the dependency X k−→ Y holds
in a relation r over schema R if for every tuple value taken on the set of attributes
X, there exists at most k distinct tuple values taken on Y . This condition is stronger

than that of X
1,k−−→ Y , since the latter only requires that in each column of Y there

are at most k values, independently of each other. That allows k|Y −X| different Y
projections. Numerical dependencies were axiomatised in some special cases, based
on that Katona showed that branching dependencies have no finite axiomatisation.
It is still an open problem whether logical implication is algorithmically decidable
amongst branching dependencies.

Exercises
18.3-1 Prove Theorem 18.38.
18.3-2 Prove Lemma 18.40.
18.3-3 Prove that if p = q, then Cp,p (Cp,p(X)) = Cp,p(X) holds besides the two
properties of Lemma 18.40.
18.3-4 A C : 2R → 2R mapping is called a closure, if it satisfies the two properties
of Lemma 18.40 and and the third one of Exercise 18.3-3. Prove that if C : 2R → 2R

is a closure, and F is the family of dependencies defined by X → Y ⇐⇒ Y ⊆ C(X),
then there exists an Armstrong-relation for F in the family of (1, 1)-dependencies
(functional dependencies) and in the family of (2, 2)-dependencies, respectively.



Notes for Chapter 18 881

18.3-5 Let C be the closure defined by

C(X) =

{
X, if |X| < 2
R otherwise .

Prove that there exists no Armstrong-relation for C in the family of (n, n)-
dependencies, if n > 2.

Problems

18-1 External attributes
Maier calls attribute A an external attribute in the functional dependency X → Y
with respect to the family of dependencies F over schema R, if the following two
conditions hold:

1. (F − {X → Y }) ∪ {X → (Y −A)} |= X → Y , or

2. (F − {X → Y }) ∪ {(X −A)→ Y } |= X → Y .

Design an O(n2) running time algorithm, whose input is schema (R,F ) and output
is a set of dependencies G equivalent with F that has no external attributes.
18-2 The order of the elimination steps in the construction of minimal
cover is important
In the procedure Minimal-cover(R,F ) the set of functional dependencies was
changed in two ways: either by dropping redundant dependencies, or by drop-
ping redundant attributes from the left hand sides of the dependencies. If the latter
method is used first, until there is no more attribute that can be dropped from some
left hand side, then the first method, this way a minimal cover is obtained really,
according to Proposition 18.6. Prove that if the first method applied first and then
the second, until there is no more possible applications, respectively, then the ob-
tained set of dependencies is not necessarily a minimal cover of F .
18-3 BCNF subschema
Prove that the following problem is coNP-complete: Given a relational schemaR with
set of functional dependencies F , furthermore S ⊂ R, decide whether (S, πS(F )) is
in BCNF.
18-4 3NF is hard to recognise
Let (R,F ) be a relational schema, where F is the system of functional dependen-
cies.
The k size key problem is the following: given a natural number k, determine
whether there exists a key of size at most k.
The prime attribute problem is the following: for a given A ∈ R, determine
whether it is a prime attribute.

a. Prove that the k size key problem is NP-complete. Hint. Reduce the vertex
cover problem to the prime attribute problem.

b. Prove that the prime attribute problem is NP-complete by reducing the k size
key problem to it.



882 18. Relational Database Design

c. Prove that determining whether the relational schema (R,F ) is in 3NF is NP-
complete. Hint. Reduce the prime attribute problem to it.

18-5 Running time of Dependency-basis
Give an implementation of procedure Dependency-basis, whose running time is
O(|M | · |R|3).

Chapter Notes

The relational data model was introduced by Codd [48] in 1970. Functional depen-
dencies were treated in his paper of 1972 [?], their axiomatisation was completed
by Armstrong [?]. The logical implication problem for functional dependencies were
investigated by Beeri and Bernstein [24], furthermore Maier [173]. Maier also treats
the possible definitions of minimal covers, their connections and the complexity
of their computations in that paper. Maier, Mendelzon and Sagiv found method
to decide logical implications among general dependencies [174]. Beeri, Fagin and
Howard proved that axiom system (A1)–(A8) is sound and complete for functional
and multivalued dependencies taken together [?]. Yu and Johnson [?] constructed
such relational schema, where |F | = k and the number of keys is k!. Békéssy and
Demetrovics [31] gave a simple and beautiful proof for the statement, that from k
functional dependencies at most k! keys can be obtained, thus Yu and Johnson’s
construction is extremal.

Armstrong-relations were introduced and studied by Fagin [?, 74], furthermore
by Beeri, Fagin, Dowd and Statman [25].

Multivalued dependencies were independently discovered by Zaniolo [?], Fagin
[73] and Delobel [60].

The necessity of normal forms was recognised by Codd while studying update
anomalies [?, ?]. The Boyce–Codd normal form was introduced in [?]. The definition
of the third normal form used in this chapter was given by Zaniolo [271]. Complexity
of decomposition into subschemata in certain normal forms was studied by Lucchesi
and Osborne [166], Beeri and Bernstein [24], furthermore Tsou and Fischer [252].

Theorems 18.30 and 18.31 are results of Beeri [23]. Theorem 18.34 is from a
paper of Aho, Beeri és Ullman [4].

Theorems 18.37 and 18.38 are from the book of Abiteboul, Hull and Vianu [1],
the non-existence of finite axiomatisation of join dependencies is Petrov’s result [204].

Branching dependencies were introduced by Demetrovics, Katona and Sali, they
studied existence of Armstrong-relations and the size of minimal Armstrong-relations
[61, 62, 63, 220]. Katona showed that there exists no finite axiomatisation of branch-
ing dependencies in (ICDT’92 Berlin, invited talk) but never published.

Possibilities of axiomatisation of numerical dependencies were investigated by
Grant and Minker [104, 105].

Good introduction of the concepts of this chapter can be found in the books
of Abiteboul, Hull and Vianu [1], Ullman [257] furthermore Thalheim [247], respec-
tively.



19. Query Rewriting in Relational
Databases

In chapter “Relational database design” basic concepts of relational databases were
introduced, such as relational schema, relation, instance. Databases were studied
from the designer point of view, the main question was how to avoid redundant data
storage, or various anomalies arising during the use of the database.

In the present chapter the schema is considered to be given and focus is on
fast and efficient ways of answering user queries. First, basic (theoretical) query
languages and their connections are reviewed in Section 19.1.

In the second part of this chapter (Section 19.2) views are considered. Informally,
a view is nothing else, but result of a query. Use of views in query efficiency, providing
physical data independence and data integration is explained.

Finally, the third part of the present chapter (Section 19.3) introduces query
rewriting.

19.1. Queries

Consider the database of cinemas in Budapest. Assume that the schema consists of
three relations:

CinePest = {Film,Theater,Show} . (19.1)

The schemata of individual relations are as follows:

Film = {Title,Director,Actor} ,
Theater = {Theater,Address,Phone} ,

Show = {Theater,Title,Time} .
(19.2)

Possible values of instances of each relation are shown on Figure 19.1.
Typical user queries could be:

19.1 Who is the director of “Control”?

19.2 List the names address of those theatres where Kurosawa films are played.

19.3 Give the names of directors who played part in some of their films.



884 19. Query Rewriting in Relational Databases

Film

Title Director Actor

Control Antal, Nimród Csányi, Sándor
Control Antal, Nimród Mucsi, Zoltán
Control Antal, Nimród Pindroch, Csaba
...

...
...

Rashomon Akira Kurosawa Toshiro Mifune
Rashomon Akira Kurosawa Machiko Kyo
Rashomon Akira Kurosawa Mori Masayuki

Theatre

Theater Address Phone

Bem II., Margit Blvd. 5/b. 316-8708
Corvin VIII., Corvin alley 1. 459-5050
Európa VII., Rákóczi st. 82. 322-5419
Művész VI., Teréz blvd. 30. 332-6726
...

...
...

Uránia VIII., Rákóczi st. 21. 486-3413
Vörösmarty VIII., Üllői st. 4. 317-4542

Show

Theater Title Time

Bem Rashomon 19:00
Bem Rashomon 21:30
Uránia Control 18:15
Művész Rashomon 16:30
Művész Control 17:00
...

...
...

Corvin Control 10:15

Figure 19.1 The database CinePest.

These queries define a mapping from the relations of database schema CinePest to
some other schema (in the present case to schemata of single relations). Formally,
query and query mapping should be distinguished. The former is a syntactic
concept, the latter is a mapping from the set of instances over the input schema
to the set of instances over the output schema, that is determined by the query
according to some semantic interpretation. However, for both concepts the word
“query” is used for the sake of convenience, which one is meant will be clear from



19.1. Queries 885

the context.

Definition 19.1 Queries q1 and q2 over schema R are said to be equivalent, in
notation q1 ≡ q2, if they have the same output schema and for every instance I over
schema R q1(I) = q2(I) holds.

In the remaining of this chapter the most important query languages are reviewed.
The expressive powers of query languages need to be compared.

Definition 19.2 Let Q1 and Q2 be query languages (with appropriate semantics).
Q2 is dominated by Q1 ( Q1 is weaker, than Q2), in notation Q1 v Q2, if for
every query q1 of Q1 there exists a query q2 ∈ Q2, such that q1 ≡ q2. Q1 and Q2 are
equivalent, if Q1 v Q2 and Q1 w Q2.

Example 19.1Query. Consider Question 19.2. As a first try the next solution is obtained:

if there exist in relations Film, Theater and Show tuples (xT , ”Akira Kurosawa”, xA),
(xT h, xAd, xP ) and (xT h, xT , xT i)
then put the tuple (Theater : xT h, Address : xA) into the output relation.

xT , xA, xT h, xAd, xP , xT i denote different variables that take their values from the domains
of the corresponding attributes, respectively. Using the same variables implicitly marked
where should stand identical values in different tuples.

19.1.1. Conjunctive queries

Conjunctive queries are the simplest kind of queries, but they are the easiest to
handle and have the most good properties. Three equivalent forms will be studied,
two of them based on logic, the third one is of algebraic nature. The name comes from
first order logic expressions that contain only existential quantors (∃), furthermore
consist of atomic expressions connected with logical “and”, that is conjunction.

Datalog – rule based queries The tuple (x1, x2, . . . , xm) is called free tuple
if the xi’s are variables or constants. This is a generalisation of a tuple of a relational
instance. For example, the tuple (xT , ”Akira Kurosawa”, xA) in Example 19.1 is a
free tuple.

Definition 19.3 Let R be a relational database schema. Rule based conjunctive
query is an expression of the following form

ans(u) ← R1(u1), R2(u2), . . . , Rn(un) , (19.3)

where n ≥ 0, R1, R2, . . . , Rn are relation names from R, ans is a relation name not
in R, u, u1, u2, . . . , un are free tuples. Every variable occurring in u must occur in
one of u1, u2, . . . , un, as well.

The rule based conjunctive query is also called a rule for the sake of simplicity.
ans(u) is the head of the rule, R1(u1), R2(u2), . . . , Rn(un) is the body of the rule,



886 19. Query Rewriting in Relational Databases

Ri(ui) is called a (relational) atom. It is assumed that each variable of the head
also occurs in some atom of the body.

A rule can be considered as some tool that tells how can we deduce newer and
newer facts, that is tuples, to include in the output relation. If the variables of
the rule can be assigned such values that each atom Ri(ui) is true (that is the
appropriate tuple is contained in the relation Ri), then tuple u is added to the
relation ans. Since all variables of the head occur in some atoms of the body, one
never has to consider infinite domains, since the variables can take values from the
actual instance queried. Formally. let I be an instance over relational schema R,
furthermore let q be a the query given by rule (19.3). Let var(q) denote the set of
variables occurring in q, and let dom(I) denote the set of constants that occur in I.
The image of I under q is given by

q(I) = {ν(u)|ν : var(q) → dom(I) and ν(ui) ∈ Ri i = 1, 2, . . . , n} . (19.4)

An immediate way of calculating q(I) is to consider all possible valuations ν in
some order. There are more efficient algorithms, either by equivalent rewriting of
the query, or by using some indices.

An important difference between atoms of the body and the head is that relations
R1, R2, . . . , Rn are considered given, (physically) stored, while relation ans is not, it
is thought to be calculated by the help of the rule. This justifies the names: Ri’s are
extensional relations and ans is intensional relation.

Query q over schema R is monotone, if for instances I and J over R, I ⊆ J im-
plies q(I) ⊆ q(J ). q is satisfiable, if there exists an instance I, such that q(I)NE∅.
The proof of the next simple observation is left for the Reader (Exercise 19.1-1).

Claim 19.4 Rule based queries are monotone and satisfiable.

Proposition 19.4 shows the limitations of rule based queries. For example, the query
Which theatres play only Kurosawa films? is obviously not monotone, hence cannot
be expressed by rules of form (19.3).

Tableau queries. If the difference between variables and constants is not con-
sidered, then the body of a rule can be viewed as an instance over the schema.
This leads to a tabular form of conjunctive queries that is most similar to the vi-
sual queries (QBE: Query By Example) of database management system Microsoft
Access.

Definition 19.5 A tableau over the schema R is a generalisation of an instance
over R, in the sense that variables may occur in the tuples besides constants. The
pair (T, u) is a tableau query if T is a tableau and u is a free tuple such that all
variables of u occur in T, as well. The free tuple u is the summary.

The summary row u of tableau query (T, u) shows which tuples form the result
of the query. The essence of the procedure is that the pattern given by tableau
T is searched for in the database, and if found then the tuple corresponding to is
included in the output relation. More precisely, the mapping ν : var(T) → dom(I)
is an embedding of tableau (T, u) into instance I, if ν(T) ⊆ I. The output relation



19.1. Queries 887

of tableau query (T, u) consists of all tuples ν(u) that ν is an embedding of tableau
(T, u) into instance I.

Example 19.2Tableau query Let T be the following tableau.

Film Title Director Actor
xT “Akira Kurosawa” xA

Theater Theater Address Phone
xT h xAd xP

Show Theater Title Time
xT h xT xT i

The tableau query (T, 〈Theater : xT h, Address : xAd〉) answers question 19.2. of the intro-
duction.

The syntax of tableau queries is similar to that of rule based queries. It will
be useful later that conditions for one query to contain another one can be easily
formulated in the language of tableau queries.

Relational algebra∗. A database consists of relations, and a relation is a set of
tuples. The result of a query is also a relation with a given attribute set. It is a natural
idea that output of a query could be expressed by algebraic and other operations on
relations. The relational algebra∗ consists of the following operations.1

Selection: It is of form either σA=c or σA=B, where A and B are attributes
while c is a constant. The operation can be applied to all such relations R
that has attribute A (and B), and its result is relation ans that has the same
set of attributes as R has, and consists of all tuples that satisfy the selection
condition.

Projection: The form of the operation is πA1,A2,...,An
, n ≥ 0, where Ai’s are

distinct attributes. It can be applied to all such relations whose attribute
set includes each Ai and its result is the relation ans that has attribute set
{A1, A2, . . . , An},

val = {t[A1, A2, . . . , An]|t ∈ R} ,
that is it consists of the restrictions of tuples in R to the attribute set
{A1, A2, . . . , An}.
Natural join: This operation has been defined earlier in chapter “Relational
database design”. Its notation is 1, its input consists of two (or more) relations
R1, R2, with attribute sets V1, V2, respectively. The attribute set of the output
relation is V1 ∪ V2.

R1 1 R2 = {t tuple over V1 ∪ V2|∃v ∈ R1,∃w ∈ R2, t[V1] = v és t[V2] = w} .

Renaming: Attribute renaming is nothing else, but an injective mapping from a
finite set of attributes U into the set of all attributes. Attribute renaming f can

1 The relational algebra∗ is the monotone part of the (full) relational algebra introduced later.



888 19. Query Rewriting in Relational Databases

be given by the list of pairs (A, f(A)), where ANEf(A), which is written usually
in the form A1A2 . . . An → B1B2 . . . Bn. The renaming operator δf maps
from inputs over U to outputs overf [U ]. If R is a relation over U , then

δf (R) = {v over f [U ]|∃u ∈ R, v(f(A)) = u(A), ∀A ∈ U} .
Relational algebra∗ queries are obtained by finitely many applications of the opera-
tions above from relational algebra base queries, which are

Input relation: R.

Single constant: {〈A : a〉}, where a is a constant, A is an attribute name.

Example 19.3Relational algebra∗ query. The question 19.2. of the introduction can be
expressed with relational algebra operations as follows.

πT heater,Address ((σDirector=“Akira Kurosawa”(Film) 1 Show) 1 Theater) .

The mapping given by a relational algebra∗ query can be easily defined via induction
on the operation tree. It is easy to see (Exercise 19.1-2) that non-satisfiable queries
can be given using relational algebra∗. There exist no rule based or tableau query
equivalent with such a non-satisfiable query. Nevertheless, the following is true.

Theorem 19.6 Rule based queries, tableau queries and satisfiable relational
algebra∗ are equivalent query languages.

The proof of Theorem 19.6 consists of three main parts:

1. Rule based ≡ Tableau

2. Satisfiable relational algebra∗ v Rule based

3. Rule based v Satisfiable relational algebra∗

The first (easy) step is left to the Reader (Exercise 19.1-3). For the second step, it has
to be seen first, that the language of rule based queries is closed under composition.
More precisely, let R = {R1, R2, . . . , Rn} be a database, q be a query over R. If the
output relation of q is S1, then in a subsequent query S1 can be used in the same
way as any extensional relation of R. Thus relation S2 can be defined, then with its
help relation S3 can be defined, and so on. Relations Si are intensional relations.
The conjunctive query program P is a list of rules

S1(u1) ← body1

S2(u2) ← body2

...
Sm(um) ← bodym ,

(19.5)

where Si’s are pairwise distinct and not contained in R. In rule body bodyi only
relations R1, R2, . . . Rn and S1, S2, . . . , Si−1 can occur. Sm is considered to be the
output relation of P , its evaluation is is done by computing the results of the rules



19.1. Queries 889

one-by-one in order. It is not hard to see that with appropriate renaming the variables
P can be substituted by a single rule, as it is shown in the following example.

Example 19.4Conjunctive query program. Let R = {Q, R}, and consider the following
conjunctive query program

S1(x, z) ← Q(x, y), R(y, z, w)
S2(x, y, z) ← S1(x, w), R(w, y, v), S1(v, z)

S3(x, z) ← S2(x, u, v), Q(v, z) .
(19.6)

S2 can be written using Q and R only by the first two rules of (19.6)

S2(x, y, z) ← Q(x, y1), R(y1, w, w1), R(w, y, v), Q(v, y2), R(y2, z, w2) . (19.7)

It is apparent that some variables had to be renamed to avoid unwanted interaction of
rule bodies. Substituting expression (19.7) into the third rule of (19.6) in place of S2, and
appropriately renaming the variables

S3(x, z) ← Q(x, y1), R(y1, w, w1), R(w, u, v1), Q(v1, y2), R(y2, v, w2), Q(v, z). (19.8)

is obtained.

Thus it is enough to realise each single relational algebra∗ operation by an ap-
propriate rule.

P 1 Q: Let −→x denote the list of variables (and constants) corresponding to the
common attributes of P and Q, let −→y denote the variables (and constants) cor-
responding to the attributes occurring only in P , while −→z denotes those of corre-
sponding toQ’s own attributes. Then rule ans(−→x ,−→y ,−→z ) ← P (−→x ,−→y ), Q(−→x ,−→z )
gives exactly relation P 1 Q.

σF (R): Assume that R = R(A1, A2, . . . , An) and the selection condition F is of
form either Ai = a or Ai = Aj , where Ai, Aj are attributes a is constant. Then

ans(x1, . . . , xi−1, a, xi+1, . . . , xn) ← R(x1, . . . , xi−1, a, xi+1, . . . , xn) ,

respectively,

ans(x1, . . . , xi−1, y, xi+1, . . . , xj−1, y, xj+1, . . . , xn) ←
R(x1, . . . , xi−1, y, xi+1, . . . , xj−1, y, xj+1, . . . , xn)

are the rules sought. The satisfiability of relational algebra∗ query is used here.
Indeed, during composition of operations we never obtain an expression where
two distinct constants should be equated.

πAi1 ,Ai2 ,...,Aim
(R): If R = R(A1, A2, . . . , An), then

ans(xi1
, xi2

, . . . , xim
) ← R(x1, x2, . . . , xn)

works.

A1A2 . . . An → B1B2 . . . Bn: The renaming operation of relational algebra∗ can
be achieved by renaming the appropriate variables, as it was shown in Exam-
ple 19.4.



890 19. Query Rewriting in Relational Databases

For the proof of the third step let us consider rule

ans(−→x ) ← R1(−→x1), R2(−→x2), . . . , Rn(−→xn) . (19.9)

By renaming the attributes of relations Ri’s, we may assume without loss of gener-
ality that all attribute names are distinct. Then R = R1 1 R2 1 · · · 1 Rn can be
constructed that is really a direct product, since the the attribute names are distinct.
The constants and multiple occurrences of variables of rule (19.9) can be simulated
by appropriate selection operators. The final result is obtained by projecting to the
set of attributes corresponding to the variables of relation ans.

19.1.2. Extensions

Conjunctive queries are a class of query languages that has many good properties.
However, the set of expressible questions are rather narrow. Consider the following.

19.4. List those pairs where one member directed the other member in a film,
and vice versa, the other member also directed the first in a film.

19.5. Which theatres show “La Dolce Vita” or “Rashomon”?

19.6. Which are those films of Hitchcock that Hitchcock did not play a part in?

19.7. List those films whose every actor played in some film of Fellini.

19.8. Let us recall the game “Chain-of-Actors”. The first player names an ac-
tor/actress, the next another one who played in some film together with the first
named. This is continued like that, always a new actor/actress has to be named
who played together with the previous one. The winner is that player who could
continue the chain last time. List those actors/actresses who could be reached
by “Chain-of-Actors” starting with “Marcello Mastroianni”.

Equality atoms. Question 19.4. can be easily answered if equalities are also
allowed rule bodies, besides relational atoms:

ans(y1, y2) ← Film(x1, y1, z1), F ilm(x2, y2, z2), y1 = z2, y2 = z1. (19.10)

Allowing equalities raises two problems. First, the result of the query could become
infinite. For example, the rule based query

ans(x, y) ← R(x), y = z (19.11)

results in an infinite number of tuples, since variables y and z are not bounded by
relation R, thus there can be an infinite number of evaluations that satisfy the rule
body. Hence, the concept of domain restricted query is introduced. Rule based
query q is domain restricted, if all variables that occur in the rule body also occur
in some relational atom.

The second problem is that equality atoms may cause the body of a rule become



19.1. Queries 891

unsatisfiable, in contrast to Proposition 19.4. For example, query

ans(x) ← R(x), x = a, x = b (19.12)

is domain restricted, however if a and b are distinct constants, then the answer will
be empty. It is easy to check whether a rule based query with equality atoms is
satisfiable.

Satisfiable(q)

1 Compute the transitive closure of equalities of the body of q.
2 if Two distinct constants should be equal by transitivity
3 then return “Not satisfiable.”
4 else return “Satisfiable.”

It is also true (Exercise 19.1-4) that if a rule based query q that contains equality
atoms is satisfiable, then there exists a another rule based query q′ without equalities
that is equivalent with q.

Disjunction – union. The question 19.5. cannot be expressed with conjunctive
queries. However, if the union operator is added to relational algebra, then 19.5. can
be expressed in that extended relational algebra:

πTheater (σTitle=“La Dolce Vita”(Show) ∪ σTitle=“ Rashomon”(Show)) . (19.13)

Rule based queries are also capable of expressing question 19.5. if it is allowed that
the same relation is in the head of many distinct rules:

ans(xM ) ← Show(xT h, “La Dolce Vita”, xT i) ,
ans(xM ) ← Show(xT h, “Rashomon”, xT i) .

(19.14)

Non-recursive datalog program is a generalisation of this.

Definition 19.7 A non-recursive datalog program over schema R is a set of
rules

S1(u1) ← body1

S2(u2) ← body2

...
Sm(um) ← bodym ,

(19.15)

where no relation of R occurs in a head, the same relation may occur in the head
of several rules, furthermore there exists an ordering r1, r2, . . . , rm of the rules such
that the relation in the head of ri does not occur in the body of any rule rj forj ≤ i.
The semantics of the non-recursive datalog program (19.15) is similar to the con-
junctive query program (19.5). The rules are evaluated in the order r1, r2, . . . , rm of
Definition 19.7, and if a relation occurs in more than one head then the union of the
sets of tuples given by those rules is taken.

The union of tableau queries (Ti, u) i = 1, 2, . . . , n is denoted by
({T1,T2, . . . ,Tn}, u). It is evaluated by individually computing the result of each
tableau query (Ti, u), then the union of them is taken. The following holds.



892 19. Query Rewriting in Relational Databases

Theorem 19.8 The language of non-recursive datalog programs with unique out-
put relation and the relational algebra extended with the union operator are equiva-
lent.

The proof of Theorem 19.8 is similar to that of Theorem 19.6 and it is left to
the Reader (Exercise 19.1-5). Let us note that the expressive power of the union
of tableau queries is weaker. This is caused by the requirement having the same
summary row for each tableau. For example, the non-recursive datalog program
query

ans(a) ←
ans(b) ← (19.16)

cannot be realised as union of tableau queries.

Negation. The query 19.6. is obviously not monotone. Indeed, suppose that in
relation Film there exist tuples about Hitchcock’s film Psycho, for example (“Psy-
cho”,”A. Hitchcock”,”A. Perkins”), (“Psycho”,”A. Hitchcock”,”J. Leigh”), . . . , how-
ever, the tuple (“Psycho”,”A. Hitchcock”,”A. Hitchcock”) is not included. Then the
tuple (“Psycho”) occurs in the output of query 19.6. With some effort one can real-
ize however, that Hitchcock appears in the film Psycho, as “a man in cowboy hat”.
If the tuple (“Psycho”,”A. Hitchcock”,”A. Hitchcock”) is added to relation Film as
a consequence, then the instance of schema CinePest gets larger, but the output
of query 19.6. becomes smaller.

It is not too hard to see that the query languages discussed so far are monotone,
hence query 19.6. cannot be formulated with non-recursive datalog program or with
some of its equivalents. Nevertheless, if the difference (−)operator is also added to
relation algebra, then it becomes capable of expressing queries of type 19.6. For
example,

πTitle (σDirector=“A. Hitchcock”(Film))− πTitle (σActor=“A. Hitchcock”(Film)) (19.17)

realises exactly query 19.6. Hence, the (full) relational algebra consists of operations
{σ, π,1, δ,∪,−}. The importance of the relational algebra is shown by the fact, that
Codd calls a query language Q relationally complete, exactly if for all relational
algebra query q there exists q′ ∈ Q, such that q ≡ q′.

If negative literals, that is atoms of the form ¬R(u) are also allowed in rule
bodies, then the obtained non-recursive datalog with negation, in notation nr-
datalog¬ is relationally complete.

Definition 19.9 A non-recursive datalog¬ (nr-datalog¬) rule is of form

q : S(u) ← L1, L2, . . . , Ln , (19.18)

where S is a relation, u is a free tuple, Li’s are literals, that is expression of form
R(v) or ¬R(v), such that v is a free tuple for i = 1, 2, . . . , n. S does not occur in
the body of the rule. The rule is domain restricted, if each variable x that occurs
in the rule also occurs in a positive literal (expression of the form R(v)) of the
body. Every nr-datalog¬ rule is considered domain restricted, unless it is specified
otherwise.



19.1. Queries 893

The semantics of rule (19.18) is as follows. Let R be a relational schema that contains
all relations occurring in the body of q, furthermore, let I be an instance over R.
The image of I under q is

q(I) = {ν(u)| ν is an valuation of the variables and for i = 1, 2, . . . , n
ν(ui) ∈ I(Ri), if Li = Ri(ui) and
ν(ui) 6∈ I(Ri), if Li = ¬Ri(ui)}.

(19.19)

A nr-datalog¬ program over schema R is a collection of nr-datalog¬ rules

S1(u1) ← body1

S2(u2) ← body2

...
Sm(um) ← bodym ,

(19.20)

where relations of schema R do not occur in heads of rules, the same relation may
appear in more than one rule head, furthermore there exists an ordering r1, r2, . . . , rm

of the rules such that the relation of the head of rule ri does not occur in the head
of any rule rj if j ≤ i.

The computation of the result of nr-datalog¬ program (19.20) applied to instance
I over schema R can be done in the same way as the evaluation of non-recursive
datalog program (19.15), with the difference that the individual nr-datalog¬ rules
should be interpreted according to (19.19).

Example 19.5Nr-datalog¬ program. Let us assume that all films that are included in
relation Film have only one director. (It is not always true in real life!) The nr-datalog¬

rule

ans(x) ← Film(x, “A. Hitchcock”, z),¬Film(x, “A. Hitchcock”, “A. Hitchcock”) (19.21)

expresses query 19.6. Query 19.7. is realised by the nr-datalog¬ program

Fellini-actor(z) ← Film(x, ”F. Fellini”, z)
Not-the-answer(x) ← Film(x, y, z),¬Fellini-actor(z)

Answer(x) ← Film(x, y, z),¬Not-the-answer(x) .
(19.22)

One has to be careful in writing nr-datalog¬ programs. If the first two rules of program
(19.22) were to be merged like in Example 19.4

Bad-not-ans(x) ← Film(x, y, z),¬Film(x′, ”F. Fellini”, z), Film(x′, ”F. Fellini”, z′)
Answer(x) ← Film(x, y, z),¬Bad-not-ans(x),

(19.23)
then (19.23) answers the following query (assuming that all films have unique director)

19.9. List all those films whose every actor played in each film of Fellini,

instead of query 19.7.

It is easy to see that every satisfiable nr-datalog¬ program that contains equality
atoms can be replaced by one without equalities. Furthermore the following propo-
sition is true, as well.



894 19. Query Rewriting in Relational Databases

Claim 19.10 The satisfiable (full) relational algebra and the nr-datalog¬ programs
with single output relation are equivalent query languages.

Recursion. Query 19.8. cannot be formulated using the query languages in-
troduced so far. Some a priori information would be needed about how long a
chain-of-actors could be formed starting with a given actor/actress. Let us assume
that the maximum length of a chain-of-actors starting from “Marcello Mastroianni”
is 117. (It would be interesting to know the real value!) Then, the following non-
recursive datalog program gives the answer.

Film-partner(z1, z2) ← Film(x, y, z1),Film(x, y, z2), z1 < z2
2

Partial-answer1(z) ← Film-partner(z, “Marcello Mastroianni”)
Partial-answer1(z) ← Film-partner(“Marcello Mastroianni”, z)
Partial-answer2(z) ← Film-partner(z, y),Partial-answer1(y)
Partial-answer2(z) ← Film-partner(y, z),Partial-answer1(y)

...
...

Partial-answer117(z) ← Film-partner(z, y),Partial-answer116(y)
Partial-answer117(z) ← Film-partner(y, z),Partial-answer116(y)

Mastroianni-chain(z) ← Partial-answer1(z)
Mastroianni-chain(z) ← Partial-answer2(z)

...
...

Mastroianni-chain(z) ← Partial-answer117(z)

(19.24)

It is much easier to express query 19.8. using recursion. In fact, the transitive
closure of the graph Film-partner needs to be calculated. For the sake of simplicity
the definition of Film-partner is changed a little (thus approximately doubling the
storage requirement).

Film-partner(z1, z2) ← Film(x, y, z1),Film(x, y, z2)
Chain-partner(x, y) ← Film-partner(x, y)
Chain-partner(x, y) ← Film-partner(x, z),Chain-partner(z, y) .

(19.25)

The datalog program (19.25) is recursive, since the definition of relation Chain-
partner uses the relation itself. Let us suppose for a moment that this is meaningful,
then query 19.8. is answered by rule

Mastroianni-chain(x) ← Chain-partner(x, “Marcello Mastroianni”) (19.26)

Definition 19.11 The expression

R1(u1) ← R2(u2), R3(u3), . . . , Rn(un) (19.27)

is a datalog rule, if n ≥ 1, the Ri’s are relation names, the ui’s are free tuples of

2Arbitrary comparison atoms can be used, as well, similarly to equality atoms. Here z1 < z2 makes
it sure that all pairs occur at most once in the list.



19.1. Queries 895

appropriate length. Every variable of u1 has to occur in one of u2, . . . un, as well.
The head of the rule is R1(u1), the body of the rule is R2(u2), R3(u3), . . . , Rn(un). A
datalog program is a finite collection of rules of type (19.27). Let P be a datalog
program. The relation R occurring in P is extensional if it occurs in only rule
bodies, and it is intensional if it occurs in the head of some rule.

If ν is a valuation of the variables of rule (19.27), then R1(ν(u1)) ←
R2(ν(u2)), R3(ν(u3)), . . . , Rn(ν(un)) is a realisation of rule (19.27). The exten-
sional (database) schema of P consists of the extensional relations of P , in nota-
tion edb(P ). The intensional schema of P , in notation idb(P ) is defined similarly
as consisting of the intensional relations of P . Let sch(P ) = edb(P ) ∪ idb(P ). The
semantics of datalog program P is a mapping from the set of instances over edb(P )
to the set of instances over idb(P ). This can be defined proof theoretically, model
theoretically or as a fixpoint of some operator. This latter one is equivalent with the
first two, so to save space only the fixpoint theoretical definition is discussed.

There are no negative literals used in Definition 19.11. The main reason of this is
that recursion and negation together may be meaningless, or contradictory. Never-
theless, sometimes negative atoms might be necessary. In those cases the semantics
of the program will be defined specially.

Fixpoint semantics. Let P be a datalog program, K be an instance over sch(P ).
Fact A, that is a tuple consisting of constants is an immediate consequence of
K and P , if either A ∈ K(R) for some relation R ∈ sch(P ), or A ← A1, A2, . . . , An

is a realisation of a rule in P and each Ai is in K. The immediate consequence
operator TP is a mapping from the set of instances over sch(P ) to itself. TP (K)
consists of all immediate consequences of K and P .

Claim 19.12 The immediate consequence operator TP is monotone.

Proof Let I and J be instances over sch(P ), such that I ⊆ J . Let A be a fact
ofTP (I). If A ∈ I(R) for some relation R ∈ sch(P ), then A ∈ J (R) is implied by
I ⊆ J . on the other hand, if A ← A1, A2, . . . , An is a realisation of a rule in P and
each Ai is in I, then Ai ∈ J also holds.

The definition of TP implies that K ⊆ TP (K). Using Proposition 19.12 it follows
that

K ⊆ TP (K) ⊆ TP (TP (K)) ⊆ . . . . (19.28)

Theorem 19.13 For every instance I over schema sch(P ) there exists a unique
minimal instance I ⊆ K that is a fixpoint of TP , i.e. K = TP (K).

Proof Let T i
P (I) denote the consecutive application of operator TP i-times, and let

K =

∞⋃

i=0

T i
P (I) . (19.29)



896 19. Query Rewriting in Relational Databases

By the monotonicity of TP and (19.29) we have

TP (K) =

∞⋃

i=1

T i
P (I) ⊆

∞⋃

i=0

T i
P (I) = K ⊆ TP (K) , (19.30)

that is K is a fixpoint. It is easy to see that every fixpoint that contains I, also
contains T i

P (I) for all i = 1, 2, . . . , that is it contains K, as well.

Definition 19.14 The result of datalog program P on instance I over edb(P ) is
the unique minimal fixpoint of TP containing I, in notation P (I).

It can be seen, see Exercise 19.1-6, that the chain in (19.28) is finite, that is there
exists an n, such that TP (Tn

P (I)) = Tn
P (I). The naive evaluation of the result of the

datalog program is based on this observation.

Naiv-Datalog(P ,I)

1 K ← I
2 while TP (K)NEK
3 do K ← TP (K)
4 return K

Procedure Naiv-Datalog is not optimal, of course, since every fact that be-
comes included in K is calculated again and again at every further execution of the
while loop.

The idea of Semi-naiv-datalog is that it tries to use only recently calculated
new facts in the while loop, as much as it is possible, thus avoiding recomputation
of known facts. Consider datalog program P with edb(P ) = R, and idb(P ) = T. For
a rule

S(u) ← R1(v1), . . . , Rn(vn), T1(w1), . . . , Tm(wm) (19.31)

of P whereRk ∈ R and Tj ∈ T, the following rules are constructed for j = 1, 2, . . . ,m
and i ≥ 1

tempi+1
S (u) ← R1(v1), . . . , Rn(vn),

T i
1(w1), . . . , T i

j−1(wj−1),∆i
Tj

(wj), T i−1
j+1(wj+1), . . . , T i−1

m (wm) .

(19.32)
Relation ∆i

Tj
denotes the change of Tj in iteration i. The union of rules corresponding

to S in layer i is denoted by P i
S , that is rules of form (19.32) for tempi+1

S , j =
1, 2, . . . ,m. Assume that the list of idb relations occurring in rules defining the idb
relation S is T1, T2, . . . , T`. Let

P i
S(I, T i−1

1 , . . . , T i−1
` , T i

1, . . . , T
i
` ,∆

i
T1
, . . . ,∆i

T`
) (19.33)

denote the set of facts (tuples) obtained by applying rules (19.32) to input instance
I and to idb relations T i−1

j , T i
j ,∆

i
Tj

. The input instance I is the actual value of the
edb relations of P .



19.1. Queries 897

Semi-naiv-datalog(P ,I)

1 P ′ ← those rules of P whose body does not contain idb relation
2 for S ∈ idb(P )
3 do S0 ← ∅
4 ∆1

S ← P ′(I)(S)
5 i ← 1
6 repeat
7 for S ∈ idb(P )
8 � T1, . . . , T` are the idb relations of the rules defining S.
9 do Si ← Si−1 ∪∆i

S

10 ∆i+1
S ← P i

S(I, T i−1
1 , . . . , T i−1

` , T i
1, . . . , T

i
` ,∆

i
T1
, . . . ,∆i

T`
)− Si

11 i ← i+ 1
12 until ∆i

S = ∅ for all S ∈ idb(P )
13 for S ∈ idb(P )
14 do S ← Si

15 return S

Theorem 19.15 Procedure Semi-naiv-datalog correctly computes the result of
program P on instance I.

Proof We will show by induction on i that after execution of the loop of lines 6–12
ith times the value of Si is T i

P (I)(S), while ∆i+1
S is equal to T i+1

P (I)(S)−T i
P (I)(S)

for arbitrary S ∈ idb(P ). T i
P (I)(S) is the result obtained for S starting from I and

applying the immediate consequence operator TP i-times.
For i = 0, line 4 calculates exactly TP (I)(S) for all S ∈ idb(P ).

In order to prove the induction step, one only needs to see that
P i

S(I, T i−1
1 , . . . , T i−1

` , T i
1, . . . , T

i
` ,∆

i
T1
, . . . ,∆i

T`
) ∪ Si is exactly equal to T i+1

P (I)(S),

since in lines 9–10 procedure Semi-naiv-datalog constructs Si-t and ∆i+1
S using

that. The value of Si is T i
P (I)(S), by the induction hypothesis. Additional new

tuples are obtained only if that for some idb relation defining S such tuples are con-
sidered that are constructed at the last application of TP , and these are in relations
∆i

T1
, . . . ,∆i

T`
, also by the induction hypothesis.

The halting condition of line 12 means exactly that all relations S ∈ idb(P ) are
unchanged during the application of the immediate consequence operator TP , thus
the algorithm has found its minimal fixpoint. This latter one is exactly the result of
datalog program P on input instance I according to Definition 19.14.

Procedure Semi-naiv-datalog eliminates a large amount of unnecessary calcu-
lations, nevertheless it is not optimal on some datalog programs (Exercise gy:snaiv).
However, analysis of the datalog program and computation based on that can save
most of the unnecessary calculations.

Definition 19.16 Let P be a datalog program. The precedence graph of P is
the directed graph GP defined as follows. Its vertex set consists of the relations of
idb(P ), and (R,R′) is an arc for R,R′ ∈ idb(P ) if there exists a rule in P whose



898 19. Query Rewriting in Relational Databases

head is R′ and whose body contains R. P is recursive, if GP contains a directed
cycle. Relations R and R′ are mutually recursive if the belong to the same strongly
connected component of GP .

Being mutually recursive is an equivalence relation on the set of relations idb(P ).
The main idea of procedure Improved-Semi-Naiv-Datalog is that for a relation
R ∈ idb(P ) only those relations have to be computed “simultaneously” with R
that are in its equivalence class, all other relations defining R can be calculated “in
advance” and can be considered as edb relations.

Improved-Semi-Naiv-Datalog(P ,I)

1 Determine the equivalence classes of idb(P ) under mutual recursivity.
2 List the equivalence classes [R1], [R2], . . . , [Rn]

according to a topological order of GP .
3 � There exists no directed path from Rj to Ri in GP for all i < j.
4 for i ← 1 to n
5 do Use Semi-naiv-datalog to compute relations of [Ri]

taking relations of [Rj ] as edb relations for j < i.

Lines 1–2 can be executed in time O(vGP
+ eGP

) using depth first search, where
vGP

and eGP
denote the number of vertices and edges of graph GP , respectively.

Proof of correctness of the procedure is left to the Reader (Exercise 19.1-8).

19.1.3. Complexity of query containment

In the present section we return to conjunctive queries. The costliest task in com-
puting result of a query is to generate the natural join of relations. In particular,
if there are no indexes available on the common attributes, hence only procedure
Full-Tuplewise-Join is applicable.

Full-Tuplewise-Join(R1, R2)

1 S ← ∅
2 for all u ∈ R1

3 do for all v ∈ R2

4 do if u and v can be joined
5 then S ← S ∪ {u 1 v}
6 return S

It is clear that the running time of Full-Tuplewise-Join is O(|R1| × |R2|).
Thus, it is important that in what order is a query executed, since during computa-
tion natural joins of relations of various sizes must be calculated. In case of tableau
queries the Homomorphism Theorem gives a possibility of a query rewriting that
uses less joins than the original.

Let q1, q2 be queries over schema R. q2 contains q1, in notation q1 v q2, if for all
instances I over schema R q1(I) ⊆ q2(I) holds. q1 ≡ q2 according to Definition 19.1
iff q1 v q2 and q1 w q2. A generalisation of valuations will be needed. Substitution



19.1. Queries 899

is a mapping from the set of variables to the union of sets of variables and sets of
constants that is extended to constants as identity. Extension of substitution to free
tuples and tableaux can be defined naturally.

Definition 19.17 Let q = (T, u) and q′ = (T′, u′) be two tableau queries overs
schema R. Substitution θ is a homomorphism from q′ to q, if θ(T′) = T and
θ(u′) = u.

Theorem 19.18 (Homomorphism Theorem). Let q = (T, u) and q′ = (T′, u′) be
two tableau queries overs schema R. q v q′ if and only if, there exists a homomor-
phism from q′ to q.

Proof Assume first, that θ is a homomorphism from q′ to q, and let I be an instance
over schema R. Let w ∈ q(I). This holds exactly if there exists a valuation ν that
maps tableau T into I and ν(u) = w. It is easy to see that θ ◦ ν maps tableau T′

into I and θ ◦ ν(u′) = w, that is w ∈ q′(I). Hence, w ∈ q(I) =⇒ w ∈ q′(I), which
in turn is equivalent with q v q′.

On the other hand, let us assume that q v q′. The idea of the proof is that
both, q and q′ are applied to the “instance” T. The output of q is free tuple u, hence
the output of q′ also contains u, that is there exists a θ embedding of T′ into T
that maps u′ to u. To formalise this argument the instance IT isomorphic to T is
constructed.

Let V be the set of variables occurring in T. For all x ∈ V let ax be constant that
differs from all constants appearing in T or T′, furthermore xNEx′ =⇒ axNEax′ .
Let µ be the valuation that maps x ∈ V to ax, furthermore let IT = µ(T). µ is a
bijection from V to µ(V ) and there are no constants of T appearing in µ(V ), hence
µ−1 well defined on the constants occurring in IT.

It is clear that µ(u) ∈ q(IT), thus using q v q′ µ(u) ∈ q′(IT) is obtained. That
is, there exists a valuation ν that embeds tableau T′ into IT, such that ν(u′) = µ(u).
It is not hard to see that ν ◦ µ−1 is a homomorphism from q′ to q.

Query optimisation by tableau minimisation. According to Theorem 19.6
tableau queries and satisfiable relational algebra (without subtraction) are equiva-
lent. The proof shows that the relational algebra expression equivalent with a tableau
query is of form π−→æ (σF (R1 1 R2 1 · · · 1 Rk)), where k is the number of rows of the
tableau. It implies that if the number of joins is to be minimised, then the number
of rows of an equivalent tableau must be minimised.

The tableau query (T, u) is minimal, if there exists no tableau query (S, v)
that is equivalent with (T, u) and |S| < |T|, that is S has fewer rows. It may be
surprising, but it is true, that a minimal tableau query equivalent with (T, u) can
be obtained by simply dropping some rows from T.

Theorem 19.19 Let q = (T, u) be a tableau query. There exists a subset T′ of T,
such that query q′ = (T′, u) is minimal and equivalent with q = (T, u).

Proof Let (S, v) be a minimal query equivalent with q. According to the Homomor-
phism Theorem there exist homomorphisms θ from q to (S, v), and λ from (S, v) to



900 19. Query Rewriting in Relational Databases

q. Let T′ = θ ◦ λ(T). It is easy to check that (T′, u) ≡ q and |T′| ≤ |S|. But (S, v)
is minimal, hence (T′, u) is minimal, as well.

Example 19.6 Application of tableau minimisation Consider the relational algebra expres-
sion

q = πAB (σB=5(R)) 1 πBC (πAB(R) 1 πAC (σB=5(R))) (19.34)

over the schema R of attribute set {A, B, C}. The tableau query corresponding to q is the
following tableau T:

R A B C
x 5 z1

x1 5 z2

x1 5 z
u x 5 z

(19.35)

Such a homomorphism is sought that maps some rows of T to some other rows of T, thus
sort of “folding” the tableau. The first row cannot be eliminated, since the homomorphism
is an identity on free tuple u, thus x must be mapped to itself. The situation is similar with
the third row, as the image of z is itself under any homomorphism. However the second
row can be eliminated by mapping x1 to x and z2 to z, respectively. Thus, the minimal
tableau equivalent with T consists of the first and third rows of T. Transforming back to
relational algebra expression,

πAB(σB=5(R)) 1 πBC(σB=5(R)) (19.36)

is obtained. Query (19.36) contains one less join operator than query (19.34).

The next theorem states that the question of tableau containment and equiva-
lence is NP-complete, hence tableau minimisation is an NP-hard problem.

Theorem 19.20 For given tableau queries q and q′ the following decision problems
are NP-complete:

19.10. q v q′?

19.11. q ≡ q′?

19.12. Assume that q′ is obtained from q by removing some free tuples. Is it true
then that q ≡ q′?

Proof The Exact-Cover problem will be reduced to the various tableau problems.
The input of Exact-Cover problem is a finite set X = {x1, x2, . . . , xn}, and a
collection of its subsets S = {S1, S2, . . . , Sm}. It has to be determined whether there
exists S ′ v S, such that subsets in S ′ cover X exactly (that is, for all x ∈ X there
exists exactly one S ∈ S ′ such that x ∈ S). Exact-Cover is known to be an
NP-complete problem.

Let E = (X,S) be an input of Exact cover. A construction is sketched that
produces a pair qE , q′

E of tableau queries to E in polynomial time. This construction
can be used to prove the various NP-completeness results.

Let the schema R consist of the pairwise distinct attributes
A1, A2, . . . , An, B1, B2, . . . , Bm. qE = (TE , t) and q′

E = (T′
E , t) are tableau



19.1. Queries 901

queries over schema R such that the summary row of both of them is free tuple
t = 〈A1 : a1, A2 : a2, . . . , An : an〉, where a1, a2, . . . , an are pairwise distinct
variables.

Let b1, b2, . . . , bm, c1, c2, . . . cm be another set of pairwise distinct variables.
Tableau TE consists of n rows, for each element of X corresponds one. ai stands in
column of attribute Ai in the row of xi, while bj stands in column of attribute Bj

for all such j that xi ∈ Sj holds. In other positions of tableau TE pairwise distinct
new variables stand.

Similarly, T′
E consists of m rows, one corresponding to each element of S. ai

stands in column of attribute Ai in the row of Sj for all such i that xi ∈ Sj ,
furthermore cj′ stands in the column of attribute Bj′ , for all j′NEj. In other positions
of tableau T′

E pairwise distinct new variables stand.
The NP-completeness of problem 19.10. follows from that X has an exact cover

using sets of S if and only if q′
E v qE holds. The proof, and the proof of the NP-

completeness of problems 19.11. and 19.12. are left to the Reader (Exercise 19.1-9).

Exercises
19.1-1 Prove Proposition 19.4, that is every rule based query q is monotone and
satisfiable. Hint. For the proof of satisfiability let K be the set of constants occurring
in query q, and let a 6∈ K be another constant. For every relation schema Ri in rule
(19.3) construct all tuples (a1, a2, . . . , ar), where ai ∈ K ∪ {a}, and r is the arity of
Ri. Let I be the instance obtained so. Prove that q(I) is nonempty.
19.1-2 Give a relational schema R and a relational algebra query q over schema
R, whose result is empty to arbitrary instance over R.
19.1-3 Prove that the languages of rule based queries and tableau queries are
equivalent.
19.1-4 Prove that every rule based query q with equality atoms is either equivalent
with the empty query q∅, or there exists a rule based query q′ without equality atoms
such that q ≡ q′. Give a polynomial time algorithm that determines for a rule based
query q with equality atoms whether q ≡ q∅ holds, and if not, then constructs a rule
based query q′ without equality atoms, such that q ≡ q′.
19.1-5 Prove Theorem 19.8 by generalising the proof idea of Theorem 19.6.
19.1-6 Let P be a datalog program, I be an instance over edb(P ), inC(P, I) be the
(finite) set of constants occurring in I and P . Let B(P, I) be the following instance
over sch(P ):

1. For every relation R of edb(P ) the fact R(u) is in B(P, I) iff it is in I, further-
more

2. for every relation R of idb(P ) every R(u) fact constructed from constants of
C(P, I) is in B(P, I).

Prove that
I ⊆ TP (I) ⊆ T 2

P (K) ⊆ T 3
P (K) ⊆ · · · ⊆ B(P, I). (19.37)



902 19. Query Rewriting in Relational Databases

19.1-7 Give an example of an input, that is a datalog program P and instance I
over edb(P ), such that the same tuple is produced by distinct runs of the loop of
Semi-naiv-datalog.
19.1-8 Prove that procedure Improved-Semi-Naiv-Datalog stops in finite time
for all inputs, and gives correct result. Give an example of an input on which
Improved-Semi-Naiv-Datalog calculates less number of rows multiple times than
Semi-naiv-datalog.
19.1-9

1. Prove that for tableau queries qE = (TE , t) and q′
E = (T′

E , t) of the proof of
Theorem 19.20 there exists a homomorphism from (TE , t) to (T′

E , t) if and
only if the Exact-Cover problem E = (X,S) has solution.

2. Prove that the decision problems 19.11. and 19.12. are NP-complete.

19.2. Views

A database system architecture has three main levels:

• physical layer;

• logical layer;

• outer (user) layer.

The goal of the separation of levels is to reach data independence and the convenience
of users. The three views on Figure 19.2 show possible user interfaces: multirelational,
universal relation and graphical interface.

The physical layer consists of the actually stored data files and the dense and
sparse indices built over them.

The separation of the logical layer from the physical layer makes it possible
for the user to concentrate on the logical dependencies of the data, which approx-
imates the image of the reality to be modelled better. The logical layer consists of
the database schema description together with the various integrity constraints, de-
pendencies. This the layer where the database administrators work with the system.
The connection between the physical layer and the logical layer is maintained by the
database engine.

The goal of the separation of the logical layer and the outer layer is that the
endusers can see the database according to their (narrow) needs and requirements.
For example, a very simple view of the outer layer of a bank database could be the
automatic teller machine, or a much more complex view could be the credit history
of a client for loan approval.

19.2.1. View as a result of a query

The question is that how can the views of different layers be given. If a query given
by relational algebra expression is considered as a formula that will be applied to
relational instances, then the view is obtained. Datalog rules show the difference



19.2. Views 903

View 3View 2View 1

Logical layer

Physical layer

Outer layer

Figure 19.2 The three levels of database architecture.

between views and relations, well. The relations defined by rules are called inten-
sional, because these are the relations that do not have to exist on external storage
devices, that is to exist extensionally, in contrast to the extensional relations.

Definition 19.21 The V expression given in some query language Q over schema
R is called a view.

Similarly to intensional relations, views can be used in definition of queries or other
views, as well.

Example 19.7 SQL view. Views in database manipulation language SQL can be given in
the following way. Suppose that the only interesting data for us from schema CinePest is
where and when are Kurosawa’s film shown. The view KurosawaTimes is given by the
SQL command

KurosawaTimes

1 create view KurosawaTimes as

2 select Theater, Time
3 from Film, Show
4 where Film.Title=Show.Title and Film.Director="Akira Kurosawa"

Written in relational algebra is as follows.

KurosawaTimes(Theater, Time) = πT heater, Time(T heater 1 σDirector="Akira Kurosawa"(F ilm))
(19.38)



904 19. Query Rewriting in Relational Databases

Finally, the same by datalog rule is:

KurosawaTimes(xT h, xT i) ← T heater(xT h, xT , xT i), F ilm(xT , "Akira Kurosawa", xA) .
(19.39)

Line 2 of KurosawaTimes marks the selection operator used, line 3 marks that which two
relations are to be joined, finally the condition of line 4 shows that it is a natural join, not
a direct product.

Having defined view V, it can be used in further queries or view definitions like
any other (extensional) relation.

Advantages of using views
• Automatic data hiding: Such data that is not part of the view used, is not shown

to the user, thus the user cannot read or modify them without having proper
access rights to them. So by providing access to the database through views, a
simple, but effective security mechanism is created.

• Views provide simple “macro capabilities”. Using the view KurosawaTimes de-
fined in Example 19.7 it is easy to find those theatres where Kurosawa films are
shown in the morning:

KurosawaMorning(Theater) ← KurosawaTimes(Theater, xT i), xT i < 12 .
(19.40)

Of course the user could include the definition of KurosawaTimes in the code
directly, however convenience considerations are first here, in close similarity
with macros.

• Views make it possible that the same data could be seen in different ways by
different users at the same time.

• Views provide logical data independence. The essence of logical data inde-
pendence is that users and their programs are protected from the structural
changes of the database schema. It can be achieved by defining the relations of
the schema before the structural change as views in the new schema.

• Views make controlled data input possible. The with check option clause of
command create view is to do this in SQL.

Materialised view. Some view could be used in several different queries. It
could be useful in these cases that if the tuples of the relation(s) defined by the
view need not be calculated again and again, but the output of the query defining
the view is stored, and only read in at further uses. Such stored output is called a
materialised view.

Exercises
19.2-1 Consider the following schema:

FilmStar(Name,Address,Gender,BirthDate)
FilmMogul(Name,Address,Certificate#,Assets)
Studio(Name,Address,PresidentCert#) .



19.3. Query rewriting 905

Relation FilmMogul contains data of the big people in film business (studio pres-
idents, producers, etc.). The attribute names speak for themselves, Certificate# is
the number of the certificate of the filmmogul, PresidentCert#) is the certificate
number of the president of the studio. Give the definitions of the following views
using datalog rules, relational algebra expressions, furthermore SQL:

1. RichMogul: Lists the names, addresses,certificate numbers and assets of those
filmmoguls, whose asset value is over 1 million dollars.

2. StudioPresident: Lists the names, addresses and certificate numbers of those
filmmoguls, who are studio presidents, as well.

3. MogulStar : Lists the names, addresses,certificate numbers and assets of those
people who are filmstars and filmmoguls at the same time.

19.2-2 Give the definitions of the following views over schema CinePest using
datalog rules, relational algebra expressions, furthermore SQL:

1. Marilyn(Title): Lists the titles of Marilyn Monroe’s films.

2. CorvinInfo(Title,Time,Phone): List the titles and show times of films shown
in theatre Corvin, together with the phone number of the theatre.

19.3. Query rewriting

Answering queries using views, in other words query rewriting using views has be-
come a problem attracting much attention and interest recently. The reason is its
applicability in a wide range of data manipulation problems: query optimisation, pro-
viding physical data independence, data and information integration, furthermore
planning data warehouses.

The problem is the following. Assume that query Q is given over schema R,
together with views V1, V2, . . . , Vn. Can one answer Q using only the results of views
V1, V2, . . . , Vn? Or, which is the largest set of tuples that can be determined knowing
the views? If the views and the relations of the base schema can be accessed both,
what is the cheapest way to compute the result of Q?

19.3.1. Motivation

Before query rewriting algorithms are studied in detail, some motivating examples
of applications are given. The following university database is used throughout this
section.

University = {Professor,Course,Teach,Registered,Major,Affiliation,Supervisor} .
(19.41)



906 19. Query Rewriting in Relational Databases

The schemata of the individual relations are as follows:

Professor = {PName,Area}
Course = {C-Number,Title}

Teaches = {PName,C-Number,Semester,Evaluation}
Registered = {Student,C-Number,Semester}

Major = {Student,Department}
Affiliation = {PName,Department}

Advisor = {PName,Student} .

(19.42)

It is supposed that professors, students and departments are uniquely identified by
their names. Tuples of relation Registered show that which student took which course
in what semester, while Major shows which department a student choose in majoring
(for the sake of convenience it is assumed that one department has one subject as
possible major).

Query optimisation. If the computation necessary to answer a query was
performed in advance and the results are stored in some materialised view, then it
can be used to speed up the query answering.

Consider the query that looks for pairs (Student,Title), where the student reg-
istered for the given Ph.D.-level course, the course is taught by a professor of the
Database area (the C-number of graduate courses is at least 400, and the Ph.D.-level
courses are those with C-number at least 500).

val(xS , xT ) ← Teach(xP , xC , xSe, y1),Professor(xP , “database”),
Registered(xS , xC , xSe),Course(xC , xT ), xC ≥ 500 .

(19.43)

Suppose that the following materialised view is available that contains the registra-
tion data of graduate courses.

Graduate(xS , xT , xC , xSe) ← Registered(xS , xC , xSe),Course(xX , xT ), xC ≥ 400 .
(19.44)

View Graduate can be used to answer query (19.43).

val(xS , xT ) ← Teaches(xP , xC , xSe, y1),Professor(xP , “database”),
(xS , xT , xC , xSe), xC ≥ 500 .

(19.45)

It will be faster to compute (19.45) than to compute (19.43), because the natu-
ral join of relations Registered and Course has already be done by view Graduate,
furthermore it shelled off the undergraduate courses (that make up for the bulk of
registration data at most universities). It worth noting that view Graduate could be
used event hough syntactically did not agree with any part of query (19.43).

On the other hand, it may happen that the the original query can be answered
faster. If relations Registered and Course have an index on attribute C-Number, but
there exists no index built for Graduate, then it could be faster to answer query
(19.43) directly from the database relations. Thus, the real challenge is not only
that to decide about a materialised view whether it could be used to answer some
query logically, but a thorough cost analysis must be done when is it worth using
the existing views.



19.3. Query rewriting 907

Physical data independence. One of the principles underlying modern
database systems is the separation between the logical view of data and the physical
view of data. With the exception of horizontal or vertical partitioning of relations
into multiple files, relational database systems are still largely based on a one-to-
one correspondence between relations in the schema and the files in which they are
stored. In object-oriented systems, maintaining the separation is necessary because
the logical schema contains significant redundancy, and does not correspond to a
good physical layout. Maintaining physical data independence becomes more crucial
in applications where the logical model is introduced as an intermediate level after
the physical representation has already been determined. This is common in storage
of XML data in relational databases, and in data integration. In fact, the Stored
System stores XML documents in a relational database, and uses views to describe
the mapping from XML into relations in the database.

To maintain physical data independence, a widely accepted method is to use
views over the logical schema as mechanism for describing the physical storage of
data. In particular, Tsatalos, Solomon and Ioannidis use GMAPs (Generalised Multi-
level Access Paths) to describe data storage.

A GMAP describes the physical organisation and the indexes of the storage
structure. The first clause of the GMAP (as) describes the actual data structure
used to store a set of tuples (e.g., a B+-tree, hash index, etc.) The remaining clauses
describe the content of the structure, much like a view definition. The given and
select clauses describe the available attributes, where the given clause describes
the attributes on which the structure is indexed. The definition of the view, given
in the where clause uses infix notation over the conceptual model.

In the example shown in Figure 19.3, the GMAP G1 stores a set of pairs contain-
ing students and the departments in which they major, and these pairs are indexed
by a B+-tree on attribute Student.name. The GMAP G2 stores an index from names
of students to the numbers of courses in which they are registered. The GMAP G3
stores an index from course numbers to departments whose majors are enrolled in
the course.

Given that the data is stored in structures described by the GMAPs, the question
that arises is how to use these structures to answer queries. Since the logical content
of the GMAPs are described by views, answering a query amounts to finding a way
of rewriting the query using these views. If there are multiple ways of answering the
query using the views, we would like to find the cheapest one. Note that in contrast
to the query optimisation context, we must use the views to answer the given query,
because all the data is stored in the GMAPs.

Consider the following query, which asks for names of students registered for
Ph.D.-level courses and the departments in which these students are majoring.

ans(Student,Department) ←Registered(Student,C-number,y),
Major(Student,Department),
C-number ≥ 500 .

(19.46)

The query can be answered in two ways. First, since Student.name uniquely identifies
a student, we can take the join of G! and G2, and then apply selection operator
Course.c-number ≥ 500, finally a projection eliminates the unnecessary attributes.



908 19. Query Rewriting in Relational Databases

def.gmap G1 as b+-tree by
given Student.name
select Department
where Student major Department

def.gmap G2 as b+-tree by
given Student.name
select Course.c-number
where Student registered Course

def.gmap G3 as b+-tree by
given Course.c-number
select Department
where Student registered Course and Student major Department

Figure 19.3 GMAPs for the university domain.

The other execution plan could be to join G3 with G2 and select Course.c-number ≥
500. In fact, this solution may even be more efficient because G3 has an index on
the course number and therefore the intermediate joins may be much smaller.

Data integration. A data integration system (also known as mediator
system) provides a uniform query interface to a multitude of autonomous het-
erogeneous data sources. Prime examples of data integration applications include
enterprise integration, querying multiple sources on the World-Wide Web, and inte-
gration of data from distributed scientific experiments.

To provide a uniform interface, a data integration system exposes to the user a
mediated schema. A mediated schema is a set of virtual relations, in the sense
that they are not stored anywhere. The mediated schema is designed manually for a
particular data integration application. To be able to answer queries, the system must
also contain a set of source descriptions. A description of a data source specifies
the contents of the source, the attributes that can be found in the source, and the
(integrity) constraints on the content of the source. A widely adopted approach for
specifying source descriptions is to describe the contents of a data source as a view
over the mediated schema. This approach facilitates the addition of new data sources
and the specification of constraints on the contents of sources.

In order to answer a query, a data integration system needs to translate a query
formulated on the mediated schema into one that refers directly to the schemata of
the data sources. Since the contents of the data sources are described as views, the
translation problem amounts finding a way to answer a query using a set of views.

Consider as an example the case where the mediated schema exposed to the
user is schema University, except that the relations Teaches and Course have an
additional attribute identifying the university at which the course is being taught:

Course = {C-number,Title,Univ}
Teaches = {PName,C-number,Semester,Evaluation,Univ.} (19.47)



19.3. Query rewriting 909

Suppose we have the following two data sources. The first source provides a listing of
all the courses entitled "Database Systems" taught anywhere and their instructors.
This source can be described by the following view definition:

DBcourse(Title,PName,C-number,Univ) ←Course( C-number,Title,Univ),
Teaches(PName,C-number,Semester,

Evaluation, Univ),
Title = “Database Systems” .

(19.48)
The second source lists Ph.D.-level courses being taught at The Ohio State Univer-

sity (OSU), and is described by the following view definition:

OSUPhD(Title,PName,C-number,Univ) ←Course( C-number,Title,Univ),
Teaches(PName,C-number,Semester,

Evaluation, Univ),
Univ = “OSU”,C-number ≥ 500.

(19.49)
If we were to ask the data integration system who teaches courses titled "Database

Systems" at OSU, it would be able to answer the query by applying a selection on
the source DB-courses:

ans(PName) ← DBcourse(Title,PName,C-number,Univ), Univ = "OSU" .
(19.50)

On the other hand, suppose we ask for all the graduate-level courses (not just in
databases) being offered at OSU. Given that only these two sources are available, the
data integration system cannot find all tuples in the answer to the query. Instead,
the system can attempt to find the maximal set of tuples in the answer available from
the sources. In particular, the system can obtain graduate database courses at OSU
from the DB-course source, and the Ph.D.-level courses at OSU from the OSUPhD
source. Hence, the following non-recursive datalog program gives the maximal set of
answers that can be obtained from the two sources:

ans(Title,C-number) ←DBcourse(Title,PName,C-number,Univ),
Univ = "OSU",C-number ≥ 400

ans(Title,C-number) ←OSUPhD(Title,PName,C-number,Univ) .
(19.51)

Note that courses that are not PH.D.-level courses or database courses will not be
returned as answers. Whereas in the contexts of query optimisation and maintain-
ing physical data independence the focus is on finding a query expression that is
equivalent with the original query, here finding a query expression that provides
the maximal answers from the views is attempted.

Semantic data caching. If the database is accessed via client-server architec-
ture, the data cached at the client can be semantically modelled as results of certain
queries, rather than at the physical level as a set of data pages or tuples. Hence,
deciding which data needs to be shipped from the server in order to answer a given
query requires an analysis of which parts of the query can be answered by the cached
views.



910 19. Query Rewriting in Relational Databases

19.3.2. Complexity problems of query rewriting

In this section the theoretical complexity of query rewriting is studied. Mostly
conjunctive queries are considered. Minimal, and complete rewriting will be dis-
tinguished. It will be shown that if the query is conjunctive, furthermore the ma-
terialised views are also given as results of conjunctive queries, then the rewriting
problem is NP-complete, assuming that neither the query nor the view definitions
contain comparison atoms. Conjunctive queries will be considered in rule-based form
for the sake of convenience.

Assume that query Q is given over schema R.

Definition 19.22 The conjunctive query Q′ is a rewriting of query Q using views
V = V1, V2, . . . , Vm, if

• Q and Q′ are equivalent, and

• Q′ contains one or more literals from V.

Q′ is said to be locally minimal if no literal can be removed from Q′ without
violating the equivalence. The rewriting is globally minimal, if there exists no
rewriting using a smaller number of literals. (The comparison atoms =,NE,≤, <
are not counted in the number of literals.)

Example 19.8 Query rewriting. Consider the following query Q and view V .

Q : q(X, U) ← p(X, Y ), p0(Y, Z), p1(X, W ), p2(W, U)
V : v(A, B) ← p(A, C), p0(C, B), p1(A, D) .

(19.52)

Q can be rewritten using V :

Q′ : q(X, U) ← v(X, Z), p1(X, W ), p2(W, U) . (19.53)

View V replaces the first two literals of query Q. Note that the view certainly satisfies the
third literal of the query, as well. However, it cannot be removed from the rewriting, since
variable D does not occur in the head of V , thus if literal p1 were to be removed, too, then
the natural join of p1 and p2 would not be enforced anymore.

Since in some of the applications the database relations are inaccessible, only the
views can be accessed, for example in case of data integration or data warehouses,
the concept of complete rewriting is introduced.

Definition 19.23 A rewriting Q′ of query Q using views V = V1, V2, . . . , Vm is
called a complete rewriting, if Q′ contains only literals of V and comparison
atoms.

Example 19.9 Complete rewriting. Assume that besides view V of Example 19.8 the
following view is given, as well:

V2 : v2(A, B) ← p1(A, C), p2(C, B), p0(D, E) (19.54)

A complete rewriting of query Q is:

Q′′ : q(X, U) ← v(X, Z), v2(X, U) . (19.55)



19.3. Query rewriting 911

It is important to see that this rewriting cannot be obtained step-by-step, first using only
V , then trying to incorporate V2, (or just in the opposite order) since relation p0 of V2 does
not occur in Q′. Thus, in order to find the complete rewriting, use of the two view must be
considered parallel, at the same time.

There is a close connection between finding a rewriting and the problem of query
containment. This latter one was discussed for tableau queries in section 19.1.3. Ho-
momorphism between tableau queries can be defined for rule based queries, as well.
The only difference is that it is not required in this section that a homomorphism
maps the head of one rule to the head of the other. (The head of a rule corresponds
to the summary row of a tableau.) According to Theorem 19.20 it is NP-complete to
decide whether conjunctive query Q1 contains another conjunctive query Q2. This
remains true in the case when Q2 may contain comparison atoms, as well. However,
if both, Q1 and Q2 may contain comparison atoms, then the existence of a homo-
morphism from Q1 to Q2 is only a sufficient but not necessary condition for the
containment of queries, which is a Πp

2-complete problem in that case. The discussion
of this latter complexity class is beyond the scope of this chapter, thus it is omitted.
The next proposition gives a necessary and sufficient condition whether there exists
a rewriting of query Q using view V .

Claim 19.24 Let Q and V be conjunctive queries that may contain comparison
atoms. There exists a a rewriting of query Q using view V if and only if π∅(Q) ⊆
π∅(V ), that is the projection of V to the empty attribute set contains that of Q.

Proof Observe that π∅(Q) ⊆ π∅(V ) is equivalent with the following proposition: If
the output of V is empty for some instance, then the same holds for the output of
Q, as well.

Assume first that there exists a rewriting, that is a rule equivalent with Q that
contains V in its body. If r is such an instance, that the result of V is empty on it,
then every rule that includes V in its body results in empty set over r, too.

In order to prove the other direction, assume that if the output of V is empty
for some instance, then the same holds for the output of Q, as well. Let

Q : q(x̃) ← q1(x̃), q2(x̃), . . . , qm(x̃)
V : v(ã) ← v1(ã), v2(ã), . . . , vn(ã) .

(19.56)

Let ỹ be a list of variables disjoint from variables of x̃. Then the query Q′ defined
by

Q′ : q′(x̃) ← q1(x̃), q2(x̃), . . . , qm(x̃), v1(ỹ), v2(ỹ), . . . , vn(ỹ) (19.57)

satisfies Q ≡ Q′. It is clear that Q′ ⊆ Q. On the other hand, if there exists a valuation
of the variables of ỹ that satisfies the body of V over some instance r, then fixing
it, for arbitrary valuation of variables in x̃ a tuple is obtained in the output of Q,
whenever a tuple is obtained in the output of Q′ together with the previously fixed
valuation of variables of ỹ.

As a corollary of Theorem 19.20 and Proposition 19.24 the following theorem is
obtained.



912 19. Query Rewriting in Relational Databases

Theorem 19.25 Let Q be a conjunctive query that may contain comparison atoms,
and let V be a set of views. If the views in V are given by conjunctive queries that do
not contain comparison atoms, then it is NP-complete to decide whether there exists
a rewriting of Q using V.

The proof of Theorem 19.25 is left for the Reader (Exercise 19.3-1).
The proof of Proposition 19.24 uses new variables. However, according to the

next lemma, this is not necessary. Another important observation is that it is enough
to consider a subset of database relations occurring in the original query when locally
minimal rewriting is sought, new database relations need not be introduced.

Lemma 19.26 Let Q be a conjunctive query that does not contain comparison
atoms

Q : q(X̃) ← p1(Ũ1), p2(Ũ2), . . . , pn(Ũn) , (19.58)

furthermore let V be a set of views that do not contain comparison atoms either.

1. If Q′ is a locally minimal rewriting of Q using V, then the set of database
literals in Q′ is isomorphic to a subset of database literals occurring in Q.

2. If

q(X̃) ← p1(Ũ1), p2(Ũ2), . . . , pn(Ũn), v1(Ỹ1), v2(Ỹ2), . . . vk(Ỹk) (19.59)

is a rewriting of Q using the views, then there exists a rewriting

q(X̃) ← p1(Ũ1), p2(Ũ2), . . . , pn(Ũn), v1(Ỹ ′
1), v2(Ỹ ′

2), . . . vk(Ỹ ′
k) (19.60)

such that {Ỹ ′
1 ∪ · · · ∪ Ỹ ′

k} ⊆ {Ũ1 ∪ · · · ∪ Ũn}, that is the rewriting does not
introduce new variables.

The details of the proof of Lemma 19.26 are left for the Reader (Exercise 19.3-2).
The next lemma is of fundamental importance: A minimal rewriting of Q using V
cannot increase the number of literals.

Lemma 19.27 Let Q be conjunctive query, V be set of views given by conjunctive
queries, both without comparison atoms. If the body of Q contains p literals and Q′

is a locally minimal rewriting of Q using V, then Q′ contains at most p literals.

Proof Replacing the view literals of Q′ by their definitions query Q′′ is obtained.
Let ϕ be a homomorphism from the body of Q to Q′′. The existence of ϕ follows
from Q ≡ Q′′ by the Homomorphism Theorem (Theorem 19.18). Each of the literals
l1, l2, . . . , lp of the body of Q is mapped to at most one literal obtained from the
expansion of view definitions. If Q′ contains more than p view literals, then the
expansion of some view literals in the body of Q′′ is disjoint from the image of
ϕ. These view literals can be removed from the body of Q′ without changing the
equivalence.

Based on Lemma 19.27 the following theorem can be stated about complexity of
minimal rewritings.



19.3. Query rewriting 913

Theorem 19.28 Let Q be conjunctive query, V be set of views given by conjunctive
queries, both without comparison atoms. Let the body of Q contain p literals.

1. It is NP-complete to decide whether there exists a rewriting Q′ of Q using V
that uses at most k (≤ p) literals.

2. It is NP-complete to decide whether there exists a rewriting Q′ of Q using V
that uses at most k (≤ p) database literals.

3. It is NP-complete to decide whether there exists a complete rewriting of Q
using V.

Proof The first statement is proved, the proof of the other two is similar. According
to Lemmas 19.27 and 19.26, only such rewritings need to be considered that have
at most as many literals as the query itself, contain a subset of the literals of the
query and do not introduce new variables. Such a rewriting and the homomorphisms
proving the equivalence can be tested in polynomial time, hence the problem is in
NP. In order to prove that it is NP-hard, Theorem 19.25 is used. For a given query
Q and view V let V ′ be the view, whose head is same as the head of V , but whose
body is the conjunction of the bodies of Q and V . It is easy to see that there exists
a rewriting using V ′ with a single literal if and only if there exists a rewriting (with
no restriction) using V .

19.3.3. Practical algorithms

In this section only complete rewritings are studied. This does not mean real re-
striction, since if database relations are also to be used, then views mirroring the
database relations one-to-one can be introduced. The concept of equivalent rewrit-
ing introduced in Definition 19.22 is appropriate if the goal of the rewriting is query
optimisation or providing physical data independence. However, in the context of
data integration on data warehouses equivalent rewritings cannot be sought, since
all necessary data may not be available. Thus, the concept of maximally contained
rewriting is introduced that depends on the query language used, in contrast to
equivalent rewritings.

Definition 19.29 Let Q be a query, V be a set of views, L be a query language.
Q′ is a maximally contained rewriting of Q with respect to L, if

1. Q′ is a query of language L using only views from V,

2. Q contains Q′,

3. if query Q1 ∈ L satisfies Q′ v Q1 v Q, then Q′ ≡ Q1.



914 19. Query Rewriting in Relational Databases

Query optimisation using materialised views. Before discussing how can
a traditional optimiser be modified in order to use materialised views instead of
database relations, it is necessary to survey when can view be used to answer a
given query. Essentially, view V can be used to answer query Q, if the intersection
of the sets of database relations in the body of V and in the body of Q is non-
empty, furthermore some of the attributes are selected by V are also selected by
Q. Besides this, in case of equivalent rewriting, if V contains comparison atoms for
such attributes that are also occurring in Q, then the view must apply logically
equivalent, or weaker condition, than the query. If logically stronger condition is
applied in the view, then it can be part of a (maximally) contained rewriting. This
can be shown best via an example. Consider the query Q over schema University
that list those professor, student, semester triplets, where the advisor of the student
is the professor and in the given semester the student registered for some course
taught by the professor.

Q : q(Pname,Student,Semester) ←Registered(Student,C-number,Semester),
Advisor(Pname,Student),
Teaches(Pname, C-number,Semester, xE),
Semester ≥ “Fall2000” .

(19.61)
View V1 below can be used to answer Q, since it uses the same join condition

for relations Registered and Teaches as Q, as it is shown by variables of the same
name. Furthermore, V1 selects attributes Student, PName, Semester, that are nec-
essary in order to properly join with relation Advisor, and for select clause of the
query. Finally, the predicate Semester > “Fall1999” is weaker than the predicate
Semester ≥ “Fall2000” of the query.

V1 : v1(Student,PName,Semester) ←Teaches(PName,C-number,Semester, xE),
Registered(Student,C-number,Semester),
Semester > “Fall1999” .

(19.62)
The following four views illustrate how minor modifications to V1 change the us-

ability in answering the query.

V2 : v2(Student,Semester) ←Teaches(xP ,C-number,Semester, xE),
Registered(Student,C-number,Semester),
Semester > “Fall1999” .

(19.63)

V3 : v3(Student,PName,Semester) ←Teaches(PName, C-number, xS , xE),
Registered(Student,C-number,Semester),
Semester > “Fall1999” .

(19.64)
V4 : v4(Student,PName,Semester) ←Teaches(PName, C-number,Semester, xE),

Adviser(PName, xSt),Professor(PName, xA),
Registered(Student,C-number,Semester),
Semester > “Fall1999” .

(19.65)



19.3. Query rewriting 915

V5 : v5(Student,PName,Semester) ←Teaches(PName, C-number,Semester, xE),
Registered(Student,C-number,Semester),
Semester > “Fall2001” .

(19.66)
View V2 is similar to V1, except that it does not select the attribute PName from

relation Teaches, which is needed for the join with the relation Adviser and for the
selection of the query. Hence, to use V2 in the rewriting, it has to be joined with
relation Teaches again. Still, if the join of relations Registered and Teaches is very
selective, then employing V2 may actually result in a more efficient query execution
plan.

In view V3 the join of relations Registered and Teaches is over only attribute
C-number, the equality of variables Semester and xS is not required. Since attribute
xS is not selected by V3, the join predicate cannot be applied in the rewriting, and
therefore there is little gain by using V3.

View V4 considers only the professors who have at least one area of research.
Hence, the view applies an additional condition that does not exists in the query,
and cannot be used in an equivalent rewriting unless union and negation are allowed
in the rewriting language. However, if there is an integrity constraint stating that
every professor has at least one area of research, then an optimiser should be able
to realise that V4 is usable.

Finally, view V5 applies a stronger predicate than the query, and is therefore
usable for a contained rewriting, but not for an equivalent rewriting of the query.

System-R style optimisation Before discussing the changes to traditional
optimisation, first the principles underlying the System-R style optimiser is re-
called briefly. System-R takes a bottom-up approach to building query execution
plans. In the first phase, it concentrates of plans of size 1, i.e., chooses the best ac-
cess paths to every table mentioned in the query. In phase n, the algorithm considers
plans of size n, by combining plans obtained in the previous phases (sizes of k and
n−k). The algorithm terminates after constructing plans that cover all the relations
in the query. The efficiency of System-R stems from the fact that it partitions query
execution plans into equivalence classes, and only considers a single execution
plan for every equivalence class. Two plans are in the same equivalence class if they

• cover the same set of relations in the query (and therefore are also of the same
size), and

• produce the answer in the same interesting order.

In our context, the query optimiser builds query execution plans by accessing a set
of views, rather than a set of database relations. Hence, in addition to the meta-data
that the query optimiser has about the materialised views (e.g., statistics, indexes)
the optimiser is also given as input the query expressions defining the views. Th
additional issues that the optimiser needs to consider in the presence of materialised
views are as follows.

A. In the first iteration the algorithm needs to decide which views are relevant
to the query according to the conditions illustrated above. The corresponding



916 19. Query Rewriting in Relational Databases

step is trivial in a traditional optimiser: a relation is relevant to the query if it
is in the body of the query expression.

B. Since the query execution plans involve joins over views, rather than joins over
database relations, plans can no longer be neatly partitioned into equivalence
classes which can be explored in increasing size. This observation implies several
changes to the traditional algorithm:

1.Termination testing: the algorithm needs to distinguish partial query
execution plans of the query from complete query execution plans.
The enumeration of the possible join orders terminates when there are no
more unexplored partial plans. In contrast, in the traditional setting the
algorithm terminates after considering the equivalence classes that include
all the relations of the query.

2.Pruning of plans: a traditional optimiser compares between pairs of plans
within one equivalence class and saves only the cheapest one for each class.
I our context, the query optimiser needs to compare between any pair of
plans generated thus far. A plan p is pruned if there is another plan p′ that

(a)is cheaper than p, and

(b)has greater or equal contribution to the query than p. Informally, a
plan p′ contributes more to the query than plan p if it covers more of
the relations in the query and selects more of the necessary attributes.

3.Combining partial plans: in the traditional setting, when two partial
plans are combined, the join predicates that involve both plans are explicit
in the query, and the enumeration algorithm need only consider the most
efficient way to apply these predicates. However, in our case, it may not
be obvious a priori which join predicate will yield a correct rewriting of
the query, since views are joined rather than database relations directly.
Hence, the enumeration algorithm needs to consider several alternative join
predicates. Fortunately, in practice, the number of join predicates that need
to be considered can be significantly pruned using meta-data about the
schema. For example, there is no point in trying to join a string attribute
with a numeric one. Furthermore, in some cases knowledge of integrity
constraints and the structure of the query can be used to reduce the number
of join predicates to be considered. Finally, after considering all the possible
join predicates, the optimiser also needs to check whether the resulting plan
is still a partial solution to the query.

The following table summarises the comparison of the traditional optimiser versus
one that exploits materialised views.



19.3. Query rewriting 917

Conventional optimiser Optimiser using views
Iteration 1 Iteration 1
a) Find all possible access paths. a1)Find all views that are relevant to

the query.
a2) Distinguish between partial and
complete solutions to the query.

b) Compare their cost and keep the
least expensive.

b) Compare all pairs of views. If one has
neither greater contribution nor a lower
cost than the other, prune it.

c) If the query has one relation, stop. c) If there are no partial solutions,
stop.

Iteration 2 Iteration 2
For each query join:
a) Consider joining the relevant access
paths found in the previous iteration
using all possible join methods.

a1) Consider joining all partial solu-
tions found in the previous iteration us-
ing all possible equi-join methods and
trying all possible subsets of join pred-
icates.
a2) Distinguish between partial and
complete solutions to the query.

b) Compare the cost of the resulting
join plans and keep the least expensive.

b) If any newly generated solution is ei-
ther not relevant to the query, or dom-
inated by another, prune it.

c) If the query has two relations, stop. c) If there are no partial solutions,
stop.

Iteration 3 Iteration 3
...

...

Another method of equivalent rewriting is using transformation rules. The common
theme in the works of that area is that replacing some part of the query with a view
is considered as another transformation available to the optimiser. These methods
are not discussed in detail here.

The query optimisers discussed above were designed to handle cases where the
number of views is relatively small (i.e., comparable to the size of the database
schema), and cases where equivalent rewriting is required. In contrast, the context
of data integration requires consideration of large number of views, since each data
source is being described by one or more views. In addition, the view definitions
may contain many complex predicates, whose goal is to express fine-grained dis-
tinction between the contents of different data sources. Furthermore, in the context
of data integration it is often assumed that the views are not complete, i.e., they
may only contain a subset of the tuples satisfying their definition. In the foregoing,
some algorithms for answering queries using views are described that were developed
specifically for the context of data integration.



918 19. Query Rewriting in Relational Databases

The Bucket Algorithm. The goal of the Bucket Algorithm is to reformulate
a user query that is posed on a mediated (virtual) schema into a query that refers
directly to the available sources. Both the query and the sources are described by
conjunctive queries that may include atoms of arithmetic comparison predicates.
The set of comparison atoms of query Q is denoted by C(Q).

Since the number of possible rewritings may be exponential in the size of the
query, the main idea underlying the bucket algorithm is that the number of query
rewritings that need to be considered can be drastically reduced if we first consider
each subgoal – the relational atoms of the query – is considered in isolation, and
determine which views may be relevant to each subgoal.

The algorithm proceeds as follows. First, a bucket is created for each subgoal in
the query Q that is not in C(Q), containing the views that are relevant to answering
the particular subgoal. In the second step, all such conjunctive query rewritings are
considered that include one conjunct (view) from each bucket. For each rewriting V
obtained it is checked that whether it is semantically correct, that is V v Q holds,
or whether it can be made semantically correct by adding comparison atoms. Fi-
nally the remaining plans are minimised by pruning redundant subgoals. Algorithm
Create-Bucket executes the first step described above. Its input is a set of source
descriptions V and a conjunctive query Q in the form

Q : Q(X̃) ← R1(X̃1), R2(X̃2), . . . , Rm(X̃m), C(Q) . (19.67)

Create-Bucket(Q,V)

1 for i ← 1 to m
2 do Bucket[i] ← ∅
3 for all V ∈ V
4 � V is of form V : V (Ỹ ) ← S1(Ỹ1), . . . Sn(Ỹn), C(V ).
5 do for j ← 1 to n
6 if Ri = Sj

7 then let φ be a mapping defined on the variables
of V as follows:

8 if y is the kth variable of Ỹj and y ∈ Ỹ
9 then φ(y) = xk, where xk is the kth variable of X̃i

10 else φ(y) is a new variable that
does not appear in Q or V .

11 Q′() ← R1(X̃1), Rm(X̃m), C(Q), S1(φ(Ỹ1)), . . . ,
Sn(φ(Ỹn)), φ(C(V ))

12 if Satisfiable≥(Q′)
13 then add φ(V ) to Bucket[i].
14 return Bucket

Procedure Satisfiable≥ is the extension of Satisfiable described in section
19.1.2 to the case when comparison atoms may occur besides equality atoms. The
necessary change is only that for all variable y occurring in comparison atoms it
must be checked whether all predicates involving y are satisfiable simultaneously.



19.3. Query rewriting 919

Create-Bucket running time is polynomial function of the sizes of Q and V.
Indeed, the kernel of the nested loops of lines 3 and 5 runs n

∑
V ∈V |V | times. The

commands of lines 6–13 require constant time, except for line 12. The condition of
of command if in line 12 can be checked in polynomial time.

In order to prove the correctness of procedure Create-Bucket, one should
check under what condition is a view V put in Bucket[i]. In line 6 it is checked
whether relation Ri appears as a subgoal in V . If not, then obviously V cannot give
usable information for subgoal Ri of Q. If Ri is a subgoal of V , then in lines 9–10
a mapping is constructed that applied to the variables allows the correspondence
between subgoals Sj and Ri, in accordance with relations occurring in the heads of
Q and V, respectively. Finally, in line 12 it is checked whether the comparison atoms
contradict with the correspondence constructed.

In the second step, having constructed the buckets using Create-Bucket, the
bucket algorithm finds a set of conjunctive query rewritings, each of them being
a conjunctive query that includes one conjunct from every bucket. Each of these
conjunctive query rewritings represents one way of obtaining part of the answer to
Q from the views. The result of the bucket algorithm is defined to be the union of the
conjunctive query rewritings (since each of the rewritings may contribute different
tuples). A given conjunctive query Q′ is a conjunctive query rewriting, if

1. Q′ v Q, or

2. Q′ can be extended with comparison atoms, so that the previous property
holds.

Example 19.10Bucket algorithm. Consider the following query Q that lists those articles
x that there exists another article y of the same area such that x and y mutually cites each
other. There are three views (sources) available, V1, V2, V3.

Q(x) ← cite(x, y), cite(y, x), sameArea(x, y)
V1(a) ← cite(a, b), cite(b, a)
V2(c, d) ← sameArea(c, d)
V3(f, h) ← cite(f, g), cite(g, h), sameArea(f, g) .

(19.68)

In the first step, applying Create-Bucket, the following buckets are constructed.

cite(x, y) cite(y, x) sameArea(x, y)
V1(x) V1(x) V2(x)
V3(x) V3(x) V3(x)

(19.69)

In the second step the algorithm constructs a conjunctive query Q′ from each element of
the Cartesian product of the buckets, and checks whether Q′ is contained in Q. If yes, it is
given to the answer.

In our case, it tries to match V1 with the other views, however no correct answer is
obtained so. The reason is that b does not appear in the head of V1, hence the join condition
of Q – variables x and y occur in relation sameArea, as well – cannot be applied. Then
rewritings containing V3 are considered, recognising that equating the variables in the head
of V3 a contained rewriting is obtained. Finally, the algorithm finds that combining V3

and V2 rewriting is obtained, as well. This latter is redundant, as it is obtained by simple



920 19. Query Rewriting in Relational Databases

checking, that is V2 can be pruned. Thus, the result of the bucket algorithm for query
(19.68) is the following (actually equivalent) rewriting

Q′(x) ← V3(x, x) . (19.70)

The strength of the bucket algorithm is that it exploits the predicates in the
query to prune significantly the number of candidate conjunctive rewritings that
need to be considered. Checking whether a view should belong to a bucket can
be done in time polynomial in the size of the query and view definition when the
predicates involved are arithmetic comparisons. Hence, if the data sources (i.e., the
views) are indeed distinguished by having different comparison predicates, then the
resulting buckets will be relatively small.

The main disadvantage of the bucket algorithm is that the Cartesian product
of the buckets may still be large. Furthermore, the second step of the algorithm
needs to perform a query containment test for every candidate rewriting, which is
NP-complete even when no comparison predicates are involved.

Inverse-rules algorithm. The Inverse-rules algorithm is a procedure that can
be applied more generally than the Bucket algorithm. It finds a maximally contained
rewriting for any query given by arbitrary recursive datalog program that does not
contain negation, in polynomial time.

The first question is that for given datalog program P and set of conjunctive
queries V, whether there exists a datalog program Pv equivalent with P, whose edb
relations are relations v1, v2, . . . , vn of V. Unfortunately, this is algorithmically un-
decidable. Surprisingly, the best, maximally contained rewriting can be constructed.
In the case, when there exists a datalog program Pv equivalent with P, the algo-
rithm finds that, since a maximally contained rewriting contains Pv, as well. This
seemingly contradicts to the fact that the existence of equivalent rewriting is algorith-
mically undecidable, however it is undecidable about the result of the inverse-rules
algorithm, whether it is really equivalent to the original query.

Example 19.11 Equivalent rewriting. Consider the following datalog program P, where
edb relations edge and black contain the edges and vertices coloured black of a graph G.

P : q(X, Y ) ← edge(X, Z), edge(Z, Y ), black(Z)
q(X, Y ) ← edge(X, Z), black(Z), q(Z, Y ) .

(19.71)

It is easy to check that P lists the endpoints of such paths (more precisely walks) of graph G
whose inner points are all black. Assume that only the following two views can be accessed.

v1(X, Y ) ← edge(X, Y ), black(X)
v2(X, Y ) ← edge(X, Y ), black(Y )

(19.72)

v1 stores edges whose tail is black, while v2 stores those, whose head is black. There exists
an equivalent rewriting Pv of datalog program P that uses only views v1 and v2 as edb
relations:

Pv : q(X, Y ) ← v2(X, Z), v1(Z, Y )
q(X, Y ) ← v2(X, Z), q(Z, Y )

(19.73)

However, if only v1, or v2 is accessible alone, then equivalent rewriting is not possible, since



19.3. Query rewriting 921

only such paths are obtainable whose starting, or respectively, ending vertex is black.

In order to describe the Inverse-rules Algorithm, it is necessary to introduce the
Horn rule, which is a generalisation of datalog program, and datalog rule. If
function symbols are also allowed in the free tuple ui of rule (19.27) in Defini-
tion 19.11, besides variables and constants, then Horn rule is obtained. A logic
program is a collection of Horn rules. In this sense a logic program without function
symbols is a datalog program. The concepts of edb and idb can be defined for logic
programs in the same way as for datalog programs.

The Inverse-rules Algorithm consists of two steps. First, a logic program is con-
structed that may contain function symbols. However, these will not occur in recur-
sive rules, thus in the second step they can be eliminated and the logic program can
be transformed into a datalog program.

Definition 19.30 The inverse v−1 of view v given by

v(X1, . . . ,Xm) ← v1(Ỹ1), . . . , vn(Ỹn) (19.74)

is the following collection of Horn rules. A rule corresponds to every subgoal vi(Ỹi),
whose body is the literal v(X1, . . . ,Xm). The head of the rule is vi(Z̃i), where Z̃i

is obtained from Ỹi by preserving variables appearing in the head of rule (19.74),
while function symbol fY (X1, . . . ,Xm) is written in place of every variable Y not
appearing the head. Distinct function symbols correspond to distinct variables. The
inverse of a set V of views is the set {v−1 : v ∈ V}, where distinct function symbols
occur in the inverses of distinct rules.

The idea of the definition of inverses is that if a tuple (x1, . . . xm) appears in a view v,
for some constants x1, . . . xm, then there is a valuation of every variable y appearing
in the head that makes the body of the rule true. This “unknown” valuation is
denoted by the function symbol fY (X1, . . . ,Xm).

Example 19.12 Inverse of views. Let V be the following collection of views.

v1(X, Y ) ← edge(X, Z), edge(Z, W ), edge(W, Y )
v2(X)) ← edge(X, Z) .

(19.75)

Then V−1 consists of the following rules.

edge(X, f1,Z(X, Y )) ← v1(X, Y )
edge(f1,Z(X, Y ), f1,W (X, Y )) ← v1(X, Y )
edge(f1,W (X, Y ), Y ) ← v1(X, Y )
edge(X, f2,Z(X)) ← v2(X) .

(19.76)

Now, the maximally contained rewriting of datalog program P using views V
can easily be constructed for given P and V.

First, those rules are deleted from P that contain such edb relation that do not
appear in the definition any view from V. The rules of V−1 are added the datalog
program P− obtained so, thus forming logic program (P−,V−1). Note, that the
remaining edb relations of P are idb relations in logic program (P−,V−1), since they



922 19. Query Rewriting in Relational Databases

b c d ea

Figure 19.4 The graph G.

f(a,c) f(b,d) f(c,e)

a b c ed

Figure 19.5 The graph G′.

appear in the heads of the rules of V−1. The names of idb relations are arbitrary,
so they can be renamed so that their names do not coincide with the names of edb
relations of P. However, this is not done in the following example, for the sake of
better understanding.

Example 19.13 Logic program. Consider the following datalog program that calculates
the transitive closure of relation edge.

P : q(X, Y ) ← edge(X, Y )
q(X, Y ) ← edge(X, Z), q(Z, Y )

(19.77)

Assume that only the following materialised view is accessible, that stores the endpoints of
paths of length two. If only this view is usable, then the most that can be expected is listing
the endpoints of paths of even length. Since the unique edb relation of datalog program P
is edge, that also appears in the definition of v, the logic program (P−,V−1) is obtained by
adding the rules of V−1 to P.

(P−,V−1) : q(X, Y ) ← edge(X, Y )
q(X, Y ) ← edge(X, Z), q(Z, Y )
edge(X, f(X, Y )) ← v(X, Y )
edge(f(X, Y ), Y ) ← v(X, Y ) .

(19.78)

Let the instance of the edb relation edge of datalog program P be the graph G shown on
Figure 19.4. Then (P−,V−1) introduces three new constants, f(a, c), f(b, d) és f(c, e). The
idb relation edge of logic program V−1 is graph G′ shown on Figure 19.5. P− computes
the transitive closure of graph G′. Note that those pairs in th transitive closure that do not
contain any of the new constants are exactly the endpoints of even paths of G.

The result of logic program (P−,V−1) in Example 19.13 can be calculated by
procedure Naïv-datalog, for example. However, it is not true for logic programs
in general, that the algorithm terminates. Indeed, consider the logic program

q(X) ← p(X)
q(f(X)) ← q(X) .

(19.79)



19.3. Query rewriting 923

If the edb relation p contains the constant a, then the output of the program is the
infinite sequence a, f(a), f(f(a)), f(f(f(a))), . . .. In contrary to this, the output of
the logic program (P−,V−1) given by the Inverse-rules Algorithm is guaranteed to
be finite, thus the computation terminates in finite time.

Theorem 19.31 For arbitrary datalog program P and set of conjunctive views V,
and for finite instances of the views, there exist a unique minimal fixpoint of the
logic program (P−,V−1), furthermore procedures Naiv-Datalog and Semi-Naiv-
Datalog give this minimal fixpoint as output.

The essence of the proof of Theorem 19.31 is that function symbols are only intro-
duced by inverse rules, that are in turn not recursive, thus terms containing nested
functions symbols are not produced. The details of the proof are left for the Reader
(Exercise 19.3-3).

Even if started from the edb relations of a database, the output of a logic program
may contain tuples that have function symbols. Thus, a filter is introduced that
eliminates the unnecessary tuples. Let database D be the instance of the edbrelations
of datalog program P. P(D)↓ denotes the set of those tuples from P(D) that do not
contain function symbols. Let P↓ denote that program, which computes P(D)↓ for
a given instance D. The proof of the following theorem, exceeds the limitations of
the present chapter.

Theorem 19.32 For arbitrary datalog program P and set of conjunctive views
V, the logic program (P−,V−1)↓ is a maximally contained rewriting of P using V.
Furthermore, (P−,V−1) can be constructed in polynomial time of the sizes of P and
V.

The meaning of Theorem 19.32 is that the simple procedure of adding the inverses
of view definitions to a datalog program results in a logic program that uses the
views as much as possible. It is easy to see that (P−,V−1) can be constructed in
polynomial time of the sizes of P and V, since for every subgoal vi ∈ V a unique
inverse rule must be constructed.

In order to completely solve the rewriting problem however, a datalog program
needs to be produced that is equivalent with the logic program (P−,V−1)↓. The
key to this is the observation that (P−,V−1)↓ contains only finitely many function
symbols, furthermore during a bottom-up evaluation like Naiv-Datalog and its
versions, nested function symbols are not produced. With proper book keeping the
appearance of function symbols can be kept track, without actually producing those
tuples that contain them.

The transformation is done bottom-up like in procedure Naiv-Datalog. The
function symbol f(X1, . . . ,Xk) appearing in the idb relation of V−1 is replaced by
the list of variables X1, . . . ,Xk. At same time the name of the idb relation needs
to be marked, to remember that the list X1, . . . ,Xk belongs to function symbol
f(X1, . . . ,Xk). Thus, new “temporary” relation names are introduced. Consider the
the rule

edge(X, f(X,Y )) ← v(X,Y ) (19.80)

of the logic program (19.78) in Example 19.13. It is replaced by rule

edge〈1,f(2,3)〉(X,X, Y ) ← v(X,Y ) (19.81)



924 19. Query Rewriting in Relational Databases

Notation 〈1, f(2, 3)〉 means that the first argument of edge〈1,f(2,3)〉 is the same as
the first argument of edge, while the second and third arguments of edge〈1,f(2,3)〉

together with function symbol f give the second argument of edge. If a function
symbol would become an argument of an idb relation of P− during the bottom-up
evaluation of (P−,V−1), then a new rule is added to the program with appropriately
marked relation names.

Example 19.14 Transformation of logic program into datalog program. The logic program
Example 19.13 is transformed to the following datalog program by the procedure sketched
above. The different phases of the bottom-up execution of Naiv-Datalog are separated
by lines.

edge〈1,f(2,3)〉(X, X, Y ) ← v(X, Y )
edge〈f(1,2),3〉(X, Y, Y ) ← v(X, Y )
q〈1,f(2,3)〉(X, Y1, Y2) ← edge〈1,f(2,3)〉(X, Y1, Y2)
q〈f(1,2),3〉(X1, X2, Y ) ← edge〈f(1,2),3〉(X1, X2, Y )
q(X, Y ) ← edge〈1,f(2,3)〉(X, Z1, Z2), q〈f(1,2),3〉(Z1, Z2, Y )
q〈f(1,2),f(3,4)〉(X1, X2, Y1, Y2) ← edge〈f(1,2),3〉(X1, X2, Z), q〈1,f(2,3)〉(Z, Y1, Y2)
q〈f(1,2),3〉(X1, X2, Y ) ← edge〈f(1,2),3〉(X1, X2, Z), q(Z, Y )
q〈1,f(2,3)〉(X, Y1, Y2) ← edge〈1,f(2,3)〉(X, Z1, Z2), q〈f(1,2),f(3,4)〉(Z1, Z2, Y1, Y2)

(19.82)

The datalog program obtained shows clearly that which arguments could involve
function symbols in the original logic program. However, some rows containing func-
tion symbols never give tuples not containing function symbols during the evaluation
of the output of the program.

Relation p is called significant, if in the precedence graph of Definition 19.163

there exists oriented path from p to the output relation of q. If p is not significant,
then the tuples of p are not needed to compute the output of the program, thus p
can be eliminated from the program.

Example 19.15 Eliminating non-significant relations. There exists no directed path in
the precedence graph of the datalog program obtained in Example 19.14, from relations
q〈1,f(2,3)〉 and q〈f(1,2),f(3,4)〉 to the output relation q of the program, thus they are not
significant, i.e., they can be eliminated together with the rules that involve them. The
following datalog program is obtained:

edge〈1,f(2,3)〉(X, X, Y ) ← v(X, Y )
edge〈f(1,2),3〉(X, Y, Y ) ← v(X, Y )
q〈f(1,2),3〉(X1, X2, Y ) ← edge〈f(1,2),3〉(X1, X2, Y )
q〈f(1,2),3〉(X1, X2, Y ) ← edge〈f(1,2),3〉(X1, X2, Z), q(Z, Y )
q(X, Y ) ← edge〈1,f(2,3)〉(X, Z1, Z2), q〈f(1,2),3〉(Z1, Z2, Y ) .

(19.83)

One more simplification step can be performed, which does not decrease the
number of necessary derivations during computation of the output, however avoids
redundant data copying. If p is such a relation in the datalog program that is defined

3 Here the definition of precedence graph needs to be extended for the edb relations of the datalog
program, as well.



19.3. Query rewriting 925

by a single rule, which in turn contains a single relation in its body, then p can be
removed from the program and replaced by the relation of the body of the rule
defining p, having equated the variables accordingly.

Example 19.16 Avoiding unnecessary data copying. In Example 19.14 the relations
edge〈1,f(2,3)〉 and edge〈f(1,2),3〉 are defined by a single rule, respectively, furthermore these
two rules both have a single relation in their bodies. Hence, program (19.83) can be sim-
plified further.

q〈f(1,2),3〉(X, Y, Y ) ← v(X, Y )
q〈f(1,2),3〉(X, Z, Y ) ← v(X, Z), q(Z, Y )
q(X, Y ) ← v(X, Z), q〈f(1,2),3〉(X, Z, Y ) .

(19.84)

The datalog program obtained in the two simplification steps above is denoted by
(P−,V−1)datalog. It is clear that there exists a one-to-one correspondence between the
bottom-up evaluations of (P−,V−1) and (P−,V−1)datalog. Since the function symbols
in (P−,V−1)datalog are kept track, it is sure that the output instance obtained is in
fact the subset of tuples of the output of (P−,V−1) that do not contain function
symbols.

Theorem 19.33 For arbitrary datalog program P that does not contain negations,
and set of conjunctive views V, the logic program (P−,V−1)↓ is equivalent with the
datalog program (P−,V−1)datalog.

MiniCon. The main disadvantage of the Bucket Algorithm is that it considers
each of the subgoals in isolation, therefore does not observe the most of the inter-
actions between the subgoals of the views. Thus, the buckets may contain many
unusable views, and the second phase of the algorithm may become very expensive.

The advantage of the Inverse-rules Algorithm is its conceptual simplicity and
modularity. The inverses of the views must be computed only once, then they can
be applied to arbitrary queries given by datalog programs. On the other hand, much
of the computational advantage of exploiting the materialised views can be lost.
Using the resulting rewriting produced by the algorithm for actually evaluating
queries from the views has significant drawback, since it insists on recomputing the
extensions of the database relations.

The MiniCon algorithm addresses the limitations of the previous two algo-
rithms. The key idea underlying the algorithm is a change of perspective: instead
of building rewritings for each of the query subgoals, it is considered how each of
the variables in the query can interact with the available views. The result is that
the second phase of MiniCon needs to consider drastically fewer combinations of
views. In the following we return to conjunctive queries, and for the sake of easier
understanding only such views are considered that do not contain constants.

The MiniCon algorithm starts out like the Bucket Algorithm, considering which
views contain subgoals that correspond to subgoals in the query. However, once the
algorithm finds a partial variable mapping from a subgoal g in the query to a subgoal
g1 in a view V , it changes perspective and looks at the variables in the query. The
algorithm considers the join predicates in the query – which are specified by multiple



926 19. Query Rewriting in Relational Databases

occurrences of the same variable – and finds the minimal additional set of subgoals
that must be mapped to subgoals in V , given that g will be mapped to g1. This set
of subgoals and mapping information is called a MiniCon Description (MCD).
In the second phase the MCDs are combined to produce query rewritings. The
construction of the MCDs makes the most expensive part of the Bucket Algorithm
obsolete, that is the checking of containment between the rewritings and the query,
because the generating rule of MCDs makes it sure that their join gives correct
result.

For a given mapping τ : V ar(Q) −→ V ar(V ) subgoal g1 of view V is said to
cover a subgoal g of query Q, if τ(g) = g1. V ar(Q), and respectively V ar(V )
denotes the set of variables of the query, respectively of that of the view. In order
to prove that a rewriting gives only tuples that belong to the output of the query,
a homomorphism must be exhibited from the query onto the rewriting. An MCD
can be considered as a part of such a homomorphism, hence, these parts will be put
together easily.

The rewriting of query Q is a union of conjunctive queries using the views.
Some of the variables may be equated in the heads of some of the views as in the
equivalent rewriting (19.70) of Example 19.10. Thus, it is useful to introduce the
concept of head homomorphism. The mapping h : Var(V ) −→ Var(V ) is a head
homomorphism, if it is an identity on variables that do not occur in the head of V ,
but it can equate variables of the head. For every variable x of the head of V , h(x)
also appear in the head of V , furthermore h(x) = h(h(x)). Now, the exact definition
of MCD can be given.

Definition 19.34 The quadruple C = (hC , V (Ỹ )C , ϕC , GC) is a MiniCon De-
scription (MCD) for query Q over view V , where

• hC is a head homomorphism over V ,

• V (Ỹ )C is obtained from V by applying hC , that is Ỹ = hC(Ã), where Ã is the
set of variables appearing in the head of V ,

• ϕC is a partial mapping from V ar(Q) to hC(V ar(V )),

• GC is a set of subgoals of Q that are covered by some subgoal of HC(V ) using
the mapping ϕC (note: not all such subgoals are necessarily included in GC).

The procedure constructing MCDs is based on the following proposition.

Claim 19.35 Let C be a MiniCon Description over view V for query Q. C can be
used for a non-redundant rewriting of Q if the following conditions hold

C1. for every variable x that is in the head of Q and is in the domain of ϕC , as
well, ϕC(x) appears in the head of hC(V ), furthermore

C2. if ϕC(y) does not appear in the head of hC(V ), then for all such subgoals
of Q that contain y holds that

1.every variable of g appears in the domain of ϕC and

2.ϕC(g) ∈ hC(V ).



19.3. Query rewriting 927

Clause C1 is the same as in the Bucket Algorithm. Clause C2 means that if a
variable x is part of a join predicate which is not enforced by the view, then x must
be in the head of the view so the join predicate can be applied by another subgoal in
the rewriting. The procedure Form-MCDs gives the usable MiniCon Descriptions
for a conjunctive query Q and set of conjunctive views V.

Form-MCDs(Q,V)

1 C ← ∅
2 for each subgoal g of Q
3 do for V ∈ V
4 do for every subgoal v ∈ V
5 do Let h be the least restrictive head homomorphism on V ,

such that there exists a mapping ϕ with ϕ(g) = h(v).
6 if ϕ and h exist
7 then Add to C any new MCD C,

that can be constructed where:
8 (a) ϕC (respectively, hC) is

an extension of ϕ (respectively, h),
9 (b) GC is the minimal subset of subgoals of Q such that

GC , ϕC and hC satisfy Proposition 19.35, and
10 (c) It is not possible to extend ϕ and h to ϕ′

C

and h′
C such that (b) is satisfied,

and G′
C as defined in (b), is a subset of GC .

11 return C

Consider again query (19.68) and the views of Example 19.10. Procedure Form-
MCDs considers subgoal cite(x, y) of the query first. It does not create an MCD
for view V1, because clause C2 of Proposition 19.35 would be violated. Indeed, the
condition would require that subgoal sameArea(x, y) be also covered by V1 using
the mapping ϕ(x) = a, ϕ(y) = b, since is not in the head of V1.4 For the same
reason, no MCD will be created for V1 even when the other subgoals of the query
are considered. In a sense, the MiniCon Algorithm shifts some of the work done by
the combination step of the Bucket Algorithm to the phase of creating the MCDs
by using Form-MCDs. The following table shows the output of procedure Form-
MCDs.

V (Ỹ ) h ϕ G
V2(c, d) c→ c, d→ d x→ c, y → d 3
V3(f, f) f → f, h→ f x→ f, y → f 1, 2, 3

(19.85)

Procedure Form-MCDs includes in GC only the minimal set of subgoals that
are necessary in order to satisfy Proposition 19.35. This makes it possible that in
the second phase of the MiniCon Algorithm needs only to consider combinations of
MCDs that cover pairwise disjoint subsets of subgoals of the query.

Claim 19.36 Given a query Q, a set of views V, and the set of MCDs C for Q
over the views V, the only combinations of MCDs that can result in non-redundant

4 The case of ϕ(x) = b, ϕ(y) = a is similar.



928 19. Query Rewriting in Relational Databases

rewritings of Q are of the form C1, . . . Cl, where

C3. GC1
∪ · · · ∪GCl

contains all the subgoals of Q, and

C4. for every iNEj GCi
∩GCj

= ∅.

The fact that only such sets of MCDs need to be considered that provide partitions
of the subgoals in the query reduces the search space of the algorithm drastically.
In order to formulate procedure Combine-MCDs, another notation needs to be
introduced. The ϕC mapping of MCD C may map a set of variables of Q onto the
same variable of hC(V ). One arbitrarily chosen representative of this set is chosen,
with the only restriction that if there exists variables in this set from the head
of Q, then one of those is the chosen one. Let ECϕC

(x) denote the representative
variable of the set containing x. The MiniCon Description C is considered extended
with ECϕC

(x) in he following as a quintet (hC , V (Ỹ ), ϕC , GC , ECϕC
). If the MCDs

C1, . . . , Ck are to be combined, and for some iNEj ECϕCi
(x) = ECϕCi

(y) and
ECϕCj

(y) = ECϕCj
(z) holds, then in the conjunctive rewriting obtained by the join

x, y and z will be mapped to the same variable. Let SC denote the equivalence
relation determined on the variables of Q by two variables being equivalent if they
are mapped onto the same variable by ϕC , that is, xSCy ⇐⇒ ECϕC

(x) = ECϕC
(y).

Let C be the set of MCDs obtained as the output of Form-MCDs.

Combine-MCDs(C)
1 Answer ← ∅
2 for {C1, . . . , Cn} ⊆ C such that GC1

, . . . , GCn
is a partition of the subgoals of Q

3 do Define a mapping Ψi on Ỹi as follows:
4 if there exists a variable x in Q such that ϕi(x) = y
5 then Ψi(y) = x
6 else Ψi(y) is a fresh copy of y
7 Let S be the transitive closure of SC1

∪ · · · ∪ SCn

8 � S is an equivalence relation of variables of Q.
9 Choose a representative for each equivalence class of S.

10 Define mapping EC as follows:
11 if x ∈ V ar(Q)
12 then EC(x) is the representative of the equivalence class of x under S
13 else EC(x) = x
14 Let Q′ be given as Q′(EC(X̃)) ← VC1

(EC(Ψ1(Ỹ1))), . . . , VCn
(EC(Ψn(Ỹn)))

15 Answer ← Answer ∪ {Q′}
16 return Answer

The following theorem summarises the properties of the MiniCon Algorithm.

Theorem 19.37 Given a conjunctive query Q and conjunctive views V, both with-
out comparison predicates and constants, the MiniCon Algorithm produces the union
of conjunctive queries that is a maximally contained rewriting of Q using V.

The complete proof of Theorem 19.37 exceeds the limitations of the present chapter.
However, in Problem 19-1 the reader is asked to prove that union of the conjunctive



Notes for Chapter 19 929

queries obtained as output of Combine-MCDs is contained in Q.
It must be noted that the running times of the Bucket Algorithm, the Inverse-

rules Algorithm and the MiniCon Algorithm are the same in the worst case:
O(nmMn), where n is the number of subgoals in the query, m is the maximal
number of subgoals in a view, and M is the number of views. However, practical
test runs show that in case of large number of views (3–400 views) the MiniCon
Algorithm is significantly faster than the other two.

Exercises
19.3-1 Prove Theorem 19.25 using Proposition 19.24 and Theorem 19.20.
19.3-2 Prove the two statements of Lemma 19.26. Hint. For the first statement,
write in their definitions in place of views vi(Ỹi) into Q′. Minimise the obtained
query Q′′ using Theorem 19.19. For the second statement use Proposition 19.24 to
prove that there exists a homomorphism hi from the body of the conjunctive query
defining view vi(Ỹi) to the body of Q. Show that Ỹ ′

i = hi(Ỹi) is a good choice.
19.3-3 Prove Theorem 19.31 using that datalog programs have unique minimal
fixpoint.

Problems

19-1 MiniCon is correct
Prove that the output of the MiniCon Algorithm is correct. Hint. It is enough to
show that for each conjunctive query Q′ given in line 14 of Combine-MCDs Q′ v Q
holds. For the latter, construct a homomorphism from Q to Q′.

19-2 (P−,V−1)↓ is correct
Prove that each tuple produced by logic program (P−,V−1)↓ is contained in the
output of P (part of the proof of Theorem 19.32). Hint. Let t be a tuple in the output
of (P−,V−1) that does not contain function symbols. Consider the derivation tree of
t. Its leaves are literals, since they are extensional relations of program (P−,V−1).
If these leaves are removed from the tree, then the leaves of the remaining tree are
edb relations of P. Prove that the tree obtained is the derivation tree of t in datalog
program P.

19-3 Datalog views
This problem tries to justify why only conjunctive views were considered. Let V be
a set of views, Q be a query. For a given instance I of the views the tuple t is a
certain answer of query Q, if for any database instance D such that I ⊆ V(D),
t ∈ Q(D) holds, as well.

a. Prove that if the views of V are given by datalog programs, query Q is conjunc-
tive and may contain non-equality (NE) predicates, then the question whether
for a given instance I of the views tuple t is a certain answer of Q is algorith-
mically undecidable. Hint. Reduce to this question the Post Correspondence



930 19. Query Rewriting in Relational Databases

Problem, which is the following: Given two sets of words {w1, w2, . . . , wn} and
{w′

1, w
′
2, . . . , w

′
n} over the alphabet {a, b}. The question is whether there exists

a sequence of indices i1, i2, . . . , ik (repetition allowed) such that

wi1
wi2
· · ·wik

= w′
i1
w′

i2
· · ·w′

ik
. (19.86)

The Post Correspondence Problem is well known algorithmically undecidable
problem. Let the view V be given by the following datalog program:

V (0, 0) ← S(e, e, e)
V (X,Y ) ← V (X0, Y0), S(X0,X1, α1), . . . , S(Xg−1, Y, αg),

S(Y0, Y1, β1), . . . , S(Yh−1, Y, βh)
where wi = α1 . . . αg and w′

i = β1 . . . βh

is a rule for all i ∈ {1, 2, . . . , n}
S(X,Y,Z) ← P (X,X, Y ), P (X,Y,Z) .

(19.87)

Furthermore, let Q be the following conjunctive query.

Q(c) ← P (X,Y,Z), P (X,Y,Z ′), ZNEZ ′ . (19.88)

Show that for the instance I of V that is given by I(V ) = {〈e, e〉} and I(S) = {},
the tuple 〈c〉 is a certain answer of query Q if and only if the Post Correspondence
Problem with sets {w1, w2, . . . , wn} and {w′

1, w
′
2, . . . , w

′
n} has no solution.

b. In contrast to the undecidability result of a., if V is a set of conjunctive views
and query Q is given by datalog program P, then it is easy to decide about an
arbitrary tuple t whether it is a certain answer of Q for a given view instance I.
Prove that the datalog program (P−,V−1)datalog gives exactly the tuples of the
certain answer of Q as output.

Chapter Notes

There are several dimensions along which the treatments of the problem “answering
queries using views” can be classified. Figure 19.6 shows the taxonomy of the work.

The most significant distinction between the different work s is whether their
goal is data integration or whether it is query optimisation and maintenance of
physical data independence. The key difference between these two classes of works
is the output of the the algorithm for answering queries using views. In the former
case, given a query Q and a set of views V, the goal of the algorithm is to produce
an expression Q′ that references the views and is either equivalent to or contained
in Q. In the latter case, the algorithm must go further and produce a (hopefully
optimal) query execution plan for answering Q using the views (and possibly the
database relations). Here the rewriting must be an equivalent to Q in order to ensure
the correctness of the plan.

The similarity between these two bodies of work is that they are concerned with
the core issue of whether a rewriting of a query is equivalent or contained in the query.
However, while logical correctness suffices for the data integration context, it does



Notes for Chapter 19 931

Query answering
algorithms (complete or
incomplete sources)

(query optimisation and physical data independence)
Cost−based rewriting

Transformational approach Rewriting algorithms

Answering queries using views

Logical rewriting

(data integration)

System−R style

Figure 19.6 A taxonomy of work on answering queries using views.

not in the query optimisation context where we also need to find the cheapest plan
using the views. The complication arises because the optimisation algorithms need to
consider views that do not contribute to the logical correctness of the rewriting, but
do reduce the cost of the resulting plan. Hence, while the reasoning underlying the
algorithms in the data integration context is mostly logical, in the query optimisation
case it is both logical and cost-based. On the other hand, an aspect stressed in data
integration context is the importance of dealing with a large number of views, which
correspond to data sources. In the context of query optimisation it is generally
assumed (not always!) that the number of views is roughly comparable to the size
of the schema.

The works on query optimisation can be classified further into System-R style
optimisers and transformational optimisers. Examples of the former are works of
Chaudhuri, Krishnamurty, Potomianos and Shim [?]; Tsatalos, Solomon, and Ioan-
nidis [251]. Papers of Florescu, Raschid, and Valduriez [?]; Bello et. al. [?]; Deutsch,
Popa and Tannen [?], Zaharioudakis et. al. [?], furthermore Goldstein és Larson[?]
belong to the latter.

Rewriting algorithms in the data integration context are studied in works of
Yang and Larson [?]; Levy, Mendelzon, Sagiv and Srivastava [?]; Qian [?]; further-
more Lambrecht, Kambhampati and Gnanaprakasam [?]. The Bucket Algorithm
was introduced by Levy, Rajaraman and Ordille [?]. The Inverse-rules Algorithm is
invented by Duschka and Genesereth [?, ?]. The MiniCon Algorithm was developed
by Pottinger and Halevy [?, 208].

Query answering algorithms and the complexity of the problem is studied in
papers of Abiteboul and Duschka [?]; Grahne and Mendelzon [?]; furthermore Cal-
vanese, De Giacomo, Lenzerini and Vardi [?].

The STORED system was developed by Deutsch, Fernandez and Suciu [?]. Se-
mantic caching is discussed in the paper of Yang, Karlapalem and Li [?]. Extensions
of the rewriting problem are studied in [?, ?, ?, ?, ?].

Surveys of the area can be found in works of Abiteboul [?], Florescu, Levy and
Mendelzon [82], Halevy [?, 114], furthermore Ullman[?].

Research of the authors was (partially) supported by Hungarian National Re-
search Fund (OTKA) grants Nos. T034702, T037846T and T042706.



20. Semi-structured Databases

The use of the internet and the development of the theory of databases mutually
affect each other. The contents of web sites are usually stored by databases, while
the web sites and the references between them can also be considered a database
which has no fixed schema in the usual sense. The contents of the sites and the
references between sites are described by the sites themselves, therefore we can only
speak of semi-structured data, which can be best characterized by directed labeled
graphs. In case of semi-structured data, recursive methods are used more often for
giving data structures and queries than in case of classical relational databases.
Different problems of databases, e.g. restrictions, dependencies, queries, distributed
storage, authorities, uncertainty handling, must all be generalized according to this.
Semi-structuredness also raises new questions. Since queries not always form a closed
system like they do in case of classical databases, that is, the applicability of queries
one after another depends on the type of the result obtained, therefore the problem
of checking types becomes more emphasized.

The theoretical establishment of relational databases is closely related to finite
modelling theory, while in case of semi-structured databases, automata, especially
tree automata are most important.

20.1. Semi-structured data and XML

By semi-structured data we mean a directed rooted labeled graph. The root is a
special node of the graph with no entering edges. The nodes of the graph are objects
distinguished from each other using labels. The objects are either atomic or complex.
Complex objects are connected to one or more objects by directed edges. Values are
assigned to atomic objects. Two different models are used: either the vertices or the
edges are labeled. The latter one is more general, since an edge-labeled graph can
be assigned to all vertex-labeled graphs in such a way that the label assigned to the
edge is the label assigned to its endpoint. This way we obtain a directed labeled
graph for which all inward directed edges from a vertex have the same label. Using
this transformation, all concepts, definitions and statements concerning edge-labeled
graphs can be rewritten for vertex-labeled graphs.

The following method is used to gain a vertex-labeled graph from an edge-labeled



20.1. Semi-structured data and XML 933

root

a b

a c

a b

aa c

root

Figure 20.1 Edge-labeled graph assigned to a vertex-labeled graph.

root

a b

aa c

root

a b

aa c

Figure 20.2 An edge-labeled graph and the corresponding vertex-labeled graph.

graph. If edge (u, v) has label c, then remove this edge, and introduce a new vertex
w with label c, then add edges (u,w) and (w, v). This way we can obtain a vertex-
labeled graph of m+n nodes and 2m edges from an edge-labeled graph of n vertices
and m edges. Therefore all algorithms and cost bounds concerning vertex-labeled
graphs can be rewritten for edge-labeled graphs.

Since most books used in practice use vertex-labeled graphs, we will also use
vertex-labeled graphs in this chapter.

The XML (eXtensible Markup Language) language was originally designed to
describe embedded ordered labeled elements, therefore it can be used to represent
trees of semi-structured data. In a wider sense of the XML language, references
between the elements can also be given, thus arbitrary semi-structured data can be
described using the XML language.

The medusa.inf.elte.hu/forbidden site written in XML language is as follows.
We can obtain the vertex-labeled graph of Figure 20.3 naturally from the structural
characteristics of the code.



934 20. Semi-structured Databases

medusa.inf.elte.hu/tiltott

HTML

HEAD BODY

H1TITLE

403 Forbidden

You don’t have permission

to access /tiltott.

Apache server at medusa.inf.elte.huForbidden

ADDRESS

Figure 20.3 The graph corresponding to the XML file ”forbidden".

<HTML>
<HEAD>

<TITLE>403 Forbidden</TITLE>
</HEAD>
<BODY>

<H1>Forbidden</H1>
You don’t have permission to access /forbidden.

<ADDRESS>Apache Server at medusa.inf.elte.hu </ADDRESS>
</BODY>

</HTML>

Exercises
20.1-1 Give a vertex-labeled graph that represents the structure and formatting of
this chapter.
20.1-2 How many different directed vertex-labeled graphs exist with n vertices, m
edges and k possible labels? How many of these graphs are not isomorphic? What
values can be obtained for n = 5, m = 7 and k = 2?
20.1-3 Consider a tree in which all children of a given node are labeled with different
numbers. Prove that the nodes can be labeled with pairs (av, bv), where av and bv

are natural numbers, in such a way that
a. av < bv for every node v.
b. If u is a descendant of v, then av < au < bu < bv.
c. If u and v are siblings and number(u) < number(v), then bu < av.

20.2. Schemas and simulations

In case of relational databases, schemas play an important role in coding and query-
ing data, query optimization and storing methods that increase efficiency. When
working with semi-structured databases, the schema must be obtained from the



20.2. Schemas and simulations 935

database

R A B C

0 0 0
1 2 2

Q C D

0 0
0 2
1 1

R Q

row row row row row

A B C A CB C D C D C D

0 0 0 2 21 0 0 2 1 10

Figure 20.4 A relational database in the semi-structured model.

graph. The schema restricts the possible label strings belonging to the paths of the
graph.

Figure 20.4 shows the relational schemas with relations R(A,B,C) and Q(C,D),
respectively, and the corresponding semi-structured description. The labels of the
leaves of the tree are the components of the tuples. The directed paths lead-
ing from the root to the values contain the label strings database.R.tuple.A,
database.R.tuple.B, database.R.tuple.C, database.Q.tuple.C, database.Q.tuple.D.
This can be considered the schema of the semi-structured database. Note that the
schema is also a graph, as it can be seen on Figure 20.5. The disjoint union of the
two graphs is also a graph, on which a simulation mapping can be defined as fol-
lows. This way we create a connection between the original graph and the graph
corresponding to the schema.

Definition 20.1 Let G = (V,E,A, label()) be a vertex-labeled directed graph, where
V denotes the set of nodes, E the set of edges, A the set of labels, and label(v) is
the label belonging to node v. Denote by E−1(v) = {u | (u, v) ∈ E} the set of the
start nodes of the edges leading to node v. A binary relation s ( s ⊆ V × V ) is a
simulation, if, for s(u, v),
i) label(u) = label(v) and
ii) for all u′ ∈ E−1(u) there exists a v′ ∈ E−1(v) such that s(u′, v′)
Node v simulates node u, if there exists a simulation s such that s(u, v). Node
u and node v are similar, u ≈ v, if u simulates v and v simulates u.

It is easy to see that the empty relation is a simulation, that the union of sim-
ulations is a simulation, that there always exists a maximal simulation and that



936 20. Semi-structured Databases

database

R Q

row row

A B C C D

Figure 20.5 The schema of the semi-structured database given in Figure 20.4.

similarity is an equivalence relation. We can write E instead of E−1 in the above
definition, since that only means that the direction of the edges of the graph is
reversed.

We say that graph D simulates graph S if there exists a mapping f : VS 7→ VD

such that the relation (v, f(v)) is a simulation on the set VS × VD.
Two different schemas are used, a lower bound and an upper bound. If the data

graph D simulates the schema graph S, then S is a lower bound of D. Note that
this means that all label strings belonging to the directed paths in S appear in D
at some directed path. If S simulates D, then S is an upper bound of D. In this
case, the label strings of D also appear in S.

In case of semi-structured databases, the schemas which are greatest lower
bounds or lowest upper bounds play an important role.

A map between graphs S and D that preserves edges is called a morphism. Note
that f is a morphism if and only if D simulates S. To determine whether a morphism
from D to S exists is an NP-complete problem. We will see below, however, that the
calculation of a maximal simulation is a PTIME problem.

Denote by sim(v) the nodes that simulate v. The calculation of the maximal
simulation is equivalent to the determination of all sets sim(v) for v ∈ V . First, our
naive calculation will be based on the definition.

Naive-Maximal-Simulation(G)

1 for all v ∈ V
2 do sim(v)← {u ∈ V | label(u) = label(v)}
3 while ∃ u, v, w ∈ V : v ∈ E−1(u) ∧ w ∈ sim(u) ∧ E−1(w) ∩ sim(v) = ∅
4 do sim(u)← sim(u) \ {w}
5 return {sim(u) | u ∈ V }

Claim 20.2 The algorithm Naive-Maximal-Simulation computes the maximal
simulation in O(m2n3) time if m ≥ n.



20.2. Schemas and simulations 937

Proof Let us start with the elements of sim(u). If an element w of sim(u) does
not simulate u by definition according to edge (v, u), then we remove w from set
sim(u). In this case, we say that we improved set sim(u) according to edge (v, u).
If set sim(u) cannot be improved according to any of the edges, then all elements
of sim(u) simulate u. To complete the proof, notice that the while cycle consists of
at most n2 iterations.

The efficiency of the algorithm can be improved using special data structures.
First, introduce a set sim-candidate(u), which contains sim(u), and of the elements
of whom we want to find out whether they simulate u.

Improved-Maximal-Simulation(G)

1 for all v ∈ V
2 do sim-candidate(u)← V
3 if E−1(v) = ∅
4 then sim(v)← {u ∈ V | label(u) = label(v)}
5 else sim(v)← {u ∈ V | label(u) = label(v) ∧ E−1(u) 6= ∅}
6 while ∃ v ∈ V : sim(v) 6= sim-candidate(v)
7 do removal-candidate← E(sim-candidate(v)) \ E(sim(v))
8 for all u ∈ E(v)
9 do sim(u)← sim(u) \ removal-candidate

10 sim-candidate(v)← sim(v)
11 return {sim(u) | u ∈ V }

The while cycle of the improved algorithm possesses the following invariant
characteristics.

I1: ∀ v ∈ V : sim(v) ⊆ sim-candidate(v).
I2: ∀ u, v, w ∈ V : (v ∈ E−1(u) ∧ w ∈ sim(u)) ⇒ (E−1(w)∩sim-candidate(v) 6=

∅).

When improving the set sim(u) according to edge (v, u), we check whether
an element w ∈ sim(u) has parents in sim(v). It is sufficient to check that for
the elements of sim-candidate(v) instead of sim(v) because of I2. Once an element
w′ ∈ sim-candidate(v) \ sim(v) was chosen, it is removed from set sim-candidate(v).

We can further improve the algorithm if we do not compute the set
removal-candidate in the iterations of the while cycle but refresh the set dynami-
cally.

Efficient-Maximal-Simulation(G)

1 for all v ∈ V
2 do sim-candidate(v)← V
3 if E−1(v) = ∅
4 then sim(v)← {u ∈ V | label(u) = label(v)}
5 else sim(v)← {u ∈ V | label(u) = label(v) ∧ E−1(u) 6= ∅}



938 20. Semi-structured Databases

6 removal-candidate(v)← E(V ) \ E(sim(v))
7 while ∃ v ∈ V : removal-candidate(v) 6= ∅
8 do for all u ∈ E(v)
9 do for all w ∈ removal-candidate(v)

10 do if w ∈ sim(u)
11 then sim(u)← sim(u) \ {w}
12 for all w′′ ∈ E(w)
13 do if E−1(w′′) ∩ sim(u) = ∅
14 then removal-candidate(u)

← removal-candidate(u) ∪ {w′′}
15 sim-candidate(v)← sim(v)
16 removal-candidate(v)← ∅
17 return {sim(u) | u ∈ V }

The above algorithm possesses the following invariant characteristic with
respect to the while cycle.

I3: ∀ v ∈ V : removal-candidate(v) = E(sim-candidate(v)) \ E(sim(v)).

Use an n×n array as a counter for the realization of the algorithm. Let the value
counter[w′′, u] be the nonnegative integer |E−1(w′′) ∩ sim(u)|. The initial values of
the counter are set in O(mn) time. When element w is removed from set sim(u),
the values counter[w′′, u] must be decreased for all children w′′ of w. By this we
ensure that the innermost if condition can be checked in constant time. At the
beginning of the algorithm, the initial values of the sets sim(v) are set in O(n2)
time if m ≥ n. The setting of sets removal-candidate(v) takes altogether O(mn)
time. For arbitrary nodes v and w, if w ∈ removal-candidate(v) is true in the i-th
iteration of the while cycle, then it will be false in the j-th iteration for j > i. Since
w ∈ removal-candidate(v) implies w /∈ E(sim(v)), the value of sim-candidate(v) in
the j-th iteration is a subset of the value of sim(v) in the i-th iteration, and we know
that invariant I3 holds. Therefore w ∈ sim(u) can be checked in

∑
v

∑
w |E(v)| =

O(mn) time. w ∈ sim(u) is true at most once for all nodes w and u, since once the
condition holds, we remove w from set sim(u). This implies that the computation of
the outer if condition of the while cycle takes

∑
v

∑
w(1 + |E(v)|) = O(mn) time.

Thus we have proved the following proposition.

Claim 20.3 The algorithm Effective-Maximal-Simulation computes the max-
imal simulation in O(mn) time if m ≥ n.

If the inverse of a simulation is also a simulation, then it is called a bisimulation.
The empty relation is a bisimulation, and there always exist a maximal bisimulation.
The maximal bisimulation can be computed more efficiently than the simulation. The
maximal bisimulation can be computed in O(m lg n) time using the PT algorithm.
In case of edge-labeled graphs, the cost is O(m lg(m+ n)).

We will see that bisimulations play an important role in indexing semi-structured
databases, since the quotient graph of a graph with respect to a bisimulation con-



20.3. Queries and indexes 939

tains the same label strings as the original graph. Note that in practice, instead of
simulations, the so-called DTD descriptions are also used as schemas. DTD consists
of data type definitions formulated in regular language.

Exercises
20.2-1 Show that simulation does not imply bisimulation.
20.2-2 Define the operation turn-tree for a directed, not necessarily acyclic, vertex-
labeled graph G the following way. The result of the operation is a not necessarily
finite graph G′, the vertices of which are the directed paths of G starting from the
root, and the labels of the paths are the corresponding label strings. Connect node
p1 with node p2 by an edge if p1 can be obtained from p2 by deletion of its endpoint.
Prove that G and turn-tree(G) are similar with respect to the bisimulation.

20.3. Queries and indexes

The information stored in semi-structured databases can be retrieved using queries.
For this, we have to fix the form of the questions, so we give a query language, and
then define the meaning of questions, that is, the query evaluation with respect
to a semi-structured database. For efficient evaluation we usually use indexes. The
main idea of indexing is that we reduce the data stored in the database according
to some similarity principle, that is, we create an index that reflects the structure of
the original data. The original query is executed in the index, then using the result
we find the data corresponding to the index values in the original database. The size
of the index is usually much smaller than that of the original database, therefore
queries can be executed faster. Note that the inverted list type index used in case of
classical databases can be integrated with the schema type indexes introduced below.
This is especially advantageous when searching XML documents using keywords.

First we will get acquainted with the query language consisting of regular ex-
pressions and the index types used with it.

Definition 20.4 Given a directed vertex-labeled graph G = (V,E,
root,Σ, label, id, value), where V denotes the set of vertices, E ⊆ V × V the
set of edges and Σ the set of labels. Σ contains two special labels, ROOT and
VALUE. The label of vertex v is label(v), and the identifier of vertex v is id(v).
The root is a node with label ROOT, and from which all nodes can be reached via
directed paths. If v is a leaf, that is, if it has no outgoing edges, then its label is
VALUE, and value(v) is the value corresponding to leaf v. Under the term path
we always mean a directed path, that is, a sequence of nodes n0, . . . , np such that
there is an edge from ni to ni+1 if 0 ≤ i ≤ p − 1. A sequence of labels l0, . . . , lp
is called a label sequence or simple expression. Path n0, . . . ,np fits to the
label sequence l0, . . . , lp if label(ni) = li for all 0 ≤ i ≤ p.

We define regular expressions recursively.

Definition 20.5 Let R ::= ε | Σ | _ | R.R | R|R | (R) | R? | R∗, where R is a
regular expression, and ε is the empty expression, _ denotes an arbitrary label,
. denotes succession, | is the logical OR operation, ? is the optional choice, and *



940 20. Semi-structured Databases

means finite repetition. Denote by L(R) the regular language consisting of the label
sequences determined by R. Node n fits to a label sequence if there exists a
path from the root to node n such that fits to the label sequence. Node n fits to
the regular expression R if there exists a label sequence in the language L(R), to
which node n fits. The result of the query on graph G determined by the regular
expression R is the set R(G) of nodes that fit to expression R.

Since we are always looking for paths starting from the root when evaluating
regular expressions, the first element of the label sequence is always ROOT, which
can therefore be omitted.

Note that the set of languages L(R) corresponding to regular expressions is
closed under intersection, and the problem whether L(R) = ∅ is decidable.

The result of the queries can be computed using the nondeterministic automaton
AR corresponding to the regular expression R. The algorithm given recursively is as
follows.

Naive-Evaluation(G,AR)

1 Visited ← ∅ � If we were in node u in state s, then (u, s) was put in set Visited.
2 Traverse (root(G), starting-state(AR))

Traverse(u, s)

1 if (u, s) ∈ Visited
2 then return result[u, s]
3 Visited ← Visited ∪ {(u, s)}
4 result[u, s] ← ∅
5 for all s ε−→ s′

� If we get to state s′ from state s by reading sign ε.
6 do if s’ ∈ final-state(AR)
7 then result[u, s] ← {u} ∪ result[u, s]
8 result[u, s] ← result[u, s] ∪ Traverse(u, s′)

9 for all s
label(u)−→ s′

� If we get to state s′ from state s by reading sign label(u).
10 do if s′ ∈ final-state(AR)
11 then result[u, s] ← {u} ∪ result[u, s]
12 for all v, where (u, v) ∈ E(G) � Continue the traversal for the

children of node u recursively.
13 do result[u, s] ← result[u, s] ∪ Traverse(v, s′)
14 return result[u, s]

Claim 20.6 Given a regular query R and a graph G, the calculation cost of R(G)
is a polynomial of the number of edges of G and the number of different states of the
finite nondeterministic automaton corresponding to R.

Proof The sketch of the proof is the following. Let AR be the finite nondeterministic
automaton corresponding to R. Denote by |AR| the number of states of AR. Consider
the breadth-first traversal corresponding to the algorithm Traverse of graph G



20.3. Queries and indexes 941

with m edges, starting from the root. During the traversal we get to a new state of
the automaton according to the label of the node, and we store the state reached at
the node for each node. If the final state of the automaton is acceptance, then the
node is a result. During the traversal, we sometimes have to step back on an edge
to ensure we continue to places we have not seen yet. It can be proved that during
a traversal every edge is used at most once in every state, so this is the number of
steps performed by that automaton. This means O(|AR|m) steps altogether, which
completes the proof.

Two nodes of graph G are indistinguishable with regular expressions if
there is no regular R for which one of the nodes is among the results and the other
node is not. Of course, if two nodes cannot be distinguished, then their labels are
the same. Let us categorize the nodes in such a way that nodes with the same
label are in the same class. This way we produce a partition P of the set of nodes,
which is called the basic partition. It can also be seen easily that if two nodes are
indistinguishable, then it is also true for the parents. This implies that the set of
label sequences corresponding to paths from the root to the indistinguishable nodes
is the same. Let L(n) = {l0, . . . , lp | n fits to the label sequence l0, . . . , lp} for all
nodes n. Nodes n1 and n2 are indistinguishable if and only if L(n1) = L(n2). If the
nodes are assigned to classes in such a way that the nodes having the same value
L(n) are arranged to the same class, then we get a refinement P ′ of partition P . For
this new partition, if a node n is among the results of a regular query R, then all
nodes from the equivalence class of n are also among the results of the query.

Definition 20.7 Given a graph G = (V,E, root,Σ, label, id, value) and a partition
P of V that is a refinement of the basic partition, that is, for which the nodes
belonging to the same equivalence class have the same label. Then the graph I(G) =
(P,E′, root’,Σ, label’, id′, value’) is called an index. The nodes of the index graph are
the equivalence classes of partition P , and (I, J) ∈ E′ if and only if there exist i ∈ I
and j ∈ J such that (i, j) ∈ E. If I ∈ P , then id′(I) is the identifier of index node I,
label’(I) = label(n), where n ∈ I, and root’ is the equivalence class of partition P that
contains the root of G. If label(I) = VALUE, then label’(I) = {value(n) | n ∈ I}.

Given a partition P of set V , denote by class(n) the equivalence class of P that
contains n for n ∈ V . In case of indexes, the notation I(n) can also be used instead
of class(n).

Note that basically the indexes can be identified with the different partitions of
the nodes, so partitions can also be called indexes without causing confusion. Those
indexes will be good that are of small size and for which the result of queries is the
same on the graph and on the index. Indexes are usually given by an equivalence
relation on the nodes, and the partition corresponding to the index consists of the
equivalence classes.

Definition 20.8 Let P be the partition for which n,m ∈ I for a class I if and only
if L(n) = L(m). Then the index I(G) corresponding to P is called a naive index.

In case of naive indexes, the same language L(n) is assigned to all elements n of
class I in partition P , which will be denoted by L(I).



942 20. Semi-structured Databases

Claim 20.9 Let I be a node of the naive index and R a regular expression. Then
I ∩R(G) = ∅ or I ⊆ R(G).

Proof Let n ∈ I ∩ R(G) and m ∈ I. Then there exists a label sequence l0, . . . , lp
in L(R) to which n fits, that is, l0, . . . , lp ∈ L(n). Since L(n) = L(m), m also fits to
this label sequence, so m ∈ I ∩R(G).

Naive-Index-Evaluation(G,R)

1 let IG be the naive index of G
2 Q← ∅
3 for all I ∈ Naive-Evaluation(IG, AR)
4 do Q← Q ∪ I
5 return Q

Claim 20.10 Set Q produced by the algorithm Naive-Index-Evaluation is equal
to R(G).

Proof Because of the previous proposition either all elements of a class I are among
the results of a query or none of them.

Using naive indexes we can evaluate queries, but, according to the following
proposition, not efficiently enough. The proposition was proved by Stockmeyer and
Meyer in 1973.

Claim 20.11 The creation of the naive index IG needed in the algorithm Naive-
Index-Evaluation is PSPACE-complete.

The other problem with using naive indexes is that the sets L(I) are not neces-
sary disjoint for different I, which might cause redundancy in storing.

Because of the above we will try to find a refinement of the partition corre-
sponding to the naive index, which can be created efficiently and can still be used
to produce R(G).

Definition 20.12 Index I(G) is safe if for any n ∈ V and label sequence l0, . . . , lp
such that n fits to the label sequence l0, . . . , lp in graph G, class(n) fits to the label
sequence l0, . . . , lp in graph I(G). Index I(G) is exact if for any class I of the index
and label sequence l0, . . . , lp such that I fits to the label sequence l0, . . . , lp in graph
I(G), arbitrary node n ∈ I fits to the label sequence l0, . . . , lp in graph G.

Safety means that the nodes belonging to the result we obtain by evaluation
using the index contain the result of the regular query, that is, R(G) ⊆ R(I(G)),
while exactness means that the evaluation using the index does not provide false
results, that is, R(I(G)) ⊆ R(G). Using the definitions of exactness and of the edges
of the index the following proposition follows.

Claim 20.13 1. Every index is safe.
2. The naive index is safe and exact.



20.3. Queries and indexes 943

If I is a set of nodes of G, then the language L(I), to the label strings of which
the elements of I fit, was defined using graph G. If we wish to indicate this, we use
the notation L(I,G). However, L(I) can also be defined using graph I(G), in which
I is a node. In this case, we can use the notation L(I, I(G)) instead of L(I), which
denotes all label sequences to which node I fits in graph I(G). L(I,G) = L(I, I(G))
for safe and exact indexes, so in this case we can write L(I) for simplicity. Then L(I)
can be computed using I(G), since the size of I(G) is usually smaller than that of
G.

Arbitrary index graph can be queried using the algorithm Naive-Evaluation.
After that join the index nodes obtained. If we use an exact index, then the result
will be the same as the result we would have obtained by querying the original graph.

Index-Evaluation(G, I(G), AR)

1 let I(G) be the index of G
2 Q← ∅
3 for all I ∈ Naive-Evaluation(I(G), AR)
4 do Q← Q ∪ I
5 return Q

First, we will define a safe and exact index that can be created efficiently, and
is based on the similarity of nodes. We obtain the 1-index this way. Its size can
be decreased if we only require similarity locally. The A(k)-index obtained this way
lacks exactness, therefore using the algorithm Index-Evaluation we can get results
that do not belong to the result of the regular query R, so we have to test our results
to ensure exactness.

Definition 20.14 Let ≈ be an equivalence relation on set V such that, for u ≈ v,
i) label(u) = label(v),
ii) if there is an edge from node u′ to node u, then there exists a node v′ for which
there is an edge from node v′ to node v and u′ ≈ v′.
iii) if there is an edge from node v′ to node v, then there exists a node u′ for which
there is an edge from node u′ to node u and u′ ≈ v′.
The above equivalence relation is called a bisimulation. Nodes u and v of a graph
are bisimilar if and only if there exists a bisimulation ≈ such that u ≈ v.

Definition 20.15 Let P be the partition consisting of the equivalence classes of a
bisimulation. The index defined using partition P is called 1-index.

Claim 20.16 The 1-index is a refinement of the naive index. If the labels of the
ingoing edges of the nodes in graph G are different, that is, label(x) 6= label(x′) for
x 6= x′ and (x, y), (x′, y) ∈ E, then L(u) = L(v) if and only if u and v are bisimilar.

Proof label(u) = label(v) if u ≈ v. Let node u fit to the label sequence l0, . . . , lp,
and let u′ be the node corresponding to label lp−1. Then there exists a v′ such
that u′ ≈ v′ and (u′, u), (v′, v) ∈ E. u′ fits to the label sequence l0, . . . , lp−1, so, by
induction, v′ also fits to the label sequence l0, . . . , lp−1, therefore v fits to the label
sequence l0, . . . , lp. So, if two nodes are in the same class according to the 1-index,



944 20. Semi-structured Databases

then they are in the same class according to the naive index as well.
To prove the second statement of the proposition, it is enough to show that

the naive index corresponds to a bisimulation. Let u and v be in the same class
according to the naive index. Then label(u) = label(v). If (u′, u) ∈ E, then there
exists a label sequence l0, . . . , lp such that the last two nodes corresponding to the
labels are u′ and u. Since we assumed that the labels of the parents are different,
L(u) = L′ ∪ L′′, where L′ and L′′ are disjoint, and L′ = {l0, . . . , lp | u′ fits to the
sequence l0, . . . , lp−1, and lp = label(u)}, while L′′ = L(u) \ L′. Since L(u) = L(v),
there exists a v′ such that (v′, v) ∈ E and label(u′) = label(v′). L′ = {l0, . . . , lp | v′

fits to the sequence l0, . . . , lp−1, and lp = label(v)} because of the different labels of
the parents, so L(u′) = L(v′), and u′ ≈ v′ by induction, therefore u ≈ v.

Claim 20.17 The 1-index is safe and exact.

Proof If xp fits to the label sequence l0, . . . , lp in graph G because of nodes
x0, . . . , xp, then, by the definition of the index graph, there exists an edge from
class(xi) to class(xi+1), 0 ≤ i ≤ p − 1, that is, class(xp) fits to the label sequence
l0, . . . , lp in graph I(G). To prove exactness, assume that Ip fits to the label sequence
l0, . . . , lp in graph I(G) because of I0, . . . , Ip. Then there are u′ ∈ Ip−1, u ∈ Ip such
that u′ ≈ v′ and (v′, v) ∈ E, that is, v′ ∈ Ip−1. We can see by induction that v′ fits
to the label sequence l0, . . . , lp−1 because of nodes x0, . . . , xp−2, v

′, but then v fits to
the label sequence l0, . . . , lp because of nodes x0, . . . , xp−2, v

′, v in graph G.

If we consider the bisimulation in case of which all nodes are assigned to different
partitions, then the graph I(G) corresponding to this 1-index is the same as graph
G. Therefore the size of I(G) is at most the size of G, and we also have to store the
elements of I for the nodes I of I(G), which means we have to store all nodes of
G. For faster evaluation of queries we need to find the smallest 1-index, that is, the
coarsest 1-index. It can be checked that x and y are in the same class according to
the coarsest 1-index if and only if x and y are bisimilar.

1-Index-Evaluation(G,R)

1 let I1 be the coarsest 1-index of G
2 return Index-Evaluation(G, I1, AR)

In the first step of the algorithm, the coarsest 1-index has to be given. This can
be reduced to finding the coarsest stable partition, what we will discuss in the next
section of this chapter. Thus using the efficient version of the PT-algorithm, the
coarsest 1-index can be found with computation cost O(m lg n) and space require-
ment O(m+ n), where n and m denote the number of nodes and edges of graph G,
respectively.

Since graph I1 is safe and exact, it is sufficient to evaluate the query in graph I1,
that is, to find the index nodes that fit to the regular expression R. Using Proposition
20.6, the cost of this is a polynomial of the size of graph I1.

The size of I1 can be estimated using the following parameters. Let p be the
number of different labels in graph G, and k the diameter of graph G, that is,



20.4. Stable partitions and the PT-algorithm 945

the length of the longest directed path. (No node can appear twice in the directed
path.) If the graph is a tree, then the diameter is the depth of the tree. We often
create websites that form a tree of depth d, then we add a navigation bar consisting of
q elements to each page, that is, we connect each node of the graph to q chosen pages.
It can be proved that in this case the diameter of the graph is at most d+ q(d− 1).
In practice, d and q are usually very small compared to the size of the graph. The
proof of the following proposition can be found in the paper of Milo and Suciu.

Claim 20.18 Let the number of different labels in graph G be at most p, and let the
diameter of G be less than k. Then the size of the 1-index I1 defined by an arbitrary
bisimulation can be bounded from above with a bound that only depends on k and p
but does not depend on the size of G.

Exercises
20.3-1 Show that the index corresponding to the maximal simulation is between
the 1-index and the naive index with respect to refinement. Give an example that
shows that both inclusions are proper.
20.3-2 Denote by Is(G) the index corresponding to the maximal simulation. Does
Is(Is(G)) = Is(G) hold?
20.3-3 Represent graph G and the state transition graph of the automaton corre-
sponding to the regular expression R with relational databases. Give an algorithm
in a relational query language, for example in PL/SQL, that computes R(G).

20.4. Stable partitions and the PT-algorithm

Most index structures used for efficient evaluation of queries of semi-structured
databases are based on a partition of the nodes of a graph. The problem of cre-
ating indexes can often be reduced to finding the coarsest stable partition.

Definition 20.19 Let E be a binary relation on the finite set V , that is, E ⊆ V ×V .
Then V is the set of nodes, and E is the set of edges. For arbitrary S ⊆ V , let
E(S) = {y | ∃x ∈ S, (x, y) ∈ E} and E−1(S) = {x | ∃ y ∈ S, (x, y) ∈ E}. We say
that B is stable with respect to S for arbitrary S ⊆ V and B ⊆ V , if B ⊆ E−1(S)
or B ∩ E−1(S) = ∅. Let P be a partition of V , that is, a decomposition of V into
disjoint sets, or in other words, blocks. Then P is stable with respect to S,, if
all blocks of P are stable with respect to S. P is stable with respect to partition
P ′, if all blocks of P are stable with respect to all blocks of P ′. If P is stable with
respect to all of its blocks, then partition P is stable. Let P and Q be two partitions
of V . Q is a refinement of P , or P is coarser than Q, if every block of P is the
union of some blocks of Q. Given V , E and P , the coarsest stable partition is
the coarsest stable refinement of P , that is, the stable refinement of P that is coarser
than any other stable refinement of P .

Note that stability is sometimes defined the following way. B is stable with
respect to S if B ⊆ E(S) or B ∩ E(S) = ∅. This is not a major difference, only the



946 20. Semi-structured Databases

direction of the edges is reversed. So in this case stability is defined with respect to
the binary relation E−1 instead of E, where (x, y) ∈ E−1 if and only if (y, x) ∈ E,
since (E−1)−1(S) = {x | ∃ y ∈ S, (x, y) ∈ E−1)} = {x | ∃ y ∈ S, (y, x) ∈ E} = E(S).

Let |V | = n and |E| = m. We will prove that there always exists a unique solution
of the problem of finding the coarsest stable partition, and there is an algorithm that
finds the solution in O(m lg n) time with space requirement O(m+n). This algorithm
was published by R. Paige and R. E. Tarjan in 1987, therefore it will be called the
PT-algorithm.

The main idea of the algorithm is that if a block is not stable, then it can be split
into two in such a way that the two parts obtained are stable. First we will show a
naive method. Then, using the properties of the split operation, we will increase its
efficiency by continuing the procedure with the smallest part.

Definition 20.20 Let E be a binary relation on V , S ⊆ V and Q a partition of
V . Furthermore, let split(S,Q) be the refinement of Q which is obtained by splitting
all blocks B of Q that are not disjoint from E−1(S), that is, B ∩ E−1(S) 6= ∅ and
B \E−1(S) 6= ∅. In this case, add blocks B∩E−1(S) and B \E−1(S) to the partition
instead of B. S is a splitter of Q if split(S,Q) 6= Q.

Note that Q is not stable with respect to S if and only if S is a splitter of Q.
Stability and splitting have the following properties, the proofs are left to the

Reader.

Claim 20.21 Let S and T be two subsets of V , while P and Q two partitions of
V . Then
1. Stability is preserved under refinement, that is, if Q is a refinement of P , and P
is stable with respect to S, then Q is also stable with respect to S.
2. Stability is preserved under unification, that is, if P is stable with respect to both
S and T , then P is stable with respect to S ∪ T .
3. The split operation is monotonic in its second argument, that is, if P is a refine-
ment of Q, then split(S, P ) is a refinement of split(S,Q).
4. The split operation is commutative in the following sense. For arbitrary S, T and
P , split(S, split(T, P )) = split(T, split(S, P )), and the coarsest partition of P that is
stable with respect to both S and T is split(S, split(T, P )).

In the naive algorithm, we refine partition Q starting from partition P , until Q
is stable with respect to all of its blocks. In the refining step, we seek a splitter S of
Q that is a union of some blocks of Q. Note that finding a splitter among the blocks
of Q would be sufficient, but this more general way will help us in improving the
algorithm.

Naive-PT(V,E, P )

1 Q← P
2 while Q is not stable
3 do let S be a splitter of Q that is the union of some blocks of Q
4 Q← split(S,Q)
5 return Q



20.4. Stable partitions and the PT-algorithm 947

Note that the same set S cannot be used twice during the execution of the
algorithm, since stability is preserved under refinement, and the refined partition
obtained in step 4 is stable with respect to S. The union of the sets S used can
neither be used later, since stability is also preserved under unification. It is also
obvious that a stable partition is stable with respect to any S that is a union of
some blocks of the partition. The following propositions can be proved easily using
these properties.

Claim 20.22 In any step of the algorithm Naive-PT, the coarsest stable refine-
ment of P is a refinement of the actual partition stored in Q.

Proof The proof is by induction on the number of times the cycle is executed. The
case Q = P is trivial. Suppose that the statement holds for Q before using the
splitter S. Let R be the coarsest stable refinement of P . Since S consists of blocks of
Q, and, by induction, R is a refinement of Q, therefore S is the union of some blocks
of R. R is stable with respect to all of its blocks and the union of any of its blocks,
thus R is stable with respect to S, that is, R = split(S,R). On the other hand, using
that the split operation is monotonic, split(S,R) is a refinement of split(S,Q), which
is the actual value of Q.

Claim 20.23 The algorithm Naive-PT determines the unique coarsest stable re-
finement of P , while executing the cycle at most n− 1 times.

Proof The number of blocks of Q is obviously at least 1 and at most n. Using the
split operation, at least one block of Q is divided into two, so the number of blocks
increases. This implies that the cycle is executed at most n− 1 times. Q is a stable
refinement of P when the algorithm terminates, and, using the previous proposition,
the coarsest stable refinement of P is a refinement of Q. This can only happen if Q
is the coarsest stable refinement of P .

Claim 20.24 If we store the set E−1({x}) for all elements x of V , then the cost
of the algorithm Naive-PT is at most O(mn).

Proof We can assume, without restricting the validity of the proof, that there are
no sinks in the graph, that is, every node has outgoing edges. Then 1 ≤ |E({x})| for
arbitrary x in V . Consider a partition P , and split all blocks B of P . Let B′ be the
set of the nodes of B that have at least one outgoing edge. Then B′ = B ∩E−1(V ).
Now let B′′ = B\E−1(V ), that is, the set of sinks of B. Set B′′ is stable with respect
to arbitrary S, since B′′ ∩ E−1(S) = ∅, so B′′ does not have to be split during the
algorithm. Therefore, it is enough to examine partition P ′ consisting of blocks B′

instead of P , that is, a partition of set V ′ = E−1(V ). By adding blocks B′′ to the
coarsest stable refinement of P ′ we obviously get the coarsest stable refinement of
P . This means that there is a preparation phase before the algorithm in which P ′ is
obtained, and a processing phase after the algorithm in which blocks B′′ are added
to the coarsest stable refinement obtained by the algorithm. The cost of preparation



948 20. Semi-structured Databases

and processing can be estimated the following way. V ′ has at most m elements. If, for
all x in V we have E−1({x}), then the preparation and processing requires O(m+n)
time.

From now on we will assume that 1 ≤ |E({x})| holds for arbitrary x in V , which
implies that n ≤ m. Since we store sets E−1({x}), we can find a splitter among the
blocks of partition Q in O(m) time. This, combined with the previous proposition,
means that the algorithm can be performed in O(mn) time.

The algorithm can be executed more efficiently using a better way of finding
splitter sets. The main idea of the improved algorithm is that we work with two
partitions besides P , Q and a partition X that is a refinement of Q in every step
such that Q is stable with respect to all blocks of X. At the start, let Q = P and
let X be the partition consisting only one block, set V . The refining step of the
algorithm is repeated until Q = X.

PT(V,E, P )

1 Q← P
2 X ← {V }
3 while X 6= Q
4 do let S be a block of X that is not a block of Q,

and B a block of Q in S for which |B| ≤ |S|/2
5 X ← (X \ {S}) ∪ {B,S \B}
6 Q← split(S \B, split(B,Q))
7 return Q

Claim 20.25 The result of the PT-algorithm is the same as that of algorithm
Naive-PT.

Proof At the start, Q is a stable refinement of P with respect to the blocks of X.
In step 5, a block of X is split, thus we obtain a refinement of X. In step 6, by
refining Q using splits we ensure that Q is stable with respect to two new blocks of
X. The properties of stability mentioned in Proposition 20.21 and the correctness
of algorithm Naive-PT imply that the PT-algorithm also determines the unique
coarsest stable refinement of P .

In some cases one of the two splits of step 6 can be omitted. A sufficient condition
is that E is a function of x.

Claim 20.26 If |E({x})| = 1 for all x in V , then step 6 of the PT-algorithm can
be exchanged with Q← split(B,Q).

Proof Suppose that Q is stable with respect to a set S which is the union of some
blocks of Q. Let B be a block of Q that is a subset of S. It is enough to prove that
split(B,Q) is stable with respect to (S \B). Let B1 be a block of split(B,Q). Since
the result of a split according to B is a stable partition with respect to B, either B1 ⊆



20.4. Stable partitions and the PT-algorithm 949

E−1(B) or B1 ⊆ E−1(S)\E−1(B). Using |E({x})| = 1, we get B1∩E−1(S \B) = ∅
in the first case, and B1 ⊆ E−1(S \ B) in the second case, which means that we
obtained a stable partition with respect to (S \B).

Note that the stability of a partition with respect to S and B generally does
not imply that it is also stable with respect to (S \ B). If this is true, then the
execution cost of the algorithm can be reduced, since the only splits needed are the
ones according to B because of the reduced sizes.

The two splits of step 6 can cut a block into four parts in the general case.
According to the following proposition, one of the two parts gained by the first split
of a block remains unchanged at the second split, so the two splits can result in at
most three parts. Using this, the efficiency of the algorithm can be improved even
in the general case.

Claim 20.27 Let Q be a stable partition with respect to S, where S is the union
of some blocks of Q, and let B be a block of Q that is a subset of S. Furthermore,
let D be a block of Q that is cut into two (proper) parts D1 and D2 by the operation
split(B,Q) in such a way that none of these is the empty set. Suppose that block D1

is further divided into the nonempty sets D11 and D12 by split(S \ B, split(B,Q)).
Then
1. D1 = D ∩ E−1(B) and D2 = D \ D1 if and only if D ∩ E−1(B) 6= ∅ and
D \ E−1(B) 6= ∅.
2. D11 = D1 ∩E−1(S \B) and D12 = D1 \D11 if and only if D1 ∩E−1(S \B) 6= ∅
and D1 \ E−1(S \B) 6= ∅.
3. The operation split(S \B, split(B,Q)) leaves block D2 unchanged.
4. D12 = D1 ∩ (E−1(B) \ E−1(S \B)).

Proof The first two statements follow using the definition of the split operation.
To prove the third statement, suppose that D2 was obtained from D by a proper
decomposition. Then D∩E−1(B) 6= ∅, and since B ⊆ S, D∩E−1(S) 6= ∅. All blocks
of partition Q, including D, are stable with respect to S, which implies D ⊆ E−1(S).
Since D2 ⊆ D, D2 ⊆ E−1(S) \ E−1(B) = E−1(S \ B) using the first statement, so
D2 is stable with respect to the set S \B, therefore a split according to S \B does
not divide block D2. Finally, the fourth statement follows from D1 ⊆ E−1(B) and
D12 = D1 \ E−1(S \B).

Denote by counter(x, S) the number of nodes in S that can be reached from x,
that is, counter(x, S) = |S∩E({x})|. Note that if B ⊆ S, then E−1(B)\E−1(S\B) =
{x ∈ E−1(B) | counter(x,B) = counter(x, S)}.

Since sizes are always halved, an arbitrary x in V can appear in at most lgn+ 1
different sets B that were used for refinement in the PT-algorithm. In the following,
we will give an execution of the PT algorithm in which the determination of the
refinement according to block B in steps 5 and 6 of the algorithm costs O(|B| +∑

y∈B |E−1({y})|). Summing this for all blocks B used in the algorithm and for all
elements of these blocks, we get that the complexity of the algorithm Efficient-PT
is at most O(m lg n). To give such a realization of the algorithm, we have to choose



950 20. Semi-structured Databases

good data structures for the representation of our data.

• Attach node x to all edges (x, y) of set E, and attach the list {(x, y) | (x, y) ∈ E}
to all nodes y. Then the cost of reading set E−1({y}) is proportional to the size
of E−1({y}).

• Let partition Q be a refinement of partition X. Represent the blocks of the two
partitions by records. A block S of partition X is simple if it consists of one
block of Q, otherwise it is compound.

• Let C be the list of all compound blocks in partition X. At start, let C = {V },
since V is the union of the blocks of P . If P consists of only one block, then P
is its own coarsest stable refinement, so no further computation is needed.

• For any block S of partition P , let Q-blocks(S) be the double-chained list of the
blocks of partition Q the union of which is set S. Furthermore, store the values
counter(x, S) for all x in set E−1(S) to which one pointer points from all edges
(x, y) such that y is an element of S. At start, the value assigned to all nodes x
is counter(x, V ) = |E({x})|, and make a pointer to all nodes (x, y) that points
to the value counter(x, V ).

• For any block B of partition Q, let X-block(B) be the block of partition X
in which B appears. Furthermore, let size(B) be the cardinality of B, and
elements(B) the double-chained list of the elements of B. Attach a pointer to
all elements that points to the block of Q in which this element appears. Using
double chaining any element can be deleted in O(1) time.

Using the proof of Proposition 20.24, we can suppose that n ≤ m without re-
stricting the validity. It can be proved that in this case the space requirement for
the construction of such data structures is O(m).

Efficient-PT(V,E, P )

1 if |P | = 1
2 then return P
3 Q← P
4 X ← {V }
5 C ← {V } � C is the list of the compound blocks of X.
6 while C 6= ∅
7 do let S be an element of C
8 let B be the smaller of the first two elements of S
9 C ← C \ {S}

10 X ← (X \ {S}) ∪ {{B}, S \ {B}}
11 S ← S \ {B}
12 if |S| > 1
13 then C ← C ∪ {S}
14 Generate set E−1(B) by reading the edges (x, y) of set E for which y

is an element of B, and for all elements x of this set, compute the
value counter(x,B).



20.4. Stable partitions and the PT-algorithm 951

15 Find blocks D1 = D ∩ E−1(B) and D2 = D \D1 for all blocks
D of Q by reading set E−1(B)

16 By reading all edges (x, y) of set E for which y is an element of B,
create set E−1(B) \ E−1(S \B) checking the condition
counter(x,B) = counter(x, S)

17 Reading set E−1(B) \ E−1(S \B), for all blocks D of Q,
determine the sets D12 = D1 ∩ (E−1(B) \ E−1(S \B))
and D11 = D1 \D12

18 for all blocks D of Q for which D11 6= ∅, D12 6= ∅ and D2 6= ∅
19 do if D is a simple block of X
20 then C ← C ∪ {D}
21 Q← (Q \ {D}) ∪ {D11,D12,D2}
22 Compute the value counter(x, S) by reading

the edges (x, y) of E for which y is an element of B.
23 return Q

Claim 20.28 The algorithm Efficient-PT determines the coarsest stable refine-
ment of P . The computation cost of the algorithm is O(m lg n), and its space re-
quirement is O(m+ n).

Proof The correctness of algorithm follows from the correctness of the PT-algorithm
and Proposition 20.27. Because of the data structures used, the computation cost
of the steps of the cycle is proportional to the number of edges examined and the
number of elements of block B, which is O(|B|+∑y∈B |E−1({y})|) altogether. Sum
this for all blocks B used during the refinement and all elements of these blocks.
Since the size of B is at most half the size of S, arbitrary x in set V can be in at
most lgn+1 different sets B. Therefore, the total computation cost of the algorithm
is O(m lg n). It can be proved easily that a space of O(m+ n) size is enough for the
storage of the data structures used in the algorithm and their maintenance.

Note that the algorithm could be further improved by contracting some of its
steps but that would only decrease computation cost by a constant factor.

Let G−1 = (V,E−1) be the graph that can be obtained from G by changing
the direction of all edges of G. Consider a 1-index in graph G determined by the
bisimulation ≈. Let I and J be two classes of the bisimulation, that is, two nodes
of I(G). Using the definition of bisimulation, J ⊆ E(I) or E(I) ∩ J = ∅. Since
E(I) = (E−1)−1(I), this means that J is stable with respect to I in graph G−1. So
the coarsest 1-index of G is the coarsest stable refinement of the basic partition of
graph G−1.

Corollary 20.29 The coarsest 1-index can be determined using the algorithm
Efficient-PT. The computation cost of the algorithm is at most O(m lg n), and
its space requirement is at most O(m+ n).

Exercises
20.4-1 Prove Proposition 29.21.



952 20. Semi-structured Databases

20.4-2 Partition P is size-stable with respect to set S if |E({x})∩S| = |E({y})∩S|
for arbitrary elements x, y of a block B of P . A partition is size-stable if it is size-
stable with respect to all its blocks. Prove that the coarsest size-stable refinement
of an arbitrary partition can be computed in O(m lg n) time.
20.4-3 The 1-index is minimal if no two nodes I and J with the same label can be
contracted, since there exists a node K for which I ∪ J is not stable with respect to
K. Give an example that shows that the minimal 1-index is not unique, therefore it
is not the same as the coarsest 1-index.
20.4-4 Prove that in case of an acyclic graph, the minimal 1-index is unique and it
is the same as the coarsest 1-index.

20.5. A(k)-indexes

In case of 1-indexes, nodes of the same class fit to the same label sequences starting
from the root. This means that the nodes of a class cannot be distinguished by
their ancestors. Modifying this condition in such a way that indistinguishability is
required only locally, that is, nodes of the same class cannot be distinguished by at
most k generations of ancestors, we obtain an index that is coarser and consists of
less classes than the 1-index. So the size of the index decreases, which also decreases
the cost of the evaluation of queries. The 1-index was safe and exact, which we would
like to preserve, since these guarantee that the result we get when evaluating the
queries according to the index is the result we would have obtained by evaluating
the query according to the original graph. The A(k)-index is also safe, but it is not
exact, so this has to be ensured by modification of the evaluation algorithm.

Definition 20.30 The k-bisimulation ≈k is anequivalence relation on the nodes
V of a graph defined recursively as
i) u ≈0 v if and only if label(u) = label(v),
ii) u ≈k v if and only if u ≈k−1 v and if there is an edge from node u′ to node u,
then there is a node v′ from which there is an edge to node v and u′ ≈k−1 v′, also,
if there is an edge from node v′ to node v, then there is a node u′ from which there
is an edge to node u and u′ ≈k−1 v′.
In case u ≈k v u and v are k-bisimilar. The classes of the partition according to
the A(k)-index are the equivalence classes of the k-bisimulation.

The ”A" in the notation refers to the word ”approximative".
Note that the partition belonging to k = 0 is the basic partition, and by increas-

ing k we refine this, until the coarsest 1-index is reached.
Denote by L(u, k,G) the label sequences of length at most k to which u fits in

graph G. The following properties of the A(k)-index can be easily checked.

Claim 20.31
1. If u and v are k-bisimilar, then L(u, k,G) = L(v, k,G).
2. If I is a node of the A(k)-index and u ∈ I, then L(I, k, I(G)) = L(u, k,G).
3. The A(k)-index is exact in case of simple expressions of length at most k.
4. The A(k)-index is safe.



20.5. A(k)-indexes 953

5. The (k + 1)-bisimulation is a (not necessarily proper) refinement of the k-
bisimulation.

The A(k)-index compares the k-distance half-neighbourhoods of the nodes which
contain the root, so the equivalence of the nodes is not affected by modifications
outside this neighbourhood, as the following proposition shows.

Claim 20.32 Suppose that the shortest paths from node v to nodes x and y contain
more than k edges. Then adding or deleting an edge from u to v does not change the
k-bisimilarity of x and y.

We use a modified version of the PT-algorithm for creating the A(k)-index.
Generally, we can examine the problem of approximation of the coarsest stable
refinement.

Definition 20.33 Let P be a partition of V in the directed graph G = (V,E),
and let P0, P1, . . . , Pk be a sequence of partitions such that P0 = P and Pi+1 is the
coarsest refinement of Pi that is stable with respect to Pi. In this case, partition Pk

is the k-step approximation of the coarsest stable refinement of P .

Note that every term of sequence Pi is a refinement of P , and if Pk = Pk−1,
then Pk is the coarsest stable refinement of P . It can be checked easily that an
arbitrary approximation of the coarsest stable refinement of P can be computed
greedily, similarly to the PT-algorithm. That is, if a block B of Pi is not stable with
respect to a block S of Pi−1, then split B according to S, and consider the partition
split(S, Pi) instead of Pi.

Naive-Approximation(V,E, P, k)

1 P0 ← P
2 for i← 1 to k
3 do Pi ← Pi−1

4 for all S ∈ Pi−1such that split(S, Pi) 6= Pi

5 do Pi ← split(S, Pi)
6 return Pk

Note that the algorithm Naive-Approximation could also be improved simi-
larly to the PT-algorithm.

Algorithm Naive-Approximation can be used to compute the A(k)-index, all
we have to notice is that the partition belonging to the A(k)-index is stable with
respect to the partition belonging to the A(k − 1)-index in graph G−1. It can be
shown that the computation cost of the A(k)-index obtained this way is O(km),
where m is the number of edges in graph G.

A(k)-Index-Evaluation(G,AR, k)

1 let Ik be the A(k)-index of G
2 Q← Index-Evaluation(G, Ik, AR)



954 20. Semi-structured Databases

3 for all u ∈ Q
4 do if L(u) ∩ L(AR) = ∅
5 then Q← Q \ {u}
6 return Q

The A(k)-index is safe, but it is only exact for simple expressions of length at
most k, so in step 4, we have to check for all elements u of set Q whether it satisfies
query R, and we have to delete those from the result that do not fit to query R.
We can determine using a finite nondeterministic automaton whether a given node
satisfies expression R as in Proposition 20.6, but the automaton has to run in the
other way. The number of these checks can be reduced according to the following
proposition, the proof of which is left to the Reader.

Claim 20.34 Suppose that in the graph Ik belonging to the A(k)-index, index node
I fits to a label sequence that ends with s = l0, . . . , lp, p ≤ k−1. If all label sequences
of the form s’.s that start from the root satisfy expression R in graph G, then all
elements of I satisfy expression R.

Exercises
20.5-1 Denote by Ak(G) the A(k)-index of G. Determine whether Ak(Al(G)) =
Ak+l(G).
20.5-2 Prove Proposition 20.31.
20.5-3 Prove Proposition 20.32.
20.5-4 Prove Proposition 20.34.
20.5-5 Prove that the algorithm Naive-approximation generates the coarsest k-
step stable approximation.
20.5-6 Let A = {A0, A1, . . . , Ak} be a set of indexes, the elements of which are
A(0)-, A(1)-, . . . , A(k)-indexes, respectively. A is minimal, if by uniting any two
elements of Ai, Ai is not stable with respect to Ai−1, 1 ≤ i ≤ k. Prove that for
arbitrary graph, there exists a unique minimal A the elements of which are coarsest
A(i)-indexes, 0 ≤ i ≤ k.

20.6. D(k)- and M(k)-indexes

When using A(k)-indexes, the value of k must be chosen appropriately. If k is too
large, the size of the index will be too big, and if k is too small, the result obtained
has to be checked too many times in order to preserve exactness. Nodes of the same
class are similar locally, that is, they cannot be distinguished by their k distance
neighbourhoods, or, more precisely, by the paths of length at most k leading to
them. The same k is used for all nodes, even though there are less important nodes.
For instance, some nodes appear very rarely in results of queries in practice, and only
the label sequences of the paths passing through them are examined. There is no
reason for using a better refinement on the less important nodes. This suggests the
idea of using the dynamic D(k)-index, which assigns different values k to the nodes



20.6. D(k)- and M(k)-indexes 955

according to queries. Suppose that a set of queries is given. If there is an R.a.b and
an R.a.b.c query among them, where R and R′ are regular queries, then a partition
according to at least 1-bisimulation in case of nodes with label b, and according to
at least 2-bisimulation in case of nodes with label c is needed.

Definition 20.35 Let I(G) be the index graph belonging to graph G, and to all
index node I assign a nonnegative integer k(I). Suppose that the nodes of block I
are k(I)-bisimilar. Let the values k(I) satisfy the following condition: if there is an
edge from I to J in graph I(G), then k(I) ≥ k(J) − 1. The index I(G) having this
property is called a D(k)-index.

The ”D" in the notation refers to the word ”dynamic". Note that the A(k)-
index is a special case of the D(k)-index, since in case of A(k)-indexes, the elements
belonging to any index node are exactly k-bisimilar.

Since classification according to labels, that is, the basic partition is an A(0)-
index, and in case of finite graphs, the 1-index is the same as an A(k)-index for
some k, these are also special cases of the D(k)-index. The D(k)-index, just like
any other index, is safe, so it is sufficient to evaluate the queries on them. Results
must be checked to ensure exactness. The following proposition states that exactness
is guaranteed for some queries, therefore checking can be omitted in case of such
queries.

Claim 20.36 Let I1, I2, . . . , Is be a directed path in the D(k)-index, and suppose
that k(Ij) ≥ j − 1 if 1 ≤ j ≤ s. Then all elements of Is fit to the label sequence
label(I1), label(I2), . . . , label(Is).

Proof The proof is by induction on s. The case s = 1 is trivial. By the inductive
assumption, all elements of Is−1 fit to the label sequence label(I1), label(I2), . . . ,
label(Is−1). Since there is an edge from node Is−1 to node Is in graph I(G), there
exist u ∈ Is and v ∈ Is−1 such that there is an edge from v to u in graph G. This
means that u fits to the label sequence label(I1), label(I2), . . . , label(Is) of length
s − 1. The elements of Is are at least (s − 1)-bisimilar, therefore all elements of Is

fit to this label sequence.

Corollary 20.37 The D(k)-index is exact with respect to label sequence l0, . . . , lm
if k(I) ≥ m for all nodes I of the index graph that fit to this label sequence.

When creating the D(k)-index, we will refine the basic partition, that is, the
A(0)-index. We will assign initial values to the classes consisting of nodes with the
same label. Suppose we use t different values. Let K0 be the set of these values, and
denote the elements of K0 by k1 > k2 > . . . > kt. If the elements of K0 do not satisfy
the condition given in the D(k)-index, then we increase them using the algorithm
Weight-Changer, starting with the greatest value, in such a way that they satisfy
the condition. Thus, the classes consisting of nodes with the same label will have
good k values. After this, we refine the classes by splitting them, until all elements of
a class are k-bisimilar, and assign this k to all terms of the split. During this process



956 20. Semi-structured Databases

the edges of the index graph must be refreshed according to the partition obtained
by refinement.

Weight-Changer(G, K0)

1 K ← ∅
2 K1 ← K0

3 while K1 6= ∅
4 do for all I, where I is a node of the A(0)-index and k(I) = max(K1)
5 do for all J , where J is a node of the A(0)-index

and there is an edge from J to I
6 k(J)← max(k(J),max(K1)− 1)
7 K ← K ∪ {max(K1)}
8 K1 ← {k(A) | A is a node of the A(0)-index } \K
9 return K

It can be checked easily that the computation cost of the algorithm Weight-
Changer is O(m), where m is the number of edges of the A(0)-index.

D(k)-Index-Creator(G,K0)

1 let I(G) be the A(0)-index belonging to graph G, let VI be the set
of nodes of I(G), let EI be the set of edges of I(G)

2 K ←Weight-Changer(G,K0) � Changing the initial weights
according to the condition of the D(k)-index.

3 for k ← 1 to max(K)
4 do for all I ∈ VI

5 do if k(I) ≥ k
6 then for all J , where (J, I) ∈ EI

7 do VI ← (VI \ {I}) ∪ {I ∩ E(J), I \ E(J)}
8 k(I ∩ E(J))← k(I)
9 k(I \ E(J))← k(I)

10 EI ← {(A,B) | A, B ∈ VI ,∃ a ∈ A,
∃ b ∈ B, (a, b) ∈ E}

11 I(G)← (VI , EI)
12 return I(G)

In step 7, a split operation is performed. This ensures that the classes con-
sisting of (k − 1)-bisimilar elements are split into equivalence classes according to
k-bisimilarity. It can be proved that the computation cost of the algorithm D(k)-
Index-Creator is at most O(km), where m is the number of edges of graph G,
and k = max(K0).

In some cases, the D(k)-index results in a partition that is too fine, and it is not
efficient enough for use because of its huge size. Over-refinement can originate in
the following. The algorithm D(k)-Index-Creator assigns the same value k to the
nodes with the same label, although some of these nodes might be less important
with respect to queries, or appear more often in results of queries of length much



20.6. D(k)- and M(k)-indexes 957

less than k, so less fineness would be enough for these nodes. Based on the value
k assigned to a node, the algorithm Weight-Changer will not decrease the value
assigned to the parent node if it is greater than k − 1. Thus, if these parents are
not very significant nodes considering frequent queries, then this can cause over-
refinement. In order to avoid over-refinement, we introduce the M(k)-index and the
M∗(k)-index, where the ”M" refers to the word ”mixed", and the ”*" shows that not
one index is given but a finite hierarchy of gradually refined indexes. The M(k)-index
is a D(k)-index the creation algorithm of which not necessarily assigns nodes with
the same label to the same k-bisimilarity classes.

Let us first examine how a D(k)-index I(G) = (VI , EI) must be modified if the
initial weight kI of index node I is increased. If k(I) ≥ kI , then I(G) does not
change. Otherwise, to ensure that the conditions of the D(k)-index on weights are
satisfied, the weights on the ancestors of I must be increased recursively until the
weight assigned to the parents is at least kI − 1. Then, by splitting according to
the parents, the fineness of the index nodes obtained will be at least kI , that is, the
elements belonging to them will be at least kI -bisimilar. This will be achieved using
the algorithm Weight-Increaser.

Weight-Increaser(I, kI , I(G))

1 if k(I) ≥ kI

2 then return I(G)
3 for all (J, I) ∈ EI

4 do I(G)←Weight-Increaser(J, kI − 1, I(G))
5 for all (J, I) ∈ EI

6 do VI ← (VI \ {I}) ∪ {I ∩E(J), I \ E(J)}
7 EI ← {(A,B) | A,B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
8 I(G)← (VI , EI)
9 return I(G)

The following proposition can be easily proved, and with the help of this we
will be able to achieve the appropriate fineness in one step, so we will not have to
increase step by step anymore.

Claim 20.38 u ≈k v if and only if u ≈0 v, and if there is an edge from node u′ to
node u, then there is a node v′, from which there is an edge to node v and u′ ≈k−1 v′,
and, conversely, if there is an edge from node v′ to node v, then there is a node u′,
from which there is an edge to node u and u′ ≈k−1 v′.

Denote by FRE the set of simple expressions, that is, the label sequences deter-
mined by the frequent regular queries. We want to achieve a fineness of the index
that ensures that it is exact on the queries belonging to FRE. For this, we have to
determine the significant nodes, and modify the algorithm D(k)-Index-Creator
in such a way that the not significant nodes and their ancestors are always deleted
at the refining split.

Let R ∈ FRE be a frequent simple query. Denote by S and T the set of nodes
that fit to R in the index graph and data graph, respectively, that is S = R(I(G))
and T = R(G). Denote by k(I) the fineness of index node I in the index graph I(G),



958 20. Semi-structured Databases

then the nodes belonging to I are at most k(I)-bisimilar.

Refine(R,S, T )

1 for all I ∈ S
2 do I(G)← Refine-Index-Node(I, length(R), I ∩ T )
3 while ∃ I ∈ VI such that k(I) < length(R) and I fits to R
4 do I(G)←Weight-Increaser(I, length(R), I(G))
5 return I(G)

The refinement of the index nodes will be done using the following algorithm.
First, we refine the significant parents of index node I recursively. Then we split I
according to its significant parents in such a way that the fineness of the new parts
is k. The split parts of I are kept in set H. Lastly, we unite those that do not contain
significant nodes, and keep the original fineness of I for this united set.

Refine-Index-Node(I, k, significant-nodes)

1 if k(I) ≥ k
2 then return I(G)
3 for all (J, I) ∈ EI

4 do significant-parents ← E−1(significant-nodes) ∩ J
5 if significant-parents 6= ∅
6 then Refine-Index-Node(J , k − 1, significant-parents)
7 k-previous ← k(I)
8 H ← {I}
9 for all (J, I) ∈ EI

10 do if E−1(significant-parents) ∩ J 6= ∅
11 then for all F ∈ H
12 do VI ← (VI \ {F}) ∪ {F ∩ E(J), F \ E(J)}
13 EI ← {(A,B) | A,B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
14 k(F ∩ E(J))← k
15 k(F \ E(J))← k
16 I(G)← (VI , EI)
17 H ← (H \ {F}) ∪ {F ∩E(J), F \ E(J)}
18 remaining ← ∅
19 for all F ∈ H
20 do if significant-nodes ∩ F = ∅
21 then remaining ← remaining ∪ F
22 VI ← (VI \ {F})
23 VI ← VI ∪ {remaining}
24 EI ← {(A,B) | A,B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
25 k(remaining) ← k-previous
26 I(G)← (VI , EI)
27 return I(G)



20.6. D(k)- and M(k)-indexes 959

The algorithm Refine refines the index graph I(G) according to a frequent
simple expression in such a way that it splits an index node into not necessarily
equally fine parts, and thus avoids over-refinement. If we start from the A(0)-index,
and create the refinement for all frequent queries, then we get an index graph that is
exact with respect to frequent queries. This is called the M(k)-index. The set FRE
of frequent queries might change during the process, so the index must be modified
dynamically.

Definition 20.39 The M(k)-index is a D(k)-index created using the following
M(k)-Index-Creator algorithm.

M(k)-Index-Creator(G,FRE)

1 I(G)← the A(0) index belonging to graph G
2 VI ← the nodes of I(G)
3 for all I ∈ VI

4 do k(I)← 0
5 EI ← the set of edges of I(G)
6 for all R ∈ FRE
7 do I(G)← Refine(R, R(I(G)), R(G))
8 return I(G)

The M(k)-index is exact with respect to frequent queries. In case of a not frequent
query, we can do the following. The M(k)-index is also a D(k)-index, therefore if an
index node fits to a simple expression R in the index graph I(G), and the fineness
of the index node is at least the length of R, then all elements of the index node
fit to the query R in graph G. If the fineness of the index node is less, then for all
of its elements, we have to check according to Naive-Evaluation whether it is a
solution in graph G.

When using the M(k)-index, over-refinement is the least if the lengths of the
frequent simple queries are the same. If there are big differences between the lengths
of frequent queries, then the index we get might be too fine for the short queries.
Create the sequence of gradually finer indexes with which we can get from the A(0)-
index to the M(k)-index in such a way that, in every step, the fineness of parts
obtained by splitting an index node is greater by at most one than that of the
original index node. If the whole sequence of indexes is known, then we do not have
to use the finest and therefore largest index for the evaluation of a simple query, but
one whose fineness corresponds to the length of the query.

Definition 20.40 The M∗(k)-index is a sequence of indexes I0, I1, . . . , Ik such
that

1. Index Ii is an M(i)-index, where i = 0, 1, . . . , k.

2. The fineness of all index nodes in Ii is at most i, where i = 0, 1, . . . , k.

3. Ii+1 is a refinement of Ii, where i = 0, 1, . . . , k − 1.



960 20. Semi-structured Databases

4. If node J of index Ii is split in index Ii+1, and J ′ is a set obtained by this
split, that is, J ′ ⊆ J , then k(J) ≤ k(J ′) ≤ k(J) + 1.

5. Let J be a node of index Ii, and k(J) < i. Then k(J) = k(J ′) for i < i′ and
for all J ′ index nodes of Ii′ such that J ′ ⊆ J .

It follows from the definition that in case of M∗(k)-indexes I0 is the A(0)-index.
The last property says that if the refinement of an index node stops, then its fineness
will not change anymore. The M∗(k)-index possesses the good characteristics of the
M(k)-index, and its structure is also similar: according to frequent queries the index
is further refined if it is necessary to make it exact on frequent queries, but now we
store and refresh the coarser indexes as well, not only the finest.

When representing the M∗(k)-index, we can make use of the fact that if an index
node is not split anymore, then we do not need to store this node in the new indexes,
it is enough to refer to it. Similarly, edges between such nodes do not have to be
stored in the sequence of indexes repeatedly, it is enough to refer to them. Creation
of the M∗(k)-index can be done similarly to the M(k)-Index-Creator algorithm.
The detailed description of the algorithm can be found in the paper of He and Yang.

With the help of the M∗(k)-index, we can use several strategies for the evaluation
of queries. Let R be a frequent simple query.

The simplest strategy is to use the index the fineness of which is the same as
the length of the query.

M∗(k)-Index-Naive-Evaluation(G, FRE, R)

1 {I0, I1 ,. . . , Ik} ← the M∗(k)-index corresponding to graph G
2 h← length(R)
3 return Index-Evaluation(G, Ih, AR)

The evaluation can also be done by gradually evaluating the longer prefixes of
the query according to the index the fineness of which is the same as the length of
the prefix. For the evaluation of a prefix, consider the partitions of the nodes found
during the evaluation of the previous prefix in the next index and from these, seek
edges labeled with the following symbol. Let R = l0, l1, . . . ,lh be a simple frequent
query, that is, length(R) = h.

M∗(k)-Index-Evaluation-Top-to-Bottom(G, FRE, R)

1 {I0, I1, . . . , Ik} ← the M∗(k)-index corresponding to graph G
2 R0 ← l0
3 H0 ← ∅
4 for all C ∈ EI0

(root(I0)) � The children of the root in graph I0.
5 do if label(C) = l0
6 then H0 ← H0 ∪ {C}
7 for j ← 1 to length(R)



20.7. Branching queries 961

8 do Hj ← ∅
9 Rj ← Rj−1.lj

10 Hj−1 ←M∗(k)-Index-Evaluation-Top-to-Bottom(G,FRE, Rj−1)
11 for all A ∈ Hj−1 � Node A is a node of graph Ij−1.
12 do if A = ∪Bm, where Bm ∈ VIj

� The partition of node A
in graph Ij .

13 then for minden Bm

14 do for all C ∈ EIj
(Bm) � For all children of

Bm in graph Ij .
15 do if label(C) = lj
16 then Hj ← Hj ∪ {C}
17 return Hh

Our strategy could also be that we first find a subsequence of the label sequence
corresponding to the simple query that contains few nodes, that is, its selectivity is
large. Then find the fitting nodes in the index corresponding to the length of the
subsequence, and using the sequence of indexes see how these nodes are split into new
nodes in the finer index corresponding to the length of the query. Finally, starting
from these nodes, find the nodes that fit to the remaining part of the original query.
The detailed form of the algorithm M∗(k)-Index-Prefiltered-Evaluation is left
to the Reader.

Exercises
20.6-1 Find the detailed form of the algorithm M∗(k)-Index-Prefiltered-
Evaluation . What is the cost of the algorithm?
20.6-2 Prove Proposition 20.38.
20.6-3 Prove that the computation cost of the algorithm Weight-Changer is
O(m), where m is the number of edges of the A(0)-index.

20.7. Branching queries

With the help of regular queries we can select the nodes of a graph that are reached
from the root by a path the labels of which fit to a given regular pattern. A natural
generalization is to add more conditions that the nodes of the path leading to the
node have to satisfy. For example, we might require that the node can be reached
by a label sequence from a node with a given label. Or, that a node with a given
label can be reached from another node by a path with a given label sequence. We
can take more of these conditions, or use their negation or composition. To check
whether the required conditions hold, we have to step not only forward according
to the direction of the edges, but sometimes also backward. In the following, we will
give the description of the language of branching queries, and introduce the forward-
backward indexes. The forward-backward index which is safe and exact with respect
to all branching queries is called FB-index. Just like the 1-index, this is also usually



962 20. Semi-structured Databases

too large, therefore we often use an FB(f, b, d)-index instead, which is exact if the
length of successive forward steps is at most f , the length of successive backward
steps is at most b, and the depth of the composition of conditions is at most d. In
practice, values f , b and d are usually small. In case of queries for which the value
of one of these parameters is greater than the corresponding value of the index, a
checking step must be added, that is, we evaluate the query on the index, and only
keep those nodes of the resulted index nodes that satisfy the query.

If there is a directed edge from node n to node m, then this can be denoted by
n/m or m\n. If node m can be reached from node n by a directed path, then we can
denote that by n//m or m\\n. (Until now we used . instead of /, so // represents
the regular expression _* or * in short.)

From now on, a label sequence is a sequence in which separators are the for-
ward signs (/, //) and the backward signs (\, \\). A sequence of nodes fit to a
label sequence if the relation of successive nodes is determined by the corresponding
separator, and the labels of the nodes come according to the label sequence.

There are only forward signs in forward label sequences, and only backward
signs in backward label sequences.

Branching queries are defined by the following grammar .

branching_query ::= forward_label sequence [ or_expression ]
forward_sign branching_expression

| forward_label_sequence [ or_expression ]
| forward_label_sequence

or_expression ::= and_expression or or_expression
| and_expressnion

and_expression ::= branching_condition and and_expression
| not_branching_condition and and_expression
| branching_condition
| not_branching_condition

not_branching_condition ::= not branching_condition
branching_condition ::= condition_label_sequence [ or_expression ]

branching_condition
| condition_label_sequence [ or_expression ]
| condition_label_sequence

condition_label_sequence ::= forward_sign label_sequence
| backward_sign label_sequence

In branching queries, a condition on a node with a given label holds if there
exists a label sequence that fits to the condition. For example, the root//a/b[\c//d
and not \e/f ]/g query seeks nodes with label g such that the node can be reached
from the root in such a way that the labels of the last two nodes are a and b,
furthermore, there exists a parent of the node with label b whose label is c, and
among the descendants of the node with label c there is one with label d, but it has
no children with label e that has a parent with label f .

If we omit all conditions written between signs [ ] from a branching query, then
we get the main query corresponding to the branching query. In our previous
example, this is the query root//a/b/g. The main query always corresponds to a



20.7. Branching queries 963

forward label sequence.
A directed graph can be assigned naturally to branching queries. Assign nodes

with the same label to the label sequence of the query, in case of separators / and \,
connect the successive nodes with a directed edge according to the separator, and in
case of separators // and \\, draw the directed edge and label it with label // or \\.
Finally, the logic connectives are assigned to the starting edge of the corresponding
condition as a label. Thus, it might happen that an edge has two labels, for example
// and ”and". Note that the graph obtained cannot contain a directed cycle because
of the definition of the grammar.

A simple degree of complexity of the query can be defined using the tree obtained.
Assign 0 to the nodes of the main query and to the nodes from which there is a
directed path to a node of the main query. Then assign 1 to the nodes that can be
reached from the nodes with sign 0 on a directed path and have no sign yet. Assign
2 to the nodes from which a node with sign 1 can be reached and have no sign yet.
Assign 3 to the nodes that can be reached from nodes with sign 2 and have no sign
yet, etc. Assign 2k + 1 to the nodes that can be reached from nodes with sign 2k
and have no sign yet, then assign 2k + 2 to the nodes from which nodes with sign
2k + 1 can be reached and have no sign yet. The value of the greatest sign in the
query is called the depth of the tree. The depth of the tree shows how many times
the direction changes during the evaluation of the query, that is, we have to seek
children or parents according to the direction of the edges. The same query could
have been given in different ways by composing the conditions differently, but it can
be proved that the value defined above does not depend on that, that is why the
complexity of a query was not defined as the number of conditions composed.

The 1-index assigns the nodes into classes according to incoming paths, using
bisimulations. The concept of stability used for computations was descendant-
stability. A set A of the nodes of a graph is descendant-stable with respect to
a set B of nodes if A ⊆ E(B) or A ∩ E(B) = ∅, where E(B) is the set of nodes
that can be reached by edges from B. A partition is stable if any two elements
of the partition are descendant-stable with respect to each other. The 1-index is
the coarsest descendant-stable partition that assigns nodes with the same label to
same classes, which can be computed using the PT-algorithm. In case of branching
queries, we also have to go backwards on directed edges, so we will need the concept
of ancestor-stability as well. A set A of nodes of a graph is ancestor-stable with
respect to a set B of the nodes if A ⊆ E−1(B) or A ∩ E−1(B) = ∅, where E−1(B)
denotes the nodes from which a node of B can be reached.

Definition 20.41 The FB-index is the coarsest refinement of the basic partition
that is ancestor-stable and descendant-stable.

Note that if the direction of the edges of the graph is reversed, then an ancestor-
stable partition becomes a descendant-stable partition and vice versa, therefore the
PT-algorithm and its improvements can be used to compute the coarsest ancestor-
stable partition. We will use this in the following algorithm. We start with classes
of nodes with the same label, compute the 1-index corresponding to this partition,
then reverse the direction of the edges, and refine this by computing the 1-index
corresponding to this. When the algorithm stops, we get a refinement of the initial



964 20. Semi-structured Databases

partition that is ancestor-stable and descendant-stable at the same time. This way
we obtain the coarsest such partition. The proof of this is left to the Reader.

FB-Index-Creator(V,E)

1 P ← A(0) � Start with classes of nodes with the same label.
2 while P changes
3 do P ← PT (V,E−1, P ) � Compute the 1-index.
4 P ← PT (V,E, P ) � Reverse the direction

� of edges, and compute the 1-index.
5 return P

The following corollary follows simply from the two stabilities.

Corollary 20.42 The FB-index is safe and exact with respect to branching queries.

The complexity of the algorithm can be computed from the complexity of the PT-
algorithm. Since P is always the refinement of the previous partition, in the worst
case refinement is done one by one, that is, we always take one element of a class
and create a new class consisting of that element. So in the worst case, the cycle is
repeated O(n) times. Therefore, the cost of the algorithm is at most O(mn lg n).

The partition gained by executing the cycle only once is called the F+B-index,
the partition obtained by repeating the cycle twice is the F+B+F+B-index, etc.

The following proposition can be proved easily.

Claim 20.43 The F+B+F+B+· · ·+F+B-index, where F+B appears d times, is
safe and exact with respect to the branching queries of depth at most d.

Nodes of the same class according to the FB-index cannot be distinguished by
branching queries. This restriction is usually too strong, therefore the size of the FB-
index is usually much smaller than the size of the original graph. Very long branching
queries are seldom used in practice, so we only require local equivalence, similarly to
the A(k)-index, but now we will describe it with two parameters depending on what
we want to restrict: the length of the directed paths or the length of the paths with
reversed direction. We can also restrict the depth of the query. We can introduce
the FB(f, b, d)-index, with which such restricted branching queries can be evaluated
exactly. We can also evaluate branching queries that do not satisfy the restrictions,
but then the result must be checked.

FB(f, b, d)-Index-Creator(V,E, f, b, d)

1 P ← A(0) � start with classes of nodes with the same label.
2 for i← 1 to d
3 do P ← Naive-Approximation(V , E−1, P , f) � Compute the A(f)-index.
4 P ← Naive-Approximation(V , E, P , b) � Reverse the direction

� of the edges, and compute the A(b)-index.
5 return P



20.8. Index refresh 965

The cost of the algorithm, based on the computation cost of the A(k)-index, is
at most O(dmmax(f, b)), which is much better than the computation cost of the
FB-index, and the index graph obtained is also usually much smaller.

The following proposition obviously holds for the index obtained.

Claim 20.44 The FB(f, b, d)-index is safe and exact for the branching queries in
which the length of forward-sequences is at most f , the length of backward-sequences
is at most b, and the depth of the tree corresponding to the query is at most d.

As a special case we get that the FB(∞,∞,∞)-index is the FB-index, the
FB(∞,∞, d)-index is the F+B+· · ·+F+B-index, where F+B appears d times, the
FB(∞, 0, 1)-index is the 1-index, and the FB(k, 0, 1)-index is the A(k)-index.

Exercises
20.7-1 Prove that the algorithm FB-Index-Creator produces the coarsest
ancestor-stable and descendant-stable refinement of the basic partition.
20.7-2 Prove Proposition 20.44.

20.8. Index refresh

In database management we usually have three important aspects in mind. We
want space requirement to be as small as possible, queries to be as fast as possible,
and insertion, deletion and modification of the database to be as quick as possible.
Generally, a result that is good with respect to one of these aspects is worse with
respect to another aspect. By adding indexes of typical queries to the database,
space requirement increases, but in return we can evaluate queries on indexes which
makes them faster. In case of dynamic databases that are often modified we have to
keep in mind that not only the original data but also the index has to be modified
accordingly. The most costly method which is trivially exact is that we create the
index again after every modification to the database. It is worth seeking procedures
to get the modified indexes by smaller modifications to those indexes we already
have.

Sometimes we index the index or its modification as well. The index of an index
is also an index of the original graph, although formally it consists of classes of index
nodes, but we can unite the elements of the index nodes belonging to the same class.
It is easy to see that by that we get a partition of the nodes of the graph, that is,
an index.

In the following, we will discuss those modifications of semi-structured databases
when a new graph is attached to the root and when a new edges is added to the
graph, since these are the ones we need when creating a new website or a new
reference.

Suppose that I(G) is the 1-index of graph G. Let H be a graph that has no
common node with G. Denote by I(H) the 1-index of H. Let F = G + H be the
graph obtained by uniting the roots of G and H. We want to create I(G+H) using
I(G) and I(H). The following proposition will help us.

Claim 20.45 Let I(G) be the 1-index of graph G, and let J be an arbitrary refine-
ment of I(G). Then I(J) = I(G).



966 20. Semi-structured Databases

Proof Let u and v be two nodes of G. We have to show that u and v are bisimilar in
G with respect to the 1-index if and only if J(u) and J(v) are bisimilar in the index
graph I(G) with respect to the 1-index of I(G). Let u and v be bisimilar in G with
respect to the 1-index. We will prove that there is a bisimulation according to which
J(u) and J(v) are bisimilar in I(G). Since the 1-index is the partition corresponding
to the coarsest bisimulation, the given bisimulation is a refinement of the bisimulation
corresponding to the 1-index, so J(u) and J(v) are also bisimilar with respect to
the bisimulation corresponding to the 1-index of I(G). Let J(a) ≈′

J(b) if and only
if a and b are bisimilar in G with respect to the 1-index. Note that since J is a
refinement of I(G), all elements of J(a) and J(b) are bisimilar in G if J(a) ≈′

J(b).
To show that the relation ≈′

is a bisimulation, let J(u′) be a parent of J(u), where
u′ is a parent of u1, and u1 is an element of J(u). Then u1, u and v are bisimilar in
G, so there is a parent v′ of v for which u′ and v′ are bisimilar in G. Therefore J(v′)
is a parent of J(v), and J(u′) ≈′

J(v′). Since bisimulation is symmetric, relation ≈′

is also symmetric. We have proved the first part of the proposition.
Let J(u) and J(v) be bisimilar in I(G) with respect to the 1-index of I(G). It is

sufficient to show that there is a bisimulation on the nodes of G according to which u
and v are bisimilar. Let a ≈′

b if and only if J(a) ≈ J(b) with respect to the 1-index
of I(G). To prove bisimilarity, let u′ be a parent of U . Then J(u′) is also a parent of
J(u). Since J(u) and J(v) are bisimilar if u ≈′

v, there is a parent J(v′′) of J(v) for
which J(u′) and J(v′′) are bisimilar with respect to the 1-index of I(G), and v′′ is a
parent of an element v1 of J(v). Since v and v1 are bisimilar, there is a parent v′ of
v such that v′ and v′′ are bisimilar. Using the first part of the proof, it follows that
J(v′) and J(v′′) are bisimilar with respect to the 1-index of I(G). Since bisimilarity
is transitive, J(u′) and J(v′) are bisimilar with respect to the 1-index of I(G), so
u′ ≈′

v′. Since relation ≈′

is symmetric by definition, we get a bisimulation.

As a consequence of this proposition, I(G+H) can be created with the following
algorithm for disjoint G and H.

Graphaddition-1-Index(G, H)

1 PG ← AG(0) � PG is the basic partition according to labels.
2 PH ← AH(0) � PH is the basic partition according to labels.
3 I1 ← PT (VG, E

−1
G , PG) � I1 is the 1-index of G.

4 I2 ← PT (VH , E
−1
H , PH) � I2 is the 1-index of H.

5 J ← I1 + I2 � The 1-indexes are joined at the roots.
6 PJ ← AJ(0) � PJ is the basic partition according to labels.
7 I ← PT (VJ , E

−1
J , PJ) � I is the 1-index of J .

8 return I

To compute the cost of the algorithm, suppose that the 1-index I(G) of G
is given. Then the cost of the creation of I(G + H) is O(mH lgnH + (mI(H) +
mI(G)) lg(nI(G) + nI(H))), where n and m denote the number of nodes and edges of
the graph, respectively.

To prove that the algorithm works, we only have to notice that I(G) + I(H)



20.8. Index refresh 967

is a refinement of I(G + H) if G and H are disjoint. This also implies that index
I(G) + I(H) is safe and exact, so we can use this as well if we do not want to find
the minimal index. This is especially useful if new graphs are added to our graph
many times. In this case we use the lazy method, that is, instead of computing the
minimal index for every pair, we simply sum the indexes of the addends and then
minimize only once.

Claim 20.46 Let I(Gi) be the 1-index of graph Gi, i = 1, . . . , k, and let the graphs
be disjoint. Then I(G1 + · · ·+Gk) = I(I(G1) + · · ·+ I(Gk)) for the 1-index I(G1 +
· · ·+Gk) of the union of the graphs joined at the roots.

In the following we will examine what happens to the index if a new edge is
added to the graph. Even an operation like this can have significant effects. It is not
difficult to construct a graph that contains two identical subgraphs at a distant of 2
from the root which cannot be contracted because of a missing edge. If we add this
critical edge to the graph, then the two subgraphs can be contracted, and therefore
the size of the index graph decreases to about the half of its original size.

Suppose we added a new edge to graph G from u to v. Denote the new graph by
G′, that is, G′ = G+ (u, v). Let partition I(G) be the 1-index of G. If there was an
edge from I(u) to I(v) in I(G), then the index graph does not have to be modified,
since there is a parent of the elements of I(v), that is, of all elements bisimilar to v,
in I(u) whose elements are bisimilar to u. Therefore I(G′) = I(G).

If there was no edge from I(u) to I(v), then we have to add this edge, but this
might cause that I(v) will no longer be stable with respect to I(u). Let Q be the
partition we get from I(G) by splitting I(v) in such a way that v is in one part
and the other elements of I(v) are in the other, and leaving all other classes of the
partition unchanged. Q defines its edges the usual way, that is, if there is an edge
from an element of a class to an element of another class, then we connect the two
classes with an edge directed the same way.

Let partition X be the original I(G). Then Q is a refinement of X, and Q is
stable with respect to X according to G′. Note that the same invariant property
appeared in the PT-algorithm for partitions X and Q. Using Proposition 20.45 it is
enough to find a refinement of I(G′). If we can find an arbitrary stable refinement
of the basic partition of G′, then, since the 1-index is the coarsest stable partition,
this will be a refinement of I(G′). X is a refinement of the basic partition, that is,
the partition according to labels, and so is Q. So if Q is stable, then we are done.
If it is not, then we can stabilize it using the PT-algorithm by starting with the
above partitions X and Q. First we have to examine those classes of the partition
that contain a children of v, because these might lost their stability with respect
to the two new classes gained by the split. The PT-algorithm stabilizes these by
splitting them, but because of this we now have to check their children, since they
might have lost stability because of the split, etc. We can obtain a stable refinement
using this stability-propagator method. Since we only walk through the nodes that
can be reached from v, this might not be the coarsest stable refinement. We have
shown that the following algorithm computes the 1-index of the graph G+ (u, v).



968 20. Semi-structured Databases

Edgeaddition-1-Index(G, (u, v))

1 PG ← AG(0) � PG is the basic partition according to labels.
2 I ← PT (VG, E

−1
G , PG) � I is the 1-index of G.

3 G′ ← G+ (u, v) � Add edge (u, v).
4 if (I(u), I(v)) ∈ EI � If there was an edge from I(u) to I(v),

then no modification is needed.
5 then return I
6 I ′ ← {v} � Split I(v).
7 I ′′ ← I(v) \ {v}
8 X ← I � X is the old partition.
9 EI ← EI ∪ {(I(u), I(v))} � Add an edge from I(u) to I(v).

10 Q← (I \ {I(v)}) ∪ {I ′, I ′′} � Replace I(v) with I ′ and I ′′.
11 E ← EQ � Determine the edges of Q.
12 J ← PT (VG′ , E−1

G′ , PG′ ,X,Q) � Execute the PT-algorithm
� starting with X and Q.

13 J ← PT (VJ , E
−1
J , PJ ) � J is the coarsest stable refinement.

14 return J

Step 13 can be omitted in practice, since the stable refinement obtained in step
12 is a good enough approximation of the coarsest stable partition, there is only 5%
difference between them in size.

In the following we will discuss how FB-indexes and A(k)-indexes can be re-
freshed. The difference between FB-indexes and 1-indexes is that in the FB-index,
two nodes are in the same similarity class if not only the incoming but also the
outgoing paths have the same label sequences. We saw that in order to create the
FB-index we have to execute the PT-algorithm twice, using it on the graph with
the edges reversed at the second time. The FB-index can be refreshed similarly to
the 1-index. The following proposition can be proved similarly to Proposition 20.45,
therefore we leave it to the Reader.

Claim 20.47 Let I(G) be the FB-index of graph G, and let J be an arbitrary
refinement of I(G). Denote by I(J) the FB-index of J . Then I(J) = I(G).

As a consequence of the above proposition, the FB-index of G+H can be created
using the following algorithm for disjoint G and H.

Graphaddition-FB-Index(G, H)

1 I1 ← FB-Index-Creator(VG, EG) � I1 is the FB-index of G.
2 I2 ← FB-Index-Creator(VH , EH) � I2 is the FB-index of H.
3 J ← I1 + I2 � Join the FB-indexes at their roots.
4 I ← FB-Index-Creator(VJ , EJ ) � I is the FB-index of J .
5 return I

When adding edge (u, v), we must keep in mind that stability can be lost in
both directions, so not only I(v) but also I(u) has to be split into {v}, (I \ {v}) and
{u}, (I(u) \ {u}), respectively. Let X be the partition before the modification, and



20.8. Index refresh 969

Q the partition obtained after the splits. We start the PT-algorithm with X and Q
in step 3 of the algorithm FB-Index-Creator. When stabilizing, we will now walk
through all descendants of v and all ancestors of u.

Edgeaddition-FB-Index(G, (u, v))

1 I ← FB-index-creator(VG, EG) � I is the FB-index of G.
2 G′ ← G+ (u, v) � Add edge (u, v).
3 if (I(u), I(v)) ∈ EI � If there was an edge from I(u) to I(v),

then no modification is needed.
4 then return I
5 I1 ← {v} � Split I(v).
6 I2 ← I(v) \ {v}
7 I3 ← {u} � Split I(u).
8 I4 ← I(u) \ {u}
9 X ← I � X is the old partition.

10 EI ← EI ∪ {(I(u), I(v))} � Add an edge form I(u) to I(v).
11 Q← (I \ {I(v), I(u)}) ∪ {I1, I2, I3, I4} � Replace I(v) with I1 and I2,

I(u) with I3 and I4.
12 E ← EQ � Determine the edges of Q.
13 J ← FB-Index-Creator(VG′ , EG′ ,X,Q) � Start the PT-algorithm

� with X and Q in the algorithm FB-Index-Creator.
14 J ← FB-Index-Creator(VJ , EJ ) � J is the coarsest ancestor-stable

and descendant-stable refinement.
15 return J

Refreshing the A(k)-index after adding an edge is different than what we have
seen. There is no problem with adding a graph though, since the following proposition
holds, the proof of which is left to the Reader.

Claim 20.48 Let I(G) be the A(k)-index of graph G, and let J be an arbitrary
refinement of I(G). Denote by I(J) the A(k)-index of I(J). Then I(J) = I(G).

As a consequence of the above proposition, the A(k)-index of G + H can be
created using the following algorithm for disjoint G and H.

Graphaddition-A(k)-Index(G,H)

1 PG ← AG(0) � PG is the basic partition according to labels.
2 I1 ← Naive-Approximation(VG, E

−1
G , PG, k) � I1 is the A(k)-index of G.

3 PH ← AH(0) � PH is the basic partition according to labels.
4 I2 ← Naive-Approximation(VH , E

−1
H , PH , k) � I1 is the A(k)-index of H.

5 J ← I1 + I2 � Join the A(k)-indexes.
6 PJ ← AJ(0) � PJ is the basic partition according to labels.
7 I ← Naive-Approximation(VJ , E

−1
J , PJ , k) � I is the A(k)-index of J .

8 return I

If we add a new edge (u, v) to the graph, then, as earlier, first we split I(v) into



970 20. Semi-structured Databases

two parts, one of which is I ′ = {v}, then we have to repair the lost k-stabilities
walking through the descendants of v, but only within a distant of k. What causes
the problem is that the A(k)-index contains information only about k-bisimilarity,
it tells us nothing about (k− 1)-bisimilarity. For example, let v1 be a child of v, and
let k = 1. When stabilizing according to the 1-index, v1 has to be detached from its
class if there is an element in this class that is not a children of v. This condition is
too strong in case of the A(1)-index, and therefore it causes too many unnecessary
splits. In this case, v1 should only be detached if there is an element in its class
that has no 0-bisimilar parent, that is, that has the same label as v. Because of this,
if we refreshed the A(k)-index the above way when adding a new edge, we would
get a very bad approximation of the A(k)-index belonging to the modification, so
we use a different method. The main idea is to store all A(i)-indexes not only the
A(k)-index, where i = 1, . . . , k. Yi et al. give an algorithm based on this idea, and
creates the A(k)-index belonging to the modification. The given algorithms can also
be used for the deletion of edges with minor modifications, in case of 1-indexes and
A(k)-indexes.

Exercises
20.8-1 Prove Proposition 20.47.
20.8-2 Give an algorithm for the modification of the index when an edge is deleted
from the data graph. Examine different indexes. What is the cost of the algorithm?
20.8-3 Give algorithms for the modification of the D(k)-index when the data graph
is modified.

Problems

20-1 Implication problem regarding constraints
Let R and Q be regular expressions, x and y two nodes. Let predicate R(x, y) mean
that y can be reached from x by a label sequence that fits to R. Denote by R ⊆ Q
the constraint ∀x(R(root, x) → Q(root, x)). R = Q if R ⊆ Q and Q ⊆ R. Let C be
a finite set of constraints, and c a constraint.

a. Prove that the implication problem C |= c is a 2-EXPSPACE problem.

b. Denote by R ⊆ Q@u the constraint ∀v(R(u, v) → Q(u, v)). Prove that the
implication problem is undecidable with respect to this class.

20-2 Transformational distance of trees
Let the transformational distance of vertex-labeled trees be the minimal number of
basic operations with which a tree can be transformed to the other. We can use
three basic operations: addition of a new node, deletion of a node, and renaming of
a label.

a. Prove that the transformational distance of trees T and T ′ can be computed in
O(nTnT ′dT dT ′) time, with storage cost of O(nTnT ′), where nT is the number
of nodes of the tree and dT is the depth of the tree.



Notes for Chapter 20 971

b. Let S and S′ be two trees. Give an algorithm that generates all pairs (T, T ′),
where T and T ′ simulates graphs S and S′, respectively, and the transformational
distance of T and T ′ is less then a given integer n. (This operation is called
approximate join.)

20-3 Queries of distributed databases
A distributed database is a vertex-labeled directed graph the nodes of which are
distributed in m partitions (servers). The edges between different partitions are
cross references. Communication is by message broadcasting between the servers.
An algorithm that evaluates a query is efficient, if the number of communication
steps is constant, that is, it does not depend on the data and the query, and the size
of the data transmitted during communication only depends on the size of the result
of the query and the number of cross references. Prove that an efficient algorithm
can be given for the regular query of distributed databases in which the number of
communication steps is 4, and the size of data transmitted is O(n2) +O(k), where n
is the size of the result of the query, and k is the number of cross references. (Hint.
Try to modify the algorithm Naive-Evaluation for this purpose.)

Chapter Notes

This chapter examined those fields of the world of semi-structured databases where
the morphisms of graphs could be used. Thus we discussed the creation of schemas
and indexes from the algorithmic point of view. The world of semi-structured
databases and XML is much broader than that. A short summary of the de-
velopment, current issues and the possible future development of semi-structured
databases can be found in the paper of Vianu [?].

The paper of M. Henzinger, T. Henzinger and Kopke [?] discusses the computa-
tion of the maximal simulation. They extend the concept of simulation to infinite
graphs that can be represented efficiently (these are called effective graphs), and
prove that for such graphs, it can be determined whether two nodes are similar. In
their paper, Corneil and Gotlieb [52] deal with quotient graphs and the determi-
nation of isomorphism of graphs. Arenas and Libkin [?] extend normal forms used
in the relational model to XML documents. They show that arbitrary DTD can be
rewritten without loss as XNF, a normal form they introduced.

Buneman, Fernandez and Suciu [37] introduce a query language, the UnQL,
based on structural recursion, where the data model used is defined by bisimulation.
Gottlob, Koch and Pichler [?] examine the classes of the query language XPath with
respect to complexity and parallelization. For an overview of complexity problems we
recommend the classical work of Garey and Johnson [93] and the paper of Stockmeyer
and Meyer [?].

The PT-algorithm was first published in the paper of Paige and Tarjan [199].
The 1-index based on bisimulations is discussed in detail by Milo and Suciu [?],
where they also introduce the 2-index, and as a generalization of this, the T-index

The A(k)-index was introduced by Kaushik, Shenoy, Bohannon and Gudes [?].
The D(k)-index first appeared in the work of Chen, Lim and Ong [?]. The M(k)-
index and the M∗(k)-index, based on frequent queries, are the results of He and Yang



[?]. FB-indexes of branching queries were first examined by Kaushik, Bohannon,
Naughton and Korth [?]. The algorithms of the modifications of 1-indexes, FB-
indexes and A(k)-indexes were summarized by Kaushik, Bohannon, Naughton and
Shenoy [?]. The methods discussed here are improved and generalized in the work of
Yi, He, Stanoi and Yang [?]. Polyzotis and Garafalakis use a probability model for
the study of the selectivity of queries [?]. Kaushik, Krishnamurthy, Naughton and
Ramakrishnan [?] suggest the combined use of structural indexes and inverted lists.

The book of Tucker [253] and the encyclopedia edited by Khosrow-Pour [141]
deal with the use of XML in practice.

VI. APPLICATIONS



21. Bioinformatics

In this chapter at first we present algorithms on sequences, trees and stochastic
grammars, then we continue with algorithms of comparison of structures and con-
structing of evolutionary trees, and finish the chapter with some rarely discussed
topics of bioinformatics.

21.1. Algorithms on sequences

In this section, we are going to introduce dynamic programming algorithms working
on sequences. Sequences are finite series of characters over a finite alphabet. The
basic idea of dynamic programming is that calculations for long sequences can be
given via calculations on substrings of the longer sequences.

The algorithms introduced here are the most important ones in bioinformatics,
they are the basis of several software packages.

21.1.1. Distances of two sequences using linear gap penalty

DNA contains the information of living cells. Before the duplication of cells, the
DNA molecules are doubled, and both daughter cells contain one copy of DNA. The
replication of DNA is not perfect, the stored information can be changed by random
mutations. Random mutations creates variants in the population, and these variants
evolve to new species.

Given two sequences, we can ask the question how much the two species are
related, and how many mutations are needed to describe the evolutionary history of
the two sequences.

We suppose that mutations are independent from each other, and hence, the
probability of a series of mutations is the product of probabilities of the mutations.
Each mutation is associated with a weight, mutations with high probability get a
smaller weight, mutations with low probability get a greater weight. A reasonable
choice might be the logarithm of one over the probability of the mutation. In this
case the weight of a series of mutations is the sum of the weights of the individual
mutations. We also assume that mutation and its reverse have the same probability,



974 21. Bioinformatics

therefore we study how a sequence can be transfered into another instead of evolving
two sequences from a common ancestor. Assuming minimum evolution minimum
evolution, we are seeking for the minimum weight series of mutations that trans-
forms one sequence into another. An important question is how we can quickly find
such a minimum weight series. The naive algorithm finds all the possible series of
mutations and chooses the minimum weight. Since the possible number of series of
mutations grows exponentially – as we are going to show it in this chapter –, the
naive algorithm is obviously too slow.

We are going to introduce the Sellers’ algorithm [226]. Let Σ be a finite set of
symbols, and let Σ∗ denote the set of finite long sequences over Σ. The n long prefix
of A ∈ Σ∗ will be denoted by An, and an denotes the nth character of A. The
following transformations can be applied for a sequence:

• Insertion of symbol a before position i, denoted by a ←i −.

• Deletion of symbol a at position i, denoted by − ←i a.

• Substitution of symbol a to symbol b at position i, denoted by b ←i a.

The concatenation of mutations is denoted by the ◦ symbol. τ denotes the set of
finite long concatenations of the above mutations, and T (A) = B denotes that T ∈ τ
transforms a sequence A into sequence B. Let w : τ → R+ ∪ {0} a weight function
such that for any T1, T2 and S transformations satisfying

T1 ◦ T2 = S , (21.1)

the
w(T1) + w(T2) = w(S) , (21.2)

equation also holds. Furthermore, let w(a ←i b) be independent from i. The trans-
formation distance between two sequences, A and B, is the minimum weight of
transformations transforming A into B:

δ(A,B) = min{w(T )|(T (A) = B} . (21.3)

If we assume that w satisfies

w(a← b) = w(b← a) , (21.4)

w(a← a) = 0 , (21.5)

w(b← a) + w(c← b) ≥ w(c← a) (21.6)

for any a, b, c ∈ Σ ∪ {−}, then the δ(, ) transformation distance is indeed a metric
on Σ∗.

Since w(, ) is a metric, it is enough to concern with transformations that change
each position of a sequence at most once. Series of transformations are depicted
with sequence alignments. By convention, the sequence at the top is the ancestor
and the sequence at the bottom is its descendant. For example, the alignment below
shows that there were substitutions at positions three and five, there was an insertion
in the first position and a deletion in the eighth position.

- A U C G U A C A G

U A G C A U A - A G



21.1. Algorithms on sequences 975

A pair at a position is called aligned pair. The weight of the series of transformations
described by the alignment is the sum of the weights of aligned pairs. Each series of
mutations can be described by an alignment, and this description is unique up the
permutation of mutations in the series. Since the summation is commutative, the
weight of the series of mutations does not depend on the order of mutations.

We are going to show that the number of possible alignments also grows expo-
nentially with the length of the sequences. The alignments that do not contain this
pattern

# -

- #

where # an arbitrary character of Σ gives a subset of possible alignments. The size of
this subset is

(|A|+|B|
|A|

)
, since there is a bijection between this set of alignments and

the set of coloured sequences that contains the characters of A and B in increasing
order, and the characters of A is coloured with one colour, and the characters of B is
coloured with the other colour. For example, if |A| = |B| = n, then |A|+ |B|

( |
A

)
| =

Θ(22n/n0.5).
An alignment whose weight is minimal called an optimal alignment. Let the set

of optimal alignments of Ai and Bj be denoted by α∗(Ai, Bj), and let w(α∗(Ai, Bj))
denote the weights of any alignment in α∗(Ai, Bj).

The key of the fast algorithm for finding an optimal alignment is that if we know
w(α∗(Ai−1, Bj)), w(α∗(Ai, Bj−1)), and w(α∗(Ai−1, Bj−1)), then we can calculate
w(α∗(Ai, jm)) in constant time. Indeed, if we delete the last aligned pair of an
optimal alignment of Ai and Bj , we get the optimal alignment of Ai−1 and Bj , or
Ai and Bj−1 or Ai−1 and Bj−1, depending on the last aligned column depicts a
deletion, an insertion, substitution or match, respectively. Hence,

w(α∗(Ai, Bj)) = min{w(α∗(Ai−1, Bj)) + w(− ← ai);

w(α∗(Ai, Bj−1)) + w(bi ← −); (21.7)

w(α∗(Ai−1, Bj−1)) + w(bi ← ai)}.

The weights of optimal alignments are calculated in the so-called dynamic pro-
gramming table, D. The di,j element of D contains w(α∗(Ai, Bj)). Comparing of
an n and an m long sequence requires the fill-in of an (n+1)x(m+1) table, indexing
of rows and columns run from 0 till n and m, respectively. The initial conditions for
column 0 and row 0 are

d0,0 = 0, (21.8)

di,0 =
i∑

k=1

w(− ← ak) , (21.9)

d0,j =

j∑

l=1

w(bl ← −) . (21.10)



976 21. Bioinformatics

The table can be filled in using Equation (21.7). The time requirement for the
fill-in is Θ(nm). After filling in the dynamic programming table, the set of all optimal
alignments can be find in the following way, called trace-back. We go from the right
bottom corner to the left top corner choosing the cell(s) giving the optimal value of
the current cell (there might be more than one such cells). Stepping up from position
di,j means a deletion, stepping to the left means an insertion, and the diagonal steps
mean either a substitution or a match depending on whether or not ai = bj . Each
step is represented with an oriented edge, in this way, we get an oriented graph, whose
vertices are a subset of the cells of the dynamic programming table. The number
of optimal alignments might grow exponentially with the length of the sequences,
however, the set of optimal alignments can be represented in polynomial time and
space. Indeed, each path from dn,m to d0,0 on the oriented graph obtained in the
trace-back gives an optimal alignment.

21.1.2. Dynamic programming with arbitrary gap function

Since deletions and insertions get the same weight, the common name of them is
indel or gap, and their weights are called gap penalty. Usually gap penalties do not
depend on the deleted or inserted characters. The gap penalties used in the previous
section grow linearly with the length of the gap. This means that a long indel is
considered as the result of independent insertions or deletions of characters. However,
the biological observation is that long indels can be formed in one evolutionary step,
and these long indels are penalised too much with the linear gap penalty function.
This observation motivated the introduction of more complex gap penalty functions
[261]. The algorithm introduced by Waterman et al. penalises a k long gap with gk.
For example the weight of this alignment:

- - A U C G A C G U A C A G

U A G U C - - - A U A G A G

is g2 + w(G← A) + g3 + w(A← G) + w(G← C).
We are still seeking for the minimal weight series of transformations trans-

forming one sequence into another or equivalently for an optimal alignment. Since
there might be a long indel at the end of the optimal alignment, above knowing
w(α∗(Ai−1, Bj−1)), we must know all w(α∗(Ak, Bj)), 0 ≤ k < i and w(α∗(Ai, Bl)),
0 ≤ l < j to calculate w(α∗(Ai, Bj)). The dynamic programming recursion is given
by the following equations:

w(α∗(Ai, Bj)) = min{w(α∗(Ai−1, Bj−1)) + w(bj ← ai) ;

min0≤k<i{w(α∗(Ak, Bj)) + gi−k} ; (21.11)

min0≤l<j{w(α∗(Ai, Bl)) + gj−l}} .

The initial conditions are:

d0,0 = 0 , (21.12)

di,0 = gi , (21.13)

d0,j = gj . (21.14)



21.1. Algorithms on sequences 977

The time requirement for calculating di,j is Θ(i + j), hence the running time of
the fill-in part to calculate the weight of an optimal alignment is Θ(nm(n + m)).
Similarly to the previous algorithm, the set of optimal alignments represented by
paths from dn,m to d0,0 can be found in the trace-back part.

If |A| = |B| = n, then the running time of this algorithm is Θ(n3). With restric-
tions on the gap penalty function, the running time can be decreased. We are going
to show two such algorithms in the next two sections.

21.1.3. Gotoh algorithm for affine gap penalty

A gap penalty function is affine if

gk = uk + v, u ≥ 0, v ≥ 0 . (21.15)

There exists a Θ(nm) running time algorithm for affine gap penalty [102]. Recall
that in the Waterman algorithm,

di,j = min{di−1,j−1 + w(bj ← ai); pi,j ; qi,j} , (21.16)

where

pi,j = min
0≤k<i

{di−k,j + gk} , (21.17)

qi,j = min
0≤l<j

{di,j−l + gl} . (21.18)

The key of the Gotoh algorithm is the following reindexing

pi,j = min{di−1,j + g1, min
1≤k<i

{di−k,j + gk}}

= min{di−1,j + g1, min
0≤k<i−1

{di−1−k,j + gk+1}}

= min{di−1,j + g1, min
0≤k<i−1

{di−1−k,j + gk}+ u}

= min{di−1,j + g1, pi−1,j + u} . (21.19)

And similarly
qi,j = min{di,j−1 + g1, qi,j−1 + u} . (21.20)

In this way, pi,j és qi,j can be calculated in constant time, hence di,j . Thus, the run-
ning time of the algorithm remains Θ(nm), and the algorithm will be only a constant
factor slower than the dynamic programming algorithm for linear gap penalties.

21.1.4. Concave gap penalty

There is no biological justification for the affine gap penalty function [26, 101], its
wide-spread use (for example, CLUSTAL-W [248]) is due to its low running time.
There is a more realistic gap penalty function for which an algorithm exists whose
running time is slightly more than the running time for affine gap penalty, but it is
still significantly better than the cubic running time algorithm of Waterman et al.
[89, 185].



978 21. Bioinformatics

A gap penalty function is concave if for each i, gi+1−gi ≤ gi−gi−1. Namely, the
increasement of gap extensions are penalised less and less. It might happen that the
function starts decreasing after a given point, to avoid this, it is usually assumed that
the function increases monotonously. Based on empirical data [26], if two sequences
evolved for d PAM unit [58], the weight of a q long indel is

35.03− 6.88 log10 d+ 17.02 log10 q , (21.21)

which is also a concave function. (One PAM unit is the time span on which 1% of the
sequence changed.) There exist an O(nm(log n+ logm)) running time algorithm for
concave gap penalty functions. this is a so-called forward looking algorithm. The
Forward-Looking algorithm calculates the ith row of the dynamic programming
table in the following way for an arbitrary gap penalty function:

Forward-Looking

1 for 1 ≤ j ≤ m
2 q1[i, j]← d[i, 0] + g[j]
3 b[i, j]← 0
4 for 1 ≤ j ≤ m
5 q[i, j]← q1[i, j]
6 d[i, j]← min[q[i, j], p[i, j], d[i− 1, j − 1] + w(bj ← ai)]
7 � At this step, we suppose that p[i, j] and d[i− 1, j − 1] are already calculated.
8 for j < j1 ≤ m �Inner cycle.
9 if q1[i, j1] < d[i, j] + g[j1 − j] then

10 q1[j1]← d[i, j] + g[j1 − j]
11 b[i, j1]← j

where g[ ] is the gap penalty function and b is a pointer whose role will be described
later. In row 6, we assume that we already calculated p[i, j] and d[i − 1, j − 1]. It
is easy to show that the forward looking algorithm makes the same comparisons
as the traditional, backward looking algorithm, but in a different order. While the
backward looking algorithm calculates qi,j at the jth position of the row looking back
to the already calculated entries of the dynamic programming table, the Forward-
Looking algorithm has already calculated qi,j by arriving to the jth position of
the row. On the other hand, it sends forward candidate values for q[i, j1], j1 > j,
and by arriving to cell j1, all the needed comparisons of candidate values have been
made. Therefore, the Forward-Looking algorithm is not faster than the traditional
backward looking algorithm, however, the conception helps accelerate the algorithm.

The key idea is the following.

Lemma 21.1 Let j be the actual cell in the row. If

di,j + gj1−j ≥ q1[i, j1] , (21.22)

then for all j2 > j1

di,j + gj2−j ≥ q1[i, j2] . (21.23)



21.1. Algorithms on sequences 979

Proof From the condition it follows that there is a k < j < j1 < j2 for which

di,j + gj1−j ≥ di,k + gj1−k . (21.24)

Let us add gj2−k − gj1−k to the equation:

di,j + gj1−j + gj2−k − gj1−k ≥ di,k + gj2−k . (21.25)

For each concave gap penalty function,

gj2−j − gj1−j ≥ gj2−k − gj1−k , (21.26)

rearranging this and using Equation (21.25)

di,j + gj2−j ≥ di,j + gj1−j + gj2−k − gj1−k ≥ di,k + gj2−k ≥ q[i, j2] (21.27)

The idea of the algorithm is to find the position with a binary search from where
the actual cell cannot send forward optimal qi,j values. This is still not enough for
the desired acceleration since O(m) number of candidate values should be rewritten
in the worst case. However, the corollary of the previous lemma leads to the desired
acceleration:

Corollary 21.2 Before the jth cell sends forward candidate values in the inner
cycle of the forward looking algorithm, the cells after cell j form blocks, each block
having the same pointer, and the pointer values are decreasing by blocks from left to
right.

The pseudocode of the algorithm is the following:

Forward-Looking-Binary-Searching(i,m, q, d, g, w, a, b)

1 pn[i]← 0; p[i, 0]← m; b[i, 0]← 0
2 for j ← 1 to m
3 do q[i, j]← q[i, b[i, pn[i]]] + g[j − b[i, pn[i]]]
4 d[i, j]← min[q[i, j], p[i, j], d[i− 1, j − 1] + w(bj ← ai)]
5 � At this step, we suppose that p[i, j] and d[i− 1, j − 1] are already calculated.
6 if p[i, pn[i]] = j then
7 then pn[i]−−
8 if j + 1 < m and d[i, b[i, 0]] + g[m− b[i, 0]] > d[i, j] + g[m− j]
9 then pn[i]← 0; b[i, 0]← j

10 else if j + 1 < m
11 then Y ← max0≤X≤pn[i]{X|d[i, b[i,X]] + g[p[i,X]

−b[i,X]] ≤ p[i, j] + g[p[i,X]− j]}
12 if d[i, b[i, Y ]] + g[p[i, Y ]− b[i, Y ]] = p[i, j] + g[p[i,X]− j]
13 then pn[i]← Y ; b[i, Y ]← j
14 else E = p[i, Y ]
15 if Y < pn[i]
16 then B ← p[i, Y + 1]− 1
17 else B ← j + 1



980 21. Bioinformatics

18 pn[i] + +
19 b[i, pn[i]]← j
20 p[i, pn[i]] ← maxB≤X≤E{X|d[i, j] + g[X − j] ≤

d[i, b[i, Y ]] + g[x− b[i, Y ]]}

The algorithm works in the following way: for each row, we maintain a variable
storing the number of blocks, a list of positions of block ends, and a list of pointers
for each block. For each cell j, the algorithm finds the last position for which the
cell gives an optimal value using binary search. There is first a binary search for
the blocks then for the positions inside the choosen block. It is enough to rewrite
three values after the binary searches: the number of blocks, the end of the last block
and its pointer. Therefore the most time consuming part is the binary search, which
takes O(lgm) time for each cell.

We do the same for columns. If the dynamic programming table is filled in row
by row, then for each position j in row i, the algorithms uses the block system of
column j. Therefore the running time of the algorithm is O(nm(lg n+ lgm)).

21.1.5. Similarity of two sequences, the Smith-Waterman algo-
rithm

We can measure not only the distance but also the similarity of two sequences. For
measuring the similarity of two characters, S(a, b), the most frequently used function
is the log-odds:

S(a, b) = log

(
Pr {a, b}

Pr {a}Pr {b}

)
, (21.28)

where Pr {a, b} is the joint probability of the two characters (namely, the probabil-
ity of observing them together in an alignment column), Pr {a} and Pr {b} are the
marginal probabilities. The similarity is positive if Pr {a, b} > Pr {a}Pr {b}, oth-
erwise negative. Similarities are obtained from empirical data, for aminoacids, the
most commonly used similarities are given by the PAM and BLOSUM matrices.

If we penalise gaps with negative numbers then the above described, global
alignment algorithms work with similarities by changing minimalisation to maxi-
malisation.

It is possible to define a special problem that works for similarities and does not
work for distances. It is the local similarity problem or the local sequence alignment
problem [232]. Given two sequences, a similarity and a gap penalty function, the
problem is to give two substrings of the sequences whose similarity is maximal.
A substring of a sequence is a consecutive part of the sequence. The biological
motivation of the problem is that some parts of the biological sequences evolve
slowly while other parts evolve fast. The local alignment finds the most conservated
part of the two sequences. Local alignment is widely used for homology searching
in databases. The reason why local alignments works well for homology searching is
that the local alignment score can separate homologue and non-homologue sequences
better since the statistics is not decreased due to the variable regions of the sequences.



21.1. Algorithms on sequences 981

The Smith-Waterman algorithm work in the following way. The initial conditions
are:

d0,0 = di,0 = d0,j = 0 . (21.29)

Considering linear gap penalty, the dynamic programming table is filled in using the
following recursions:

di,j = max{0; di−1,j−1 + S(ai, bj), di−1,j + g; di,j−1 + g} . (21.30)

Here g, the gap penalty is a negative number. The best local similarity score of the
two sequences is the maximal number in the table. The trace-back starts in the cell
having the maximal number, and ends when first reaches a 0.

It is easy to prove that the alignment obtained in the trace-back will be locally
optimal: if the alignment could be extended at the end with a sub-alignment whose
similarity is positive then there would be a greater number in the dynamic program-
ming table. If the alignment could be extended at the beginning with a subalignment
having positive similarity then the value at the end of the traceback would not be 0.

21.1.6. Multiple sequence alignment

The multiple sequence alignment problem was introduced by David Sankoff [221],
and by today, the multiple sequence alignment has been the central problem in
bioinformatics. Dan Gusfield calls it the Holy Grail of bioinformatics. [110]. Multiple
alignments are widespread both in searching databases and inferring evolutionary
relationships. Using multiple alignments, it is possible to find the conservated parts
of a sequence family, the positions that describe the functional properties of the
sequence family. AS Arthur Lesk said: [122]: What two sequences whisper, a multiple
sequence alignment shout out loud.

The columns of a multiple alignment of k sequences is called aligned k-tuples.
The dynamic programming for the optimal multiple alignment is the generalisation
of the dynamic programming for optimal pairwise alignment. To align k sequences,
we have to fill in a k dimensional dynamic programming table. To calculate an entry
in this table using linear gap penalty, we have to look back to a k dimensional
hypercube. Therefore, the memory requirement in case of k sequence, n long each
is Θ(nk), and the running time of the algorithm is Θ(2knk) if we use linear gap
penalty, and Θ(n2k−1) with arbitrary gap penalty.

There are two fundamental problems with the multiple sequence alignment. The
first is an algorithmic problem: it is proven that the multiple sequence alignment
problem is NP-complete [260]. The other problem is methodical: it is not clear how
to score a multiple alignment. An objective scoring function could be given only if
the evolutionary relationships were known, in this case an aligned k-tuple could be
scored according to an evolutionary tree [198].

A heuristic solution for both problems is the iterative sequence alignment
[77],[53],[248]. This method first construct a guide-tree using pairwise distances
(such tree-building methods are described in section 21.5). The guide-tree is used
then to construct a multiple alignment. Each leaf is labelled with a sequence, and
first the sequences in ”cherry-motives" are aligned into each other, then sequence



982 21. Bioinformatics

alignments are aligned to sequences and sequence alignments according to the guide-
tree. The iterative sequence alignment method uses the ”once a gap – always gap"
rule. This means that gaps already placed into an alignment cannot be modified
when aligning the alignment to other alignment or sequence. The only possibility
is to insert all-gap columns into an alignment. The aligned sequences are usually
described with a profile. The profile is a (|Σ| + 1) × l table, where l is the length
of the alignment. A column of a profile contains the statistics of the corresponding
aligned k-tuple, the frequencies of characters and the gap symbol.

The obtained multiple alignment can be used for constructing another guide-tree,
that can be used for another iterative sequence alignment, and this procedure can
be iterated till convergence. The reason for the iterative alignment heuristic is that
the optimal pairwise alignment of closely related sequences will be the same in the
optimal multiple alignment. The drawback of the heuristic is that even if the previous
assumption is true, there might be several optimal alignments for two sequences,
and their number might grow exponentially with the length of the sequences. For
example, let us consider the two optimal alignments of the sequences AUCGGUACAG

and AUCAUACAG.

A U C G G U A C A G A U C G G U A C A G

A U C - A U A C A G A U C A - U A C A G .

We cannot choose between the two alignments, however, in a multiple alignment,
only one of them might be optimal. For example, if we align the sequence AUCGAU to
the two optimal alignments, we get the following locally optimal alignments:

A U C G G U A C A G A U C G G U A C A G

A U C - A U A C A G A U C A - U A C A G

A U C G A U - - - - A U C - G - A U - -

The left alignment is globally optimal, however, the right alignment is only locally
optimal.

Hence, the iterative alignment method yields only a locally optimal alignment.
Another problem of this method is that it does not give an upper bound for the
goodness of the approximation. In spite of its drawback, the iterative alignment
methods are the most widely used ones for multiple sequence alignments in practice,
since it is fast and usually gives biologically reasonable alignments. Recently some
approximation methods for multiple sequence alignment have been published with
known upper bounds for their goodness [109, 212]. However, the bounds biologically
are not reasonable, and in practice, these methods usually give worse results than
the heuristic methods.

We must mention a novel greedy method that is not based on dynamic program-
ming. The DiAlign [186, 187, 188] first searches for gap-free homologue substrings
by pairwise sequence comparison. The gap-free alignments of the homologous sub-
strings are called diagonals of the dynamic programming name, hence the name of
the method: Diagonal Alignment. The diagonals are scored according to their sim-
ilarity value and diagonals that are not compatible with high-score diagonals get
a penalty. Two diagonals are not compatible if they cannot be in the same align-
ment. After scoring the diagonals, they are aligned together a multiple alignment



21.1. Algorithms on sequences 983

in a greedy way. First the best diagonal is selected, then the best diagonal that is
comparable with the first one, then the third best alignment that is comparable with
the first two ones, etc. The multiple alignment is the union of the selected diagonals
that might not cover all the characters in the sequence. Those characters that were
not in any of the selected diagonals are marked as ”non alignable". The drawback of
the method is that sometimes it introduces too many gaps due to not penalising the
gaps at all. However, DiAlign has been one of the best heuristic alignment approach
and is widely used in the bioinformatics community.

21.1.7. Memory-reduction with the Hirschberg algorithm

If we want to calculate only the distance or similarity between two sequences and
we are not interested in an optimal alignment, then in case of linear or affine gap
penalties, it is very easy to construct an algorithm that uses only linear memory.
Indeed, note that the dynamic programming recursion needs only the previous row
(in case of filling in the dynamic table by rows), and the algorithm does not need
to store earlier rows. On the other hand, once the dynamic programming table has
reached the last row and forgot the earlier rows, it is not possible to trace-back the
optimal alignment. If the dynamic programming table is scrolled again and again
in linear memory to trace-back the optimal alignment row by row then the running
time grows up to O(n3), where n is the length of the sequences.

However, it is possible to design an algorithm that obtains an optimal alignment
in O(n2) running time and uses only linear memory. This is the Hirschberg al-
gorithm [119], which we are going to introduce for distance-based alignment with
linear gap penalty.

We introduce the suffixes of a sequence, a suffix is a substring ending at the end
of the sequence. Let Ak denote the suffix of A starting with character ak+1.

The Hirschberg algorithm first does a dynamic programming algorithm for se-
quences A[|A|/2] and B using liner memory as described above. Similarly, it does a
dynamic programming algorithm for the reverse of the sequences A[|A|/2] and B.

Based on the two dynamic programming procedures, we know what is the score
of the optimal alignment of A[|A|/2] and an arbitrary prefix of B, and similarly what
is the score of the optimal alignment of A[|A|/2] and an arbitrary suffix of B. >From
this we can tell what is the score of the optimal alignment of A and B:

min
j

{
w(α∗(A[|A|/2], Bj)) + w(α∗(A[|A|/2], Bj))

}
, (21.31)

and from this calculation it must be clear that in the optimal alignment of A and
B, A[|A|/2] is aligned with the prefix Bj for which

w(α∗(A[|A|/2], Bj)) + w(α∗(A[|A|/2], Bj)) (21.32)

is minimal.
Since we know the previous rows of the dynamic tables, we can tell if a[|A|/2] and

a[|A|/2]+1 is aligned with any characters of B or these characters are deleted in the
optimal alignment. Similarly, we can tell if any character of B is inserted between



984 21. Bioinformatics

a[|A|/2] and a[|A|/2]+1.
In this way, we get at least two columns of the optimal alignment. Then we do

the same for A[|A|/2]−1 and the remaining part of the prefix of B, and for A[|A|/2]+1

and the remaining part of the suffix of B. In this way we get alignment columns at
the quarter and the three fourths of sequence A. In the next iteration, we do the
same for the for pairs of sequences, etc., and we do the iteration till we get all the
alignment columns of the optimal alignment.

Obviously, the memory requirement still only grows linearly with the length of
the sequences. We show that the running time is still Θ(nm), where n and m are
the lengths of the sequences. This comes from the fact that the running time of the
first iteration is |A| × |B|, the running time of the second iteration is |A|/2)× j∗ +
(|A|/2) × (|B| − j∗, where j∗ is the position for which we get a minimum distance
in Eqn. (21.31). Hence the total running time is:

nm×
(

1 +
1

2
+

1

4
+ · · ·

)
= Θ(nm) . (21.33)

21.1.8. Memory-reduction with corner-cutting

The dynamic programming algorithm reaches the optimal alignment of two se-
quences with aligning longer and longer prefixes of the two sequences. The algorithm
can be accelerated with excluding the bad alignments of prefixes that cannot yield
an optimal alignment. Such alignments are given with the ordered paths going from
the right top and the left bottom corners to d0,0, hence the name of the technique.

Most of the corner-cutting algorithms use a test value. This test value is an
upper bound of the evolutionary distance between the two sequences. Corner-cutting
algorithms using a test value can obtain the optimal alignment of two sequences
only if the test value is indeed smaller then the distance between the two sequences,
otherwise the algorithm stops before reaching the right bottom corner or gives a non-
optimal alignment. Therefore these algorithms are useful for searching for sequences
similar to a given one and we are not interested in sequences that are farther from
the query sequence than the test value.

We are going to introduce two algorithms. the Spouge algorithm [233],[234] is a
generalisation of the Fickett [79] and the Ukkonnen algorithm [255],[256]. The other
algorithm was given by Gusfield, and this algorithm is an example for a corner-
cutting algorithm that reaches the right bottom corner even if the distance between
the two sequence is greater than the test value, but in this case the calculated score
is bigger than the test value, indicating that the obtained alignment is not necessary
optimal.

The Spouge algorithm calculates only those di,j for which

di,j + |(n− i)− (m− j)| × g ≤ t , (21.34)

where t is the test value, g is the gap penalty, n and m are the length of the sequences.
The key observation of the algorithm is that any path going from di,j to dn,m will
increase the score of the alignment at least by |(n − i) − (m − j)| × g. Therefore is
t is smaller than the distance between the sequences, the Spouge algorithm obtains



21.1. Algorithms on sequences 985

the optimal alignments, otherwise will stop before reaching the right bottom corner.
This algorithm is a generalisation of the Fickett algorithm and the Ukkonen

algorithm. Those algorithms also use a test value, but the inequality in the Fickett
algorithm is:

di,j ≤ t , (21.35)

while the inequality in the Ukkonnen algorithm is:

|i− j| × g + |(n− i)− (m− j)| × g ≤ t . (21.36)

Since in both cases, the left hand side of the inequalities are not greater than the
left end side of the Spouge inequality, the Fickett and the Ukkonnen algorithms will
calculate at least as much part of the dynamic programming table than the Spouge
algorithm. Empirical results proved that the Spouge algorithm is significantly better
[234]. The algorithm can be extended to affine and concave gap penalties, too.

The k-difference global alignment problem [110] asks the following question: Is
there an alignment of the sequences whose weight is smaller than k? The algorithm
answering the question has O(kn) running time, where n is the length of the longer
sequence. The algorithm is based on the observation that any path from dn,m to d0,0

having at most score k cannot contain a cell di,j for which |i− j| > k/g. Therefore
the algorithm calculates only those di,j cells for which (i− j) < k/g and disregards
the de,f neighbours of the border elements for which |e− f | > k/g. If there exists an
alignment with a score smaller or equal than k, then dn,m < k and dn,m is indeed the
distance of the two sequences. Otherwise dn,m > k, and dn,m > k is not necessary
the score of the optimal alignment since there might be an alignment that leaves the
band defined by the |i − j| < k/g inequality and still has a smaller score then the
best optimal alignment in the defined band.

The corner-cutting technique has been extended to multiple sequence alignments
scored by the sum-of-pairs scoring scheme [41]. The sum-of-pairs score is:

SPl =
k−1∑

i=1

k∑

j=i+1

d(ci,l, cj,l) , (21.37)

where SPl is the lth aligned k-tuple d(, ) is the distance function on Σ ∪ {−}, k
is the number of sequences, ci,j is the character of the multiple alignment in the
ith row and jth column. The l-suffix of sequence S is Sl. Let wi,j(l,m) denote the
distance of the optimal alignment of the l-suffix and the m-suffix of the ith and the
jth sequences. The Carillo and Lipman algorithm calculates only the positions for
which

di1,i2,...in
+

k−1∑

j=1

k∑

l=j

wj,l(ij , il) ≤ t , (21.38)

where t is the test value. The goodness of the algorithm follows from the fact that the
sum-of-pairs score of the optimal alignment of the not yet aligned suffixes cannot be
smaller than the sum of the scores of the optimal pairwise alignments. This corner
cutting method can align at most six moderately long sequences [164].



986 21. Bioinformatics

Exercises
21.1-1 Show that the number of possible alignments of an n and an m long se-
quences is

min(n,m)∑

i=0

(n+m− i)!
(n− i)!(m− i)!i! .

21.1-2 Give a series of pairs of sequences and a scoring scheme such that the number
of optimal alignments grows exponentially with the length of the sequences.
21.1-3 Give the Hirschberg algorithm for multiple alignments.
21.1-4 Give the Hirschberg algorithm for affine gap penalties.
21.1-5 Give the Smith-Waterman algorithm for affine gap penalties.
21.1-6 Give the Spouge algorithm for affine gap penalties.
21.1-7 Construct an example showing that the optimal multiple alignment of three
sequences might contain a pairwise alignment that is only suboptimal.

21.2. Algorithms on trees

Algorithms introduced in this section work on rooted trees. The dynamic program-
ming is based on the reduction to rooted subtrees. As we will see, above obtaining
optimal cases, we can calculate algebraic expressions in the same running time.

21.2.1. The small parsimony problem

The (weighted) parsimony principle is to describe the changes of biological sequences
with the minimum number (minimum weight) of mutations. We will concern only
with substitutions, namely, the input sequences has the same length and the problem
is to give the evolutionary relationships of sequences using only substitutions and
the parsimony principle. We can define the large and the small parsimony problem.
For the large parsimony problem, we do not know the topology of the evolutionary
tree showing the evolutionary relationships of the sequences, hence the problem is
to find both the best topology and an evolutionary history on the tree. The solution
is not only locally but globally optimal. It has been proved that the large parsimony
problem is NP-complete [86].

The small parsimony problem is to find the most parsimonious evolutionary
history on a given tree topology. The solution for the small parsimony problem is
only locally optimal, and there is no guarantee for global optimum.

Each position of the sequences is scored independently, therefore it is enough
to find a solution for the case where there is only one character at each leaf of
the tree. In this case, the evolutionary history can be described with labelling the
internal nodes with characters. If two characters at neighbouring vertices are the
same, then no mutation happened at the corresponding edge, otherwise one mutation
happened. The naive algorithm investigates all possible labelings and selects the
most parsimonious solution. Obviously, it is too slow, since the number of possible



21.2. Algorithms on trees 987

labelings grows exponentially with the internal nodes of the tree.
The dynamic programming is based on the reduction to smaller subtrees [221].

Here the definition of subtrees is the following: there is a natural partial ordering
on the nodes in the rooted subtree such that the root is the greatest node and the
leaves are minimal. A subtree is defined by a node, and the subtree contains this
node and all nodes that are smaller than the given node. The given node is the root
of the subtree. We suppose that for any t child of the node r and any character ω
we know the minimum number of mutations that are needed on the tree with root
t given that there is ω at node t. Let mt,ω denote this number. Then

mr,ω =
∑

t∈D(r)

min
σ∈Σ
{mt,σ + δω,σ} , (21.39)

where D(r) is the set of children of r, Σ is the alphabet, and δω,σ is 1 if ω = σ and
0 otherwise.

The minimum number of mutations on the entire tree is minω∈Σ mR,ω, where R
is the root of the tree. A most parsimonious labelling can be obtained with trace-
backing the tree from the root to the leaves, writing to each nodes the character
that minimises Eqn. 21.39. To do this, we have to store mr,ω for all r and ω.

The running time of the algorithm is Θ(n|Σ|2) for one character, where n is the
number of nodes of the tree, and Θ(nl|Σ|2) for entire sequences, where l is the length
of the sequences.

21.2.2. The Felsenstein algorithm

The input of the Felsenstein algorithm [76] is a multiple alignment of DNA (or
RNA or protein) sequences, an evolutionary tree topology and edge lengths, and
a model that gives for each pair of characters, σ and ω and time t, what is the
probability that σ evolves to ω duting time t. Let fσω(t) denote this probability. The
equilibrium probability distribution of the characters is denoted by π. The question
is what is the likelihood of the tree, namely, what is the probability of observing
the sequences at the leaves given the evolutionary parameters consisting of the edge
lengths and parameters of the substitution model.

We assume that each position evolves independently, hence the probability of
an evolutionary process is the product of the evolutionary probabilities for each
position. Therefore it is enough to show how to calculate the likelihood for a sequence
position. We show this for an example tree that can be seen on Figure 21.1. si will
denote the character at node i and vj is the length of edge j. Since we do not know
the characters at the internal nodes, we must sum the probabilities for all possible
configurations:

L =
∑

s0

∑

s6

∑

s7

∑

s8

πs0
× fs0s6

(v6)× fs6s1
(v1)× fs6s2

(v2)

×fs0s8
(v8)× fs8s3

(v3)× fs8s7
(v7)× fs7s4

(v4)× fs7s5
(v5). (21.40)

If we consider the four character alphabet of DNA, the summation has 256 members,
an in case of n species, it would have 4n−1, namely the computational time grows



988 21. Bioinformatics

v1 v2

3

4 5

v4 v5

v6

0
v8

v3 v7

7

1
2

6

8

Figure 21.1 The tree on which we introduce the Felsenstein algorithm. Evolutionary times are
denoted with vs on the edges of the tree.

exponentially with the number of sequences. However, if we move the expressions not
depending on the summation index out of the summation, then we get the following
product:

L =
∑

s0

πs0

{
∑

s6

fs0s6
(v6)[fs6s1

(v1)][fs6s2
(v2)]

}
×

{
∑

s8

fs0s8
(v8)[fs8s3

(v3)]

(
∑

s7

fs8s7
(v7)[fs7s4

(v4)][fs7s5
(v5)]

)}
(21.41)

which can be calculated in significantly less time. Note that the parenthesis in (21.41)
gives the topology of the tree. Each summation can be calculated independently then
we multiply the results. Hence the running time of calculating the likelihood for one
position decreases to Θ(|Σ|2n) and the running time of calculating the likelihood for
the multiple alignment is Θ(|Σ|2nl) where l is the length of the alignment.

Exercises
21.2-1 Give an algorithm for the weighted small parsimony problem where we want
to get minimum weight evolutionary labeling given a tree topology and a set of se-
quences associated to the leaves of the tree.
21.2-2 The gene content changes in species, a gene that can be found in a genome
of a species might be abundant in another genome. In the simplest model an existing
gene might be deleted from the genome and an abundant gene might appear. Give
the small parsimony algorithm for this gene content evolution model.
21.2-3 Give an algorithm that obtains the Maximum Likelihood labelling on a tree.
21.2-4 Rewrite the small parsimony problem in the form of (21.40) replacing sums
with minimalisation, and show that the Sankoff algorithm is based on the same re-
arrangement as the Felsenstein algorithm.
21.2-5 The Fitch algorithm [81] works in the following way: Each r node is asso-
ciated with a set of characters, Cr. The leaves are associated with a set containing



21.3. Algorithms on stochastic grammars 989

the character associated to the leaves, and each internal character r has the set:

∩t∈D(r) Ct if ∩t∈D(r) Ct 6= ∅
∪t∈D(r)Ct otherwise ,

After reaching the root, we select an arbitrary character from CR, where R is the
root of the tree, and we choose the same character that we chose at the parent node
if the set of the child node has this character, otherwise an arbitrary character from
the set of the child node. Show that we get a most parsimonious labelling. What is
the running time of this algorithm?
21.2-6 Show that the Sankoff algorithm gives all possible most parsimonious la-
belling, while there are most parsimonious labellings that cannot be obtained with
the Fitch algorithm.

21.3. Algorithms on stochastic grammars

Below we give algorithms on stochastic transformational grammars. Stochastic trans-
formational grammars play a central role in modern bioinformatics. Two types of
transformational grammars are widespread, the Hidden Markov Models (HMMs)
are used for protein structure prediction and gene finding, while Stochastic Context
Free Grammars (SCFGs) are used for RNA secondary structure prediction.

21.3.1. Hidden Markov Models

We give the formal definition of Hidden Markov Models (HMM): Let X denote a
finite set of states. There are two distinguished states among the states, the start
and the end states. The states are divided into two parts, emitting and non-emitting
states. We assume that only the start and the end states are non-emitting, we will
show that this assumption is not too strict.

The M transformation matrix contains the transition probabilities, mij , that the
Markov process will jump to state j from state i. Emitting states emit characters
form a finite alphabet, Σ. The probability that the state i emits a character ω will
be denoted by πi

ω. The Markov process starts in the start state and ends in the end
state, and walks according to the transition probabilities in M. Each emitting state
emits a character, the emitted characters form a sequence. The process is hidden
since the observer observes only the sequence and does not observe the path that
the Markov process walked on. There are three important questions for HMMs that
can be answered using dynamic programming algorithms.

The first question is the following: given an HMM and a sequence, what is the
most likely path that emits the given sequence? The Viterbi algorithm gives the
answer for this question. Recall that Ak is the k-long prefix of sequence A, and
ak is the character in the kth position. The dynamic programming answering the
first question is based on that we can calculate the Prmax {Ak+1, j} probability, the
probability of the most probable path emitting prefix Ak+1 and being in state j if



990 21. Bioinformatics

we already calculated Prmax {max} (Ak, i) for all possible i, since

Prmax {Ak+1, j} = max
i

(Prmax {Ak, i}mi,jπ
j
ak+1

) . (21.42)

The reason behind the above equation is that the probability of any path is the
product of transition and emission probabilities. Among the products having the
same last two terms (in our case mi,jπ

j
ak+1) the maximal is the one for which the

product of the other terms is maximal.
The initialisation of the dynamic programming is

Prmax {A0,START} = 1 . (21.43)

Since the end state does not emit a character, the termination of the dynamic pro-
gramming algorithm is

Prmax {A} = Prmax {A, END} = max
i

(Prmax {A, i}mi,END) , (21.44)

where Prmax {A} is the probability of the most likely path emitting the given se-
quence. One of the most likely paths can be obtained with a trace-back.

The second question is the following: given an HMM and a sequence, what is
the probability that the HMM emits the sequence? This probability is the sum
of the probabilities of paths that emit the given sequence. Since the number of
paths emitting a given sequence might grow exponentially with the length of the
sequence, the naive algorithm that finds all the possible emitting paths and sum
their probabilities would be too slow.

The dynamic programming algorithm that calculates quickly the probability in
question is called the Forward algorithm. It is very similar to the Viterbi algorithm,
just there is a sum instead of maximalisation in it:

Pr {Ak+1, j} =
∑

i

Pr {Ak, i}mi,jπ
j
ak+1

. (21.45)

Since the END state does not emit, the termination is

Pr {A} = Pr {A, END} =
∑

i

Pr {A, i}mi,END . (21.46)

where Pr {A} is the probability that the HMM emits sequence A.
The most likely path obtained by the Viterbi algorithm has more and less reliable

parts. Therefore we are interested in the probability

Pr {ak is emitted by state i | the HMM emitted sequence A} .
This is the third question that we answer with dynamic programming algorithm.

The above mentioned probability is the sum of the probabilities of paths that emit
ak in state i divided by the probability that the HMM emits sequence A. Since the
number of such paths might grow exponentially, the naive algorithm that finds all
the possible paths and sum their probability is too slow.

To answer the question, first we calculate for each suffix Ak and state i what



21.3. Algorithms on stochastic grammars 991

is the probability that the HMM emits suffix Ak given that state i emits ak. This
can be calculated with the Backward algorithm, which is similar to the Forward
algorithm just starts the recursion with the end of the sequence:

Pr
{
Ak, i

}
=
∑

j

(Pr
{
Ak+1, j

}
mi,jπ

j
ak+1

) . (21.47)

Let Pr {ak = i|A} denote the probability

Pr {ak is emitted by state i | the HMM emitted sequence A} .

Then

Pr {ak = i|A}Pr {A} = Pr {A ∧ ak = i} = Pr {Ak, i}Pr
{
Ak, i

}
, (21.48)

and from this

Pr {ak = i|A} =
Pr {Ak, i}Pr

{
Ak, i

}

Pr {A} , (21.49)

which is the needed probability.

21.3.2. Stochastic context-free grammars

It can be shown that every context-free grammar can be rewritten into Chomsky
normal form. Each rule of a grammar in Chomsky normal form has the form Wv →
WyWz or Ww → a, where the W s are non-terminal symbols, and a is a terminal
symbol. In a stochastic grammar, each derivation rule has a probability, a non-
negative number such that the probabilities of derivation rules for each non-terminal
sum up to 1.

Given a SCFG and a sequence, we can ask the questions analogous to the three
questions we asked for HMMs: what is the probability of the most likely derivation,
what is the probability of the derivation of the sequence and what is the proba-
bility that a sub-string has been derivated starting with Wx non-terminal, given
that the SCFG derivated the sequence. The first question can be answered with the
CYK (Cocke-Younger-Kasami) algorithm which is the Viterbi-equivalent algorithm
for SCFGs. The second question can be answered with the Inside algorithm, this
is the Forward-equivalent for SCFGs. The third question can be answered with the
combination of the Inside and Outside algorithms, as expected, the Outside algo-
rithm is analogous to the Backward algorithm. Though the introduced algorithms
are equivalent with the algorithms used for HMMs, their running time is significantly
greater.

Let tv(y, z) denote the probability of the rule Wv →WyWz, and let ev(a) denote
the probability of the rule Wv → a. The Inside algorithm calculates α(i, j, v) for all
i ≤ j and v, this is the probability that non-terminal Wv derives the substring from
ai till aj . The initial conditions are:

α(i, i, v) = ev(ai) , (21.50)



992 21. Bioinformatics

for all i and v. The main recursion is:

α(i, j, v) =
M∑

y=1

M∑

z=1

j−1∑

k=i

α(i, k, y)tv(y, z)α(k + 1, j, z) , (21.51)

where M is the number of non-terminals. The dynamic programming table is an
upper triangle matrix for each non-terminal, the filling-in of the table starts with the
main diagonal, and is continued with the other diagonals. The derivation probability
is α(1, L, 1), where L is the length of the sequence, and W1 is the starting non-
terminal. The running time of the algorithm is Θ(L3M3), the memory requirement
is Θ(L2M).

The Outside algorithm calculates β(i, j, v) for all i ≤ j and v, this is the part of
the derivation probability of deriving sequence A which is ”outside" of the derivation
of substring from ai till aj , starting the derivation from Wv. A more formal definition
for β(i, j, v) is that this is the sum of derivation probabilities in whom the substring
from ai till aj is derived from Wv, divided by α(i, j, v). Here we define 0/0 as 0. The
initial conditions are:

β(1, L, 1) = 1 (21.52)

β(1, L, v) = 0 ha v 6= 1 . (21.53)

The main recursion is:

β(i, j, v) =

M∑

y=1

M∑

z=1

i−1∑

k=1

α(k, i− 1, z)ty(z, v)β(k, j, y) +

M∑

y=1

M∑

z=1

L∑

k=j+1

α(j + 1, k, z)ty(z, v)β(i, k, y) . (21.54)

The reasoning for Eqn. 21.54 is the following. The Wv non-terminal was derivated
from a Wy non-terminal together with a Wz non-terminal, and their derivation
order could be both WzWv and WvWz. The outside probability of non-terminal Wv

is product of the outside probability of Wy, the derivation probability and the inside
probability of Wz. As we can see, inside probabilities are needed to calculate outside
probabilities, this is a significant difference from the Backward algorithm that can
be used without a Forward algorithm.

The CYK algorithm is very similar to the Inside algorithm, just there are max-
imalisations instead of summations:

αmax(i, j, v) = max
y

max
z

max
i≤k≤j−1

αmax(i, k, y)tv(y, z)αmax(k + 1, j, z) , (21.55)

The probability of the most likely derivation is αmax(1, L, 1). The most likely deriva-
tion can be obtained with a trace-back.

Finally, the probability that the substring from ai till aj has been derived by
Wv given that the SCFG derived the sequence is:

α(i, j, v)β(i, j, v)

α(1, L, 1)
. (21.56)



21.3. Algorithms on stochastic grammars 993

Exercises
21.3-1 In a regular grammar, each derivation rule is either in a form Wv → aWy

or in a form Wv → a. Show that each HMM can be rewritten as a stochastic regular
grammar. On the other hand, there are stochastic regular grammars that cannot be
described as HMMs.
21.3-2 Give a dynamic programming algorithm that calculate for a stochastic reg-
ular grammar and a sequence A

• the most likely derivation,

• the probability of derivation,

• the probability that character ai is derived by non-terminal W .

21.3-3 An HMM can contain silent states that do not emit any character. Show
that any HMM containing silent states other than the start and end states can be
rewritten to an HMM that does not contain silent states above the start and end
states and emits sequences with the same probabilities.
21.3-4 Pair Hidden Markov models are Markov models in which states can emit
characters not only to one but two sequences. Some states emit only into one of
the sequences, some states emit into both sequences. The observer sees only the
sequences and does not see which state emits which characters and which characters
are co-emitted. Give the Viterbi, Forward and Backward algorithms for pair-HMMs.
21.3-5 The Viterbi algorithm does not use that probabilities are probabilities,
namely, they are non-negative and sum up to one. Moreover, the Viterbi algorithm
works if we replace multiplications to additions (say that we calculate the logarithm
of the probabilities). Give a modified HMM, namely, in which ”probabilities" not
necessary sum up to one, and they might be negative, too, and the Viterbi algo-
rithm with additions are equivalent with the Gotoh algorithm.
21.3-6 Secondary structures of RNA sequences are set of basepairings, in which
for all basepairing positions ij̇ and i′j̇′, i < i′ implies that either i < j < i′ < j′

or i < i′ < j′ < i. The possible basepairings are A − U , U − A, C − G, G − C,
G−U and U −G. Give a dynamic programming algorithm that finds the secondary
structure containing the maximum number of basepairings for an RNA sequence.
This problem was first solved by Nussionov et al. [192].
21.3-7 The derivation rules of the Knudsen-Hein grammar are [144], [145]

S → LS|L
F → dFd|LS
L → s|dFd

where s has to be substituted with the possible characters of RNA sequences, and
the ds in the dFd expression have to be replaced by possible basepairings. Show that
the probability of the derivation of a sequence as well as the most likely derivation
can be obtained without rewriting the grammar into Chomsky normal form.



994 21. Bioinformatics

21.4. Comparing structures

In this section, we give dynamic programming algorithms for comparing structures.
As we can see, aligning labelled rooted trees is a generalisation of sequence alignment.
The recursions in the dynamic programming algorithm for comparing HMMs yields
a linear equation system due to circular dependencies. However, we still can call it
dynamic programming algorithm.

21.4.1. Aligning labelled, rooted trees

Let Σ be a finite alphabet, and Σ− = Σ∪ {−}, Σ2 = Σ− ×Σ−\{−,−}. Labelling of
tree F is a function that assigns a character of Σ to each node n ∈ VF . If we delete
a node from the tree, then the children of the node will become children of the
parental node. If we delete the root of the tree, then the tree becomes a forest. Let
A be a rooted tree labelled with characters from Σ2, and let c : VA → Σ2 represent
the labelling. A is an alignment of trees F and G labelled with characters from Σ
if restricting the labeling of A to the first (respectively, second) coordinates and
deleting nodes labelled with ’−’ yields tree F (respectively, G). Let s : Σ2 → R be
a similarity function. An optimal alignment of trees F and G is the tree A labelled
with Σ2 for which ∑

n∈VA

s(c(n)) (21.57)

is maximal. This tree is denoted by AF,G. Note that a sequence can be represented
with a unary tree, which has a single leaf. Therefore aligning trees is a generalisation
of aligning sequences (with linear gap penalty).

Below we will concern only with trees in which each node has a degree at most
3. The recursion in the dynamic programming algorithm goes on rooted subtrees. A
rooted subtree of a tree contains a node n of the tree and all nodes that are smaller
than n. The tree obtained by root r is denoted by tr.

A tree to an empty tree can be aligned only in one way. Two leafes labelled by
a and b can be aligned in three different way. The alignment might contain only one
node labelled with (a, b) or might contain two nodes, one of them is labelled with
(a,−), the other with (−, b). One of the points is the root, the other the leaf.

Similarly, when we align a single leaf to a tree, then in the alignment A either
the single character of the node is labelled together with a character of the tree
or labelled together with ’−’ in an independent node. This node can be placed in
several ways on tree A, however the score of any of them is the same.

After this initialisation, the dynamic programming algorithm aligns greater
rooted subtrees using the alignments of smaller rooted subtrees. We assume that
we already know the score of the optimal alignments Atr,tx

, Atr,ty
, Atu,ts

, Atv,ts
,

Atu,tx
, Atu,ty

, Atv,tx
and Atv,ty

when aligning subtrees tr and ts, where u and v are
the children of r and x and y are the children of s. Should one of the nodes have
only one child, the dynamic programming reduces the problem of aligning tr and
ts to less subproblems. We assume that the algorithm also knows the score of the
optimal alignments of tr to the empty tree and the score of the optimal alignment
of ts to the empty tree. Let the labelling of r be a and the labelling of s be b. We



21.4. Comparing structures 995

have to consider constant many subproblems for obtaining the score of the optimal
alignment of tr and ts. If one of the tree is aligned to one of the children’s subtree of
the other tree, then the other child and the root of the other tree is labelled together
with ’−’. If character of r is co-labelled with the character of s, then the children
nodes are aligned together, as well. The last situation is the case when the roots are
not aligned in Atr,ts

but one of the roots is the root of Atr,ts
and the other root is its

only child. The children might or might not be aligned together, this is five possible
cases altogether.

Since the number of rooted subtrees equals to the number of nodes of the tree,
the optimal alignment can be obtained in Θ(|F ||G|) time, where |F | and |G| are the
number of nodes in F and G.

21.4.2. Co-emission probability of two HMMs

Let M1 and M2 be Hidden Markov Models. The co-emission probability of the two
models is

C(M1,M2) =
∑

s

PrM1
{s}PrM2

{s} , (21.58)

where the summation is over all possible sequences and PrM {s} is the probability
that model M emitted sequence s. The probability that path p emitted sequence s
is denoted by e(p) = s, a path from the START state till the x state is denoted by
[x]. Since state x can be reached on several paths, this definition is not well-defined,
however, this will not cause a problem later on. Since the coemission probability is
the sum of the product of emission of paths,

C(M1,M2) =
∑

s


 ∑

p1∈M1,e(p1)=s

PrM1
{p1}




 ∑

p2∈M2,e(p2)=s

PrM2
{p2}


 =

=
∑

p1∈M1,p2∈M2,e(p1)=e(p2)

PrM1
{p1}PrM2

{p2} . (21.59)

Let p̄1 denote the path that can be obtained with removing the last state from p1,
and let x1 be the state before END1 in path p1. (We define similarly p̄2 and x2.)
Hence

C(M1,M2) =
∑

p1∈M1,p2∈M2,e(p1)=e(p2)

mx1,END1
mx2,END2

PrM1
{p̄1}PrM2

{p̄2} =

=
∑

x1,x2

mx1,END1
mx2,END2

C(x1, x2) , (21.60)

where mx,END is the probability of jumping to ENDfrom x, and

C(x1, x2) =
∑

[x1]∈M1,[x2]∈M2,e([x1])=e([x2])

PrM1
{[x1]}PrM2

{[x2]} . (21.61)

C(x1, x2) can be also obtained with this equation:

C(x1, x2) =
∑

y1,y2

my1,x1
my2,x2

C(y1, y2)
∑

σ∈Σ

Pr {σ|x1}Pr {σ|x2} , (21.62)



996 21. Bioinformatics

where Pr {σ|xi} is the probability that xi emitted σ. Equation 21.62 defines a linear
equation system for all pairs of emitting states x1 and x2 . The initial conditions
are:

C(START 1,START 2) = 1, (21.63)

C(START 1, x2) = 0, x2 6= START 2 , (21.64)

C(x1,START 2) = 0, x1 6= START 1 . (21.65)

Unlike the case of traditional dynamic programming, we do not fill in a dynamic
programming table, but solve a linear equation system defined by Equation 21.62.
Hence, the coemission probability can be calculated in O

(
(n1n2)3

)
time, where ni

and Mi are the number of emitting states of the models.

Exercises
21.4-1 Give a dynamic programming algorithm for the local similarities of two
trees. This is the score of the most similar subtrees of the two trees. Here subtrees
are any consecutive parts of the tree.
21.4-2 Ordered trees are rooted trees in which the children of a node are ordered.
The ordered alignment of two ordered trees preserve the orderings in the aligned
trees. Give an algorithm that obtains the optimal ordered alignment of two ordered
trees and has running time being polynomial with both the maximum number of
children and number of nodes.
21.4-3 Consider the infinite Euclidean space whose coordinates are the possible
sequences. Each Hidden Markov model is a vector in this space the coordinates of
the vector are the emission probabilities of the corresponding sequences. Obtain the
angle between two HMMs in this space.
21.4-4 Give an algorithm that calculates the generating function of the length of
the emitted sequences of an HMM, that is

∞∑

i=0

piξ
i

where pi is the probability that the Markov model emitted a sequence with length
i.
21.4-5 Give an algorithm that calculates the generating function of the length of
the emitted sequences of a pair-HMM, that is

∞∑

i=0

∞∑

j=0

pi,jξ
iηj

where pi,j is the probability that the first emitted sequence has length i, and the
second emitted sequence has length j.



21.5. Distance based algorithms for constructing evolutionary trees 997

21.5. Distance based algorithms for constructing
evolutionary trees

In this section, we shell introduce algorithms whose input is a set of objects and
distances between objects. The distances might be obtained from pairwise alignments
of sequences, however, the introduced algorithms work for any kind of distances. The
leaves of the tree are the given objects, and the topology and the lengths of the edges
are obtained from the distances. Every weighted tree defines a metric on the leaves
of the tree, we define the distance between two leaves as the sum of the weights of
edges on the path connecting them. The goodness of algorithms can be measured as
the deviation between the input distances and the distances obtained on the tree.

We define two special metrics, the ultrametric and additive metric. The clus-
tering algorithms generate a tree that is always ultrametric. We shell prove that
clustering algorithms gives back the ultrametric if the input distances follow a ul-
trametric, namely, the tree obtained by a clustering algorithm defines exactly the
input distances.

Similarly, the Neighbour Joining algorithm creates a tree that represents an
additive metric, and whenever the input distances follow an additive metric, the
generated tree gives back the input distances.

For both proves, we need the following lemma:

Lemma 21.3 For any metric, there is at most one tree that represents it and has
positive weights.

Proof The proof is based on induction, the induction starts with three points. For
three points, there is exactly one possible topology, a star-tree. Let the lengths of
the edges connecting points i, j and k with the internal node of the star three be x,
y and z, respectively. The lengths of the edges defined by the

x+ y = di,j (21.66)

x+ z = di,k (21.67)

y + z = dk,l (21.68)

equation system, which has a unique solution since the determinant

∣∣∣∣∣∣

1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣
(21.69)

is not 0.
For n > 3 number of points, let us assume that there are two trees representing

the same metric. We find a cherry motif on the first tree, with cherries i and j.
A cherry motif is a motif with two leafes whose connecting path has exactly one
internal node. Every tree contains at least two cherry motives, a path on the tree
that has the maximal number of internal nodes has cherry motives at both ends.

If there is only one internal node on the path connecting i and j on the other
tree, then the length of the corresponding edges in the two cherry motives must



998 21. Bioinformatics

be the same, since for any additional point k, we must get the same subtree. We
define a new metric by deleting points i and j, and adding a new point u. The
distance between u and any point k is di,k−di,u, where di,u is the length of the edge
connecting i with the internal point in the cherry motif. If we delete nodes i and
j, we get a tree that represent this metric and they are the same, according to the
induction.

If the path between i and j contains more than one internal node on the other
tree, then we find a contradiction. There is a u1 point on the second tree for which
di,u 6= di,u1

. Consider a k such that the path connecting i and k contains node u.
From the first tree

di,k − dj,k = di,u − dj,u = 2di,u − di,j , (21.70)

while on the second tree

di,k − dj,k = di,u1
− dj,u1

= 2di,u1
− di,j , (21.71)

which contradicts that di,u 6= di,u1
.

21.5.1. Clustering algorithms

Definition 21.4 A metric is ultrametric if for any three points, i, j and k

di,j ≤ max{di,k, dj,k} (21.72)

It is easy to prove that the three distances between any three points are all equal
or two of them equal and the third is smaller in any ultrametric.

Theorem 21.5 If the metric on a finite set of points is ultrametric, then there is
exactly one tree that represents it. Furthermore, this tree can be rooted such that the
distance between a point and the root is the same for all points.

Proof Based on the Lemma 21.3, it is enough to construct one ultrametric tree
for any ultrametric. We represent ultrametric trees as dendrograms. in this rep-
resentation, the horizontal edges has length zero. For an example dendrogram, see
Figure 21.2. The proof is based on the induction on the number of leaves. Obviously,
we can construct a dendrogram for two leaves. After constructing the dendrogram
for n leaves, we add leaf n + 1 to the dendrogram in the following way. We find
a leaf i in the dendrogram, for which di,n+1 is minimal. Then we walk up on the
dendrogram till we reach the di,n+1/2 distance (we might go upper than the root).
The node i is connected to the dendrogram at this point, see Figure 21.3. This den-
drogram represents properly the distances between leaf n + 1 and any other leaf.
Indeed, if leaf i that is below the new internal node that bonnets leaf n + 1, then
di,i ′ ≤ di,n+1 and from the ultrametric property and the minimality of di,n+1 it fol-
lows that di,n+1 = di ′,n+1. On the other hand, if leaf j is not below the new internal
point joining leaf n + 1, then di,j > di,n+1, and from the ultrametric property it
comes that dj,n+1 = di,j .



21.5. Distance based algorithms for constructing evolutionary trees 999

Figure 21.2 A dendrogram.

- 6

?
i j i i ′ n+ 1

di,n+1/2

Figure 21.3 Connecting leaf n + 1 to the dendrogram.

It is easy to see that the construction in the proof needs O(n2) running time, where
n is the number of objects. We shell give another algorithm that finds the pair of
objects i and j for which di,j is minimal. From the ultrametric property, for any
k 6= i, j, di,k = dj,k(≥ di,j), hence we can replace the pair of objects i and j to a
new object, and the distance between this new object and any other object k is well
defined, it is di,k = dj,k. The objects i and j are connected at height di,j/2, and we
treat this sub-dendrogram as a single object. We continue the iteration till we have a
single object. This algorithm is slower than the previous algorithm, however, this is
the basis of the clustering algorithms. The clustering algorithms create a dendrogram
even if the input distances do not follow a ultrametric. On the other hand, if the
input distances follow a ultrametric, then most of the clustering algorithms gives
back this ultrametric.

As we mentioned, the clustering algorithms find the object pair i and j for which
di,j is minimal. The differences come from how the algorithms define the distance
between the new object replacing the pair of objects i and j and any other object. If
the new object is denoted by u, then the introduced clustering methods define du,k

in the following way:

• Single link: du,k = min{di,k, dj,k}.
• Complete link: du,k = max{di,k, dj,k}.
• UPGMA: the new distance is the arithmetic mean of the distances between the

elements in u and k : du,k =
di,k×|i|+dj,k×|j|

|i|+|j| , where |i| and |j| are the number of



1000 21. Bioinformatics

k

i |j| u |i| j

Figure 21.4 Calculating du,k according to the Centroid method.

elements in i and j.

• Single average: du,k =
di,k+dj,k

2 .

• Centroid: This method is used when the objects can be embedded into a
Euclidean space. Then the distance between two objects can be defined as the
distance between the centroids of the elements of the objects. It is not necessary
to use the coordinates of the Euclidean space since the distance du,k in question
is the distance between point k and the point intersecting the ij edge in |j| : |i|
proportion in the triangle obtained by points i, j és k (see Figure 21.4). This
length can be calculated using only di,j , di,k and dj,k. Hence the algorithm can
be used even if the objects cannot be embedded into a Euclidean space.

• Median: The centroid of u is the centroid of the centroids of i and j. This
method is related to the centroid method as the single average is related to the
UPGMA method. It is again not necessary to know the coordinates of the ele-
ments, hence this method can be applied to distances that cannot be embedded
into a Euclidean space.

It is easy to show that the first four method gives the dendrogram of the input
distances whenever the input distances follow a ultrametric since di,k = dj,k in this
case. However, the Centroid and Median methods do not give the corresponding
dendrogram for ultrametric input distances, since du,k will be smaller than di,k

(which equals to dj,k).
The central problem of the clustering algorithms is that they give a dendrogram

that might not be biologically correct. Indeed, the evolutionary tree of biological
sequences can be a dendrogram only if the molecular clock hypothesis holds. The
molecular clock hypothesis says that the sequences evolve with the same tempo at
each branches of the tree, namely they collect the same number of mutations at
a given time span. However, this is usually not true. Therefore biologists want an
algorithm that give a ultrametric tree only if the input distances follow a ultrametric.
The most popular such method is the Neighbour-Joining algorithm.



21.5. Distance based algorithms for constructing evolutionary trees 1001

i

k

l

n+ 1

u

Figure 21.5 Connecting leaf n + 1 for constructing an additive tree.

21.5.2. Neighbour joining

Definition 21.6 A metric is called additive or four-point metric, if for any
four points i, j, k and l

di,j + dk,l ≤ max{di,k + dj,l, di,l + dj,k} (21.73)

Theorem 21.7 If a metric is additive on a finite set of objects, then there is exactly
one tree that represents it.

Proof Due to Lemma 21.3, there is at most one such tree, therefore it is enough to
construct it. First we give the construction then we prove its goodness.

For three objects we can construct a tree according to (21.66)–(21.68). Assume
that we constructed the tree for n ≥ 3 objects, and we want to add leaf n+ 1 to the
tree. First we find the topology and then we give the length of the new edge. For
obtaining the new topology we start with any leaf i, and let denote u the neighbour
of leaf i. There are at least two other edges going out from u, we find two leaves on
the paths starting with these two outgoing edges, let k and l denote these leaves,
see Figure 21.5. The leaf is connected to the edges between i and u if

di,n+1 + dk,l < di,k + dn+1,l (21.74)

Using similar inequalities, we can decide if leaf n + 1 is before u looking from k or
looking from l. If the degree of u is greater than 3, then we find leaves l′ on the other
paths and we do the same investigations for i, n + 1, k and l′ points. >From the
additive property, it follows that inequality can hold at most for one cases. If it holds
for i, then we connect leaf n + 1 to the edge connecting u and i. If the inequality
holds for another case, then we derive the maximal subtree of the tree that contains
u as a leaf and also contains the leaf for which the inequality holds. We define du,n+1

as di,n+1 − di,u, then renaming u to i we continue the searching for the connection
place of leaf n + 1. If we get equality for all outgoing edges of u, then we connect
leaf n+ 1 to u.

After finding the topology, we obtain the length of the new edge. Leaf n + 1 is



1002 21. Bioinformatics

k

k1
u

i

n+ 1

l k

k1

l

n+ 1

i

u

u1

k l

n+ 1u

i

a) b)

c)

Figure 21.6 Some tree topologies for proving Theorem 21.7.

connected to the edge between i and u, let u1 denote the new internal point, see
Figure 21.6/b. We define du,n+1 as dl,n+1 − dl,u. then the distances du,u1

, di,u1
, and

du1,n+1 can be calculated using (21.66)–(21.68). If the leaf n+ 1 is connected to u,
then du,n+1 = di,n+1 − di,u.

Now we prove the correctness of the construction. First we show that du,n+1 is
well-defined, namely, for all node j that is not in the new subtree containing leaves
n+1 and u, dj,n+1−dj,u = di,n+1−di,u. If the new subtree contains l then for j = k
that was used to find the place of leaf n+ 1 will obviously hold (see Figure 21.6/a).
Due to the additive metric property and the place of leaf n+ 1

dk,n+1 + di,l = di,n+1 + dk,l . (21.75)

Using inequalities di,l = di,u + du,l és a dk,l = dk,u + du,l, it follows that

dk,n+1 − dk,u = di,n+1 − di,u. (21.76)

Similarly for all leaves k1 that are not separated from k by u, it holds that

dk1,n+1 + di,l = di,n+1 + dk1,l (21.77)

It is due to the additive metric and the inequality

dk,k1
+ dl,n+1 < dk,n+1 + dk1,l (21.78)

this later inequality comes from these inequalities

dk,k1
+ di,l < dk1,l + dk,i (21.79)

dl,n+1 + dk,i < di,l + dk,n+1 (21.80)



21.5. Distance based algorithms for constructing evolutionary trees 1003

If the degree of u is greater than 3, then similar inequalities hold.
Due to the way of calculating the new edge lengths, di,n+1 is represented properly

on the new tree, hence dj,n+1 is represented properly for all j that is separated from
leaf n+ 1 by i. Note that i might be an earlier u.

If leaf n+ 1 is connected to the edge between i and u (Figure 21.6/b), then due
to the definition du,n+1, dl,n+1 is represented properly. From the equation

dk,n+1 + di,l = dk,i + dl,n+1 (21.81)

it follows that
dk,n+1 = dk,u + du,n+1 , (21.82)

hence dk,n+1 is represented properly. It can be similarly shown that for all points j
that are separated from n+ 1 by u, the dj,n+1 is represented properly on the tree.

If leaf n+ 1 is connected to node u (Figure 21.6/c), then from the equations

di,n+1 + dk,l = dk,i + dl,n+1 = dk,n+1 + dj,i (21.83)

it comes that both dk,n+1 and dl,n+1 are represents properly on the new tree, and
with similar reasoning, it is easy to show that actually for all nodes j that is separated
from n+ 1 by u, dj,n+1 is represented properly on the tree.

Hence we construct a tree containing leaf n+1 from the tree containing the first
n leaves, thus proving Theorem 21.7.

It is easy to show that the above algorithm that constructs the tree representing
an additive metric takes O(n2) running time. However, it works only if the input
distances follow an additive metric, other wise inequality (21.74) might hold several
times, hence we cannot decide where to join leaf n + 1 to. We shell introduce an
algorithm that has Θ(n3) running time and gives back the additive tree whenever
the input distances follow an additive metric, moreover it generates an additive tree
that approximates the input distances if those are not follow an additive metric.

The Neighbour-Joining algorithm works in the following way: Given a set
with n points and a distance function d on the points. First we calculate the for each
point i the sum of the distances from the other points:

vi =

n∑

j=1

di,j . (21.84)

Then we find the pair of points for which

si,j = (n− 2)di,j − vi − vj (21.85)

is minimal. The length of the edges from points i and j to the new point u are

ei,u =
di,j

2
− vi − vj

2n− 4
(21.86)

and

ej,u =
di,j

2
− ei,u (21.87)



1004 21. Bioinformatics

i

j k

l

u w

Figure 21.7 The configuration of nodes i, j, k and l if i and j follows a cherry motif.

Then we recalculate distances. We drop points i and j, and add point u. The
distance between u and any other point k is defined as

dk,u =
dk,i + dk,j − di,j

2
. (21.88)

Theorem 21.8 If d follows an additive metric, then the Neighbour-Joining al-
gorithm generates a tree that gives back d.

Proof From Theorem 21.7 there is exactly one tree that represents the distances.
It is enough to prove that the Neighbour-Joining algorithm always pick a cherry
motif on this tree, since a straightforward calculation shows that in this case the
calculated edge lengths are proper.

First we prove if i and j follows a cherry motif then for all k, si,j < si,k és
si,j < sk,j . Indeed, rearranging s, we have to prove that

∑

l 6=i,j

(di,j − di,l − dj,l)− 2di,j −
∑

m 6=j,k

(dj,k − dj,m − dk,m) + 2dj,k < 0 (21.89)

If l = m 6= i, j, k, then we get that

(di,j − di,l − dj,l)− dj,k + dj,l + dk,l = 2dw,l − 2du,l < 0 , (21.90)

(see also Figure 21.7). 2dj,k − 2di,j and the cases l = k and m = i inside the sums
cancel each other, hence we prove that the (21.89) inequality holds.

Now we prove the Theorem 21.8 in an indirect way. Suppose that i and j does
not follow a cherry motif, however, si,j is minimal. From the previous lemma, neither
i nor j are in a cherry motif with other leaves. We find a cherry motif with leaves k
and l and internal node w. Let v denote the last common node of paths going from
w to i and to j. Since si,j is minimal,

sk,l − si,j > 0 . (21.91)

Rearranging this we get that

∑

m1 6=k,l

(dk,l−dm1,k−dm1,l)−2dk,l−
∑

m2 6=i,j

(di,j−dm2,i−dm2,k)+2di,j > 0 . (21.92)

2di,j − 2dk,l and cases m1 = k, m1 = l, m2 = i and m2 = j inside the sum cancel



21.6. Miscellaneous topics 1005

i

j k

l

v w

m

m m

Figure 21.8 The possible places for node m on the tree.

each other. For the other m = m1 = m2 6= i, j, k, l, the left hand side is

dk,l − dm,k − dm,l − di,j + dm,i + dm,k . (21.93)

If m joins to the tree via the path connecting i and j, then the expression 21.93
will be always negative, see also Figure 21.8. Let these cases be called I. class cases.
If m joins to the tree via the path between v and w, then the expression 21.93 might
be positive. Let these cases called II. class cases. To avoid contradiction, the sum of
absolute values from I. class cases must be less than the sum from the II. class cases.

There is another v′ node on the path connecting i and j, and we can find a
cherry motif after node v′ with leaves k′ and l′ and internal node w′. Here again
the II. class cases have to be more than the I. class cases, but this contradict to the
situation with the first cherry motif. Hence i and j form a cherry motif and we prove
Theorem 21.8.

Exercises
21.5-1 Show that in a ultrametric, three distances coming from three points are all
equal or two of them equal and the third is smaller. Prove the similar claim for the
three sum of distances coming from four points in an additive metric.
21.5-2 Show that a ultrametric is always an additive metric.
21.5-3 Give an example for a metric that is not additive.
21.5-4 Is it true that all additive metric is a Euclidean metric?
21.5-5 Give the formula that calculates du,k from di,j , di,k and dj,k for the centroid
method.
21.5-6 Give algorithms that decide in O(n2) whether or not a metric is

• additive

• ultrametric

(n is the number of points.)

21.6. Miscellaneous topics

In this section, we cover topics that are usually not mentioned in bioinformatics
books. We only mention the main results in a nutshell and do not prove theorems.



1006 21. Bioinformatics

21.6.1. Genome rearrangement

The genome of an organism consists of several genes. For each gene, only one strand
of the double stranded DNA contains meaningful information, the other strand is
the reverse complement. Since the DNA is chemically oriented, we can talk about
the direction of a gene. If each gene has one copy in the genome then we can describe
the order and directions of genes as a signed permutation, where the signs give the
directions of genes.

Given two genomes with the same gene content, represented as a signed permu-
tation then the problem is to give the minimal series of mutations that transform
one genome into another. We consider three types of mutations:

• Reversal A reversal acts on a consecutive part of the signed permutation. It
reverse the order of genes on the given part as well as the signs of the genes.

• Transposition A transposition swaps two consecutive block of genes.

• Reverted transposition It swaps two consecutive blocks and one of the blocks
is reverted. As for reversals, the signs in the reverted block also change.

If we assume that only mutations happened, then we can give an O(n2) running
time algorithm that obtains a shortest series of mutations transforming one genome
into another, where n is the number of genes.

If we consider other types of mutations, then the complexity of problems is
unknown. For transpositions, the best approximation is an 1.375 approximation
[69], if we consider all possible types of mutations, then the best approximation is a
2-approximation [107]. For a wide range of and biologically meaningful weights, the
weighted sorting problem for all types of mutations has a 1.5-approximation [19].

If we do not know the signs, then the problem is proved to be NP-complete [40].
Similarly, the optimal reversal median problem even for three genomes and signed
permutations is NP-complete [?]. The optimal reversal median is a genome that
minimises the sum of distances from a set of genomes.

Below we describe the Hannenhalli-Pevzner theorem for the reversal distance of
two genomes. Instead of transforming permutation π1 into π2, we transform π−1

2 π1

into the identical permutation. Based on elementary group theory, it is easy to show
that the two problems are equivalent. We assume that we already calculated π−1

2 π1,
and we will denote it simply by π.

We transform an n long signed permutation into a 2n long unsigned permutation
by replacing +i to 2i−1, 2i and −i to 2i, 2i−1. Additionally, we frame the unsigned
permutation into 0 and 2n + 1. The vertexes of the so-called graph of desire and
reality are the numbers of the unsigned permutation together with 0 and 2n + 1.
Starting with 0, we connect every other number in the graph, these are the reality
edges. Starting also with 0, we connect 2i with 2i + 1 with an arc, these are the
desire edges. An example graph can be seen on Figure 21.9. Since each vertex in
the graph of desire and reality has a degree of two, the graph can be unequivocally
decomposed into cycles. We call a cycle a directed cycle if on a walk on the cycle,
we go at least once from left to right on a reality cycle and we go at least once from
right to left on a reality cycle. Other cycles are unoriented cycles.

The span of a desire edge is the interval between its left and right vertexes. Two



21.6. Miscellaneous topics 1007

0 2 1 3 4 9 10 7 8 5 6 11

-1 +2 +5 +3 +4

Figure 21.9 Representation of the −1, +2, +5, +3, +4 signed permutation with an unsigned
permutation, and its graph of desire and reality.

cycles overlap if there are two reality edges in the two cycles whose spans intersect.
The vertexes of the overlap graph of a signed permutation are the cycles in its
graph of desire and reality, two nodes are connected if the two cycles overlap. The
overlap graph can be decomposed into components. A component is directed if it
contains a directed cycle, otherwise it is unoriented. The span of a component is the
interval between its leftmost and rightmost nodes in the graph of desire and reality.
An unoriented component is a hurdle if its span does not contain any unoriented
component or it contains all unoriented component. Other components are called
protected non-hurdles.

A super-hurdle is hurdle for which it is true that if we delete this hurdle then
one of the protected non-hurdles becomes a hurdle. A fortress is a permutation in
which all hurdles are super-hurdles and their number is odd.

The Hannenhalli-Pevzner theorem is the following:

Theorem 21.9 Given a signed permutation π. The minimum number of mutations
sorting this permutation into the identical permutation is

n+ 1− cπ + hπ + fπ (21.94)

where n is the length of the permutation, cπ is the number of cycles, hπ is the number
of hurdles, and fπ = 1 if the permutation is a fortress, otherwise 0

The proof of the theorem can be found in the book due to Pevzner.
The reversal distance was calculated in Θ(n) time by Bader et al.. It is very easy

to obtain cπ in Θ(n) time. The hard part is to calculate hπ and fπ. The source of
the problem is that the overlap graph might contain Ω(n2) edges. Therefore the fast
algorithm does not obtain the entire overlap graph, only a spanning tree on each
component of it.

21.6.2. Shotgun sequencing

A genome of an organism usually contain significantly more than one million nucleic
acids. Using a special biochemical technology, the order of nucleic acids can be
obtained, however, the uncertainty grows with the length of the DNA, and becomes
absolutely unreliable after about 500 nucleic acids.



1008 21. Bioinformatics

A possible solution for overcoming this problem is the following: several copies
are made from the original DNA sequence and they are fragmented into small parts
that can be sequenced in the above described way. Then the original sequence must
be reconstructed from its overlapping fragments. This technique is called shotgun
sequencing.

The mathematical definition of the problem is that we want to find the shortest
common super-sequence of a set of sequences. Sequence B is a super-sequence of A if
A is subsequence of B. Recall that a subsequence is not necessarily a consecutive part
of the sequence. Maier proved that the shortest common super-sequence problem is
NP-complete is the size of the alphabet is at least 5 and conjectured that it is the case
if the size is at least 3. Later on it has been proved that the problem is NP-complete
for all non-trivial alphabet [211].

Similar problem is the shortest common super-string problem, that is also an
NP-complete problem [90]. This later has biological relevance, since we are looking
for overlapping substrings. Several approximation algorithms have been published
for the shortest common super-string problem. A greedy algorithm finds for each
pair of strings the maximal possible overlap, then it tries to find a shortest common
super-string by merging the overlapping strings in a greedy way [244]. The running
time of the algorithm is O(Nm), where N is the number of sequences and m is the
total length of the sequences. This greedy method is proved to be a 4-approximation
[?]. A modified version being a 3-approximation also exist, and the conjecture is that
the modified version is a 2-approximation [?].

The sequencing of DNA is not perfect, insertions, deletions and substitutions
might happen during sequencing. Therefore Jiang and Li suggested the shortest k-
approximative common super-string problem [?]. Kececioglu and Myers worked out
a software package including several heuristic algorithm for the problem [?]. Later
on Myers worked for Celera, which played a very important role in sequencing the
human genome. A review paper on the topic can be found in [262].

Exercises
21.6-1 Show that a fortress contains at least three super-hurdle.
21.6-2 At least how long is a fortress?

Problems

21-1 Concave Smith–Waterman
G ive the Smith–Waterman-algorithm for concave gap penalty.
21-2 Concave Spouge
G ive Spouge-algorithm for concave gap penalty.
21-3 Serving at a petrol station
T here are two rows at a petrol station. Each car needs either petrol or diesel oil.
At most two cars can be served at the same time, but only if they need differ-
ent type of fuel, and the two cars are the first ones in the two rows or the first
two in the same row. The serving time is the same not depending on whether



Notes for Chapter 21 1009

two cars are being served or only one. Give a pair-HMM for which the Viterbi-
algorithmqprindexViterbi-algorithm provides a shortest serving scenario.
21-4 Moments of an HMM
G iven an HMM and a sequence. Obtain the mean, variance, kth moment of the
probabilities of paths emitting the given sequence.
21-5 Moments of a SCFG
G iven a SCFG and a sequence. Obtain the mean, variance, kth moment of the
probabilities of derivations of the given sequence.
21-6 Co-emission probability of two HMMs
C an this probability be calculated in O((n1n2)2) time where n1 and n2 are the
number of states in the HMMs?
21-7 Sorting reversals
A sorting reversal is a reversal that decreases the reversal distance of a signed
permutation. How can a sorting reversal change the number of cycles and hurdles?

Chapter Notes

The first dynamic programming algorithm for aligning biological sequences was given
by Needleman and Wunch in 1970 [189]. Though the concave gap penalty function
is biologically more relevant, the affine gap penalty has been the standard soring
scheme for aligning biological sequences. For example, one of the most popular mul-
tiple alignment program, CLUSTAL-W uses affine gap penalty and iterative sequence
alignment [248]. The edit distance of two strings can calculated faster than Θ(l2)
time, that is the famous ”Four Russians’ speedup"qindexFour Russians speedup [13].
The running time of the algorithm is O(n2/ log(n)), however, it has such a big con-
stant in the running time that it is not worth using it for sequence lengths appear
in biological applications. The longest common subsequence problem can be solved
using a dynamic programming algorithm similar to the dynamic programming al-
gorithm for aligning sequences. Unlike that algorithm, the algorithm of Hunt and
Szymanski creates a graph whose points are the characters of the sequences A and
B, and ai is connected to bj iff ai = bj . Using this graph, the longest common
subsequence can be find in Θ((r + n) log(n)) time, where r is the number of edges
in the graph and n is the number of nodes [124]. Although the running time of
this algorithm is O(n2 lg(n)), since the number of edges might be O(n2), in many
cases the number of edges is only O(n), and in this cases the running time is only
O(n lg(n)). A very sophisticated version of the corner-cutting method is the diagonal
extension technique, which fills in the dynamic programming table by diagonals and
does not need a test value. An example for such an algorithm is the algorithm of
Wu at al. [268]. the diff command in the Unix operating system is also based on
diagonal extension [184], having a running time O(n+m+ d2

e), where n and m are
the lengths of the sequences and de is the edit distance between the two sequences.
The Knuth-Morris-Pratt string-searching algorithm searches a small pattern P in a
long string M . Its running time is Θ(p + m), where p and m are the length of the
sequences [146]. Landau and Vishkin modified this algorithm such that the modified
version can find a pattern in M that differs at most in k position [156]. The running



1010 21. Bioinformatics

time of the algorithm is Θ(k(p log(p)+m)), the memory requirement is Θ(k(p+m)).
Although dynamic programming algorithms are the most frequently used techniques
for aligning sequences, it is also possible to attack the problem with integer linear pro-
gramming. KececiogluqnevindexKececioglu, John D. and his colleges gave the first
linear programming algorithm for aligning sequences [139]. Their method has been
extended to arbitrary gap penalty functions [7]. LanciaqnevindexLancia, G. wrote a
review paper on the topic [155] and Pachter and Sturmfels showed the relationship
between the dynamic programming and integer linear programming approach in their
book Algebraic Statistics for Computational Biology [197]. The structural alignment
considers only the 3D structure of sequences. The optimal structural alignment prob-
lem is to find an alignment where we penalise gaps, however, the aligned characters
scored not by their similarity but by how close their are in the superposed 3D struc-
tures. Several algorithms have been developed for the problem, one of them is the
combinatorial extension (CE) algorithm [229]. For a given topology it is possible to
find the Maximum Likelihood labeling [210]. This algorithm has been integrated into
PAML, which is one of the most popular software package for phylogenetic analysis
(http://abacus.gene.ucl.ac.uk/software/paml.html). The Maximum Likelihood tree
problem is to find for a substitution model and a set of sequences the tree topology
and edge lengths for which the likelihood is maximal. Surprisingly, it has only re-
cently been proved that the problem is NP-complete [46, 216]. The similar problem,
the Ancestral Maximum Likelihood problem has been showed to be NP-complete
also only recently [2]. The AML problem is to find the tree topology, edge lengths
and labellings for which the likelihood of a set of sequences is maximal in a given
substitution model. The two most popular sequence alignment algorithms based on
HMMs are the SAM [123] and the HMMER (http://hmmer.wustl.edu/) packages.
An example for HMM for genome annotation is the work of Pedersen and Hein
[203]. Comparative genome annotation can be done with pair-HMMs like the Dou-
bleScan [181], (http://www.sanger.ac.uk/Software/analysis/doublescan/) and the
Projector [182], (http://www.sanger.ac.uk/Software/analysis/projector/) programs.
Goldman, Thorne and Jones were the first who published an HMM in which the emis-
sion probabilities are calculated from evolutionary informations [100]. It was used
for protein secondary structure prediction. The HMM emits alignment columns,
the emission probabilities can be calculated with the Felsenstein algorithm. The
Knudsen-Hein grammar is used in the PFold program, which is for predicting RNA
secondary structures [145]. This SCFG generates RNA multiple alignments, where
the terminal symbols are alignment columns. The derivation probabilities can be
calculated with the Felsenstein algorithm, the corresponding substitution model is
a single nucleotide or a dinucleotide model, according to the derivation rules. The
running time of the Forward algorithm grows squarely with the number of states
in the HMM. However, this is not always the fastest algorithm. For a biologically
important HMM, it is possible to reduce the Θ(5nLn) running time of the Forward
algorithm to Θ(2nLn) with a more sophisticated algorithm [167, 168]. However, it
is unknown whether or not similar acceleration exist for the Viterbi algorithm.
The Zuker-Tinoco model [249] defines free energies for RNA secondary structure
elements, and the free energy of an RNA structure is the sum of free energies of the
elements. The Zuker-Sankoff algorithm calculates in Θ(l4) time the minimum free



Notes for Chapter 21 1011

energy structure, using Θ(l2) memory, where l is the length of the RNA sequence.
It is also possible to calculate the partition function of the Boltzmann distribution
with the same running time and memory requirement [180]. For a special case of free
energies, both the optimal structure and the partition function can be calculated in
Θ(l3) time, using still only Θ(l2) memory [172]. Two base-pairings, i · j and i′ · j′

forms a pseudo-knot if i < i′ < j < j′. Predicting the optimal RNA secondary struc-
ture in which arbitrary pseudo-knots are allowed is NP-complete [171]. For special
types of pseudo-knots, polynomial running time algorithms exist [6, 171, 214, 254].
RNA secondary structures can be compared with aligning ordered forests [?]. At-
teson gave a mathematical definition for the goodness of tree-constructing meth-
ods, and showed that the Neighbor-Joining algorithm is the best one for some
definitions [15]. Elias and Lagergren recently published an improved algorithm for
Neighbor-Joining that has only O(n2) running time [70]. There are three possible
tree topologies for four species that are called quartets. If we know all the quartets
of the tree, it is possible to reconstruct it. It is proved that it is enough to know only
the short quartets of a tree that are the quartets of closely related species [71]. A
genome might contain more than one DNA sequences, the DNA sequences are called
chromosomes. A genome rearrangement might happen between chromosomes, too,
such mutations are called translocations. Hannenhalli gave a Θ(n3) running time
algorithm for calculating the translocation and reversal distance [115]. Pisanti and
Sagot generalised the problem and gave results for the translocation diameter [207].
The generalisation of sorting permutations is the problem of finding the minimum
length generating word for an element of a group. The problem is known to be
NP-complete [131]. Above the reversal distance and translocation distance problem,
only for the block interchange distance exists a polynomial running time algorithm
[47]. We mention that Bill Gates, the owner of Microsoft worked also on sorting
permutations, actually, with prefix reversals [94].

Description of many algorithms of bioinformatics can be found in the book of
Pevzner and Jones [205]. We wrote only about the most important topics of bioin-
formatics, and we did not cover several topics like recombination, pedigree analy-
sis, character-based tree reconstructing methods, partial digesting, protein threading
methods, DNA chip analysis, knowledge representation, biochemical pathways, scale-
free networks, etc. We close the chapter with the words of Donald Knuth: ”It is hard
for me to say confidently that, after fifty more years of explosive growth of computer
science, there will still be a lot of fascinating unsolved problems at peoples’ finger-
tips, that it won’t be pretty much working on refinements of well-explored things.
Maybe all of the simple stuff and the really great stuff has been discovered. It may
not be true, but I can’t predict an unending growth. I can’t be as confident about
computer science as I can about biology. Biology easily has 500 years of exciting
problems to work on, it’s at that level."



22. Computer Graphics

Computer Graphics algorithms create and render virtual worlds stored in the com-
puter memory. The virtual world model may contain shapes (points, line segments,
surfaces, solid objects etc.), which are represented by digital numbers. Rendering
computes the displayed image of the virtual world from a given virtual camera. The
image consists of small rectangles, called pixels. A pixel has a unique colour, thus
it is sufficient to solve the rendering problem for a single point in each pixel. This
point is usually the centre of the pixel. Rendering finds that shape which is visible
through this point and writes its visible colour into the pixel. In this chapter we
discuss the creation of virtual worlds and the determination of the visible shapes.

22.1. Fundamentals of analytic geometry

The base set of our examination is the Euclidean space In computer algorithms
the elements of this space should be described by numbers. The branch of geometry
describing the elements of space by numbers is the analytic geometry. The basic
concepts of analytic geometry are the vector and the coordinate system.

Definition 22.1 A vector is a translation that is defined by its direction and
length. A vector is denoted by ~v.

The length of the vector is also called its absolute value, and is denoted by |~v|.
Vectors can be added, resulting in a new vector that corresponds to subsequent
translations. Addition is denoted by ~v1 +~v2 = ~v. Vectors can be multiplied by scalar
values, resulting also in a vector (λ · ~v1 = ~v), which translates at the same direction
as ~v1, but the length of translation is scaled by λ.

The dot product of two vectors is a scalar that is equal to the product of the
lengths of the two vectors and the cosine of their angle:

~v1 · ~v2 = |~v1| · |~v2| · cosα, where α is the angle between ~v1 and ~v2 .

Two vectors are said to be orthogonal if their dot product is zero.
On the other hand, the cross product of two vectors is a vector that is orthog-

onal to the plane of the two vectors and its length is equal to the product of the



22.2. Description of point sets with equations 1013

lengths of the two vectors and the sine of their angle:

~v1 × ~v2 = ~v, where ~v is orthogonal to ~v1 and ~v2, and |~v| = |~v1| · |~v2| · sinα .

There are two possible orthogonal vectors, from which that alternative is selected
where our middle finger of the right hand would point if our thumb were pointing
to the first and our forefinger to the second vector (right hand rule). Two vectors
are said to be parallel if their cross product is zero.

22.1.1. Cartesian coordinate system

Any vector ~v of a plane can be expressed as the linear combination of two, non-
parallel vectors ~i, ~j in this plane, that is

~v = x ·~i+ y ·~j .

Similarly, any vector ~v in the three-dimensional space can be unambiguously defined
by the linear combination of three, not coplanar vectors:

~v = x ·~i+ y ·~j + z · ~k .

Vectors ~i, ~j, ~k are called basis vectors, while scalars x, y, z are referred to as
coordinates. We shall assume that the basis vectors have unit length and they
are orthogonal to each other. Having defined the basis vectors any other vector can
unambiguously be expressed by three scalars, i.e. by its coordinates.

A point is specified by that vector which translates the reference point, called
origin, to the given point. In this case the translating vector is the place vector
of the given point.

The origin and the basis vectors constitute the Cartesian coordinate system,
which is the basic tool to describe the points of the Euclidean plane or space by
numbers.

The Cartesian coordinate system is the algebraic basis of the Euclidean geome-
try, which means that scalar triplets of Cartesian coordinates can be paired with the
points of the space, and having made a correspondence between algebraic and geo-
metric concepts, the theorems of the Euclidean geometry can be proven by algebraic
means.

Exercises
22.1-1 Prove that there is a one-to-one mapping between Cartesian coordinate
triplets and points of the three-dimensional space.
22.1-2 Prove that if the basis vectors have unit length and are orthogonal to each
other, then (x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 + z1z2.

22.2. Description of point sets with equations

Coordinate systems provide means to specify points by numbers. Conditions on these
numbers, on the other hand, may define sets of points. Conditions are formulated by



1014 22. Computer Graphics

solid f(x, y, z) implicit function

sphere of radius R R2 − x2 − y2 − z2

block of size 2a, 2b, 2c min{a − |x|, b − |y|, c − |z|}

torus of axis z, radii r (tube) and R (hole) r2 − z2 − (R −
√

x2 + y2)2

Figure 22.1 Functions defining the sphere, the block, and the torus.

equations. The coordinates found as the solution of these equations define the point
set.

Let us now consider how these equations can be established.

22.2.1. Solids

A solid is a subset of the three-dimensional Euclidean space. To define this subset,
continuous function f is used which maps the coordinates of points onto the set of
real numbers. We say that a point belongs to the solid if the coordinates of the point
satisfy the following implicit inequality:

f(x, y, z) ≥ 0 .

Points satisfying inequality f(x, y, z) > 0 are the internal points, while points
defined by f(x, y, z) < 0 are the external points. Because of the continuity of
function f , points satisfying equality f(x, y, z) = 0 are between external and internal
points and are called the boundary surface of the solid. Intuitively, function f
describes the signed distance between a point and the boundary surface.

We note that we usually do not consider any point set as a solid, but also require
that the point set does not have lower dimensional degeneration (e.g. hanging lines
or surfaces), i.e. that arbitrarily small neighborhoods of each point of the boundary
surface contain internal points.

Figure 22.1 lists the defining functions of the sphere, the box, and the torus.

22.2.2. Surfaces

Points having coordinates that satisfy equation f(x, y, z) = 0 are on the boundary
surface. Surfaces can thus be defined by this implicit equation. Since points can
also be given by the place vectors, the implicit equation can be formulated for the
place vectors as well:

f(~r) = 0 .

A surface may have many different equations. For example, equations f(x, y, z) = 0,
f2(x, y, z) = 0, and 2 · f3(x, y, z) = 0 are algebraically different, but they have the
same roots and thus define the same set of points.

A plane of normal vector ~n and place vector ~r0 contains those points for which
vector ~r − ~r0 is perpendicular to the normal, thus their dot product is zero. Based
on this, the points of a plane are defined by the following vector or scalar equations:

(~r − ~r0) · ~n = 0, nx · x+ ny · y + nz · z + d = 0 , (22.1)



22.2. Description of point sets with equations 1015

solid x(u, v) y(u, v) z(u, v)
sphere of radius R R · cos 2πu · sin πv R · sin 2πu · sin πv R · cos πv

cylinder of radius R,
axis z, and of height h R · cos 2πu R · sin 2πu h · v

cone of radius R,
axis z, and of height h R · (1 − v) · cos 2πu R · (1 − v) · sin 2πu h · v

Figure 22.2 Parametric forms of the sphere, the cylinder, and the cone, where u, v ∈ [0, 1].

where nx, ny, nz are the coordinates of the normal and d = −~r0 · ~n. If the normal
vector has unit length, then d expresses the signed distance between the plane and
the origin of the coordinate system. Two planes are said to be parallel if their
normals are parallel.

In addition to using implicit equations, surfaces can also be defined by paramet-
ric forms. In this case, the Cartesian coordinates of surface points are functions
of two independent variables. Denoting these free parameters by u and v, the para-
metric equations of the surface are:

x = x(u, v), y = y(u, v), z = z(u, v), u ∈ [umin, umax], v ∈ [vmin, vmax] .

The implicit equation of a surface can be obtained from the parametric equations
by eliminating free parameters u, v. Figure 22.2 includes the parametric forms of the
sphere, the cylinder and the cone.

Parametric forms can also be defined directly for the place vectors:

~r = ~r(u, v) .

Points of a triangle are the convex combinations of points ~p1, ~p2, and ~p3,
that is

~r(α, β, γ) = α · ~p1 + β · ~p2 + γ · ~p3, where α, β, γ ≥ 0 and α+ β + γ = 1 .

From this definition we can obtain the usual two-variate parametric form of a
triangle substituting α by u, β by v, and γ by (1− u− v):

~r(u, v) = u · ~p1 + v · ~p2 + (1− u− v) · ~p3, where u, v ≥ 0 and u+ v ≤ 1 .

22.2.3. Curves

By intersecting two surfaces, we obtain a curve that may be defined formally by
the implicit equations of the two intersecting surfaces

f1(x, y, z) = f2(x, y, z) = 0 ,

but this is needlessly complicated. Instead, let us consider the parametric forms
of the two surfaces, given as ~r1(u1, v1) and ~r2(u2, v2), respectively. The points of
the intersection satisfy vector equation ~r1(u1, v1) = ~r2(u2, v2), which corresponds
to three scalar equations, one for each coordinate of the three-dimensional space.
Thus we can eliminate three from the four unknowns (u1, v1, u2, v2), and obtain a
one-variate parametric equation for the coordinates of the curve points:



1016 22. Computer Graphics

test x(u, v) y(u, v) z(u, v)
ellipse of main axes
2a, 2b on plane z = 0 a · cos 2πt b · sin 2πt 0

helix of radius R,
axis z, and elevation h R · cos 2πt R · sin 2πt h · t

line segment between points
(x1, y1, z1) and (x2, y2, z2) x1(1 − t) + x2t y1(1 − t) + y2t z1(1 − t) + z2t

Figure 22.3 Parametric forms of the ellipse, the helix, and the line segment, where t ∈ [0, 1].

x = x(t), y = y(t), z = z(t), t ∈ [tmin, tmax] .

Similarly, we can use the vector form:

~r = ~r(t), t ∈ [tmin, tmax] .

Figure 22.3 includes the parametric equations of the ellipse, the helix, and the
line segment.

Note that we can define curves on a surface by fixing one of free parameters u, v.
For example, by fixing v the parametric form of the resulting curve is ~rv(u) = ~r(u, v).
These curves are called iso-parametric curves.

Two points define a line. Let us select one point and call the place vector of this
point the place vector of the line. On the other hand, the vector between the two
points is the direction vector. Any other point of the line can be obtained by a
translation of the point of the place vector parallel to the direction vector. Denoting
the place vector by ~r0 and the direction vector by ~v, the equation of the line is:

~r(t) = r0 + ~v · t, t ∈ (−∞,∞) . (22.2)

Two lines are said to be parallel if their direction vectors are parallel.
Instead of the complete line, we can also specify the points of a line segment

if parameter t is restricted to an interval. For example, the equation of the line
segment between points ~r1 and ~r2 is:

~r(t) = ~r1 + (~r2 − ~r1) · t = ~r1 · (1− t) + ~r2 · t, t ∈ [0, 1] . (22.3)

According to this definition, the points of a line segment are the convex combina-
tions of the endpoints.

22.2.4. Normal vectors

In computer graphics we often need the normal vectors of the surfaces (i.e. the normal
vector of the tangent plane of the surface). Let us take an example. A mirror reflects
light in a way that the incident direction, the normal vector, and the reflection
direction are in the same plane, and the angle between the normal and the incident
direction equals to the angle between the normal and the reflection direction. To
carry out such and similar computations, we need methods to obtain the normal of
the surface.

The equation of the tangent plane is obtained as the first order Taylor approxi-
mation of the implicit equation around point (x0, y0, z0):

f(x, y, z) = f(x0 + (x− x0), y0 + (y − y0), z0 + (z − z0)) ≈



22.2. Description of point sets with equations 1017

f(x0, y0, z0) +
∂f

∂x
· (x− x0) +

∂f

∂y
· (y − y0) +

∂f

∂z
· (z − z0) .

Points (x0, y0, z0) and (x, y, z) are on the surface, thus f(x0, y0, z0) = 0 and
f(x, y, z) = 0, resulting in the following equation of the tangent plane:

∂f

∂x
· (x− x0) +

∂f

∂y
· (y − y0) +

∂f

∂z
· (z − z0) = 0 .

Comparing this equation to equation (22.1), we can realize that the normal vector
of the tangent plane is

~n =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= gradf . (22.4)

The normal vector of parametric surfaces can be obtained by examining the
iso-parametric curves. The tangent of curve ~rv(u) defined by fixing parameter v is
obtained by the first-order Taylor approximation:

~rv(u) = ~rv(u0 + (u− u0)) ≈ ~rv(u0) +
d~rv

du
· (u− u0) = ~rv(u0) +

∂~r

∂u
· (u− u0) .

Comparing this approximation to equation (22.2) describing a line, we conclude
that the direction vector of the tangent line is ∂~r/∂u. The tangent lines of the
curves running on a surface are in the tangent plane of the surface, making the
normal vector perpendicular to the direction vectors of these lines. In order to find
the normal vector, both the tangent line of curve ~rv(u) and the tangent line of curve
~ru(v) are computed, and their cross product is evaluated since the result of the cross
product is perpendicular to the multiplied vectors. The normal of surface ~r(u, v) is
then

~n =
∂~r

∂u
× ∂~r

∂v
. (22.5)

22.2.5. Curve modelling

Parametric and implicit equations trace back the geometric design of the virtual
world to the establishment of these equations. However, these equations are often
not intuitive enough, thus they cannot be used directly during design. It would not
be reasonable to expect the designer working on a human face or on a car to directly
specify the equations of these objects. Clearly, indirect methods are needed which
require intuitive data from the designer and define these equations automatically.
One category of these indirect approaches apply control points. Another category
of methods work with elementary building blocks (box, sphere, cone, etc.) and with
set operations.

Let us discuss first how the method based on control points can define curves.
Suppose that the designer specified points ~r0, ~r1, . . . , ~rm, and that parametric curve
of equation ~r = ~r(t) should be found which “follows” these points. For the time
being, the curve is not required to go through these control points.

We use the analogy of the centre of mass of mechanical systems to construct our



1018 22. Computer Graphics

curve. Assume that we have sand of unit mass, which is distributed at the control
points. If a control point has most of the sand, then the centre of mass is close to
this point. Controlling the distribution of the sand as a function of parameter t to
give the main influence to different control points one after the other, the centre of
mass will travel through a curve running close to the control points.

Let us put weights B0(t), B1(t), . . . , Bm(t) at control points at parameter t.
These weighting functions are also called the basis functions of the curve. Since
unit weight is distributed, we require that for each t the following identity holds:

m∑

i=0

Bi(t) = 1 .

For some t, the respective point of the curve curve is the centre of mass of this
mechanical system:

~r(t) =

∑m
i=0 Bi(t) · ~ri∑m

i=0 Bi(t)
=

m∑

i=0

Bi(t) · ~ri .

Note that the reason of distributing sand of unit mass is that this decision makes
the denominator of the fraction equal to 1. To make the analogy complete, the basis
functions cannot be negative since the mass is always non-negative. The centre of
mass of a point system is always in the convex hull1 of the participating points,
thus if the basis functions are non-negative, then the curve remains in the convex
hull of the control points.

The properties of the curves are determined by the basis functions. Let us now
discuss two popular basis function systems, namely the basis functions of the Bézier-
curves and the B-spline curves.

Bézier-curve. Pierre Bézier, a designer working at Renault, proposed the Bern-
stein polynomials as basis functions. Bernstein polynomials can be obtained as
the expansion of 1m = (t+ (1− t))m according to binomial theorem:

(t+ (1− t))m =
m∑

i=0

(
m

i

)
· ti · (1− t)m−i .

The basis functions of Bézier curves are the terms of this sum (i = 0, 1, . . . ,m):

BBezier
i,m (t) =

(
m

i

)
· ti · (1− t)m−i . (22.6)

According to the introduction of Bernstein polynomials, it is obvious that they
really meet condition

∑m
i=0 Bi(t) = 1 and Bi(t) ≥ 0 in t ∈ [0, 1], which guarantees

that Bézier curves are always in the convex hulls of their control points. The basis
functions and the shape of the Bézier curve are shown in Figure 22.4. At parameter
value t = 0 the first basis function is 1, while the others are zero, therefore the curve

1 The convex hull of a point system is by definition the minimal convex set containing the point
system.



22.2. Description of point sets with equations 1019

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
t

b0
b1
b2
b3

Figure 22.4 A Bézier curve defined by four control points and the respective basis functions
(m = 3).

starts at the first control point. Similarly, at parameter value t = 1 the curve arrives
at the last control point. At other parameter values, all basis functions are positive,
thus they simultaneously affect the curve. Consequently, the curve usually does not
go through the other control points.

B-spline. The basis functions of the B-spline can be constructed applying a
sequence of linear blending. A B-spline weights the m+ 1 number of control points
by (k− 1)-degree polynomials. Value k is called the order of the curve. Let us take
a non-decreasing series of m+ k + 1 parameter values, called the knot vector :

t = [t0, t1, . . . , tm+k], t0 ≤ t1 ≤ · · · ≤ tm+k .

By definition, the ith first order basis function is 1 in the ith interval, and zero
elsewhere (Figure 22.5):

BBS
i,1 (t) =

{
1, if ti ≤ t < ti+1 ,
0 otherwise .

Using this definition, m + k number of first order basis functions are established,
which are non-negative zero-degree polynomials that sum up to 1 for all t ∈ [t0, tm+k)
parameters. These basis functions have too low degree since the centre of mass is
not even a curve, but jumps from control point to control point.

The order of basis functions, as well as the smoothness of the curve, can be
increased by blending two consecutive basis functions with linear weighting (Figure
22.5). The first basis function is weighted by linearly increasing factor (t−ti)/(ti+1−
ti) in domain ti ≤ t < ti+1, where the basis function is non-zero. The next basis
function, on the other hand, is scaled by linearly decreasing factor (ti+2− t)/(ti+2−
ti+1) in its domain ti+1 ≤ t < ti+2 where it is non zero. The two weighted basis
functions are added to obtain the tent-like second order basis functions. Note that



1020 22. Computer Graphics

linear basis functions

quadratic basis functions

cubic basis functions

linear smoothing

linear smoothing

basis function
linear smoothing

B    (t)
i,2

B    (t)i,3

B    (t)i,4

4

1

1
  

B    (t)
i,11

constant basis functions

linear smoothing
t t t t3 5 6

t6

t3 t5

t7 t8

t7

t0 1t 2t

1t

2t

t5

t5

Figure 22.5 Construction of B-spline basis functions. A higher order basis function is obtained
by blending two consecutive basis functions on the previous level using a linearly increasing and
a linearly decreasing weighting, respectively. Here the number of control points is 5, i.e. m = 4.
Arrows indicate useful interval [tk−1, tm+1] where we can find m + 1 number of basis functions
that add up to 1. The right side of the figure depicts control points with triangles and curve points
corresponding to the knot values by circles.

while a first order basis function is non-zero in a single interval, the second order basis
functions expand to two intervals. Since the construction makes a new basis function
from every pair of consecutive lower order basis functions, the number of new basis
functions is one less than that of the original ones. We have justm+k−1 second order
basis functions. Except for the first and the last first order basis functions, all of them
are used once with linearly increasing and once with linearly decreasing weighting,
thus with the exception of the first and the last intervals, i.e. in [t1, tm+k−1], the
new basis functions also sum up to 1.

The second order basis functions are first degree polynomials. The degree of basis
functions, i.e. the order of the curve, can be arbitrarily increased by the recursive
application of the presented blending method. The dependence of the next order
basis functions on the previous order ones is as follows:

BBS
i,k (t) =

(t− ti)BBS
i,k−1(t)

ti+k−1 − ti
+

(ti+k − t)BBS
i+1,k−1(t)

ti+k − ti+1
, if k > 1 .

Note that we always take two consecutive basis functions and weight them in their
non-zero domain (i.e. in the interval where they are non-zero) with linearly increasing
factor (t−ti)/(ti+k−1−ti) and with linearly decreasing factor (ti+k−t)/(ti+k−ti+1),



22.2. Description of point sets with equations 1021

p
0

p
1

p
2

c-1

c0

c1

c2

c3

cm

cm+1

p
m

Figure 22.6 A B-spline interpolation. Based on points ~p0, . . . , ~pm to be interpolated, control
points ~c−1, . . . ,~cm+1 are computed to make the start and end points of the segments equal to the
interpolated points.

respectively. The two weighted functions are summed to obtain the higher order, and
therefore smoother basis function. Repeating this operation (k − 1) times, k-order
basis functions are generated, which sum up to 1 in interval [tk−1, tm+1]. The knot
vector may have elements that are the same, thus the length of the intervals may be
zero. Such intervals result in 0/0 like fractions, which must be replaced by value 1
in the implementation of the construction.

The value of the ith k-order basis function at parameter t can be computed with
the following Cox-deBoor-Mansfield recursion:

B-Spline(i, k, t, t)

1 if k = 1 � Trivial case.
2 then if ti ≤ t < ti+1

3 then return 1
4 else return 0
5 if ti+k−1 − ti > 0
6 then b1 ← (t− ti)/(ti+k−1 − ti) � Previous with linearly increasing weight.
7 else b1 ← 1 � Here: 0/0 = 1.
8 if ti+k − ti+1 > 0
9 then b2 ← (ti+k − t)/(ti+k − ti+1) � Next with linearly decreasing weight.

10 else b2 ← 1 � Here: 0/0 = 1.
11 B ← b1 ·B-spline(i, k − 1, t, t) + b2 ·B-spline(i+ 1, k − 1, t, t) � Recursion.
12 return B

In practice, we usually use fourth-order basis functions (k = 4), which are third-
degree polynomials, and define curves that can be continuously differentiated twice.
The reason is that bent rods and motion paths following the Newton laws also have
this property.

While the number of control points is greater than the order of the curve, the
basis functions are non-zero only in a part of the valid parameter set. This means
that a control point affects just a part of the curve. Moving this control point, the
change of the curve is local. Local control is a very important property since the
designer can adjust the shape of the curve without destroying its general form.

A fourth-order B-spline usually does not go through its control points. If we wish
to use it for interpolation, the control points should be calculated from the points to



1022 22. Computer Graphics

be interpolated. Suppose that we need a curve which visits points ~p0, ~p1, . . . , ~pm at
parameter values t0 = 0, t1 = 1, . . . , tm = m, respectively (Figure 22.6). To find such
a curve, control points [~c−1,~c0,~c1, . . . ,~cm+1] should be found to meet the following
interpolation criteria:

~r(tj) =

m+1∑

i=−1

~ci ·BBS
i,4 (tj) = ~pj , j = 0, 1, . . . ,m .

These criteria can be formalized as m + 1 linear equations with m + 3 unknowns,
thus the solution is ambiguous. To make the solution unambiguous, two additional
conditions should be imposed. For example, we can set the derivatives (for motion
paths, the speed) at the start and end points.

B-spline curves can be further generalized by defining the influence of the ith
control point as the product of B-spline basis function Bi(t) and additional weight wi

of the control point. The curve obtained this way is called the Non-Uniform Rational
B-Spline, abbreviated as NURBS, which is very popular in commercial geometric
modelling systems.

Using the mechanical analogy again, the mass put at the ith control point is
wiBi(t), thus the centre of mass is:

~r(t) =

∑m
i=0 wiB

BS
i (t) · ~ri∑m

j=0 wjBBS
j (t)

=

m∑

i=0

BNURBS
i (t) · ~ri .

The correspondence between B-spline and NURBS basis functions is as follows:

BNURBS
i (t) =

wiB
BS
i (t)∑m

j=0 wjBBS
j (t)

.

Since B-spline basis functions are piece-wise polynomial functions, NURBS basis
functions are piece-wise rational functions. NURBS can describe quadratic curves
(e.g. circle, ellipse, etc.) without any approximation error.

22.2.6. Surface modelling

Parametric surfaces are defined by two variate functions ~r(u, v). Instead of specifying
this function directly, we can take finite number of control points ~rij which are
weighted with the basis functions to obtain the parametric function:

~r(u, v) =

n∑

i=0

m∑

j=0

~rij ·Bij(u, v) . (22.7)

Similarly to curves, basis functions are expected to sum up to 1, i.e.∑n
i=0

∑m
j=0 Bij(u, v) = 1 everywhere. If this requirement is met, we can imagine

that the control points have masses Bij(u, v) depending on parameters u, v, and the
centre of mass is the surface point corresponding to parameter pair u, v.

Basis functions Bij(u, v) are similar to those of curves. Let us fix parameter v.
Changing parameter u, curve ~rv(u) is obtained on the surface. This curve can be



22.2. Description of point sets with equations 1023

Figure 22.7 Iso-parametric curves of surface.

defined by the discussed curve definition methods:

~rv(u) =

n∑

i=0

Bi(u) · ~ri , (22.8)

where Bi(u) is the basis function of the selected curve type.
Of course, fixing v differently we obtain another curve of the surface. Since a

curve of a given type is unambiguously defined by the control points, control points
~ri must depend on the fixed v value. As parameter v changes, control point ~ri = ~ri(v)
also runs on a curve, which can be defined by control points ~ri,0, ~ri,2, . . . , ~ri,m:

~ri(v) =

m∑

j=0

Bj(v) · ~rij .

Substituting this into equation (22.8), the parametric equation of the surface is:

~r(u, v) = ~rv(u) =
n∑

i=0

Bi(u)




m∑

j=0

Bj(v) · ~rij


 =

n∑

i=0

m∑

j=0

Bi(u)Bj(v) · ~rij .

Unlike curves, the control points of a surface form a two-dimensional grid. The two-
dimensional basis functions are obtained as the product of one-variate basis functions
parameterized by u and v, respectively.

22.2.7. Solid modelling with blobs

Free form solids – similarly to parametric curves and surfaces – can also be specified
by finite number of control points. For each control point ~ri, let us assign influence
function h(Ri), which expresses the influence of this control point at distance Ri =
|~r − ~ri|. By definition, the solid contains those points where the total influence of
the control points is not smaller than threshold T (Figure 22.8):

f(~r) =

m∑

i=0

hi(Ri)− T ≥ 0, where Ri = |~r − ~ri| .



1024 22. Computer Graphics

R

h(R)

T

addition subtraction

Figure 22.8 The influence decreases with the distance. Spheres of influence of similar signs increase,
of different signs decrease each other.

With a single control point a sphere can be modeled. Spheres of multiple control
points are combined together to result in an object having smooth surface (Figure
22.8). The influence of a single point can be defined by an arbitrary decreasing
function that converges to zero at infinity. For example, Blinn proposed the

hi(R) = ai · e−biR2

influence functions for his blob method.

22.2.8. Constructive solid geometry

Another type of solid modelling is constructive solid geometry (CSG for short),
which builds complex solids from primitive solids applying set operations (e.g. union,
intersection, difference, complement, etc.) (Figures 22.9 and 22.10). Primitives usu-
ally include the box, the sphere, the cone, the cylinder, the half-space, etc. whose
functions are known.

Figure 22.9 The operations of constructive solid geometry for a cone of implicit function f
and for a sphere of implicit function g: union (max(f, g)), intersection (min(f, g)), and difference
(min(f, −g)).



22.2. Description of point sets with equations 1025

U

U

U

\

Figure 22.10 Constructing a complex solid by set operations. The root and the leaf of the CSG
tree represents the complex solid, and the primitives, respectively. Other nodes define the set
operations (U: union, \: difference).

The results of the set operations can be obtained from the implicit functions of
the solids taking part of this operation:

• intersection of f and g: min(f, g);

• union of f and g: max(f, g).

• complement of f : −f.
• difference of f and g: min(f,−g).

Implicit functions also allow to morph between two solids. Suppose that two
objects, for example, a box of implicit function f1 and a sphere of implicit function
f2 need to be morphed. To define a new object, which is similar to the first object
with percentage t and to the second object with percentage (1− t), the two implicit
equations are weighted appropriately:

fmorph(x, y, z) = t · f1(x, y, z) + (1− t) · f2(x, y, z) .

Exercises
22.2-1 Find the parametric equation of a torus.
22.2-2 Prove that the fourth-order B-spline with knot-vector [0,0,0,0,1,1,1,1] is a
Bézier curve.
22.2-3 Give the equations for the surface points and the normals of the waving flag
and waving water disturbed in a single point.
22.2-4 Prove that the tangents of a Bézier curve at the start and the end are the
lines connecting the first two and the last two control points, respectively.
22.2-5 Give the algebraic forms of the basis functions of the second, the third, and
the fourth-order B-splines.



1026 22. Computer Graphics

(a) (b) (c)

Figure 22.11 Types of polygons. (a) simple; (b) complex, single connected; (c) multiply con-
nected.

22.2-6 Develop an algorithm computing the path length of a Bézier curve and a
B-spline. Based on the path length computation move a point along the curve with
uniform speed.

22.3. Geometry processing and tessellation algorithms

In Section 22.2 we met free-form surface and curve definition methods. During image
synthesis, however, line segments and polygons play important roles. In this section
we present methods that bridge the gap between these two types of representations.
These methods convert geometric models to lines and polygons, or further process
line and polygon models. Line segments connected to each other in a way that the
end point of a line segment is the start point of the next one are called polylines.
Polygons connected at edges, on the other hand, are called meshes. Vectorization
methods approximate free-form curves by polylines. A polyline is defined by its ver-
tices. Tessellation algorithms, on the other hand, approximate free-form surfaces
by meshes. For illumination computation, we often need the normal vector of the
original surface, which is usually stored with the vertices. Consequently, a mesh con-
tains a list of polygons, where each polygon is given by its vertices and the normal of
the original surface at these vertices. Methods processing meshes use other topology
information as well, for example, which polygons share an edge or a vertex.

22.3.1. Polygon and polyhedron

Definition 22.2 A polygon is a bounded part of the plane, i.e. it does not contain
a line, and is bordered by line segments. A polygon is defined by the vertices of the
bordering polylines.

Definition 22.3 A polygon is single connected if its border is a single closed
polyline (Figure 22.11).

Definition 22.4 A polygon is simple if it is single connected and the bordering
polyline does not intersect itself (Figure 22.11(a)).

For a point of the plane, we can detect whether or not this point is inside
the polygon by starting a half-line from this point and counting the number of



22.3. Geometry processing and tessellation algorithms 1027

r1

r3

r2

r0

r4

diagonal

ear

Figure 22.12 Diagonal and ear of a polygon.

intersections with the boundary. If the number of intersections is an odd number,
then the point is inside, otherwise it is outside.

In the three-dimensional space we can form meshes, where different polygons
are in different planes. In this case, two polygons are said to be neighboring if they
share an edge.

Definition 22.5 A polyhedron is a bounded part of the space, which is bordered
by polygons.

Similarly to polygons, a point can be tested for polyhedron inclusion by cast-
ing a half line from this point and counting the number of intersections with the
face polygons. If the number of intersections is odd, then the point is inside the
polyhedron, otherwise it is outside.

22.3.2. Vectorization of parametric curves

Parametric functions map interval [tmin, tmax] onto the points of the curve. Dur-
ing vectorization the parameter interval is discretized. The simplest discretization
scheme generates N+1 evenly spaced parameter values ti = tmin +(tmax−tmin) ·i/N
(i = 0, 1, . . . , N), and defines the approximating polyline by the points obtained by
substituting these parameter values into parametric equation ~r(ti).

22.3.3. Tessellation of simple polygons

Let us first consider the conversion of simple polygons to triangles. This is easy if the
polygon is convex since we can select an arbitrary vertex and connect it with all other
vertices, which decomposes the polygon to triangles in linear time. Unfortunately,
this approach does not work for concave polygons since in this case the line segment
connecting two vertices may go outside the polygon, thus cannot be the edge of one
decomposing triangle.

Let us start the discussion of triangle conversion algorithms with two definitions:

Definition 22.6 The diagonal of a polygon is a line segment connecting two
vertices and is completely contained by the polygon (line segment ~r0 and ~r3 of Figure
22.12).

The diagonal property can be checked for a line segment connecting two vertices by
trying to intersect the line segment with all edges and showing that intersection is
possible only at the endpoints, and additionally showing that one internal point of



1028 22. Computer Graphics

ri

ri+1

ri-1

diagonal

ri

ri+1

ri-1

diagonal

p

x

y

Figure 22.13 The proof of the existence of a diagonal for simple polygons.

the candidate is inside the polygon. For example, this test point can be the midpoint
of the line segment.

Definition 22.7 A vertex of the polygon is an ear if the line segment between the
previous and the next vertices is a diagonal (vertex ~r4 of Figure 22.12).

Clearly, only those vertices may be ears where the inner angle is not greater than
180 degrees. Such vertices are called convex vertices.

For simple polygons the following theorems hold:

Theorem 22.8 A simple polygon always has a diagonal.

Proof Let the vertex standing at the left end (having the minimal x coordinate)
be ~ri, and its two neighboring vertices be ~ri−1 and ~ri+1, respectively (Figure 22.13).
Since ~ri is standing at the left end, it is surely a convex vertex. If ~ri is an ear, then
line segment (~ri−1, ~ri+1) is a diagonal (left of Figure 22.13), thus the theorem is
proven for this case. Since ~ri is a convex vertex, it is not an ear only if triangle ~ri−1,
~ri, ~ri+1 contains at least one polygon vertex (right of Figure 22.13). Let us select
from the contained vertices that vertex ~p which is the farthest from the line defined
by points ~ri−1, ~ri+1. Since there are no contained points which are farther from line
(~ri−1, ~ri+1) than ~p, no edge can be between points ~p and ~ri, thus (~p, ~ri) must be a
diagonal.

Theorem 22.9 A simple polygon can always be decomposed to triangles with its
diagonals. If the number of vertices is n, then the number of triangles is n− 2.

Proof This theorem is proven by induction. The theorem is obviously true when
n = 3, i.e. when the polygon is a triangle. Let us assume that the statement is also
true for polygons having m (m = 3, . . . , n − 1) number of vertices, and consider a
polygon with n vertices. According to Theorem 22.8, this polygon of n vertices has
a diagonal, thus we can subdivide this polygon into a polygon of n1 vertices and a
polygon of n2 vertices, where n1, n2 < n, and n1 + n2 = n+ 2 since the vertices at
the ends of the diagonal participate in both polygons. According to the assumption
of the induction, these two polygons can be separately decomposed to triangles.
Joining the two sets of triangles, we can obtain the triangle decomposition of the
original polygon. The number of triangles is n1 − 2 + n2 − 2 = n− 2.



22.3. Geometry processing and tessellation algorithms 1029

The discussed proof is constructive thus it inspires a subdivision algorithm: let
us find a diagonal, subdivide the polygon along this diagonal, and continue the same
operation for the two new polygons.

Unfortunately the running time of such an algorithm is in Θ(n3) since the number
of diagonal candidates is Θ(n2), and the time needed by checking whether or not a
line segment is a diagonal is in Θ(n).

We also present a better algorithm, which decomposes a convex or concave poly-
gon defined by vertices ~r0, ~r1, . . . , ~rn. This algorithm is called ear cutting. The al-
gorithm looks for ear triangles and cuts them until the polygon gets simplified to a
single triangle. The algorithm starts at vertex ~r2. When a vertex is processed, it is
first checked whether or not the previous vertex is an ear. If it is not an ear, then
the next vertex is chosen. If the previous vertex is an ear, then the current vertex
together with the two previous ones form a triangle that can be cut, and the previous
vertex is deleted. If after deletion the new previous vertex has index 0, then the next
vertex is selected as the current vertex.

The presented algorithm keeps cutting triangles until no more ears are left. The
termination of the algorithm is guaranteed by the following two ears theorem:

Theorem 22.10 A simple polygon having at least four vertices always has at least
two not neighboring ears that can be cut independently.

Proof The proof presented here has been given by Joseph O’Rourke. According to
theorem 22.9, every simple polygon can be subdivided to triangles such that the
edges of these triangles are either the edges or the diagonals of the polygon. Let us
make a correspondence between the triangles and the nodes of a graph where two
nodes are connected if and only if the two triangles corresponding to these nodes
share an edge. The resulting graph is connected and cannot contain circles. Graphs
of these properties are trees. The name of this tree graph is the dual tree. Since the
polygon has at least four vertices, the number of nodes in this tree is at least two.
Any tree containing at least two nodes has at least two leaves2. Leaves of this tree,
on the other hand, correspond to triangles having an ear vertex.

According to the two ears theorem, the presented algorithm finds an ear in O(n)
steps. Cutting an ear the number of vertices is reduced by one, thus the algorithm
terminates in O(n2) steps.

22.3.4. Tessellation of parametric surfaces

Parametric forms of surfaces map parameter rectangle [umin, umax]×[vmin, vmax] onto
the points of the surface.

In order to tessellate the surface, first the parameter rectangle is subdivided to
triangles. Then applying the parametric equations for the vertices of the parameter
triangles, the approximating triangle mesh can be obtained. The simplest subdivision
of the parametric rectangle decomposes the domain of parameter u to N parts, and

2 A leaf is a node connected by exactly one edge.



1030 22. Computer Graphics

r  (v)

 v(u)

u

r  

Figure 22.14 Tessellation of parametric surfaces.

 
error

Figure 22.15 Estimation of the tessellation error.

the domain of parameter v to M intervals, resulting in the following parameter pairs:

[ui, vj ] =

[
umin + (umax − umin)

i

N
, vmin + (vmax − vmin)

j

M

]
.

Taking these parameter pairs and substituting them into the parametric equa-
tions, point triplets ~r(ui, vj), ~r(ui+1, vj), ~r(ui, vj+1), and point triplets ~r(ui+1, vj),
~r(ui+1, vj+1), ~r(ui, vj+1) are used to define triangles.

The tessellation process can be made adaptive as well, which uses small triangles
only where the high curvature of the surface justifies them. Let us start with the
parameter rectangle and subdivide it to two triangles. In order to check the accuracy
of the resulting triangle mesh, surface points corresponding to the edge midpoints of
the parameter triangles are compared to the edge midpoints of the approximating
triangles. Formally the following distance is computed (Figure 22.15):

∣∣∣∣~r
(
u1 + u2

2
,
v1 + v2

2

)
− ~r(u1, v1) + ~r(u2, v2)

2

∣∣∣∣ ,

where (u1, v1) and (u2, v2) are the parameters of the two endpoints of the edge.
A large distance value indicates that the triangle mesh poorly approximates the

parametric surface, thus triangles must be subdivided further. This subdivision can



22.3. Geometry processing and tessellation algorithms 1031

T vertex

new T vertex

recursive
subdivision

subdivision

Figure 22.16 T vertices and their elimination with forced subdivision.

=1/2 Σ =1/2 Σ +1/4 Σ

ri+1

ri-1

ri
hi

hi-1
ri’

Figure 22.17 Construction of a subdivision curve: at each step midpoints are obtained, then the
original vertices are moved to the weighted average of neighbouring midpoints and of the original
vertex.

be executed by cutting the triangle to two triangles by a line connecting the midpoint
of the edge of the largest error and the opposing vertex. Alternatively, a triangle can
be subdivided to four triangles with its halving lines. The adaptive tessellation is
not necessarily robust since it can happen that the distance at the midpoint is small,
but at other points is still quite large.

When the adaptive tessellation is executed, it may happen that one triangle
is subdivided while its neighbour is not, which results in holes. Such problematic
midpoints are called T vertices (Figure 22.16).

If the subdivision criterion is based only on edge properties, then T vertices
cannot show up. However, if other properties are also taken into account, then T
vertices may appear. In such cases, T vertices can be eliminated by recursively forcing
the subdivision also for those neighbouring triangles that share subdivided edges.

22.3.5. Subdivision curves and meshes

This section presents algorithms that smooth polyline and mesh models.
Let us consider a polyline of vertices ~r0, . . . , ~rm. A smoother polyline is generated

by the following vertex doubling approach (Figure 22.17). Every line segment of the
polyline is halved, and midpoints ~h0, . . . ,~hm−1 are added to the polyline as new
vertices. Then the old vertices are moved taking into account their old position and
the positions of the two enclosing midpoints, applying the following weighting:

~r ′
i =

1

2
~ri +

1

4
~hi−1 +

1

4
~hi =

3

4
~ri +

1

8
~ri−1 +

1

8
~ri+1 .

The new polyline looks much smoother. If we should not be satisfied with the smooth-
ness yet, the same procedure can be repeated recursively. As can be shown, the result



1032 22. Computer Graphics

=1/4 Σ =1/4 Σ +1/4 Σ =1/2 +1/16Σ +1/16Σ

Figure 22.18 One smoothing step of the Catmull-Clark subdivision. First the face points are
obtained, then the edge midpoints are moved, and finally the original vertices are refined according
to the weighted sum of its neighbouring edge and face points.

of the recursive process converges to the B-spline curve.
The polyline subdivision approach can also be extended for smoothing three-

dimensional meshes. This method is called Catmull-Clark subdivision algo-
rithm. Let us consider a three-dimensional quadrilateral mesh (Figure 22.18). In
the first step the midpoints of the edges are obtained, which are called edge points.
Then face points are generated as the average of the vertices of each face polygon.
Connecting the edge points with the face points, we still have the original surface,
but now defined by four times more quadrilaterals. The smoothing step modifies
first the edge points setting them to the average of the vertices at the ends of the
edge and of the face points of those quads that share this edge. Then the original
vertices are moved to the weighted average of the face points of those faces that
share this vertex, and of edge points of those edges that are connected to this ver-
tex. The weight of the original vertex is 1/2, the weights of edge and face points are
1/16. Again, this operation may be repeated until the surface looks smooth enough
(Figure 22.19).

If we do not want to smooth the mesh at an edge or around a vertex, then the
averaging operation ignores the vertices on the other side of the edge to be preserved.

The Catmull-Clark subdivision surface usually does not interpolate the original
vertices. This drawback is eliminated by the butterfly subdivision, which works
on triangle meshes. First the butterfly algorithm puts new edge points close to the
midpoints of the original edges, then the original triangle is replaced by four triangles
defined by the original vertices and the new edge points (Figure 22.20). The position
of the new edge points depend on the vertices of those two triangles incident to this
edge, and on those four triangles which share edges with these two. The arrangement
of the triangles affecting the edge point resembles a butterfly, hence the name of this
algorithm. The edge point coordinates are obtained as a weighted sum of the edge
endpoints multiplied by 1/2, the third vertices of the triangles sharing this edge
using weight 1/8 + 2w, and finally of the other vertices of the additional triangles
with weight −1/16−w. Parameter w can control the curvature of the resulting mesh.



22.3. Geometry processing and tessellation algorithms 1033

Figure 22.19 Original mesh and its subdivision applying the smoothing step once, twice and three
times, respectively.

1/21/2

-1/16-w

-1/16-w
-1/16-w

-1/16-w

1/8+2w

1/8+2w

Figure 22.20 Generation of the new edge point with butterfly subdivision.

Setting w = −1/16, the mesh keeps its original faceted look, while w = 0 results in
strong rounding.

22.3.6. Tessellation of implicit surfaces

A surface defined by implicit equation f(x, y, z) = 0 can be converted to a trian-
gle mesh by finding points on the surface densely, i.e. generating points satisfying
f(x, y, z) ≈ 0, then assuming the close points to be vertices of the triangles.

First function f is evaluated at the grid points of the Cartesian coordinate
system and the results are stored in a three-dimensional array, called voxel array.
Let us call two grid points as neighbours if two of their coordinates are identical and
the difference in their third coordinate is 1. The function is evaluated at the grid
points and is assumed to be linear between them. The normal vectors needed for
shading are obtained as the gradient of function f (equation 22.4), which are also
interpolated between the grid points.

When we work with the voxel array, original function f is replaced by its tri-



1034 22. Computer Graphics

Figure 22.21 Possible intersections of the per-voxel tri-linear implicit surface and the voxel edges.
From the possible 256 cases, these 15 topologically different cases can be identified, from which the
others can be obtained by rotations. Grid points where the implicit function has the same sign are
depicted by circles.

linear approximation (tri-linear means that fixing any two coordinates the function
is linear with respect to the third coordinate). Due to the linear approximation an
edge connecting two neighbouring grid points can intersect the surface at most once
since linear equations may have at most one root. The density of the grid points
should reflect this observation, then we have to define them so densely not to miss
roots, that is, not to change the topology of the surface.

The method approximating the surface by a triangle mesh is called marching
cubes algorithm. This algorithm first decides whether a grid point is inside or
outside of the solid by checking the sign of function f . If two neighbouring grid
points are of different type, the surface must go between them. The intersection of
the surface and the edge between the neighbouring points, as well as the normal
vector at the intersection are determined by linear interpolation. If one grid point is
at ~r1, the other is at ~r2, and function f has different signs at these points, then the
intersection of the tri-linear surface and line segment (~r1, ~r2) is:

~ri = ~r1 ·
f(~r2)

f(~r2)− f(~r1)
+ ~r2 ·

f(~r1)

f(~r2)− f(~r1)
.

The normal vector here is:

~ni = gradf(~r1) · f(~r2)

f(~r2)− f(~r1)
+ gradf(~r2) · f(~r1)

f(~r2)− f(~r1)
.

Having found the intersection points, triangles are defined using these points



22.4. Containment algorithms 1035

as vertices. When defining these triangles, we have to take into account that a tri-
linear surface may intersect the voxel edges at most once. Such intersection occurs
if function f has different signs at the two grid points. The number of possible
variations of positive/negative signs at the 8 vertices of a cube is 256, from which
15 topologically different cases can be identified (Figure 22.21).

The algorithm inspects grid points one by one and assigns the sign of the function
to them encoding negative sign by 0 and non-negative sign by 1. The resulting 8 bit
code is a number in 0–255 which identifies the current case of intersection. If the
code is 0, all voxel vertices are outside the solid, thus no voxel surface intersection
is possible. Similarly, if the code is 255, the solid is completely inside, making the
intersections impossible. To handle other codes, a table can be built which describes
where the intersections show up and how they form triangles.

Exercises
22.3-1 Prove the two ears theorem by induction.
22.3-2 Develop an adaptive curve tessellation algorithm.
22.3-3 Prove that the Catmull-Clark subdivision curve and surface converge to a
B-spline curve and surface, respectively.
22.3-4 Build a table to control the marching cubes algorithm, which describes where
the intersections show up and how they form triangles.
22.3-5 Propose a marching cubes algorithm that does not require the gradients of
the function, but estimates these gradients from its values.

22.4. Containment algorithms

When geometric models are processed, we often have to determine whether or not
one object contains points belonging to the other object. If only yes/no answer is
needed, we have a containment test problem. However, if the contained part also
needs to be obtained, the applicable algorithm is called clipping.

Containment test is also known as discrete time collision detection since if
one object contains points from the other, then the two objects must have been
collided before. Of course, checking collisions just at discrete time instances may miss
certain collisions. To handle the collision problem robustly, continuous time collision
detection is needed which also computes the time of the collision. Continuous time
collision detection may use ray tracing (Section 22.6). In this section we only deal
with the discrete time collision detection and the clipping of simple objects.

22.4.1. Point containment test

A solid defined by function f contains those (x, y, z) points which satisfy inequal-
ity f(x, y, z) ≥ 0. It means that point containment test requires the evaluation of
function f and the inspection of the sign of the result.



1036 22. Computer Graphics

out

point

in

polyhedron

out
in

out
in

polyhedron
convex

concave 1 2

Figure 22.22 Polyhedron-point containment test. A convex polyhedron contains a point if the
point is on that side of each face plane where the polyhedron is. To test a concave polyhedron, a
half line is cast from the point and the number of intersections is counted. If the result is an odd
number, then the point is inside, otherwise it is outside.

Half space. Based on equation (22.1), points belonging to a half space are
identified by inequality

(~r − ~r0) · ~n ≥ 0, nx · x+ ny · y + nz · z + d ≥ 0 , (22.9)

where the normal vector is supposed to point inward.

Convex polyhedron. Any convex polyhedron can be constructed as the inter-
section of halfspaces (left of Figure 22.22). The plane of each face subdivides the
space into two parts, to an inner part where the polyhedron can be found, and to
an outer part. Let us test the point against the planes of the faces. If the point is
in the inner part with respect to all planes, then the point is inside the polyhedron.
However, if the point is in the outer part with respect to at least one plane, then
the point is outside of the polyhedron.

Concave polyhedron. As shown in Figure 22.22, let us cast a half line from the
tested point and count the number of intersections with the faces of the polyhedron
(the calculation of these intersections is discussed in Section 22.6). If the result is an
odd number, then the point is inside, otherwise it is outside. Because of numerical
inaccuracies we might have difficulties to count the number of intersections when the
half line is close to the edges. In such cases, the simplest solution is to find another
half line and carry out the test with that.

Polygon. The methods proposed to test the point in polyhedron can also be
used for polygons limiting the space to the two-dimensional plane. For example, a
point is in a general polygon if the half line originating at this point and lying in
the plane of the polygon intersects the edges of the polygon odd times.

In addition to those methods, containment in convex polygons can be tested by
adding the angles subtended by the edges from the point. If the sum is 360 degrees,
then the point is inside, otherwise it is outside. For convex polygons, we can also
test whether the point is on the same side of the edges as the polygon itself. This



22.4. Containment algorithms 1037

b

c

p

n
a-b a

-p a

-b a( ) )( -p a

-a c -p c( ) )(

-a c
-p c

x

x

Figure 22.23 Point in triangle containment test. The figure shows that case when point ~p is on
the left of oriented lines ~ab and ~bc, and on the right of line ~ca, that is, when it is not inside the
triangle.

algorithm is examined in details for a particularly important special case, when the
polygon is a triangle.

Triangle. Let us consider a triangle of vertices ~a,~b and ~c, and point ~p lying in the
plane of the triangle. The point is inside the triangle if and only if it is on the same
side of the boundary lines as the third vertex. Note that cross product (~b−~a)×(~p−~a)

has a different direction for point ~p lying on the different sides of oriented line ~ab,
thus the direction of this vector can be used to classify points (should point ~p be on
line ~ab, the result of the cross product is zero). During classification the direction of
(~b− ~a)× (~p− ~a) is compared to the direction of vector ~n = (~b− ~a)× (~c− ~a) where
tested point ~p is replaced by third vertex ~c. Note that vector ~n happens to be the
normal vector of the triangle plane (Figure 22.23).

We can determine whether two vectors have the same direction (their angle is
zero) or they have opposite directions (their angle is 180 degrees) by computing their
scalar product and looking at the sign of the result. The scalar product of vectors of
similar directions is positive. Thus if scalar product ((~b−~a)× (~p−~a)) ·~n is positive,
then point ~p is on the same side of oriented line ~ab as ~c. On the other hand, if this
scalar product is negative, then ~p and ~c are on the opposite sides. Finally, if the
result is zero, then point ~p is on line ~ab. Point ~p is inside the triangle if and only if
all the following three conditions are met:

((~b− ~a)× (~p− ~a)) · ~n ≥ 0 ,

((~c−~b)× (~p−~b)) · ~n ≥ 0 ,
((~a− ~c)× (~p− ~c)) · ~n ≥ 0 .

(22.10)

This test is robust since it gives correct result even if – due to numerical precision
problems – point ~p is not exactly in the plane of the triangle as long as point ~p is in
the prism obtained by perpendicularly extruding the triangle from the plane.



1038 22. Computer Graphics

case 1: ( b - a   ) > 0

a

a

a

a

b

b

b

b

c c

c c

or

or

x x

case 2: ( b - a   ) < 0x x

Figure 22.24 Point in triangle containment test on coordinate plane xy. Third vertex ~c can be
either on the left or on the right side of oriented line ~ab, which can always be traced back to the
case of being on the left side by exchanging the vertices.

The evaluation of the test can be speeded up if we work in a two-dimensional
projection plane instead of the three-dimensional space. Let us project point ~p as
well as the triangle onto one of the coordinate planes. In order to increase numerical
precision, that coordinate plane should be selected on which the area of the projected
triangle is maximal. Let us denote the Cartesian coordinates of the normal vector
by (nx, ny, nz). If nz has the maximum absolute value, then the projection of the
maximum area is on coordinate plane xy. If nx or ny had the maximum absolute
value, then planes yz or xz would be the right choice. Here only the case of maximum
nz is discussed.

First the order of vertices are changed in a way that when travelling from vertex
~a to vertex ~b, vertex ~c is on the left side. Let us examine the equation of line ~ab:

by − ay

bx − ax
· (x− bx) + by = y .

According to Figure 22.24 point ~c is on the left of the line if cy is above the line
at x = cx:

by − ay

bx − ax
· (cx − bx) + by < cy .

Multiplying both sides by (bx − ax), we get:

(by − ay) · (cx − bx) < (cy − by) · (bx − ax) .

In the second case the denominator of the slope of the line is negative. Point ~c is on
the left of the line if cy is below the line at x = cx:

by − ay

bx − ax
· (cx − bx) + by > cy .

When the inequality is multiplied with negative denominator (bx− ax), the relation
is inverted:

(by − ay) · (cx − bx) < (cy − by) · (bx − ax) .

Note that in both cases we obtained the same condition. If this condition is not met,



22.4. Containment algorithms 1039

vertex penetration edge penetration

Figure 22.25 Polyhedron-polyhedron collision detection. Only a part of collision cases can be
recognized by testing the containment of the vertices of one object with respect to the other object.
Collision can also occur when only edges meet, but vertices do not penetrate to the other object.

then point ~c is not on the left of line ~ab, but is on the right. Exchanging vertices ~a
and ~b in this case, we can guarantee that ~c will be on the left of the new line ~ab. It
is also important to note that consequently point ~a will be on the left of line ~bc and
point ~b will be on the left of line ~ca.

In the second step the algorithm tests whether point ~p is on the left with respect
to all three boundary lines since this is the necessary and sufficient condition of
being inside the triangle:

(by − ay) · (px − bx) ≤ (py − by) · (bx − ax) ,
(cy − by) · (px − cx) ≤ (py − cy) · (cx − bx) ,

(ay − cy) · (px − ax) ≤ (py − ay) · (ax − cx) .
(22.11)

22.4.2. Polyhedron-polyhedron collision detection

Two polyhedra collide when a vertex of one of them meets a face of the other, and
if they are not bounced off, the vertex goes into the internal part of the other object
(Figure 22.25). This case can be recognized with the discussed containment test. All
vertices of one polyhedron is tested for containment against the other polyhedron.
Then the roles of the two polyhedra are exchanged.

Apart from the collision between vertices and faces, two edges may also meet
without vertex penetration (Figure 22.25). In order to recognize this edge penetration
case, all edges of one polyhedron are tested against all faces of the other polyhedron.
The test for an edge and a face is started by checking whether or not the two
endpoints of the edge are on opposite sides of the plane, using inequality (22.9). If
they are, then the intersection of the edge and the plane is calculated, and finally it
is decided whether the face contains the intersection point.

Polyhedra collision detection tests each edge of one polyhedron against each face
of the other polyhedron, which results in an algorithm of quadratic time complexity
with respect to the number of vertices of the polyhedra. Fortunately, the algorithm
can be speeded up applying bounding volumes (Subsection 22.6.2). Let us assign a
simple bounding object to each polyhedron. Popular choices for bounding volumes
are the sphere and the box. During testing the collision of two objects, first their
bounding volumes are examined. If the two bounding volumes do not collide, then
neither can the contained polyhedra collide. If the bounding volumes penetrate each



1040 22. Computer Graphics

other, then one polyhedra is tested against the other bounding volume. If this test
is also positive, then finally the two polyhedra are tested. However, this last test is
rarely required, and most of the collision cases can be solved by bounding volumes.

22.4.3. Clipping algorithms

Clipping takes an object defining the clipping region and removes those points from
another object which are outside the clipping region. Clipping may alter the type of
the object, which cannot be specified by a similar equation after clipping. To avoid
this, we allow only those kinds of clipping regions and objects where the object type
is not changed by clipping. Let us assume that the clipping region is a half space or
a polyhedron, while the object to be clipped is a point, a line segment or a polygon.

If the object to be clipped is a point, then containment can be tested with the
algorithms of the previous subsection. Based on the result of the containment test,
the point is either removed or preserved.

Clipping a line segment onto a half space. Let us con-
sider a line segment of endpoints ~r1 and ~r2, and of equation
~r(t) = ~r1 · (1 − t) + ~r2 · t, (t ∈ [0, 1]), and a half plane defined by the follow-
ing equation derived from equation (22.1):

(~r − ~r0) · ~n ≥ 0, nx · x+ ny · y + nz · z + d ≥ 0 .

Three cases need to be distinguished:

1. If both endpoints of the line segment are in the half space, then all points of
the line segment are inside, thus the whole segment is preserved.

2. If both endpoints are out of the half space, then all points of the line segment
are out, thus the line segment should be completely removed.

3. If one of the endpoints is out, while the other is in, then the endpoint being
out should be replaced by the intersection point of the line segment and the
boundary plane of the half space. The intersection point can be calculated by
substituting the equation of the line segment into the equation of the boundary
plane and solving the resulting equation for the unknown parameter:

(~r1 · (1− ti) + ~r2 · ti − ~r0) · ~n = 0, =⇒ ti =
(~r0 − ~r1) · ~n
(~r2 − ~r1) · ~n .

Substituting parameter ti into the equation of the line segment, the coordinates
of the intersection point can also be obtained.

Clipping a polygon onto a half space. This clipping algorithm tests first
whether a vertex is inside or not. If the vertex is in, then it is also the vertex of the
resulting polygon. However, if it is out, it can be ignored. On the other hand, the
resulting polygon may have vertices other than the vertices of the original polygon.
These new vertices are the intersections of the edges and the boundary plane of the



22.4. Containment algorithms 1041

p

p

p

p

p
p

q

q

q

q

q

[1]

[4]

[3]

[5]

[4]
[0]

[0]

[3]

[1]

[2]

[2]
clipping plane

Figure 22.26 Clipping of simple convex polygon ~p[0], . . . , ~p[5] results in polygon ~q[0], . . . , ~q[4]. The
vertices of the resulting polygon are the inner vertices of the original polygon and the intersections
of the edges and the boundary plane.

half space. Such intersection occurs when one endpoint is in, but the other is out.
While we are testing the vertices one by one, we should also check whether or not
the next vertex is on the same side as the current vertex (Figure 22.26).

Suppose that the vertices of the polygon to be clipped are given in array p =
〈~p[0], . . . , ~p[n − 1]〉, and the vertices of the clipped polygon is expected in array
q = 〈~q[0], . . . , ~q[m − 1]〉. The number of the vertices of the resulting polygon is
stored in variable m. Note that the vertex followed by the ith vertex has usually
index (i+ 1), but not in the case of the last, (n− 1)th vertex, which is followed by
vertex 0. Handling the last vertex as a special case is often inconvenient. This can
be eliminated by extending input array p by new element ~p[n] = ~p[0], which holds
the element of index 0 once again.

Using these assumptions, the Sutherland-Hodgeman polygon clipping al-
gorithm is:

Sutherland-Hodgeman-Polygon-Clipping(p)

1 m← 0
2 for i← 0 to n− 1
3 do if ~p[i] is inside
4 then ~q[m]← ~p[i] � The ith vertex is the vertex

� of the resulting polygon.
5 m← m+ 1
6 if ~p[i+ 1] is outside
7 then ~q[m]← Edge-Plane-Intersection(~p[i], ~p[i+ 1])
8 m← m+ 1
9 else if ~p[i+ 1] is inside

10 then ~q[m]← Edge-Plane-Intersection(~p[i], ~p[i+ 1])
11 m← m+ 1
12 return q

Let us apply this algorithm for such a concave polygon which is expected to fall



1042 22. Computer Graphics

double boundary

even number of
boundaries

Figure 22.27 When concave polygons are clipped, the parts that should fall apart are connected
by even number of edges.

to several pieces during clipping (Figure 22.27). The algorithm storing the polygon
in a single array is not able to separate the pieces and introduces even number of
edges at parts where no edge could show up.

These even number of extra edges, however, pose no problems if the interior of
the polygon is defined as follows: a point is inside the polygon if and only if starting
a half line from here, the boundary polyline is intersected by odd number of times.

The presented algorithm is also suitable for clipping multiple connected polygons
if the algorithm is executed separately for each closed polyline of the boundary.

Clipping line segments and polygons on a convex polyhedron. As stated,
a convex polyhedron can be obtained as the intersection of the half spaces defined by
the planes of the polyhedron faces (left of Figure 22.22). It means that clipping on
a convex polyhedron can be traced back to a series of clipping steps on half spaces.
The result of one clipping step on a half plane is the input of clipping on the next
half space. The final result is the output of the clipping on the last half space.

Clipping a line segment on an AABB. Axis aligned bounding boxes, abbre-
viated as AABBs, play an important role in image synthesis.

Definition 22.11 A box aligned parallel to the coordinate axes is called AABB.
An AABB is specified with the minimum and maximum Cartesian coordinates:
[xmin, ymin, zmin, xmax, ymax, zmax].

Although when an object is clipped on an AABB, the general algorithms that
clip on a convex polyhedron could also be used, the importance of AABBs is ac-
knowledged by developing algorithms specially tuned for this case.

When a line segment is clipped to a polyhedron, the algorithm would test the
line segment with the plane of each face, and the calculated intersection points
may turn out to be unnecessary later. We should thus find an appropriate order of
planes which makes the number of unnecessary intersection calculations minimal. A
simple method that implements this idea is the Cohen-Sutherland line clipping
algorithm.

Let us assign code bit 1 to a point that is outside with respect to a clipping plane,
and code bit 0 if the point is inside with respect to this plane. Since an AABB has



22.4. Containment algorithms 1043

000000

100010

101000101000

010100

000000

00000001

1001

0101 0100

0010

0110

10101000

Figure 22.28 The 4-bit codes of the points in a plane and the 6-bit codes of the points in space.

6 sides, we get 6 bits forming a 6-bit code word (Figure 22.28). The interpretation
of code bits C[0], . . . , C[5] is the following:

C[0] =

{
1, x ≤ xmin,
0 otherwise.

C[1] =

{
1, x ≥ xmax,
0 otherwise.

C[2] =

{
1, y ≤ ymin ,
0 otherwise .

C[3] =

{
1, y ≥ ymax,
0 otherwise.

C[4] =

{
1, z ≤ zmin,
0 otherwise.

C[5] =

{
1, z ≥ zmax ,
0 otherwise .

Points of code word 000000 are obviously inside, points of other code words
are outside (Figure 22.28). Let the code words of the two endpoints of the line
segment be C1 and C2, respectively. If both of them are zero, then both endpoints
are inside, thus the line segment is completely inside (trivial accept). If the two code
words contain bit 1 at the same location, then none of the endpoints are inside with
respect to the plane associated with this code bit. This means that the complete line
segment is outside with respect to this plane, and can be rejected (trivial reject).
This examination can be executed by applying the bitwise AND operation on code
words C1 and C2 (with the notations of the C programming language C1 & C2),
and checking whether or not the result is zero. If it is not zero, there is a bit where
both code words have value 1.

Finally, if none of the two trivial cases hold, then there must be a bit which
is 0 in one code word and 1 in the other. This means that one endpoint is inside
and the other is outside with respect to the plane corresponding to this bit. The
line segment should be clipped on this plane. Then the same procedure should be
repeated starting with the evaluation of the code bits. The procedure is terminated
when the conditions of either the trivial accept or the trivial reject are met.

The Cohen-Sutherland line clipping algorithm returns the endpoints of the
clipped line by modifying the original vertices and indicates with true return value
if the line is not completely rejected:



1044 22. Computer Graphics

Cohen-Sutherland-Line-Clipping(~r1, ~r2)

1 C1 ← codeword of ~r1 � Code bits by checking the inequalities.
2 C2 ← codeword of ~r2

3 while true
4 do if C1 = 0 AND C2 = 0
5 then return true � Trivial accept: inner line segment exists.
6 if C1 & C2 6= 0
7 then return false � Trivial reject: no inner line segment exists.
8 f ← index of the first bit where C1 and C2 differ
9 ~ri ← intersection of line segment (~r1, ~r2) and the plane of index f

10 Ci ← codeword of ~ri

11 if C1[f ] = 1
12 then ~r1 ← ~ri

13 C1 ← Ci � ~r1 is outside w.r.t. plane f .
14 else ~r2 ← ~ri

15 C2 ← Ci � ~r2 is outside w.r.t. plane f .

Exercises
22.4-1 Propose approaches to reduce the quadratic complexity of polyhedron-
polyhedron collision detection.
22.4-2 Develop a containment test to check whether a point is in a CSG-tree.
22.4-3 Develop an algorithm clipping one polygon onto a concave polygon.
22.4-4 Find an algorithm computing the bounding sphere and the bounding AABB
of a polyhedron.
22.4-5 Develop an algorithm that tests the collision of two triangles in the plane.
22.4-6 Generalize the Cohen-Sutherland line clipping algorithm to convex polyhe-
dron clipping region.
22.4-7 Propose a method for clipping a line segment on a sphere.

22.5. Translation, distortion, geometric
transformations

Objects in the virtual world may move, get distorted, grow or shrink, that is, their
equations may also depend on time. To describe dynamic geometry, we usually apply
two functions. The first function selects those points of space, which belong to the
object in its reference state. The second function maps these points onto points
defining the object in an arbitrary time instance. Functions mapping the space onto
itself are called transformations. A transformation maps point ~r to point ~r ′ =
T (~r). If the transformation is invertible, we can also find the original for some
transformed point ~r ′ using inverse transformation T −1(~r ′).

If the object is defined in its reference state by inequality f(~r) ≥ 0, then the
points of the transformed object are

{~r ′ : f(T −1(~r ′)) ≥ 0} , (22.12)



22.5. Translation, distortion, geometric transformations 1045

since the originals belong to the set of points of the reference state.
Parametric equations define the Cartesian coordinates of the points directly.

Thus the transformation of parametric surface ~r = ~r(u, v) requires the transforma-
tions of its points

~r ′(u, v) = T (~r(u, v)) . (22.13)

Similarly, the transformation of curve ~r = ~r(t) is:

~r ′(t) = T (~r(t)) . (22.14)

Transformation T may change the type of object in the general case. It can
happen, for example, that a simple triangle or a sphere becomes a complicated shape,
which are hard to describe and handle. Thus it is worth limiting the set of allowed
transformations. Transformations mapping planes onto planes, lines onto lines and
points onto points are particularly important. In the next subsection we consider the
class of homogeneous linear transformations, which meet this requirement.

22.5.1. Projective geometry and homogeneous coordinates

So far the construction of the virtual world has been discussed using the means of
the Euclidean geometry, which gave us many important concepts such as distance,
parallelism, angle, etc. However, when the transformations are discussed in details,
many of these concepts are unimportant, and can cause confusion. For example,
parallelism is a relationship of two lines which can lead to singularities when the
intersection of two lines is considered. Therefore, transformations are discussed in
the context of another framework, called projective geometry.

The axioms of projective geometry turn around the problem of parallel lines
by ignoring the concept of parallelism altogether, and state that two different lines
always have an intersection. To cope with this requirement, every line is extended
by a “point at infinity” such that two lines have the same extra point if and only if
the two lines are parallel. The extra point is called the ideal point. The projective
space contains the points of the Euclidean space (these are the so called affine
points) and the ideal points. An ideal point “glues” the “ends” of an Euclidean
line, making it topologically similar to a circle. Projective geometry preserves that
axiom of the Euclidean geometry which states that two points define a line. In order
to make it valid for ideal points as well, the set of lines of the Euclidean space is
extended by a new line containing the ideal points. This new line is called the ideal
line. Since the ideal points of two lines are the same if and only if the two lines are
parallel, the ideal lines of two planes are the same if and only if the two planes are
parallel. Ideal lines are on the ideal plane, which is added to the set of planes of
the Euclidean space. Having made these extensions, no distinction is needed between
the affine and ideal points. They are equal members of the projective space.

Introducing analytic geometry we noted that everything should be described
by numbers in computer graphics. Cartesian coordinates used so far are in one to
one relationship with the points of Euclidean space, thus they are inappropriate to
describe the points of the projective space. For the projective plane and space, we
need a different algebraic base.



1046 22. Computer Graphics

h=1

[x h,y h,h] line

[X  ,Y ,0] pointh h

. .

Xh

Yh

h

[x,y,1]

[X  ,Y ,h] pointh h

y

x

Figure 22.29 The embedded model of the projective plane: the projective plane is embedded into
a three-dimensional Euclidean space, and a correspondence is established between points of the
projective plane and lines of the embedding three-dimensional Euclidean space by fitting the line
to the origin of the three-dimensional space and the given point.

Projective plane. Let us consider first the projective plane and find a method
to describe its points by numbers. To start, a Cartesian coordinate system x, y is set
up in this plane. Simultaneously, another Cartesian system Xh, Yh, h is established
in the three-dimensional space embedding the plane in a way that axes Xh, Yh are
parallel to axes x, y, the plane is perpendicular to axis h, the origin of the Cartesian
system of the plane is in point (0, 0, 1) of the three-dimensional space, and the
points of the plane satisfy equation h = 1. The projective plane is thus embedded
into a three-dimensional Euclidean space where points are defined by Descartes-
coordinates (Figure 22.29). To describe a point of the projective plane by numbers,
a correspondence is found between the points of the projective plane and the points
of the embedding Euclidean space. An appropriate correspondence assigns that line
of the Euclidean space to either affine or ideal point P of the projective plane, which
is defined by the origin of the coordinate system of the space and point P .

Points of an Euclidean line that crosses the origin can be defined by parametric
equation [t ·Xh, t · Yh, t · h] where t is a free real parameter. If point P is an affine
point of the projective plane, then the corresponding line is not parallel with plane
h = 1 (i.e. h is not constant zero). Such line intersects the plane of equation h = 1
at point [Xh/h, Yh/h, 1], thus the Cartesian coordinates of point P in planar coor-
dinate system x, y are (Xh/h, Yh/h). On the other hand, if point P is ideal, then
the corresponding line is parallel to the plane of equation h = 1 (i.e. h = 0). The
direction of the ideal point is given by vector (Xh, Yh).

The presented approach assigns three dimensional lines crossing the origin and
eventually [Xh, Yh, h] triplets to both the affine and the ideal points of the projective
plane. These triplets are called the homogeneous coordinates of a point in the
projective plane. Homogeneous coordinates are enclosed by brackets to distinguish
them from Cartesian coordinates.

A three-dimensional line crossing the origin and describing a point of the pro-
jective plane can be defined by its arbitrary point except the origin. Consequently,
all three homogeneous coordinates cannot be simultaneously zero, and homogeneous
coordinates can be freely multiplied by the same non-zero scalar without changing
the described point. This property justifies the name “homogeneous”.

It is often convenient to select that triplet from the homogeneous coordinates of



22.5. Translation, distortion, geometric transformations 1047

an affine point, where the third homogeneous coordinate is 1 since in this case the
first two homogeneous coordinates are identical to the Cartesian coordinates:

Xh = x, Yh = y, h = 1 . (22.15)

>From another point of view, Cartesian coordinates of an affine point can be con-
verted to homogeneous coordinates by extending the pair by a third element of value
1.

The embedded model also provides means to define the equations of the lines
and line segments of the projective space. Let us select two different points on the
projective plane and specify their homogeneous coordinates. The two points are dif-
ferent if homogeneous coordinates [X1

h, Y
1

h , h
1] of the first point cannot be obtained

as a scalar multiple of homogeneous coordinates [X2
h, Y

2
h , h

2] of the other point. In
the embedding space, triplet [Xh, Yh, h] can be regarded as Cartesian coordinates,
thus the equation of the line fitted to points [X1

h, Y
1

h , h
1] and [X2

h, Y
2

h , h
2] is:

Xh(t) = X1
h · (1− t) +X2

h · t ,
Yh(t) = Y 1

h · (1− t) + Y 2
h · t , (22.16)

h(t) = h1 · (1− t) + h2 · t .

If h(t) 6= 0, then the affine points of the projective plane can be obtained by pro-
jecting the three-dimensional space onto the plane of equation h = 1. Requiring the
two points be different, we excluded the case when the line would be projected to a
single point. Hence projection maps lines to lines. Thus the presented equation really
identifies the homogeneous coordinates defining the points of the line. If h(t) = 0,
then the equation expresses the ideal point of the line.

If parameter t has an arbitrary real value, then the points of a line are defined.
If parameter t is restricted to interval [0, 1], then we obtain the line segment defined
by the two endpoints.

Projective space. We could apply the same method to introduce homogeneous
coordinates of the projective space as we used to define the homogeneous coordinates
of the projective plane, but this approach would require the embedding of the three-
dimensional projective space into a four-dimensional Euclidean space, which is not
intuitive. We would rather discuss another construction, which works in arbitrary
dimensions. In this construction, a point is described as the centre of mass of a
mechanical system. To identify a point, let us place weight Xh at reference point ~p1,
weight Yh at reference point ~p2, weight Zh at reference point ~p3, and weight w at
reference point ~p4. The centre of mass of this mechanical system is:

~r =
Xh · ~p1 + Yh · ~p2 + Zh · ~p3 + w · ~p4

Xh + Yh + Zh + w
.

Let us denote the total weight by h = Xh + Yh +Zh +w. By definition, elements of
quadruple [Xh, Yh, Zh, h] are the homogeneous coordinates of the centre of mass.

To find the correspondence between homogeneous and Cartesian coordinates,
the relationship of the two coordinate systems (the relationship of the basis vectors



1048 22. Computer Graphics

and the origin of the Cartesian coordinate system and of the reference points of the
homogeneous coordinate system) must be established. Let us assume, for example,
that the reference points of the homogeneous coordinate system are in points (1,0,0),
(0,1,0), (0,0,1), and (0,0,0) of the Cartesian coordinate system. The centre of mass
(assuming that total weight h is not zero) is expressed in Cartesian coordinates as
follows:

~r[Xh, Yh, Zh, h] =
1

h
·(Xh·(1, 0, 0)+Yh·(0, 1, 0)+Zh·(0, 0, 1)+w·(0, 0, 0)) =

(
Xh

h
,
Yh

h
,
Zh

h

)
.

Hence the correspondence between homogeneous coordinates [Xh, Yh, Zh, h] and
Cartesian coordinates (x, y, z) is (h 6= 0):

x =
Xh

h
, y =

Yh

h
, z =

Zh

h
. (22.17)

The equations of lines in the projective space can be obtained either deriving
them from the embedding four-dimensional Cartesian space, or using the centre of
mass analogy:

Xh(t) = X1
h · (1− t) +X2

h · t ,
Yh(t) = Y 1

h · (1− t) + Y 2
h · t ,

Zh(t) = Z1
h · (1− t) + Z2

h · t , (22.18)

h(t) = h1 · (1− t) + h2 · t .

If parameter t is restricted to interval [0, 1], then we obtain the equation of the
projective line segment.

To find the equation of the projective plane, the equation of the Euclidean
plane is considered (equation 22.1). The Cartesian coordinates of the points on an
Euclidean plane satisfy the following implicit equation

nx · x+ ny · y + nz · z + d = 0 .

Using the correspondence between the Cartesian and homogeneous coordinates
(equation 22.17) we still describe the points of the Euclidean plane but now with
homogeneous coordinates:

nx ·
Xh

h
+ ny ·

Yh

h
+ nz ·

Zh

h
+ d = 0 .

Let us multiply both sides of this equation by h, and add those points to the plane
which have h = 0 coordinate and satisfy this equation. With this step the set of points
of the Euclidean plane is extended with the ideal points, that is, we obtained the
set of points belonging to the projective plane. Hence the equation of the projective
plane is a homogeneous linear equation:

nx ·Xh + ny · Yh + nz · Zh + d · h = 0 , (22.19)



22.5. Translation, distortion, geometric transformations 1049

or in matrix form:

[Xh, Yh, Zh, h] ·




nx

ny

nz

d


 = 0 . (22.20)

Note that points and planes are described by row and column vectors, respectively.
Both the quadruples of points and the quadruples of planes have the homogeneous
property, that is, they can be multiplied by non-zero scalars without altering the
solutions of the equation.

22.5.2. Homogeneous linear transformations

Transformations defined as the multiplication of the homogeneous coordinate vector
of a point by a constant 4× 4 T matrix are called homogeneous linear transfor-
mations:

[X ′
h, Y

′
h, Z

′
h, h

′] = [Xh, Yh, Zh, h] ·T . (22.21)

Theorem 22.12 Homogeneous linear transformations map points to points.

Proof A point can be defined by homogeneous coordinates in form λ·[Xh, Yh, Zh, h],
where λ is an arbitrary, non-zero constant. The transformation results in λ ·
[X ′

h, Y
′

h, Z
′
h, h

′] = λ · [Xh, Yh, Zh, h] · T when a point is transformed, which are the
λ-multiples of the same vector, thus the result is a single point in homogeneous
coordinates.

Note that due to the homogeneous property, homogeneous transformation matrix
T is not unambiguous, but can be freely multiplied by non-zero scalars without
modifying the realized mapping.

Theorem 22.13 Invertible homogeneous linear transformations map lines to lines.

Proof Let us consider the parametric equation of a line:

[Xh(t), Yh(t), Zh(t), h(t)] = [X1
h, Y

1
h , Z

1
h, h

1]·(1−t)+[X2
h, Y

2
h , Z

2
h, h

2]·t, t = (−∞,∞) ,

and transform the points of this line by multiplying the quadruples with the trans-
formation matrix:

[X ′
h(t), Y ′

h(t), Z ′
h(t), h′(t)] = [Xh(t), Yh(t), Zh(t), h(t)] ·T

= [X1
h, Y

1
h , Z

1
h, h

1] ·T · (1− t) + [X2
h, Y

2
h , Z

2
h, h

2] ·T · t

= [X1
h

′
, Y 1

h
′
, Z1

h
′
, h1′

] · (1− t) + [X2
h

′
, Y 2

h
′
, Z2

h
′
, h2′

] · t ,

where [X1
h

′
, Y 1

h
′
, Z1

h
′
, h1′

] and [X2
h

′
, Y 2

h
′
, Z2

h
′
, h2′

] are the transformations of
[X1

h, Y
1

h , Z
1
h, h

1] and [X2
h, Y

2
h , Z

2
h, h

2], respectively. Since the transformation is in-
vertible, the two points are different. The resulting equation is the equation of a line
fitted to the transformed points.



1050 22. Computer Graphics

We note that if we had not required the invertibility of the the transformation,
then it could have happened that the transformation would have mapped the two
points to the same point, thus the line would have degenerated to single point.

If parameter t is limited to interval [0, 1], then we obtain the equation of the
projective line segment, thus we can also state that a homogeneous linear transfor-
mation maps a line segment to a line segment. Even more generally, a homogeneous
linear transformation maps convex combinations to convex combinations. For exam-
ple, triangles are also mapped to triangles.

However, we have to be careful when we try to apply this theorem in the Eu-
clidean plane or space. Let us consider a line segment as an example. If coordinate
h has different sign at the two endpoints, then the line segment contains an ideal
point. Such projective line segment can be intuitively imagined as two half lines and
an ideal point sticking the “endpoints” of these half lines at infinity, that is, such line
segment is the complement of the line segment we are accustomed to. It may hap-
pen that before the transformation, coordinates h of the endpoints have similar sign,
that is, the line segment meets our intuitive image about Euclidean line segments,
but after the transformation, coordinates h of the endpoints will have different sign.
Thus the transformation wraps around our line segment.

Theorem 22.14 Invertible homogeneous linear transformations map planes to
planes.

Proof The originals of transformed points [X ′
h, Y

′
h, Z

′
h, h

′] defined by
[Xh, Yh, Zh, h] = [X ′

h, Y
′

h, Z
′
h, h

′] · T−1 are on a plane, thus satisfy the origi-
nal equation of the plane:

[Xh, Yh, Zh, h] ·




nx

ny

nz

d


 = [X ′

h, Y
′

h, Z
′
h, h

′] ·T−1 ·




nx

ny

nz

d


 = 0 .

Due to the associativity of matrix multiplication, the transformed points also satisfy
equation

[X ′
h, Y

′
h, Z

′
h, h

′] ·




n′
x

n′
y

n′
z

d′


 = 0 ,

which is also a plane equation, where




n′
x

n′
y

n′
z

d′


 = T−1 ·




nx

ny

nz

d


 .

This result can be used to obtain the normal vector of a transformed plane.



22.5. Translation, distortion, geometric transformations 1051

An important subclass of homogeneous linear transformations is the set of affine
transformations, where the Cartesian coordinates of the transformed point are
linear functions of the original Cartesian coordinates:

[x′, y′, z′] = [x, y, z] ·A + [px, py, pz] , (22.22)

where vector ~p describes translation, A is a matrix of size 3×3 and expresses rotation,
scaling, mirroring, etc., and their arbitrary combination. For example, the rotation
around axis (tx, ty, tz), (|(tx, ty, tz)| = 1) by angle φ is given by the following matrix

A =




(1− t2x) cosφ+ t2x txty(1− cosφ) + tz sinφ txtz(1− cosφ)− ty sinφ
tytx(1− cosφ)− tz sinφ (1− t2y) cosφ+ t2y txtz(1− cosφ) + tx sinφ
tztx(1− cosφ) + ty sinφ tzty(1− cosφ)− tx sinφ (1− t2z) cosφ+ t2z


 .

This expression is known as the Rodrigues-formula.
Affine transformations map the Euclidean space onto itself, and transform par-

allel lines to parallel lines. Affine transformations are also homogeneous linear trans-
formations since equation (22.22) can also be given as a 4 × 4 matrix operation,
having changed the Cartesian coordinates to homogeneous coordinates by adding a
fourth coordinate of value 1:

[x′, y′, z′, 1] = [x, y, z, 1] ·




A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
px py pz 1


 = [x, y, z, 1] ·T . (22.23)

A further specialization of affine transformations is the set of congruence
transformations (isometries) which are distance and angle preserving.

Theorem 22.15 In a congruence transformation the rows of matrix A have unit
length and are orthogonal to each other.

Proof Let us use the property that a congruence is distance and angle pre-
serving for the case when the origin and the basis vectors of the Cartesian sys-
tem are transformed. The transformation assigns point (px, py, pz) to the origin
and points (A11 + px, A12 + py, A13 + pz), (A21 + px, A22 + py, A23 + pz), and
(A31 + px, A32 + py, A33 + pz) to points (1, 0, 0), (0, 1, 0), and (0, 0, 1), respec-
tively. Because the distance is preserved, the distances between the new points and
the new origin are still 1, thus |(A11, A12, A13)| = 1, |(A21, A22, A23)| = 1, and
|(A31, A32, A33)| = 1. On the other hand, because the angle is also preserved, vec-
tors (A11, A12, A13), (A21, A22, A23), and (A31, A32, A33) are also perpendicular to
each other.

Exercises
22.5-1 Using the Cartesian coordinate system as an algebraic basis, prove the ax-
ioms of the Euclidean geometry, for example, that two points define a line, and that



1052 22. Computer Graphics

two different lines may intersect each other at most at one point.
22.5-2 Using the homogeneous coordinates as an algebraic basis, prove an axiom
of the projective geometry stating that two different lines intersect each other in
exactly one point.
22.5-3 Prove that homogeneous linear transformations map line segments to line
segments using the centre of mass analogy.
22.5-4 How does an affine transformation modify the volume of an object?
22.5-5 Give the matrix of that homogeneous linear transformation which translates
by vector ~p.
22.5-6 Prove the Rodrigues-formula.
22.5-7 A solid defined by inequality f(~r) ≥ 0 in time t = 0 moves with uniform
constant velocity ~v. Let us find the inequality of the solid at an arbitrary time in-
stance t.
22.5-8 Prove that if the rows of matrix A are of unit length and are perpendicular
to each other, then the affine transformation is a congruence. Show that for such
matrices A−1 = AT .
22.5-9 Give that homogeneous linear transformation which projects the space from
point ~c onto a plane of normal ~n and place vector ~r0.
22.5-10 Show that five point correspondences unambiguously identify a homoge-
neous linear transformation if no four points are co-planar.

22.6. Rendering with ray tracing

When a virtual world is rendered, we have to identify the surfaces visible in dif-
ferent directions from the virtual eye. The set of possible directions is defined by a
rectangle shaped window which is decomposed to a grid corresponding to the pix-
els of the screen (Figure 22.30). Since a pixel has a unique colour, it is enough to
solve the visibility problem in a single point of each pixel, for example, in the points
corresponding to pixel centres.

The surface visible at a direction from the eye can be identified by casting a
half line, called ray, and identifying its intersection closest to the eye position. This
operation is called ray tracing. Ray tracing has many applications. For example,
shadow computation tests whether or not a point is occluded from the light source,
which requires a ray to be sent from the point at the direction of the light source
and the determination whether this ray intersects any surface closer than the light
source. Ray tracing is also used by collision detection since a point moving with
constant and uniform speed collides that surface which is first intersected by the ray
describing the motion of the point.

A ray is defined by the following equation:

~ray(t) = ~s+ ~v · t, (t > 0) , (22.24)

where ~s is the place vector of the ray origin, ~v is the direction of the ray, and
ray parameter t characterizes the distance from the origin. Let us suppose that
direction vector ~v has unit length. In this case parameter t is the real distance,



22.6. Rendering with ray tracing 1053

Figure 22.30 Ray tracing.

otherwise it would only be proportional to the distance3. If parameter t is negative,
then the point is behind the eye and is obviously not visible. The identification of the
closest intersection with the ray means the determination of the intersection point
having the smallest, positive ray parameter. In order to find the closest intersection,
the intersection calculation is tried with each surface, and the closest is retained.
This algorithm obtaining the first intersection is:

Ray-First-Intersection(~s,~v)

1 t← tmax � Initialization to the maximum size in the virtual world.
2 for each object o
3 do to ← Ray-Surface-Intersection(~s,~v)

� Negative if no intersection exists.
4 if 0 ≤ to < t � Is the new intersection closer?
5 then t← to � Ray parameter of the closest intersection so far.
6 ovisible ← o � Closest object so far.
7 if t < tmax then � Has been intersection at all?
8 then ~x← ~s+ ~v · t � Intersection point using the ray equation.
9 return t, ~x, ovisible

10 else return “no intersection” � No intersection.

This algorithm inputs the ray defined by origin ~s and direction ~v, and outputs
the ray parameter of the intersection in variable t, the intersection point in ~x, and the
visible object in ovisible. The algorithm calls function Ray-Surface-Intersection
for each object, which determines the intersection of the ray and the given object,
and indicates with a negative return value if no intersection exists. Function Ray-
Surface-Intersection should be implemented separately for each surface type.

3 In collision detection ~v is not a unit vector, but the velocity of the moving point since this makes
ray parameter t express the collision time.



1054 22. Computer Graphics

22.6.1. Ray surface intersection calculation

The identification of the intersection between a ray and a surface requires the solution
of an equation. The intersection point is both on the ray and on the surface, thus it
can be obtained by inserting the ray equation into the equation of the surface and
solving the resulting equation for the unknown ray parameter.

Intersection calculation for implicit surfaces. For implicit surfaces of equa-
tion f(~r) = 0, the intersection can be calculated by solving the following scalar
equation for t: f(~s+ ~v · t) = 0 .

Let us take the example of quadrics that include the sphere, the ellipsoid, the
cylinder, the cone, the paraboloid, etc. The implicit equation of a general quadric
contains a quadratic form:

[x, y, z, 1] ·Q ·




x
y
z
1


 = 0 ,

where Q is a 4 × 4 matrix. Substituting the ray equation into the equation of the
surface, we obtain

[sx + vx · t, sy + vy · t, sz + vz · t, 1] ·Q ·




sx + vx · t
sy + vy · t
sz + vz · t

1


 = 0 .

Rearranging the terms, we get a second order equation for unknown parameter t:

t2 · (v ·Q · vT ) + t · (s ·Q · vT + v ·Q · sT ) + (s ·Q · sT ) = 0 ,

where v = [vx, vy, vz, 0] and s = [sx, sy, sz, 1].
This equation can be solved using the solution formula of second order equations.

Now we are interested in only the real and positive roots. If two such roots exist,
then the smaller one corresponds to the intersection closer to the origin of the ray.

Intersection calculation for parametric surfaces. The intersection of para-
metric surface ~r = ~r(u, v) and the ray is calculated by first solving the following
equation for unknown parameters u, v, t

~r(u, v) = ~s+ t · ~v ,

then checking whether or not t is positive and parameters u, v are inside the allowed
parameter range of the surface.

Roots of non-linear equations are usually found by numeric methods. On the
other hand, the surface can also be approximated by a triangle mesh, which is
intersected by the ray. Having obtained the intersection on the coarse mesh, the
mesh around this point is refined, and the intersection calculation is repeated with
the refined mesh.



22.6. Rendering with ray tracing 1055

Intersection calculation for a triangle. To compute the ray intersection for
a triangle of vertices ~a, ~b, and ~c, first the ray intersection with the plane of the
triangle is found. Then it is decided whether or not the intersection point with the
plane is inside the triangle. The normal and a place vector of the triangle plane are
~n = (~b − ~a) × (~c − ~a), and ~a, respectively, thus points ~r of the plane satisfy the
following equation:

~n · (~r − ~a) = 0 . (22.25)

The intersection of the ray and this plane is obtained by substituting the ray
equation (equation (22.24)) into this plane equation, and solving it for unknown
parameter t. If root t∗ is positive, then it is inserted into the ray equation to get
the intersection point with the plane. However, if the root is negative, then the
intersection is behind the origin of the ray, thus is invalid. Having a valid intersection
with the plane of the triangle, we check whether this point is inside the triangle. This
is a containment problem, which is discussed in Subsection 22.4.1.

Intersection calculation for an AABB. The surface of an AABB, that is an
axis aligned block, can be subdivided to 6 rectangular faces, or alternatively to 12
triangles, thus its intersection can be solved by the algorithms discussed in the previ-
ous subsections. However, realizing that in this special case the three coordinates can
be handled separately, we can develop more efficient approaches. In fact, an AABB is
the intersection of an x-stratum defined by inequality xmin ≤ x ≤ xmax, a y-stratum
defined by ymin ≤ y ≤ ymax and a z-stratum of inequality zmin ≤ z ≤ zmax. For
example, the ray parameters of the intersections with the x-stratum are:

t1x =
xmin − sx

vx
, t2x =

xmax − sx

vx
.

The smaller of the two parameter values corresponds to the entry at the stratum,
while the greater to the exit. Let us denote the ray parameter of the entry by tin, and
the ray parameter of the exit by tout. The ray is inside the x-stratum while the ray
parameter is in [tin, tout]. Repeating the same calculation for the y and z-strata as
well, three ray parameter intervals are obtained. The intersection of these intervals
determine when the ray is inside the AABB. If parameter tout obtained as the result
of intersecting the strata is negative, then the AABB is behind the eye, thus no
ray–AABB intersection is possible. If only tin is negative, then the ray starts at an
internal point of the AABB, and the first intersection is at tout. Finally, if tin is
positive, then the ray enters the AABB from outside at parameter tin.

The computation of the unnecessary intersection points can be reduced by ap-
plying the Cohen – Sutherland line clipping algorithm (subsection 22.4.3). First, the
ray is replaced by a line segment where one endpoint is the origin of the ray, and
the other endpoint is an arbitrary point on the ray which is farther from the origin
than any object of the virtual world. Then this line segment is tried to be clipped by
the AABB. If the Cohen – Sutherland algorithm reports that the line segment has
no internal part, then the ray has no intersection with the AABB.



1056 22. Computer Graphics

22.6.2. Speeding up the intersection calculation

A naive ray tracing algorithm tests each object for a ray to find the closest intersec-
tion. If there are N objects in the space, the running time of the algorithm is Θ(N)
both in the average and in the worst case. The storage requirement is also linear in
terms of the number of objects.

The method would be speeded up if we could exclude certain objects from the
intersection test without testing them one by one. The reasons of such exclusion
include that these objects are “behind” the ray or “not in the direction of the ray”.
Additionally, the speed is also expected to improve if we can terminate the search
having found an intersection supposing that even if other intersections exist, they are
surely farther than the just found intersection point. To make such decisions safely,
we need to know the arrangement of objects in the virtual world. This information
is gathered during the pre-processing phase. Of course, pre-processing has its own
computational cost, which is worth spending if we have to trace a lot of rays.

Bounding volumes. One of the simplest ray tracing acceleration technique
uses bounding volumes, The bounding volume is a shape of simple geometry,
typically a sphere or an AABB, which completely contains a complex object. When
a ray is traced, first the bounding volume is tried to be intersected. If there is no
intersection with the bounding volume, then neither can the contained object be
intersected, thus the computation time of the ray intersection with the complex
object is saved. The bounding volume should be selected in a way that the ray
intersection is computationally cheap, and it is a tight container of the complex
object.

The application of bounding volumes does not alter the linear time complexity
of the naive ray tracing. However, it can increase the speed by a scalar factor.

On the other hand, bounding volumes can also be organized in a hierarchy
putting bounding volumes inside bigger bounding volumes recursively. In this case
the ray tracing algorithm traverses this hierarchy, which is possible in sub-linear
time.

Space subdivision with uniform grids. Let us find the AABB of the complete
virtual world and subdivide it by an axis aligned uniform grid of cell sizes (cx, cy, cz)
(Figure 22.31).

In the preprocessing phase, for each cell we identify those objects that are at least
partially contained by the cell. The test of an object against a cell can be performed
using a clipping algorithm (subsection 22.4.3), or simply checking whether the cell
and the AABB of the object overlap.

Uniform-Grid-Construction()

1 Compute the minimum corner of the AABB (xmin, ymin, zmin)
and cell sizes (cx, cy, cz)

2 for each cell c
3 do object list of cell c ← empty
4 for each object o � Register objects overlapping

� with this cell.



22.6. Rendering with ray tracing 1057

c

c

x

y

c /vx x c /vy y

v

(x     ,y     ,z     )min min min

Figure 22.31 Partitioning the virtual world by a uniform grid. The intersections of the ray and
the coordinate planes of the grid are at regular distances cx/vx,cy/vy , and cz/vz , respectively.

5 do if cell c and the AABB of object o overlap
6 then add object o to object list of cell c

During ray tracing, cells intersected by the ray are visited in the order of their
distance from the ray origin. When a cell is processed, only those objects need to be
tested for intersection which overlap with this cell, that is, which are registered in
this cell. On the other hand, if an intersection is found in the cell, then intersections
belonging to other cells cannot be closer to the ray origin than the found intersection.
Thus the cell marching can be terminated. Note that when an object registered in a
cell is intersected by the ray, we should also check whether the intersection point is
also in this cell.

We might meet an object again in other cells. The number of ray–surface inter-
section can be reduced if the results of ray–surface intersections are stored with the
objects and are reused when needed again.

As long as no ray–surface intersection is found, the algorithm traverses those
cells which are intersected by the ray. Indices X,Y,Z of the first cell are computed
from ray origin ~s, minimum corner (xmin, ymin, zmin) of the grid, and sizes (cx, cy, cz)
of the cells:

Uniform-Grid-Enclosing-Cell(~s)

1 X ← Integer((sx − xmin)/cx)
2 Y ← Integer((sy − ymin)/cy)
3 Z ← Integer((sz − zmin)/cz)
4 return X,Y,Z

The presented algorithm assumes that the origin of the ray is inside the subspace
covered by the grid. Should this condition not be met, then the intersection of the



1058 22. Computer Graphics

ray and the scene AABB is computed, and the ray origin is moved to this point.
The initial values of ray parameters tx, ty, tz are computed as the intersec-

tion of the ray and the coordinate planes by the Uniform-grid-ray-parameter-
initialization algorithm:

Uniform-Grid-Ray-Parameter-Initialization(~s,~v,X, Y, Z)

1 if vx > 0
2 then tx ← (xmin + (X + 1) · cx − sx)/vx

3 else if vx < 0
4 then tx ← (xmin +X · cx − sx)/vx

5 else tx ← tmax � The maximum distance.
6 if vy > 0
7 then ty ← (ymin + (Y + 1) · cy − sy)/vy

8 else if vy < 0
9 then ty ← (ymin + Y · cy − sy)/vy

10 else ty ← tmax

11 if vz > 0
12 then tz ← (zmin + (Z + 1) · cz − sz)/vz

13 else if vz < 0
14 then tz ← (zmin + Z · cz − sz)/vz

15 else tz ← tmax

16 return tx, ty, tz

The next cell of the sequence of the visited cells is determined by the 3D line
drawing algorithm (3DDDA algorithm). This algorithm exploits the fact that
the ray parameters of the intersection points with planes perpendicular to axis x
(and similarly to axes y and z) are regularly placed at distance cx/vx (cy/vy, and
cz/vz, respectively), thus the ray parameter of the next intersection can be obtained
with a single addition (Figure 22.31). Ray parameters tx, ty, and tz are stored in
global variables, and are incremented by constant values. The smallest from the
three ray parameters of the coordinate planes identifies the next intersection with
the cell.

The following algorithm computes indices X,Y,Z of the next intersected cell,
and updates ray parameters tx, ty, tz:

Uniform-Grid-Next-Cell(X,Y,Z, tx, ty, tz)

1 if tx = min(tx, ty, tz) � Next intersection is on the plane perpendicular to axis x.
2 then X ← X + sgn(vx) � Function sgn(x) returns the sign.
3 tx ← tx + cx/|vx|
4 else if ty = min(tx, ty, tz)

� Next intersection is on the plane perpendicular to axis y.
5 then Y ← Y + sgn(vy)
6 ty ← ty + cy/|vy|



22.6. Rendering with ray tracing 1059

7 else if tz = min(tx, ty, tz)
� Next intersection is on the plane perpendicular to axis z.

8 then Z ← Z + sgn(vz)
9 tz ← tz + cz/|vz|

To summarize, a complete ray tracing algorithm is presented, which exploits the
uniform grid generated during preprocessing and computes the ray-surface intersec-
tion closest to the ray origin. The minimum of ray parameters (tx, ty, tz) assigned
to the coordinate planes, i.e. variable tout, determines the distance as far as the
ray is inside the cell. This parameter is used to decide whether or not a ray-surface
intersection is really inside the cell.

Ray-First-Intersection-with-Uniform-Grid(~s,~v)

1 (X,Y,Z)← Uniform-Grid-Enclosing-Cell(~s)
2 (tx, ty, tz)← Uniform-Grid-Ray-Parameter-Initialization(~s,~v,X, Y, Z)
3 while X,Y,Z are inside the grid
4 do tout ← min(tx, ty, tz) � Here is the exit from the cell.
5 t← tout � Initialization: no intersection yet.
6 for each object o registered in cell (X,Y,Z)
7 do to ←Ray-Surface-Intersection(~s,~v, o)

� Negative: no intersection.
8 if 0 ≤ to < t � Is the new intersection closer?
9 then t← to

� The ray parameter of the closest intersection so far.
10 ovisible ← o � The first intersected object.
11 if t < tout � Was intersection in the cell?
12 then ~x← ~s+ ~v · t � The position of the intersection.
13 return t, ~x, ovisible � Termination.
14 Uniform-Grid-Next-Cell(X,Y,Z, tx, ty, tz) � 3DDDA.
15 return “no intersection”

Time and storage complexity of the uniform grid algorithm. The pre-
processing phase of the uniform grid algorithm tests each object with each cell, thus
runs in Θ(N ·C) time where N and C are the numbers of objects and cells, respec-
tively. In practice, the resolution of the grid is set to make C proportional to N since
in this case, the average number of objects per cell becomes independent of the total
number of objects. Such resolution makes the preprocessing time quadratic, that is
Θ(N2). We note that sorting objects before testing them against cells may reduce
this complexity, but this optimization is not crucial since not the preprocessing but
the ray tracing time is critical. Since in the worst case all objects may overlap with
each cell, the storage space is also in O(N2).



1060 22. Computer Graphics

The ray tracing time can be expressed by the following equation:

T = To +NI · TI +NS · TS , (22.26)

where To is the time needed to identify the cell containing the origin of the ray, NI

is the number of ray–surface intersection tests until the first intersection is found,
TI is the time required by a single ray–surface intersection test, NS is the number
of visited cells, and TS is the time needed to step onto the next cell.

To find the first cell, the coordinates of the ray origin should be divided by the
cell sizes, and the cell indices are obtained by rounding the results. This step thus
runs in constant time. A single ray–surface intersection test also requires constant
time. The next cell is determined by the 3DDDA algorithm in constant time as well.
Thus the complexity of the algorithm depends only on the number of intersection
tests and the number of the visited cells.

Considering a worst case scenario, a cell may contain all objects, requiring O(N)
intersection test with N objects. In the worst case the ray tracing has linear com-
plexity. This means that the uniform grid algorithm needs quadratic preprocessing
time and storage, but solves the ray tracing problem still in linear time as the naive
algorithm, which is quite disappointing. However, uniform grids are still worth using
since worst case scenarios are very unlikely. The fact is that classic complexity mea-
sures describing the worst case characteristics are not appropriate to compare the
naive algorithm and the uniform grid based ray tracing. For a reasonable comparison,
the probabilistic analysis of the algorithms is needed.

Probabilistic model of the virtual world. To carry out the average case
analysis, the scene model, i.e. the probability distribution of the possible virtual
world models must be known. In practical situations, this probability distribution is
not available, therefore it must be estimated. If the model of the virtual world were
too complicated, we would not be able to analytically determine the average, i.e. the
expected running time of the ray tracing algorithm. A simple, but also justifiable
model is the following: Objects are spheres of the same radius r, and sphere centres
are uniformly distributed in space.

Since we are interested in the asymptotic behavior when the number of objects is
really high, uniform distribution in a finite space would not be feasible. On the other
hand, the boundary of the space would pose problems. Thus, instead of dealing with
a finite object space, the space should also be expanded as the number of objects
grows to sustain constant average spatial object density. This is a classical method
in probability theory, and its known result is the Poisson point process.

Definition 22.16 A Poisson point process N(A) counts the number of points
in subset A of space in a way that

• N(A) is a Poisson distribution of parameter ρV (A), where ρ is a positive con-
stant called “intensity” and V (A) is the volume of A, thus the probability that A
contains exactly k points is

Pr {N(A) = k} =
(ρV (A))k

k!
· e−ρV (A) ,

and the expected number of points in volume V (A) is ρV (A);



22.6. Rendering with ray tracing 1061

candidate space

intersection space

Figure 22.32 Encapsulation of the intersection space by the cells of the data structure in a uniform
subdivision scheme. The intersection space is a cylinder of radius r. The candidate space is the union
of those spheres that may overlap a cell intersected by the ray.

• for disjoint A1, A2, . . . , An sets random variables N(A1), N(A2), . . . , N(An) are
independent.

Using the Poisson point process, the probabilistic model of the virtual world is:

1. The object space consists of spheres of the same radius r.

2. The sphere centres are the realizations of a Poisson point process of intensity
ρ.

Having constructed a probabilistic virtual world model, we can start the analysis
of the candidate algorithms assuming that the rays are uniformly distributed in
space.

Calculation of the expected number of intersections. Looking at Figure
22.32 we can see a ray that passes through certain cells of the space partitioning
data structure. The collection of those sphere centres where the sphere would have
an intersection with a cell is called the candidate space associated with this cell.

Only those spheres of radius r can have intersection with the ray whose centres
are in a cylinder of radius r around the ray. This cylinder is called the intersection
space (Figure 22.32). More precisely, the intersection space also includes two half
spheres at the bottom and at the top of the cylinder, but these will be ignored.

As the ray tracing algorithm traverses the data structure, it examines each cell
that is intersected by the ray. If the cell is empty, then the algorithm does nothing.
If the cell is not empty, then it contains, at least partially, a sphere which is tried
to be intersected. This intersection succeeds if the centre of the sphere is inside the
intersection space and fails if it is outside.

The algorithm should try to intersect objects that are in the candidate space,
but this intersection will be successful only if the object is also contained by the
intersection space. The probability of the success s is the ratio of the projected areas
of the intersection space and the candidate space associated with this cell.

>From the probability of the successful intersection in a non-empty cell, the
probability that the intersection is found in the first, second, etc. cells can also be



1062 22. Computer Graphics

computed. Assuming statistical independence, the probabilities that the first, second,
third, etc. intersection is the first successful intersection are s, (1−s)s, (1−s)2s, etc.,
respectively. This is a geometric distribution with expected value 1/s. Consequently,
the expected number of the ray–object intersection tests is:

E[NI ] =
1

s
. (22.27)

If the ray is parallel to one of the sides, then the projected size of the candidate
space is c2+4cr+r2π where c is the edge size of a cell and r is the radius of the spheres.
The other extreme case happens when the ray is parallel to the diagonal of the cubic
cell, where the projection is a rounded hexagon having area

√
3c2 + 6cr + r2π. The

success probability is then:

r2π√
3c2 + 6cr + r2π

≤ s ≤ r2π

c2 + 4cr + r2π
.

According to equation (22.27), the average number of intersection calculations is the
reciprocal of this probability:

1

π

( c
r

)2

+
4

π

c

r
+ 1 ≤ E [NI ] ≤

√
3

π

( c
r

)2

+
6

π

c

r
+ 1 . (22.28)

Note that if the size of the cell is equal to the diameter of the sphere (c = 2r), then

3.54 < E [NI ] < 7.03 .

This result has been obtained assuming that the number of objects converges to
infinity. The expected number of intersection tests, however, remains finite and rel-
atively small.

Calculation of the expected number of cell steps. In the following analysis
the conditional expected value theorem will be used. An appropriate condition is
the length of the ray segment between its origin and the closest intersection. Using
its probability density pt∗(t) as a condition, the expected number of visited cells NS

can be written in the following form:

E[NS ] =

∞∫

0

E[NS |t∗ = t] · pt∗(t) dt ,

where t∗ is the length of the ray and pt∗ is its probability density.
Since the intersection space is a cylinder if we ignore the half spheres around the

beginning and the end, its total volume is r2πt. Thus the probability that intersection
occurs before t is:

Pr {t∗ < t} = 1− e−ρr2πt .

Note that this function is the cumulative probability distribution function of t∗. The
probability density can be computed as its derivative, thus we obtain:

pt∗(t) = ρr2π · e−ρr2πt .



22.6. Rendering with ray tracing 1063

The expected length of the ray is then:

E[t∗] =

∞∫

0

t · ρr2π · e−ρr2πt dt =
1

ρr2π
. (22.29)

In order to simplify the analysis, we shall assume that the ray is parallel to one
of the coordinate axes. Since all cells have the same edge size c, the number of cells
intersected by a ray of length t can be estimated as E[NS |t∗ = t] ≈ t/c + 1. This
estimation is quite accurate. If the the ray is parallel to one of the coordinate axes,
then the error is at most 1. In other cases the real value can be at most

√
3 times

the given estimation. The estimated expected number of visited cells is then:

E [NS ] ≈
∞∫

0

(
t

c
+ 1

)
· ρr2π · e−ρr2πt dt =

1

cρr2π
+ 1 . (22.30)

For example, if the cell size is similar to the object size (c = 2r), and the expected
number of sphere centres in a cell is 0.1, then E [NS ] ≈ 14. Note that the expected
number of visited cells is also constant even for infinite number of objects.

Expected running time and storage space. We concluded that the expected
numbers of required intersection tests and visited cells are asymptotically constant,
thus the expected time complexity of the uniform grid based ray tracing algorithm
is constant after quadratic preprocessing time. The value of the running time can be
controlled by cell size c according to equations (22.28) and (22.30). Smaller cell sizes
reduce the average number of intersection tests, but increase the number of visited
cells.

According to the probabilistic model, the average number of objects overlapping
with a cell is also constant, thus the storage is proportional to the number of cells.
Since the number of cells is set proportional to the number of objects, the expected
storage complexity is also linear unlike the quadratic worst-case complexity.

The expected constant running time means that asymptotically the running
time is independent of the number of objects, which explains the popularity of the
uniform grid based ray tracing algorithm, and also the popularity of the algorithms
presented in the next subsections.

Octree. Uniform grids require many unnecessary cell steps. For example, the
empty spaces are not worth partitioning into cells, and two cells are worth separating
only if they contain different objects. Adaptive space partitioning schemes are based
on these recognitions. The space can be partitioned adaptively following a recursive
approach. This results in a hierarchical data structure, which is usually a tree. The
type of this tree is the base of the classification of such algorithms.

The adaptive scheme discussed in this subsection uses an octal tree (octree for
short), where non-empty nodes have 8 children. An octree is constructed by the
following algorithm:

• For each object, an AABB is found, and object AABBs are enclosed by a scene
AABB. The scene AABB is the cell corresponding to the root of the octree.



1064 22. Computer Graphics

• If the number of objects overlapping with the current cell exceeds a predefined
threshold, then the cell is subdivided to 8 cells of the same size by halving the
original cell along each coordinate axis. The 8 new cells are the children of the
node corresponding to the original cell. The algorithm is recursively repeated for
the child cells.

• The recursive tree building procedure terminates if the depth of the tree becomes
too big, or when the number of objects overlapping with a cell is smaller than
the threshold.

The result of this construction is an octree (Figure 22.33). Overlapping objects
are registered in the leaves of this tree.

When a ray is traced, those leaves of the tree should be traversed which are in-
tersected by the ray, and ray–surface intersection test should be executed for objects
registered in these leaves:

Ray-First-Intersection-with-Octree(~s,~v)

1 ~q ← intersection of the ray and the scene AABB
2 while ~q is inside of the scene AABB � Traversal of the tree.
3 cell← Octree-Cell-Search(octree root, ~q)
4 tout ← ray parameter of the intersection of the cell and the ray
5 t← tout � Initialization: no ray–surface intersection yet.
6 for each object o registered in cell
7 do to ←Ray-Surface-Intersection(~s,~v)

� Negative if no intersection exists.
8 if 0 ≤ to < t � Is the new intersection closer?
9 then t← to � Ray parameter of the closest intersection so far.

10 ovisible ← o � First intersected object so far.
11 if t < tout � Has been intersection at all ?
12 then ~x← ~s+ ~v · t � Position of the intersection.
13 return t, ~x, ovisible

14 ~q ← ~s+ ~v · (tout + ε) � A point in the next cell.
15 return “no intersection”

The identification of the next cell intersected by the ray is more complicated for
octrees than for uniform grids. The Octree-Cell-Search algorithm determines
that leaf cell which contains a given point. At each level of the tree, the coordinates
of the point are compared to the coordinates of the centre of the cell. The results
of these comparisons determine which child contains the point. Repeating this test
recursively, we arrive at a leaf sooner or later.

In order to identify the next cell intersected by the ray, the intersection point of
the ray and the current cell is computed. Then, ray parameter tout of this intersection
point is increased “a little” (this little value is denoted by ε in algorithm Ray-First-
Intersection-with-Octree). The increased ray parameter is substituted into the
ray equation, resulting in point ~q that is already in the next cell. The cell containing
this point can be identified with Octree-cell-search.

Cells of the octree may be larger than the allowed minimal cell, therefore the



22.6. Rendering with ray tracing 1065

1
2

3

1

1 2 2 1

3 1

I II

IIIIV

Figure 22.33 A quadtree partitioning the plane, whose three-dimensional version is the octree.
The tree is constructed by halving the cells along all coordinate axes until a cell contains “just a
few” objects, or the cell sizes gets smaller than a threshold. Objects are registered in the leaves of
the tree.

octree algorithm requires less number of cell steps than the uniform grid algorithm
working on the minimal cells. However, larger cells reduce the probability of the
successful intersection tests since in a large cell it is less likely that a random ray
intersecting the cell also intersects a contained object. Smaller successful intersection
probability, on the other hand, results in greater expected number of intersection
tests, which affects the performance negatively. It also means that non-empty octree
cells are worth subdividing until the minimum cell size is reached even if the cell
contains just a single object. Following this strategy, the size of the non-empty cells
are similar, thus the results of the complexity analysis made for the uniform grid
remain to be applicable to the octree as well. Since the probability of the successful
intersection depends on the size of the non-empty cells, the expected number of
needed intersection tests is still given by inequality (22.28). It also means that when
the minimal cell size of an octree equals to the cell size of a uniform grid, then the
expected number of intersection tests is equal in the two algorithms.

The advantage of the ocree is the ability to skip empty spaces, which reduces
the number of cell steps. Its disadvantage is, however, that the time of the next cell
identification is not constant. This identification requires the traversal of the tree.
If the tree construction is terminated when a cell contains small number of objects,
then the number of leaf cells is proportional to the number of objects. The depth of
the tree is in O(lgN), so is the time needed to step onto the next cell.

kd-tree. An octree adapts to the distribution of the objects. However, the parti-
tioning strategy of octrees always halves the cells without taking into account where
the objects are, thus the adaptation is not perfect. Let us consider a partitioning
scheme which splits a cell into two cells to make the tree balanced. Such method
builds a binary tree which is called binary space partitioning tree, abbreviated
as BSP-tree.. If the separating plane is always perpendicular to one of the coor-



1066 22. Computer Graphics

1
2

3

1

2 3

I

II

Figure 22.34 A kd-tree. A cell containing “many” objects are recursively subdivided to two cells
with a plane that is perpendicular to one of the coordinate axes.

dinate axes, then the tree is called kd-tree.
The separating plane of a kd-tree node can be placed in many different ways:

• the spatial median method halves the cell into two congruent cells.

• the object median method finds the separating plane to have the same number
of objects in the two child cells.

• the cost driven method estimates the average computation time needed when
a cell is processed during ray tracing, and minimizes this value by placing the
separating plane. An appropriate cost model suggests to separate the cell to
make the probabilities of the ray–surface intersection of the two cells similar.

The probability of the ray–surface intersection can be computed using a funda-
mental theorem of the integral geometry:

Theorem 22.17 If convex solid A contains another convex solid B, then the prob-
ability that a uniformly distributed line intersects solid B provided that the line in-
tersected A equals to the ratio of the surface areas of objects B and A.

According to this theorem the cost driven method finds the separating plane to
equalize the surface areas in the two children.

Let us now present a general kd-tree construction algorithm. Parameter cell
identifies the current cell, depth is the current depth of recursion, and coordinate
stores the orientation of the current separating plane. A cell is associated with
its two children (cell.right and cell.left), and its left-lower-closer and right-upper-
farther corners (cell.min and cell.max). Cells also store the list of those objects
which overlap with the cell. The orientation of the separation plane is determined
by a round-robin scheme implemented by function Round-robin providing a se-
quence like (x, y, z, x, y, z, x, . . .). When the following recursive algorithm is called
first, it gets the scene AABB in variable cell and the value of variable depth is zero:



22.6. Rendering with ray tracing 1067

Kd-Tree-Construction(cell, depth, coordinate)

1 if the number of objects overlapping with cell is small or depth is large
2 then return
3 AABB of cell.left and AABB of cell.right ← AABB of cell
4 if coordinate = x
5 then cell.right.min.x← x perpendicular separating plane of cell
6 cell.left.max.x← x perpendicular separating plane of cell
7 else if coordinate = y
8 then cell.right.min.y← y perpendicular separating plane of cell
9 cell.left.max.y← y perpendicular separating plane of cell

10 else if coordinate = z
11 then cell.right.min.z← z perpendicular separating plane of cell
12 cell.left.max.z← z perpendicular separating plane of cell
13 for each object o of cell
14 do if object o is in the AABB of cell.left
15 then assign object o to the list of cell.left
16 if object o is in the AABB of cell.right
17 then assign object o to the list of cell.right
18 Kd-Tree-Construction(cell.left, depth + 1,Round-Robin(coordinate))
19 Kd-Tree-Construction(cell.right, depth + 1,Round-Robin(coordinate))

Now we discuss an algorithm that traverses the constructed kd-tree and finds the
visible object. First we have to test whether the origin of the ray is inside the scene
AABB. If it is not, the intersection of the ray and the scene AABB is computed,
and the origin of the ray is moved there. The identification of the cell containing the
ray origin requires the traversal of the tree. During the traversal the coordinates of
the point are compared to the coordinates of the separating plane. This comparison
determines which child should be processed recursively until a leaf node is reached. If
the leaf cell is not empty, then objects overlapping with the cell are intersected with
the ray, and the intersection closest to the origin is retained. The closest intersection
is tested to see whether or not it is inside the cell (since an object may overlap more
than one cells, it can also happen that the intersection is in another cell). If the
intersection is in the current cell, then the needed intersection has been found, and
the algorithm can be terminated. If the cell is empty, or no intersection is found
in the cell, then the algorithm should proceed with the next cell. To identify the
next cell, the ray is intersected with the current cell identifying the ray parameter
of the exit point. Then the ray parameter is increased “a little” to make sure that
the increased ray parameter corresponds to a point in the next cell. The algorithm
keeps repeating these steps as it processes the cells of the tree.

This method has the disadvantage that the cell search always starts at the root,
which results in the repetitive traversals of the same nodes of the tree.

This disadvantage can be eliminated by putting the cells to be visited into a
stack, and backtracking only to the point where a new branch should be followed.
When the ray arrives at a node having two children, the algorithm decides the order
of processing the two child nodes. Child nodes are classified as “near” and “far”



1068 22. Computer Graphics

depending on whether or not the child cell is on the same side of the separating
plane as the origin of the ray. If the ray intersects only the “near” child, then the
algorithm processes only that subtree which originates at this child. If the ray in-
tersects both children, then the algorithm pushes the “far” node onto the stack and
starts processing the “near” node. If no intersection exists in the “near” node, then
the stack is popped to obtain the next node to be processed.

The notations of the ray tracing algorithm based on kd-tree traversal are shown
by Figure 22.35. The algorithm is the following:

Ray-First-Intersection-with-kd-Tree(root, ~s,~v)

1 (tin, tout)← Ray-AABB-Intersection(~s,~v, root)
� Intersection with the scene AABB.

2 if no intersection
3 then return “no intersection”
4 Push(root, tin, tout)
5 while the stack is not empty � Visit all nodes.
6 do Pop(cell, tin, tout)
7 while cell is not a leaf
8 do coordinate← orientation of the separating plane of the cell
9 d← cell.right.min[coordinate]− ~s[coordinate]

10 t← d/~v[coordinate] � Ray parameter of the separating plane.
11 if d > 0 � Is ~s on the left side of the separating plane?
12 then (near, far)← (cell.left, cell.right) � Left.
13 else (near, far)← (cell.right, cell.left) � Right.
14 if t > tout or t < 0
15 then cell← near � The ray intersects only the near cell.
16 else if t < tin
17 then cell← far � The ray intersects only the far cell.
18 else Push(far, t, tout) � The ray intersects both cells.
19 cell← near � First near is intersected.
20 tout ← t � The ray exists at t from the near cell.

� If the current cell is a leaf.
21 t← tout � Maximum ray parameter in this cell.
22 for each object o of cell
23 do to ←Ray-surface-intersection(~s,~v)

� Negative if no intersection exists.
24 if tin ≤ to < t � Is the new intersection closer to the ray origin?
25 then t← to

� The ray parameter of the closest intersection so far.
26 ovisible ← o

� The object intersected closest to the ray origin.



22.6. Rendering with ray tracing 1069

left right

t t

t

in

out

d

notations

right
d 

left right
d

left right

ttout

t > tout

d > 0 d < 0

left right

t

t < 0

left right

t

tin

t < tin

s

v

left
s

s

s

s

s

Figure 22.35 Notations and cases of algorithm Ray-First-Intersection-with-kd-Tree. tin,
tout, and t are the ray parameters of the entry, exit, and the separating plane, respectively. d is the
signed distance between the ray origin and the separating plane.

Figure 22.36 Kd-tree based space partitioning with empty space cutting.

27 if t < tout � Has been intersection at all in the cell?
28 then ~x← ~s+ ~v · t � The intersection point.
29 return t, ~x, ovisible � Intersection has been found.
30 return “no intersection” � No intersection.

Similarly to the octree algorithm, the likelihood of successful intersections can
be increased by continuing the tree building process until all empty spaces are cut
(Figure 22.36).

Our probabilistic world model contains spheres of same radius r, thus the non-
empty cells are cubes of edge size c = 2r. Unlike in uniform grids or octrees, the
separating planes of kd-trees are not independent of the objects. Kd-tree splitting
planes are rather tangents of the objects. This means that we do not have to be
concerned with partially overlapping spheres since a sphere is completely contained



1070 22. Computer Graphics

by a cell in a kd-tree. The probability of the successful intersection is obtained
applying Theorem 22.17. In the current case, the containing convex solid is a cube
of edge size 2r, the contained solid is a sphere of radius r, thus the intersection
probability is:

s =
4r2π

6a2
=
π

6
.

The expected number of intersection tests is then:

E [NI ] =
6

π
≈ 1.91 .

We can conclude that the kd-tree algorithm requires the smallest number of ray-
surface intersection tests according to the probabilistic model.

Exercises
22.6-1 Prove that the expected number of intersection tests is constant in all those
ray tracing algorithms which process objects in the order of their distance from the
ray origin.
22.6-2 Propose a ray intersection algorithm for subdivision surfaces.
22.6-3 Develop a ray intersection method for B-spline surfaces.
22.6-4 Develop a ray intersection algorithm for CSG models assuming that the
ray–primitive intersection tests are already available.
22.6-5 Propose a ray intersection algorithm for transformed objects assuming that
the algorithm computing the intersection with the non-transformed objects is avail-
able (hints: transform the ray).

22.7. Incremental rendering

Rendering requires the identification of those surface points that are visible through
the pixels of the virtual camera. Ray tracing solves this visibility problem for each
pixel independently, thus it does not reuse visibility information gathered at other
pixels. The algorithms of this section, however, exploit such information using the
following simple techniques:

1. They simultaneously attack the visibility problem for all pixels, and handle
larger parts of the scene at once.

2. Where feasible, they exploit the incremental principle which is based on the
recognition that the visibility problem becomes simpler to solve if the solution
at the neighbouring pixel is taken into account.

3. They solve each task in that coordinate system which makes the solution eas-
ier. The scene is transformed from one coordinate system to the other by
homogeneous linear transformations.

4. They minimize unnecessary computations, therefore remove those objects by
clipping in an early stage of rendering which cannot be projected onto the
window of the camera.



22.7. Incremental rendering 1071

Homogeneous linear transformations and clipping may change the type of the
surface except for points, line segments and polygons 4. Therefore, before rendering is
started, each shape is approximated by points, line segments, and meshes (Subsection
22.3).

Steps of incremental rendering are shown in Figure 22.37. Objects are defined in
their reference state, approximated by meshes, and are transformed to the virtual
world. The time dependence of this transformation is responsible for object anima-
tion. The image is taken from the camera about the virtual world, which requires
the identification of those surface points that are visible from the camera, and their
projection onto the window plane. The visibility and projection problems could be
solved in the virtual world as happens in ray tracing, but this would require the
intersection calculations of general lines and polygons. Visibility and projection al-
gorithms can be simplified if the scene is transformed to a coordinate system, where
the X,Y coordinates of a point equal to the coordinates of that pixel onto which
this point is projected, and the Z coordinate can be used to decide which point is
closer if more than one surfaces are projected onto the same pixel. Such coordinate
system is called the screen coordinate system. In screen coordinates the units of
axes X and Y are equal to the pixel size. Since it is usually not worth computing the
image on higher accuracy than the pixel size, coordinates X,Y are integers. Because
of performance reasons, coordinate Z is also often integer. Screen coordinates are
denoted by capital letters.

The transformation taking to the screen coordinate system is defined by a se-
quence of transformations, and the elements of this sequence are discussed sepa-
rately. However, this transformation is executed as a single multiplication with a
4 × 4 transformation matrix obtained as the product of elementary transformation
matrices.

22.7.1. Camera transformation

Rendering is expected to generate an image from a camera defined by eye position
( ~eye) (the focal point of the camera), looking target ( ~lookat) where the camera looks
at, and by vertical direction ~up (Figure 22.38).

Camera parameter fov defines the vertical field of view, aspect is the ratio of
the width and the height of the window, fp and bp are the distances of the front
and back clipping planes from the eye, respectively. These clipping planes allow to
remove those objects that are behind, too close to, or too far from the eye.

We assign a coordinate system, i.e. three orthogonal unit basis vectors to the
camera. Horizontal basis vector ~u = (ux, uy, uz), vertical basis vector ~v = (vx, vy,
vz), and basis vector ~w = (wx, wy, wz) pointing to the looking direction are obtained
as follows:

~w =
~eye− ~lookat

| ~eye− ~lookat|
, ~u =

~up× ~w

| ~up× ~w| , ~v = ~w × ~u .

4 Although Bézier and B-Spline curves and surfaces are invariant to affine transformations, and
NURBS is invariant even to homogeneous linear transformations, but clipping changes these object
types as well.



1072 22. Computer Graphics

(a) Modelling (b) Tessellation

(c) Modelling transformation (d) Camera transformation

(e) Perspective transformation (f) Clipping

(g) Hidden surface elimination (h) Projection and shading

Figure 22.37 Steps of incremental rendering. (a) Modelling defines objects in their reference state.
(b) Shapes are tessellated to prepare for further processing. (c) Modelling transformation places the
object in the world coordinate system. (d) Camera transformation translates and rotates the scene
to get the eye to be at the origin and to look parallel with axis −z. (e) Perspective transformation
converts projection lines meeting at the origin to parallel lines, that is, it maps the eye position
onto an ideal point. (f) Clipping removes those shapes and shape parts, which cannot be projected
onto the window. (g) Hidden surface elimination removes those surface parts that are occluded by
other shapes. (h) Finally, the visible polygons are projected and their projections are filled with
their visible colours.



22.7. Incremental rendering 1073

lookat

x

y

z

uv

w

b

f

eye
p

p

up

fov

Figure 22.38 Parameters of the virtual camera: eye position ~eye, target ~lookat, and vertical
direction ~up, from which camera basis vectors ~u, ~v, ~w are obtained, front fp and back bp clipping
planes, and vertical field of view fov (the horizontal field of view is computed from aspect ratio
aspect).

The camera transformation translates and rotates the space of the virtual
world in order to get the camera to move to the origin, to look at direction axis −z,
and to have vertical direction parallel to axis y, that is, this transformation maps
unit vectors ~u,~v, ~w to the basis vectors of the coordinate system. Transformation
matrix Tcamera can be expressed as the product of a matrix translating the eye
to the origin and a matrix rotating basis vectors ~u,~v, ~w of the camera to the basis
vectors of the coordinate system:

[x′, y′, z′, 1] = [x, y, z, 1] ·Tcamera = [x, y, z, 1] ·Ttranslation ·Trotation , (22.31)

where

Ttranslation =




1 0 0 0
0 1 0 0
0 0 1 0

−eyex −eyey −eyez 1


 , Trotation =




ux vx wx 0
uy vy wy 0
uz vz wz 0
0 0 0 1


 .

Let us note that the columns of the rotation matrix are vectors ~u,~v, ~w. Since
these vectors are orthogonal, it is easy to see that this rotation maps them to coor-
dinate axes x, y, z. For example, the rotation of vector ~u is:

[ux, uy, uz, 1] ·Trotation = [~u · ~u, ~u · ~v, ~u · ~w, 1] = [1, 0, 0, 1] .

22.7.2. Normalizing transformation

In the next step the viewing pyramid containing those points which can be projected
onto the window is normalized making the field of view equal to 90 degrees (Figure
22.39).



1074 22. Computer Graphics

y

z

y

z

fp bp fp bp

Figure 22.39 The normalizing transformation sets the field of view to 90 degrees.

y

z

y

z
1

1

-1

-1
fp bp

Figure 22.40 The perspective transformation maps the finite frustum of pyramid defined by the
front and back clipping planes, and the edges of the window onto an axis aligned, origin centred
cube of edge size 2.

Normalization is a simple scaling transformation:

Tnorm =




1/(tan(fov/2) · aspect) 0 0 0
0 1/ tan(fov/2) 0 0
0 0 1 0
0 0 0 1


 .

The main reason of this transformation is to simplify the formulae of the next
transformation step, called perspective transformation.

22.7.3. Perspective transformation

The perspective transformation distorts the virtual world to allow the replacement
of the perspective projection by parallel projection during rendering.

After the normalizing transformation, the potentially visible points are inside a
symmetrical finite frustum of pyramid of 90 degree apex angle (Figure 22.39). The
perspective transformation maps this frustum onto a cube, converting projection
lines crossing the origin to lines parallel to axis z (Figure 22.40).

Perspective transformation is expected to map point to point, line to line, but to
map the eye position to infinity. It means that perspective transformation cannot be
a linear transformation of Cartesian coordinates. Fortunately, homogeneous linear



22.7. Incremental rendering 1075

transforms also map point to point, line to line, and are able to handle points at
infinity with finite coordinates. Let us thus try to find the perspective transformation
in the form of a homogeneous linear transformation defined by a 4× 4 matrix:

Tpersp =




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44


 .

Figure 22.40 shows a line (projection ray) and its transform. Let mx and my be
the x/z and the y/z slopes of the line, respectively. This line is defined by equation
[−mx ·z,−my ·z, z] in the normalized camera space. The perspective transformation
maps this line to a “horizontal” line crossing point [mx,my, 0] and being parallel
to axis z. Let us examine the intersection points of this line with the front and
back clipping planes, that is, let us substitute (−fp) and (−bp) into parameter z of
the line equation. The transformation should map these points to [mx,my,−1] and
[mx,my, 1], respectively.

The perspective transformation of the point on the first clipping plane is:

[mx · fp,my · fp,−fp, 1] ·Tpersp = [mx,my,−1, 1] · λ ,
where λ is an arbitrary, non-zero scalar since the point defined by homogeneous co-
ordinates does not change if the homogeneous coordinates are simultaneously mul-
tiplied by a non-zero scalar. Setting λ to fp, we get:

[mx · fp,my · fp,−fp, 1] ·Tpersp = [mx · fp,my · fp,−fp, fp] . (22.32)

Note that the first coordinate of the transformed point equals to the first coordi-
nate of the original point on the clipping plane for arbitrary mx, my, and fp values.
This is possible only if the first column of matrix Tpersp is [1, 0, 0, 0]T . Using the
same argument for the second coordinate, we can conclude that the second column of
the matrix is [0, 1, 0, 0]T . Furthermore, in equation (22.32) the third and the fourth
homogeneous coordinates of the transformed point are not affected by the first and
the second coordinates of the original point, requiring t13 = t14 = t23 = t24 = 0. The
conditions on the third and the fourth homogeneous coordinates can be formalized
by the following equations:

−fp · t33 + t43 = −fp, −fp · t34 + t44 = fp .

Applying the same procedure for the intersection point of the projection line and
the back clipping plane, we can obtain other two equations:

−bp · t33 + t43 = bp, −bp · t34 + t44 = bp .

Solving this system of linear equations, the matrix of the perspective transformation
can be expressed as:

Tpersp =




1 0 0 0
0 1 0 0
0 0 −(fp + bp)/(bp − fp) −1
0 0 −2 · fp · bp/(bp − fp) 0


 .



1076 22. Computer Graphics

Since perspective transformation is not affine, the fourth homogeneous coordi-
nate of the transformed point is usually not 1. If we wish to express the coordinates
of the transformed point in Cartesian coordinates, the first three homogeneous coor-
dinates should be divided by the fourth coordinate. Homogeneous linear transforms
map line segment to line segment and triangle to triangle, but it may happen that
the resulting line segment or triangle contains ideal points (Subsection 22.5.2). The
intuition behind the homogeneous division is a traveling from the projective space
to the Euclidean space, which converts a line segment containing an ideal point to
two half lines. If just the two endpoints of the line segment is transformed, then it
is not unambiguous whether the two transformed points need to be connected by
a line segment or the complement of this line segment should be considered as the
result of the transformation. This ambiguity is called the wrap around problem.

The wrap around problem does not occur if we can somehow make sure that
the original shape does not contain points that might be mapped onto ideal points.
Examining the matrix of the perspective transformation we can conclude that the
fourth homogeneous coordinate of the transformed point will be equal to the −z
coordinate of the original point. Ideal points having zero fourth homogeneous coor-
dinate (h = 0) may thus be obtained transforming the points of plane z = 0, i.e.
the plane crossing the origin and parallel to the window. However, if the shapes
are clipped onto a first clipping plane being in front of the eye, then these points
are removed. Thus the solution of the wrap around problem is the execution of the
clipping step before the homogeneous division.

22.7.4. Clipping in homogeneous coordinates

The purpose of clipping is to remove all shapes that either cannot be projected
onto the window or are not between the front and back clipping planes. To solve
the wrap around problem, clipping should be executed before the homogeneous
division. The clipping boundaries in homogeneous coordinates can be obtained by
transforming the screen coordinate AABB back to homogeneous coordinates. In
screen coordinates, i.e. after homogeneous division, the points to be preserved by
clipping meet the following inequalities:

− 1 ≤ X = Xh/h ≤ 1, −1 ≤ Y = Yh/h ≤ 1, −1 ≤ Z = Zh/h ≤ 1 . (22.33)

On the other hand, points that are in front of the eye after camera transformation
have negative z coordinates, and the perspective transformation makes the fourth
homogeneous coordinate h equal to −z in normalized camera space. Thus the fourth
homogeneous coordinate of points in front of the eye is always positive. Let us thus
add condition h > 0 to the set of conditions of inequalities (22.33). If h is positive,
then inequalities (22.33) can be multiplied by h, resulting in the definition of the
clipping region in homogeneous coordinates:

− h ≤ Xh ≤ h, −h ≤ Yh ≤ h, −h ≤ Zh ≤ h . (22.34)

Points can be clipped easily, since we should only test whether or not the con-
ditions of inequalities (22.34) are met. Clipping line segments and polygons, on the



22.7. Incremental rendering 1077

other hand, requires the computation of the intersection points with the faces of the
clipping boundary, and only those parts should be preserved which meet inequalities
(22.34).

Clipping algorithms using Cartesian coordinates were discussed in Subsection
22.4.3. Those methods can also be applied in homogeneous coordinates with two ex-
ceptions. Firstly, for homogeneous coordinates, inequalities (22.34) define whether a
point is in or out. Secondly, intersections should be computed using the homogeneous
coordinate equations of the line segments and the planes.

Let us consider a line segment with endpoints [X1
h, Y

1
h , Z

1
h, h

1] and
[X2

h, Y
2

h , Z
2
h, h

2]. This line segment can be an independent shape or an edge of a
polygon. Here we discuss the clipping on half space of equation Xh ≤ h (clipping
methods on other half spaces are very similar). Three cases need to be distinquished:

1. If both endpoints of the line segment are inside, that is X1
h ≤ h1 and X2

h ≤ h2,
then the complete line segment is in, thus is preserved.

2. If both endpoints are outside, that is X1
h > h1 and X2

h > h2, then all points
of the line segment are out, thus it is completely eliminated by clipping.

3. If one endpoint is outside, while the other is in, then the intersection of the line
segment and the clipping plane should be obtained. Then the endpoint being
out is replaced by the intersection point. Since the points of a line segment
satisfy equation (22.19), while the points of the clipping plane satisfy equation
Xh = h, parameter ti of the intersection point is computed as:

Xh(ti) = h(ti) =⇒ X1
h · (1− ti) +X2

h · ti = h1 · (1− ti) + h2 · ti =⇒

=⇒ ti =
X1

h − h1

X1
h −X2

h + h2 − h1
.

Substituting parameter ti into the equation of the line segment, homogeneous
coordinates [Xi

h, Y
i

h , Z
i
h, h

i] of the intersection point are obtained.

Clipping may introduce new vertices. When the vertices have some additional
features, for example, the surface colour or normal vector at these vertices, then
these additional features should be calculated for the new vertices as well. We can
use linear interpolation. If the values of a feature at the two endpoints are I1 and
I2, then the feature value at new vertex [Xh(ti), Yh(ti), Zh(ti), h(ti)] generated by
clipping is I1 · (1− ti) + I2 · ti.

22.7.5. Viewport transformation

Having executed the perspective transformation, the Cartesian coordinates of the
visible points are in [−1, 1]. These normalized device coordinates should be further
scaled and translated according to the resolution of the screen and the position of
the viewport where the image is expected. Denoting the left-bottom corner pixel of
the screen viewport by (Xmin, Ymin), the right-top corner by (Xmax, Ymax), and Z
coordinates expressing the distance from the eye are expected in (Zmin, Zmax), the



1078 22. Computer Graphics

matrix of the viewport transformation is:

Tviewport =




(Xmax −Xmin)/2 0 0 0
0 (Ymax − Ymin)/2 0 0
0 0 (Zmax − Zmin)/2 0

(Xmax +Xmin)/2 (Ymax + Ymin)/2 (Zmax + Zmin)/2 1


 .

Coordinate systems after the perspective transformation are left handed, unlike
the coordinate systems of the virtual world and the camera, which are right handed.
Left handed coordinate systems seem to be unusual, but they meet our natural
expectation that the screen coordinate X grows from left to right, the Y coordinate
from bottom to top and, the Z coordinate grows in the direction of the camera
target.

22.7.6. Rasterization algorithms

After clipping, homogeneous division, and viewport transformation, shapes are in
the screen coordinate system where a point of coordinates (X,Y,Z) can be assigned
to a pixel by extracting the first two Cartesian coordinates (X,Y ).

Rasterization works in the screen coordinate system and identifies those pixels
which have to be coloured to approximate the projected shape. Since even simple
shapes can cover many pixels, rasterization algorithms should be very fast, and
should be appropriate for hardware implementation.

Line drawing. Let the endpoints of a line segment be (X1, Y1) and (X2, Y2)
in screen coordinates. Let us further assume that while we are going from the first
endpoint towards the second, both coordinates are growing, and X is the faster
changing coordinate, that is,

∆X = X2 −X1 ≥ ∆Y = Y2 − Y1 ≥ 0 .

In this case the line segment is moderately ascending. We discuss only this case, other
cases can be handled by exchanging the X,Y coordinates and replacing additions
by substractions.

Line drawing algorithms are expected to find pixels that approximate a line in
a way that there are no holes and the approximation is not fatter than necessary.
In case of moderately ascending line segments this means that in each pixel column
exactly one pixel should be filled with the colour of the line. This coloured pixel is
the one closest to the line in this column. Using the following equation of the line

y = m ·X + b, where m =
Y2 − Y1

X2 −X1
, and b = Y1−X1 ·

Y2 − Y1

X2 −X1
, (22.35)

in pixel column of coordinate X, the pixel closest to the line has Y coordinate that
is equal to the rounding of m ·x+ b. Unfortunately, the determination of Y requires
a floating point multiplication, addition, and a rounding operation, which are too
slow.

In order to speed up line drawing, we apply a fundamental trick of computer



22.7. Incremental rendering 1079

graphics, the incremental principle. The incremental principle is based on the
recognition that it is usually simpler to evaluate a function y(X + 1) using value
y(X) than computing it from X. Since during line drawing the columns are visited
one by one, when column (X + 1) is processed, value y(X) is already available. In
case of a line segment we can write:

y(X + 1) = m · (X + 1) + b = m ·X + b+m = y(X) +m .

Note that the evaluation of this formula requires just a single floating point addi-
tion (m is less than 1). This fact is exploited in digital differential analyzator
algorithms (DDA-algorithms). The DDA line drawing algorithm is then:

DDA-Line-Drawing(X1, Y1,X2, Y2, colour)

1 m← (Y2 − Y1)/(X2 −X1)
2 y ← Y1

3 for X ← X1 to X2

4 do Y ← Round(y)
5 Pixel-Write(X,Y, colour)
6 y ← y +m

Further speedups can be obtained using fixed point number representation.
This means that the product of the number and 2T is stored in an integer variable,
where T is the number of fractional bits. The number of fractional bits should be set
to exclude cases when the rounding errors accumulate to an incorrect result during
long iteration sequences. If the longest line segment covers L columns, then the
minimum number of fractional bits guaranteeing that the accumulated error is less
than 1 is log2 L. Thanks to clipping only lines fitting to the screen are rasterized,
thus L is equal to the maximum screen resolution.

The performance and simplicity of the DDA line drawing algorithm can still
be improved. On the one hand, the software implementation of the DDA algorithm
requires shift operations to realize truncation and rounding operations. On the other
hand – once for every line segment – the computation of slope m involves a division
which is computationally expensive. Both problems are solved in the Bresenham
line drawing algorithm.

Let us denote the vertical, signed distance of the line segment and the closest
pixel centre by s, and the vertical distance of the line segment and the pixel centre
just above the closest pixel by t (Figure 22.41). As the algorithm steps onto the
next pixel column, values s and t change and should be recomputed. While the new
s and t values satisfy inequality s < t, that is, while the lower pixel is still closer
to the line segment, the shaded pixel of the next column is in the same row as in
the previous column. Introducing error variable e = s − t, the row of the shaded
pixel remains the same until this error variable is negative (e < 0). As the pixel
column is incremented, variables s, t, e are updated using the incremental formulae
(∆X = X2 −X1, ∆Y = Y2 − Y1):

s(X+1) = s(X)+
∆Y

∆X
, t(X+1) = t(X)− ∆Y

∆X
=⇒ e(X+1) = e(X)+2

∆Y

∆X
.



1080 22. Computer Graphics

t(X) t(X+1)

s(X) s(X+1)

t(X)

t(X+1)

s(X)

s(X+1)

X

Y

1

Figure 22.41 Notations of the Bresenham algorithm: s is the signed distance between the closest
pixel centre and the line segment along axis Y , which is positive if the line segment is above the
pixel centre. t is the distance along axis Y between the pixel centre just above the closest pixel and
the line segment.

These formulae are valid if the closest pixel in column (X + 1) is in the same row
as in column X. If stepping to the next column, the upper pixel gets closer to
the line segment (error variable e becomes positive), then variables s, t, e should be
recomputed for the new closest row and for the pixel just above it. The formulae
describing this case are as follows:

s(X + 1) = s(X) +
∆Y

∆X
− 1, t(X + 1) = t(X)− ∆Y

∆X
+ 1 =⇒

=⇒ e(X + 1) = e(X) + 2

(
∆Y

∆X
− 1

)
.

Note that s is a signed distance which is negative if the line segment is below the
closest pixel centre, and positive otherwise. We can assume that the line starts at a
pixel centre, thus the initial values of the control variables are:

s(X1) = 0, t(X1) = 1 =⇒ e(X1) = s(X1)− t(X1) = −1 .

This algorithm keeps updating error variable e and steps onto the next pixel row
when the error variable becomes positive. In this case, the error variable is decreased
to have a negative value again. The update of the error variable requires a non-integer
addition and the computation of its increment involves a division, similarly to the
DDA algorithm. It seems that this approach is not better than the DDA.

Let us note, however, that the sign changes of the error variable can also be
recognized if we examine the product of the error variable and a positive number.
Multiplying the error variable by ∆X we obtain decision variable E = e · ∆X.
In case of moderately ascending lines the decision and error variables change their
sign simultaneously. The incremental update formulae of the decision variable can



22.7. Incremental rendering 1081

be obtained by multiplying the update formulae of error variable by ∆X:

E(X + 1) =





E(X) + 2∆Y , if Y is not incremented ,

E(X) + 2(∆Y −∆X), if Y needs to be incremented .

The initial value of the decision variable is E(X1) = e(X1) ·∆X = −∆X.
The decision variable starts at an integer value and is incremented by integers in

each step, thus it remains to be an integer and does not require fractional numbers at
all. The computation of the increments need only integer additions or subtractions
and multiplications by 2.

The complete Bresenham line drawing algorithm is:

Bresenham-Line-Drawing(X1, Y1,X2, Y2, colour)

1 ∆X ← X2 −X1

2 ∆Y ← Y2 − Y1

3 (dE+, dE−)← (2(∆Y −∆X), 2∆Y )
4 E ← −∆X
5 Y ← Y1

6 for X ← X1 to X2

7 do if E ≤ 0
8 then E ← E + dE−

� The line stays in the current pixel row.
9 else E ← E + dE+

� The line steps onto the next pixel row.
10 Y ← Y + 1
11 Pixel-Write(X,Y, colour)

The fundamental idea of the Bresenham algorithm was the replacement of the
fractional error variable by an integer decision variable in a way that the conditions
used by the algorithm remained equivalent. This approach is also called the method
of invariants, which is useful in many rasterization algorithms.

Polygon fill. The input of an algorithm filling single connected polygons is the
array of vertices ~q[0], . . . , ~q[m − 1] (this array is usually the output of the polygon
clipping algorithm). Edge e of the polygon connects vertices ~q[e] and ~q[e + 1]. The
last vertex needs not be treated in a special way if the first vertex is put again after
the last vertex in the array. Multiply connected polygons are defined by more than
one closed polylines, thus are specified by more than one vertex arrays.

The filling is executed by processing a horizontal pixel row called scan line at
a time. For a single scan line, the pixels belonging to the interior of the polygon
can be found by the following steps. First the intersections of the polygon edges
and the scan line are calculated. Then the intersection points are sorted in the
ascending order of their X coordinates. Finally, pixels between the first and the
second intersection points, and between the third and the fourth intersection points,
or generally between the (2i+ 1)th and the (2i+ 2)th intersection points are set to
the colour of the polygon (Figure 22.42). This algorithm fills those pixels which can
be reached from infinity by crossing the polygon boundary odd number of times.



1082 22. Computer Graphics

X

Y

X X10

X

Y

q[0]

q[1]

q[2]

q[3]

X X10 X3 X2

q[0]

q[1]

q[2]

q[3]

Figure 22.42 Polygon fill. Pixels inside the polygon are identified scan line by scan line.

XY

X(Y) X(Y+1) X(Y+2)

∆X/∆Y ∆X/∆Y

Y+1

Y+2

Figure 22.43 Incremental computation of the intersections between the scan lines and the edges.
Coordinate X always increases with the reciprocal of the slope of the line.

The computation of the intersections between scan lines and polygon edges can
be speeded up using the following observations:

1. An edge and a scan line can have intersection only if coordinate Y of the scan
line is between the minimum and maximum Y coordinates of the edge. Such
edges are the active edges. When implementing this idea, an active edge
table (AET for short) is needed which stores the currently active edges.

2. The computation of the intersection point of a line segment and the scan
line requires floating point multiplication, division, and addition, thus it is
time consuming. Applying the incremental principle, however, we can also
obtain the intersection point of the edge and a scan line from the intersection
point with the previous scan line using a single, fixed-point addition (Figure
22.43).

When the incremental principle is exploited, we realize that coordinate X of the
intersection with an edge always increases by the same amount when scan line Y
is incremented. If the edge endpoint having the larger Y coordinate is (Xmax, Ymax)
and the endpoint having the smaller Y coordinate is (Xmin, Ymin), then the incre-
ment of the X coordinate of the intersection is ∆X/∆Y , where ∆X = Xmax−Xmin

and ∆Y = Ymax − Ymin. This increment is usually not an integer, hence increment
∆X/∆Y and intersection coordinate X should be stored in non-integer, preferably



22.7. Incremental rendering 1083

YAET ∆X/∆Y
max

X Y ∆X/∆Y
max

X

Figure 22.44 The structure of the active edge table.

fixed-point variables. An active edge is thus represented by a fixed-point increment
∆X/∆Y , the fixed-point coordinate value of intersection X, and the maximum ver-
tical coordinate of the edge (Ymax). The maximum vertical coordinate is needed to
recognize when the edge becomes inactive.

Scan lines are processed one after the other. First, the algorithm determines
which edges become active for this scan line, that is, which edges have minimum
Y coordinate being equal to the scan line coordinate. These edges are inserted into
the active edge table. The active edge table is also traversed and those edges whose
maximum Y coordinate equals to the scan line coordinate are removed (note that
this way the lower end of an edge is supposed to belong to the edge, but the upper
edge is not). Then the active edge table is sorted according to the X coordinates
of the edges, and the pixels between each pair of edges are filled. Finally, the X
coordinates of the intersections in the edges of the active edge table are prepared for
the next scan line by incrementing them by the reciprocal of the slope ∆X/∆Y .

Polygon-Fill(polygon, colour)

1 for Y ← 0 to Ymax

2 do for each edge of polygon � Put activated edges into the AET.
3 do if edge.ymin = Y
4 then Put-AET(edge)
5 for each edge of the AET � Remove deactivated edges from the AET.
6 do if edge.ymax ≤ Y
7 then Delete-from-AET(edge)
8 Sort-AET � Sort according to X.
9 for each pair of edges (edge1, edge2) of the AET

10 do for X ← Round(edge1.x) to Round(edge2.x)
11 do Pixel-Write(X,Y, colour)
11 for each edge in the AET � Incremental principle.
12 do edge.x← edge.x + edge.∆X/∆Y

The algorithm works scan line by scan line and first puts the activated edges
(edge.ymin = Y ) to the active edge table. The active edge table is maintained by
three operations. Operation Put-AET(edge) computes variables (Ymax,∆X/∆Y,X)
of an edge and inserts this structure into the table. Operation Delete-from-AET
removes an item from the table when the edge is not active any more (edge.ymax ≤
Y ). Operation Sort-AET sorts the table in the ascending order of the X value
of the items. Having sorted the lists, every two consecutive items form a pair, and
the pixels between the endpoints of each of these pairs are filled. Finally, the X
coordinates of the items are updated according to the incremental principle.



1084 22. Computer Graphics

22.7.7. Incremental visibility algorithms

The three-dimensional visibility problem is solved in the screen coordinate system.
We can assume that the surfaces are given as triangle meshes.

Z-buffer algorithm. The z-buffer algorithm finds that surface for each pixel,
where the Z coordinate of the visible point is minimal. For each pixel we allocate
a memory to store the minimum Z coordinate of those surfaces which have been
processed so far. This memory is called the z-buffer or the depth-buffer.

When a triangle of the surface is rendered, all those pixels are identified which
fall into the interior of the projection of the triangle by a triangle filling algorithm. As
the filling algorithm processes a pixel, the Z coordinate of the triangle point visible
in this pixel is obtained. If this Z value is larger than the value already stored in
the z-buffer, then there exists an already processed triangle that is closer than the
current triangle in this given pixel. Thus the current triangle is obscured in this pixel
and its colour should not be written into the raster memory. However, if the new Z
value is smaller than the value stored in the z-buffer, then the current triangle is the
closest so far, and its colour and Z coordinate should be written into the pixel and
the z-buffer, respectively.

The z-buffer algorithm is then:

Z-buffer()

1 for each pixel p � Clear screen.
2 do Pixel-Write(p, background-colour)
3 z-buffer[p]← maximum value after clipping
4 for each triangle o � Rendering.
5 do for each pixel p of triangle o
6 do Z ← coordinate Z of that point o which projects onto pixel p
7 if Z < z-buffer[p]
8 then Pixel-Write(p, colour of triangle o in this point)
9 z-buffer[p]← Z

When the triangle is filled, the general polygon filling algorithm of the previous
section could be used. However, it is worth exploiting the special features of the
triangle. Let us sort the triangle vertices according to their Y coordinates and assign
index 1 to the vertex of the smallest Y coordinate and index 3 to the vertex of the
largest Y coordinate. The third vertex gets index 2. Then let us cut the triangle
into two pieces with scan line Y2. After cutting we obtain a “lower” triangle and
an “upper” triangle. Let us realize that in such triangles the first (left) and the
second (right) intersections of the scan lines are always on the same edges, thus
the administration of the polygon filling algorithm can be significantly simplified. In
fact, the active edge table management is not needed anymore, only the incremental
intersection calculation should be implemented. The classification of left and right
intersections depend on whether (X2, Y2) is on the right or on the left side of the
oriented line segment from (X1, Y1) to (X3, Y3). If (X2, Y2) is on the left side, the



22.7. Incremental rendering 1085

n
r  =(X  , Y  , Z   )3 3 33

r  =(X  , Y  , Z   )2 2 2 2

r  =(X  , Y  , Z   )1 1 11

Z(X,Y)

X

 Y

X,Y

Figure 22.45 A triangle in the screen coordinate system. Pixels inside the projection of the triangle
on plane XY need to be found. The Z coordinates of the triangle in these pixels are computed
using the equation of the plane of the triangle.

projected triangle is called left oriented, and right oriented otherwise.
When the details of the algorithm is introduced, we assume that the already

re-indexed triangle vertices are

~r1 = [X1, Y1, Z1], ~r2 = [X2, Y2, Z2], ~r3 = [X3, Y3, Z3].

The rasterization algorithm is expected to fill the projection of this triangle and also
to compute the Z coordinate of the triangle in every pixel (Figure 22.45).

The Z coordinate of the triangle point visible in pixel X,Y is computed using
the equation of the plane of the triangle (equation (22.1)):

nX ·X + nY · Y + nZ · Z + d = 0 , (22.36)

where ~n = (~r2−~r1)× (~r3−~r1) and d = −~n ·~r1. Whether the triangle is left oriented
or right oriented depends on the sign of the Z coordinate of the normal vector of
the plane. If nZ is negative, then the triangle is left oriented. If it is negative, then
the triangle is right oriented. Finally, when nZ is zero, then the projection maps the
triangle onto a line segment, which can be ignored during filling.

Using the equation of the plane, function Z(X,Y ) expressing the Z coordinate
corresponding to pixel X,Y is:

Z(X,Y ) = −nX ·X + nY · Y + d

nZ
. (22.37)

According to the incremental principle, the evaluation the Z coordinate can take
advantage of the value of the previous pixel:

Z(X + 1, Y ) = Z(X,Y )− nX

nZ
= Z(X,Y ) + δZX . (22.38)

Since increment δZX is constant for the whole triangle, it needs to be computed
only once. Thus the calculation of the Z coordinate in a scan line requires just a single
addition per pixel. The Z coordinate values along the edges can also be obtained



1086 22. Computer Graphics

(X  ,Y  ,Z  )1 1 1

(X  ,Y  ,Z  )

(X  ,Y  ,Z  )2

3

22

3 3

X

Y

Z

Z = Z(X,Y)

YZsδ

Y
X eδ

X Zδ

Y
Xsδ

Figure 22.46 Incremental Z coordinate computation for a left oriented triangle.

incrementally from the respective values at the previous scan line (Figure 22.46).
The complete incremental algorithm which renders a lower left oriented triangle is
as follows (the other cases are very similar):

Z-buffer-Lower-Triangle(X1, Y1, Z1,X2, Y2, Z2,X3, Y3, Z3, colour)

1 ~n← ((X2, Y2, Z2)− (X1, Y1, Z1))× ((X3, Y3, Z3)− (X1, Y1, Z1)) � Normal vector.
2 δZX ← −nX/nZ � Z increment.
3 (δXs

Y , δZ
s
Y , δX

e
Y )← ((X2 −X1)/(Y2 − Y1), (Z2 − Z1)/(Y2 − Y1), (X3 −X1)/(Y3 − Y1))

4 (Xleft,Xright, Zleft)← (X1,X1, Z1)
5 for Y ← Y1 to Y2

6 do Z ← Zleft

7 for X ← Round(Xleft) to Round(Xright) � One scan line.
8 do if Z < z-buffer[X,Y ] � Visibility test.
9 then Pixel-Write(X,Y, colour)

10 z-buffer[X,Y ]← Z
11 Z ← Z + δZX

12 (Xleft,Xright, Zleft)← (Xleft + δXs
Y ,Xright + δXe

Y , Zleft + δZs
Y )

�Next scan line.

This algorithm simultaneously identifies the pixels to be filled and computes the
Z coordinates with linear interpolation. Linear interpolation requires just a single
addition when a pixel is processed. This idea can also be used for other features as
well. For example, if the colour of the triangle vertices are available, the colour of the
internal points can be set to provide smooth transitions applying linear interpolation.
Note also that the addition to compute the feature value can also be implemented by
a special purpose hardware. Graphics cards have a great number of such interpolation
units.



22.7. Incremental rendering 1087

window window window window

polygon
polygon polygon

polygon

(a) (b) (c) (d)

Figure 22.47 Polygon-window relations:: (a) distinct; (b) surrounding ; (c) intersecting; (d)
contained.

Warnock algorithm. If a pixel of the image corresponds to a given object,
then its neighbours usually correspond to the same object, that is, visible parts of
objects appear as connected territories on the screen. This is a consequence of object
coherence and is called image coherence.

If the situation is so fortunate—from a labor saving point of view—that a poly-
gon in the object scene obscures all the others and its projection onto the image
plane covers the image window completely, then we have to do no more than simply
fill the image with the colour of the polygon. If no polygon edge falls into the win-
dow, then either there is no visible polygon, or some polygon covers it completely
(Figure 22.47). The window is filled with the background colour in the first case,
and with the colour of the closest polygon in the second case. If at least one polygon
edge falls into the window, then the solution is not so simple. In this case, using a
divide-and-conquer approach, the window is subdivided into four quarters, and each
subwindow is searched recursively for a simple solution.

The basic form of the algorithm called Warnock-algorithm rendering a rect-
angular window with screen coordinates X1, Y1 (lower left corner) and X2, Y2 (upper
right corner) is this:

Warnock(X1, Y1,X2, Y2)

1 if X1 6= X2 or Y1 6= Y2 � Is the window larger than a pixel?
2 then if at least one edge projects onto the window
3 then � Non-trivial case: Subdivision and recursion.
4 Warnock(X1, Y1, (X1 +X2)/2, (Y1 + Y2)/2)
5 Warnock(X1, (Y1 + Y2)/2, (X1 +X2)/2, Y2)
6 Warnock((X1 +X2)/2, Y1,X2, (Y1 + Y2)/2)
7 Warnock((X1 +X2)/2, (Y1 + Y2)/2,X2, Y2)
8 else � Trivial case: window (X1, Y1,X2, Y2) is homogeneous.
9 polygon← the polygon visible in pixel ((X1 +X2)/2, (Y1 + Y2)/2)

10 if no visible polygon
11 then fill rectangle (X1, Y1,X2, Y2) with the background colour
12 else fill rectangle (X1, Y1,X2, Y2) with the colour of polygon

Note that the algorithm can handle non-intersecting polygons only. The algo-
rithm can be accelerated by filtering out those distinct polygons which can definitely



1088 22. Computer Graphics

not be seen in a given subwindow at a given step. Furthermore, if a surrounding poly-
gon appears at a given stage, then all the others behind it can be discarded, that is
all those which fall onto the opposite side of it from the eye. Finally, if there is only
one contained or intersecting polygon, then the window does not have to be subdi-
vided further, but the polygon (or rather the clipped part of it) is simply drawn.
The price of saving further recurrence is the use of a scan-conversion algorithm to
fill the polygon.

Painter’s algorithm. If we simply scan convert polygons into pixels and draw
the pixels onto the screen without any examination of distances from the eye, then
each pixel will contain the colour of the last polygon falling onto that pixel. If the
polygons were ordered by their distance from the eye, and we took the farthest one
first and the closest one last, then the final picture would be correct. Closer polygons
would obscure farther ones — just as if they were painted an opaque colour. This
method is known as the painter’s algorithm.

The only problem is that the order of the polygons necessary for performing the
painter’s algorithm is not always simple to compute. We say that a polygon P does
not obscure another polygon Q if none of the points of Q is obscured by P . To have
this relation, one of the following conditions should hold

1. Polygons P and Q do not overlap in Z range, and the minimum Z coordinate
of polygon P is greater than the maximum Z coordinate of polygon Q.

2. The bounding rectangle of P on the XY plane does not overlap with that of
Q.

3. Each vertex of P is farther from the viewpoint than the plane containing Q.

4. Each vertex of Q is closer to the viewpoint than the plane containing P .

5. The projections of P and Q do not overlap on the XY plane.

All these conditions are sufficient. The difficulty of their test increases, thus it
is worth testing the conditions in the above order until one of them proves to be
true. The first step is the calculation of an initial depth order. This is done by
sorting the polygons according to their maximal Z value into a list. Let us first
take the polygon P which is the last item on the resulting list. If the Z range of P
does not overlap with any of the preceding polygons, then P is correctly positioned,
and the polygon preceding P can be taken instead of P for a similar examination.
Otherwise P overlaps a set {Q1, . . . , Qm} of polygons. The next step is to try to
check whether P does not obscure any of the polygons in {Q1, . . . , Qm}, that is,
that P is at its right position despite the overlapping. If it turns out that P obscures
Q for a polygon in the set {Q1, . . . , Qm}, then Q has to be moved behind P in the
list, and the algorithm continues stepping back to Q. Unfortunately, this algorithm
can run into an infinite loop in case of cyclic overlapping. Cycles can be resolved
by cutting. In order to accomplish this, whenever a polygon is moved to another
position in the list, we mark it. If a marked polygon Q is about to be moved again,
then — assuming that Q is a part of a cycle — Q is cut into two pieces Q1, Q2 by



22.7. Incremental rendering 1089

the plane of P , so that Q1 does not obscure P and P does not obscure Q2, and only
Q1 is moved behind P .

BSP-tree. Binary space partitioning divides first the space into two halfspaces,
the second plane divides the first halfspace, the third plane divides the second half-
space, further planes split the resulting volumes, etc. The subdivision can well be
represented by a binary tree, the so-called BSP-tree illustrated in Figure 22.48. The
kd-tree discussed in Subsection 22.6.2 is also a special version of BSP-trees where
the splitting planes are parallel with the coordinate planes. The BSP-tree of this
subsection, however, uses general planes.

The first splitting plane is associated with the root node of the BSP-tree, the
second and third planes are associated with the two children of the root, etc. For our
application, not so much the planes, but rather the polygons defining them, will be
assigned to the nodes of the tree, and the set of polygons contained by the volume
is also necessarily associated with each node. Each leaf node will then contain either
no polygon or one polygon in the associated set.

The BSP-Tree-Construction algorithm for creating the BSP-tree for a set
S of polygons uses the following notations. A node of the binary tree is denoted by
node, the polygon associated with the node by node.polygon, and the two child nodes
by node.left and node.right, respectively. Let us consider a splitting plane of normal
~n and place vector ~r0. Point ~r belongs to the positive (right) subspace of this plane
if the sign of scalar product ~n · (~r − ~r0) is positive, otherwise it is in the negative
(left) subspace. The BSP construction algorithm is:

BSP-Tree-Construction(S)

1 Create a new node
2 if S is empty or contains just a single polygon
3 then node.polygon← S
4 node.left← null
5 node.right← null
6 else node.polygon← one polygon from list S
7 Remove polygon node.polygon from list S
8 S+ ← polygons of S which overlap with the positive subspace

of node.polygon
9 S− ← polygons of S which overlap with the negative subspace

of node.polygon
10 node.right← BSP-Tree-Construction(S+)
11 node.left← BSP-Tree-Construction(S−)
12 return node

The size of the BSP-tree, i.e. the number of polygons stored in it, is on the one
hand highly dependent on the nature of the object scene, and on the other hand on
the “choice strategy” used when one polygon from list S is selected.

Having constructed the BSP-tree the visibility problem can be solved by travers-
ing the tree in the order that if a polygon obscures another than it is processed later.



1090 22. Computer Graphics

P1

P2

P4

P3 P1

P2 P3

P4 null

Figure 22.48 A BSP-tree. The space is subdivided by the planes of the contained polygons.

During such a traversal, we determine whether the eye is at the left or right subspace
at each node, and continue the traversal in the child not containing the eye. Having
processed the child not containing the eye, the polygon of the node is drawn and
finally the child containing the eye is traversed recursively.

Exercises
22.7-1 Implement the complete Bresenham algorithm that can handle not only
moderately ascending but arbitrary line segments.
22.7-2 The presented polygon filling algorithm tests each edges at a scan line
whether it becomes active here. Modify the algorithm in a way that such tests
are not executed at each scan line, but only once.
22.7-3 Implement the complete z-buffer algorithm that renders left/righ oriented,
upper/lower triangles.
22.7-4 Improve the presented Warnock-algorithm and eliminate further recursions
when only one edge is projected onto the subwindow.
22.7-5 Apply the BSP-tree for discrete time collision detection.
22.7-6 Apply the BSP-tree as a space partitioning structure for ray tracing.

Problems

22-1 Ray tracing renderer
Implement a rendering system applying the ray tracing algorithm. Objects are de-
fined by triangle meshes and quadratic surfaces, and are associated with diffuse
reflectivities. The virtual world also contains point light sources. The visible colour
of a point is proportional to the diffuse reflectivity, the intensity of the light source,
the cosine of the angle between the surface normal and the illumination direction
(Lambert’s law), and inversely proportional with the distance of the point and the
light source. To detect whether or not a light source is not occluded from a point,
use the ray tracing algorithm as well.
22-2 Continuous time collision detection with ray tracing
Using ray tracing develop a continuous time collision detection algorithm which com-
putes the time of collision between a moving and rotating polyhedron and a still half
space. Approximate the motion of a polygon vertex by a uniform, constant velocity



Notes for Chapter 22 1091

motion in small intervals dt.
22-3 Incremental rendering system
Implement a three-dimensional renderer based on incremental rendering. The mod-
elling and camera transforms can be set by the user. The objects are given as triangle
meshes, where each vertex has colour information as well. Having transformed and
clipped the objects, the z-buffer algorithm should be used for hidden surface removal.
The colour at the internal points is obtained by linear interpolation from the vertex
colours.

Chapter Notes

The elements of Euclidean, analytic and projective geometry are discussed in the
books of Maxwell [178, 179] and Coxeter [54]. The application of projective geome-
try in computer graphics is presented in Herman’s dissertation [118] and Krammer’s
paper [148]. Curve and surface modelling is the main focus of computer aided geo-
metric design (CAD, CAGD), which is discussed by Gerald Farin [75], and Rogers
and Adams [217]. Geometric models can also be obtained measuring real objects,
as proposed by reverse engineering methods [259]. Implicit surfaces can be stud-
ied by reading Bloomenthal’s work [34]. Solid modelling with implicit equations
is also booming thanks to the emergence of functional representation methods (F-
Rep), which are surveyed at http://cis.k.hosei.ac.jp/˜F-rep. Blobs have been first
proposed by Blinn [33]. Later the exponential influence function has been replaced
by polynomials [269], which are more appropriate when roots have to be found in
ray tracing.

Geometric algorithms give solutions to geometric problems such as the creation
of convex hulls, clipping, containment test, tessellation, point location, etc. This field
is discussed in the books of Preparata and Shamos [209] and of Marc de Berg [?, 59].
The triangulation of general polygons is still a difficult topic despite to a lot of re-
search efforts. Practical triangulation algorithms run in O(n lg n) [59, 225, 270], but
Chazelle [45] proposed an optimal algorithm having linear time complexity. The pre-
sented proof of the two ears theorem has originally been given by Joseph O’Rourke
[194]. Subdivision surfaces have been proposed and discussed by Catmull and Clark
[43], Warren and Weimer [?], and by Brian Sharp [228, 227]. The butterfly subdi-
vision approach has been published by Dyn et al. [68]. The Sutherland–Hodgeman
polygon clipping algorithm is taken from [235].

Collision detection is one of the most critical problems in computer games since
it prevents objects to fly through walls and it is used to decide whether a bullet hits
an enemy or not. Collision detection algorithms are reviewed by Jiménez, Thomas
and Torras [132].

Glassner’s book [98] presents many aspects of ray tracing algorithms. The 3D
DDA algorithm has been proposed by Fujimoto et al. [87]. Many papers examined
the complexity of ray tracing algorithms. It has been proven that for N objects, ray
tracing can be solved in O(lgN) time [?, 237], but this is theoretical rather than
practical result since it requires Ω(N4) memory and preprocessing time, which is
practically unacceptable. In practice, the discussed heuristic schemes are preferred,



1092 22. Computer Graphics

which are better than the naive approach only in the average case. Heuristic meth-
ods have been analyzed by probabilistic tools by Márton [237], who also proposed
the probabilistic scene model used in this chapter as well. We can read about heuris-
tic algorithms, especially about the efficient implementation of the kd-tree based
ray tracing in Havran’s dissertation [?]. A particularly efficient solution is given in
Szécsi’s paper [?].

The probabilistic tools, such as the Poisson point process can be found in the
books of Karlin and Taylor [137] and Lamperti [151]. The cited fundamental law of
integral geometry can be found in the book of Santaló [222].

The geoinformatics application of quadtrees and octrees are also discussed in
chapter 16 of this book.

The algorithms of incremental image synthesis are discussed in many computer
graphics textbooks [84]. Visibility algorithms have been compared in [236, 238].
The painter’s algorithm has been proposed by Newell et al. [?]. Fuchs examined the
construction of minimal depth BSP-trees [?]. The source of the Bresenham algorithm
is [36].

Graphics cards implement the algorithms of incremental image synthesis, in-
cluding transformations, clipping, z-buffer algorithm, which are accessible through
graphics libraries (OpenGL, DirectX). Current graphics hardware includes two pro-
grammable processors, which enables the user to modify the basic rendering pipeline.
Furthermore, this flexibility allows non graphics problems to be solved on the graph-
ics hardware. The reason of using the graphics hardware for non graphics problems is
that graphics cards have much higher computational power than CPUs. We can read
about such algorithms in the ShaderX or in the GPU Gems [78] series or visiting
the http://www.gpgpu.org web page.



23. Human-Computer Interaction

In the internet—within http://www.hcibib.org/—the following definition is found:
“Human-computer interaction is a discipline concerned with the design, evaluation
and implementation of interactive computing systems for human use and with the
study of major phenomena surrounding them . . . . Some of its special concerns are:

• the joint performance of tasks by humans and machines;

• the structure of communication between human and machine;

• human capabilities to use machines (including the learnability of interfaces);

• algorithms and programming of the interface itself;

• engineering concerns that arise in designing and building interfaces;

• the process of specification, design, and implementation of interfaces.

. . . Human-computer interaction thus has science, engineering, and design aspects.”
Many of these topics do only marginally concern algorithms in the classical sense.

Therefore, in this chapter we concentrate on human-computer scenario for problem
solving where the machines are forced to do lots of computation, and the humans
have a role as intelligent controllers and directors.

23.1. Multiple-choice systems

Humans are able to think, to feel, and to sense—and they adopt quickly to a new
situation. We can also compute, but not too well. In contrast, computers are giants
in computing—they crunch bits and bytes like maniacs. However, they cannot do
anything else but computing—especially they are not very flexible. Combining the
different gifts and strengths of humans and machines in appropriate ways may lead
to impressive performances.

One suitable approach for such team work is “Multiple-Choice Optimisation”.
In a “Multiple-Choice System” the computer gives a clear handful of candidate so-
lutions, two or three or five . . . Then a human expert makes the final choice amongst
these alternatives. One key advantage of a proper multiple-choice approach is that
the human is not drown by deluges of data.



1094 23. Human-Computer Interaction

Multiple-Choice Systems may be especially helpful in realtime scenarios of the
following type: In principle there is enough time to compute a perfect solution. But
certain parameters of the problem are unknown or fuzzy. They concretise only in
a very late moment, when there is no more time for elaborate computations. Now
assume that the decision maker has used multiple-choice algorithms to generate some
good candidate solutions in beforehand. When the exact problem data show up he
may select an appropriate one of these alternatives in realtime.

An example from vehicle routing is given. A truck driver has to go from A to
Z. Before the trip he uses PC software to find two or three different good routes
and prints them out. During the trip radio gives information on current traffic jams
or weather problems. In such moments the printed alternatives help the driver to
switch routes in realtime.

However, it is not at all easy to have the computer finding good small samples
of solutions. Naively, the most natural way seems to be the application of k-best
algorithms: Given a (discrete) optimisation problem with some objective function,
the k best solutions are computed for a prescribed integer k. However, such k-best
solutions tend to be micro mutations of each other instead of true alternatives.

Figure 23.1 exhibits a typical pattern: In a grid graph of dimension 100×100 the
goal was to find short paths from the lower left to the upper right corner. The edge
lengths are random numbers, not indicated in the diagram. The 1000 (!) shortest
paths were computed, and their union is shown in the figure. The similarity amongst
all these paths is striking. Watching the picture from a somewhat larger distance
will even give the impression of only a single path, drawn with a bushy pencil. (The
computation of alternative short paths will also be the most prominent example case
in Section 23.2)

Often the term´´multiple-choice” is used in the context of “multiple-choice
tests”. This means something completely different. The difference between multiple-
choice optimisation and multiple-choice tests lies in the type and quality of the
candidate solutions:

• In multiple-choice tests always at least one of the answers is "correct", whereas
others may be right or wrong. Beforehand an authority (the test designer) has
prepared the question together with the candidate answers and the decision
which of them are correct ones.

• In the optimisation situation nothing is clear: Perhaps all of the candidate so-
lutions are ok, but it may also be that they all are not appropriate. And there
is typically no master who tells the human whether his choice is good or not.
Because of this uncertainty many humans really need some initiation time to
accept their role within a multiple-choice system.

23.1.1. Examples of multiple-choice systems

(1) Short Paths
Starting in the early 1990’s, PC programs for vehicle routing have become more and
more popular. In 1997 the Dutch software company AND was first to sell such a
program which did not only compute the “best” (= shortest or quickest) route but



23.1. Multiple-choice systems 1095

Figure 23.1 1000 shortest paths in a 100 × 100 grid-graph, printed in overlap.

also one or two alternatives. The user had the choice to request all these candidate
solutions simultaneously or one after the other. The user was also allowed to deter-
mine some parameters for route visualisation, namely different colours and thickness
for best, second, third choice. Related is work by F. Berger. She developed a method
to identify linear structures (like roads, rails, rivers, . . . ) in grey level satellite im-
ages. Typically, candidate structures are not unique, and the algorithm of Berger
makes several alternative proposals. The Berger method is based on algorithms for
generating short alternative paths.

(2) Travelling Salesperson Problem and the Drilling of Holes in Circuit
Boards
In the Travelling Salesperson Problem (TSP) N locations are given and their mutual
distances. The task is to find a shortest round trip through all N points. TSP is NP-
complete. One important application in electronic industry is the drilling of holes
in circuit boards. Here the locations are the points where the drill has to make the
holes; the goal is to minimise the time needed by the drill. In practice, however, it
turns out that the length of the drilling tour is not the only criterion for success:
Depending on the drilling tour there occur small or more severe tensions in the circuit
board. Especially different tours may give different levels of tension. Unfortunately,
the degrees of tension can not easily be computed in beforehand. So it makes sense



1096 23. Human-Computer Interaction

to compute a few alternative short drilling tours and select that one which is best
with respect to the minimisation of tension.

(3) Internet Search Engines
In most cases an internet search engine will find tons of hits, but of course a normal
human user is not able nor willing to look through all of them. So, one of the key
tasks for a search engine designer is to find good shortlisting mechanisms. As a
rule of thumb, the first ten hits in the output should be both most relevant and
sufficiently spread. In this field and also in e-commerce Multiple-Choice Systems are
often called “Recommender Systems”.

(4) Trajectories for Interplanetary Space Missions
Space missions to distant planets, planetoids, and comets are high-tech adventures.
Two key aspects are budget restrictions and the requirement that the probes need
extremely high speeds to reach their destinations in time. “Gravity assist” maneuvers
help to speed up missiles by narrow flybys at intermediate planets, thus saving
fuel and time. In recent years trajectories with gravity assists have become more
and more complex, typically involving whole sequences of several flybys. Prominent
examples are the mission Cassini to planet Saturn with flyby sequence Venus-Venus-
Earth-Jupiter, the mission Rosetta to Comet “67P/Churyumov-Gerasimenko” with
flyby sequence Earth-Mars-Earth-Earth, and the Messenger-mission to Mercury with
flyby sequence Earth-Venus-Venus-Mercury-Mercury. The current art of trajectory
computing allows to finetune a principal route. However, first of all such principal
routes have been designed by human engineers with their fantasy and creativity.
Computer-generation of (alternative) principal flyby tours is still in its infancies.

(5) Chess with Computer Assistance
Commercial chess computers came up in the late 1970’s. Their playing strength in-
creases steadily, and nowadays the best PC programs play on one level with the
best human players. However, teams with both human and computer members are
stronger than humans alone or computers alone. One of these authors (Althöfer)
made many chess experiments with Multiple-Choice Systems: In a setting called “3-
Hirn” (“Triple Brain” in English, but the German term 3-Hirn has been adopted
internationally) two different chess programs are running, typically on two indepen-
dent PC’s. Each one proposes a single candidate move, and a human player has the
final choice amongst these (at most) two move candidates. In several experiments
3-Hirn showed amazing performance. The final data point was a match in 1997: two
computer programs with Elo rating below 2550 each and a human amateur player
(Elo 1900) beat the German No. 1 player (GM Yussupov, Elo 2640) by 5-3 in tourna-
ment play, thus achieving an event performance of higher than Elo 2700. After this
event top human professionals were no longer willing to fight against 3-Hirn teams.
The strength of 3-Hirn is to a large extent explained by the combination of two “or-
thogonal” chess strengths: chess computers propose only moves which are tactically
sound and the human player contributes his strength in long-range planning.

Today, all top human chess professionals prepare intensively for their tournament
games with the help of chess programs by analysing openings and games in multiple-
choice mode. Even more extreme is the situation in correspondence chess, where
players are officially allowed to use computer help within their games.



23.2. Generating multiple candidate solutions 1097

(6) Travel and Holiday Information
When someone plans a journey or a holiday, he typically compares different routes or
offers, either at the railway station or in a travel agency or from home via internet.
Customers typically do not inspect thousands of offers, but only a smaller or larger
handful. In real life lots of (normal and strange) strategies can be found how com-
panies, hotels, or airlines try to place their products amongst the top choices. For
instance, it is common (bad) policy by many airlines to announce unrealistic short
flight times. The only intention is to become top-placed in software (for travel agen-
cies) which sorts all flights from A to B by ascending flight times. In many cases it is
not an easy task for the customer to realize such tricks for successful “performance”
in shortlisting processes.

(7) RNA-Foldings
Computation of RNA-foldings is one of the central topics in computational biology.
The most prominent algorithms for this are based on dynamic programming. There
exist online repositories, where people get alternative solutions in realtime.

Exercises
23.1-1 Collect practice in operating a multiple-choice system by computer-aided
play of the patience game FreeCell. Download the tool BigBlackCell (BBC) from
http://www.minet.uni-jena.de/∼BigBlackCell/ and make yourself acquainted with
the program. After some practising a normal user with the help of BBC should be
able to solve in the average more than 60 FreeCell instances per hour.

23.2. Generating multiple candidate solutions

23.2.1. Generating candidate solutions with heuristics

Many optimisation problems are really hard, for instance the NP-complete ones.
Exact (but slow) branch and bound procedures and unreliable (but quick) heuristics
are two standard ways to find exact or approximate solutions. When the task is to
generate several alternative solutions it is possible to make a virtue of necessity: there
are normally many more good solutions than perfect ones – and different heuristics
or heuristics with random elements will not always return the same good solution.

So, a simple strategy is to apply one or several heuristics repeatedly to the same
problem, and to record the solutions generated during this process. Either, exactly
as many solutions as needed are generated. Or a larger preliminary set of solutions
is produced, giving the chance for improvement by shortlisting. Natural shortlisting
criteria are quality and spread. Concerning spread, distance measures on the set of
admissible solutions may be a helpful tool in conjunction with clustering algorithms.

Repeated runs of a single heuristic. The normal situation is that a heuristic
contains randomness to a certain extent. Then no additional efforts are necessary:
the heuristic is simply executed in independent runs, until enough different good so-
lutions have been generated. Here we use the Travelling Salesperson Problem (TSP)
for N points as an example to demonstrate the approaches. For exchange heuris-



1098 23. Human-Computer Interaction

tics and insertion heuristics on the TSP we give one example each, highlighting the
probabilistic elements.

In the TSP with symmetric distances d(i, j) between the points local search
with 2-exchanges is a standard exchange heuristic. In the following pseudo-code
T (p) denote the p-th component of vector T .

Local-Search-with-2-Exchanges-for-TSP(N, d)

1 Generate a random starting tour T = (i1, i2, . . . , iN ).
2 while there exist indices p, q with 1 ≤ p < q ≤ N and q ≥ p+ 2, and

d(T (p), T (p+ 1)) + d(T (q), T (q + 1)) >
d(T (p), T (q)) + d(T (p+ 1), T (q + 1))

� For the special case q = N we take q + 1 = 1.
3 do T ← (i1, . . . , ip, iq, iq−1, . . . , ip+1, iq+1, . . . , iN )
4 compute the length l of tour T
5 return T, l

Random elements in this heuristic are the starting tour and the order in which
edge pairs are checked in step 2. Different settings will lead to different local minima.
In large problems, for instance with 1,000 random points in the unit square with
Euclidean distance it is quite normal when 100 independent runs of the 2-exchange
heuristic lead to almost 100 different local minima.

The next pseudo-code describes a standard insertion heuristic.

Insertion-Heuristic-for-TSP(N, d)

1 generate a random permutation (i1, i2, . . . , iN ) from the elements of {1, 2, . . . , N}
2 T ← (i1, i2)
3 for t← 2 to N − 1
4 do find the minimum of d(T (r), it+1) + d(it+1, T (r + 1))− d(T (r), T (r + 1))

for r ∈ {1, . . . , t}
� Here again r + 1 = 1 for r = t.

let the minimum be at r = s
5 T ← (T (1), . . . , T (s), it+1, T (s+ 1), . . . , T (t))
6 compute the length l of tour T
7 return T, l

So the elements are inserted one by one, always at the place where insertion
results at minimal new length.

The random element is the permutation of theN points. Like for the 2-exchanges,
different settings will typically lead to different local minima. Sometimes an addi-
tional chance for random choice occurs when for some step t the optimal insertion
place is not unique.

Many modern heuristics are based on analogies to nature. In such cases the user
has even more choices: In Simulated Annealing several (good) intermediate solutions
from each single run may be taken; or from each single run of a Genetic Algorithm
several solutions may be taken, either representing different generations or multiple



23.2. Generating multiple candidate solutions 1099

solutions of some selected generation.
A special technique for repeated exchange heuristics is based on the perturbation

of local optima: First make a run to find a local optimum. Then randomise this first
optimum by a sequence of random local changes. From the resulting solution start
local search anew to find a second local optimum. Randomise this again and so on.
The degree of randomisation steers how different the local optima in the sequence
will become.

Even in case of a deterministic heuristic there may be chances to collect more
than only one candidate solution: In tiebreak situations different choices may lead
to different outcomes, or the heuristic may be executed with different precisions
(=number of decimals) or with different rounding rules. In Subsection 23.2.4 penalty
methods are described, with artificial modification of problem parameters (for in-
stance increased edge lengths) in repeated runs. In anytime algorithms —like iter-
ative deepening in game tree search—also intermediate solutions (for preliminary
search depths) may be used as alternative candidates.

Collecting candidate solutions from different heuristic programs. When
several heuristics for the same problem are available, each one of them may con-
tribute one or several candidate solutions. The 3-Hirn setting, as described in item
(5) of Subsection 23.1.1, is an extreme example of a multiple-choice system with
more than one computer program: the two programs should be independent of each
other, and they are running on distinct computers. (Tournament chess is played un-
der strict time limits at a rate of three minutes per move. Wasting computational
resources by having two programs run on a single machine in multi-tasking mode
costs 60 to 80 rating points [117]). The chess programs used in 3-Hirn are standard
of-the-shelf products, not specifically designed for use in a multiple-choice setting.

Every real world software has errors. Multiple-choice systems with independent
programs have a clear advantage with respect to catastrophic failures. When two
independent programs are run, each with the same probability p for catastrophic
errors, then the probability for a simultaneous failure reduces to p2. A human con-
troller in a multiple-choice system will typically recognise when candidate solutions
have catastrophic failures. So the “mixed” case (one normal and one catastrophic
solution) with probability 2p(1− p) will not result in a catastrophe. Another advan-
tage is that the programs do not need to have special k-best or k-choice mechanisms.
Coinciding computer proposals may be taken as an indication that this solution is
just really good.

However, multiple-choice systems with independent programs may also have
weak spots:

• When the programs are of clearly different strength, this may bring the human
selector in moral conflicts when he prefers a solution from the less qualified
program.

• In multistep actions the proposals of different programs may be incompatible.

• For a human it costs extra time and mental energy to operate more than one
program simultaneously.

• Not seldom – depending on programs and operating systems – a PC will run



1100 23. Human-Computer Interaction

unstably in multi-tasking mode.

And of course it is not always guaranteed that the programs are really independent.
For instance, in the late 1990’s dozens of vehicle routing programs were available in
Germany, all with different names and interfaces. However, they all were based on
only four independent program kernels and data bases.

23.2.2. Penalty method with exact algorithms

A more controlled way to find different candidate solutions is given by the penalty
method. The main idea of this method is illustrated on the route planning example.
Starting with an optimal (or good) routeR1 we are looking for an alternative solution
R2 which fulfills the following two criteria as much as possible.

(i) R2 should be good with respect to the objective function. Otherwise it is not
worthwhile to choose it. In our example we have the length (or needed time) of the
route as first objective.

(ii)R2 should have not too much in common with the original solution. Otherwise
it is not a true alternative. In case of so called micro mutations the risk is high that
all these similar candidates have the same weak spots. In our example a "measure
for similarity" may be the length of the parts shared by R1 and R2.

This means R2 should have a short length but it should also have only little in
common with R1. Therefore we use a combination of the two objective functions –
the length of the route and the length of the road sections shared by R1 and R2.
This can be done by punishing the sections used by R1 and solving the shortest path
problem with this modified lengths to get the solution R2.

By the size of the penalties different weightings of criteria (i) and (ii) can be
modelled.

A most natural approach is to use relative penalty factors. This means that
the length of each section belonging to R1 is multiplied by a factor 1 + ε.

Penalty-Method-with-Relative-Penalty-Factors(G, s, t, ε)

1 find the shortest path R1 from node s to node t in the weighted graph
G = (V,E,w)

2 for all e ∈ E
3 do if e belongs to R1

4 then ŵ(e)← w(e) · (1 + ε)
5 else ŵ(e)← w(e)
6 find the the shortest path R2 from node s to node t

in the modified graphĜ = (V,E, ŵ)
7 compute its unmodified length w(R2)
8 return (R1, R2) and (w(R1), w(R2))

Consider the following example.



23.2. Generating multiple candidate solutions 1101

9

8.7

8

1

1.1

2

1

1
4

9

9

8

S

A B

C

D

E

F

G H

T

Figure 23.2 The graph for Examples 23.1, 23.2 and 23.6.

Example 23.1 Given is a graph G = (V, E) with weighted edge lengths. In Figure 23.2
the numbers denote the length of the according edges. The shortest path from S to T is
PD via S - A - C - D - F - T with length 23. Multiplying all edge lengths of PD by 1.1 and
solving the obtained shortest path problem gives the alternative solution PB via S - A - B
- F - T with modified length 25.0 and normal length 23.7. The shared parts of PD and PB

are S-A and F -T with total length 13.

The size of ε has to be appropriate for the situation. In the commercial vehicle
routing program [?] all sections of a shortest (or fastest) route were multiplied by 1.2,
i.e., ε = 0.2. Then the alternative route was computed. In [?] recognition of linear
structures (streets, rivers, airport lanes) in satellite images was done by shortest path
methods. Here ε = 1.0 turned out to be an appropriate choice for getting interesting
alternative candidates.

Instead of relative penalty factors additive penalties might be used. That
means we add a constant term ε to all edges we want to punish. The only modification
of the algorithm above is in step 4.

4∗ then ŵ(e)← w(e) + ε

Example 23.2 Given is the graph G = (V, E) from Example 23.1 (see Figure 23.2). The
shortest path from S to T is still PD via S - A - C - D - F - T with length 23. Adding
0.1 to all edges of PD and solving the resulting shortest path problem gives the alternative
solution PE via S - A - C - E - F - T with modified length 23.4 and normal length 23.1.
PD and PE have three edges in common.

In principle this approach with additive penalties is not worse in comparison with
multiplicative penalties. However, the method with multiplicative penalties has the
advantage to be immune against artificial splits of edges.

For a generalisation of the penalty method from routing problems the following
definition of optimisation problems is helpful.



1102 23. Human-Computer Interaction

Definition 23.1 Let E be an arbitrary finite set and S a set of subsets of E. E is
called the base set and the elements of S are feasible subsets of E. Let w : E → R
be a real valued weight function on E. For every B ∈ S we set w(B) =

∑
e∈B

w(e).

The optimisation problem min
B∈S

w(B) is a Sum Type Optimisation Problem

or in short "
∑

-type problem" .

Remarks:

1. The elements B ∈ S are also called feasible solutions.

2. By substitution of w by −w every maximisation problem can be formulated
as a minimisation problem. Therefore we will also call maximisation problems∑

-type problems.

Examples of
∑

-type problems

• Shortest Path Problem

• Assignment Problem

• Travelling Salesperson Problem (TSP)

• Knapsack Problem

• Sequence Alignment Problem

Example 23.3 Consider the Knapsack Problem. Given a set of items I = {I1, I2, . . . , In},
a weight function w : I → R+, a value function v : I → R+, and a knapsack capacity
C. What is the most valuable collection of items whose weight sum does not exceed the
knapsack capacity?

Choosing I as base set and S as the family of all subsets whose weight sum is smaller
or equal to C gives a representation as a

∑
-type problem: maximise v(B) over all B ∈ S.

Abstract formulation of the penalty method for
∑

-type problems

Definition 23.2 Let E be an arbitrary set and S the set of feasible subsets of E.
Let w : E → R be a real-valued and p : E → R≥0 a non-negative real-valued function
on E.

For every ε > 0, let Bε be one of the optimal solutions of the problem

min
B∈S

fε(B) ,

with fε(B) := w(B) + ε · p(B) .

With an algorithm which is able to solve the unpunished problem min
B∈S

w(B) we can

also find the solutions Bε. We just have to modify the function w by replacing
w(e) by w(e) + ε · p(e) for all e ∈ E. Bε is called an ε−ε−ε−penalty solution or
an ε−ε−ε−alternative.



23.2. Generating multiple candidate solutions 1103

Additionally we define the solution B∞ of the problem

lex min
B∈S

(p(B), w(B)) (minimisation with respect to the lexicographical order),

which has a minimal value p(B) and among all such solutions a minimal value w(B).

Remark. If both w and p are positive real-valued functions, there is a symmetry
in the optimal solutions: B∗ is an ε−penalty solution (0 < ε <∞) for the function
pair (w, p), if and only if B∗ is a 1

ε−penalty solution for the pair (p,w).
To preserve this symmetry it makes sense to define B0 as an optimal solution of

the problem
lex min

B∈S
(w(B), p(B)) .

That means B0 is not only an optimal solution for the objective function w, but
among all such solutions it has also a minimal p-value.

Example 23.4 We formulate the concrete Example 23.1 from page 1101 in this abstract∑
-type formulation. We know the shortest path PD from S to T and search for a “good”

alternative solution. The penalty function p is defined by

p(e) =

{
w(e) if e is an edge of the shortest path PD ,

0 else .

Finding penalty solutions for all parameters ε ≥ 0. Often it is a priori
not clear which choice of the penalty parameter ε produces good and interesting
alternative solutions. With a “divide-and-conquer” algorithm one is able to find all
solutions which can be produced by any parameter ε.

For finite sets S we give an efficient algorithm which generates a “small” set
B ⊆ S of solutions with the following properties.

• For each element B ∈ B there exists an ε ∈ R+ ∪{∞} such that B is an optimal
solution for the penalty parameter ε.

• For each ε ∈ R+ ∪ {∞} there exists an element B ∈ B such that B is optimal
for the penalty parameter ε.

• B has a minimal number of elements among all systems of sets which have the
two properties above.

We call a solution B which is optimal for at least one penalty parameter penalty-
optimal. The following algorithm finds a set of penalty-optimal solutions which
covers all ε ∈ R+ ∪ {∞}.

For easier identification we arrange the elements of the set B in a fixed order
(Bε(1), Bε(2), . . . , Bε(k)), with 0 = ε(1) < ε(2) < · · · < ε(k) =∞.
The algorithm has to check that for ε(i) < ε(i+1) there is no ε with ε(i) < ε < ε(i+1)
such that for this penalty parameter ε neither Bε(i) nor Bε(i+1) is optimal. Otherwise
it has to identify such an ε and an ε-penalty solution Bε. In step 11 of the pseudo
code below the variable Border(i) is set to 1 if it turns out that such an intermediate
ε does not exist.

We present the pseudocode and give some remarks.



1104 23. Human-Computer Interaction

Algorithm for finding a sequence B of penalty-optimal solutions covering
all ε ≥ 0 for the problem

min
B∈S

fε(B)

with fε(B) = w(B) + ε · p(B) .

Divide-and-Cover(w, p)

1 compute B0, which minimises w(B) and has a p(B)-value as small as possible.
2 compute B∞, which minimises p(B) and has a w(B)-value as small as possible.
3 if p(B0) = p(B∞)
4 then B ← {B0}; E ← (0); Border← ∅

(B0 minimises the functions w and p and is optimal for all ε.)
5 else k ← 2; E = (ε(1), ε(2))← (0,∞); Border(1)← 0; B ← (B0, B∞).
6 while There is an i ∈ {1, 2, . . . , k − 1} with Border(i) = 0.

7 do ε← w(Bε(i+1))−w(Bε(i))

p(Bε(i))−p(Bε(i+1))

8 Find an optimal solution Bε for the parameter ε.
9 if fε(Bε) = fε(Bε(i)) = fε(Bε(i+1))

10 then Border(i)← 1
11 else B ← (Bε(1), . . . , Bε(i), Bε, Bε(i+1), . . . , Bε(k))
12 E ← (ε(1), . . . , ε(i), ε, ε(i+ 1), . . . , ε(k))
13 Border← (Border(1), . . . , Border(i), 0,Border(i+ 1),. . . ,

Border(k − 1))
14 k ← k + 1
15 return B, E , Border

At the end B is a sequence of different penalty-optimal solutions and the vector
E includes consecutive epsilons.

This algorithm is based on the following properties:

(1) If B is an ε-optimal solution then there exists an interval IB = [εl, εh], εl, εh ∈
R ∪ {∞}, such that B is optimal for all penalty parameters ε ∈ IB and for no
other parameters.

(2) For two different solutions B and B′ with nonempty optimality intervals IB and
IB′ , only three cases are possible.

∗ IB = IB′ . This happens iff w(B) = w(B′) and p(B) = p(B′).
∗ IB and IB′ are disjoint.
∗ IB ∩ IB′ = {ε}, this means the intersection contains only a single epsilon.

This happens if IB and IB′ are neighbouring intervals.

By finiteness of E there are only finitely many feasible solutions B ∈ S.
So, there can be only finitely many optimality intervals. Hence, (1) and (2)
show that the interval [0,∞] can be decomposed into a set of intervals {[0 =
ε1, ε2], [ε2, ε3], . . . , [εk, εk+1 =∞]}. For each interval we have a different solution
B which is optimal for all ε in this interval. We call such a solution an interval
representative.



23.2. Generating multiple candidate solutions 1105

(3) The aim of the algorithm is to find the borders of such optimality intervals
and for each interval a representing solution. In every iteration step an interval
representative of a new interval or a new border between two different intervals
will be found (in steps 7–13). When there are k optimality intervals with k ≥ 2
it is sufficient to solve 2k− 1 problems of the type min

B∈S
w(B) + ε · p(B) to detect

all of them and to find representing solutions.

Unimodality property of the alternatives. When only one ε-alternative
shall be computed the question comes up which penalty parameter should be used
to produce a “best possible” alternative solution. If the penalty parameter is too
small the optimal and the alternative solution are too similar and offer no real
choice. If the parameter is too large the alternative solution becomes too poor. The
best choice is to take some "medium" ε.

We illustrate this effect in the following route planning example.

Example 23.5 Assume that we have to plan a route from a given starting point to a given
target. We know the standard travel times of all road sections and are allowed to plan for
two different routes. In last minute we learn about the real travel times and can choose the
fastest of our two candidate routes.

Let the first route be the route with the smallest standard travel time and the second
one a route found by the penalty method. Question: Which penalty parameter should we
use to minimise the real travel time of the fastest route?

Concretely, consider randomly generated instances of the shortest path problem in
a weighted directed grid graph G = (V, E, w) of dimension 25 × 25. The weights of the
arcs are independently uniformly distributed in the unit interval [0, 1]. We compute P0,
a path from the lower left corner to the upper right with minimal weight. Afterwards we
punish the edges of path P0 by multiplying by 1 + ε and calculate a whole set of ε-penalty
solutions Pε1 , Pε2 , . . . , Pε30 for ε = 0.025, 0.050, . . . , 0.750. We get 30 solution pairs
{S0, Sε1}, {S0, Sε2}, . . . , {S0, Sε30} and can compare these.

The weight w(e) of an arc e is the standard travel time without time lags, i.e. the
minimal needed travel time on a free road without any traffic jam. The real travel time
ŵ(e) of this arc may differ from w(e) as follows:

ŵ(e) =

{
λc(e) · w(e) : with probability p

w(e) : with probability 1− p

independently for all edges e. Here the λc(e) are independent random numbers, uniformly
distributed in the interval [1, c]. The parameter 0 ≤ p ≤ 1 is called failure probability

and the parameter c ≥ 1 is called failure width.
For every pair {S0, Sεi} we calculate the minimum of the two function values ŵ(S0)

and ŵ(Sεi ). To get a direct impression of the benefit of having two solutions instead of one
we scale with respect to the real value of the optimal solution S0.

φεi =
min{ŵ(S0), ŵ(Sεi )}

ŵ(S0)
for i = 1, . . . , 30 .

We computed the values φεi for 100,000 randomly generated 25× 25 grid graphs with
failure probability p = 0.1 and failure width c = 8. Figure 23.3 shows the averages φεi

for
ε1 = 0.025, ε2 = 0.050, . . . , ε30 = 0.750.



1106 23. Human-Computer Interaction

90

92

94

96

98

100

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

εεεε

%

Figure 23.3 φεi
for ε1 = 0.025, ε2 = 0.050, . . . , ε30 = 0.750 on 25 × 25 grids.

As seen in Figure 23.3, the expected quality φε of the solution pairs is unimodal in
ε. That mean that φε first decreases and then increases for growing ε. In this example
ε∗ ≈ 0.175 is the optimal penalty parameter.

In further experiments it was observed that the optimal parameter ε∗ is decreasing in
the problem size (e.g. ε∗ ≈ 0.6 for shortest paths in 5× 5-grids, ε∗ ≈ 0.175 for 25× 25 and
ε∗ ≈ 0.065 for 100× 100 grid graphs).

Monotonicity properties of the penalty solutions. Independently whether
all ε-penalty solutions are generated or only a single one (as in the prevoius pages),
the following structural properties are provable: With increasing penalty factor ε we
get solutions Bε where

• the penalty part p of the objective function is fitted monotonically better (the
solution contains less punished parts),

• the original objective function w is getting monotonically worse, in compensation
for the improvement with respect to the penalty part.

These facts are formalised in the following theorem.

Theorem 23.3 Let w : E → R be a real-valued function and p : E → R+ a positive
real-valued function on E. Let Bε be defined for ε ∈ R+ according to Definition 23.2.
The following four statements hold:
(i) p(Bε) is weakly monotonically decreasing in ε.
(ii) w(Bε) is weakly monotonically increasing in ε.
(iii) The difference w(Bε)− p(Bε) is weakly monotonically increasing in ε.
(iv) w(Bε) + ε · p(Bε) is weakly monotonically increasing in ε.

Proof Let δ and ε be two arbitrary nonnegative real numbers with 0 ≤ δ < ε.



23.2. Generating multiple candidate solutions 1107

Because of the definition of Bδ and Bε the following inequalities hold.

(i) In case ε <∞ we have

w(Bε) + ε · p(Bε) ≤ w(Bδ) + ε · p(Bδ) , (23.1)

w(Bε) + δ · p(Bε) ≥ w(Bδ) + δ · p(Bδ) . (23.2)

Subtracting (23.2) from (23.1) we get

(ε− δ) · p(Bε) ≤ (ε− δ) · p(Bδ) | : (ε− δ) > 0

⇔ p(Bε) ≤ p(Bδ) . (23.3)

In case ε =∞ inequality (23.3) follows directly from the definition of B∞ .

(ii) Subtracting (23.3) multiplied with δ from (23.2) we get

w(Bε) ≥ w(Bδ). (23.4)

(iii) Subtracting (23.3) from (23.4) we get

w(Bε)− p(Bε) ≥ w(Bδ)− p(Bδ).
(iv) With (23.2) and ε > δ ≥ 0 we have

w(Bδ) + δ · p(Bδ) ≤ w(Bε) + δ · p(Bε) ≤ w(Bε) + ε · p(Bε)
⇒ w(Bε) + ε · p(Bε) ≥ w(Bδ) + δ · p(Bδ) .

Generating more than one alternative solution for the same penalty
parameter ε. If we have a solution S0 and want to get more than one alternative
solution we can use the penalty method several times by punishing S0 with different
penalty parameters ε1 < · · · < εm, getting alternative solutions Sε1

, Sε2
, . . . , Sεm

.
This method has a big disadvantage, because only the shared parts of the main
solution S0 and each alternative solution are controlled by the values εi. But there
is no direct control of the parts shared by two different alternative solutions. So, Sεi

and Sεj
may be rather similar for some i 66= j.

To avoid this effect the penalty method may be used iteratively for the same ε.

Iterative-Penalty-Method(w, p, k, ε)

1 solve the original problem minw(B) and find the optimal solution S0.
2 define the penalty function as p1(B)← ε · w(B ∩ S0).
3 solve the modified problem minw(B) + ε · p1(B) and find the solution S1.
4 for j ← 2 to k
5 do pj(B)← ε · w(B ∩ S0) + ε · w(B ∩ S1) + · · ·+ ε · w(B ∩ Sj−1)
6 solve the modified problem minw(B) + ε · pj(B) and find the solution Sj .
7 return (S0, S1, . . . , Sk)

Step 5 may be replaced by the variant 5∗

5∗ do pj(B)← ε · w(B ∩ (S0 ∪ S1 ∪ · · · ∪ Sj−1))



1108 23. Human-Computer Interaction

In the first case (5) a part of a solution belonging to r of the j solutions S0, S1, . . .
and Sj−1 is punished by the factor r · ε. In the second case (5∗) a part of a solution
is punished with multiplicity one if it belongs to at least one of S0, S1, . . . or Sj−1.

The differences in performance are marginal. However, in shortest path problems
with three solutions S0, S1 and S2 setting (5) seemed to give slightly better results.

Example 23.6 Take the graph G = (V, E) from Figure 23.2. For penalty parameter ε = 0.1
we want to find three solutions. The shortest path from S to T is PD via S - A - C - D -
F - T with length 23. Multiplying all edges of PD by 1.1 and solving the obtained shortest
path problem gives the alternative solution PB via S - A - B - F - T .

Applying setting (5) we have to multiply the edge lengths of (A, C), (C, D), (D, F ),
(A, B) and (B, F ) by penalty factor 1.1. The edges (S, A) and (F, T ) have to be multiplied
by factor 1.2 (double penalty). The optimal solution is path PH via S - G - H - T .

Applying setting (5∗) we have to multiply the edge lengths (S, A), (A, C), (C, D),
(D, F ), (F, T ), (A, B) and (B, F ) by penalty factor 1.1. The optimal solution of this mod-
ified problem is path PE via S - A - C - E - F - T .

23.2.3. The linear programming - penalty method

It is well known that shortest path problems as well as many other network flow
problems can be solved with Linear Programming. Linear Programming may also
be used to generate alternative solutions. We start with the description of Linear
Programming for the basic shortest path problem.

The shortest path problem formulated as a linear program.
Consider a directed graph G = (V,E) and a function w : E → R+ assigning a

length to every arc of the graph. Let s and t be two distinguished nodes of G.
Which is the shortest simple path from s to t in G?
For every arc e = (i, j) ∈ E we introduce a variable xe. Here xe shall be 1 if e is

part of the shortest path and xe shall be 0 otherwise.
With S(i) = {j ∈ V : (i, j) ∈ E} ⊆ V we denote the set of the successors of node

i and with P (i) = {j ∈ V : (j, i) ∈ E} ⊆ V we denote the set of the predecessors of
node i. The linear program LPShortestP ath is formulated as follows:

min
∑

e∈E

w(e) · xe

s.t.
∑

j∈S(s)

x(s,j) −
∑

j∈P (s)

x(j,s) = 1 flow-out condition for the starting node s

∑

j∈S(t)

x(t,j) −
∑

j∈P (t)

x(j,t) = −1 flow-in condition for the target node t

∑

j∈S(i)

x(i,j) −
∑

j∈P (i)

x(j,i) = 0 for all nodes i ∈ V \{s, t}

Kirchhoff conditions for all interior nodes

0 ≤ xe ≤ 1 for all e ∈ E.



23.2. Generating multiple candidate solutions 1109

1 1 1

1 1.1

1.2 1S T
B

C

A

D

Figure 23.4 Example graph for the LP-penalty method.

By the starting and target conditions node s is a source and node t is a sink. Because
of the Kirchhoff conditions there are no other sources or sinks. Therefore there
must be a "connection" from s to t.

It is not obvious that this connection is a simple path. The variables xe might
have non-integer values or there could be circles anywhere. But there is a basic
theorem for network flow problems [5, p. 318] that the linear program LPShortestP ath

has an optimal solution where all xe > 0 have the value 1. The according arcs with
xe = 1 represent a simple path from s to t.

Example 23.7 Consider the graph in Figure 23.4. The linear program for the shortest
path problem in this graph contains six equality constraints (one for each node) and seven
pairs of inequality constraints (one pair for each arc).

min(xSA + xSB + xBC + xCT + xDT ) · 1 + xAC · 1.1 + xBD · 1.2

s.t. xSA + xSB = 1,

xCT + xDT = 1 ,

xSA − xAC = 0,

xSB − xBC − xBD = 0 ,

xAC + xBC − xCT = 0,

xBD − xDT = 0 ,

0 ≤ xSA, xSB , xAC , xBC , xBD, xCT , xDT ≤ 1 .

The optimal solution has xSB = xBC = xCT = 1 .

A linear program which gives two alternative paths from s to t
Here we give an LP -representation for the task to find two alternative routes from

s to t.
For every arc e = (i, j) ∈ E we introduce two variables xe and ye. If the arc e

is used in both routes, then both xe and ye shall have the value 1. If e is a part of
only one route, xe shall be 1 and ye shall be 0. Otherwise xe and ye shall both be 0.
ε > 0 is a penalty parameter to punish arcs used by both routes.



1110 23. Human-Computer Interaction

With this in mind we can formulate the linear program LP2−ShortP aths

min f(x, y) :=
∑

e∈E

w(e) · xe + (1 + ε) · w(e) · ye

s.t.
∑

j∈S(s)

x(s,j) + y(s,j) −
∑

j∈P (s)

x(j,s) + y(j,s) = 2 condition for the starting node s

∑

j∈S(t)

x(t,j) + y(t,j) −
∑

j∈P (t)

x(j,t) + y(j,t) = −2 condition for the target node t

∑

j∈S(i)

x(i,j) + y(i,j) −
∑

j∈P (i)

x(j,i) + y(j,i) = 0 Kirchhoff conditions

for all i ∈ V \{s, t}

0 ≤ xe, ye ≤ 1 for all e ∈ E .

Example 23.8 Consider again the graph in Figure 23.4. The linear program for the 2-
alternative-paths problem in this graph contains six equality constraints (one for each
node) and 2 · 7 = 14 pairs of inequality constraints.

min (xSA + xSB + xBC + xCT + xDT ) · 1 + xAC · 1.1 + xBD · 1.2

+
[
(ySA + ySB + yBC + yCT + yDT ) · 1 + yAC · 1.1 + yBD · 1.2

]
· (1 + ε)

s.t. xSA + ySA + xSB + ySB = 2,

xCT + yCT + xDT + yDT = 2 ,

xSA + ySA − xAC − yAC = 0,

xSB + ySB − xBC − yBC − xBD − yBD = 0 ,

xAC + yAC + xBC + yBC − xCT − yCT = 0,

xBD + yBD − xDT − yDT = 0 ,

0 ≤ xSA, xSB , xAC , xBC , xBD, xCT , xDT , ySA, ySB , yAC , yBC , yBD, yCT , yDT ≤ 1 .

This linear program can be interpreted as a minimal cost flow problem.
Where is the connection between the linear program and the problem to find

two candidate routes from s to t?

Theorem 23.4 If the linear program LP2−ShortP aths has an optimal solution then
it has also an optimal solution (x, y) with the following properties.
There are disjoint sets E1, E2, E3 ⊆ E with
(i) E1 ∩ E2 = ∅, E1 ∩ E3 = ∅ and E2 ∩ E3 = ∅,
(ii) xe = 1, ye = 0 for all e ∈ E1 ∪ E2,
(iii) xe = 1, ye = 1 for all e ∈ E3,
(iv) xe = 0, ye = 0 for all e 6∈ E1 ∪ E2 ∪ E3.
(v) E1 ∪E3 represents a path P1 from s to t and E2 ∪E3 represents a path P2 from
s to t. E3 is the set of arcs used by both paths.



23.2. Generating multiple candidate solutions 1111

a

b

c

d

e

f

g

hS T

Figure 23.5 An example for a non-unique decomposition in two paths.

(vi) No other pair (Q1, Q2) of paths is better than (P1, P2), i.e.,

w(P1) + w(P2) + ε · w(P1 ∩ P2) ≤w(Q1) + w(Q2) + ε · w(Q1 ∩Q2) ,

for all pairs (Q1, Q2) .

That means the sum of the lengths of P1 and P2 plus a penalty for arcs used twice
is minimal.

We conclude with some remarks.

• For each arc e there are two variables xe and ye. This can be interpreted as a
street with a normal lane and an additional passing lane. Using the passing
lane is more expensive than using the normal lane. If a solution uses an arc only
once, it takes the cheaper normal lane. But if a solution uses an arc twice, it has
to take both the normal and the passing lane.

• The decomposition of the solution (x, y) into two paths from the starting node
to the target node is in most cases not unique. With the arcs a, b, . . . , g, h in
Figure 23.5 we can build two different pairs of paths from S to T , namely (a−
c − e − g, b − d − f − h) and (a − c − f − h, b − d − e − g). Both pairs are
equi-optimal in the sense of Theorem 23.4. So the user has the chance to choose
between them according to other criteria.

• The penalty method and the LP-penalty method generally lead to different re-
sults. The penalty method computes the best single solution and a suitable
alternative. The LP-penalty method computes a pair of good solutions with rel-
atively small overlap. Figure 23.4 shows that this pair not necessarily contains
the best single solution. The shortest path from S to T is P1 = S–B–C–T with
length 3. For all ε > 0.1 the ε-penalty solution is P2 = S–A–C–T . The path pair
(P1, P2) has a total lengths of 6.1 and a shared length of 1.0. But for ε > 0.2 the
LP-Penalty method produces the pair (P2, P3) = (S–A–C–T, S–B–D–T ) with a
total length of 6.3 and a shared length of zero.

• Finding k candidate routes for some larger number k > 2 is possible, if we
introduce k variables x0

e, x
1
e, . . . , x

k−1
e for each arc e and set the supply of s and



1112 23. Human-Computer Interaction

the demand of t to k. As objective function we can use for instance

min f(x0, . . . , xk−1) :=
∑

e∈E

k−1∑

j=0

(1 + j · ε) · w(e) · xj
e

or

min f(x0, . . . , xk−1) :=
∑

e∈E

k−1∑

j=0

(1 + ε)j · w(e) · xj
e .

• The LP-penalty method does not only work for shortest path problems. It can
be generalised to arbitrary problems solvable by linear programming.

• Furthermore an analogous method – the Integer Linear Programming Penalty
Method – can be applied to problems solvable by integer linear programming.

23.2.4. Penalty method with heuristics

In Subsection 23.2.2 we discussed the penalty method in combination with exact
solving algorithms (e.g. Dijkstra-algorithm or dynamic programming for the shortest
path problem). But also in case of heuristics (instead of exact algorithms) the penalty
method can be used to find multiple candidate solutions.

Example 23.9 A well known heuristic for the TSP-problem is local search with 2-exchange
steps (cp. Subsection 23.2.1).

Penalty-Method-for-the-TSP-Problem-with-2-Exchange-Heuristic

1 apply the 2-exchange heuristic to the unpunished problem getting a locally (but
not necessarily globally) optimal solution T

2 punish the edges belonging to T by multiplying their lengths with 1 + ε
3 apply the 2-exchange heuristic to the punished problem getting an alternative

solution Tε
4 compute the unmodified length of Tε
5 the pair (T, Tε) is the output

Question: Which penalty parameter ε ≥ 0 should be used to minimise the travel time
of the fastest route?

An experiment analogous to the one described in Example 23.5 was executed for TSP
instances with 25 random cities in the unit square. Figure 23.6 shows the scaled averages
for ε0 = 0.000, ε1 = 0.025, . . . , ε30 = 0.750. So, the expected quality φε of the solution
pairs is (again) unimodal in the penalty factor ε. That means that φε first decreases and
then increases for growing ε. In this example ε∗ ≈ 0.175 is the optimal penalty parameter.

In further experiments it was observed that the optimal penalty parameter ε∗ is de-
creasing in the problem size.

Exercises
23.2-1 The following programming exercise on the Travelling Salesperson Problem
helps to get a feeling for the great variety of local optima. Generate 200 random



23.3. More algorithms for interactive problem solving 1113

98

99

100

101

102

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

εεεε

%

Figure 23.6 φεi
for ε0 = 0, ε1 = 0.025, . . . , ε30 = 0.750 on 25 × 25 grids.

points in the 2-dimensional unit-square. Compute distances with respect to the
Euclidean metric. Make 100 runs of local search with random starting tours and
2-exchanges. Count how many different local minima have been found.
23.2-2 Enter the same key words into different internet search engines. Compare
the hit lists and their diversities.
23.2-3 Formulate the Travelling Salesperson Problem as a

∑
-type problem.

23.2-4 Proof the assertion of the remark on page 1103.
23.2-5 How does the penalty function p(e) look like in case of additive penalties
like in Example 23.2?
23.2-6 Prove the properties (1) and (2) on page 1104.
23.2-7 Apply the Divide and cover algorithm (page 1104) to the shortest path
problem in Figure 23.2 with starting node S and target node T . Set w(e) = length
of e for each road section, and p(e) = length of e for the road sections belonging to
the shortest path PD via S - A - C - D - F - T and p(e) = 0 for all other sections.
So, the penalty value of a whole path is the length of this part shared with PD.
23.2-8 Find a penalty parameter ε > 0 for Example 23.6 such that the first set-
ting (5) produces three different paths but the second setting (5∗) only two different
paths for k = 3.

23.3. More algorithms for interactive problem solving

There are many other settings where a human controller has access to computer-
generated candidate solutions. This section lists four important cases and concludes
with a discussion of miscellaneous stuff.



1114 23. Human-Computer Interaction

23.3.1. Anytime algorithms

In an anytime-setting the computer starts to work on a problem, and almost from the
very first moment on candidate solutions (the best ones found so far) are shown on
the monitor. Of course, the early outputs in such a process are often only preliminary
and approximate solutions – without guarantee of optimality and far from perfect.

An example: Iterative deepening performs multiple depth-limited searches –
gradually increasing the depth limit on each iteration of the search. Assume that
the task is to seek good solutions in a large rooted tree T = (V,E). Let f : V → R
be the function which is to be maximised. Let Vd be the set of all nodes in the tree
at distance d from root.

Iterative-Deepening-Tree-Search(T, f)

1 Opt ← f(root)
2 d← 1
3 while d <∞
4 do Determine maximum Maxd of f on Vd

5 if Maxd > Opt
6 then Opt ← Maxd

7 d← d+ 1

All the time the currently best solution (Opt) is shown on the monitor. The
operator may stop at any moment.

Iterative deepening is not only interesting for HCI but has also many applica-
tions in fully automatic computing. A prominent example is game tree search: In
tournament chess a program has a fixed amount of time for 40 moves, and iterative
deepening is the key instrument to find a balanced distribution of time on the single
alpha-beta searches.

Another frequent anytime scenario is repeated application of a heuristic. Let f :
A→ R be some complicated function for which elements with large function values
are searched. Let H be a probabilistic heuristic that returns a candidate solution
for this maximisation problem (A, f). For instance, H may be local search or some
other sort of hill-climbing procedure. H is applied again and again in independent
runs, and all the time the best solution found so far is shown.

A third anytime application is in Monte Carlo simulations, for instance in Monte
Carlo integration. A static approach would take objective values at a prescribed
number of random points (1,000 or so) and give the average value in the output.
However, already the intermediate average values (after 1, 2, 3 etc. data points – or
after each block of 10 or 50 points) may give early indications in which region the
final result might fall and whether it really makes sense to execute all the many runs.
Additional display of variances and frequencies of outliers gives further information
for the decision when best to stop the Monte Carlo run.

In human-computer systems anytime algorithms help also in the following way:
during the ongoing process of computing the human may already evaluate and com-
pare preliminary candidate solutions.



23.3. More algorithms for interactive problem solving 1115

23.3.2. Interactive evolution and generative design

Genetic Algorithms are search algorithms based on the mechanics of natural selection
and natural genetics. Instead of single solutions whole populations of solutions are
manipulated. Genetic Algorithms are often applied to large and difficult problems
where traditional optimisation techniques fall short.

Interactive evolution is an evolutionary algorithm that needs human interaction.
In interactive evolution, the user selects one or more individual(s) of the current
population which survive(s) and reproduce(s) (with mutations) to constitute the
new generation. So, in interactive evolution the user plays the role of an objective
function and thus has a rather active role in the search process.

In fields like art, architecture, and photo processing (including the design of
phantom photos) Generative Design is used as a special form of interactive evolu-
tion. In Generative Design all solutions of the current generation are shown simul-
taneously on the screen. Here typically "all" means some small number N between
4 and 20. Think of photo processing as an example, where the user selects mod-
ified contrast, brightness, colour intensities, and sharpness. The user inspects the
current candidate realizations, and by a single mouse click marks the one which
he likes most. All other solutions are deleted, and N mutants of the marked one
are generated. The process is repeated (open end) until the user is happy with the
outcome. For people without practical experience in generative design it may sound
unbelievable, but even from poor starting solutions it takes the process often only a
few iterations to come to acceptable outcomes.

23.3.3. Successive fixing

Many problems are high-dimensional, having lots of parameters to adjust. If sets of
good solutions in such a problem are generated by repeated probabilistic heuristics,
the following interactive multi-stage procedure may be applied: First of all several
heuristic solutions are generated and inspected by a human expert. This human
especially looks for "typical" pattern in the solutions and "fixes" them. Then more
heuristic solutions are generated under the side condition that they all contain the
fixed parts. The human inspects again and fixes more parts. The process is repeated
until finally everything is fix, resulting in one specific (and hopefully good) solution.

23.3.4. Interactive multicriteria decision making

In multicriteria decision making not only one but two or more objective functions
are given. The task is to find admissible solutions which are as good as possible with
respect to all these objectives. Typically, the objectives are more or less contradictory,
excluding the existence of a unanimous optimum. Helpful is the concept of "efficient
solutions", with the following definition: For an efficient solution there exists no other
solution which is better with respect to at least one objective and not worse with
respect to all the others.

A standard first step in multicriteria decision making is to compute the set of
all efficient solutions. In the bicriteria case the "efficient frontier" can be visualized
in a 2-dimensional diagram, giving the human controller a good overview of what is



1116 23. Human-Computer Interaction

possible.

23.3.5. Miscellaneous

• Graphical Visualisation of Computer Solutions
It is not enough that a computer generates good candidate solutions. The results
also have to be visualized in appropriate ways. In case of a single solution im-
portant parts and features have to be highlighted. And, even more important, in
case of concurring solutions their differences and specialities have to be stressed.

• Permanent Computer Runs with Short Intermediate Human Control
A nickname for this is "1+23h mode", coming from the following picture: Each
day the human sits in front of the computer for one hour only. In this hour he
looks at the computer results from the previous 23 hours, interacts with the
machine and also briefs the computer what to do in the next 23 hours. So, the
human invests only a small portion of his time while the computer is running
permanently.

An impressive example comes from correspondence chess. Computer help is of-
ficially permitted. Most top players have one or several machines running all
around the clock, analysing the most critical positions and lines of play. The
human players collect these computer results and analyse only shortly per day.

• Unexpected Errors and Numerical Instabilities
"Every software has errors!" This rule of thumb is often forgotten. People too
often simply believe what the monitor or the description of a software product
promises. However, running independent programs for the very same task (with
a unique optimal solution) will result in different outputs unexpectedly often.
Also numerical stability is not for free. Different programs for the same problem
may lead to different results, due to rounding errors. Such problems may be
recognised by applying independent programs.

Of course, also hardware has (physical) errors, especially in times of ongoing
miniaturisation. So, in crucial situations it is a good strategy to run an identical
program on fully independent machines - best of all operated by independent
human operators.

Exercises
23.3-1 For a Travelling Salesperson Problem with 200 random points (xi, yi) in
the unit square [0, 1] × [0, 1] and Euclidean distances, generate 100 locally optimal
solutions (with 2-exchanges, see Subsection 23.2.1) and count which edges occur how
often in these 100 solutions. Define some threshold K (for instance K = 30) and
fix all edges which are in at least K of the solutions. Generate another 100 local
optima, without allowing the fixed edges to be exchanged. Repeat until convergence
and compare the final result with typical local optima from the first series.



Notes for Chapter 23 1117

Chapter Notes

In the technical report [?] lots of experiments on the penalty method for various
sum type problems, dimensions, failure widths and probabilities are described and
analysed. The proof of Theorem 23.3 was originally given in [?]) . In e-commerce
multiple-choice systems are often called "Recommender Systems" [213], having in
mind customers for whom interesting products have to be listed. Understandably,
commercial search engines and e-companies keep their shortlisting strategies secret.

A good class book on Genetic Algorithms is [99]. Interactive Evolution and
Generative Design are described in [22]. There is a lot of literature on multicriteria
decision making, one of the standard books being [88].

In the book [8] the story of 3-Hirn and its successes in tournament chess is
told. The final match between "3-Hirn" and GM Yussupov is described in [9].
[10] gives more general information on improved game play by multiple computer
hints. In [11] several good k-best realizations of iterative deepening in game tree
search are exhibited and discussed. Screenshots of these realizations can be inspected
at http://www.minet.uni-jena.de/www/fakultaet/iam/personen/k-best.html. [117]
describes the technical background of advanced programs for playing chess and other
games.

There is a nice online repository, run by M. Zuker and D.H. Turner at
http://www.bioinfo.rpi.edu/applications/mfold/. The user may enter for instance
RNA-strings, and in realtime alternative foldings for these strings are generated.
Amongst other data the user may enter parameters for "maximum number of com-
puted foldings" (default = 50) and "percent suboptimality number" (default = 5 %).



Bibliography

[1] S. Abiteboul, V. Vianu. Foundations of Databases. Addison-Wesley, 1995. 882

[2] L. Addario-Berry, B. Chor, M. Hallett, J. Lagergren, A. Panconesi, T. Wareham. Ancestral
maximum likelihood of phylogenetic trees is hard. Lecture Notes in Bioinformatics, 2812:202–
215, 2003. 1010

[3] R. G. Addie, M. Zukerman, T. Neame. Broadband traffic modeling: Simple solutions to hard
problems. IEEE Communications Magazine, 36(8):88–95, 1998. 701, 702

[4] A. Aho, C. Beeri, J. D. Ullman. The theory of joins in relational databases. ACM Transac-
tions on Database Systems, 4(3):297–314, 1979. 882

[5] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Network Flows: Theory, Algorithms, and Applica-

tions. Prentice Hall, 1993. 1109

[6] T. Akutsu. Dynamic programming algorithms for RNA secondary prediction with pseudo-
knots. Discrete Applied Mathematics, 104:45–62, 2000. 1011

[7] E. Althaus, A. Caprara, H. Lenhof, K. Reinert. Multiple sequence alignment with arbitrary
gap costs: Computing an optimal solution using polyhedral combinatorics. Bioinformatics,
18:S4–S16, 2002. 1010

[8] I. Althöfer. 13 Jahre 3-Hirn. Published by the author, 1998. 1117

[9] I. Althöfer. List-3-Hirn vs. grandmaster Yussupov – report on a very experimental match.
ICCA Journal, 21:52–60 and 131–134, 1998. 1117

[10] I. Althöfer. Improved game play by multiple computer hints. Theoretical Computer Science,
313:315–324, 2004. 1117

[11] I. Althöfer, J. de Koning, J. Lieberum, S. Meyer-Kahlen, T. Rolle, J. Sameith. Five visuali-
sations of the k-best mode. ICCA Journal, 26:182–189, 2003. 1117

[12] D. Anick, D. Mitra, M. Sondhi. Stochastic theory of a data handling system with multiple
sources. The Bell System Technical Journal, 61:1871–1894, 1982. 701

[13] V. Arlazanov. A. Dinic, M. Kronrod, I. Faradzev. On economic construction of the transitive
closure of a directed graph. Doklady Academii Nauk SSSR, 194:487–488, 1970. 1009

[14] J. Aspnes, C. Busch, S. Dolev, F. Panagiota, C. Georgiou, A. Shvartsman, P. Spirakis, R.
Wattenhofer. Eight open problems in distributed computing. Bulletin of European Associa-
tion of Theoretical Computer Science of EATCS, 90:109–126, 2006. 643

[15] K. Atteson. The performance of the neighbor-joining method of phylogeny reconstruction.
Algorithmica, 25(2/3):251–278, 1999. 1011

[16] H. Attiya, C. Dwork, N. A. Lynch, L. J. Stockmeyer. Bounds on the time to reach agreement
in the presence of timing uncertainty. Journal of the ACM, 41:122–142, 1994. 643

[17] H. Attiya, J. Welch. Distributed Computing, Fundamentals, Simulations and Advanced Top-
ics. McGraw-Hill, 1998. 643

[18] B. Awerbuch. Complexity of network synchronization. Journal of the ACM, 32(4):804–823,
1985. 643

[19] M. Bader, E. Ohlebusch. Sorting by weighted reversals, transpositions and inverted transp-
sitions. Lecture Notes in Bioinformatics, 3909:563–577, 2006. 1006

http://www-rocq.inria.fr/~abitebou/
http://www.aw.com/
http://www.math.mcgill.ca/louigi/
http://www.math.tau.ac.il/~bchor/
http://www.mcb.mcgill.ca/~hallett/
http://www.nada.kth.se/~jensl/
http://www.dsi.uniroma1.it/~ale/
http://web.cs.mun.ca/~harold/
http://www.ise.ufl.edu/ahuja/
http://web.mit.edu/engineering/deans/magnanti.html
http://web.mit.edu/~jorlin/www/
http://vig.prenhall.com/
http://www.bic.kyoto-u.ac.jp/takutsu/members/takutsu/
http://www.sciencedirect.com/science/journal/0166218X
http://www.informatik.uni-mainz.de/~althaus/
http://www.labmeeting.com/papers/author/lenhof-hp
http://www.imprs-cbsc.mpg.de/faculty/reinert.shtml
http://www.minet.uni-jena.de/www/fakultaet/iam/l_althoefer.html
http://www.minet.uni-jena.de/www/fakultaet/iam/l_althoefer.html
http://www.minet.uni-jena.de/www/fakultaet/iam/l_althoefer.html
http://www.cs.unimaas.nl/icca/journal.htm
http://www.minet.uni-jena.de/www/fakultaet/iam/l_althoefer.html
http://www.minet.uni-jena.de/www/fakultaet/iam/l_althoefer.html
http://www.cs.unimaas.nl/icca/journal.htm
http://www.lucent.com/minds/techjournal/
http://cs-www.cs.yale.edu/homes/aspnes/
http://www.cs.rpi.edu/~buschc/
http://www.cs.bgu.ac.il/~dolev/
http://www.cs.uoi.gr/~faturu/
http://www.cs.ucy.ac.cy/~chryssis/
http://www.engr.uconn.edu/~aas/
http://www.cti.gr/Paul_Spirakis/
http://dcg.ethz.ch/members/roger.html
http://www.eatcs.org/publications/bulletin.html
http://link.springer.de/link/service/journals/00453/
http://research.microsoft.com/users/dwork/
http://theory.lcs.mit.edu/~lynch
http://www.acm.org
http://faculty.cs.tamu.edu/welch/
http://www.acm.org


Bibliography 1119

[20] B. Baker. A tight asymptotic bound for next-fit decreasing bin-packing. SIAM Journal on
Algebraic and Discrete Methods, 2(2):147–152, 1981. 849

[21] J. Banks, J. Carson, B. Nelson. Discrete-Event Simulation. Prentice Hall, 1996. 701

[22] W. Banzhaf. Interactive evolution. In T. Back, D. B. Fogel, Z. Michalewicz, T. Baeck (Eds.)
Handbook of Evolutionary Computation. IOP Press, 1997. 1117

[23] C. Beeri. On the membership problem for functional and multivalued dependencies in rela-
tional databases. ACM Transactions on Database Systems, 5:241–259, 1980. 882

[24] C. Beeri, P. Bernstein. Computational problems related to the design of normal form rela-
tional schemas. ACM Transactions on Database Systems, 4(1):30–59, 1979. 882

[25] C. Beeri, M. Dowd. On the structure of armstrong relations for functional dependencies.
Journal of ACM, 31(1):30–46, 1984. 882

[26] S. A. Benner, M. A. Cohen, H. G. H. Gonnet. Empirical and structural models for inser-
tions and deletions in the divergent evolution of proteins. Journal of Molecular Biology,
229(4):1065–1082, 1993. 977, 978

[27] J. Beran. Statistics for Long-Memory Processes. Monographs on Statistics and Applied Prob-
ability. Chapman & Hall, 1986. 701

[28] J. Beran, R. Sherman, M. Taqqu, W. Willinger. Long-range dependence in variable-bit-rate
video traffic. IEEE Transactions on Communications, 43:1566–1579, 1995. 701

[29] P. Berman, J. Garay. Cloture votes: n/4-resilient distributed consensus in t + 1 rounds.
Mathematical Systems Theory, 26(1):3–19, 1993. 643

[30] K. A. Berman, J. L. Paul. Sequential and Parallel Algorithms. PWS Publishing Company,
1996. 752

[31] A. Békéssy, J. Demetrovics. Contribution to the theory of data base relations. Discrete
Mathematics, 27(1):1–10, 1979. 882

[32] L. A. Bélády, R. Nelson, G. S. Shedler. An anomaly in space-time characteristics of certain
programs running in paging machine. Communications of the ACM, 12(1):349–353, 1969.
848

[33] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics,
1(3):135–256, 1982. 1091

[34] J. Bloomenthal. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, 1997. 1091

[35] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM,
21:201–206, 1974. 752

[36] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal,
4(1):25–30, 1965. 1092

[37] P. Buneman, M. Fernandez, D. Suciu. UnQL: a query language and algebra for semistructured
data based on structural recursion. The International Journal on Very Large Data Bases,
9(1):76–110, 2000. 971

[38] J. E. Burns, N. A. Lynch. Bounds on shared memory for mutual exclusion. Information and

Computation, 107(2):171–184, 1993. 643

[39] CACI. COMNET III. CACI Products Co., 1997. 701

[40] A. Caprara. Sorting permutations by reversals and eulerian cycle decompositions. SIAM
Journal on Discrete Mathematics, 12(1):91–110, 1999. 1006

[41] H. Carillo, D. Lipman. The multiple sequence alignment problem in biology. SIAM Journal
on Applied Mathematics, 48:1073–1082, 1988. 985

[42] H. Casanova, A. Legrand, Y. Robert. Parallel Algorithms. Chapman & Hall, 2009. 752

[43] E. Catmull, J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes.
Computer-Aided Design, 10:350–355, 1978. 1091

[44] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon. Parallel Programming
in OpenMP. Morgan Kaufmann Publishers, 2000. 753

[45] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational
Geometry, 6(5):353–363, 1991. 1091

[46] B. Chor, T. Tuller. Maximum likelihood of evolutionary trees: hardness and approximation.
Bioinformatics, 21:i97–i106, 2005. 1010

http://www.isye.gatech.edu/people/faculty/Jerry$_$Banks/
http://vig.prenhall.com/
http://ls11-www.cs.uni-dortmund.de/people/banzhaf/
http://portal.acm.org/browse_dl.cfm?linked=1&part=transaction&idx=J777&coll=ACM&dl=ACM&CFID=25015209&CFTOKEN=28278630
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=ACM&dl=ACM&CFID=25015209&CFTOKEN=28278630
http://www.searlescholars.net/people/benner.html
http://www.sciencedirect.com/science/journal/00222836
http://www.chapmanhall.com/
http://math.bu.edu/people/murad/
file:www.comsoc.org/pubs/jrnal/transcom.html
http://springerlink.metapress.com/content/100369/
http://www.ececs.uc.edu/~berman/
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml
http://www.sciencedirect.com/science/journal/0012365X
http://www.mkimarketing.hu/esemenyeink/eletrajzok/belady.htm
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.cis.upenn.edu/~peter/
http://www.research.att.com/~mff/
http://www.cs.washington.edu/homes/suciu/
http://springerlink.metapress.com/app/home/journal.asp?wasp=6p8qd4wxrp6wvmehwkak&referrer=parent&backto=subject,139,142;
http://theory.lcs.mit.edu/~lynch
http://www.cs.rutgers.edu/~chvatal/
http://epubs.siam.org/sam-bin/dbq/toclist/SIDMA
http://navet.ics.hawaii.edu/~casanova/
http://mescal.imag.fr/membres/arnaud.legrand/
http://graal.ens-lyon.fr/~yrobert/
http://www.chapmanhall.com/
http://www.sciencedirect.com/science/journal/00104485


1120 Bibliography

[47] D. Christie. Sorting permutations by block-interchanges. Information Processing Letters,
60(4):165–169, 1996. 1011

[48] E. F. Codd. A relational model of large shared data banks. Communications of the ACM,
13(6):377–387, 1970. 882

[49] E. Coffman. Computer and Job Shop Scheduling. John Wiley & Sons, 1976. 848

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT
Press/McGraw-Hill, 1990. 752

[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms (3rd edition,
second corrected printing). The MIT Press/McGraw-Hill, 2010. 753, 849

[52] D. G. Corneil, C. Gotlieb. An efficient algorithm for graph isomorphism. Journal of the ACM,
17(1):51–64, 1970. 971

[53] F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research,
16:10881–10890, 1988. 981

[54] H. S. M. Coxeter. Projective Geometry. University of Toronto Press, 1974 (2nd edition).
1091

[55] M. Crovella, A. Bestavros. Self-similarity in world wide web traffic: Evidence and possible
causes. IEEE/ACM Transactions on Networking, 5(6):835–846, 1997. 701, 702

[56] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser, R. Subra-
monian, T. von Eicken. LogP: A practical model of parallel computation. Communication
of the ACM, 39(11):78–85, 1996. 753

[57] A. Darte, Y. Robert, F. Vivien. Scheduling and Automatic Parallelization. Birkhäuser
Boston, 2000. 797

[58] M. O. Dayhoff, R. M. Schwartz, B. Orcutt. A model of evolutionary change in proteins. Atlas
of Protein Sequence and Structure, 5:345–352, 1978. 978

[59] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. Computational Geometry: Al-
gorithms and Applications. Springer-Verlag, 2000. 1091

[60] C. Delobel. Normalization and hierarchical dependencies in the relational data model. ACM
Transactions on Database Systems, 3(3):201–222, 1978. 882

[61] J. Demetrovics, Gy. O. H. Katona, A. Sali. Minimal representations of branching dependen-
cies. Discrete Applied Mathematics, 40:139–153, 1992. 882

[62] J. Demetrovics, Gy. O. H. Katona, A. Sali. Minimal representations of branching dependen-
cies. Acta Scientiarum Mathematicorum (Szeged), 60:213–223, 1995. 882

[63] J. Demetrovics, Gy. O. H. Katona, A. Sali. Design type problems motivated by database
theory. Journal of Statistical Planning and Inference, 72:149–164, 1998. 882

[64] P. Denning. Virtual memory. Computing Surveys, 2(3):153–189, 1970. 848

[65] D. Dolev, R. Strong. Authenticated algorithms for Byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, 1983. 643

[66] N. Duffield, N. Oconnell. Large deviation and overflow probabilities for the general single-
server queue, with applications. Mathematical Proceedings of the Cambridge Philosophical

Society, 118:363–374, 1995. 701

[67] D. Duffy, A. McIntosh, M. Rosenstein, W. Willinger. Statistical analysis of ccsn/ss7 traf-
fic data from working ccs subnetworks. IEEE Journal on Selected Areas Communications,
12:544–551, 1994. 701

[68] N. Dyn, J. Gregory, D. Levin. A butterfly subdivision scheme for surface interpolation with
tension control. ACM Transactions on Graphics, 9:160–169, 1990. 1091

[69] I. Elias, T. Hartman. A 1.375 approximation algorithm for sorting by transpositions. Lecture
Notes in Bioinformatics, 3692:204–215, 2005. 1006

[70] I. Elias, J. Lagergren. Fast neighbor joining. Lecture Notes in Computer Science, 3580:1263–
1274, 2005. 1011

[71] P. L. Erdős, M. Steel, L. Székely, T. Warnow. Local quartet splits of a binary tree infer all
quartet splits via one dyadic inference rule. Computers and Artificial Intelligence, 16(2):217–
227, 1997. 1011

[72] A. Erramilli, O. Narayan, W. Willinger. Experimental queueing analysis with long-range
dependent packet-traffic. IEEE/ACM Transactions on Networking, 4(2):209–223, 1996. 701

http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/codd.htm
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://www.el.columbia.edu/~egc/
http://www.cs.dartmouth.edu/~thc/
http://theory.lcs.mit.edu/~cel/
http://theory.lcs.mit.edu/~rivest/
http://mitpress.mit.edu/main/home/default.asp?sid=C6EE87F7-92B7-4CC1-8035-E3AB8EAC0886
http://www.cs.dartmouth.edu/~thc/
http://theory.lcs.mit.edu/~cel/
http://theory.lcs.mit.edu/~rivest/
http://www.ieor.columbia.edu/~cliff/
http://mitpress.mit.edu/main/home/default.asp?sid=C6EE87F7-92B7-4CC1-8035-E3AB8EAC0886
http://www.cs.toronto.edu/DCS/People/Faculty/dgc.html
http://www.cs.toronto.edu/DCS/People/Faculty/ccg.html
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://portal.acm.org/portal.cfm?CFID=20545300&CFTOKEN=71807633
http://www.cs.berkeley.edu/~culler/
http://www.icir.org/karp/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://perso.ens-lyon.fr/alain.darte/
http://graal.ens-lyon.fr/~yrobert/
http://graal.ens-lyon.fr/~fvivien/
http://www.springer.de/
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml
http://www.renyi.hu/~ohkatona/
http://www.renyi.hu/~sali/
http://www.sciencedirect.com/science/journal/0166218X
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml
http://www.renyi.hu/~ohkatona/
http://www.renyi.hu/~sali/
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml
http://www.renyi.hu/~ohkatona/
http://www.renyi.hu/~sali/
http://www.acm.org/pubs/surveys/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
file:www.comsoc.org/pubs/jrnal/jsac.html
http://www.renyi.hu/~elp/
http://www.math.canterbury.ac.nz/~m.steel/
http://www.math.sc.edu/~szekely/
http://userweb.cs.utexas.edu/~tandy/
http://portal.acm.org/portal.cfm?CFID=20545300&CFTOKEN=71807633


Bibliography 1121

[73] R. Fagin. Multivalued dependencies and a new normal form for relational databases. ACM
Transactions on Database Systems, 2:262–278, 1977. 882

[74] R. Fagin. Horn clauses and database dependencies. Journal of ACM, 29(4):952–985, 1982.
882

[75] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan Kaufmann
Publishers, 2002 (2nd revised edition). 1091

[76] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17:368–376, 1981. 987

[77] D. Feng, R. F. Doolittle. Progressive sequence alignment as a prerequisite to correct phylo-
genetic trees. Journal of Molecular Evolution, 25:351–360, 1987. 981

[78] R. Fernando. GPUGems: Programming Techniques, Tips, and Tricks for Real-Time Graph-
ics. Addison-Wesley, 2004. 1092

[79] J. W. Fickett. Fast optimal alignment. Nucleid Acids Research, 12:175–180, 1984. 984

[80] M. J. Fischer, N. A. Lynch, M. S. Paterson. Impossibility of distributed consensus with one
faulty proces. Journal of the ACM, 32(2):374–382, 1985. 643

[81] W. M. Fitch. Toward defining the course of evolution: minimum change for a specified tree
topology. Systematic Zoology, 20:406–416, 1971. 988

[82] D. Florescu, A. Halevy, A. O. Mendelzon. Database techniques for the world-wide web: a
survey. SIGMOD Record, 27(3):59–74, 1998. 931

[83] M. J. Flynn. Very high-speed computer systems. Proceedings of the IEEE, 5(6):1901–1909,
1966. 752

[84] J. D. Fooley, A., S. K. Feiner, J. F. Hughes. Computer Graphics: Principles and Practice.
Addison-Wesley, 1990. 1092

[85] I. Foster, C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufman Publisher, 2004 (2nd edition). 752

[86] L. Foulds, R. L. Graham. The Steiner problem in phylogeny is NP-complete. Advances in
Applied Mathematics, 3:43–49, 1982. 986

[87] A. Fujimoto, T. Takayuki, I. Kansey. ARTS: accelerated ray-tracing system. IEEE Computer
Graphics and Applications, 6(4):16–26, 1986. 1091

[88] T. Gal, T. Stewart, T. Hanne. (Eds.). Multicriteria Decision Making. Kluwer Academic
Publisher, 1999. 1117

[89] Z. Galil, R. Giancarlo. Speeding up dynamic programming with applications to molecular
biology. Theoretical Computer Science, 64:107–118, 1989. 977

[90] J. Gallant, D. Maier, J. Storer. On finding minimal length superstrings. Journal of Computer

and System Sciences, 20(1):50–58, 1980. 1008

[91] W. Gararch, E. Evan, C. Kruskal. Proofs that yield nothing but their validity or all languages
in NP. Journal of the ACM, 38(3):691–729, 1991. 753

[92] H. Garcia-Molina, J. Seiferas. Elections in a distributed computing systems. IEEE Transac-
tions on Computers, C-31(1):47–59, 1982. 643

[93] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979. 971

[94] W. H. Gates, C. H. Papadimitriouhttp://www.cs.berkeley.edu/ christos/. Bounds for sorting
by prefix reversals. Discrete Mathematics, 27:47–57, 1979. 1011

[95] F. Gécseg, I. Peák. Algebraic Theory of Automata. Akadémiai Kiadó, 1972. 848

[96] P. Gács. Compatible sequences and a slow Winkler percolation. Combinatorics Probability

and Computing, 13(6):815–856, 2004. 753

[97] P. B. Gibbons, Y. Matias, V. Ramachandran. Can a shared-memory model serve as a bridging
model for parallel computation. Theory of Computing Systems, 32(3):327–359, 1999. 753

[98] A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. 1091

[99] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989. 1117

http://portal.acm.org/browse_dl.cfm?linked=1&part=transaction&idx=J777&coll=ACM&dl=ACM&CFID=25015209&CFTOKEN=28278630
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=ACM&dl=ACM&CFID=25015209&CFTOKEN=28278630
http://eros.cagd.eas.asu.edu/~{ }farin/cagdbook/cagdbook.html
http://www.springerlink.com/app/home/journal.asp?wasp=ege9fdlrul6xnnwvuxv2&referrer=parent&backto=linkingpublicationresults,id:100107,1
http://developer.nvidia.com/object/gpu_gems_home.html
http://www.aw.com/
http://nar.oupjournals.org/
http://theory.lcs.mit.edu/~lynch
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.jstor.org/journals/00397989.html
http://www-caravel.inria.fr/Fmembre_dana.html
http://www.cs.washington.edu/homes/alon/
http://umunhum.stanford.edu/~flynn/
http://www.ieee.org/organizations/pubs/proceedings/
http://www.aw.com/
http://www-fp.mcs.anl.gov/~foster/
http://www.isi.edu/~carl/
http://math.ucsd.edu/~fan/ron
http://www.sciencedirect.om.hu/science/journal/01968858
http://www.computer.org/cga/?SMIDENTITY=NO
http://www.wkap.nl/
http://www.cs.columbia.edu/~galil/
http://www.sciencedirect.com/science/journal/00220000/
http://www.cs.umd.edu/~egolub/professional.shtml
http://www.cs.umd.edu/~kruskal/
http://
http://www-db.stanford.edu/people/hector.html
http://www.computer.org/tc/
http://cm.bell-labs.com/cm/ms/former/mrg/
http://www.research.att.com/~dsj/
http://www.whfreeman.com/
http://www.microsoft.com/billgates/default.asp
http://www.sciencedirect.com/science/journal/0012365X
http://www.inf.u-szeged.hu/~gecseg/
http://www.cs.bu.edu/fac/gacs/
http://journals.cambridge.org/action/displayJournal?jid=CPC
http://www.math.tau.ac.il/~matias/
http://www.cs.utexas.edu/users/vlr/
http://www.springerlink.com/app/home/journal.asp?wasp=cmwhunlhyn56kdhukgur&referrer=parent&backto=linkingpublicationresults,id:100369,1
http://www.academicpress.com/
http://www.aw.com/


1122 Bibliography

[100] N. Goldman, J. Thorne, D. Jones. Using evolutionary trees in protein secondary structure pre-
diction and other comparative sequence analyses. Journal of Molecular Biology, 263(2):196–
208, 1996. 1010

[101] H. G. H. Gonnet, M. A. Cohen, S. A. Benner. Exhaustive matching of the entire protein
sequence database. Science, 256:1443–1445, 1992. 977

[102] O. Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular
Biology, 162:705–708, 1982. 977

[103] A. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing. Addison-
Wesley, 2003 (2nd edition). 752

[104] J. Grant, J. Minker. Inferences for numerical dependencies. Theoretical Computer Science,
41:271–287, 1985. 882

[105] J. Grant, J. Minker. Normalization and axiomatization for numerical dependencies. Infor-
mation and Control, 65:1–17, 1985. 882

[106] W. Gropp, M. Snir, B. Nitzberg, E. Lusk. MPI: The Complete Reference. Scientific and
Engineering Computation Series. The MIT Press, 1998. 752

[107] Q-P. Gu, S. Peng, H. Sudborough. A 2-approximation algorithm for genome rearrangements
by reversals and transpositions. Theoretical Computer Science, 210(2):327–339, 1999. 1006

[108] R. Gusella. A measurement study of diskless workstation traffic on an ethernet. IEEE Trans-
actions on Communications, 38:1557–1568, 1990. 701

[109] D. M. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error
bounds. Bulletin of Mathematical Biology, 55:141–154, 1993. 982

[110] D. M. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
1997. 981, 985

[111] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of ACM, 28(1):532–535, 1988.
752

[112] T. Gyires. Simulation of the harmful consequences of self-similar network traffic. The Journal

of Computer Information Systems, 42(4):94–111, 2002. 701

[113] T. Gyires. Extension of multiprotocol label switching for long-range dependent traffic: QoS
routing and performance in IP networks. Computer Standards and Interfaces, 27:117–132,
2005. 701

[114] A. Halevy. Answering queries using views: A survey. The VLDB Journal, 10:270–294, 2001.
931

[115] S. Hannenhalli. Polynomial-time algorithm for computing translocation distance between
genomes. Discrete Applied Mathematics, 71:137–151, 1996. 1011

[116] H. Hefles, D. Lucantoni. A markov modulated characterization of packetized voice and data
traffic and related statistical multiplexer performance. IEEE Journal on Selected Areas in
Communication, 4:856–868, 1986. 701

[117] E. A. Heinz. Algorithmic Enhancements and Experiments at High Search Depths. Vieweg
Verlag, Series on Computational Intelligence, 2000. 1099, 1117

[118] I. Herman. The Use of Projective Geometry in Computer Graphics. Springer-Verlag, 1991.
1091

[119] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Communications of the ACM, 18:341–343, 1975. 983

[120] J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 2001 (in German: Einführung in Automatentheorie, Formale
Sprachen und Komplexitätstheorie, Pearson Studium, 2002). 2nd edition. 848

[121] E. Horowitz, S. Sahni, S. Rajasekaran. Computer Algorithms. Computer Science Press, 1998.
752, 753

[122] T. J. P. Hubbard, A. M. Lesk, A. Tramontano. Gathering them into the fold. Nature Struc-
tural Biology, 4:313, 1996. 981

[123] R. Hughey, A. Krogh. Hidden markov models for sequence analysis: Extension and analysis
of the basic method. CABIOS, 12(2):95–107, 1996. 1010

[124] J. Hunt, T. Szymanski. A fast algorithm for computing longest common subsequences. Com-
munications of the ACM, 20(5):350–353, 1977. 1009

http://www.sanger.ac.uk/Software/analysis/projector/
http://www.searlescholars.net/people/benner.html
http://www.cbrc.jp/~gotoh/
http://www.sciencedirect.com/science/journal/00222836
http://www.cs.purdue.edu/people/ayg
http://www-users.cs.umn.edu/~agupta/
http://www.cs.umn.edu/faculty/karypis.html
http://www-users.cs.umn.edu/~kumar/
http://www.aw.com/
file:www.comsoc.org/pubs/jrnal/transcom.html
http://wwwcsif.cs.ucdavis.edu/~gusfield/
http://wwwcsif.cs.ucdavis.edu/~gusfield/
http://uk.cambridge.org/
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.itk.ilstu.edu/faculty/tbgyires/tbgyires.htm
http://www.fgcu.edu/rboggs/jcis/index.asp?page=1
http://www.itk.ilstu.edu/faculty/tbgyires/tbgyires.htm
http://www.sciencedirect.om.hu/science/journal/09205489
http://www.cs.washington.edu/homes/alon/
http://springerlink.metapress.com/app/home/journal.asp?wasp=b5cryjywql0qv16pxgfy&referrer=parent&backto=linkingpublicationresults,1:100392,1
http://cagr.pcbi.upenn.edu/
http://www.sciencedirect.com/science/journal/0166218X
file:www.comsoc.org/pubs/jrnal/jsac.html
http://www.springer.de/
http://www.ics.uci.edu/~dan/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://www.cs.cornell.edu/jeh/
http://www-db.stanford.edu/~ullman/
http://www.aw.com/
file:www.pearson-studium.de
http://sunset.usc.edu/~horowitz/pleader/horohome.html
http://www.cise.ufl.edu/~sahni/
http://www.cise.ufl.edu/~raj/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750


Bibliography 1123

[125] K. Hwang, Z. Xu. Scalable Parallel Computing. McGraw-Hill, 1998. 752

[126] A. Iványi. Performance bounds for simple bin packing algorithms. Annales Universitatis

Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Computarorica, 5:77–
82, 1984. 849

[127] A. Iványi. Párhuzamos algoritmusok (Parallel Algorithms). ELTE Eötvös Kiadó, 2003. 752

[128] A. Iványi. Density of safe matrices. Acta Universitatis Sapientiae, 1(2):121–142, 2009. 753

[129] A. Iványi, R. Szmeljánszkij. Elements of Theoretical Programming (in Russian). Moscow
State University, 1985. 849

[130] R. Jain, S. Routhier. Packet trains: Measurements and a new model for computer network
traffic. IEEE Journal on Selected Areas in Communication, 4:986–995, 1986. 701

[131] M. R. Jerrum. The complexity of finding minimum-length generator sequences. Theoretical
Computer Science, 36:265–289, 1986. 1011

[132] P. Jiménez, F. Thomas, C. Torras. 3D collision detection: A survey. Computers and Graphics,
25(2):269–285, 2001. 1091

[133] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham. Worst-case
performance-bounds for simple one-dimensional bin packing algorithms. SIAM Journal on
Computing, 3:299–325, 1974. 849

[134] G. A. Jones, J. Jones. Information and Coding Theory. Springer-Verlag, 2000. 701

[135] K. Jones. Consultant’s Guide to COMNET III. CACI Product Company, 1997. 701

[136] M. Kandemir, J. Ramanujam, A. Choudhary. Compiler algorithms for optimizing locality and
parallelism on shared and distributed-memory machines. Journal of Parallel and Distributed
Computing, 60:924–965, 2000. 752

[137] S. Karlin, M. T. Taylor. A First Course in Stochastic Processes. Academic Press, 1975. 1092

[138] R. M. Karp, R. E. Miller, S. Winograd. The organization of computations for uniform recur-
rence equations. Journal of the ACM, 14:563–590, 1967. 797

[139] J. Kececioglu, H. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, M. Vingron. A polyhedral
approach to sequence alignment problems. Discrete Applied Mathematics, 104((1-3)):143–
186, 2000. 1010

[140] K. Kennedy, R. Allen. Optimizing Compilers for Modern Architectures. Morgan Kaufman
Publishers, 2001. 752

[141] M. Khosrow-Pour (Ed.). Encyclopedia of Information Science and Technology, Vol. 1, Vol.
2, Vol. 3, Vol. 4, Vol. 5. Idea Group Inc., 2005. 972

[142] S. Kleiman, D. Shah, B. Smaalders. Programming with Threads. Prentice Hall, 1996. 752

[143] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975. 701

[144] B. Knudsen, J. Hein. RNA secondary structure prediction using stochastic context free gram-
mars and evolutionary history. Bioinformatics, 15(6):446–454, 1999. 993

[145] B. Knudsen, J. Hein. Pfold: RNA secondary structure prediction using stochastic context-free
grammars. Nucleic Acids Researchs, 31(13):3423–3428, 2003. 993, 1010

[146] D. E. Knuth, J. Morris, V. R. Pratt. Fast pattern matching in strings. SIAM Journal on
Computing, 6(2):323–350, 1977. 1009

[147] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. Steele Jr., M. E. Zosel. The High Perfor-
mance Fortran Handbook. The MIT Press, 1994. 753

[148] G. Krammer. Notes on the mathematics of the PHIGS output pipeline. Computer Graphics

Forum, 8(8):219–226, 1989. 1091

[149] A. D. Kshemkalyani, M. Singhal. Distributed Computing. Cambridge University Press, 2008.
643

[150] T. Lai, S. Sahni. Anomalies in parallel branch and bound algorithms. Communications of
ACM, 27(6):594–602, 1984. 849

[151] J. Lamperti. Stochastic Processes. Springer-Verlag, 1972. 1092

[152] L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications

of the ACM, 18(8):453–455, 1974. 643

http://books.mcgraw-hill.com/
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http:compalg.inf.elte.hu/annales/computatorica
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.elte.hu/szervezet/eotvos_kiado.html
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientiae.ro
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.msu.ru/english/www-serv/www-msu.html
file:www.comsoc.org/pubs/jrnal/jsac.html
http://www.sciencedirect.com/science/journal/00978493
http://www.research.att.com/~dsj/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.springer.de/
http://www.caciasl.com/default.html
file:www.ee.lsu.edu/jxr/jxr.html
http://www.ece.northwestern.edu/~choudhar/
http://www.sciencedirect.com/science/journal/07437315
http://www.academicpress.com/
http://www.icir.org/karp/
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.cs.arizona.edu/~kece/
http://bioinf-www.bioinf.uni-sb.de/people/lenhof/
http://www.mpi-sb.mpg.de/~mehlhorn/
http://www.imprs-cbsc.mpg.de/faculty/reinert.shtm
http://www.sciencedirect.com/science/journal/0166218X
http://www.cs.rice.edu/~ken/
http://www.idea-group.com/encyclopedia/authors.asp?id=26&pub_id=4455
http://www.idea-group.com/
http://www.prenhall.com/
http://en.wikipedia.org/wiki/Leonard_Kleinrock
http://www.wiley.com/
http://www.clcbioconsulting.com/bjarne.php
http://www.clcbioconsulting.com/bjarne.php
http://www-cs-faculty.stanford.edu/~knuth/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.eg.org/EG/Publications/CGF
http://www.cs.uic.edu/$\sim $ajayk
http://www.cs.uky.edu/$\sim $singhal
http://uk.cambridge.org/
http://www.springer.de/
http://research.microsoft.com/users/lamport/


1124 Bibliography

[153] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computers, 5(1):1–11,
1987. 643

[154] L. Lamport, R. Shostak M. Pease. The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 4(3):382–401, 1982. 643

[155] G. Lancia. Integer programming models for computational biology problems. Journal of
Computer Science and Technology, 19(1):60–77, 2004. 1010

[156] G. Landau, U. Vishkin. Eficient string matching with k mismatches. Theoretical Computer
Science, 43:239–249, 1986. 1009

[157] A. Law, W. Kelton. Simulation Modeling and Analysis. 3rd edition. McGraw-Hill Higher
Education, 1999. 701

[158] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays-Trees-

Hypercubes. Morgan Kaufman Publishers, 1992. 753

[159] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Algorithms and VSLI.
Morgan Kaufman Publishers, 2001. 753

[160] W. Leland, M. Taqqu, W. Willinger, D. Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Transactions on Networking, 2(1):1–15, 1994. 701

[161] W. Leland, M. Taqqu, D. Wilson. On the self-similar nature of ethernet traffic. Computer

Communication Reviews, 23:183–193, 1993. 701

[162] C. Leopold. Parallel and Distributed Computing. Wiley Series on Parallel and Distributed
Computing. John Wiley & Sons, Copyrights 2001. 643, 751, 752, 753

[163] B. Lewis, D. J. Berg. Multithreaded Programming with Phtreads. Prentice Hall, 1998. 753

[164] D. Lipman, S. J. Altshuland, J. Kecioglu. A tool for multiple sequence alignment. Proc. Natl.

Academy Science, 86:4412–4415, 1989. 985

[165] M. Listanti, V. Eramo, R. Sabella. Architectural and technological issues for future optical
internet networks. IEEE Communications Magazine, 8(9):82–92, 2000. 701

[166] C. Lucchesi. Candidate keys for relations. Journal of of Computer and System Sciences,
17(2):270–279, 1978. 882

[167] G. Lunter, I. Miklós, A. Drummond, J. L. Jensen, J. Hein. Bayesian phylogenetic inference
under a statistical indel model. Lecture Notes in Bioinformatics, 2812:228–244, 2003. 1010

[168] G. Lunter, I. Miklós, Y., J. Hein. An efficient algorithm for statistical multiple alignment on
arbitrary phylogenetic trees. Journal of Computational Biology, 10(6):869–889, 2003. 1010

[169] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publisher, 2001 (5th edition). 643,
798

[170] N. A. Lynch, M. J. Fischer. On describing the behavior and implementation of distributed
systems. Theoretical Computer Science, 13(1):17–43, 1981. 643

[171] R. Lyngso, C. N. S. Pedersen. RNA pseudoknot prediction in energy based models. Journal
of Computational Biology, 7(3/4):409–428, 2000. 1011

[172] R. Lyngso, M. Zuker, C. Pedersen. Fast evaluation of internal loops in RNA secondary
structure prediction. Bioinformatics, 15(6):440–445, 1999. 1011

[173] D. Maier. Minimum covers in the relational database model. Journal of the ACM, 27(4):664–
674, 1980. 882

[174] D. Maier, A. O. Mendelzon, Y. Sagiv. Testing implications of data dependencies. ACM
Transactions on Database Systems, 4(4):455–469, 1979. 882

[175] B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1982. 701

[176] B. Mandelbrot, J. W. Van Ness. Fractional brownian motions, fractional noises and applica-
tions. SIAM Review, 10:422–437, 1968. 701

[177] R. L. Mattson, J. Gecsei, D. R. Slutz, I. Traiger. Evaluation techniques for storage hierarchies.
IBM Systems Journal, 9(2):78–117, 1970. 848

[178] E. A. Maxwell. Methods of Plane Projective Geometry Based on the Use of General Ho-
mogenous Coordinates. Cambridge University Press, 1946. 1091

[179] E. A. Maxwell. General Homogenous Coordinates in Space of Three Dimensions. Cambridge
University Press, 1951. 1091

http://research.microsoft.com/users/lamport/
http://research.microsoft.com/users/lamport/
http://www.acm.org
http://www.averill-law.com/averill.htm
http://www.cba.uc.edu/faculty/keltonwd/
http://www.mhhe.com/catalogs/
http://theory.lcs.mit.edu/~ftl/
http://theory.lcs.mit.edu/~ftl/
http://math.bu.edu/people/murad/
http://portal.acm.org/portal.cfm?CFID=20545300&CFTOKEN=71807633
http://math.bu.edu/people/murad/
http://www.acm.org/sigcomm/ccr/
http://www.se.e-technik.uni-kassel.de/pm/leopoldE.html
http://www.wiley.com/
http://www.prenhall.com/
http://www.cs.arizona.edu/~kece/
http://www.stats.ox.ac.uk/~miklos/
http://www.stats.ox.ac.uk/~miklos/
http://www.liebertpub.com/publication.aspx?pub_id=31
http://theory.lcs.mit.edu/~lynch
http://theory.lcs.mit.edu/~lynch
http://www.liebertpub.com/publication.aspx?pub_id=31
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.aw.com/
http://www.utdallas.edu/dept/math/faculty/vanness.html
http://www.iro.umontreal.ca/labs/safari/gecsei.html
http://www.research.ibm.com/journal/sj/
http://uk.cambridge.org/
http://uk.cambridge.org/


Bibliography 1125

[180] J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for
RNA secondary structure. Biopolymers, 29:1105–1119, 1990. 1011

[181] I. M. Meyer, R. Durbin. Comparative ab initio prediction of gene structures using pair HMMs.
Bioinformatics, 18(10):1309–1318, 2002. 1010

[182] I. M. Meyer, R. Durbin. Gene structure conservation aids similarity based gene prediction.
Nucleic Acids Research, 32(2):776–783, 2004. 1010

[183] Sz. Mihnovskiy, N. Shor. Estimation of the page fault number in paged memory (in Russian).
Kibernetika (Kiev), 1(5):18–20, 1965. 848

[184] W. Miller, E. Myers. A file comparison program. Software – Practice and Experience,
15(11):1025–1040, 1985. 1009

[185] W. Miller, E. W. Myers. Sequence comparison with concave weighting functions. Bulletin of

Mathematical Biology, 50:97–120, 1988. 977

[186] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach to multiple
sequence alignment. Bioinformatics, 15:211–218, 1999. 982

[187] B. Morgenstern, A. Dress, T. Werner. Multiple DNA and protein sequence alignment based
on segment-to-segment comparison. Proc. Natl. Academy Science, 93:12098–12103, 1996. 982

[188] B. Morgenstern, K. Frech, A. Dress, T. Werner. DIALIGN: Finding local similarities by
multiple sequence alignment. Bioinformatics, 14:290–294, 1998. 982

[189] S. N. Needleman, C. Wunch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48:443–453, 1970. 1009

[190] M. F. Neuts. A versatile markovian point process. Journal of Applied Probability, 18:764–779,
1979. 701, 702

[191] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel
Dekker, 1989. 701

[192] R. Nussinov, G. Pieczenk, J. Griggs, D. Kleitman. Algorithms for loop matching. SIAM
Journal of Applied Mathematics, 35:68–82, 1978. 993

[193] S. Oaks, H. Wong. Java Threads. O’Reilly, 1999. 753

[194] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987. 1091

[195] S. Owicki, D. Gries. An axiomatic proof technique for parallel programs I. Acta Informatica,
6(4):319–340, 1976. 643

[196] S. Owicki, L. Lamport. Proving liveness properties of concurrent programs. ACM Transac-

tions on Programming Languages and Systems, 4(3):455–495, 1982. 643

[197] L. Pachter, B. Sturmfels (Eds.). Algebraic Statistics for Computational Biology. Cambridge
University Press, 2005. 1010

[198] R. Page, E. Holmes. Molecular Evolution: a Phylogenetic Approach. Blackwell, 1998. 981

[199] R. Paige, R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987. 971

[200] C. Partridge. The end of simple traffic models. IEEE Network, 7(9), 1993. Editor’s Note.
701

[201] V. Paxson, S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM Trans-
actions on Networking, 3:226–244, 1995. 701

[202] M. Pease, R. Shostak L. Lamport. Reaching agreement in the presence of faults. Journal of

the ACM, 27(2):228–234, 1980. 643

[203] J. S. Pedersen, J. Hein. Gene finding with a hidden Markov model of genome structure and
evolution. Bioinformatics, 19(2):219–227, 2003. 1010

[204] S. Petrov. Finite axiomatization of languages for representation of system properties. Infor-
mation Sciences, 47:339–372, 1989. 882

[205] P. A. Pevzner, N. Jones. Bioinformatics Algorithms. The MIT Press, 2004. 1011

[206] G. F. Pfister. In Search of Clusters. Prentice Hall, 1998 (2nd edition). 752

[207] N. Pisanti, M. Sagot. Further thoughts on the syntenic distance between genomes.
Algorithmica, 34(2):157–180, 2002. 1011

http://www.cs.ubc.ca/people/profile.jsp?id=irmtraud
http://www.cs.ubc.ca/people/profile.jsp?id=irmtraud
http://research.janelia.org/myers/
http://research.janelia.org/myers/
http://www.gobics.de/burkhard/
http://www.gobics.de/burkhard/
http://www.gobics.de/burkhard/
http://www.shef.ac.uk/uni/companies/apt/ap.html
http://www.mfn-consulting.com/html/biography.html
http://www.dekker.com/index.jsp
http://epubs.siam.org/SIAP/siap_toc.html
http://www.cs.cornell.edu/Info/People/gries/gries.html
http://springerlink.metapress.com/app/home/journal.asp?wasp=2pw78ahqqj2qxj8dfatn&referrer=parent&backto=linkingpublicationresults,1:100460,1
http://research.microsoft.com/users/lamport/
http://www.acm.org
http://math.berkeley.edu/~lpachter/
http://math.berkeley.edu/~bernd/
http://uk.cambridge.org/
http://www.blackwellpublishing.com/
http://www.cs.nyu.edu/cs/faculty/paige/
http://www.cs.princeton.edu/~ret/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.comsoc.org/pubs/net/
http://portal.acm.org/portal.cfm?CFID=20545300&CFTOKEN=71807633
http://research.microsoft.com/users/lamport/
http://www.acm.org
http://users.soe.ucsc.edu/~jsp/
http://cseweb.ucsd.edu/~ppevzner/
http://cseweb.ucsd.edu/~ncjones/bio.html
http://www.prenhall.com/
http://link.springer.de/link/service/journals/00453/


1126 Bibliography

[208] R. Pottinger. MinCon: A scalable algorithm for answering queries using views. The VLDB
Journal, 10(2):182–198, 2001. 931

[209] F. P. Preparata, M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
1985. 1091

[210] T. Pupko, I. Peer, R. Shamir, D. Graur. A fast algorithm for joint reconstruction of ancestral
amino acid sequences. Molecular Biology and Evolution, 17:890–896, 2000. 1010

[211] K. Räihä, E. Ukkonen. The shortest common supersequence problem over binary alphabet
is NP-complete. Theoretical Computer Science, 16:187–198, 1981. 1008

[212] R. Ravi, J. D. Kececioglu. Approximation algorithms for multiple sequence alignment under
a fixed evolutionary tree. Discrete Applied Mathematics, 88(1–3):355–366, 1998. 982

[213] P. Resnick, H. R. Varian. Recommender Systems. Communications of the ACM, 40(3):56–58,
1997. 1117

[214] E. Rivas, S. Eddy. A dynamic programming algorithm for RNA structure prediction including
pseudoknots. Journal of Molecular Biology, 285(5):2053–2068, 1999. 1011

[215] A. Rényi. Probability Theory. Akadémiai Kiadó/North Holland Publ. House, 1970. 701

[216] S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
EEE Transactions on Computational Biology and Bioinformatics, 3(1):92–94, 2006. 1010

[217] D. F. Rogers, J. Adams. Mathematical Elements for Computer Graphics. McGraw-Hill Book
Co., 1989. 1091

[218] S. H. Roosta. Parallel Processing and Parallel Algorithms. Springer-Verlag, 1999. 849

[219] S. N. Ross. Simulation. Academic Press, 2006. 701

[220] A. Sali, Sr., A. Sali. Generalized dependencies in relational databases. Acta Cybernetica,
13:431–438, 1998. 882

[221] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics,
28:35–42, 1975. 981, 987

[222] L. A. Santaló. Integral Geometry and Geometric Probability. Addison-Wesley, 1976. 1092

[223] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley Series on Parallel and
Distributed Computing. John Wiley & Sons, 2006. 643

[224] A. Segall. Distributed network protocols. IEEE Transactions on Information Theory, IT-
29(1):23–35, 1983. 643

[225] R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal
decompositions and for triangulating polygons. Computational Geometry: Theory and Ap-
plications, 1(1):51–64, 1991. 1091

[226] P. H. Sellers. On the theory and computation of evolutionary distances. SIAM Journal of
Applied Mathematics, 26:787–793, 1974. 974

[227] B. Sharp. Implementing subdivision theory. Game Developer, 7(2):40–45, 2000. 1091

[228] B. Sharp. Subdivision Surface theory. Game Developer, 7(1):34–42, 2000. 1091

[229] I. Shindyalov, P. Bourne. Protein structure alignment by incremental combinatorial extension
(CE) of the optimal path. Protein Engineering, 11(9):739–747, 1998. 1010

[230] A. Silberschatz, P. Galvin, G. Gagne. Applied Operating System Concepts. John Wiley &
Sons, 2000. 752, 848

[231] D. Sima, T. Fountain, P. Kacsuk. Advanced Computer Architectures: a Design Space Ap-
proach. Addison-Wesley Publishing Company, 1998 (2nd edition). 701, 751, 798

[232] T. F. Smith, M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195–197, 1981. 980

[233] J. L. Spouge. Speeding up dynamic programming algorithms for finding optimal lattice paths.
SIAM Journal of Applied Mathematics, 49:1552–1566, 1989. 984

[234] J. L. Spouge. Fast optimal alignment. CABIOS, 7:1–7, 1991. 984, 985

[235] I. Sutherland, G. Hodgeman. Reentrant polygon clipping. Communications of the ACM,
17(1):32–42, 1974. 1091

[236] I. E. Sutherland, R. Sproull, R. Schumacker. A characterization of ten hidden-surface algo-
rithms. Computing Surveys, 6(1):1–55, 1974. 1092

http://springerlink.metapress.com/app/home/journal.asp?wasp=b5cryjywql0qv16pxgfy&referrer=parent&backto=linkingpublicationresults,1:100392,1
http://www.springer.de/ 
http://www.cs.arizona.edu/~kece/
http://www.sciencedirect.com/science/journal/0166218X
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.akkrt.hu/
http://books.mcgraw-hill.com/
http://www.springer-ny.com/
http://www.renyi.hu/~sali/
http://www.inf.u-szeged.hu/kutatas/actacybernetica/starthu.xml
http://epubs.siam.org/SIAP/siap_toc.html
http://www.aw.com/
http://www.wiley.com/
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl
http://epubs.siam.org/SIAP/siap_toc.html
http://www.gdmag.com/homepage.htm
http://www.gamasutra.com/features/20000411/sharp_01.htm
http://www.gdmag.com/homepage.htm
http://www.bell-labs.com/user/avi/
http://www.petergalvin.org/
http://people.westminstercollege.edu/faculty/ggagne/
http://www.bmf.hu/02szervezeti/sima_dezso.htm
http://www.lpds.sztaki.hu/index.php?menu=staff&&load=staff/member.php&&mid=0
http://www.aw.com/
http://www-hto.usc.edu/people/Waterman.html
http://www.sciencedirect.com/science/journal/00222836
http://epubs.siam.org/SIAP/siap_toc.html
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J204&coll=portal&dl=ACM&CFID=21337647&CFTOKEN=70289378


Bibliography 1127

[237] L. Szirmay-Kalos, G. Márton. Worst-case versus average-case complexity of ray-shooting.
Computing, 61(2):103–131, 1998. 1091, 1092

[238] L. Szirmay-Kalos (editor). Theory of Three Dimensional Computer Graphics. Akadémiai
Kiadó, 1995. 1092

[239] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2001. 752

[240] A. S. Tanenbaum. Computer Networks. Prentice Hall, 2004. 701

[241] A. S. Tanenbaum, M. van Steen. Distributed Systems. Principles and Paradigms. Prentice
Hall, 2002. 752

[242] A. S. Tanenbaum, A. Woodhull. Operating Systems. Design and Implementation. Prentice
Hall, 1997. 848

[243] M. Taqqu, W. Teverovsky, W. Willinger. Estimators for long-range dependence: an empirical
study. Fractals, 3(4):785–788, 1995. 701

[244] J. Tarhio, J. E. Ukkonen A greedy approximation algorithm for constructing shortest common
superstrings. Theoretical Computer Science, 57:131–145, 1988. 1008

[245] J. Teich, L. Thiele. Control generation in the design of processor arrays. International Journal
of VLSI and Signal Processing, 3(2):77–92, 1991. 797

[246] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000 (2nd edi-
tion). 643

[247] B. Thalheim. Dependencies in Relational Databases. B. G. Teubner, 1991. 882

[248] J. D. Thompson, D. G. Higgins, T. J. Gibson. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific penalties
and weight matrix choice. Nucleic Acids Research, 22:4673–4680, 1994. 977, 981, 1009

[249] I. Tinoco, O., Uhlenbeck M. Levine. Estimation of secondary structure in ribonucleic acids.
Nature, 230:362–367, 1971. 1010

[250] Trusoft Intl Inc.. Benoit 1.1. Trusoft Intl Inc., 2007. 702

[251] O. G. Tsatalos, M. C. Solomon, Y. Ioannidis. The GMAP: a versatile tool for physical data
independence. The VLDB Journal, 5(2):101–118, 1996. 931

[252] D. M. Tsou, P. C. Fischer. Decomposition of a relation scheme into Boyce–Codd normal
form. SIGACT News, 14(3):23–29, 1982. 882

[253] A. Tucker. Handbook of Computer Science. Chapman & Hall/CRC, 2004. 972

[254] Y. Uemura, A. Hasegawa, Y. Kobayashi, T. Yokomori. Tree adjoining grammars for RNA
structure prediction. Theoretical Computer Science, 210:277–303, 1999. 1011

[255] E. Ukkonen. On approximate string matching. Lecture Notes in Computer Science, 158:487–
495, 1984. 984

[256] E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64:100–
118, 1985. 984

[257] J. D. Ullman. Principles of Database and Knowledge Base Systems. Vol. 1. Computer Science
Press, 1989 (2nd edition). 882

[258] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990. 753

[259] T. Várady, R. R. Martin, J. Cox. Reverse engineering of geometric models - an introduction.
Computer-Aided Design, 29(4):255–269, 1997. 1091

[260] L. Wang, T. Jiang. On the complexity of multiple sequence alignment. Journal of Compu-
tational Biology, 1:337–348, 1994. 981

[261] M. S. Waterman, T. F. Smithand, W. A. Beyer. Some biological sequence metrics. Advances
in Mathematics, 20:367–387, 1976. 976

[262] J. W. Weber, E. Myers. Human whole genome shotgun sequencing. Genome Research, 7:401–
409, 1997. 1008

[263] W. Willinger, V. Paxson. Discussion of “heavy tail modeling and teletraffic data" by S. R.
Resnick. The Annals of Statistics, 25(5):1805–1869, 1997. 702

[264] W. Willinger, M. Taqqu, R. Sherman, D. Wilson. Self-similarity through high-variability:
statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on
Networking, 5:71–86, 1997. 702

http://www.iit.bme.hu/~szirmay/szirmay.html
http://link.springer-ny.com/link/service/journals/00607/index.htm
http://www.iit.bme.hu/~szirmay/szirmay.html
http://www.iit.bme.hu/~{ }szirmay
http://www.akkrt.hu/
http://www.cs.vu.nl/~ast/
http://www.prenhall.com/
http://www.cs.vu.nl/~ast/
http://www.prenhall.com/
http://www.cs.vu.nl/~ast/
http://www.van-steen.net:8081/export/
http://www.prenhall.com/
http://www.cs.vu.nl/~ast/
http://www.prenhall.com/
http://math.bu.edu/people/murad/
http://www.worldscinet.com/fractals/fractals.shtml
file:.
http://www-date.uni-paderborn.de/MEMBERS/teich.html
http://www.tik.ee.ethz.ch/~thiele/
http://www.kluweronline.com/issn/0922-5773/contents
http://www.cs.uu.nl/~gerard/
http://uk.cambridge.org/
http://www.teubner.de/
file:www.trusoft-international.com
http://pup.princeton.edu/
http://springerlink.metapress.com/app/home/journal.asp?wasp=b5cryjywql0qv16pxgfy&referrer=parent&backto=linkingpublicationresults,1:100392,1
http://www.bowdoin.edu/~allen/
http://www.chapmanhall.com/
http://www.crcpress.com/
http://www.cs.helsinki.fi/u/ukkonen/
http://www.cs.helsinki.fi/u/ukkonen/
http://www-db.stanford.edu/~ullman/
http://people.deas.harvard.edu/~valiant/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://www.sciencedirect.com/science/journal/00104485
http://www-hto.usc.edu/people/Waterman.html
http://research.janelia.org/myers/
http://math.bu.edu/people/murad/
http://portal.acm.org/portal.cfm?CFID=20545300&CFTOKEN=71807633


1128 Bibliography

[265] W. Willinger, D. Wilson, W. Leland, M. Taqqu. On traffic measurements that defy traffic
models (and vice versa): self-similar traffic modeling for high-speed networks. Connections,
8(11):14–24, 1994. 701

[266] W. Winkler. Dependent percolation and colliding random walks. Random Structures & Al-
gorithms, 16(1):58–84, 2000. 753

[267] J. Wu, S.. On cost-optimal merge of two intransitive sorted sequences. International Journal
of Foundations of Computer Science, 14(1):99–106, 2003. 753

[268] S. Wu, E.. W. Myers, U. Manber, W. Miller. An O(NP ) sequence comparison algorithm.
Information Processing Letters, 35(6):317–323, 1990. 1009

[269] G. Wyvill, C. McPheeters, B. Wyvill. Data structure for soft objects. The Visual Computer,
4(2):227–234, 1986. 1091

[270] B. Zalik, G. Clapworthy. A universal trapezoidation algorithms for planar polygons. Com-
puters and Graphics, 23(3):353–363, 1999. 1091

[271] C. Zaniolo. A new normal form for the design of relational database schemata. ACM Trans-
actions on Database Systems, 7:489–499, 1982. 882

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

http://math.bu.edu/people/murad/
http://www.math.dartmouth.edu/~pw
http://www3.interscience.wiley.com/cgi-bin/jtoc/38107/
http://research.janelia.org/myers/
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/
http://springerlink.metapress.com/app/home/journal.asp?wasp=e2gpvvrqlq6mme2jqjft&referrer=parent&backto=linkingpublicationresults,1:100388,1
http://www.sciencedirect.com/science/journal/00978493


Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, fig for figure, pr
for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A
A(k)-index, 952, 965, 969
AABB, 1042

absolute optimal algorithm, 727
abstract computer, see model of computation
accurate complexity, 727
action, see event
active edge table, 1082
active mode, 642pr
additive metric, 1001
adjacent processors, 599
admissible execution, 594

AET, 1082
affine function, 977
affine point, 1045

affine transformation, 1051
A(k)-Index-Evaluation, 953
algorithm

absolute optimal, 727
asymptotically optimal, 727
recursive, 730
work-efficient, 727

alternatives, true, 1094

Analysis Tool, 661
analytic geometry, 1012
ancestor-stable, 963
anomaly, 825, 859, 867

deletion, 859
insertion, 859
redundancy, 859
update, 859

anytime algorithm, 1099, 1114

arbitrary PRAM, 721
Armstrong-axioms, 851, 858exe, 866
Armstrong-relation, 880
assignment-free notation, 759, 770
assignment problem, 1102
asymptotically identical order, 728
asymptotically optimal algorithm, 727

asymptotically self-similar process, 676
asynchronous system, 593, 643
atom

relational, 886
attribute, 850

external, 881pr
prime, 868, 881pr

average running time, 725
axiomatisation, 878

B
backing memory, 814

backward label sequence, 962
band matrix, 797
band width, 797
bandwidth, 649

bandwith, 711
bank transactions, 642pr
base addressing, 800
base set, 1102
basic partition, 941

basis function, 1018
basis vector, 1013
benoit, 702
Bernstein-polinom, 1018
best case, 725
Best Fit, 839
Best-Fit, 810, 813exe
Best Fit Decreasing, 840
Bézier curve, 1018, 1025exe
BF, 839, see Best Fit
BFD, see Best Fit Decreasing
binary space partitioning tree, 1065
bioinformatics, 973–1011
bisimilar, 943, 966
bisimulation, 943, 966
blob method, 1024

block, 1014



1130 Index

Bluetooth, 648
boundary surface, 1014

bounding volume, 1056
AABB, 1056
hierarchikus, 1056
sphere, 1056

branch and bound, 1097
branching query, 961, 962
Bresenham algorithm, 1079
Bresenham-Line-Drawing, 1081
Bresenham line drawing algorithm, 1081
broadcast network, 647
BSP, 721
B-Spline, 1021
B-spline, 1019

order, 1019
BSP-tree, 1065, 1089
BSP-Tree-Construction, 1089
bubble sort, 794fig, 795
bucket, 918
Bucket Algorithm, 918, 925
Bully, 601, 603, 643
burstiness, 651
Burst Interarrival Time, 680
busy page frame, 815
butterfly subdivision, 1032
Byzantine failure, 607, 609

C
CACI, see Consolidated Analysis center, Inc.
Calculate-Rank, 805
calculation mode, 784

camera transformation, 1073
candidate solutions, 1093–1095, 1097, 1113
Cartesian coordinate system, 1013
Catmull-Clark subdivision, 1032fig
Catmull-Clark subdivision algorithm, 1032
CCW, see counter clock-wise
cell, 755, 761, 772

boundary, 756, 773, 777, 778, 786, 794
program, 790
structure of, 756, 757fig, 765fig, 767,

771–773, 788fig, 794fig
with distributed control, 786, 788fig
with global control, 782
with local control, 783–786
without control, 782

Cell-Program, 792
cellular automaton, 797
certain answer, 929pr
chain, 722
Chain-Prefix, 750
cherry motif, 997
chess, 1096, 1114
childrenchildren, 595
Chomsky normal form, 991
clear, 758, 762, 783
clipping, 1035, 1040, 1070, 1076

line segments, 1040

Clock, 822, 824exe
clock signal, 755, 760, 761, 781
clock-wise, 601
Closure, 853
Closure, 853, 871, 880exe

of a set of attributes, 858exe
of a set of functional dependencies, 851,

852, 858exe

of set of attributes, 852, 853
clustering algorithms, 1097
Cohen-Sutherland-Line-Clipping, 1044

Cohen-Sutherland line clipping algorithm,
1042

collecting rumors, 626
collector, 628
collector processor, 628
collision detection, 1035, 1052
columnindex, 723
column of processors, 723
combined PRAM, 721
Combine-MCDs, 928
common PRAM, 721
communication

external, 761
internal, 761

communication topology
hexagonal, 771
of systolic array, 770, 789
orthogonal, 771

COMNET, 653
complexity

message, 594
time, 594

compound operation, 760, 781
computational biology, 1097
computer graphics, 1012–1092
condition

liveness, 593
safety, 593

cone, 1015
configuration, 593
connection pattern, 756, 767
consensus problem, 607, 643
Consensus-with-Byzantine-failures, 610
Consensus-with-Crash-Failures, 608, 643
consistent cut, 617
constructive solid geometry, 1024

control
local/global, 783, 784fig

control signal
propagated, 786

convex combination, 1016
convex combinations, 1015
convex hull, 1018
convex vertex, 1028
coordinate, 1013
copy operation, 771
cost driven method, 1066
counter clock-wise, 601
covering argument, 639
covering of a shared variable, 639
Cox–deBoor algorithm, 1021
crash failure, 607
CRCW, 721, 744
CRCW PRAM, 749exe
Create-Bucket, 918
CREW, 721
CREW PRAM, 729, 733, 735
CREW-Prefix, 730
crossover point, 728
cross product, 1013
cube, 723
curve, 1015
cut, 617
CW, see clock-wise
CYK algorithm, 991



Index 1131

cylinder, 1015

CS
CSG, see constructive solid geometry
CSG tree, 1025

D
D(k)-index, 955, 956
D(k)-Index-Creator, 957
D(k)-Index-Creator, 956
data

input, 759, 761
output, 759

database architecture
layer

logical, 902
outer, 902
physical, 902

data dependence, 770
data dependencies, 712
Data Exchange Chart, 665
data flow, 770

regular, 756
data independence

logical, 904

data integration system, 908
datalog

non-recursive, 891
with negation, 892

program, 895, 921
precedence graph, 897
recursive, 898

rule, 894, 921
data parallelism, 709
data rate, 773, 777, 794, 795
data storage, 761
data stream, 755

input, 777, 794
input/output, 777
length of, 763

data structure index, 774, 775
data structure vector, 774

DDA, see digital differential analyzator
algorithm

DDA-Line-Drawing, 1079
d-dimensional hypercube, 723
decision maker, 1094
decision of a processor, 607
decision variable, 1080
decomposition

dependency preserving, 864

dependency preserving into 3NF, 871
lossless join, 860

into BCNF, 868
delay, 761, 762, 784
dendrograms, 998
dependence vector, 770, 791
dependency

branching, 879
equality generating, 873
functional, 850

equivalent families, 855
minimal cover of a family of, 856

join, 878
multivalued, 872

numerical, 880
tuple generating, 873

dependency basis, 874

Dependency-Basis, 875
Dependency-basis, 882pr
depth-buffer, 1084

depth first search, 898
depth of the tree, 963
Depth Search First, 596
descendant-stable, 963
Det-Ranking, 736
DFS, see Depth Search First
diagonal, 1027
diameter, 723
digital differential analyzator algorithm, 1079
disseminator processor, 628
distinct shared variable, 639
distributed algorithms, 592–643
distributed database, 971pr
Distributed-Snapshot, 618
divide-and-conquer, 738, 743, 747, 748
divide-and-conquer algorithm, 1103
Divide-and-Cover, 1104

DNA, 973
domain, 759, 850

dense convex, 767, 768
of input/output operations, 778
parametric, 767

domain calculus, 862
domain restricted, 890
dot product, 758, 1012
dropped packet rate, 651
DTD, 939
dual tree, 1029
dynamic page replacement algorithms, 815
dynamic partitions, 806
dynamic programming, 1097
dynamic programming table, 975

E
ear, 1028
ear cutting, 1029
e-commerce, 1096
Economic Power, 842
Edgeaddition-1-Index, 968
Edgeaddition-FB-Index, 969
Edge-Plane-Intersection, 1041
edge point, 1032
efficiency, 727, 749
Efficient-Maximal-Simulation, 937
Efficient-PT, 950
efficient solutions, 1115
ellipse, 1016
emulation, 646
end cell, 794

ending phase, 629
Ending-Phase, 631
EP, see Economic Power
Equate, 861
equational calculus, 759
equation of the line, 1047

in homogeneous coordinates, 1048

equation of the tangent plane, 1017
ERCW, 721
EREW, 720
EREW PRAM, 749exe



1132 Index

EREW-Prefix, 730, 731, 733
event, 593
exact, 942

Exact-cover, 900
execution, 593
execution sequences, 643
execution time, 826
Expert Analyízer, 693exe
external point, 1014
eye position, 1071

F
F+B+F+B-index, 964
F+B-index, 964
face point, 1032
FACT, see Factorial
fact, 895
Factorial, 841
failure, 798

Byzantine, 607
crash, 607

fairness, 593
fast exclusion algorithm, 640

Fast-Lock, 640
Fast-Mutual-Exclusion, 640, 641
FB(f, b, d)-index, 962, 964
FB(f, b, d)-Index-Creator, 964

FB-index, 961, 963, 968
FB-Index-Creator, 964

FDDI, see Fiber Distributed Data Interface
feasible solution, 1102
feasible subset, 1102
Felsenstein algorithm, 987
FF, 839, see First Fit
FFD, 840, see First Fit decreasing
Fiber Distributed Data Interface, 648
FIFO, 816, see First In First Out
FIFO-Executes, 817
final choice, 1093, 1096
First Fit, 838
First-Fit, 808, 813exe
First In First Out, 816
fixed partitions, 800
fixed point number representation, 1079
fixpoint, 895
Flood, 597, 642pr
flow direction, 771, 772, 773
Form-MCDs, 927
fortress, 1008exe
forward label sequence, 962
Forward-Looking, 978
forward looking algorithm, 978
Forward-Looking-Binary-Searching, 979
Fourier-Motzkin elimination, 792
four-point metric, 1001
fragmentation the memory, 809
frame, 814

busy, 815
frame size, 651
free tuple, 885, 892
frequent regular queries, 957
full input matrix, 797pr
Full-Tuplewise-Join, 898
functional representation, 1091

G
gap, 976
gap penalty, 976
general, 642pr
Generalised Multi-level Access Path, 907
General-Selection, 745

generative design, 1115
generic operator, 758, 778

distributed, 772
genetic algorithm, 1098, 1115
Global Positioning System, 648

global view, 790
GMAP, 907
gossip, 626
GPS, see Global Positioning System
grammar, 962
Graphaddition-1-Index, 966
Graphaddition-A(k)-Index, 969
Graphaddition-FB-Index, 968
graphical visualisation, 1116
graph message, 630
gravity assist, 1096
guide-tree, 981

H
Hamming-distance, 723
happens before, 614, 620
hardware algorithm, 754

head homomorphism, 926
head of a list, 735
helix, 1016
heuristic, 1097, 1098, 1112, 1114, 1115

exchange, 1098, 1099
insertion, 1098

Hidden Markov Model, 989
High Performance Fortran, 719, 753
Hirschberg algorithm, 983, 986exe
HMM, see Hidden Markov Model
homogeneous coordinate, 1046, 1047

homogeneous linear transformation, 1045,
1049

homomorphism theorem, 898
Horn rule, 921
host computer, 755, 761, 783, 786, 789, 794
HPF, see High Performance Fortran
human-computer interaction, 1093
Hurst parameter, 680
Hurst-parameter, 676

I
ideal line, 1045

ideal plane, 1045

ideal point, 1045

identifier, 601
image, 1012
image under a query, 886
immediate consequence, 895

operator, 895
implication problem, 970pr
implicit equation, 1014

Improved-Maximal-Simulation, 937
Improved-Semi-Naiv-Datalog, 898, 902exe
incremental principle, 1070, 1079, 1082
index, 941



Index 1133

Index-Evaluation, 943

index expression, 790
index function, 791
indexing, 939
indexing of processors, 750
index of an index, 965
index of the virtual page frame, 815
index refresh, 965
inference rules, 851

complete, 851
sound, 851

infinite domain, 886
inhomogeneity, 796
input/output expansion, 778
input/output scheme, 755, 757fig, 762, 773,

774fig, 775, 783fig, 794fig
extended, 777, 778, 778, 779fig
superposition of, 776, 777

input of a processor, 607
input stream, 763, 782

length of, 763
inquiring message, 630
Insertion-Heuristic-for-TSP, 1098
insertion sort, 795
Inside, 991
instance, 759, 762, 850, 883
instruction affects causally, 614

integer linear programming, 1112
Integer-Selection, 744

integral geometry, 1066, 1092
integrity constraint, 850, 864, 902
interactive evolution, 1115
interleaving, 779, 780fig
internal point, 1014

Internet, 647
internetwork, 647

intersection calculation
plane, 1055
triangle, 1055

Inverse-rules Algorithm, 920, 925
iso-parametric curve, 1016
iteration

variable, 759, 790
vector, 759, 760, 766, 774, 775, 781

iterative deepening, 1099, 1114

Iterative-Deepening-Tree-Search, 1114

Iterative-Penalty-Method, 1107
iterative sequence alignment, 981

J
join

natural, 887
Join-Test, 861
Join-test, 862fig, 871

K
k-best algorithm, 1094

k-bisimilar, 952
k-bisimulation, 952
kd-tree, 1066
Kd-Tree-Construction, 1067
key, 851, 857, 868

primary, 878
knapsack problem, 1102
knot vector, 1019

L
label sequence, 939
LAN, see local area network
LAN Analyzer, 693exe
Largest-Fit, 801, 813exe
Largest-or-Long-Waiting-Fit, 803
Largest-or-long-waiting-Fit, 813exe
latency, 650, 711
lazy method, 967
leader election, 643
left handed, 1078
level, 724
LF, 838, see Linear Fit
LFU-Executes, 820
lieutenant, 642pr
LIFO, 824exe
Limited-Best-Fit, 811, 813exe
Limited-Worst-Fit, 812, 813exe
line, 1016

direction vector, 1016
equation, 1016
place vector, 1016

Linear-Closure, 855
Linear-closure, 865, 870
Linear-closure, 866, 870
Linear Fit, 838
linear programming, 1108
linear speedup, 726
line segment, 1016
link, 756, 761, 771

directed, 761
link capacity, 649
List-Keys, 858
list ranking problem, 735
List-Scheduling, 824
literal, 892

negative, 892
positive, 892

liveness condition, 593
Load-Largest, 801
Load-Largest-or-Long-Waiting, 804

Load-Long-Waiting-or-Not-Smaller, 806
local area network, 648
local control, 1021
locality, 711
local search, 1114

with 2-exchange steps, 1098, 1112, 1113
Local-Search-with-2-Exchanges-for-

TSP,
1098

local view, 790
Logarithmic-Merge, 737
logical clock, 613
Logical-Clock, 613
logical implication, 851, 873
logic program, 921
log-odds, 980
LogP, 721
long-range dependency, 651
long-range dependent process, 676
Long-Waiting-or-Not-Fit-Smaller, 806,

813exe
lossless join, 860
lower bound, 725, 936
LRU, 817, see Least Recently Used
LRU-Executes, 818



1134 Index

M
M(k)-index, 959
M(k)-Index-Creator, 959
M∗(k)-index, 960
M∗(k)-Index- Naive-Evaluation, 960
M∗(k)-Index-Prefiltered-Evaluation, 961
main memory, 814
main query, 962
MAN, see metropolitan area network
Management Information Base, 670
marching cubes algorithm, 1034
matrix

full, 797
unimodular, 768

matrix product, 755, 757fig, 764, 765fig,
788fig

Matrix-Product, 758
matrix-vector product, 794

MCD, 926
MDLC, see Model Development Life Cycle
mediator system, 908
memory, 814
memory management, 799–849
Merge,
merge, 749exe
mesh, 749–751, 1026
message

graph, 630
inquiring, 630
notifying, 630
range, 630

messagereply, 630
message complexity, 594

method of invariants, 1081
metric

ultrametric, 998
metropolitan area network, 648
MIB, see Management Information Base
micro mutations, 1094, 1100
Microsoft

Access, 886
MiniCon Description, 926
MiniCon Description (MCD), 926
Minimal-Cover, 856
Minimal-cover, 871
Minimal-cover, 881pr
minimum evolution, 974

mode
active, 642
calculation, 784
propagation, 784
relay, 642

model
continuous, 645
deterministic, 645
discrete, 645
dynamic, 644
static, 644
stochastic, 645

Model Development Life Cycle, 669, 670
modell

batched Markovian arrival, 677
fluid-flow, 677
Markovian arrival process, 677
Markov-modulated Poisson-process, 677

model of computation, 724
Monte Carlo integration, 1114

morphing, 1025
MPMD, see Multiple Program Multiple Data
M∗(k)-Index-Evaluation-Top-to-Bottom,

960
multicriteria decision making, 1115
multiple-choice algorithm, 1094
multiple-choice optimisation, 1093, 1094
multiple-choice system, 1093, 1094, 1097exe,

1099
examples, 1094

multiple-choice test, 1094
Multiple Program Multiple Data, 709
multiply-add, 760

N
Naiv-BCNF, 869
Naiv-Datalog, 896, 923
Naive-Approximation, 953
Naive-Evaluation, 940

naive index, 941

Naive-Index-Evaluation, 942

Naive-Maximal-Simulation, 936
Naive-PT, 946

natural join, 859, 869, 887
Neighbor-Joining, 1011
Neighbour-Joining, 1000, 1003
network, 593
network attributes, 649

network flow problems, 1108
network simulation, 644–702
Next Fit, 838
Next-Fit, 809, 813exe
NF, 838, see Next Fit
NFD, 840, see Next Fit Decreasing
NFU, 824exe
Node Editor, 660
normal form, 867

BCNF, 881pr
BCNF, 867
Boyce-Codd, 867
Boyce–Codd, 867
5NF, 878
4NF, 867, 875
3NF, 867, 868, 871, 881pr

notifying message, 630
NP-complete problems, 1095, 1097
nr-datalog¬ program, 893
NRU, 820, 824exe
NRU-Executes, 821
NRU-Prepares, 821
NRU-Swap-Out, 821
number of page faults, 815
numerical instabilities, 1116
NURBS, 1022

O
object median method, 1066
oblivious algorithm, 739
octree, 1064

Odd-Even-Merge, 738, 747
Odd-Even-Sort, 747

1-index, 943, 965
1-Index-Evaluation, 944

OpenMP, 719



Index 1135

operation
elementary, 760
input/output, 759

operation mode, 781, 785
OPNET, 660, 701
OPT-Executes, 818
optimal alignment, 975
Optimal-Prefix, 730, 732, 735
OPT-Swap-Out, 819
Ordered-Broadcast, 622, 633exe
origin, 1013
orthogonal, 1012

vector, 1012
other, 597
output

delayed, 783fig
output normal form, 791
output of a processor, 607
Outside, 991
outside world, 756, 761, 763

P
packed switched network, 691exe
packet, 648

packet interarrival time, 680
page, 814

Page Frequency Fault, 823
page replacement algorithm

dynamic, 815
static, 815

page replacement algorithms,
page table, 815
painter’s algorithm, 1088, 1092
Pairwise Fit, 839
Pairwise Fit Decreasing, 840
PAN, see personal area network
parallel, 1013

line, 1016
plane, 1015
vector, 1013

parallel computations, 703–753
parallelising compilers, 720
parallelism

directly express, 759
massive, 755
task, 709

parallel random access machine, 720
parametric equation, 1015
parametric problem, 764
parent, 595
partition, 799

dynamic, 806
fixed, 800

PDA, see personal digital assistant
penalty function

additive penalties, 1101, 1113exe
relative penalty factors, 1100, 1103

penalty method, 1099, 1100, 1102
penalty method, iterative, 1107
Penalty-Method-for-the-TSP-Problem-

with-2-Exchange-Heuristic,
1112

Penalty-Method-with-Relative-
Penalty-Factors,
1100

penalty-optimal, 1103
penalty parameter, optimal, 1106, 1112

performance measure, 726
absolute, 725
relative, 725

performance metrics, 649

period, 787
permanent virtual circuit (PVC), 671
personal area network, 647
personal digital assistant, 647
perturbation of local optima, 1099
PF, 840, see Pairwise Fit
PFD, see pairwise Fit Decreasing
PFF, 823, see Page Frequency Fault
phase

ending, 629
regular, 629

pipelining, 755, 763, 764
pixel, 1012
Place, 808, 813exe
pointer jumping, 736
point-to-point network, 647
Poisson point process, 1060
polygon, 1026
Polygon-Fill, 1083
polygon fill algorithm, 1081
polyhedron, 1027
polyline, 1026
Polynomial-BCNF, 870
port, 756, 772

input, 756, 765, 772
output, 756, 765, 772

Post Correspondence Problem, 930pr
PRAM, see parallel random access machine
PRAM algorithm, 797
precedence graph, 897, 924
prefix, 729, 732
prefix computation, 729
prefix computation on chain, 749
prefix computation on square, 750
prefix problem, 729, 749
Preparata, 748

present/absent bit, 815
Preserve, 865
priority PRAM, 721
problem parameter, 756, 763, 769, 782, 788
Process Editor, 660
processor

disseminator, 628
profile, 982
Project Editor, 660
projection, 766, 887

direction, 766, 778, 796
matrix, 766, 773exe
vector, 766, 773exe, 790

projective
geometry, 1045

line, 1048

line segment, 1048

plane, 1048
space, 1045

propagation mode, 784

protocol overhead, 651
PT, 948

PT-algorithm, 944

PVC, see permanent virtual circuit



1136 Index

Q
QBE, 886
QFD, 841, see Quick Fit Decreasing
qos, see quality of service
QP, see Quick Power
QSM, 721
Quadratic-Select, 742

Quadratic-Sort, 746

quadric, 1054

quadtree, 1065exe
quality of service, 619
quantification, 759
query, 884

conjunctive, 898
domain restricted, 890
program, 888
rule based, 885
subgoal, 918

empty, 901exe
equivalent, 885
homomorphism, 899, 911
language, 883

equivalent, 885
mapping, 884
monotone, 886, 901exe
relational algebra, 901exe
rewriting, 910

complete, 910
conjunctive, 919
equivalent, 910, 913
globally minimal, 910
locally minimal, 910
maximally contained, 913
minimal, 910

rule based, 901exe
satisfiable, 886, 901exe
subgoal, 925
tableau, 886, 901exe

minimal, 899
summary, 886

variables of, 925
query evaluation, 939
query language, 939

relationally complete, 892
query rewriting, 883–931
Quick Fit Decreasing, 840
Quick Power, 841
Quick-Selection, 743

R
RAM, 722, see random access machine
random access machine, 720
range message, 630
rasterization, 1078
ray, 1052
Ray-First-Intersection, 1053
Ray-First-Intersection-with-kd-Tree,

1068
Ray-First-Intersection-with-Octree,

1064

Ray-First-Intersection-with-Uniform-
Grid,
1059

ray parameter, 1052
ray tracing, 1052
rbb, see Reliable Basic Broadcast service

rco, see Reliable Causal Order
realtime scenario, 1094
recommender systems, 1096
record, 850
recurrence equation, 759

uniform, 797
recursion, 894
recursive algorithm, 730
reference string, 815
Refine, 958
Refine-Index-Node, 958
register, 772
regular expression, 939
regular phase, 629
Regular-Phase, 630
relation, 883

extensional, 886, 895, 903
instance, 883, 884fig
intensional, 886, 888, 895, 903
mutually recursive, 898
virtual, 908

relational
schema, 850

decomposition of, 859
table, 850

relational algebra∗, 887
relational data bases,
relational schema, 883
relative number of steps, 726
relative speed, 749, see speedup
relay mode, 642pr
Reliable Basic Broadcast service, 621
Reliable-Causally-Ordered-Broadcast,

624, 633exe

Reliable Causal Order, 621
Reliable Total Order, 621
relocatable programs, 799
Remote Monitoring, 670
renaming, 887
rendering, 1012
reply message, 630
reset, 782fig
response time, 650
reverse engineering, 1091
right handed, 1078
right hand rule, 1013
right neighbour, 735
RMON, see Remote Monitoring
RNA-foldings, 1097
Rodrigues-formula, 1051, 1052exe
round, 730
round trip, 1095
route planning, 1100, 1105
Routing protocols, 650
row-major indexing scheme, 750
row of processors, 723
rssf, see Reliable Single-Source FIFO
rto, see Reliable Total Order
rule, 885

body, 885
domain restricted, 892
head, 885
realisation, 895

run length, 672
running time, 728

average, 725
expected, 725
in best case, 725



Index 1137

in worst case, 725
of systolic algorithm, 755, 758, 761, 770,

794

S
safe, 942

safety condition, 593
Satisfiable, 891
scalar control processor, 761
scan line, 1081
schema

extensional, 895
intensional, 895
mediated, 908

screen coordinate system, 1071
search problem, 742

Second-Chance, 824exe
segment, 814

Selection, 741–745
selection, 741, 887

condition, 887
selection sort, 795
self-similarity, 675
self-similar process, 676
Semi-Naiv-Datalog, 923
Semi-naiv-datalog, 897, 902exe
semistructured databases, 932–972
sender, 619
separating plane, 1065
sequence alignment, 974

sequence alignment problem, 1102
sequentialisation, 713
serialisation, 758
shadow, 1052
shape, 1012
Shortening of lists, 842
shortest path problem, 1094, 1102, 1108
shortlisting, 1096, 1097
short-range dependent process, 676
shotgun sequencing, 1008
side effect, 759
similar nodes, 935
simple, 1026
simple expression, 939
simple graph, 627
Simple Network Management Protocol, 670
simple polygon, 1026
Simple Power, 841
simulated annealing, 1098
simulation, 935
simultaneity, 760
single connected, 1026
Single Program Multiple Data, 709
single source consensus, 642pr
skew, 763
SL, see Shortening of lists
slow down, 783
Slow-Lock, 641
slow start algorithm, 652
small parsimony problem, 986
Smith-Waterman algorithm, 986exe
Smith–Waterman-algorithm, 1008pr
snapshot, 764fig, 775
Sniffer, 669, 702
SNMP, see Simple Network Management

Protocol

SNR, see signal to noise ratio
solid, 1014

solve the leader election problem, 600
sorting, 746–749
sorting algorithms, 795
sorting problem, 746

source description, 908
source processor, 619
SP, see Simple Power
space, 1012
space coordinates, 757, 766, 767

parametric, 767–769
space-time

matrix, 768, 780
transformation, 764–773, 767, 790

Spanning-Tree-Broadcast, 595
spanning tree has ben constructed, 597
spatial median method, 1066
speedup, 726, 749exe

linear, 726
sublinear, 726
superlinear, 726

sphere, 1014, 1015

split, 946

Split-Partition, 807
splitter, 946

SPMD, see Single Program Multiple Data
Spogue algorithm, 986exe
Spouge-algorithm, 1008pr
spurious operation, 778
SQL, 903
square, 723
Square-Prefix, 750
stable, 945

*-Run, 816
state

terminated, 594
state flip-flop, 785
static page replacement algorithms, 815
stationary

matrix, 763, 773
variable, 763, 772, 778, 782

strongly connected component, 898
subgoal, 918
sublinear speedup, 726
substitution, 898
substring, 980
successive fixing, 1115
sum-of-pairs, 985
sum type optimisation problem, 1102
superkey, 851, 857, 867
superlinear speedup, 726
superstep, 722
Sutherland-Hodgeman polygon clipping,

1091
Sutherland-Hodgeman-Polygon-

Clipping,
1041

Sutherland-Hodgeman polygon clipping
algorithm, 1041

swap-in, 816
swap-out, 816
symbolic evaluation, 767
synchronous, 760

network, 798
System-R style optimiser, 915
systolic, 754, 755



1138 Index

algorithm, 755
architecture, 761
system, 754–798, 755
timestep, 760

systolic array, 754–798, 755
architecture of, 767
border of, 763, 769, 773
boundary of, 778, 794
degenerated, 794

hexagonal, 765, 769
linear, 794

multi-dimensional, 763
parameter of, 756, 769, 782
programmable, 790
rectangular, 755, 757fig, 765, 788fig
shape of, 765, 768, 769
size of, 756, 768
structure of, 755, 756, 757fig, 765fig,

788fig, 790, 794fig

T
task, 709, 826
task parallelism, 709
terminated algorithm, 594

terminated state, 594
termination, 594
tessellation, 1026

adaptive, 1030
beg-ind, 840
counter, 823
end-ind, 840
free, 839
guarded, 819
ind, 839
thread, 709
threads programming, 719
3D DDA algorithm, 1091
3D line drawing algorithm, 1058
3-Hirn, 1096, 1099
throughput, 787
tiebreak situations, 1099
time complexity, 594

timed execution, 594
timestep, 761

discrete, 760
time vector, 766, 772, 781, 790
topology, 593
torus, 1014

Tournament-Tree, 638
trace-back, 976
traffic engineering, 650
Transaction Interarrival Time, 680
transformation, 1044

of domain, 790, 791
of index set, 791

transformational distance, 970pr
Transform-Expand-Sample models, 677
transitive closure, 894
translation, 1012
Travelling Salesperson Problem (TSP), 1095,

1097, 1102, 1112, 1116exe
Traverse, 940

triangle, 1015
left oriented, 1085
right oriented, 1085

triangular matrix
lower, 796

tri-linear approximation, 1034

triple brain, see 3-Hirn
tuple

free, 885
T vertex, 1031
two ears theorem, 1029, 1091
2-exchange, 1098
2-exchange, 1112, 1113
two generals problem, 607, 643
2-mutual exclusion, 641

U
ULE, see upper and lower estimations
ultrametric, 998
uniform algorithm, 764
Uniform-Grid-Construction, 1056
Uniform-Grid-Enclosing-Cell, 1057
Uniform-Grid-Next-Cell, 1058
Uniform-Grid-Ray-Parameter-

Initialization,
1058

upper and lower estimations, 842
upper bound, 936
utilisation, 763, 779, 781

V
value, 642pr
vector, 1012

absolute value, 1012
addition, 1012
cross product, 1013
dot product, 1012
multiplication with a scalar, 1012

vectorization, 1026
vector of the execution times, 826
vector time stamp, 616
vehicle routing, 1094, 1101
view, 883, 902

inverse, 921
materialised, 904

virtual memory, 814
virtual world, 1012
visibility problem, 1084

voxel, 1033

W
Want, 641
warm-up period, 672
Warnock, 1087
Warnock-algorithm, 1087
Weight-Changer, 955, 956, 957, 961exe
Weight-Increaser, 957
wide area network, 648
work, 726, 749
work-efficient algorithm, 727
Working-Set, 822
work-optimal algorithm, 727
worst case, 725, 728
Worst-Fit, 812, 813exe
wrap around problem, 1076
writing array, 815
WS, 823, see Working Set



Index 1139

X
XML, 907, 933

Z

Z-buffer, 1084

z-buffer, 1084

algorithm, 1084

Z-Buffer-Lower-Triangle, 1086
zero-one principle, 739



Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A
Abiteboul, Serge, 862, 879, 882, 931, 1118
Adams, J. A., 1126
Addario-Berry, L., 1118
Addie, R. G., 701, 702
Addie, Ronald G., 1118
Aho, Alfred V., 876, 882, 1118
Ahuja, Ravindra K., 1109, 1118
Akutsu, Tatsuya, 1118
Allen, Randy, 752, 1123
Althöfer, Ingo, 583, 1093, 1096, 1117, 1118
Althaus, E., 1118
Altshuland, S. J., 1124
Amdahl, Gene M., 710, 752
Anick, D., 701, 1118
AnTonCom Infokommunikációs Kft., 583
Arenas, Marcelo, 971
Arlazarov, V. L., 1118
Armstrong, William Ward, 866, 880, 882
Aspnes, James, 643, 1118
Atteson, Kevin, 1118
Attiya, Hagit, 643, 1118
Awerbuch, Baruch, 643, 1118

B
Back, Thomas, 1119
Bader, M., 1007, 1118
Baeck, Thomas, 1119
Baker, B., 1119
Balogh, Ádám, 583, 753, 799
Banks, Jerry, 701, 1119
Banzhaf, Wolfgang, 1117, 1119
Beeri, Catriel, 873, 874, 876, 882, 1118, 1119
Békéssy, András, 857, 882, 1119
Bélády, László A., 825, 848, 1119
Bello, Randall G., 931
Benczúr, András, 583
Benner, Steven A., 1119, 1122
Beran, J., 701, 1119
Berg, Daniel J., 753, 1124
Berger, Franziska, 1095, 1101, 1117
Berman, Ken A., 752
Berman, Piotr, 610, 643, 1119
Bernstein, Felix, 1018
Bernstein, P. A., 882, 1119

Bestavros, Azer, 701, 702, 1120
Beyer, W. A., 1127
Bézier, Pierre (1910–1999), 1018, 1025
Blinn, Jim, 1024, 1091, 1119
Bloomenthal, J., 1119
Bohannon, Philip, 972
Bourne, P. E., 1126
Boyce, Raymond F., 867, 882
Brent, R. P., 752
Bresenham, Jack E., 1079, 1092, 1119
Buneman, Peter, 931, 971, 1119
Burns, James E., 639, 643, 1119
Busch, Costas, 1118

C
Calvanese, Diego, 931
Caprara, Alberto, 1118, 1119
Carillo, H., 1119
Carson, J., 701, 1119
Casanova, Henri, 752, 1119
Catmull, Edwin, 1032, 1091, 1119
Chandra, Rohit, 753, 1119
Chaudhuri, Surajit, 931
Chazelle, Bernhard, 1091, 1119
Chen, Qun, 972
Chor, B., 1118, 1119
Choudhary, Alok, 752, 1123
Christie, D. A., 1120
Clapworthy, Gordon, 1128
Clark, James, 1032, 1091, 1119
Cochrane, Roberta, 931
Codd, Edgar F. (1923–2003), 850, 867, 882,

892, 1120
Coffman, Ed G., Jr., 848, 849, 1120
Cohen, Mark A., 1119, 1122
Cormen, Thomas H., 752, 753, 849, 1120
Corneil, Derek G., 971, 1120
Corpet, F., 1120
Cox, J., 1127
Cox, M. G., 1021
Coxeter, Harold Scott MacDonald

(1907–2003), 1091, 1120
Crovella, Mark E., 701, 702, 1120
Culler, D. E., 753



Name Index 1141

CS
Csörnyei, Zoltán, 583

D
Dömösi, Pál, 583
Dagum, Leo, 753, 1119
Darte, Alain, 797, 1120
Dayhoff, M. O., 1120
de Berg, Marc, 1091, 1120
deBoor, Carl, 1021
De Giacomo, Giuseppe, 931
Delobel, C., 882, 1120
Demers, A., 1123
Demetrovics, János, 583, 850, 857, 882, 883,

1119, 1120
Denning, Peter J., 848, 1120
Descartes, René, 1013
Deutsch, Alin, 931
Dias, Karl, 931
Dinic, E., 1118
Dolev, Danny, 609, 643, 1120
Dolev, Shlomi, 1118
Doolittle, R. F., 1121
Dowd, M., 882, 1119
Downing, Alan, 931
Dress, A., 1125
Drummond, A., 1124
Duffield, N., 701, 1120
Duffy, D. E., 701, 1120
Durbin, Richard, 1124
Duschka, Oliver M., 931
Dwork, Cynthia, 643, 1118
Dyn, Niva, 1091, 1120

E
Eastern Hungarian Informatics Books

Repository, 583
Eddy, Sean, 1126
Einstein, Albert (1879–1955), 760
Elias, I., 1120
Englert, Burkhard, 583, 592
Eramo, Vincenzo, 701, 1124
Erdős Péter L., 1120
Erramilli, A., 701, 1120
European Social Fund, 583
European Union, 583

F
Fülöp, Zoltán, 583
Fagin, R., 873, 882, 1121
Faradzev, I. A., 1118
Farin, Gerald, 1091, 1121
Feenan, James J., 931
Feiner, Steven K., 1121
Felsenstein, Joseph, 1121
Feng, D., 1121
Fernandez, Mary, 931, 971, 1119
Fernando, Randoma, 1092, 1121
Fickett, J. W., 1121
Finnerty, James L., 931
Fischer, Michael J., 609, 612, 637, 643, 1121,

1124
Fischer, P. C., 882, 1127
Fitch, W. M., 1121
Florescu, Daniela D., 931, 1121
Floyd, S., 701, 1125

Flynn, Michael J., 752, 1121
Fogel, David B., 1119
Fohry, Claudia, 583, 703, 752
Foley, James D., 1121
Fornai, Péter, 826, 848, 849
Fortune, S., 753
Foster, Ian, 752
Foulds, L. R., 1121
Fountain, Terence J., 701, 798, 1126
Fourier, Jean Baptiste Joseph (1768–1830),

792
French, K., 1125
Fridli, Sándor, 583
Friedman, Marc, 931
Fujimoto, A., 1091, 1121

G
Gács, Péter, 583, 1121
Gagne, Greg, 752, 848, 1126
Gál, Anna, 583
Gal, T., 1121
Galántai, Aurél, 583
Galil, Ziv, 1121
Gallant, J. K., 1121
Galvin, Peter Baer, 752, 848, 1126
Gararch, William, 753, 1121
Garay, Juan A., 610, 643, 1119
Garcia-Molina, Hector, 643, 1121
Garey, Michael R., 971, 1121, 1123
Garofalakis, Minos, 972
Gates, William Henry, 1121
Gécseg, Ferenc, 848, 1121
Gecsei, Jan, 848, 1124
Genesereth, Michael R., 931
Georgiou, Chryssis, 1118
Giancarlo, R., 1121
Gibbons, P. B., 753
Gibson, T. J., 1127
Glassner, A. S., 1121
Gnanaprakasam, Senthil, 931
Goldberg, David E., 1117, 1121
Goldman, N., 1121
Goldstein, Jonathan, 931
Golub, Evan, 753, 1121
Gonda, János, 583
Gonnet, Haas Gaston Henry, 1119, 1122
Gotlieb, Calvin C., 971, 1120
Gotoh, Osamu, 1122
Gottlob, Georg, 971
Graham, Ronald L., 1121
Graham, Ronald Lewis, 1123
Grahne, Gösta, 931
Grama, Ananth, 1122
Grant, John, 880, 882, 1122
Graur, D., 1125
Gray, James N., 643
Gregory, J., 1120
Gries, David, 643, 1125
Griggs, J. R., 1125
Gropp, William, 752, 1122
Gu, Q-P., 1122
Gudes, Ehud, 972
Gusella, Riccardo, 701, 1122
Gusfield, Daniel M., 1122
Gustafson, John L., 710, 752, 1122
Gyíres, Tibor, 583
Gyires, Tibor, 644, 701, 1122



1142 Name Index

H
Halevy, Alon Y., 931, 1121, 1122
Hallett, Michael T., 1118
Hanne, T., 1121
Hannenhali, Sridhar, 1011
Hannenhalli, Sridhar, 1122
Hartman, T., 1120
Hasegawa, A., 1127
Havran, Vlastimil, 1092
He, Hao, 960, 970, 972
Hefles, H., 701, 1122
Hein, Jotun, 1010, 1123–1125
Heinz, Ernst A., 1117, 1122
Henzinger, Monika Rauch, 971
Henzinger, Thomas A., 971
Herman, Iván, 1091, 1122
Heylighen, Francis, 702
Higgins, D. G., 1127
Hirschberg, Daniel S., 1122
Hirschberg, D. S., 983
Hodgeman, G. W., 1041, 1091, 1126
Holmes, Eddie C., 1125
Hopcroft, John E., 848, 1122
Horowitz, Ellis, 752, 753, 1122
Howard, J. H., 873, 882
Hubbard, T. J. P., 1122
Hughes, John F., 1121
Hughey, R., 1122
Hull, Richard, 862, 879, 882
Hunt, J. W., 1122
Hurst, H. E., 676
Hwang, K., 1122

I
Imreh, Csanád, 583
Ioannidis, Yannis E., 907, 931, 1127
Iványi, Anna Barbara, 583
Iványi, Antal Miklós, 583, 703, 752, 753, 799,

826, 848, 849, 1122, 1123
Ivanyos, Gábor, 583

J
Jain, Anil K., 701
Jain R., 1123
Járai, Antal, 583
Jeney, András, 583
Jensen, J. L., 1124
Jerrum, Mark R., 1123
Jiang, T., 1127
Jiménez, P., 1123
Johnson, David S., 971, 1123
Johnson, D. T., 857, 882
Jones, D. T., 1121
Jones, Gareth A., 701, 1123
Jones, J. Mary, 701, 1123
Jones, Kit, 701, 1123
Jones, Neil C., 1011, 1125

K
Kacsuk, Péter, 701, 798, 1126
Kambhampati, Subbarao, 931
Kandemir, Mahmut Taylan, 752, 1123
Kansei, I., 1121
Karlapalem, Kamalakar, 931
Karlin, Samuel, 1092, 1123
Karp, Richard M., 753, 797, 1123

Kása, Zoltán, 583
Katona, Gyula O. H., 880, 882, 1120
Katsányi, István, 583
Kaushik, Raghav, 972
Kececioglu, John D., 1123, 1124, 1126
Kellerman, Carl, 752
Kelton, W. David, 701, 1124
Kennedy, Ken (1946–2007), 752, 1123
Khosrow-Pour, Mehdi, 972, 1123
Kiss, Attila, 583, 932
Kleiman, S., 752, 1123
Kleinrock, Leonard, 701, 1123
Kleitman, D. J., 1125
Knudsen, Bjarne, 1123
Knuth, Donald Ervin, 1123
Kobayashi, Y., 1127
Koch, Christoph, 971
Koelbel, C. H., 753, 1123
Kohr, Dave, 753, 1119
Kopke, Peter W., 971
Korth, Henry F., 972
Kovács, Attila, 583
Kowalski, Dariusz, 583, 592
Krammer, Gergely, 1091, 1123
Krishnamurthy, Rajasekar, 972
Krishnamurty, Ravi, 931
Krogh, Anders, 1122
Kronrod, M. A., 1118
Kruskal, Clyde, 753, 1121
Kshemkalyani, Ajay D., 643, 1123
Kung, H. T., 797
Kwok, Cody T., 931

L
Lagergren, Jens, 1118, 1120
Lai, Ten Hwang, 849, 1123
Lambert, Johann Heinrich (1728–1777), 1090
Lambrecht, Eric, 931
Lamperti, J., 1092, 1123
Lamport, Leslie, 607, 610, 636, 643, 1123,

1125
Lancia, G., 1123
Landau, G. M., 1124
Lapis, George, 931
Larson, Per–Åke, 931
Law, Averill M., 701, 1124
Legrand, Arnaud, 752, 1119
Leighton, F. Tom, 753
Leiserson, Charles E., 752, 753, 797, 849,

1120
Leland, W., 701, 1124, 1127
Lenhof, H. P., 1118, 1123
Lenzerini, Maurizio, 931
Leopold, Claudia, 643
Lesk, A. M., 1122
Levin, D., 1120
Levine, M. D., 1127
Levy, Alon Y., 931
Lewis, Bil, 753, 1124
Li, Qing, 931
Libkin, Leonid, 971
Lim, Andrew, 972
Lipman, David, 1119, 1124
Listanti, Marco, 701, 1124
Lovász, László, 583
Loveman, D. B., 753, 1123
Lucantoni, D., 1122



Name Index 1143

Lucchesi, C. L., 882, 1124
Lunter, Gerton A., 1124
Lusk, Ewing, 752, 1122
Lynch, Nancy Ann, 609, 612, 639, 643, 1118,

1119, 1121, 1124
Lyngso, Rune, 1124

M
Magnanti, Thomas L., 1109, 1118
Maier, D., 1121
Maier, David, 881, 882, 1124
Majzik, István, 583
Malewicz, Grzegorz, 583, 592
Manber, U., 1009, 1128
Mandelbrot, Benoit, 701, 1124
Markov, Andrej Andreyevitsch (1856–1922),

675
Martin, Ralph R., 1127
Márton, Gábor, 1092, 1126
Matias, Y., 753
Mattson, R. L., 848, 1124
Maxwell, E. A., 1124
Maydan, Dror, 753, 1119
Mayer, János, 583
McCaskill, J. S., 1124
McDonald, Jeff, 753, 1119
McIntosh, A. A., 701, 1120
McPheeters, C., 1128
Mehlhorn, Kurt, 1123
Melamed, B., 701
Mendelzon, Alberto O., 882, 931, 1121, 1124
Menon, Ramesh, 753, 1119
Meyer, Albert R., 942, 971
Meyer, Irmtraud M., 1124
Meyer-Kahlen, Stefan, 1118
Michalewicz, Zbigniew, 1119
Mihnovskiy, S. D., 848, 1125
Miklós, István, 583, 973, 1124
Miller, Raymond E., 797, 1123
Miller, Webb, 1009, 1125, 1128
Milo, Tova, 945, 971
Minker, Jack, 880, 882, 1122
Mitra, D., 1118
Molnár, Sándor, 702
Morgenstern, Burkhard, 1125
Morris, J. H., 1123
Motwani, Rajeev, 848, 1122
Motzkin, Theodore Samuel, 792
Mutzel, P., 1123
Myers, Eugene W., 1009, 1125, 1127, 1128

N
Narayan, O., 701, 1120
Naughton, Jeffrey F., 972
Neame, T., 701, 702
Neame, Timothy D., 1118
Needleman, S. B., 1009, 1125
Nelson, B., 701, 1119
Nelson, R. A., 825, 1119
Neuts, Marcel F., 702, 1125
Nilsson, Arne A., 702
Nitzberg, Bill, 752, 1122
Norcott, William D., 931
Nussinov, R., 1125

O

Oaks, Scott, 753, 1125
OConnell, N., 701, 1120
Ohlebusch, E., 1118
Olariu, Stephen, 753, 1127
Ong, Kian Win, 972
Orcutt, B. C., 1120
Ordille, Joann J., 931
Orlin, James B., 1109, 1118
O’Rourke, Joseph, 1029, 1091, 1125
Osborne, Sylvia L., 857
Overmars, M., 1120
Owicki, Susan Speer, 643, 1125

P
Pachter, Lior, 1010, 1125
Page, Roderic D. M., 1125
Paige, Robert, 946, 971, 1125
Panagiota, Fatourou, 1118
Panconesi, Alessandro, 1118
Papadimitrou, Christos H., 1121
Pareto, Vilfredo, 656
Partridge, C., 701, 1125
Paterson, M. S., 612, 1121
Patterson, D., 753
Paul, Jerome, 752
Paxson, V., 701, 702, 1125, 1127
Peák, István (1938–1989), 848, 1121
Pease, Marshall, 607, 610, 643, 1123, 1125
Pedersen, Christian N. S., 1124
Pedersen, Jakob Skou, 1010, 1125
Peer, I., 1125
Peng, S., 1122
Peterson, Gary, 637, 643
Pethő, Attila, 583
Petrov, S. V., 882, 1125
Pevzner, Pavel A., 1007, 1011, 1125
Pfister, Gregory F., 752, 1125
Pichler, Reinhard, 971
Pieczenk, G., 1125
Pirahesh, Hamid, 931
Pisanti, N., 1011, 1125
Poisson, Siméon-Denis (1781–1840), 1060,

1092
Polyzotis, Neoklis, 972
Popa, Lucian, 931
Potomianos, Spyros, 931
Pottinger, Rachel, 931, 1125
Pratt, V. R., 1123
Pupko, Tal, 1125

Q
Qian, Xiaolei, 931
Quinton, Patrice, 797

R
Räihä, K. J., 1126
Rajaraman, Anand, 931
Rajasekaran, Sanguthevar, 752, 753, 1122
Ramachandran, V., 753
Ramakrishnan, Raghu, 972
Ramanujam, J., 752, 1123
Rao, Sailesh K., 797
Raschid, Louiqa, 931
Ravi, R., 1126
Recski, András, 583
Reinert, K., 1118, 1123



1144 Name Index

Rényi, Alfréd (1921–1970), 701, 1126
Resnick, Paul, 1117, 1126
Rivas, E., 1126
Rivest, Ronald Lewis, 752, 753, 849, 1120
Robert, Yves, 752, 797, 1119, 1120
Roch, S., 1126
Rodrigues, Olinde, 1051, 1052
Rogers, D. F., 1126
Rolle, T., 1118
Rónyai, Lajos, 583
Roosta, Sayed H., 849, 1126
Rosenstein, M., 701, 1120
Ross, Sheldon N., 701, 1126
Rothe, Jörg, 583
Routhier, S., 1123

S
Sabella, Roberto, 701, 1124
Sagiv, Yehoshua, 882, 931, 1124
Sagot, Marie-France, 1011, 1125
Sahay, A., 753
Sahni, Sartaj, 752, 753, 849, 1123
Sali, Attila, 583, 850, 882, 883, 1120, 1126
Sali, Attila, Sr., 1126
Sameith, Jörg, 1117, 1118
Sankoff, David, 1126
Santaló, Luis A., 1126
Santoro, Nicola, 643, 1126
Santos, E. E., 753
Schauser, K. E., 753
Schreiber, Robert S., 753, 1123
Schumacker, R. A., 1126
Schwartz, R. M., 1120
Schwarz, Stefan, 583, 1093, 1117
Schwarzkopf, O., 1120
Segall, Adrian, 643, 1126
Seidel, R., 1126
Seiferas, J., 1121
Sellers, P. H., 1126
Shah, D., 752, 1123
Shamir, R., 1125
Sharp, Brian, 1091, 1126
Shedler, G. S., 825, 848, 1119
Shenoy, Pradeep, 972
Sherman, R., 701, 1119, 1127
Shim, Kyuseok, 931
Shindyalov, I. N., 1126
Shor, N. Z., 848, 1125
Shostak, Robert, 607, 610, 643, 1123, 1125
Shvartsman, Alexander Allister, 583, 592,

1118
Silberschatz, Avi, 752, 848, 1126
Sima, Dezső, 583, 701, 798, 1126
Singhal, Mukesh, 643, 1123
Slutz, D. R., 848, 1124
Smaalders, B., 752, 1123
Smith, T. F., 1126
Smithand, T. F., 1127
Snir, Marc, 752, 1122
Solomon, Marvin H., 907, 931, 1127
Sondhi, M. M., 1118
Song, Y. S., 1124
Spirakis, Paul, 1118
Spouge, John L., 1126
Sproull, R. F., 1126
Srivastava, Divesh, 931
Stanoi, Ioana, 970, 972
Statman, R., 882

Steel, Mike, 1120
Steele Guy L., Jr., 753, 1123
Stein, Clifford, 753, 1120
Stewart, T. J., 1121
Stockmeyer, Larry, 643
Stockmeyer, Larry J., 942, 971, 1118
Storer, J. A., 1121
Strassen, Volker, 728
Strong, Ray, 609, 643, 1120
Sturmfels, Bernd, 1010, 1125
Subramonian, E., 753
Suciu, Dan, 931, 945, 971, 1119
Sudborough, H. I., 1122
Sun, Harry, 931
Sutherland, Ivan E., 1041, 1091, 1126

SZ
Szántai, Tamás, 583
Szécsi, László, 1092
Székely, László A., 1120
Szidarovszky, Ferenc, 583
Szirmay-Kalos, László, 583, 1012, 1126
Szmeljánszkij, Ruszlán, 849, 1123
Sztrik, János, 583
Szymanski, T. G., 1122

T
Takayuki, T., 1121
Tamm, Ulrich, 583
TÁMOP-4.1.2-08/1/A-2009-0046, 583
Tanenbaum, Andrew S., 701, 752, 848, 1126,

1127
Tannen, Val, 931
Taqqu, Murad S., 701, 1119, 1124, 1127
Tarhio, J., 1127
Tarjan, Robert Endre, 946, 971, 1125
Taylor, Brook, 1016
Taylor, M. T., 1092, 1123
Teich, Jürgen, 797, 1127
Tel, Gerard E., 643, 1127
Teverovsky, W., 1127
Thalheim, Bernhardt, 882, 1127
Thiele, Lothar, 797, 1127
Thomas, F., 1123
Thompson, J. D., 1127
Thorne, J. L., 1121
Tinoco, I., 1127
Tompa, Frank Wm., 857
Torras, C., 1123
Traiger, I. L., 848, 1124
Tramontano, A., 1122
Tsatalos, Odysseas G., 907, 931, 1127
Tsou, D. M., 882, 1127
Tucker, Alan B., 972, 1127
Tuller, T., 1119
Turner, Douglas H., 1117

U
Uemura, Y., 1127
Uhlenbeck, O. C., 1127
Ukkonen, Esko, 1126, 1127
Ullman, Jeffrey David, 848, 862, 876, 882,

931, 1118, 1122, 1123, 1127
Urata, Monica, 931



Name Index 1145

V
Valduriez, Patrick, 931
Valiant, L. G., 753
van Dam, Andries, 1121
van Kreveld, M., 1120
Van Ness, John W., 701, 1124
van Steen, Maarten, 752, 1127
Várady, T., 1127
Vardi, Moshe Y., 931
Varga, László, 583
Varian, Hal R., 1117, 1126
Vianu, Victor, 862, 879, 882, 971, 1118
Vida, János, 583
Vidács, Attila, 702
Vingron, M., 1123
Vishkin, U., 1124
Vivien, Frédéric, 797, 1120
Vizvári, Béla, 583
von Eicken, T., 753

W
Wang, L., 1127
Wareham, T., 1118
Warnock, John, 1087
Warnow, T., 1120
Warren, Joe, 1091
Waterman, Michael S., 1126, 1127
Wattenhofer, Roger, 1118
Weber, E. W., 1127
Weimer, Henrik, 1091
Welch, Jennifer Lundelius, 643, 1118
Weld, Daniel S., 931
Wenn, H. Josef, 701
Werner, T., 1125
Willinger, W., 701, 702, 1119, 1120, 1124,

1127

Wilson, D., 701, 1124, 1127
Winograd, Shmuel, 797, 1123
Witkowski, Andrew, 931
Wolfe, Michael J., 752, 753
Wong, Henry, 753, 1125
Woodhull, Albert S., 752, 848, 1127
Wu, Jie, 753, 1127
Wu, S., 1009, 1128
Wunch, C. D., 1009, 1125
Wyllie, J., 753
Wyvill, Brian, 1128
Wyvill, Geaff, 1128

X
Xu, Z., 1122

Y
Yang, H. Z., 931
Yang, Jian, 931
Yang, Jun, 960, 970, 972
Yi, Ke, 970, 972
Yokomori, T., 1127
Yu, C. T., 857, 882
Yussupov, Arthur, 1096, 1117

Z
Zaharioudakis, Markos, 931
Zalik, Bornt, 1128
Zaniolo, C., 882, 1128
Zehendner, Eberhard, 583, 754, 797
Ziauddin, Mohamed, 931
Zosel, Mary E., 753, 1123
Zuker, Michael, 1117, 1124
Zukerman, Moshe, 701, 702, 1118


	IV. COMPUTER NETWORKS
	13.  Distributed Algorithms
	 13.1.  Message passing systems and algorithms
	 13.1.1.  Modeling message passing systems
	 13.1.2.  Asynchronous systems
	 13.1.3.  Synchronous systems

	 13.2.  Basic algorithms
	 13.2.1.  Broadcast
	 13.2.2.  Construction of a spanning tree

	 13.3.  Ring algorithms
	 13.3.1.  The leader election problem
	 13.3.2.  The leader election algorithm
	 13.3.3.  Analysis of the leader election algorithm

	 13.4.  Fault-tolerant consensus
	 13.4.1.  The consensus problem
	 13.4.2.  Consensus with crash failures
	 13.4.3.  Consensus with Byzantine failures
	 13.4.4.  Lower bound on the ratio of faulty processors
	 13.4.5.  A polynomial algorithm
	 13.4.6.  Impossibility in asynchronous systems

	 13.5.  Logical time, causality, and consistent state
	 13.5.1.  Logical time
	 13.5.2.  Causality
	 13.5.3.  Consistent state

	 13.6.  Communication services
	 13.6.1.  Properties of broadcast services
	 13.6.2.  Ordered broadcast services
	 13.6.3.  Multicast services

	 13.7.  Rumor collection algorithms
	 13.7.1.  Rumor collection problem and requirements
	 13.7.2.  Efficient gossip algorithms

	 13.8.  Mutual exclusion in shared memory
	 13.8.1.  Shared memory systems
	 13.8.2.  The mutual exclusion problem
	 13.8.3.  Mutual exclusion using powerful primitives
	 13.8.4.  Mutual exclusion using read/write registers
	 13.8.5.  Lamport's fast mutual exclusion algorithm


	14.  Network Simulation
	 14.1.  Types of simulation
	 14.2.  The need for communications network modelling and simulation
	 14.3.  Types of communications networks, modelling constructs
	 14.4.  Performance targets for simulation purposes
	 14.5.  Traffic characterisation
	 14.6.  Simulation modelling systems
	 14.6.1.  Data collection tools and network analysers
	 14.6.2.  Model specification
	 14.6.3.  Data collection and simulation
	 14.6.4.  Analysis
	 14.6.5.  Network Analysers
	 14.6.6.  Sniffer

	 14.7.  Model Development Life Cycle (MDLC)
	 14.8.  Modelling of traffic burstiness 
	 14.8.1.  Model parameters
	 14.8.2.  Implementation of the Hurst parameter
	 14.8.3.  Validation of the baseline model
	 14.8.4.  Consequences of traffic burstiness
	 14.8.5.  Conclusion

	 14.9.  Appendix A
	 14.9.1.  Measurements for link utilisation
	 14.9.2.  Measurements for message delays


	15.  Parallel Computations
	 15.1.  Parallel architectures
	 15.1.1.  SIMD architectures
	 15.1.2.  Symmetric multiprocessors
	 15.1.3.  Cache-coherent NUMA architectures:
	 15.1.4.  Non-cache-coherent NUMA architectures:
	 15.1.5.  No remote memory access architectures
	 15.1.6.  Clusters
	 15.1.7.  Grids

	 15.2.  Performance in practice
	 15.3.  Parallel programming
	 15.3.1.  MPI programming
	 15.3.2.  OpenMP programming
	 15.3.3.  Other programming models

	 15.4.  Computational models
	 15.4.1.  PRAM
	 15.4.2.  BSP, LogP and QSM
	 15.4.3.  Mesh, hypercube and butterfly

	 15.5.  Performance in theory
	 15.6.  PRAM algorithms
	 15.6.1.  Prefix
	 15.6.2.  Ranking
	 15.6.3.  Merge
	 15.6.4.  Selection
	 15.6.5.  Sorting

	 15.7.  Mesh algorithms
	 15.7.1.  Prefix on chain
	 15.7.2.  Prefix on square


	16.  Systolic Systems
	 16.1.  Basic concepts of systolic systems
	 16.1.1.  An introductory example: matrix product
	 16.1.2.  Problem parameters and array parameters
	 16.1.3.  Space coordinates
	 16.1.4.  Serialising generic operators
	 16.1.5.  Assignment-free notation
	 16.1.6.  Elementary operations
	 16.1.7.  Discrete timesteps
	 16.1.8.  External and internal communication
	 16.1.9.  Pipelining

	 16.2.  Space-time transformation and systolic arrays
	 16.2.1.  Further example: matrix product
	 16.2.2.  The space-time transformation as a global view
	 16.2.3.  Parametric space coordinates
	 16.2.4.  Symbolically deriving the running time
	 16.2.5.  How to unravel the communication topology
	 16.2.6.  Inferring the structure of the cells

	 16.3.  Input/output schemes
	 16.3.1.  From data structure indices to iteration vectors
	 16.3.2.  Snapshots of data structures
	 16.3.3.  Superposition of input/output schemes
	 16.3.4.  Data rates induced by space-time transformations
	 16.3.5.  Input/output expansion
	 16.3.6.  Coping with stationary variables
	 16.3.7.  Interleaving of calculations

	 16.4.  Control
	 16.4.1.  Cells without control
	 16.4.2.  Global control
	 16.4.3.  Local control
	 16.4.4.  Distributed control
	 16.4.5.  The cell program as a local view

	 16.5.  Linear systolic arrays
	 16.5.1.  Matrix-vector product
	 16.5.2.  Sorting algorithms
	 16.5.3.  Lower triangular linear equation systems



	V. DATA BASES
	17.  Memory Management
	 17.1.  Partitioning
	 17.1.1.  Fixed partitions
	 17.1.2.  Dynamic partitions

	 17.2.  Page replacement algorithms
	 17.2.1.  Static page replacement
	 17.2.2.  Dynamic paging

	 17.3.  Anomalies
	 17.3.1.  Page replacement
	 17.3.2.  Scheduling with lists
	 17.3.3.  Parallel processing with interleaved memory
	 17.3.4.  Avoiding the anomaly

	 17.4.  Optimal file packing
	 17.4.1.  Approximation algorithms
	 17.4.2.  Optimal algorithms
	 17.4.3.  Shortening of lists (SL)
	 17.4.4.  Upper and lower estimations (ULE)
	 17.4.5.  Pairwise comparison of the algorithms
	 17.4.6.  The error of approximate algorithms


	18.  Relational Data Base Design
	 18.1.  Functional dependencies
	 18.1.1.  Armstrong-axioms
	 18.1.2.  Closures
	 18.1.3.  Minimal cover
	 18.1.4.  Keys

	 18.2.  Decomposition of relational schemata
	 18.2.1.  Lossless join
	 18.2.2.  Checking the lossless join property
	 18.2.3.  Dependency preserving decompositions
	 18.2.4.  Normal forms
	 18.2.5.  Multivalued dependencies

	 18.3.  Generalised dependencies
	 18.3.1.  Join dependencies
	 18.3.2.  Branching dependencies


	19.  Query Rewriting in Relational Databases
	 19.1.  Queries
	 19.1.1.  Conjunctive queries
	 19.1.2.  Extensions
	 19.1.3.  Complexity of query containment

	 19.2.  Views
	 19.2.1.  View as a result of a query

	 19.3.  Query rewriting
	 19.3.1.  Motivation
	 19.3.2.  Complexity problems of query rewriting
	 19.3.3.  Practical algorithms


	20.  Semi-structured Databases
	 20.1.  Semi-structured data and XML
	 20.2.  Schemas and simulations
	 20.3.  Queries and indexes
	 20.4.  Stable partitions and the PT-algorithm
	 20.5.  A(k)-indexes
	 20.6.  D(k)- and M(k)-indexes
	 20.7.  Branching queries
	 20.8.  Index refresh


	VI. APPLICATIONS
	21.  Bioinformatics
	 21.1.  Algorithms on sequences
	 21.1.1.  Distances of two sequences using linear gap penalty
	 21.1.2.  Dynamic programming with arbitrary gap function
	 21.1.3.  Gotoh algorithm for affine gap penalty
	 21.1.4.  Concave gap penalty
	 21.1.5.  Similarity of two sequences, the Smith-Waterman algorithm
	 21.1.6.  Multiple sequence alignment
	 21.1.7.  Memory-reduction with the Hirschberg algorithm
	 21.1.8.  Memory-reduction with corner-cutting

	 21.2.  Algorithms on trees
	 21.2.1.  The small parsimony problem
	 21.2.2.  The Felsenstein algorithm

	 21.3.  Algorithms on stochastic grammars
	 21.3.1.  Hidden Markov Models
	 21.3.2.  Stochastic context-free grammars

	 21.4.  Comparing structures
	 21.4.1.  Aligning labelled, rooted trees
	 21.4.2.  Co-emission probability of two HMMs

	 21.5.  Distance based algorithms for constructing evolutionary trees
	 21.5.1.  Clustering algorithms
	 21.5.2.  Neighbour joining

	 21.6.  Miscellaneous topics
	 21.6.1.  Genome rearrangement
	 21.6.2.  Shotgun sequencing


	22.  Computer Graphics
	 22.1.  Fundamentals of analytic geometry
	 22.1.1.  Cartesian coordinate system

	 22.2.  Description of point sets with equations
	 22.2.1.  Solids
	 22.2.2.  Surfaces
	 22.2.3.  Curves
	 22.2.4.  Normal vectors
	 22.2.5.  Curve modelling
	 22.2.6.  Surface modelling
	 22.2.7.  Solid modelling with blobs
	 22.2.8.  Constructive solid geometry

	 22.3.  Geometry processing and tessellation algorithms
	 22.3.1.  Polygon and polyhedron
	 22.3.2.  Vectorization of parametric curves
	 22.3.3.  Tessellation of simple polygons
	 22.3.4.  Tessellation of parametric surfaces
	 22.3.5.  Subdivision curves and meshes
	 22.3.6.  Tessellation of implicit surfaces

	 22.4.  Containment algorithms
	 22.4.1.  Point containment test
	 22.4.2.  Polyhedron-polyhedron collision detection
	 22.4.3.  Clipping algorithms

	 22.5.  Translation, distortion, geometric transformations
	 22.5.1.  Projective geometry and homogeneous coordinates
	 22.5.2.  Homogeneous linear transformations

	 22.6.  Rendering with ray tracing
	 22.6.1.  Ray surface intersection calculation
	 22.6.2.  Speeding up the intersection calculation

	 22.7.  Incremental rendering
	 22.7.1.  Camera transformation
	 22.7.2.  Normalizing transformation
	 22.7.3.  Perspective transformation
	 22.7.4.  Clipping in homogeneous coordinates
	 22.7.5.  Viewport transformation
	 22.7.6.  Rasterization algorithms
	 22.7.7.  Incremental visibility algorithms


	23.  Human-Computer Interaction
	 23.1.  Multiple-choice systems
	 23.1.1.  Examples of multiple-choice systems

	 23.2.  Generating multiple candidate solutions
	 23.2.1.  Generating candidate solutions with heuristics
	 23.2.2.  Penalty method with exact algorithms
	 23.2.3.  The linear programming - penalty method
	 23.2.4.  Penalty method with heuristics

	 23.3.  More algorithms for interactive problem solving
	 23.3.1.  Anytime algorithms
	 23.3.2.  Interactive evolution and generative design
	 23.3.3.  Successive fixing
	 23.3.4.  Interactive multicriteria decision making
	 23.3.5.  Miscellaneous


	Bibliography
	Index
	Name Index


