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29. Perfect Arrays

Sequences of elements of given sets of symbols have a great importance in different
branches of natural sciences. For example in biology the 4-letter set {A, C, G, T} con-
taining the nucleotides (adenine, cytosine, guanine and thymine) and the 20-letter
set {a, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w, z} containing the amino-acids (ala-
nine, cysteine, asparagin-acid, glutamine-acid, phenyl, glycine, histidine, isoleucine,
lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threo-
nine, valine, triptophan, tyrosine) play leading role [31].
Arrays with elements from given sets of symbols have various applications, e.g. in
frequency allocation of multibeam satellites [15], in designing mask configuration for
spectrometers [21] and in cryptography [44]. In [42] possible applications in picture
coding and processing are suggested.

Complexity is a basic characteristic of arrays of symbols, since affects the cost of
storage and reproduction, and the quantity of information stored in the arrays. The
usual complexity measures are based on the time (or memory) needed for generating
or recognizing them.

Cyclic sequences in which every possible sequence of a fixed length occurs exactly
once have been studied for more than a hundred years [19]. This mathematical
problem was extended to two-dimensional arrays by Reed and Stewart [51] who
gave an example of 4 × 4 sized perfect map. Fan et al. in 1985 [17] proved the
existence of binary perfect maps for larger sizes.

In the first seven sections of this chapter we deal with the existence and con-
struction of perfect arrays. The last two sections popular complexity measure of
arrays, the subword complexity and its extension, the d-complexity is analysed.

Exercises
29.0-1 Gather one-dimensional examples of the applications of perfect arrays.
29.0-2 Gather two- and three-dimensional exaples of the application of perfect
arrays.
29.0-3
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29.1. Basic concepts

Let Z be the set of integers. For u, v ∈ Z we denote the set {j ∈ Z | u ≤ j ≤ v}
by [u..v] and the set {j ∈ Z | j ≥ u} by [u..∞]. Let d ∈ [1..∞] and k, n ∈ [2..∞],
bi, ci, ji ∈ [1..∞] (i ∈ [1..d]) and ai, ki ∈ [2..∞] (i ∈ [1..d]). Let a = 〈a1, a2, . . . , ad〉,
b = 〈b1, b2, . . . , bd〉, c = 〈c1, c2, . . . , cd〉, j = 〈j1, j2, . . . , jd〉 and k = 〈k1, k2, . . . , kd〉
be vectors of length d, n = 〈n1, n2, . . .〉 an infinite vector with 2 ≤ n1 < n2 < · · · .

A d-dimensional n-ary array A is a mapping A : [1..∞]d → [0, n− 1].
If there exist a vector b and an array M such that

∀j ∈ [1..∞]d : A[j] = M [(j1 mod b1) + 1, (j2 mod b2) + 1, . . . , (jd mod bd) + 1],

then A is a b-periodic array and M is a period of A.
The a-sized subarrays of A are the a-periodic n-ary arrays.
Although our arrays are infinite we say that a b-periodic array is b-sized.

Indexset Aindex of a b-periodic array A is the Cartesian product

Aindex = [1..b1]× [1..b2]× · · · × [1..bd] .

A d dimensional b-periodic n-ary array A is called (n, d, a, b)-perfect, if all
possible n-ary arrays of size a appear in A exactly once as a subarray.

Here n is the alphabet size, d gives the number of dimensions of the “window”
and the perfect array M, the vector a characterizes the size of the window, and the
vector b is the size of the perfect array M.

An (n, d, a, b)-perfect array A is called c-cellular, if ci divides bi for i ∈ [1..d].
A cellular array consists of b1/c1 × b2/c2 × · · · × bd/cd disjoint subarrays of size c,
called cells. In each cell the element with smallest indices is called the head of the
cell. The contents of the cell is called pattern.

The product of the elements of a vector a is called the volume of the vector
and is denoted by |a|. The number of elements of the perfect array M is called the
volume of M and is denoted by |M |.

If b1 = b2 = · · · = bd, then the (n, d, a, b)-perfect array A is called symmetric.
If A is symmetric and a1 = a2 = · · · = ad, then A is called doubly symmetric. If
A is doubly symmetric and

1. d = 1, then A is called a double sequence;

2. d = 2, then A is called a double square;

3. d = 3, then A is called a double cube.

According to this definition, all perfect sequences are doubly symmetric. In the
case of symmetric arrays we use the notion (n, d, a, b) and in the case of doubly
symmetric arrays we use (n, d, a, b) instead of (n, d, a, b).

The first known result originates from Flye-Sainte who proved the existence of
(2, 1, a, 2a)-perfect sequences for all possible values of a in 1894.

One-dimensional perfect arrays are often called de Bruijn or Good sequences.
Two-dimensional perfect arrays are called also perfect maps or De Bruijn tori.

Even De Bruijn sequences—introduced by Antal Iványi and Zoltán Tóth in
1988—are useful in construction of perfect arrays when the size of the alphabet
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is an even number and the window size is 2× 2. Their definition is as follows.
If n is an even integer then an (n, 1, 2, n2)-perfect sequence M = (m1, m2,

. . . , mn2) is called even, if mi = x, mi+1 = y, x 6= y, mj = y and mj+1 = x
imply j − i is even.

Iványi and Tóth in 1988 and later Hurlbert and Isaak in 1994 provided a con-
structive proof of the existence of even sequences. The later algorithm is stronger
since it constructs a universal infinite sequence whose prefixes are even sequences
for the corresponding alphabet size.

Lexicographic indexing of an array M = [mj1j2...jd
] = [mj] (1 ≤

ji ≤ bi) for i ∈ [1..d] means that the index I(mj) is defined as

I(mj) = j1 − 1 +
d
∑

i=2

(

(ji − 1)
i−1
∏

m=1

bm

)

. (29.1)

The concept of perfectness can be extended to infinite arrays in various ways.
In growing arrays introduced by Hurlbert and Isaak in 1994 the window size is
fixed, the alphabet size is increasing and the prefixes grow in all d directions.

Let a and d be positive integers with a ≥ 2 and n = 〈n1, n2, . . .〉 be a strictly
increasing sequence of positive integers. An array M = [mi1i2...id

] is called (n, d, a)-
growing, if the following conditions hold:

1. M = [mi1i2...id
] (1 ≤ ij <∞) for j ∈ [1..d];

2. mi1i2...id
∈ [0..n− 1];

3. the prefix Mk = [mi1i2...id
] (1 ≤ ij ≤ n

ad/d
k for j ∈ [1..d]) of M is (nk, d, a, n

ad/d
k )-

perfect array for k ∈ [0..∞].

For the growing arrays we use the terms growing sequence, growing square and
growing cube.

For a, n ∈ [2..∞] the new alphabet size N(n, a) is

N(n, a) =

{

n, if any prime divisor of a divides n ,
nq, otherwise ,

(29.2)

where q is the product of the prime divisors of a not dividing n.
Note, that alphabet size n and new alphabet size N have the property that

n | N.

29.2. Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a pattern,
the volume of M equals the number of the possible patterns. Since each pattern—
among others the pattern containing only zeros—can appear only once, any size of
M is greater then the corresponding size of the window. So we have the following
necessary condition due to Cock, further Hurlbert and Isaak: If M is an (n, d, a, b)-
perfect array, then

|b| = n|a| (29.3)



1456 29. Perfect Arrays

and
bi > ai for i ∈ [1..d] . (29.4)

Different construction algorithms and other results concerning one and two di-
mensional perfect arrays can be found in the fourth volume of The Art of Computer
Programming written by D. E. Knuth [37]. E.g. a (2,1,5,32)-perfect array [37, page
22], a 36-length even sequence whose 4-length and 16-length prefixes are also even
sequences [37, page 62], a (2,2,2,4)-perfect array [37, page 38] and a (4,2,2,16)-perfect
array [37, page 63].

It is known [7, 37] that in the one-dimensional case the necessary condition (29.3)
is sufficient too. There are many construction algorithms, like the ones of Cock [10],
Fan, Fan, Ma and Siu [17], Martin [43] or any algorithm for constructing of directed
Euler cycles [41].

Chung, Diaconis and Graham [9] posed the problem to give a necessary and
sufficient condition of the existence of (n, 2, a, b)-perfect arrays.

The conditions (qrefeq-neclong1) and (29.4 are sufficient for the existence of
(2,2,a,b)-perfect arrays [17] and (n,2,a,b)-perfect arrays [46]. Later Paterson in [47,
48] supplied further sufficient conditions.

Hurlbert and Isaak [26] gave a construction for one- and two-dimensional growing
arrays.

Carla Savage [53] analysed De Bruijn sequences as special Gray codes

29.3. One-dimensional perfect arrays

In the construction of one-dimensional perfect arrays we use the following algorithms.

29.3.1. Pseudocode of the algorithm Quick-Martin

Algorithm Martin generates one-dimensional perfect arrays. Its inputs are the al-
phabet size n and the window size a. Its output is an n-ary perfect sequence of
length na. The output begins with a zeros and always continues with the maximal
permitted element of the alphabet.

A natural implementation of Martin’s algorithm can be found in the chapter
Complexity of words of this book. The following effective implementation of Martin
is due to M. Horváth and A. Iványi [23].

QUICK-MARTIN(n, a)

01 for i = 0 to na−1 − 1
02 C[i] = n− 1
03 for i = 1 to a
04 w[i] = 0
05 for i = a + 1 to na

06 k = w[i− a + 1]
07 for j = 1 to a− 1
08 k = kn + w[i− a + j]
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09 w[i] = C[k]
10 C[k] = C[k]− 1
11 return w

This algorithm runs in Θ(ana) time.

29.3.2. Pseudocode of the algorithm OPTIMAL-MARTIN

The following implementation of Martin algorithm requires even smaller running
time than Quick-Martin.

Optimal-Martin(n, a)

01 for i = 0 to na−1 − 1
02 C[i] = n− 1
03 for i = 1 to a
04 w[i] = 0
05 k = 0
06 for i = a + 1 to na

07 k = k − w[i− a]na−1 + w[i− 1]
08 w[i] = C[k]
09 C[k] = C[k]− 1
10 return w

The running time of any algorithm which constructs a one-dimensional per-
fect array is Ω(na), since the sequence contains na elements. The running time of
Optimal-Martin is Θ(na).

29.3.3. Pseudocode of the algorithm SHIFT

Algorithm Shift proposed by Cock in 1988 [10] is a widely usable algorithm to
construct perfect arrays. We use it to transform cellular (N, d, a, b)-perfect arrays
into (N, d + 1, a, c)-perfect arrays.

Shift(N, d, a, Pd, Pd)

1 Martin(Nad

, a− 1, w)

2 for j = 0 to Nad−ad−1 − 1
3 transform wi to an ad digit N -ary number
4 produce the (j + 1)-st layer of the output Pd+1 by multiple shifting

the jth layer of Pd by the transformed number (the first a digits
give the shift size for the first direction, then the next a2 − a digits
in the second direction etc.)

5 return Pd+1

29.3.4. Pseudocode of the algorithm EVEN

If N is even, then this algorithm generates the N2-length prefix of an even growing
sequence [26].
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Even(N)

1 if N == 2
2 w[1] = 0
3 w[2] = 0
4 w[3] = 1
5 w[4] = 1
6 return w

7 for i = 1 to N/2− 1
8 for j = 0 to 2i− 1
9 w[4i2 + 2j + 1] = j
10 for j = 0 to i− 1
11 w[4i2 + 2 + 4j] = 2i
12 for j = 0 to i− 1
13 w[4i2 + 4 + 4j] = 2i + 1
14 for j = 0 to 4i− 1
15 w[4i2 + 4i + 1 + j] = w[4i2 + 4i− j]
16 w[4i2 + 8i + 1] = 2i + 1
17 w[4i2 + 8i + 2] = 2i
18 w[4i2 + 8i + 3] = 2i
19 w[4i2 + 8i + 4] = 2i + 1 20 return w

The running time of algorithm Even [26] is Θ(N2).

29.4. Two-dimensional perfect arrays

Chung, Diaconis and Graham posed the problem to give a necessary and sufficient
condition of the existence of (n, 2, a, b)-perfect arrays.

As Fan, Fan and Siu proved in 1985, the conditions (2) and (3) are sufficient
for the existence of (2,2,a,b)-perfect arrays. Paterson proved the same in 1994 for
(n, 2, a, b)-perfect arrays. Later Paterson supplied further sufficient conditions.

Hurlbert and Isaak in 1993 gave a construction for one and two dimensional
growing arrays.

29.4.1. Pseudocode of the algorithm MESH

The following implementation of Mesh was proposed by Iványi and Tóth in 1988.
The input of Mesh is the alphabet size N and an even sequence w. The output is
an (N, 2, 2, N2-perfect array. It uses the following meshing function [?]:

Pi,j =

{

ej , if i + j is even,
ei, if i + j is odd,

(29.5)

Mesh(N, w, S)

1 for i = 1 to N2

2 for j = 1 to N2



29.4. Two-dimensional perfect arrays 1459

3 if i + j is even
4 S[i, j] = w[i]
5 else S[i, j] = w[j]
6 return S

29.4.2. Pseudocode of the algorithm CELLULAR

Algorithm Cellular is an extension and combination of the known algorithms
Shift, Martin, Even and Mesh.

Cellular results a cellular perfect array A. Its input data are n, d and a, its
output is an (N, d, a, b)-perfect array, where b1 = Na1 and bi = Na1a2...ai−a1a2...ai−1

for i = 2, 3, . . . , d. Cellular consists of six parts:

1. Calculation (line 1 in the pseudocode): determining the new alphabet size N
using formula (29.2);

2. Walking (lines 2–3): if d = 1, then construction of a perfect symmetric sequence
S1 using algorithm Martin (walking in a de Bruijn graph);

3. Meshing (lines 4–6): if d = 2, N is even and a = 2, then first construct an
N -ary even perfect sequence e = 〈e1, e2, . . . , eN2〉 using Even, then construct
an N2 ×N2 sized N -ary square S1 using meshing function (29.5);

4. Shifting (lines 7–12): if d > 1 and (N is odd or a > 2), then use Martin once,
then use Shift d− 1 times, receiving a perfect array P ;

5. Combination (lines 13–16): if d > 2, N is even and a = 2, then construct an
even sequence with Even, construct a perfect square by Mesh and finally use
of Shift d− 2 times, results a perfect array P.

6. Report (line 17): returns the output A.

Cellular(n, d, a, N)

1 N = N(n, a)
2 if d = 1
3 Martin(N, d, a, A)
4 return A
5 if d == 2 and a == 2 and N is even
6 Mesh(N, a, A)
7 return A
8 if N is odd or a 6= 2
9 Martin(N, a, P1)
10 for i = 1 to d− 1
11 Shift(N, i, Pi, Pi+1)
12 A = P1

13 return A
14 Mesh(N, a, P1)
15 for i = 2 to d− 1
16 Shift(N, i, Pi, Pi+1)
17 A = Pd
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18 return A

29.5. Three-dimensional perfect arrays

29.5.1. Pseudocode of the algorithm COLOUR

Colour transforms cellular perfect arrays into larger cellular perfect arrays. Its
input data are

• d ≥ 1 – the number of dimensions;

• N ≥ 2 – the size of the alphabet;

• a – the window size;

• b – the size of the cellular perfect array A;

• A – a cellular (N, d, a, b)-perfect array.

• k ≥ 2 – the multiplication coefficient of the alphabet;

• (k1, k2, . . . , kd) – the extension vector having the property k|a| = k1×k2×· · ·×kd.

The output of Colour is

• a (kN)-ary cellular perfect array P of size b = (k1a1, k2a2, . . . , kdad).

Colour consists of four steps:

1. Blocking (line 1) arranging: k|a| copies (blocks) of a cellular perfect array A into
a rectangular array R of size k = k1 × k2 × · · · × kd and indexing the blocks
lexicographically (by 0, 1, . . . , k|a| − 1);

2. Indexing (line 2): the construction of a lexicographic indexing scheme I contain-
ing the elements 0, 1, . . . k|a| − 1 and having the same structure as the array R,
then construction of a colouring matrix C, transforming the elements of I into
k-ary numbers consisting of |a| digits;

3. Colouring (lines 3-4): colouring R into a symmetric perfect array P using the
colouring array C that is adding the N -fold of the j-th element of C to each cell
of the j-th block in R (considering the elements of the cell as lexicographically
ordered digits of a number).

4. Report (17–18. lines): returns the output A.

The output P consists of blocks, blocks consist of cells and cells consists of el-
ements. If e = P [j] is an element of P, then the lexicographic index of the block
containing e is called the blockindex of e, the lexicographic index of the cell con-
taining e is called the cellindex and the lexicographic index of e in the cell is called
elementindex. E.g. the element S2[7, 6] = 2 in Table 3 has blockindex 5, cellindex
2 and elementindex 1.

Input parameters are N, d, a, k, k, a cellular (N, d, a, b)-perfect array A, the
output is a (kN, d, a, c)-perfect array P, where c = (a1k1, a2k2, . . . , adkd).

Colour(N, d, a, k, k, A)
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1 arrange the copies of P into an array R of size k1 × k2 × · · · × kd blocks
2 construct a lexicographic indexing scheme I containing the elements

of [0..kad − 1] and having the same structure as R
3 construct an array C transforming the elements of I into k-ary

numbers of v digits and multiplying them by N

4 produce the output P adding the j-th (j ∈ [0..kad − 1]) element of C
to each cell of the j-th block in R for each block of R

5 return P

29.5.2. Pseudocode of the algorithm GROWING

Finally, algorithm Growing generates a prefix Sr of a growing array G. Its input
data are r, the number of required doubly perfect prefixes of the growing array G,
then n, d and a. It consists of the following steps:

1. Initialization (line 01): construction of a cellular perfect array P using Cellu-
lar;

2. Resizing (lines 02–14): if the result of the initialization is not doubly symmetric,
then construction of a symmetric perfect array S1 using Colour, otherwise we
take P as S1;

3. Iteration (lines 15–17): construction of the further r − 1 prefixes of the growing
array G repeatedly, using Colour.

4. report (line 18): returns the output Sr.

Input parameters of Growing are n, d, a and r, the output is a doubly sym-
metric perfect array Sr, which is the rth prefix of an (n, d, a)-growing array.

Growing(n, d, a, r, Sr)

01 Cellular(n, d, a, N, P )
02 calculation of N using formula (??)
03 if P is symmetric
04 S1 = P
05 if P is not symmetric

06 n1 = Nd/gcd(d,ad)

07 k = n1/N

08 k1 = (n1)ad/3/Na

09 for i = 2 to d

10 ki = (n1)ad/d/Nai−ai−1

11 Colour(n1, d, a, k, k, P, S1)
12 k = Nd/gcd(d, ad)
13 for i = 1 to d

14 ki = (n2)ad/d/Nai−ai−1

15 for i = 2 to r

16 ni = Ndi/gcd(d,ad)

17 Colour(ni, d, a, k, k, Si−1, Si)
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18 return Sr

29.6. Examples of constructing growing arrays using
colouring

In this section particular constructions are presented.

29.6.1. Construction of growing sequences

As the first example let n = 2, a = 2 and r = 3. Cellular calculates N = 2 and
Martin produces the cellular (2,1,2,4)-perfect sequence P = 00|11.

Since P is symmetric, S1 = P. Now Growing chooses multiplication coefficient
k = n2/n1 = 2, extension vector k = (4) and uses Colour to construct a 4-ary
perfect sequence.

Colour arranges k1 = 4 copies into a 4 blocks sized array receiving

R = 00|11 || 00|11 || 00|11 || 00|11. (29.6)

Colouring receives the indexing scheme I = (0, 1, 2, 3) and the colour-
ing matrix C transforming the elements of I into a digit length k-ary numbers:
C = 00 || 01 || 10 || 11.

Finally we colour the matrix R using C – that is multiply the elements of C by
n1 and addthe j-th (j = 0, 1, 2, 3) block of C1 = n1C to both cells of the j-th copy
in R:

S2 = 00|11 || 02|13 || 20|31 || 22|33. (29.7)

Since r = 3, we use Colour again with k = n3/n2 = 2 and get the (8,1,2,64)-
perfect sequence S3 repeating S2 4 times, using the same indexing array I and
colouring array C ′ = 2C.

Another example is a = 2, n = 3 and r = 2. To guarantee the cellular prop-
erty now we need a new alphabet size N = 6. Martin produces a (6,1,2,36)-perfect
sequence S1, then Colour results a (12,1,2,144)-perfect sequence S2.

29.6.2. Construction of growing squares

As the first example let n = a = 2 and r = 3. Then N(2, 2) = 2. We construct
the even sequence W4 = e1e2e3e4 = 0 0 1 1 using Even and the symmetric perfect
array A in Fig. 29.5.a using the meshing function (??). Since A is symmetric, it can
be used as S1. Now the greatest common divisor of a and ad is 2, therefore indeed
n1 = N2/2 = 2.

Growing chooses k = n1/N = 2 and Colour returns the array R repeating
the array A k2 × k2 = 4× 4 times.

Colour uses the indexing scheme I containing k4 indices in the same 4 × 4
arrangement as it was used in R. Figure 29.1.b shows I.

Transformation of the elements of I into 4-digit k-ary form results the colouring
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column/row 1 2 3 4 column/row 1 2 3 4

1 0 0 0 1 1 0 1 2 3

2 0 0 1 0 2 4 5 6 7

3 1 0 1 1 3 8 9 10 11

4 0 1 1 1 4 12 13 14 15

Figure 29.1 a) A (2,2,4,4)-square; b) Indexing scheme I of size 4 × 4

column/row 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 1 1

3 0 1 0 1 0 1 0 1

4 0 0 0 1 1 0 1 1

5 1 0 1 0 1 0 1 0

6 0 0 0 1 1 0 1 1

7 1 1 1 1 1 1 1 1

8 0 0 0 1 1 0 1 1

Figure 29.2 Binary colouring matrix C of size 8 × 8

matrix C represented in Table 29.2.
Colouring of array R using the colouring array 2C results the (4,2,2,16)-square

S2 represented in Table 29.3.
In the next iteration Colour constructs an 8-ary square repeating S2 4 × 4

times, using the same indexing scheme I and colouring by 4C. The result is S3, a
(8, 2, 2, 64)-perfect square.

29.6.3. Construction of growing cubes

If d = 3, then the necessary condition (29.4) is b3 = (n)a3

for double cubes, implying
n is a cube number or a is a multiple of 3. Therefore, either n ≥ 8 and then b ≥ 256,
or a ≥ 3 and so b ≥ 512, that is, the smallest possible perfect double cube is the (8,
3, 2, 256)-cube.

As an example, let n = 2, a = 2 and r = 2. Cellular computes N = 2, Mesh
constructs the (2, 2, 2, 4)-perfect square in Fig. 29.5.a, then Shift uses Martin with
N = 16 and a = 1 to get the shift sizes for the layers of the (2, 3, 2, b)-perfect output
P of Cellular, where b = 〈4, 4, 16〉. Shift uses P as zeroth layer and the jth
(j ∈ [1 : 15]) layer is generated by cyclic shifting of the previous layer downwards by
wi (div 4) and right by wi (mod 4), where w = (0151413121110987654321). 8 layers
of P are shown in Figure 29.4.

Let A3 be a 4× 4× 16 sized perfect, rectangular matrix, whose 0th layer is the
matrix represented in Figure 29.5, and the (2, 3, a, b)-perfect array P in Figure 29.4,
where a = (2, 2, 2) and b = (4, 4, 8).

Growing uses Colour to retrieve a doubly symmetric cube. n1 = 8, thus
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column/row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

3 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

4 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

5 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3

6 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

7 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3

8 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

9 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 1

10 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

11 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3 1

12 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

13 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3

14 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

15 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3

16 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

Figure 29.3 A (4,2,2,16)-square generated by colouring

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1

Figure 29.4 8 layers of a (2,3,2,16)-perfect array

b = 256, k = n1/N = 4 and k = 〈256/4, 256/4, 256/64〉, that is we construct the
matrix R repeating P 64× 64× 16 times.

I has the size 64 × 64 × 16 and I[i1, i2, i3] = 642(i1 − 1) + 64(i2 − 1) + i3 − 1.
Colour gets the colouring matrix C by transforming the elements of I into 8-digit
4-ary numbers – and arrange the elements into 2×2×2 sized cubes in lexicographic
order – that is in order (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1).
Finally colouring results a double cube S1.

S1 contains 224 elements therefore it is presented only in electronic form (on the
home page of the corresponding author).

If we repeat the colouring again with k = 2, then we get a 64-ary 65536×64536×
64536 sized double cube S2.
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column/row 1 2 3 4

1 0 0 0 1

2 0 0 1 0

3 1 0 1 1

4 0 1 1 1

Figure 29.5 A (2,2,4,4)-square

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0

1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1

0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0

Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0

0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1

0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0

Figure 29.6 16 layers of the (2, 3, 2, 16)-perfect output of Shift

29.6.4. Construction of a four-dimensional double hypercube

In 4 dimensions the smallest b’s satisfying (??) are b = 16 and b = 81. But we
do not know algorithm which can construct (2, 4, 2, 16)-perfect or (3, 4, 2, 81)-perfect
hypercube. The third chance is the (4, 4, 2, 256)-perfect hypercube. Let n = 2 and a =
2. Cellular calculates N = 2, then calls Optimal-Martin receiving the cellular
(2, 1, 2, 4)-perfect sequence 00|11. Then Cellular calls Mesh which constructs the
cellular (2, 2, 2, 4)-perfect square shown in Figure 29.5.

Now Shift calls Optimal-Martin with n = 1 and a = 1 to get the shift sizes
for the layers of the (2, 3, 2, b)-perfect output P of Cellular, where b = 〈4, 4, 16〉.
Shift uses P as zeroth layer and the jth layer is generated by cyclic shifting of
the previous layer downwards by wi (div 4) and right by wi (mod 4), where w =
〈0 15 14 13 1211 10 9 8 7 6 5 4 3 2 1〉. The layers of the (2, 3, 2, 16)-perfect array are
shown in Figure 29.6.

Up to this point the construction is the same as in [23], but now d = 4, therefore
we use Shift again to get a (2, 4, 2, 256)-perfect prism, then we fill an empty 256×
256× 256× 256 cube with 4× 4× 16× 256-sized prisms and finally colouring results
the required 4-dimensional hypercube.

Exercises
29.6-1 Explain the construction of Fig. 29.6
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29.7. The existence theorem of perfect arrays

The main result of this chapter can be formulated as follows.
In the section—using the algorithms Cellular, Optimal-Martin, Even,

Mesh, Shift, Colour [23, 33, 34, 35, 37]—we prove the following theorem and
illustrate it by the construction of a hypercube.

Theorem 29.1 If n ≥ 2, d ≥ 1, a ≥ 2, and b ≥ 2 satisfy ?? and

a) d | ad and (un)ad/d ≥ nad−ad−1, then there exists a (un, d, a, (un)ad/d)-perfect
array;

b) (vn)ad ≥ nad−ad−1

, then there exists a
(

(vn)d, d, a, (vn)ad
)

-perfect ar-

ray,where u and v are suitable positive integers.

The proof is based on the algorithms Cellular, Optimal-Martin, Even,
Mesh, Shift, Colour [23, 33, 34, 35, 37] and on the following two lemmas.

Lemma 29.2 (Cellular lemma, Horváth, Iványi [23, 34]) If n ≥ 2, d ≥ 1 and
a ≥ 2, then algorithm Cellular produces a cellular (N, d, a, b)-perfect array A,

where N is determined by formula (??), b1 = Na and bi = Nai−ai−1

(i ∈ [2..d]).

Proof It is known that algorithms Even+Mesh and Martin+Shift result perfect
outputs.

Since Mesh is used only for even alphabet size and for 2× 2 sized window, the
sizes of the constructed array are even numbers and so the output array is cellular.

In the case of Shift we exploit that all prime divisors of a divide the new
alphabet size N, and bi = N (a−1)(ai−1) and (a− 1)(ai−1) ≥ 1.

Lemma 29.3 (Indexing lemma, Horváth, Iványi [23, 34]) If n ≥ 2, d ≥ 2, k ≥ 2, C
is a d dimensional a-cellular array with |b| = k|a| cells and each cell of C contains
the corresponding cellindex as an |a| digit k-ary number, then any two elements of C
having the same elementindex and different cellindex are heads of different patterns.

Proof Let P1 and P2 be two such patterns and let us suppose they are identical. Let
the head of P1 in the cell have cellindex g and head of P2 in the cell have cellindex
h (both cells are in array C). Let g − h = u.

We show that u = 0 (mod k|b|). For example in Fig. 29.2 let the head of P1 be
(2, 2) and the head of P2 be (2, 6). Then these heads are in cells with cellindex 0 and
2 so here u = 2.

In both cells, let us consider the position containing the values having local value
1 of some number (in our example they are the elements (3,2) and (3,6) of C.) Since
these elements are identical, then k|u. Then let us consider the positions with local
values k (in our example they are (3,1) and (3,5).) Since these elements are also
identical so k2|u. We continue this way up to the elements having local value k|b|

and get k|b||u, implying u = 0.
This contradicts to the condition that the patterns are in different cells.
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Lemma 29.4 (Colouring lemma) If k ≥ 2, ki ∈ [2..∞] (i ∈ [1..d]), A is a cellu-
lar (n, d, a, b)-perfect array, then algorithm Colour(N, d, a, k, k, A, S) produces a
cellular (kN, d, a, c)-perfect array P, where c = 〈k1a1, k2a2, . . . , kdad〉.

Proof The input array A is N -ary, therefore R is also N -ary. The colouring array
C contains the elements of [0..N(k − 1)], so elements of P are in [0..kN − 1].

The number of dimensions of S equals to the number of dimensions of P that
is, d.

Since A is cellular and ci is a multiple of bi (i ∈ [1..d]), P is cellular.
All that has to be shown is that the patterns in P are different.
Let’s consider two elements of P as heads of two windows and their contents –

patterns p and q. If these heads have different cellindex, then the considered patterns
are different due to the periodicity of R. E.g. in Fig 29.3 P [11, 9] has cellindex 8, the
pattern headed by P [9, 11] has cellindex 2, therefore they are different (see parity of
the elements).

If two heads have identical cellindex but different blockindex, then the indexing
lemma can be applied.

Proof of the main theorem. Lemma 18 implies that the first call of Colour in
line 10 of Growing results a doubly symmetric perfect output S1. In every iteration
step (in lines 14–16 of Growing) the zeroth block of Si is the same as Si−1, since
the zeroth cell of the colouring array is filled up with zeros.

Thus S1 is transformed into a doubly symmetric perfect output Sr having the
required prefixes S1, S2, . . . , Sr−1.

29.8. d-complexity of one-dimensional arrays

In this section the complexity measure d-complexity [31, 39] is studied. This mea-
sure is intended to express the total quantity of information included in a word
counting the different d-subsequences of the investigated word. The background of
this complexity measure lies in biology and chemistry. Some natural words have a
winding structure [31] and some bends can be cut forming new words. The distance
parameter d is the bound for the length of bends, which can be cut.

In this paper a new complexity measure, d-complexity is studied. This mea-
sure is intended to express the total quantity of information included in a sequence
counting the different d-subsequences (belonging to the given set of sequences) of
the investigated sequence. The background of the new complexity measure lies in
biology and chemistry. Some natural sequences, as amino-acid sequences in proteins
or nucleotid sequences in DNA-molecules have a winding structure [13, 16] and some
bends can be cut forming new sequences. The distance parameter d is the bound for
the length of bends.

We use the basic concepts and notations of the theory of algorithms [11], formal
languages [52] and graphs [5].



1468 29. Perfect Arrays

29.8.1. Definitions

Let n and q be positive integers, A = {a1, a2, . . . , aq} be an alphabet, An the set of
n-length words, A∗ the set of finite words and A+ the set of finite nonempty words
over A. The length of a word w is denoted by λ(w).

Let m1, m2, . . . , mq be nonnegative integers. Then the multialphabet M =
(A, m1, m2, . . . , mq) is the multiset {am1

1 , am2

2 , . . . , a
mq
p ),Mn the set of words w ∈ An

and containing ai ∈ A at most mi times (i = 1, 2, . . . , q), M+ the set of words
w ∈ Mn containing ai ∈ A+ at most mi times (i = 1, 2, . . . , q). Alphabets can be
considered as special multialphabets with infinite multiplicityes of the letters.

Nonempty sets of words — e.g. An, A+, Mn, M+ — are called languages. Set
of i-length elements of a language L is denoted by L(i).

Definition 29.5 Let d, r and s be positive integers, u and w words such that
u = u1u2 . . . ur and w = w1w2 . . . ws. If r ≥ 2, then u is a d-subword of w (u ⊂d w),
if and only if there exists a sequence i1, i2, . . . , ir with 1 ≤ i1, ir ≤ s, 1 ≤ ij+1−ij ≤
d (j = 1, . . . , r − 1) such that uj = wij

(j = 1, 2, . . . , r). If r = 1, then u is a d-
subword of w, if and only if there exists a sequence i with 1 ≤ i ≤ s such that
u1 = wi. If for given u, w and d there exist several such sequences (or indices), then
the sequence belonging to u, w and d is the lexicographically minimal of them. The
differences ij+1 − ij are called jumps. 1-length words contain a jump of size zero.

According to this definition only nonempty words can be d-subwords.
Now we classify the d-subwords of a given word w according to their length,

position of their last letter and the length of their longest jump.

Definition 29.6 Let d and n be positive integers, M a multialphabet, L ⊆ M+ a
multilanguage, w = (w1w2 . . . wn) ∈ Mn a word, D(w, L, i, d) denote the i-length
subwords of w belonging to L, P (L, w, i, d) denote the d-subwords of w for which the
first appearance ends with wi, U(w, L, i, d) the set of subwords of w for which the
largest jump in its first occurrence in w equals to i (everywhere 0 ≤ i ≤ n). The
d-complexity function C(w, L, i, d) of w is

C(w, L, i, d) = |D(w, L, i, d)| (i = 1, 2, . . . , n), (29.8)

the d-characteristic function Hd(w, L, i, d) of w is

H(w, L, i, d) = |P (w, L, i, d)| (i = 1, 2, . . . , n). (29.9)

the djump function J(w, L, i, d) of w is

J(w, L, i, d) = |U(w, L, i, d)| (i = 0, 1, . . . , n− 1), (29.10)

the total d-complexity T (w, L, d) of w is

T (w, L, d) =

n
∑

i=1

C(w, L, i, d) =

n
∑

i=1

H(w, L, i, d) =

n−1
∑

i=0

J(w, L, i, d). (29.11)
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The special case d = 1, L = A+ of C(w, L, i, d) was introduced by K. Heinz
[22] in 1977 and studied later by many authors (see e.g. the papers [1, 18, 54]. The
special case L = A+ of C(w, L, i, d) was introduced in 1984 [24] and studied later
e.g. in [32, 39].

Example 29.1 Let A = {A, E, L, T } be an alphabet, L = A+, w = (ELT E).
Classification according to the length of the subwords results D(w, L, 1, 1) =
D(w, L, 1, 2) = D(w, L, 1, 3) = {E, L, T }, D(w, L, 2, 1) = {EL, LT, T E}, D(w, L, 2, 2) =
{EL, ET, LT, LE, T E}, D(w, L, 2, 3) = {EL, ET, EE, LT, LE, T E}, D(w, L, 3, 1) =
{ELT , LT E}, D(w, L, 3, 2) = D(w, L, 3, 3) = {ELT , ELE, ET E, LT E}, D(w, L, 4, 1) =
D(w, L, 4, 2) = D(w, L, 4, 3) = {ELT E} and so T (w, L, 1) = 3+3+2+1 = 9, T (w, L, 2) =
3 + 5 + 4 + 1 = 13, T (w, L, 3) = 3 + 6 + 4 + 1 = 14.

Classification according to the last letter gives P (w, L, 1, 2) =
{E}, P (w, L, 2, 2) = {EL, L}, P (w, L, 3, 2) = {ELT, ET, LT, T } and
P (w, L, 4, 2) = {ELT E, ELE, ET E, LE, LT E, T E} and so T (w, L, 2) = 1+2+4+6 = 13.

Classification according to the largest jumps results U(w, A+, 3, 3) =
{EE}, U(w, A+, 2, 3) = {ELE, ET, ET E, LE}, U(w, A+, 1, 3) =
{E, EL, ELT, ELT E, L, LT, LT E, T, T E} and so T (w, L, 3) = 1 + 4 + 9 = 14.

Let M = (A, 1, 1, . . . , 1), N = M+. The multisubwords can contain at most one E

and so T (w, N, 3) = 3 + 5 + 2 + 0 < T (w, L, 3) = 14. Decreasing of some complexity values
is natural since bounded multiplicityes exclude some subwords.

Definition 29.7 Let L be a finite language over A = {0, 1, . . . , q− 1} and w ∈ A+

be a word. w is a d-covering word of L if and only if w contains all elements
of L as a d-subword. The length of the shortest d-covering word of L is denoted by
γ(L, d). Such words are called minimal. If L = An, then we use g(q, n, d) instead
of γ(L, d).

The special case d = 1 is well-known and widely studied as superstring problem
[56].

Definition 29.8 Let d, q and n be positive integers, A = {0, 1, . . . , q − 1} be an
alphabet and L be a language over A. The maximum of the d-complexities of the
elements of L is denoted by µ(L, d). Words having complexity µ(L, d) are called
maximal. If L = An, then we use f(q, n, d) instead of µ(L, d). Minimal and maximal
words are called extremal.

Definition 29.9 Let F(M) = {L1, L2, . . .} be a sequence of languages over some
alphabet multialphabetM with the property Li ⊆Mi (i = 1, 2, . . .). Such sequences
of languages are called family.

Definition 29.10 Let d, n and q be positive integers, A = {0, 1, . . . , q − 1} an
alphabet, F = {L1, L2, . . .} a family of languages and w = (x1x2 . . .) be a word
over A. w is a d-superminimal word of the family F if and only if the word
(x1x2 . . . xγ(Lk,d)) is a d-covering word of Ln for n = 1, 2, . . . .

Definition 29.11 Let q be a positive integer, A = (0, 1, . . . , q−1) be an alphabet, d
be a positive integer and w = (x1 x2 . . .) be a word over A. w is d-supermaximal
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word of the alphabet A if and only if the word x1x2 . . . xn is a d-maximal word for
n = 1, 2, . . . .

Definition 29.12 The words consisting of identical letters are called homoge-

neous, the words consisting of different letters are called rainbow and the words
consisting of copies of a given rainbow word (the last copy can be only a prefix) are
called cyclical.

29.8.2. Bounds of complexity measures

In this section we formulate some simple properties of the investigated complexity
measures.

Lemmas 29.13, 29.14, 29.15 and ?? characterize the monotonity properties of
the functions C and H.

Lemmas 29.17, ??, 29.19 and 29.20 give some bounds of the functions C, H and
J .

Lemma 29.13 If d is a positive integer, L is a language and w is a word, then
the d-complexity function C(w, L, i, d) is a monotone nondecreasing function of the
distance d, that is

C(w, L, i, d + 1) ≥ C(w, L, i, d) (i = 1, 2, . . . , λ(w)) (29.12)

and in some cases the equality holds.

Proof D(w, L, i, d) ⊆ D(w, L, i, d + 1) implies the relation. E.g. if λ(w) ≥ 3 and the
first, second and last letters of a word w are identical, then D(w, L, 2, λ(w) − 2) =
D(w, L, 2, λ(w)− 1) and generally if d ≥ λ(w)− 1, then in (29.12) equality holds for
any i.

Lemma 29.14 If d and q are positive integers and A = {0, 1, . . . , q − 1}, then
C(w,A+, i, d) is a trapezoidal function of i, that is there exist a positive integer
j (1 ≤ j ≤ λ(w)) and a nonnegative integer m such that

C(w,A+, i, d) < C(w,A+, i + 1, d) (i = 1, 2, . . . , j − 1), (29.13)

C(w,A+, j, d) = C(w,A+, j + p, d) (p = 0, 1, . . . , m) (29.14)

and

C(w,A+, i, d) > C(w,A+, i + 1, d) (i = j + m, j + m + 1, . . . , λ(w)− 1). (29.15)

Special case d = 1 of this assertion was recently proved by de Luca [Lu]. Since
only words belonging to L are counted as d-subwords, the function C is not al-
ways trapezoidal. E.g. if A = {0, 1, . . . , q − 1} an alphabet, m is a nonnegative
integer, L = A1 ∪ A3 ∪ . . . ∪ A2m+1 and w a covering word of A2m+1, then the
function C(w, L, i,∞) has k local maxima, since now C(w, L, i,∞) equals to qi for
i = 1, 3, . . . , 2m + 1 and equals zero otherwise.
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Lemma 29.15 If L is a language, then the d-characteristic function H(w, L, i, d)
is a nondecreasing function d that is

H(w, L, i, d) ≤ H(w, L, i, d + 1) (i = 1, 2, . . . , λ(w)) (29.16)

and if L = A+ for some finite alphabet A, then the d-characteristic function H is
an increasing function of i that is

H(w,A+, i, d) ≤ H(w,A+, i + 1, d) (i = 1, 2, . . . , λ(w)− 1). (29.17)

Lemma 29.16 If d is a positive integer, A is an alphabet and L = A+ is a language,
then the cumulated values of the functions C and H are increasing functions of i
that is

i
∑

j=1

C(w,A+, j, d) <

i+1
∑

j=1

C(w,A+, j, d) (i = 1, 2, . . . , λ(w)− 1), (29.18)

i
∑

j=1

H(w,A+, j, d) <

i+1
∑

j=1

H(w,A+, j, d) (i = 1, 2, . . . , λ(w)− 1). (29.19)

Proof The corresponding D and P are nonempty sets.

E.g. if L(λ(w)) is empty, then the functions C and H are only nondecreasing
ones.

Lemma 29.17 Let A = {0, 1, . . . , q − 1}, w ∈ A+ and L ⊆ A+, then

0 ≤ C(w, L, i, d) ≤ min
(

L(i),
(n

i

))

(i = 1, 2, . . . , n) (29.20)

and if w ∈ An, L = An and d ≥ n, then

1 ≤ C(w,A+, i, d) ≤ min
(

qi,
(n

i

))

(i = 1, 2, . . . , n). (29.21)

The lower bounds are sharp. The upper bound is sharp if and only if q ≥ n− 1.

Lemma 29.18 Let A = {0, 1, . . . , q − 1}, w ∈ A+ and L ⊆ A+, then

0 ≤ H(w, L, i, d) ≤ 2i−1 (i = 1, 2, . . . , n) (29.22)

and if w ∈ An, L = An and d ≥ n, then

1 ≤ H(w,A+, i, d) ≤ 2i−1 (i = 1, 2, . . . , n). (29.23)

The lower bounds are sharp. The upper bound is sharp if and only if q ≥ n− 1.

Lemma 29.19 Let A = {0, 1, . . . , q − 1}, w ∈ A+ and L ⊆ A+, then

0 ≤ C(w, L, i, d) ≤ min |(L(i)|, n− i− 1) (i = 1, 2, . . . , n) (29.24)
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Lemma 29.20 If q is a positive integer and A = {0, 1, . . . , q − 1}, w ∈ An, then

1 ≤ C(w,A+, i, 1) ≤ min(qi, n− i− 1) (i = 1, 2, . . . , n). (29.25)

The lower bound is sharp if and only if w is homogeneous. The upper bound is sharp.

The first proof of Lemma 29.20 is due to Heinz [22]. Shallit [54] has proved
that in the case q = 2 the upper bound can be achieved. M.-C. Anisiu [1] proposed
an algorithm constructing for any positive n an n-length binary word w with the
following property: if 2k + k− 1 ≤ n ≤ 2k+1 + k, then w either contains all k-length
binary words as subword or all of its (k + 1)-length subwords are different.

The jump function characterizes the decreasing of the complexity due to the
decreasing of d.

Lemma 29.21 Let q, n and d be positive integers, A = {0, 1, . . . , q − 1}, w ∈
An, L = A+. Then

J(w, L, i,∞)















≤ (n− i)2n−i−1 if n/2 ≤ i ≤ n− 1,
≤ (n− i)2n−i−1 − 1, if n/3 ≤ i < n/2 and n = 2i + 1
≤ (n− i)2n−i−1 − 7, if n/3 ≤ i ≤ n/2 and n = 2i + 2,
≤ (n− i)2n−i−1 − 14, if n/3 ≤ i ≤ n/2 and n = 2i + 3.

(29.26)

The bounds are sharp if and only if w is a rainbow word.

Proof If n/2 ≤ i ≤ n − 1, then at most one jump of length i is possible. We have
n − i positions to start the jump and can choose or not the remaining (n − i − 1)
letters.

If n = 2i + 1, then we have either two jumps of length i(w1 −wi, wi −w2i+1) or
one (wj −wj+i). Due to the second jump we loss a further subword comparing with
the previous case.

If n = 2i + 2, then we have place also for one or two i-length jumps. The
exponential part of the formula counts 2 subwords containing jumps of length i and
i + 1 and counts twice 5 subwords containing two jumps of length i so we loss 7
subwords.

If n = 2i + 3, then also one or two jumps of length at most i are permitted.
We loss 2 subwords containing jumps of length i and i + 2, 6 subwords containing
jumps of length i and i + 1 and all together 6 subwords containing two jumps both
of length i.

29.8.3. Recurrence relations

The following recurrence properties of the complexity functions H and J are useful
in the later analysis. In this section always A = {0, 1, . . . , q − 1}, L = An, w =
w1w2 . . . wn and d ≥ 1, therefore the parameters w, L and d are omitted.

Lemma 29.22 If 1 ≤ i ≤ n, then

H(i) ≥ δ(i) +
i−1
∑

j=z

H(j) . (29.27)
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where z = min(0, i− d, k), k = max(0, p|wp = wi and 1 ≤ p ≤ i− 1) and

δ(i) =

{

1, if ∃j (1 ≤ j < i) with wj = wi

0, if @j (1 ≤ j < i) with wj = wi .
(29.28)

Corollary 29.23 If w = (0 1 . . . ) is a crossbow word and i ≥ 1, then

H(i) =

{

1 +
∑i−1

j=1 H(j), if i > d ,

i, if 1 ≤ i ≤ d .
(29.29)

Corollary 29.24 If w = (0 1 . . . q − 1)∗ is an infinite cyclical word and d ≥ q,
then

H(i) =

{
∑i−1

j=1 H(j), if q > d,

2i, if 1 ≤ i ≤ d.
(29.30)

The next three lemmas contain useful results of the theory of linear recurrence
equations. The first one [38] gives the solution of the d-order inhomogeneous re-
currence relation, the second one [31] characterizes the roots of the corresponding
characteristic equations and the third one [?] sums the values of the solution func-
tion.

Lemma 29.25 If d is a positive integer, then the solution of the inhomogeneous
linear recurrence equation

f(n) =

{

a +
∑d

i=1 f(n− d), if n > d,
b(n), if 1 ≤ n ≤ d

(29.31)

is

f(n) = k1n + k2 +

d
∑

i=1

ci,dri
i,d, (29.32)

where the constants k1, k2, c1,d, c2,d, . . . , cd,d can be computed using the given initial
values b(n) and the values ri,d can be estimated using the next lemma.

Lemma 29.26 If d ≥ 2, then let r1,d, r2,d, . . . , rd,d be the roots of the d-order
algebraic equation

zd − zd−1 − . . .− z − 1 = 0 (29.33)

in decreasing order of their absolute values. Then

2− 1

2d−1
< r1,d <

1

2d
(29.34)

and
|ri,d| < 1 (i = 2, 3, . . . , d). (29.35)

Lemma 29.27 If

f(n) = k1 + k2n +
d
∑

i=1

ci,dri
i,d, (29.36)

then
n
∑

i=1

f(i) =
c1,dr1,d

r1,d − 1
rn

1,d+k1n+
k2n(n + 1)

2
+

d
∑

i=1

ci,dri,d

1− ri,d
+

d
∑

j=2

cj,drj,d

rj,d − 1
rn

j,d = Θ(rn
1,d)+O(n2).

(29.37)
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29.8.4. Algorithms

The algorithms are defined using the pseudocode of [11].
At first we present an algorithm d-COMPLEXITY estimating the d-complexity

of words.
Definition of algorithm d-COMPLEXITY
Input: q the size of the alphabet,

d the distance parameter,
n the length of the investigated word,
w[1], w[2], . . . , w[n] the letters of the investigated word.

Output: I[n] the d-complexity of the investigated word.
Working variables: U [0], U [1], . . . , U [q − 1] position of the last occurrence of

letters 0, 1, . . . , q − 1.
z starting index of the summing.
01 for i← 0 to q − 1

02 U [i]← 0
03 U [w[1]]← 1
04 I[0]← 0
05 for i← 1 to n
06 H[i]← 0
07 z ← max(0, U [w[i]], i + 1− d)
08 for j ← z to i
09 H[i]← H[i] + H[j]
10 if U [w[i] = 0 then H[i]← H[i] + 1
11 I[i]← I[i− 1] + H[i]

The d-complexity of the investigated word is greater or equal to the output of
this algorithm. If all letters of w are different or if w is a 1-subword of the word
(0 1 . . . q − 1)∗ or d ≥ n − 1, then the output I[n] of the algorithm is the exact
complexity of w.

The running time of this algorithm is O(qn).

Definition of the algorithm MARTIN
Input: q the size of the alphabet,

n the length of the words to be covered.
Output: w1, w2, . . . wqn+n−1: the letters of the Martin word M(q, n).
Working variables: C[0], C[1], . . . , C[qn− 1] counters of the vertices of de Bruijn

graph.
k the index of the actual vertex of de Bruijn graph.
01 for i← 0 to qn − 1
02 C[i]← 0
03 for i← 1 to n− 1
04 w[i]← 0
05 for i← n to qn + n− 1
06 k ← 0
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07 for j ← 1 to n
08 k ← kn + w[i− n + j]
09 w[i]← n− 1− C[k]
10 C[k]← C[k] + 1

The running time of MARTIN is Θ(nqn), memory requirement is Θ(qn).

Definition of algorithm Super
Input: q the size of the alphabet,

n the length of the word to be generated.

Definition of algorithm MaxSub
Input: n the length of the word to be generated.
Output: m1, m2, . . . mn: the letters of a maximal word M(q, n).

Working variables: C[0], C[1], . . . , C[qn− 1] counters of the vertices of de Bruijn
graph B(q, n).
01 k ← blogq nc
02 if n ≤ qk + k − 1 then k ← k − 1
03 CALL MARTIN(q, k) q B MARTIN produces a Martin-word
M(q, k) = m1m2mqk+k−1

04 if n = qk + k − 1 then RETURN

05 Add 0 to the Martin-word and and according to the new word draw a path in
the de Bruijn graph B(q, k + 1)
06 Construct cycles in B(q, k + 1) using the remaining edges following Martin
principle
07 Order these cycles in decreasing order of length. Let |C1| ≥ |C2| ≥ . . . |Cm|.
08 Transform M(q, k) at first into a cyclical de Bruijn word, then back into a linear
de Bruijn word L ending at the starting vertex of C1.
09 Add C1 to L receiving the letters mqk+k+2mqk+k+3 . . . mqk+k+1+|C1|

10 if the length of the new word is greater or equal to n, then RETURN

11 for i← 2 to m
12 Insert Ci in the constructed word
13 if the length of the new word is greater or equal to n, thenthen RETURN

29.8.5. Construction and complexity of extremal words

Due to the finiteness of the corresponding sets d-extremal words of languages exist in
all cases. Similar assertion does not hold for maximal and minimal words of families
of languages.

Theorem 6.1 and 6.3 contain general bounds of d-complexity, resp. 1-complexity.
Theorem 6.4 characterizes the maximal d-complexity for medium distance and im-
plies the surprising corollary that binary alphabet is sufficient to get the same order
of maximal subword complexity what can be achieved using an infinite alphabet.

Theorem 6.6 and 6.7 give the maximal complexity for different values of the
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parameters. Theorem 6.8 contains the condition of the existence of 1-superminimal
words. Theorem 6.9 gives the complexity of cyclical words and together with Theo-
rem 6.6 has the corollary that f(q, n, d) and f(d, n, q) have the same order of growth.
Theorem 6.10 gives the that the n-length words can be covered using only letters
needed to cover the words (0n) (1)n . . . (q − 1)n) and so illustrates the decreas-
ing of the length of minimal d-covering words due to the permitted jumps in the
construction.

Theorem 29.28 If d, n and q are positive integers, A = {0, 1, . . . , q − 1} is an
alphabet and w ∈ An, then

n ≤ T (w,A+, d) ≤ 2n − 1. (29.38)

The lower bound is tight if and only if w is homogeneous. The upper bound is sharp
if and only if w is a rainbow word and d ≥ n− 1.

Proof Since w1w2 . . . wi ∈ D(w,A+, i, d) holds for i = 1, 2, . . . , n, the lower bound
is correct and for w = 0n the equality holds. The upper bound can be proved using

equation 29.21 and inequality min(qi,
(n

i

)

) ≤
(n

2

)

or directly exploiting that an n-

element set has 2n−1 nonempty subsets. If q ≥ n and d ≥ n−1, then w = 0 1 . . . n−1
belongs to A+ and contains 2n − 1 different elements of An as a d-subword so the
upper bound is also tight. From the other side if n < k, then w contains repeated
letters and so C(w,A+, 1, d) < n, and if d < n− 1, then the first and last letters of
w do not form d-subsequence and so C(w,A+, 2, d) <

(

n
2

)

.

Corollary 29.29 If d, n and q are positive integers, then

f(1, n, d) = n (29.39)

and if d ≥ n− 1, then

f(n, n, d) = f(n, n, n− 1) = 2n − 1. (29.40)

Theorem 29.30 If q and n are positive integers, A = {0, 1, . . . , q−1} is an alphabet
and w ∈ Aλ(w), then

n ≤ T (w,A+, 1) ≤ n(n + 1)

2
. (29.41)

The lower bound is sharp if w is homogeneous. The upper bound is sharp if and only
if w is a rainbow word.

Proof We have n + 1 places for the 2 delimiters determining a 1-subword of w. If
q ≥ n, then all 1-subwords of the word u = 0 1 . . . λ(w)− 1 are different. From the
other side if q < n, then w has to contain repeated letters not representing different
1-subwords.
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Theorem 29.31 If n and q are positive integers and 1 < q < n− 1, then

f(q, n, 1) =
n(n + 1)

2
− nk +

k2 − k

2
+

qk+1 − q

q − 1
, (29.42)

where k is the unique integer satisfying qk + k − 1 ≤ n < qk+1 + k and so k − 1 <
logq n < k + 1.

Proof Summing the inequalities 29.25 for i = 1, 2, . . . , n results

T (w,A+, 1) ≤
n
∑

i=1

min(qi, n− i + 1). (29.43)

In the sum for small values of i the exponential part, for large values of i the second
part gives the minimum. Therefore concrete calculations result the formula of the
theorem as a bound. Algorithm MaxSub produces a suitable word for any possible
pair of q − n achieving this bound.

In the binary case Shallit [54] has proved the existence of words with such com-
plexity. Using alphabet containing q ≥ 3 letters and algorithm SUPER we con-
structed [31] infinite words w = w1w2 . . . with T (w1w2 . . . wn) = f(q, n, 1).

Corollary 29.32 If q ≥ 2, then

f(∞, n, 1) = Θ(f(q, n, 1)) =
n(n + 1)

2
+ n lg n + O(qn). (29.44)

Theorem 29.33 If d, q and n are positive integers, 1 < d < n − 1 and q ≥ n,
then

f(q, n, d) = k1(q, d)n + k2(q, d) +

d
∑

i=1

ci,drn
i,d. (29.45)

If d ≤ 4, then computation of the constants in Theorem ?? requires only tech-
nical steps, otherwise there are algebraic difficulties. Z. Kása [?] has found another
recurrence relation and gave explicit formulas for d ≥ n/2. Using the jump function
we reprove his result and extend it for some smaller values of d.

Theorem 29.34 If d, q and n are positive integers and q ≥ n− 1, then

f(q, n, d) =







































c1,2rn
1,2 + c2,2rn

2,2 − n− 3, if d = 2
c1,3rn

1,3 + c2,3rn
2,2 + c3,3rn

3,3 − n/2− 3/2, if d = 3
c1,4rn

1,4 + c2,4rn
2,4 + c3,4rn

3,4 + c4,4rn
1,4 − n/3− 1, if d = 4,

2n − (n− 2− d)2n−1−d − 2 if 5
2 ≤ n

2 ≤ d ≤ n− 2,
2n − (n− 2− d)2n−d−1 − 1, if 3 ≤ n = 2d + 1,
2n − (n− 2− d)2n−d−1 + 5, if 4 ≤ n = 2d + 2,
2n − (n− 2− d)2n−d−1 + 14, if 5 ≤ n = 2d + 3.

where c1,2 = (3/2 + 0, 7
√

5), c2,2 = (3/2 − 0, 7
√

5), r1,2 = (1 +
√

5)/2, r1,2 =
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n/i 0 1 2 3 4 5 6 7 8 9 2n
− 1

1 1 1

2 2 1 3

3 3 3 1 7

4 4 6 4 1 15

5 5 10 12 4 1 31

6 6 15 25 12 4 1 63

7 7 21 51 31 12 4 1 127

8 8 28 97 73 32 12 4 1 255

9 9 36 176 185 79 32 12 4 1 511

10 10 45 ?? ?? 191 90 32 12 4 1 1023

Figure 29.7 Values of jumping function of rainbow words of length 1, 2, . . . , 10.

(1 +
√

5)/2 and so

f(n− 1, n, 2) ≈ 3, 065247.1, 618034n − 0, 065247(−0, 618034)n − n− 3,
f(n− 1, n, 3) ≈ 1, 614776.1, 839287n − n/2− 3/2 +
0, 737353n.[0, 061034 cos(2, 176234(n + 1))− 0, 052411 sin(2, 176234(n + 1))].

Proof The formulas for d = 2 and d = 3 appeared in [?], the case d = 4 is a special
case of Theorem 29.33.

If n/2 ≤ d ≤ n − 2, then according to Lemma 29.21 the sum of the jumping
values J(w, L, i,∞) of a rainbow word w for i = n− 1, n− 2, . . . , d + 1 results our
formula.

The last 3 formulas also can be derived using Lemma 29.21.

Table 1 shows the values of the jump function for rainbow words. The first and
second columns are computed using the formulas J(1) = n and J(2) = n(n− 1)/2,
the last columns using the formulas for f(q, n, d) and the medium values (printed by
bold digits) using the recurrence relation. These data support the conjecture that
the jump function is trapezoidal.

Theorem 29.35 If q is a positive integer, A = {0, 1, . . . , q − 1} is an alphabet,
Ln = An for n = 1, 2, . . . and F = {L1, L2, . . .}, then F has a 1-superminimal word
if and only if n 6= 2.

The next theorem shows that the maximal d-complexity is exponential even over
a binary alphabet and d = 2.

Theorem 29.36 Let q ≥ 2 and d ≥ 2 be positive integers and w = w1w2 . . . =
0 1 . . . q − 1 0 1 . . . q − 1 . . . be an infinite cyclical word over the alphabet A =
{0, 1, . . . , q − 1} and pn = w1w2 . . . . Then

T (pn,A+, d) = Θ(rn
1,d) + O(n), (29.46)



29.9. Finite two-dimensional arrays with maximal complexity 1479

If q = 2, then

T (pn,A+, d) =
5 + 2

√
5

2

(

1 +
√

5

2

)n

+
5− 2

√
5

2

(

1−
√

5

2

)n

− 2, (29.47)

and so

T (pn,A+, 2) = Θ

(

(

1 +
√

5

2

)n
)

. (29.48)

Proof In this case for the d-characteristic function we get a Fibonacci-type recur-
sion H(w,A+, i + 2, d) = H(w,A+, i, d) + H(w,A+, i + 1, d) with initial values
H(w,A+, 1, d) = 1 and H(w,A+, 2, d) = 2. The sum of the corresponding charac-
teristic values gives the total complexity.

Corollary 29.37 If q, n and d are positive integers, q ≥ 2 and d ≥ 2, then

Θ(f(q, n, d)) = Θ(f(d, n, q)) = Θ(rn
1,d). (29.49)

Theorem 29.38 If q, n and d are positive integers, d ≥ q, A = {0, 1, , . . . , q − 1)
and L = An, then

g(q, n, d) = qn (29.50)

and w = (0 1 . . . q − 1)n is a minimal q-covering word of L.

Corollary 29.39 If n and q are positive integers, A = {0, 1, . . . , q − 1}, M =
(A, n, n, . . . , n) and L =Mn, then γ(L, n) = qn and w = (1 2 . . . q)n is a minimal
q-covering word of L.

Exercises
29.8-1

29.9. Finite two-dimensional arrays with maximal
complexity

The section starts with definitions, then bounds and several further properties of
the complexity functions are given.

29.9.1. Definitions

Let q ≥ 2 be a positive integer and X = {0, 1, . . . , q − 1} an alphabet. Let XM×N

denote the set of q-ary M × N arrays (M , N ≥ 1 positive integers), and X∗∗ =
∪M,N≥1XM×N the set of finite q-ary two-dimensional arrays.

Let m and n be positive integers with 1 ≤ m ≤ M and 1 ≤ n ≤ N . A q-ary
m × n array B = [bij ]m×n is a subarray of the q-ary M × N array A = [akl]M×N
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if there exist indices r, s such that r + m − 1 ≤ M , s + n − 1 ≤ N and B =
[auv]r≤u≤r+m−1,s≤v≤s+n−1. �

According to this definition only nonempty arrays can be (m, n)-subarrays.
We remark that we are dealing with aperiodic q-ary M ×N arrays (written on

a planar surface, with all the subarrays situated completely within the borders of
the array). Another point of view is to consider the given array wrapped round on
itself (written on a torus), hence a periodic array. Existence results for periodic and
aperiodic arrays which contain every rectangular subarray of given sizes precisely
once are given by Paterson [46], respectively Mitchell [45].

Notions of complexity similar to those for words can be introduced for arrays.
Let A ∈ XM×N be a q-ary array and m, n positive integers with 1 ≤ m ≤

M and 1 ≤ n ≤ N . Let DA(m, n) denote the set of different m × n subarrays
of A. The subarray complexity function, or, simply, the complexity function CA :
{1, 2, . . . , M} × {1, 2, . . . , N} → N of A is

CA(m, n) = |DA(m, n)|, m = 1, 2, . . . , M, n = 1, 2, . . . , N, (29.51)

and the total complexity function TA of A is

TA =
M
∑

m=1

N
∑

n=1

CA(m, n). � (29.52)

The one-dimensional complexity and total complexity functions were introduced
by M. Heinz [22] in 1977, and studied later by many authors (see e.g. recent papers
[1, ?, 6, 3, 8, 18, 14, 54]).

Example 29.2 Let X = {0, 1, 2, 3, 4, 5} be an alphabet and

A1 =

(

0 0 0
0 0 0

)

, A2 =

(

0 1 0
0 0 2

)

, A3 =

(

0 1 2
3 4 5

)

.

Then TA1
= 6, TA2

= 15, and TA3
= 18. �

The q-ary M ×N array A is (q, m, n)-extremal if

CA(m, n) = max
B∈XM×N

CB(m, n). � (29.53)

The q-ary M × N array A is (q, m, n)-perfect if it contains each of the qmn

possible m× n q-ary arrays as a subarray exactly once. �

The arrays consisting of identical letters are called homogeneous arrays, the
arrays consisting of different letters are called rainbow arrays. �

We mention that a q-ary M ×N rainbow array exists if and only if q ≥MN . It
is obvious that (q, m, n)-extremal arrays always exist in XM×N for arbitrary values
of M , N , while (q, m, n)-perfect arrays can exist only for M , N satisfying qmn =
(M −m + 1) (N − n + 1).

The function Hq,M,N : {1, 2, . . . , M} × {1, 2, . . . , N} → N given by

Hq,M,N (m, n) = min {qmn, (M −m + 1) (N − n + 1)} (29.54)
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is called maximal complexity function. �

The q-ary M ×N array A is (q, m, n)-maximal if

CA(m, n) = Hq,M,N (m, n); (29.55)

it is maximal if (29.55) holds for all m = 1, 2, . . . , M, n = 1, 2, . . . , N . �

29.9.2. Bounds

We present the natural bounds of the complexity function for q-ary arrays A ∈
XM×N , as well as those of the total complexity function.

Claim 29.40 For each q-ary M ×N array A we have

1 ≤ CA(m, n) ≤ min {qmn, (M −m + 1)(N − n + 1)} ,
m = 1, 2, . . . , M, n = 1, 2, . . . , N.

(29.56)

The lower bound is sharp for homogeneous arrays and the upper bound is sharp for
rainbow arrays. The total complexity of A satisfies the inequality

MN ≤ TA ≤
M
∑

i=1

N
∑

j=1

Hq,M,N (i, j). (29.57)

Proof From the definition of the subarray it follows that CA(m, n) ≥ 1, m =
1, 2, . . . , M, n = 1, 2, . . . , N ; for a homogeneous array the equality holds.

It is obvious that the complexity CA(m, n) cannot exceed the total num-
ber of subarrays over X, that is qmn; it also cannot exceed the total num-
ber of subarrays of dimension m × n of the given array (possible not all dif-
ferent), namely (M − m + 1)(N − n + 1). It follows that 1 ≤ CA(m, n) ≤
min {qmn, (M −m + 1)(N − n + 1)} , m = 1, 2, . . . , M, n = 1, 2, . . . , N . For
a rainbow array R we have CR(m, n) = (M − m + 1)(N − n + 1) =
min {qmn, (M −m + 1)(N − n + 1)} .

By summing up the inequalities (29.56) we obtain (29.57).

Remark 29.41 In terms of the maximal complexity functions, inequality (29.56)
may be reformulated as

1 ≤ CA(m, n) ≤ Hq,M,N (m, n), m = 1, 2, . . . , M, n = 1, 2, . . . , N.

It follows that every (q, m, n)- perfect array, as well as any rainbow array, is
(q, m, n)- maximal.

The values of the complexity and total complexity for homogeneous and rainbow
arrays can be easily computed.

Claim 29.42 If H is a homogeneous M × N array and R is an M × N rainbow
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array, then

CH(m, n) = 1, CR(m, n) = (M −m + 1)(N − n + 1),
m = 1, 2, . . . , M, n = 1, 2, . . . , N

and

TH = MN, TR =
M(M + 1)N(N + 1)

4
.

Proof The complexity functions CH and CR were given in the proof of Proposition
29.40. Easy calculations give the formulas for TH and TR.

The shape of the complexity function for words was proved in [14, 40, 36, 3]
to be trapezoidal, i. e. it has an ascending part, possibly a horizontal one, and the
last part is a descending line . The main feature is that after becoming constant,
the complexity function of an arbitrary word cannot increase again. The question
for arrays is: for a fixed m0, is CA(m0, ·) still trapezoidal? For m0 = 1, the answer
is positive, as a consequence of the mentioned result for words; nevertheless, this is
not true for all the values m0 = 1, 2, . . . , M . The array A in the following example
has the property that CA(2, ·) increases again after becoming a constant.

Example 29.3 For the array A ∈ {0, 1}3×19 given by

A =

(

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0

)

one has CA(2, 4) = CA(2, 5) = 21, CA(2, 6) = CA(2, 7) = 22 and CA(2, 8) = 21.

29.9.3. Properties of the maximal complexity function

We shall describe some properties of the function Hq,M,N related to the shape of its
graph, namely its monotonicity and its maximum.

For M = 1 (or N = 1) the arrays are in fact finite sequences (words). It was
shown in [2, 3, 14] that for a given N we have

Hq,1,N (1, n) =

{

qn, n ≤ k
N − n + 1, k + 1 ≤ n ≤ N,

where k is the only natural number for which qk + k ≤ N < qk+1 + k + 1. The
maximum of Hq,1,N is equal to N − k and is attained at the unique point k + 1 for
qk + k < N ≤ qk+1 + k + 1 , and at both k and k + 1 for N = qk + k, hence Hq,1,N

is trapezoidal.
In the remaining part of this section we shall consider proper arrays (with

M, N ≥ 2).

Remark 29.43 If both sizes of the array are smaller than the cardinal of the al-
phabet X (M, N ≤ q), we have

(M −m + 1) (N − n + 1) ≤ q2 ≤ qmn for mn 6= 1,
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hence

Hq,M,N (m, n) =

{

min {q, MN} , m = n = 1
(M −m + 1) (N − n + 1) , otherwise.

The maximum will be given by

Hmax = max {min {q, MN} , N(M − 1), M(N − 1)}

and will be attained at one of the points (1, 1), (1, 2) or (2, 1). If q < MN, we have
Hmax = max {q, N(M − 1), M(N − 1)} ; if q ≥MN, Hmax = MN = h(1, 1).

In what follows we shall consider max{M, N} > q.

Claim 29.44 Let m0 ∈ {1, ..., M} be fixed; the function Hq,M,N (m0, ·) is trape-
zoidal, the horizontal part containing at most two points; the last part is a descending
line and the maximum of Hq,M,N (m0, ·) is attained at the first point dm0

situated on
the descending line, or on dm0

− 1.

Proof The values of Hq,M,N (m0, n), n ∈ {1, ..., N} are given by the minimum of
the values of an increasing exponential and of a descending line. At the beginning,
if (M −m0 + 1) N > qm0 , Hq,M,N (m0, ·) will be situated on the exponential, and
surely it will end on the descending line. Therefore Hq,M,N (m0, ·) will have a trape-
zoidal shape, with a horizontal part with at most two points.

There will be a point dm0
≤ N which is the least value of n for which

Hq,M,N (m0, n) is on the descending line, i.e. if dm0
> 1

(M −m0 + 1)(N − dm0
+ 1) ≤ qm0dm0

(M −m0 + 1)(N − dm0
+ 2) ≥ qm0(dm0

−1).

The maximal value of Hq,M,N (m0, ·) will be given by

µm0
= max

{

qm0(dm0
−1), (M −m0 + 1)(N − dm0

+ 1)
}

.

The maximum of Hq,M,N over {1, ..., M}×{1, ..., N} will be then Hmax = max{µm :
m ∈ {1, ..., M}}.

Remark 29.45 The maximum of Hq,M,N can be attained at a unique point (for
example H2,4,5(2, 2) = 12) or at several points (H2,4,2(1, 2) = H2,4,2(2, 1) =
H2,4,2(3, 1) = 4).

29.9.4. On the existence of maximal arrays

In [3] it was proved, using the results in [7, 12, ?, 54] that there exist finite words
with maximal complexity, of any given length; it follows that there are M × 1 and
1×N maximal arrays for all positive integers M and N . More than that, in [?] the
number of the words with maximal complexity is presented. Nevertheless, if both M
and N are ≥ 2, the situation differs, as the following proposition shows.
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Claim 29.46 There are sizes M, N ≥ 2 for which there are no arrays with maximal
complexity.

Proof For M = N = 4 calculations show that the total complexity TA of any 4× 4
array is ≤ 69, while

∑4
i=1

∑4
j=1 H2,4,4(i, j) = 70. It follows that for each 4×4 array

A there exists at least one pair (m, n) for which CA(m, n) < H2,4,4(m, n).

Open question Find the pairs M, N for which there exist maximal arrays in
X∗∗.

The result in Proposition 29.46 prevents us from obtaining a q-ary array with
maximal complexity for any M and N ≥ 2. A further question is: given M , N and
m ≤M, n ≤ N, is there an M ×N array Am,n which is (q, m, n)-maximal?

A partial answer is given in [?]: in the binary case, if (M −m + 1)(N −n + 1) =
2Martin1934, there exists a M × N array which is (2, m, n)-maximal (in fact it is
(2, m, n)-perfect).

Exercises
29.9-1

Problems

29-1 How many

Chapter Notes

Cyclic sequences in which every possible sequence of a fixed length occurs exactly
once have been studied for more than a hundred years. The first proof of the exis-
tence of (2, 1, a, 2a)-perfect sequences was published by Flye-Sainte [19] in 1894. The
problem was extended to arrays by Fan, Fan, Ma, and Siu in 1985 [17].

One dimensional perfect arrays are often called de Bruijn or Good sequences,
since the papers of De Bruijn [7] and Good [20] make these sequences popular. Two
dimensional perfect arrays were called perfect maps by Reed and Stewart in 1962 [51]
and by Paterson in 1996 [47], or de Bruijn tori by Hurlbert and Isaak and Mitchell
in 1993 and later [25, 26, 29].

The even De Bruijn sequences were introduced by A. Iványi and Z. Tóth in
1988 [35, 37]. They proposed an algorithm constructing even sequences for arbi-
trary alphabet size. Later Hurlbert and Isaak [26] provided an universal algorithm
which constructs an infinite sequence whose prefixes are even for the corresponding
alphabet size.

The concept of growing sequences was introduced by G. Hurlbert and G. Isaak
[26].
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The necessary conditions (29.3) and (29.4) were formulated at first in papers of
Cock in 1988 [10], and in 1994 of Hurlbert and Isaak [26].

For Section ??:
For Section 29.4:
For Section 29.5:
[4] [9] [10]
[11] [12]
[7] [15] [19] [20] [23]
[25] [26] [27] [28]
[29] [30]
[31] [32] [33] [35] [37]
[41] [43] [45] [46]
[47] [48] [49] [50]
[51] [55]
For Section ??:
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