
Contents

I. APPLICATIONS . 973

21. Bioinformatics . 974

21.1. Algorithms on sequences . 974
21.1.1. Distances of two sequences using linear gap penalty 974
21.1.2. Dynamic programming with arbitrary gap function 977
21.1.3. Gotoh algorithm for affine gap penalty 978
21.1.4. Concave gap penalty . 978
21.1.5. Similarity of two sequences, the Smith-Waterman algorithm 981
21.1.6. Multiple sequence alignment 982
21.1.7. Memory-reduction with the Hirschberg algorithm 984
21.1.8. Memory-reduction with corner-cutting 985

21.2. Algorithms on trees . 987
21.2.1. The small parsimony problem 987
21.2.2. The Felsenstein algorithm 988

21.3. Algorithms on stochastic grammars 990
21.3.1. Hidden Markov Models . 990
21.3.2. Stochastic context-free grammars 992

21.4. Comparing structures . 995
21.4.1. Aligning labelled, rooted trees 995
21.4.2. Co-emission probability of two HMMs 996

21.5. Distance based algorithms for constructing evolutionary trees . . . 998
21.5.1. Clustering algorithms . 999
21.5.2. Neighbour joining . 1002

21.6. Miscellaneous topics . 1006
21.6.1. Genome rearrangement . 1007
21.6.2. Shotgun sequencing . 1008

Bibliography . 1013

Index . 1017

Name Index . 1019

I. APPLICATIONS

21. Bioinformatics

In this chapter at first we present algorithms on sequences, trees and stochastic
grammars, then we continue with algorithms of comparison of structures and con-
structing of evolutionary trees, and finish the chapter with some rarely discussed
topics of bioinformatics.

21.1. Algorithms on sequences

In this section, we are going to introduce dynamic programming algorithms working
on sequences. Sequences are finite series of characters over a finite alphabet. The
basic idea of dynamic programming is that calculations for long sequences can be
given via calculations on substrings of the longer sequences.

The algorithms introduced here are the most important ones in bioinformatics,
they are the basis of several software packages.

21.1.1. Distances of two sequences using linear gap penalty

DNA contains the information of living cells. Before the duplication of cells, the
DNA molecules are doubled, and both daughter cells contain one copy of DNA. The
replication of DNA is not perfect, the stored information can be changed by random
mutations. Random mutations creates variants in the population, and these variants
evolve to new species.

Given two sequences, we can ask the question how much the two species are
related, and how many mutations are needed to describe the evolutionary history of
the two sequences.

We suppose that mutations are independent from each other, and hence, the
probability of a series of mutations is the product of probabilities of the mutations.
Each mutation is associated with a weight, mutations with high probability get a
smaller weight, mutations with low probability get a greater weight. A reasonable
choice might be the logarithm of one over the probability of the mutation. In this
case the weight of a series of mutations is the sum of the weights of the individual
mutations. We also assume that mutation and its reverse have the same probability,

21.1. Algorithms on sequences 975

therefore we study how a sequence can be transfered into another instead of evolving
two sequences from a common ancestor. Assuming minimum evolution minimum

evolution, we are seeking for the minimum weight series of mutations that trans-
forms one sequence into another. An important question is how we can quickly find
such a minimum weight series. The naive algorithm finds all the possible series of
mutations and chooses the minimum weight. Since the possible number of series of
mutations grows exponentially – as we are going to show it in this chapter –, the
naive algorithm is obviously too slow.

We are going to introduce the Sellers’ algorithm [69]. Let Σ be a finite set of
symbols, and let Σ∗ denote the set of finite long sequences over Σ. The n long prefix
of A ∈ Σ∗ will be denoted by An, and an denotes the nth character of A. The
following transformations can be applied for a sequence:

• Insertion of symbol a before position i, denoted by a ←i −.

• Deletion of symbol a at position i, denoted by − ←i a.

• Substitution of symbol a to symbol b at position i, denoted by b ←i a.

The concatenation of mutations is denoted by the ◦ symbol. τ denotes the set of
finite long concatenations of the above mutations, and T (A) = B denotes that T ∈ τ
transforms a sequence A into sequence B. Let w : τ → R+ ∪ {0} a weight function
such that for any T1, T2 and S transformations satisfying

T1 ◦ T2 = S , (21.1)

the
w(T1) + w(T2) = w(S) , (21.2)

equation also holds. Furthermore, let w(a ←i b) be independent from i. The trans-
formation distance between two sequences, A and B, is the minimum weight of
transformations transforming A into B:

δ(A, B) = min{w(T)|(T (A) = B} . (21.3)

If we assume that w satisfies

w(a← b) = w(b← a) , (21.4)

w(a← a) = 0 , (21.5)

w(b← a) + w(c← b) ≥ w(c← a) (21.6)

for any a, b, c ∈ Σ ∪ {−}, then the δ(,) transformation distance is indeed a metric
on Σ∗.

Since w(,) is a metric, it is enough to concern with transformations that change
each position of a sequence at most once. Series of transformations are depicted
with sequence alignments. By convention, the sequence at the top is the ancestor
and the sequence at the bottom is its descendant. For example, the alignment below
shows that there were substitutions at positions three and five, there was an insertion
in the first position and a deletion in the eighth position.

- A U C G U A C A G

U A G C A U A - A G

976 21. Bioinformatics

A pair at a position is called aligned pair. The weight of the series of transformations
described by the alignment is the sum of the weights of aligned pairs. Each series of
mutations can be described by an alignment, and this description is unique up the
permutation of mutations in the series. Since the summation is commutative, the
weight of the series of mutations does not depend on the order of mutations.

We are going to show that the number of possible alignments also grows expo-
nentially with the length of the sequences. The alignments that do not contain this
pattern

-

- #

where # an arbitrary character of Σ gives a subset of possible alignments. The size of
this subset is

(

|A|+|B|
|A|

)

, since there is a bijection between this set of alignments and

the set of coloured sequences that contains the characters of A and B in increasing
order, and the characters of A is coloured with one colour, and the characters of B is
coloured with the other colour. For example, if |A| = |B| = n, then |A|+ |B|

(

|
A

)

| =
Θ(22n/n0.5).

An alignment whose weight is minimal called an optimal alignment. Let the set
of optimal alignments of Ai and Bj be denoted by α∗(Ai, Bj), and let w(α∗(Ai, Bj))
denote the weights of any alignment in α∗(Ai, Bj).

The key of the fast algorithm for finding an optimal alignment is that if we know
w(α∗(Ai−1, Bj)), w(α∗(Ai, Bj−1)), and w(α∗(Ai−1, Bj−1)), then we can calculate
w(α∗(Ai, jm)) in constant time. Indeed, if we delete the last aligned pair of an
optimal alignment of Ai and Bj , we get the optimal alignment of Ai−1 and Bj , or
Ai and Bj−1 or Ai−1 and Bj−1, depending on the last aligned column depicts a
deletion, an insertion, substitution or match, respectively. Hence,

w(α∗(Ai, Bj)) = min{w(α∗(Ai−1, Bj)) + w(− ← ai);

w(α∗(Ai, Bj−1)) + w(bi ← −); (21.7)

w(α∗(Ai−1, Bj−1)) + w(bi ← ai)}.

The weights of optimal alignments are calculated in the so-called dynamic pro-

gramming table, D. The di,j element of D contains w(α∗(Ai, Bj)). Comparing of
an n and an m long sequence requires the fill-in of an (n+1)x(m+1) table, indexing
of rows and columns run from 0 till n and m, respectively. The initial conditions for
column 0 and row 0 are

d0,0 = 0, (21.8)

di,0 =
i
∑

k=1

w(− ← ak) , (21.9)

d0,j =

j
∑

l=1

w(bl ← −) . (21.10)

21.1. Algorithms on sequences 977

The table can be filled in using Equation (21.7). The time requirement for the
fill-in is Θ(nm). After filling in the dynamic programming table, the set of all optimal
alignments can be find in the following way, called trace-back. We go from the right
bottom corner to the left top corner choosing the cell(s) giving the optimal value of
the current cell (there might be more than one such cells). Stepping up from position
di,j means a deletion, stepping to the left means an insertion, and the diagonal steps
mean either a substitution or a match depending on whether or not ai = bj . Each
step is represented with an oriented edge, in this way, we get an oriented graph, whose
vertices are a subset of the cells of the dynamic programming table. The number
of optimal alignments might grow exponentially with the length of the sequences,
however, the set of optimal alignments can be represented in polynomial time and
space. Indeed, each path from dn,m to d0,0 on the oriented graph obtained in the
trace-back gives an optimal alignment.

21.1.2. Dynamic programming with arbitrary gap function

Since deletions and insertions get the same weight, the common name of them is
indel or gap, and their weights are called gap penalty. Usually gap penalties do not
depend on the deleted or inserted characters. The gap penalties used in the previous
section grow linearly with the length of the gap. This means that a long indel is
considered as the result of independent insertions or deletions of characters. However,
the biological observation is that long indels can be formed in one evolutionary step,
and these long indels are penalised too much with the linear gap penalty function.
This observation motivated the introduction of more complex gap penalty functions
[81]. The algorithm introduced by Waterman et al. penalises a k long gap with gk.
For example the weight of this alignment:

- - A U C G A C G U A C A G

U A G U C - - - A U A G A G

is g2 + w(G← A) + g3 + w(A← G) + w(G← C).
We are still seeking for the minimal weight series of transformations trans-

forming one sequence into another or equivalently for an optimal alignment. Since
there might be a long indel at the end of the optimal alignment, above knowing
w(α∗(Ai−1, Bj−1)), we must know all w(α∗(Ak, Bj)), 0 ≤ k < i and w(α∗(Ai, Bl)),
0 ≤ l < j to calculate w(α∗(Ai, Bj)). The dynamic programming recursion is given
by the following equations:

w(α∗(Ai, Bj)) = min{w(α∗(Ai−1, Bj−1)) + w(bj ← ai) ;

min0≤k<i{w(α∗(Ak, Bj)) + gi−k} ; (21.11)

min0≤l<j{w(α∗(Ai, Bl)) + gj−l}} .

The initial conditions are:

d0,0 = 0 , (21.12)

di,0 = gi , (21.13)

d0,j = gj . (21.14)

978 21. Bioinformatics

The time requirement for calculating di,j is Θ(i + j), hence the running time of
the fill-in part to calculate the weight of an optimal alignment is Θ(nm(n + m)).
Similarly to the previous algorithm, the set of optimal alignments represented by
paths from dn,m to d0,0 can be found in the trace-back part.

If |A| = |B| = n, then the running time of this algorithm is Θ(n3). With restric-
tions on the gap penalty function, the running time can be decreased. We are going
to show two such algorithms in the next two sections.

21.1.3. Gotoh algorithm for affine gap penalty

A gap penalty function is affine if

gk = uk + v, u ≥ 0, v ≥ 0 . (21.15)

There exists a Θ(nm) running time algorithm for affine gap penalty [27]. Recall that
in the Waterman algorithm,

di,j = min{di−1,j−1 + w(bj ← ai); pi,j ; qi,j} , (21.16)

where

pi,j = min
0≤k<i

{di−k,j + gk} , (21.17)

qi,j = min
0≤l<j

{di,j−l + gl} . (21.18)

The key of the Gotoh algorithm is the following reindexing

pi,j = min{di−1,j + g1, min
1≤k<i

{di−k,j + gk}}

= min{di−1,j + g1, min
0≤k<i−1

{di−1−k,j + gk+1}}

= min{di−1,j + g1, min
0≤k<i−1

{di−1−k,j + gk}+ u}

= min{di−1,j + g1, pi−1,j + u} . (21.19)

And similarly
qi,j = min{di,j−1 + g1, qi,j−1 + u} . (21.20)

In this way, pi,j és qi,j can be calculated in constant time, hence di,j . Thus, the run-
ning time of the algorithm remains Θ(nm), and the algorithm will be only a constant
factor slower than the dynamic programming algorithm for linear gap penalties.

21.1.4. Concave gap penalty

There is no biological justification for the affine gap penalty function [7, 26], its
wide-spread use (for example, CLUSTAL-W [75]) is due to its low running time.
There is a more realistic gap penalty function for which an algorithm exists whose
running time is slightly more than the running time for affine gap penalty, but it is
still significantly better than the cubic running time algorithm of Waterman et al.

[22, 52].

21.1. Algorithms on sequences 979

A gap penalty function is concave if for each i, gi+1−gi ≤ gi−gi−1. Namely, the
increasement of gap extensions are penalised less and less. It might happen that the
function starts decreasing after a given point, to avoid this, it is usually assumed that
the function increases monotonously. Based on empirical data [7], if two sequences
evolved for d PAM unit [13], the weight of a q long indel is

35.03− 6.88 log10 d + 17.02 log10 q , (21.21)

which is also a concave function. (One PAM unit is the time span on which 1% of the
sequence changed.) There exist an O(nm(log n + log m)) running time algorithm for
concave gap penalty functions. this is a so-called forward looking algorithm. The
Forward-Looking algorithm calculates the ith row of the dynamic programming
table in the following way for an arbitrary gap penalty function:

Forward-Looking

1 for 1 ≤ j ≤ m
2 q1[i, j]← d[i, 0] + g[j]
3 b[i, j]← 0
4 for 1 ≤ j ≤ m
5 q[i, j]← q1[i, j]
6 d[i, j]← min[q[i, j], p[i, j], d[i− 1, j − 1] + w(bj ← ai)]
7 � At this step, we suppose that p[i, j] and d[i− 1, j − 1] are already calculated.
8 for j < j1 ≤ m �Inner cycle.
9 if q1[i, j1] < d[i, j] + g[j1 − j] then

10 q1[j1]← d[i, j] + g[j1 − j]
11 b[i, j1]← j

where g[] is the gap penalty function and b is a pointer whose role will be described
later. In row 6, we assume that we already calculated p[i, j] and d[i − 1, j − 1]. It
is easy to show that the forward looking algorithm makes the same comparisons
as the traditional, backward looking algorithm, but in a different order. While the
backward looking algorithm calculates qi,j at the jth position of the row looking back
to the already calculated entries of the dynamic programming table, the Forward-

Looking algorithm has already calculated qi,j by arriving to the jth position of
the row. On the other hand, it sends forward candidate values for q[i, j1], j1 > j,
and by arriving to cell j1, all the needed comparisons of candidate values have been
made. Therefore, the Forward-Looking algorithm is not faster than the traditional
backward looking algorithm, however, the conception helps accelerate the algorithm.

The key idea is the following.

Lemma 21.1 Let j be the actual cell in the row. If

di,j + gj1−j ≥ q1[i, j1] , (21.22)

then for all j2 > j1

di,j + gj2−j ≥ q1[i, j2] . (21.23)

980 21. Bioinformatics

Proof From the condition it follows that there is a k < j < j1 < j2 for which

di,j + gj1−j ≥ di,k + gj1−k . (21.24)

Let us add gj2−k − gj1−k to the equation:

di,j + gj1−j + gj2−k − gj1−k ≥ di,k + gj2−k . (21.25)

For each concave gap penalty function,

gj2−j − gj1−j ≥ gj2−k − gj1−k , (21.26)

rearranging this and using Equation (21.25)

di,j + gj2−j ≥ di,j + gj1−j + gj2−k − gj1−k ≥ di,k + gj2−k ≥ q[i, j2] (21.27)

The idea of the algorithm is to find the position with a binary search from where
the actual cell cannot send forward optimal qi,j values. This is still not enough for
the desired acceleration since O(m) number of candidate values should be rewritten
in the worst case. However, the corollary of the previous lemma leads to the desired
acceleration:

Corollary 21.2 Before the jth cell sends forward candidate values in the inner

cycle of the forward looking algorithm, the cells after cell j form blocks, each block

having the same pointer, and the pointer values are decreasing by blocks from left to

right.

The pseudocode of the algorithm is the following:

Forward-Looking-Binary-Searching(i, m, q, d, g, w, a, b)

1 pn[i]← 0; p[i, 0]← m; b[i, 0]← 0
2 for j ← 1 to m
3 do q[i, j]← q[i, b[i, pn[i]]] + g[j − b[i, pn[i]]]
4 d[i, j]← min[q[i, j], p[i, j], d[i− 1, j − 1] + w(bj ← ai)]
5 � At this step, we suppose that p[i, j] and d[i− 1, j − 1] are already calculated.
6 if p[i, pn[i]] = j then

7 then pn[i]−−
8 if j + 1 < m and d[i, b[i, 0]] + g[m− b[i, 0]] > d[i, j] + g[m− j]
9 then pn[i]← 0; b[i, 0]← j

10 else if j + 1 < m
11 then Y ← max0≤X≤pn[i]{X|d[i, b[i, X]] + g[p[i, X]

−b[i, X]] ≤ p[i, j] + g[p[i, X]− j]}
12 if d[i, b[i, Y]] + g[p[i, Y]− b[i, Y]] = p[i, j] + g[p[i, X]− j]
13 then pn[i]← Y ; b[i, Y]← j
14 else E = p[i, Y]
15 if Y < pn[i]
16 then B ← p[i, Y + 1]− 1
17 else B ← j + 1

21.1. Algorithms on sequences 981

18 pn[i] + +
19 b[i, pn[i]]← j
20 p[i, pn[i]] ← maxB≤X≤E{X|d[i, j] + g[X − j] ≤

d[i, b[i, Y]] + g[x− b[i, Y]]}

The algorithm works in the following way: for each row, we maintain a variable
storing the number of blocks, a list of positions of block ends, and a list of pointers
for each block. For each cell j, the algorithm finds the last position for which the
cell gives an optimal value using binary search. There is first a binary search for
the blocks then for the positions inside the choosen block. It is enough to rewrite
three values after the binary searches: the number of blocks, the end of the last block
and its pointer. Therefore the most time consuming part is the binary search, which
takes O(lg m) time for each cell.

We do the same for columns. If the dynamic programming table is filled in row
by row, then for each position j in row i, the algorithms uses the block system of
column j. Therefore the running time of the algorithm is O(nm(lg n + lg m)).

21.1.5. Similarity of two sequences, the Smith-Waterman algo-
rithm

We can measure not only the distance but also the similarity of two sequences. For
measuring the similarity of two characters, S(a, b), the most frequently used function
is the log-odds:

S(a, b) = log

(

Pr {a, b}

Pr {a}Pr {b}

)

, (21.28)

where Pr {a, b} is the joint probability of the two characters (namely, the probabil-
ity of observing them together in an alignment column), Pr {a} and Pr {b} are the
marginal probabilities. The similarity is positive if Pr {a, b} > Pr {a}Pr {b}, oth-
erwise negative. Similarities are obtained from empirical data, for aminoacids, the
most commonly used similarities are given by the PAM and BLOSUM matrices.

If we penalise gaps with negative numbers then the above described, global
alignment algorithms work with similarities by changing minimalisation to maxi-
malisation.

It is possible to define a special problem that works for similarities and does not
work for distances. It is the local similarity problem or the local sequence alignment
problem [71]. Given two sequences, a similarity and a gap penalty function, the
problem is to give two substrings of the sequences whose similarity is maximal.
A substring of a sequence is a consecutive part of the sequence. The biological
motivation of the problem is that some parts of the biological sequences evolve
slowly while other parts evolve fast. The local alignment finds the most conservated
part of the two sequences. Local alignment is widely used for homology searching
in databases. The reason why local alignments works well for homology searching is
that the local alignment score can separate homologue and non-homologue sequences
better since the statistics is not decreased due to the variable regions of the sequences.

982 21. Bioinformatics

The Smith-Waterman algorithm work in the following way. The initial conditions
are:

d0,0 = di,0 = d0,j = 0 . (21.29)

Considering linear gap penalty, the dynamic programming table is filled in using the
following recursions:

di,j = max{0; di−1,j−1 + S(ai, bj), di−1,j + g; di,j−1 + g} . (21.30)

Here g, the gap penalty is a negative number. The best local similarity score of the
two sequences is the maximal number in the table. The trace-back starts in the cell
having the maximal number, and ends when first reaches a 0.

It is easy to prove that the alignment obtained in the trace-back will be locally
optimal: if the alignment could be extended at the end with a sub-alignment whose
similarity is positive then there would be a greater number in the dynamic program-
ming table. If the alignment could be extended at the beginning with a subalignment
having positive similarity then the value at the end of the traceback would not be 0.

21.1.6. Multiple sequence alignment

The multiple sequence alignment problem was introduced by David Sankoff [68],
and by today, the multiple sequence alignment has been the central problem in
bioinformatics. Dan Gusfield calls it the Holy Grail of bioinformatics. [30]. Multiple
alignments are widespread both in searching databases and inferring evolutionary
relationships. Using multiple alignments, it is possible to find the conservated parts
of a sequence family, the positions that describe the functional properties of the
sequence family. AS Arthur Lesk said: [33]: What two sequences whisper, a multiple

sequence alignment shout out loud.

The columns of a multiple alignment of k sequences is called aligned k-tuples.
The dynamic programming for the optimal multiple alignment is the generalisation
of the dynamic programming for optimal pairwise alignment. To align k sequences,
we have to fill in a k dimensional dynamic programming table. To calculate an entry
in this table using linear gap penalty, we have to look back to a k dimensional
hypercube. Therefore, the memory requirement in case of k sequence, n long each
is Θ(nk), and the running time of the algorithm is Θ(2knk) if we use linear gap
penalty, and Θ(n2k−1) with arbitrary gap penalty.

There are two fundamental problems with the multiple sequence alignment. The
first is an algorithmic problem: it is proven that the multiple sequence alignment
problem is NP-complete [80]. The other problem is methodical: it is not clear how
to score a multiple alignment. An objective scoring function could be given only if
the evolutionary relationships were known, in this case an aligned k-tuple could be
scored according to an evolutionary tree [59].

A heuristic solution for both problems is the iterative sequence alignment

[18],[12],[75]. This method first construct a guide-tree using pairwise distances (such
tree-building methods are described in section 21.5). The guide-tree is used then to
construct a multiple alignment. Each leaf is labelled with a sequence, and first the
sequences in ”cherry-motives" are aligned into each other, then sequence alignments

21.1. Algorithms on sequences 983

are aligned to sequences and sequence alignments according to the guide-tree. The
iterative sequence alignment method uses the ”once a gap – always gap" rule. This
means that gaps already placed into an alignment cannot be modified when aligning
the alignment to other alignment or sequence. The only possibility is to insert all-
gap columns into an alignment. The aligned sequences are usually described with a
profile. The profile is a (|Σ|+ 1)× l table, where l is the length of the alignment. A
column of a profile contains the statistics of the corresponding aligned k-tuple, the
frequencies of characters and the gap symbol.

The obtained multiple alignment can be used for constructing another guide-tree,
that can be used for another iterative sequence alignment, and this procedure can
be iterated till convergence. The reason for the iterative alignment heuristic is that
the optimal pairwise alignment of closely related sequences will be the same in the
optimal multiple alignment. The drawback of the heuristic is that even if the previous
assumption is true, there might be several optimal alignments for two sequences,
and their number might grow exponentially with the length of the sequences. For
example, let us consider the two optimal alignments of the sequences AUCGGUACAG

and AUCAUACAG.

A U C G G U A C A G A U C G G U A C A G

A U C - A U A C A G A U C A - U A C A G .

We cannot choose between the two alignments, however, in a multiple alignment,
only one of them might be optimal. For example, if we align the sequence AUCGAU to
the two optimal alignments, we get the following locally optimal alignments:

A U C G G U A C A G A U C G G U A C A G

A U C - A U A C A G A U C A - U A C A G

A U C G A U - - - - A U C - G - A U - -

The left alignment is globally optimal, however, the right alignment is only locally
optimal.

Hence, the iterative alignment method yields only a locally optimal alignment.
Another problem of this method is that it does not give an upper bound for the
goodness of the approximation. In spite of its drawback, the iterative alignment
methods are the most widely used ones for multiple sequence alignments in practice,
since it is fast and usually gives biologically reasonable alignments. Recently some
approximation methods for multiple sequence alignment have been published with
known upper bounds for their goodness [29, 65]. However, the bounds biologically
are not reasonable, and in practice, these methods usually give worse results than
the heuristic methods.

We must mention a novel greedy method that is not based on dynamic pro-
gramming. The DiAlign [53, 54, 55] first searches for gap-free homologue substrings
by pairwise sequence comparison. The gap-free alignments of the homologous sub-
strings are called diagonals of the dynamic programming name, hence the name of
the method: Diagonal Alignment. The diagonals are scored according to their sim-
ilarity value and diagonals that are not compatible with high-score diagonals get
a penalty. Two diagonals are not compatible if they cannot be in the same align-
ment. After scoring the diagonals, they are aligned together a multiple alignment

984 21. Bioinformatics

in a greedy way. First the best diagonal is selected, then the best diagonal that is
comparable with the first one, then the third best alignment that is comparable with
the first two ones, etc. The multiple alignment is the union of the selected diagonals
that might not cover all the characters in the sequence. Those characters that were
not in any of the selected diagonals are marked as ”non alignable". The drawback of
the method is that sometimes it introduces too many gaps due to not penalising the
gaps at all. However, DiAlign has been one of the best heuristic alignment approach
and is widely used in the bioinformatics community.

21.1.7. Memory-reduction with the Hirschberg algorithm

If we want to calculate only the distance or similarity between two sequences and
we are not interested in an optimal alignment, then in case of linear or affine gap
penalties, it is very easy to construct an algorithm that uses only linear memory.
Indeed, note that the dynamic programming recursion needs only the previous row
(in case of filling in the dynamic table by rows), and the algorithm does not need
to store earlier rows. On the other hand, once the dynamic programming table has
reached the last row and forgot the earlier rows, it is not possible to trace-back the
optimal alignment. If the dynamic programming table is scrolled again and again
in linear memory to trace-back the optimal alignment row by row then the running
time grows up to O(n3), where n is the length of the sequences.

However, it is possible to design an algorithm that obtains an optimal align-
ment in O(n2) running time and uses only linear memory. This is the Hirschberg

algorithm [32], which we are going to introduce for distance-based alignment with
linear gap penalty.

We introduce the suffixes of a sequence, a suffix is a substring ending at the end
of the sequence. Let Ak denote the suffix of A starting with character ak+1.

The Hirschberg algorithm first does a dynamic programming algorithm for se-
quences A[|A|/2] and B using liner memory as described above. Similarly, it does a

dynamic programming algorithm for the reverse of the sequences A[|A|/2] and B.
Based on the two dynamic programming procedures, we know what is the score

of the optimal alignment of A[|A|/2] and an arbitrary prefix of B, and similarly what

is the score of the optimal alignment of A[|A|/2] and an arbitrary suffix of B. >From
this we can tell what is the score of the optimal alignment of A and B:

min
j

{

w(α∗(A[|A|/2], Bj)) + w(α∗(A[|A|/2], Bj))
}

, (21.31)

and from this calculation it must be clear that in the optimal alignment of A and
B, A[|A|/2] is aligned with the prefix Bj for which

w(α∗(A[|A|/2], Bj)) + w(α∗(A[|A|/2], Bj)) (21.32)

is minimal.
Since we know the previous rows of the dynamic tables, we can tell if a[|A|/2] and

a[|A|/2]+1 is aligned with any characters of B or these characters are deleted in the
optimal alignment. Similarly, we can tell if any character of B is inserted between

21.1. Algorithms on sequences 985

a[|A|/2] and a[|A|/2]+1.
In this way, we get at least two columns of the optimal alignment. Then we do

the same for A[|A|/2]−1 and the remaining part of the prefix of B, and for A[|A|/2]+1

and the remaining part of the suffix of B. In this way we get alignment columns at
the quarter and the three fourths of sequence A. In the next iteration, we do the
same for the for pairs of sequences, etc., and we do the iteration till we get all the
alignment columns of the optimal alignment.

Obviously, the memory requirement still only grows linearly with the length of
the sequences. We show that the running time is still Θ(nm), where n and m are
the lengths of the sequences. This comes from the fact that the running time of the
first iteration is |A| × |B|, the running time of the second iteration is |A|/2)× j∗ +
(|A|/2) × (|B| − j∗, where j∗ is the position for which we get a minimum distance
in Eqn. (21.31). Hence the total running time is:

nm×

(

1 +
1

2
+

1

4
+ · · ·

)

= Θ(nm) . (21.33)

21.1.8. Memory-reduction with corner-cutting

The dynamic programming algorithm reaches the optimal alignment of two se-
quences with aligning longer and longer prefixes of the two sequences. The algorithm
can be accelerated with excluding the bad alignments of prefixes that cannot yield
an optimal alignment. Such alignments are given with the ordered paths going from
the right top and the left bottom corners to d0,0, hence the name of the technique.

Most of the corner-cutting algorithms use a test value. This test value is an
upper bound of the evolutionary distance between the two sequences. Corner-cutting
algorithms using a test value can obtain the optimal alignment of two sequences
only if the test value is indeed smaller then the distance between the two sequences,
otherwise the algorithm stops before reaching the right bottom corner or gives a non-
optimal alignment. Therefore these algorithms are useful for searching for sequences
similar to a given one and we are not interested in sequences that are farther from
the query sequence than the test value.

We are going to introduce two algorithms. the Spouge algorithm [72],[73] is a
generalisation of the Fickett [19] and the Ukkonnen algorithm [78],[79]. The other
algorithm was given by Gusfield, and this algorithm is an example for a corner-
cutting algorithm that reaches the right bottom corner even if the distance between
the two sequence is greater than the test value, but in this case the calculated score
is bigger than the test value, indicating that the obtained alignment is not necessary
optimal.

The Spouge algorithm calculates only those di,j for which

di,j + |(n− i)− (m− j)| × g ≤ t , (21.34)

where t is the test value, g is the gap penalty, n and m are the length of the sequences.
The key observation of the algorithm is that any path going from di,j to dn,m will
increase the score of the alignment at least by |(n − i) − (m − j)| × g. Therefore is
t is smaller than the distance between the sequences, the Spouge algorithm obtains

986 21. Bioinformatics

the optimal alignments, otherwise will stop before reaching the right bottom corner.
This algorithm is a generalisation of the Fickett algorithm and the Ukkonen

algorithm. Those algorithms also use a test value, but the inequality in the Fickett
algorithm is:

di,j ≤ t , (21.35)

while the inequality in the Ukkonnen algorithm is:

|i− j| × g + |(n− i)− (m− j)| × g ≤ t . (21.36)

Since in both cases, the left hand side of the inequalities are not greater than the
left end side of the Spouge inequality, the Fickett and the Ukkonnen algorithms will
calculate at least as much part of the dynamic programming table than the Spouge
algorithm. Empirical results proved that the Spouge algorithm is significantly better
[73]. The algorithm can be extended to affine and concave gap penalties, too.

The k-difference global alignment problem [30] asks the following question: Is
there an alignment of the sequences whose weight is smaller than k? The algorithm
answering the question has O(kn) running time, where n is the length of the longer
sequence. The algorithm is based on the observation that any path from dn,m to d0,0

having at most score k cannot contain a cell di,j for which |i− j| > k/g. Therefore
the algorithm calculates only those di,j cells for which (i− j) < k/g and disregards
the de,f neighbours of the border elements for which |e− f | > k/g. If there exists an
alignment with a score smaller or equal than k, then dn,m < k and dn,m is indeed the
distance of the two sequences. Otherwise dn,m > k, and dn,m > k is not necessary
the score of the optimal alignment since there might be an alignment that leaves the
band defined by the |i − j| < k/g inequality and still has a smaller score then the
best optimal alignment in the defined band.

The corner-cutting technique has been extended to multiple sequence alignments
scored by the sum-of-pairs scoring scheme [9]. The sum-of-pairs score is:

SPl =
k−1
∑

i=1

k
∑

j=i+1

d(ci,l, cj,l) , (21.37)

where SPl is the lth aligned k-tuple d(,) is the distance function on Σ ∪ {−}, k
is the number of sequences, ci,j is the character of the multiple alignment in the
ith row and jth column. The l-suffix of sequence S is Sl. Let wi,j(l, m) denote the
distance of the optimal alignment of the l-suffix and the m-suffix of the ith and the
jth sequences. The Carillo and Lipman algorithm calculates only the positions for
which

di1,i2,...in
+

k−1
∑

j=1

k
∑

l=j

wj,l(ij , il) ≤ t , (21.38)

where t is the test value. The goodness of the algorithm follows from the fact that the
sum-of-pairs score of the optimal alignment of the not yet aligned suffixes cannot be
smaller than the sum of the scores of the optimal pairwise alignments. This corner
cutting method can align at most six moderately long sequences [43].

21.2. Algorithms on trees 987

Exercises
21.1-1 Show that the number of possible alignments of an n and an m long se-
quences is

min(n,m)
∑

i=0

(n + m− i)!

(n− i)!(m− i)!i!
.

21.1-2 Give a series of pairs of sequences and a scoring scheme such that the number
of optimal alignments grows exponentially with the length of the sequences.
21.1-3 Give the Hirschberg algorithm for multiple alignments.
21.1-4 Give the Hirschberg algorithm for affine gap penalties.
21.1-5 Give the Smith-Waterman algorithm for affine gap penalties.
21.1-6 Give the Spouge algorithm for affine gap penalties.
21.1-7 Construct an example showing that the optimal multiple alignment of three
sequences might contain a pairwise alignment that is only suboptimal.

21.2. Algorithms on trees

Algorithms introduced in this section work on rooted trees. The dynamic program-
ming is based on the reduction to rooted subtrees. As we will see, above obtaining
optimal cases, we can calculate algebraic expressions in the same running time.

21.2.1. The small parsimony problem

The (weighted) parsimony principle is to describe the changes of biological sequences
with the minimum number (minimum weight) of mutations. We will concern only
with substitutions, namely, the input sequences has the same length and the problem
is to give the evolutionary relationships of sequences using only substitutions and
the parsimony principle. We can define the large and the small parsimony problem.
For the large parsimony problem, we do not know the topology of the evolutionary
tree showing the evolutionary relationships of the sequences, hence the problem is
to find both the best topology and an evolutionary history on the tree. The solution
is not only locally but globally optimal. It has been proved that the large parsimony
problem is NP-complete [21].

The small parsimony problem is to find the most parsimonious evolutionary
history on a given tree topology. The solution for the small parsimony problem is
only locally optimal, and there is no guarantee for global optimum.

Each position of the sequences is scored independently, therefore it is enough
to find a solution for the case where there is only one character at each leaf of
the tree. In this case, the evolutionary history can be described with labelling the
internal nodes with characters. If two characters at neighbouring vertices are the
same, then no mutation happened at the corresponding edge, otherwise one mutation
happened. The naive algorithm investigates all possible labelings and selects the
most parsimonious solution. Obviously, it is too slow, since the number of possible

988 21. Bioinformatics

labelings grows exponentially with the internal nodes of the tree.
The dynamic programming is based on the reduction to smaller subtrees [68].

Here the definition of subtrees is the following: there is a natural partial ordering
on the nodes in the rooted subtree such that the root is the greatest node and the
leaves are minimal. A subtree is defined by a node, and the subtree contains this
node and all nodes that are smaller than the given node. The given node is the root
of the subtree. We suppose that for any t child of the node r and any character ω
we know the minimum number of mutations that are needed on the tree with root
t given that there is ω at node t. Let mt,ω denote this number. Then

mr,ω =
∑

t∈D(r)

min
σ∈Σ
{mt,σ + δω,σ} , (21.39)

where D(r) is the set of children of r, Σ is the alphabet, and δω,σ is 1 if ω = σ and
0 otherwise.

The minimum number of mutations on the entire tree is minω∈Σ mR,ω, where R
is the root of the tree. A most parsimonious labelling can be obtained with trace-
backing the tree from the root to the leaves, writing to each nodes the character
that minimises Eqn. 21.39. To do this, we have to store mr,ω for all r and ω.

The running time of the algorithm is Θ(n|Σ|2) for one character, where n is the
number of nodes of the tree, and Θ(nl|Σ|2) for entire sequences, where l is the length
of the sequences.

21.2.2. The Felsenstein algorithm

The input of the Felsenstein algorithm [17] is a multiple alignment of DNA (or
RNA or protein) sequences, an evolutionary tree topology and edge lengths, and
a model that gives for each pair of characters, σ and ω and time t, what is the
probability that σ evolves to ω duting time t. Let fσω(t) denote this probability. The
equilibrium probability distribution of the characters is denoted by π. The question
is what is the likelihood of the tree, namely, what is the probability of observing
the sequences at the leaves given the evolutionary parameters consisting of the edge
lengths and parameters of the substitution model.

We assume that each position evolves independently, hence the probability of
an evolutionary process is the product of the evolutionary probabilities for each
position. Therefore it is enough to show how to calculate the likelihood for a sequence
position. We show this for an example tree that can be seen on Figure 21.1. si will
denote the character at node i and vj is the length of edge j. Since we do not know
the characters at the internal nodes, we must sum the probabilities for all possible
configurations:

L =
∑

s0

∑

s6

∑

s7

∑

s8

πs0
× fs0s6

(v6)× fs6s1
(v1)× fs6s2

(v2)

×fs0s8
(v8)× fs8s3

(v3)× fs8s7
(v7)× fs7s4

(v4)× fs7s5
(v5). (21.40)

If we consider the four character alphabet of DNA, the summation has 256 members,
an in case of n species, it would have 4n−1, namely the computational time grows

21.2. Algorithms on trees 989

v1 v2

3

4 5

v4 v5

v6

0
v8

v3 v7

7

1
2

6

8

Figure 21.1 The tree on which we introduce the Felsenstein algorithm. Evolutionary times are
denoted with vs on the edges of the tree.

exponentially with the number of sequences. However, if we move the expressions not
depending on the summation index out of the summation, then we get the following
product:

L =
∑

s0

πs0

{

∑

s6

fs0s6
(v6)[fs6s1

(v1)][fs6s2
(v2)]

}

×

{

∑

s8

fs0s8
(v8)[fs8s3

(v3)]

(

∑

s7

fs8s7
(v7)[fs7s4

(v4)][fs7s5
(v5)]

)}

(21.41)

which can be calculated in significantly less time. Note that the parenthesis in (21.41)
gives the topology of the tree. Each summation can be calculated independently then
we multiply the results. Hence the running time of calculating the likelihood for one
position decreases to Θ(|Σ|2n) and the running time of calculating the likelihood for
the multiple alignment is Θ(|Σ|2nl) where l is the length of the alignment.

Exercises
21.2-1 Give an algorithm for the weighted small parsimony problem where we want
to get minimum weight evolutionary labeling given a tree topology and a set of se-
quences associated to the leaves of the tree.
21.2-2 The gene content changes in species, a gene that can be found in a genome
of a species might be abundant in another genome. In the simplest model an existing
gene might be deleted from the genome and an abundant gene might appear. Give
the small parsimony algorithm for this gene content evolution model.
21.2-3 Give an algorithm that obtains the Maximum Likelihood labelling on a tree.

21.2-4 Rewrite the small parsimony problem in the form of (21.40) replacing sums
with minimalisation, and show that the Sankoff algorithm is based on the same re-
arrangement as the Felsenstein algorithm.
21.2-5 The Fitch algorithm [20] works in the following way: Each r node is asso-
ciated with a set of characters, Cr. The leaves are associated with a set containing

990 21. Bioinformatics

the character associated to the leaves, and each internal character r has the set:

∩t∈D(r) Ct if ∩t∈D(r) Ct 6= ∅

∪t∈D(r)Ct otherwise ,

After reaching the root, we select an arbitrary character from CR, where R is the
root of the tree, and we choose the same character that we chose at the parent node
if the set of the child node has this character, otherwise an arbitrary character from
the set of the child node. Show that we get a most parsimonious labelling. What is
the running time of this algorithm?
21.2-6 Show that the Sankoff algorithm gives all possible most parsimonious la-
belling, while there are most parsimonious labellings that cannot be obtained with
the Fitch algorithm.

21.3. Algorithms on stochastic grammars

Below we give algorithms on stochastic transformational grammars. Stochastic trans-
formational grammars play a central role in modern bioinformatics. Two types of
transformational grammars are widespread, the Hidden Markov Models (HMMs)
are used for protein structure prediction and gene finding, while Stochastic Context
Free Grammars (SCFGs) are used for RNA secondary structure prediction.

21.3.1. Hidden Markov Models

We give the formal definition of Hidden Markov Models (HMM): Let X denote a
finite set of states. There are two distinguished states among the states, the start
and the end states. The states are divided into two parts, emitting and non-emitting
states. We assume that only the start and the end states are non-emitting, we will
show that this assumption is not too strict.

The M transformation matrix contains the transition probabilities, mij , that the
Markov process will jump to state j from state i. Emitting states emit characters
form a finite alphabet, Σ. The probability that the state i emits a character ω will
be denoted by πi

ω. The Markov process starts in the start state and ends in the end
state, and walks according to the transition probabilities in M. Each emitting state
emits a character, the emitted characters form a sequence. The process is hidden
since the observer observes only the sequence and does not observe the path that
the Markov process walked on. There are three important questions for HMMs that
can be answered using dynamic programming algorithms.

The first question is the following: given an HMM and a sequence, what is the
most likely path that emits the given sequence? The Viterbi algorithm gives the
answer for this question. Recall that Ak is the k-long prefix of sequence A, and
ak is the character in the kth position. The dynamic programming answering the
first question is based on that we can calculate the Prmax {Ak+1, j} probability, the
probability of the most probable path emitting prefix Ak+1 and being in state j if

21.3. Algorithms on stochastic grammars 991

we already calculated Prmax {max} (Ak, i) for all possible i, since

Prmax {Ak+1, j} = max
i

(Prmax {Ak, i}mi,jπj
ak+1

) . (21.42)

The reason behind the above equation is that the probability of any path is the
product of transition and emission probabilities. Among the products having the
same last two terms (in our case mi,jπj

ak+1) the maximal is the one for which the
product of the other terms is maximal.

The initialisation of the dynamic programming is

Prmax {A0, START} = 1 . (21.43)

Since the end state does not emit a character, the termination of the dynamic pro-
gramming algorithm is

Prmax {A} = Prmax {A, END} = max
i

(Prmax {A, i}mi,END) , (21.44)

where Prmax {A} is the probability of the most likely path emitting the given se-
quence. One of the most likely paths can be obtained with a trace-back.

The second question is the following: given an HMM and a sequence, what is
the probability that the HMM emits the sequence? This probability is the sum
of the probabilities of paths that emit the given sequence. Since the number of
paths emitting a given sequence might grow exponentially with the length of the
sequence, the naive algorithm that finds all the possible emitting paths and sum
their probabilities would be too slow.

The dynamic programming algorithm that calculates quickly the probability in
question is called the Forward algorithm. It is very similar to the Viterbi algorithm,
just there is a sum instead of maximalisation in it:

Pr {Ak+1, j} =
∑

i

Pr {Ak, i}mi,jπj
ak+1

. (21.45)

Since the END state does not emit, the termination is

Pr {A} = Pr {A, END} =
∑

i

Pr {A, i}mi,END . (21.46)

where Pr {A} is the probability that the HMM emits sequence A.
The most likely path obtained by the Viterbi algorithm has more and less reliable

parts. Therefore we are interested in the probability

Pr {ak is emitted by state i | the HMM emitted sequence A} .

This is the third question that we answer with dynamic programming algorithm.
The above mentioned probability is the sum of the probabilities of paths that emit
ak in state i divided by the probability that the HMM emits sequence A. Since the
number of such paths might grow exponentially, the naive algorithm that finds all
the possible paths and sum their probability is too slow.

To answer the question, first we calculate for each suffix Ak and state i what

992 21. Bioinformatics

is the probability that the HMM emits suffix Ak given that state i emits ak. This
can be calculated with the Backward algorithm, which is similar to the Forward
algorithm just starts the recursion with the end of the sequence:

Pr
{

Ak, i
}

=
∑

j

(Pr
{

Ak+1, j
}

mi,jπj
ak+1

) . (21.47)

Let Pr {ak = i|A} denote the probability

Pr {ak is emitted by state i | the HMM emitted sequence A} .

Then

Pr {ak = i|A}Pr {A} = Pr {A ∧ ak = i} = Pr {Ak, i}Pr
{

Ak, i
}

, (21.48)

and from this

Pr {ak = i|A} =
Pr {Ak, i}Pr

{

Ak, i
}

Pr {A}
, (21.49)

which is the needed probability.

21.3.2. Stochastic context-free grammars

It can be shown that every context-free grammar can be rewritten into Chomsky

normal form. Each rule of a grammar in Chomsky normal form has the form Wv →
WyWz or Ww → a, where the W s are non-terminal symbols, and a is a terminal
symbol. In a stochastic grammar, each derivation rule has a probability, a non-
negative number such that the probabilities of derivation rules for each non-terminal
sum up to 1.

Given a SCFG and a sequence, we can ask the questions analogous to the three
questions we asked for HMMs: what is the probability of the most likely derivation,
what is the probability of the derivation of the sequence and what is the proba-
bility that a sub-string has been derivated starting with Wx non-terminal, given
that the SCFG derivated the sequence. The first question can be answered with the
CYK (Cocke-Younger-Kasami) algorithm which is the Viterbi-equivalent algorithm
for SCFGs. The second question can be answered with the Inside algorithm, this
is the Forward-equivalent for SCFGs. The third question can be answered with the
combination of the Inside and Outside algorithms, as expected, the Outside algo-
rithm is analogous to the Backward algorithm. Though the introduced algorithms
are equivalent with the algorithms used for HMMs, their running time is significantly
greater.

Let tv(y, z) denote the probability of the rule Wv →WyWz, and let ev(a) denote
the probability of the rule Wv → a. The Inside algorithm calculates α(i, j, v) for all
i ≤ j and v, this is the probability that non-terminal Wv derives the substring from
ai till aj . The initial conditions are:

α(i, i, v) = ev(ai) , (21.50)

21.3. Algorithms on stochastic grammars 993

for all i and v. The main recursion is:

α(i, j, v) =
M
∑

y=1

M
∑

z=1

j−1
∑

k=i

α(i, k, y)tv(y, z)α(k + 1, j, z) , (21.51)

where M is the number of non-terminals. The dynamic programming table is an
upper triangle matrix for each non-terminal, the filling-in of the table starts with the
main diagonal, and is continued with the other diagonals. The derivation probability
is α(1, L, 1), where L is the length of the sequence, and W1 is the starting non-
terminal. The running time of the algorithm is Θ(L3M3), the memory requirement
is Θ(L2M).

The Outside algorithm calculates β(i, j, v) for all i ≤ j and v, this is the part of
the derivation probability of deriving sequence A which is ”outside" of the derivation
of substring from ai till aj , starting the derivation from Wv. A more formal definition
for β(i, j, v) is that this is the sum of derivation probabilities in whom the substring
from ai till aj is derived from Wv, divided by α(i, j, v). Here we define 0/0 as 0. The
initial conditions are:

β(1, L, 1) = 1 (21.52)

β(1, L, v) = 0 ha v 6= 1 . (21.53)

The main recursion is:

β(i, j, v) =

M
∑

y=1

M
∑

z=1

i−1
∑

k=1

α(k, i− 1, z)ty(z, v)β(k, j, y) +

M
∑

y=1

M
∑

z=1

L
∑

k=j+1

α(j + 1, k, z)ty(z, v)β(i, k, y) . (21.54)

The reasoning for Eqn. 21.54 is the following. The Wv non-terminal was derivated
from a Wy non-terminal together with a Wz non-terminal, and their derivation
order could be both WzWv and WvWz. The outside probability of non-terminal Wv

is product of the outside probability of Wy, the derivation probability and the inside
probability of Wz. As we can see, inside probabilities are needed to calculate outside
probabilities, this is a significant difference from the Backward algorithm that can
be used without a Forward algorithm.

The CYK algorithm is very similar to the Inside algorithm, just there are max-
imalisations instead of summations:

αmax(i, j, v) = max
y

max
z

max
i≤k≤j−1

αmax(i, k, y)tv(y, z)αmax(k + 1, j, z) , (21.55)

The probability of the most likely derivation is αmax(1, L, 1). The most likely deriva-
tion can be obtained with a trace-back.

Finally, the probability that the substring from ai till aj has been derived by
Wv given that the SCFG derived the sequence is:

α(i, j, v)β(i, j, v)

α(1, L, 1)
. (21.56)

994 21. Bioinformatics

Exercises
21.3-1 In a regular grammar, each derivation rule is either in a form Wv → aWy

or in a form Wv → a. Show that each HMM can be rewritten as a stochastic regular
grammar. On the other hand, there are stochastic regular grammars that cannot be
described as HMMs.
21.3-2 Give a dynamic programming algorithm that calculate for a stochastic reg-
ular grammar and a sequence A

• the most likely derivation,

• the probability of derivation,

• the probability that character ai is derived by non-terminal W .

21.3-3 An HMM can contain silent states that do not emit any character. Show
that any HMM containing silent states other than the start and end states can be
rewritten to an HMM that does not contain silent states above the start and end
states and emits sequences with the same probabilities.
21.3-4 Pair Hidden Markov models are Markov models in which states can emit
characters not only to one but two sequences. Some states emit only into one of
the sequences, some states emit into both sequences. The observer sees only the
sequences and does not see which state emits which characters and which characters
are co-emitted. Give the Viterbi, Forward and Backward algorithms for pair-HMMs.

21.3-5 The Viterbi algorithm does not use that probabilities are probabilities,
namely, they are non-negative and sum up to one. Moreover, the Viterbi algorithm
works if we replace multiplications to additions (say that we calculate the logarithm
of the probabilities). Give a modified HMM, namely, in which ”probabilities" not
necessary sum up to one, and they might be negative, too, and the Viterbi algo-
rithm with additions are equivalent with the Gotoh algorithm.
21.3-6 Secondary structures of RNA sequences are set of basepairings, in which
for all basepairing positions ij̇ and i′j̇′, i < i′ implies that either i < j < i′ < j′

or i < i′ < j′ < i. The possible basepairings are A − U , U − A, C − G, G − C,
G−U and U −G. Give a dynamic programming algorithm that finds the secondary
structure containing the maximum number of basepairings for an RNA sequence.
This problem was first solved by Nussionov et al. [57].
21.3-7 The derivation rules of the Knudsen-Hein grammar are [38], [39]

S → LS|L

F → dFd|LS

L → s|dFd

where s has to be substituted with the possible characters of RNA sequences, and
the ds in the dFd expression have to be replaced by possible basepairings. Show that
the probability of the derivation of a sequence as well as the most likely derivation
can be obtained without rewriting the grammar into Chomsky normal form.

21.4. Comparing structures 995

21.4. Comparing structures

In this section, we give dynamic programming algorithms for comparing structures.
As we can see, aligning labelled rooted trees is a generalisation of sequence alignment.
The recursions in the dynamic programming algorithm for comparing HMMs yields
a linear equation system due to circular dependencies. However, we still can call it
dynamic programming algorithm.

21.4.1. Aligning labelled, rooted trees

Let Σ be a finite alphabet, and Σ− = Σ∪ {−}, Σ2 = Σ− ×Σ−\{−,−}. Labelling of
tree F is a function that assigns a character of Σ to each node n ∈ VF . If we delete
a node from the tree, then the children of the node will become children of the
parental node. If we delete the root of the tree, then the tree becomes a forest. Let
A be a rooted tree labelled with characters from Σ2, and let c : VA → Σ2 represent
the labelling. A is an alignment of trees F and G labelled with characters from Σ
if restricting the labeling of A to the first (respectively, second) coordinates and
deleting nodes labelled with ’−’ yields tree F (respectively, G). Let s : Σ2 → R be
a similarity function. An optimal alignment of trees F and G is the tree A labelled
with Σ2 for which

∑

n∈VA

s(c(n)) (21.57)

is maximal. This tree is denoted by AF,G. Note that a sequence can be represented
with a unary tree, which has a single leaf. Therefore aligning trees is a generalisation
of aligning sequences (with linear gap penalty).

Below we will concern only with trees in which each node has a degree at most
3. The recursion in the dynamic programming algorithm goes on rooted subtrees. A
rooted subtree of a tree contains a node n of the tree and all nodes that are smaller
than n. The tree obtained by root r is denoted by tr.

A tree to an empty tree can be aligned only in one way. Two leafes labelled by
a and b can be aligned in three different way. The alignment might contain only one
node labelled with (a, b) or might contain two nodes, one of them is labelled with
(a,−), the other with (−, b). One of the points is the root, the other the leaf.

Similarly, when we align a single leaf to a tree, then in the alignment A either
the single character of the node is labelled together with a character of the tree
or labelled together with ’−’ in an independent node. This node can be placed in
several ways on tree A, however the score of any of them is the same.

After this initialisation, the dynamic programming algorithm aligns greater
rooted subtrees using the alignments of smaller rooted subtrees. We assume that
we already know the score of the optimal alignments Atr,tx

, Atr,ty
, Atu,ts

, Atv,ts
,

Atu,tx
, Atu,ty

, Atv,tx
and Atv,ty

when aligning subtrees tr and ts, where u and v are
the children of r and x and y are the children of s. Should one of the nodes have
only one child, the dynamic programming reduces the problem of aligning tr and
ts to less subproblems. We assume that the algorithm also knows the score of the
optimal alignments of tr to the empty tree and the score of the optimal alignment
of ts to the empty tree. Let the labelling of r be a and the labelling of s be b. We

996 21. Bioinformatics

have to consider constant many subproblems for obtaining the score of the optimal
alignment of tr and ts. If one of the tree is aligned to one of the children’s subtree of
the other tree, then the other child and the root of the other tree is labelled together
with ’−’. If character of r is co-labelled with the character of s, then the children
nodes are aligned together, as well. The last situation is the case when the roots are
not aligned in Atr,ts

but one of the roots is the root of Atr,ts
and the other root is its

only child. The children might or might not be aligned together, this is five possible
cases altogether.

Since the number of rooted subtrees equals to the number of nodes of the tree,
the optimal alignment can be obtained in Θ(|F ||G|) time, where |F | and |G| are the
number of nodes in F and G.

21.4.2. Co-emission probability of two HMMs

Let M1 and M2 be Hidden Markov Models. The co-emission probability of the two
models is

C(M1, M2) =
∑

s

PrM1
{s}PrM2

{s} , (21.58)

where the summation is over all possible sequences and PrM {s} is the probability
that model M emitted sequence s. The probability that path p emitted sequence s
is denoted by e(p) = s, a path from the START state till the x state is denoted by
[x]. Since state x can be reached on several paths, this definition is not well-defined,
however, this will not cause a problem later on. Since the coemission probability is
the sum of the product of emission of paths,

C(M1, M2) =
∑

s

∑

p1∈M1,e(p1)=s

PrM1
{p1}

∑

p2∈M2,e(p2)=s

PrM2
{p2}

 =

=
∑

p1∈M1,p2∈M2,e(p1)=e(p2)

PrM1
{p1}PrM2

{p2} . (21.59)

Let p̄1 denote the path that can be obtained with removing the last state from p1,
and let x1 be the state before END1 in path p1. (We define similarly p̄2 and x2.)
Hence

C(M1, M2) =
∑

p1∈M1,p2∈M2,e(p1)=e(p2)

mx1,END1
mx2,END2

PrM1
{p̄1}PrM2

{p̄2} =

=
∑

x1,x2

mx1,END1
mx2,END2

C(x1, x2) , (21.60)

where mx,END is the probability of jumping to ENDfrom x, and

C(x1, x2) =
∑

[x1]∈M1,[x2]∈M2,e([x1])=e([x2])

PrM1
{[x1]}PrM2

{[x2]} . (21.61)

C(x1, x2) can be also obtained with this equation:

C(x1, x2) =
∑

y1,y2

my1,x1
my2,x2

C(y1, y2)
∑

σ∈Σ

Pr {σ|x1}Pr {σ|x2} , (21.62)

21.4. Comparing structures 997

where Pr {σ|xi} is the probability that xi emitted σ. Equation 21.62 defines a linear
equation system for all pairs of emitting states x1 and x2 . The initial conditions
are:

C(START 1, START 2) = 1, (21.63)

C(START 1, x2) = 0, x2 6= START 2 , (21.64)

C(x1, START 2) = 0, x1 6= START 1 . (21.65)

Unlike the case of traditional dynamic programming, we do not fill in a dynamic
programming table, but solve a linear equation system defined by Equation 21.62.
Hence, the coemission probability can be calculated in O

(

(n1n2)3
)

time, where ni

and Mi are the number of emitting states of the models.

Exercises
21.4-1 Give a dynamic programming algorithm for the local similarities of two
trees. This is the score of the most similar subtrees of the two trees. Here subtrees
are any consecutive parts of the tree.
21.4-2 Ordered trees are rooted trees in which the children of a node are ordered.
The ordered alignment of two ordered trees preserve the orderings in the aligned
trees. Give an algorithm that obtains the optimal ordered alignment of two ordered
trees and has running time being polynomial with both the maximum number of
children and number of nodes.
21.4-3 Consider the infinite Euclidean space whose coordinates are the possible
sequences. Each Hidden Markov model is a vector in this space the coordinates of
the vector are the emission probabilities of the corresponding sequences. Obtain the
angle between two HMMs in this space.
21.4-4 Give an algorithm that calculates the generating function of the length of
the emitted sequences of an HMM, that is

∞
∑

i=0

piξ
i

where pi is the probability that the Markov model emitted a sequence with length
i.
21.4-5 Give an algorithm that calculates the generating function of the length of
the emitted sequences of a pair-HMM, that is

∞
∑

i=0

∞
∑

j=0

pi,jξiηj

where pi,j is the probability that the first emitted sequence has length i, and the
second emitted sequence has length j.

998 21. Bioinformatics

21.5. Distance based algorithms for constructing
evolutionary trees

In this section, we shell introduce algorithms whose input is a set of objects and
distances between objects. The distances might be obtained from pairwise alignments
of sequences, however, the introduced algorithms work for any kind of distances. The
leaves of the tree are the given objects, and the topology and the lengths of the edges
are obtained from the distances. Every weighted tree defines a metric on the leaves
of the tree, we define the distance between two leaves as the sum of the weights of
edges on the path connecting them. The goodness of algorithms can be measured as
the deviation between the input distances and the distances obtained on the tree.

We define two special metrics, the ultrametric and additive metric. The clus-
tering algorithms generate a tree that is always ultrametric. We shell prove that
clustering algorithms gives back the ultrametric if the input distances follow a ul-
trametric, namely, the tree obtained by a clustering algorithm defines exactly the
input distances.

Similarly, the Neighbour Joining algorithm creates a tree that represents an
additive metric, and whenever the input distances follow an additive metric, the
generated tree gives back the input distances.

For both proves, we need the following lemma:

Lemma 21.3 For any metric, there is at most one tree that represents it and has

positive weights.

Proof The proof is based on induction, the induction starts with three points. For
three points, there is exactly one possible topology, a star-tree. Let the lengths of
the edges connecting points i, j and k with the internal node of the star three be x,
y and z, respectively. The lengths of the edges defined by the

x + y = di,j (21.66)

x + z = di,k (21.67)

y + z = dk,l (21.68)

equation system, which has a unique solution since the determinant

∣

∣

∣

∣

∣

∣

1 1 0
1 0 1
0 1 1

∣

∣

∣

∣

∣

∣

(21.69)

is not 0.
For n > 3 number of points, let us assume that there are two trees representing

the same metric. We find a cherry motif on the first tree, with cherries i and j.
A cherry motif is a motif with two leafes whose connecting path has exactly one
internal node. Every tree contains at least two cherry motives, a path on the tree
that has the maximal number of internal nodes has cherry motives at both ends.

If there is only one internal node on the path connecting i and j on the other
tree, then the length of the corresponding edges in the two cherry motives must

21.5. Distance based algorithms for constructing evolutionary trees 999

be the same, since for any additional point k, we must get the same subtree. We
define a new metric by deleting points i and j, and adding a new point u. The
distance between u and any point k is di,k−di,u, where di,u is the length of the edge
connecting i with the internal point in the cherry motif. If we delete nodes i and
j, we get a tree that represent this metric and they are the same, according to the
induction.

If the path between i and j contains more than one internal node on the other
tree, then we find a contradiction. There is a u1 point on the second tree for which
di,u 6= di,u1

. Consider a k such that the path connecting i and k contains node u.
From the first tree

di,k − dj,k = di,u − dj,u = 2di,u − di,j , (21.70)

while on the second tree

di,k − dj,k = di,u1
− dj,u1

= 2di,u1
− di,j , (21.71)

which contradicts that di,u 6= di,u1
.

21.5.1. Clustering algorithms

Definition 21.4 A metric is ultrametric if for any three points, i, j and k

di,j ≤ max{di,k, dj,k} (21.72)

It is easy to prove that the three distances between any three points are all equal
or two of them equal and the third is smaller in any ultrametric.

Theorem 21.5 If the metric on a finite set of points is ultrametric, then there is

exactly one tree that represents it. Furthermore, this tree can be rooted such that the

distance between a point and the root is the same for all points.

Proof Based on the Lemma 21.3, it is enough to construct one ultrametric tree
for any ultrametric. We represent ultrametric trees as dendrograms. in this rep-
resentation, the horizontal edges has length zero. For an example dendrogram, see
Figure 21.2. The proof is based on the induction on the number of leaves. Obviously,
we can construct a dendrogram for two leaves. After constructing the dendrogram
for n leaves, we add leaf n + 1 to the dendrogram in the following way. We find
a leaf i in the dendrogram, for which di,n+1 is minimal. Then we walk up on the
dendrogram till we reach the di,n+1/2 distance (we might go upper than the root).
The node i is connected to the dendrogram at this point, see Figure 21.3. This den-
drogram represents properly the distances between leaf n + 1 and any other leaf.
Indeed, if leaf i that is below the new internal node that bonnets leaf n + 1, then
di,i ′ ≤ di,n+1 and from the ultrametric property and the minimality of di,n+1 it fol-
lows that di,n+1 = di ′,n+1. On the other hand, if leaf j is not below the new internal
point joining leaf n + 1, then di,j > di,n+1, and from the ultrametric property it
comes that dj,n+1 = di,j .

1000 21. Bioinformatics

Figure 21.2 A dendrogram.

- 6

?
i j i i ′ n + 1

di,n+1/2

Figure 21.3 Connecting leaf n + 1 to the dendrogram.

It is easy to see that the construction in the proof needs O(n2) running time, where
n is the number of objects. We shell give another algorithm that finds the pair of
objects i and j for which di,j is minimal. From the ultrametric property, for any
k 6= i, j, di,k = dj,k(≥ di,j), hence we can replace the pair of objects i and j to a
new object, and the distance between this new object and any other object k is well
defined, it is di,k = dj,k. The objects i and j are connected at height di,j/2, and we
treat this sub-dendrogram as a single object. We continue the iteration till we have a
single object. This algorithm is slower than the previous algorithm, however, this is
the basis of the clustering algorithms. The clustering algorithms create a dendrogram
even if the input distances do not follow a ultrametric. On the other hand, if the
input distances follow a ultrametric, then most of the clustering algorithms gives
back this ultrametric.

As we mentioned, the clustering algorithms find the object pair i and j for which
di,j is minimal. The differences come from how the algorithms define the distance
between the new object replacing the pair of objects i and j and any other object. If
the new object is denoted by u, then the introduced clustering methods define du,k

in the following way:

• Single link: du,k = min{di,k, dj,k}.

• Complete link: du,k = max{di,k, dj,k}.

• UPGMA: the new distance is the arithmetic mean of the distances between the
elements in u and k : du,k =

di,k×|i|+dj,k×|j|
|i|+|j| , where |i| and |j| are the number of

21.5. Distance based algorithms for constructing evolutionary trees 1001

k

i |j| u |i| j

Figure 21.4 Calculating du,k according to the Centroid method.

elements in i and j.

• Single average: du,k =
di,k+dj,k

2 .

• Centroid: This method is used when the objects can be embedded into a
Euclidean space. Then the distance between two objects can be defined as the
distance between the centroids of the elements of the objects. It is not necessary
to use the coordinates of the Euclidean space since the distance du,k in question
is the distance between point k and the point intersecting the ij edge in |j| : |i|
proportion in the triangle obtained by points i, j és k (see Figure 21.4). This
length can be calculated using only di,j , di,k and dj,k. Hence the algorithm can
be used even if the objects cannot be embedded into a Euclidean space.

• Median: The centroid of u is the centroid of the centroids of i and j. This
method is related to the centroid method as the single average is related to the
UPGMA method. It is again not necessary to know the coordinates of the ele-
ments, hence this method can be applied to distances that cannot be embedded
into a Euclidean space.

It is easy to show that the first four method gives the dendrogram of the input
distances whenever the input distances follow a ultrametric since di,k = dj,k in this
case. However, the Centroid and Median methods do not give the corresponding
dendrogram for ultrametric input distances, since du,k will be smaller than di,k

(which equals to dj,k).
The central problem of the clustering algorithms is that they give a dendrogram

that might not be biologically correct. Indeed, the evolutionary tree of biological
sequences can be a dendrogram only if the molecular clock hypothesis holds. The
molecular clock hypothesis says that the sequences evolve with the same tempo at
each branches of the tree, namely they collect the same number of mutations at
a given time span. However, this is usually not true. Therefore biologists want an
algorithm that give a ultrametric tree only if the input distances follow a ultrametric.
The most popular such method is the Neighbour-Joining algorithm.

1002 21. Bioinformatics

i

k

l

n + 1

u

Figure 21.5 Connecting leaf n + 1 for constructing an additive tree.

21.5.2. Neighbour joining

Definition 21.6 A metric is called additive or four-point metric, if for any

four points i, j, k and l

di,j + dk,l ≤ max{di,k + dj,l, di,l + dj,k} (21.73)

Theorem 21.7 If a metric is additive on a finite set of objects, then there is exactly

one tree that represents it.

Proof Due to Lemma 21.3, there is at most one such tree, therefore it is enough to
construct it. First we give the construction then we prove its goodness.

For three objects we can construct a tree according to (21.66)–(21.68). Assume
that we constructed the tree for n ≥ 3 objects, and we want to add leaf n + 1 to the
tree. First we find the topology and then we give the length of the new edge. For
obtaining the new topology we start with any leaf i, and let denote u the neighbour
of leaf i. There are at least two other edges going out from u, we find two leaves on
the paths starting with these two outgoing edges, let k and l denote these leaves,
see Figure 21.5. The leaf is connected to the edges between i and u if

di,n+1 + dk,l < di,k + dn+1,l (21.74)

Using similar inequalities, we can decide if leaf n + 1 is before u looking from k or
looking from l. If the degree of u is greater than 3, then we find leaves l′ on the other
paths and we do the same investigations for i, n + 1, k and l′ points. >From the
additive property, it follows that inequality can hold at most for one cases. If it holds
for i, then we connect leaf n + 1 to the edge connecting u and i. If the inequality
holds for another case, then we derive the maximal subtree of the tree that contains
u as a leaf and also contains the leaf for which the inequality holds. We define du,n+1

as di,n+1 − di,u, then renaming u to i we continue the searching for the connection
place of leaf n + 1. If we get equality for all outgoing edges of u, then we connect
leaf n + 1 to u.

After finding the topology, we obtain the length of the new edge. Leaf n + 1 is

21.5. Distance based algorithms for constructing evolutionary trees 1003

k

k1
u

i

n + 1

l k

k1

l

n + 1

i

u

u1

k l

n + 1u

i

a) b)

c)

Figure 21.6 Some tree topologies for proving Theorem 21.7.

connected to the edge between i and u, let u1 denote the new internal point, see
Figure 21.6/b. We define du,n+1 as dl,n+1 − dl,u. then the distances du,u1

, di,u1
, and

du1,n+1 can be calculated using (21.66)–(21.68). If the leaf n + 1 is connected to u,
then du,n+1 = di,n+1 − di,u.

Now we prove the correctness of the construction. First we show that du,n+1 is
well-defined, namely, for all node j that is not in the new subtree containing leaves
n+1 and u, dj,n+1−dj,u = di,n+1−di,u. If the new subtree contains l then for j = k
that was used to find the place of leaf n + 1 will obviously hold (see Figure 21.6/a).
Due to the additive metric property and the place of leaf n + 1

dk,n+1 + di,l = di,n+1 + dk,l . (21.75)

Using inequalities di,l = di,u + du,l és a dk,l = dk,u + du,l, it follows that

dk,n+1 − dk,u = di,n+1 − di,u. (21.76)

Similarly for all leaves k1 that are not separated from k by u, it holds that

dk1,n+1 + di,l = di,n+1 + dk1,l (21.77)

It is due to the additive metric and the inequality

dk,k1
+ dl,n+1 < dk,n+1 + dk1,l (21.78)

this later inequality comes from these inequalities

dk,k1
+ di,l < dk1,l + dk,i (21.79)

dl,n+1 + dk,i < di,l + dk,n+1 (21.80)

1004 21. Bioinformatics

If the degree of u is greater than 3, then similar inequalities hold.
Due to the way of calculating the new edge lengths, di,n+1 is represented properly

on the new tree, hence dj,n+1 is represented properly for all j that is separated from
leaf n + 1 by i. Note that i might be an earlier u.

If leaf n + 1 is connected to the edge between i and u (Figure 21.6/b), then due
to the definition du,n+1, dl,n+1 is represented properly. From the equation

dk,n+1 + di,l = dk,i + dl,n+1 (21.81)

it follows that
dk,n+1 = dk,u + du,n+1 , (21.82)

hence dk,n+1 is represented properly. It can be similarly shown that for all points j
that are separated from n + 1 by u, the dj,n+1 is represented properly on the tree.

If leaf n + 1 is connected to node u (Figure 21.6/c), then from the equations

di,n+1 + dk,l = dk,i + dl,n+1 = dk,n+1 + dj,i (21.83)

it comes that both dk,n+1 and dl,n+1 are represents properly on the new tree, and
with similar reasoning, it is easy to show that actually for all nodes j that is separated
from n + 1 by u, dj,n+1 is represented properly on the tree.

Hence we construct a tree containing leaf n+1 from the tree containing the first
n leaves, thus proving Theorem 21.7.

It is easy to show that the above algorithm that constructs the tree representing
an additive metric takes O(n2) running time. However, it works only if the input
distances follow an additive metric, other wise inequality (21.74) might hold several
times, hence we cannot decide where to join leaf n + 1 to. We shell introduce an
algorithm that has Θ(n3) running time and gives back the additive tree whenever
the input distances follow an additive metric, moreover it generates an additive tree
that approximates the input distances if those are not follow an additive metric.

The Neighbour-Joining algorithm works in the following way: Given a set
with n points and a distance function d on the points. First we calculate the for each
point i the sum of the distances from the other points:

vi =

n
∑

j=1

di,j . (21.84)

Then we find the pair of points for which

si,j = (n− 2)di,j − vi − vj (21.85)

is minimal. The length of the edges from points i and j to the new point u are

ei,u =
di,j

2
−

vi − vj

2n− 4
(21.86)

and

ej,u =
di,j

2
− ei,u (21.87)

21.5. Distance based algorithms for constructing evolutionary trees 1005

i

j k

l

u w

Figure 21.7 The configuration of nodes i, j, k and l if i and j follows a cherry motif.

Then we recalculate distances. We drop points i and j, and add point u. The
distance between u and any other point k is defined as

dk,u =
dk,i + dk,j − di,j

2
. (21.88)

Theorem 21.8 If d follows an additive metric, then the Neighbour-Joining al-

gorithm generates a tree that gives back d.

Proof From Theorem 21.7 there is exactly one tree that represents the distances.
It is enough to prove that the Neighbour-Joining algorithm always pick a cherry
motif on this tree, since a straightforward calculation shows that in this case the
calculated edge lengths are proper.

First we prove if i and j follows a cherry motif then for all k, si,j < si,k és
si,j < sk,j . Indeed, rearranging s, we have to prove that

∑

l 6=i,j

(di,j − di,l − dj,l)− 2di,j −
∑

m 6=j,k

(dj,k − dj,m − dk,m) + 2dj,k < 0 (21.89)

If l = m 6= i, j, k, then we get that

(di,j − di,l − dj,l)− dj,k + dj,l + dk,l = 2dw,l − 2du,l < 0 , (21.90)

(see also Figure 21.7). 2dj,k − 2di,j and the cases l = k and m = i inside the sums
cancel each other, hence we prove that the (21.89) inequality holds.

Now we prove the Theorem 21.8 in an indirect way. Suppose that i and j does
not follow a cherry motif, however, si,j is minimal. From the previous lemma, neither
i nor j are in a cherry motif with other leaves. We find a cherry motif with leaves k
and l and internal node w. Let v denote the last common node of paths going from
w to i and to j. Since si,j is minimal,

sk,l − si,j > 0 . (21.91)

Rearranging this we get that

∑

m1 6=k,l

(dk,l−dm1,k−dm1,l)−2dk,l−
∑

m2 6=i,j

(di,j−dm2,i−dm2,k)+2di,j > 0 . (21.92)

2di,j − 2dk,l and cases m1 = k, m1 = l, m2 = i and m2 = j inside the sum cancel

1006 21. Bioinformatics

i

j k

l

v w

m

m m

Figure 21.8 The possible places for node m on the tree.

each other. For the other m = m1 = m2 6= i, j, k, l, the left hand side is

dk,l − dm,k − dm,l − di,j + dm,i + dm,k . (21.93)

If m joins to the tree via the path connecting i and j, then the expression 21.93
will be always negative, see also Figure 21.8. Let these cases be called I. class cases.
If m joins to the tree via the path between v and w, then the expression 21.93 might
be positive. Let these cases called II. class cases. To avoid contradiction, the sum of
absolute values from I. class cases must be less than the sum from the II. class cases.

There is another v′ node on the path connecting i and j, and we can find a
cherry motif after node v′ with leaves k′ and l′ and internal node w′. Here again
the II. class cases have to be more than the I. class cases, but this contradict to the
situation with the first cherry motif. Hence i and j form a cherry motif and we prove
Theorem 21.8.

Exercises
21.5-1 Show that in a ultrametric, three distances coming from three points are all
equal or two of them equal and the third is smaller. Prove the similar claim for the
three sum of distances coming from four points in an additive metric.
21.5-2 Show that a ultrametric is always an additive metric.
21.5-3 Give an example for a metric that is not additive.
21.5-4 Is it true that all additive metric is a Euclidean metric?
21.5-5 Give the formula that calculates du,k from di,j , di,k and dj,k for the centroid
method.
21.5-6 Give algorithms that decide in O(n2) whether or not a metric is

• additive

• ultrametric

(n is the number of points.)

21.6. Miscellaneous topics

In this section, we cover topics that are usually not mentioned in bioinformatics
books. We only mention the main results in a nutshell and do not prove theorems.

21.6. Miscellaneous topics 1007

21.6.1. Genome rearrangement

The genome of an organism consists of several genes. For each gene, only one strand
of the double stranded DNA contains meaningful information, the other strand is
the reverse complement. Since the DNA is chemically oriented, we can talk about
the direction of a gene. If each gene has one copy in the genome then we can describe
the order and directions of genes as a signed permutation, where the signs give the
directions of genes.

Given two genomes with the same gene content, represented as a signed permu-
tation then the problem is to give the minimal series of mutations that transform
one genome into another. We consider three types of mutations:

• Reversal A reversal acts on a consecutive part of the signed permutation. It
reverse the order of genes on the given part as well as the signs of the genes.

• Transposition A transposition swaps two consecutive block of genes.

• Reverted transposition It swaps two consecutive blocks and one of the blocks
is reverted. As for reversals, the signs in the reverted block also change.

If we assume that only mutations happened, then we can give an O(n2) running
time algorithm that obtains a shortest series of mutations transforming one genome
into another, where n is the number of genes.

If we consider other types of mutations, then the complexity of problems is
unknown. For transpositions, the best approximation is an 1.375 approximation
[14], if we consider all possible types of mutations, then the best approximation is a
2-approximation [28]. For a wide range of and biologically meaningful weights, the
weighted sorting problem for all types of mutations has a 1.5-approximation [6].

If we do not know the signs, then the problem is proved to be NP-complete [8].
Similarly, the optimal reversal median problem even for three genomes and signed
permutations is NP-complete [?]. The optimal reversal median is a genome that
minimises the sum of distances from a set of genomes.

Below we describe the Hannenhalli-Pevzner theorem for the reversal distance of
two genomes. Instead of transforming permutation π1 into π2, we transform π−1

2 π1

into the identical permutation. Based on elementary group theory, it is easy to show
that the two problems are equivalent. We assume that we already calculated π−1

2 π1,
and we will denote it simply by π.

We transform an n long signed permutation into a 2n long unsigned permutation
by replacing +i to 2i−1, 2i and −i to 2i, 2i−1. Additionally, we frame the unsigned
permutation into 0 and 2n + 1. The vertexes of the so-called graph of desire and
reality are the numbers of the unsigned permutation together with 0 and 2n + 1.
Starting with 0, we connect every other number in the graph, these are the reality
edges. Starting also with 0, we connect 2i with 2i + 1 with an arc, these are the
desire edges. An example graph can be seen on Figure 21.9. Since each vertex in
the graph of desire and reality has a degree of two, the graph can be unequivocally
decomposed into cycles. We call a cycle a directed cycle if on a walk on the cycle,
we go at least once from left to right on a reality cycle and we go at least once from
right to left on a reality cycle. Other cycles are unoriented cycles.

The span of a desire edge is the interval between its left and right vertexes. Two

1008 21. Bioinformatics

0 2 1 3 4 9 10 7 8 5 6 11

-1 +2 +5 +3 +4

Figure 21.9 Representation of the −1, +2, +5, +3, +4 signed permutation with an unsigned
permutation, and its graph of desire and reality.

cycles overlap if there are two reality edges in the two cycles whose spans intersect.
The vertexes of the overlap graph of a signed permutation are the cycles in its
graph of desire and reality, two nodes are connected if the two cycles overlap. The
overlap graph can be decomposed into components. A component is directed if it
contains a directed cycle, otherwise it is unoriented. The span of a component is the
interval between its leftmost and rightmost nodes in the graph of desire and reality.
An unoriented component is a hurdle if its span does not contain any unoriented
component or it contains all unoriented component. Other components are called
protected non-hurdles.

A super-hurdle is hurdle for which it is true that if we delete this hurdle then
one of the protected non-hurdles becomes a hurdle. A fortress is a permutation in
which all hurdles are super-hurdles and their number is odd.

The Hannenhalli-Pevzner theorem is the following:

Theorem 21.9 Given a signed permutation π. The minimum number of mutations

sorting this permutation into the identical permutation is

n + 1− cπ + hπ + fπ (21.94)

where n is the length of the permutation, cπ is the number of cycles, hπ is the number

of hurdles, and fπ = 1 if the permutation is a fortress, otherwise 0

The proof of the theorem can be found in the book due to Pevzner.
The reversal distance was calculated in Θ(n) time by Bader et al.. It is very easy

to obtain cπ in Θ(n) time. The hard part is to calculate hπ and fπ. The source of
the problem is that the overlap graph might contain Ω(n2) edges. Therefore the fast
algorithm does not obtain the entire overlap graph, only a spanning tree on each
component of it.

21.6.2. Shotgun sequencing

A genome of an organism usually contain significantly more than one million nucleic
acids. Using a special biochemical technology, the order of nucleic acids can be
obtained, however, the uncertainty grows with the length of the DNA, and becomes
absolutely unreliable after about 500 nucleic acids.

Notes for Chapter 21 1009

A possible solution for overcoming this problem is the following: several copies
are made from the original DNA sequence and they are fragmented into small parts
that can be sequenced in the above described way. Then the original sequence must
be reconstructed from its overlapping fragments. This technique is called shotgun

sequencing.

The mathematical definition of the problem is that we want to find the shortest
common super-sequence of a set of sequences. Sequence B is a super-sequence of A if
A is subsequence of B. Recall that a subsequence is not necessarily a consecutive part
of the sequence. Maier proved that the shortest common super-sequence problem is
NP-complete is the size of the alphabet is at least 5 and conjectured that it is the case
if the size is at least 3. Later on it has been proved that the problem is NP-complete
for all non-trivial alphabet [64].

Similar problem is the shortest common super-string problem, that is also an
NP-complete problem [23]. This later has biological relevance, since we are looking
for overlapping substrings. Several approximation algorithms have been published
for the shortest common super-string problem. A greedy algorithm finds for each
pair of strings the maximal possible overlap, then it tries to find a shortest common
super-string by merging the overlapping strings in a greedy way [74]. The running
time of the algorithm is O(Nm), where N is the number of sequences and m is the
total length of the sequences. This greedy method is proved to be a 4-approximation
[?]. A modified version being a 3-approximation also exist, and the conjecture is that
the modified version is a 2-approximation [?].

The sequencing of DNA is not perfect, insertions, deletions and substitutions
might happen during sequencing. Therefore Jiang and Li suggested the shortest k-
approximative common super-string problem [?]. Kececioglu and Myers worked out
a software package including several heuristic algorithm for the problem [?]. Later
on Myers worked for Celera, which played a very important role in sequencing the
human genome. A review paper on the topic can be found in [82].

Exercises
21.6-1 Show that a fortress contains at least three super-hurdle.
21.6-2 At least how long is a fortress?

Problems

21-1 Concave Smith–Waterman

G ive the Smith–Waterman-algorithm for concave gap penalty.
21-2 Concave Spouge

G ive Spouge-algorithm for concave gap penalty.
21-3 Serving at a petrol station

T here are two rows at a petrol station. Each car needs either petrol or diesel oil.
At most two cars can be served at the same time, but only if they need differ-
ent type of fuel, and the two cars are the first ones in the two rows or the first
two in the same row. The serving time is the same not depending on whether

1010 21. Bioinformatics

two cars are being served or only one. Give a pair-HMM for which the Viterbi-
algorithmqprindexViterbi-algorithm provides a shortest serving scenario.
21-4 Moments of an HMM

G iven an HMM and a sequence. Obtain the mean, variance, kth moment of the
probabilities of paths emitting the given sequence.
21-5 Moments of a SCFG

G iven a SCFG and a sequence. Obtain the mean, variance, kth moment of the
probabilities of derivations of the given sequence.
21-6 Co-emission probability of two HMMs

C an this probability be calculated in O((n1n2)2) time where n1 and n2 are the
number of states in the HMMs?
21-7 Sorting reversals

A sorting reversal is a reversal that decreases the reversal distance of a signed
permutation. How can a sorting reversal change the number of cycles and hurdles?

Chapter Notes

The first dynamic programming algorithm for aligning biological sequences was given
by Needleman and Wunch in 1970 [56]. Though the concave gap penalty function
is biologically more relevant, the affine gap penalty has been the standard soring
scheme for aligning biological sequences. For example, one of the most popular mul-
tiple alignment program, CLUSTAL-W uses affine gap penalty and iterative sequence
alignment [75]. The edit distance of two strings can calculated faster than Θ(l2) time,
that is the famous ”Four Russians’ speedup"qindexFour Russians speedup [4]. The
running time of the algorithm is O(n2/ log(n)), however, it has such a big constant
in the running time that it is not worth using it for sequence lengths appear in bio-
logical applications. The longest common subsequence problem can be solved using
a dynamic programming algorithm similar to the dynamic programming algorithm
for aligning sequences. Unlike that algorithm, the algorithm of Hunt and Szymanski
creates a graph whose points are the characters of the sequences A and B, and ai

is connected to bj iff ai = bj . Using this graph, the longest common subsequence
can be find in Θ((r + n) log(n)) time, where r is the number of edges in the graph
and n is the number of nodes [35]. Although the running time of this algorithm is
O(n2 lg(n)), since the number of edges might be O(n2), in many cases the number
of edges is only O(n), and in this cases the running time is only O(n lg(n)). A very
sophisticated version of the corner-cutting method is the diagonal extension tech-
nique, which fills in the dynamic programming table by diagonals and does not need
a test value. An example for such an algorithm is the algorithm of Wu at al. [83].
the diff command in the Unix operating system is also based on diagonal extension
[51], having a running time O(n + m + d2

e), where n and m are the lengths of the
sequences and de is the edit distance between the two sequences. The Knuth-Morris-
Pratt string-searching algorithm searches a small pattern P in a long string M . Its
running time is Θ(p+m), where p and m are the length of the sequences [40]. Landau
and Vishkin modified this algorithm such that the modified version can find a pat-
tern in M that differs at most in k position [42]. The running time of the algorithm

Notes for Chapter 21 1011

is Θ(k(p log(p) + m)), the memory requirement is Θ(k(p + m)). Although dynamic
programming algorithms are the most frequently used techniques for aligning se-
quences, it is also possible to attack the problem with integer linear programming.
KececiogluqnevindexKececioglu, John D. and his colleges gave the first linear pro-
gramming algorithm for aligning sequences [37]. Their method has been extended
to arbitrary gap penalty functions [3]. LanciaqnevindexLancia, G. wrote a review
paper on the topic [41] and Pachter and Sturmfels showed the relationship between
the dynamic programming and integer linear programming approach in their book
Algebraic Statistics for Computational Biology [58]. The structural alignment consid-
ers only the 3D structure of sequences. The optimal structural alignment problem
is to find an alignment where we penalise gaps, however, the aligned characters
scored not by their similarity but by how close their are in the superposed 3D struc-
tures. Several algorithms have been developed for the problem, one of them is the
combinatorial extension (CE) algorithm [70]. For a given topology it is possible to
find the Maximum Likelihood labeling [63]. This algorithm has been integrated into
PAML, which is one of the most popular software package for phylogenetic analysis
(http://abacus.gene.ucl.ac.uk/software/paml.html). The Maximum Likelihood tree
problem is to find for a substitution model and a set of sequences the tree topology
and edge lengths for which the likelihood is maximal. Surprisingly, it has only re-
cently been proved that the problem is NP-complete [10, 67]. The similar problem,
the Ancestral Maximum Likelihood problem has been showed to be NP-complete
also only recently [1]. The AML problem is to find the tree topology, edge lengths
and labellings for which the likelihood of a set of sequences is maximal in a given
substitution model. The two most popular sequence alignment algorithms based on
HMMs are the SAM [34] and the HMMER (http://hmmer.wustl.edu/) packages.
An example for HMM for genome annotation is the work of Pedersen and Hein [60].
Comparative genome annotation can be done with pair-HMMs like the DoubleScan
[49], (http://www.sanger.ac.uk/Software/analysis/doublescan/) and the Projector
[50], (http://www.sanger.ac.uk/Software/analysis/projector/) programs. Goldman,
Thorne and Jones were the first who published an HMM in which the emission prob-
abilities are calculated from evolutionary informations [25]. It was used for protein
secondary structure prediction. The HMM emits alignment columns, the emission
probabilities can be calculated with the Felsenstein algorithm. The Knudsen-Hein
grammar is used in the PFold program, which is for predicting RNA secondary
structures [39]. This SCFG generates RNA multiple alignments, where the terminal
symbols are alignment columns. The derivation probabilities can be calculated with
the Felsenstein algorithm, the corresponding substitution model is a single nucleotide
or a dinucleotide model, according to the derivation rules. The running time of the
Forward algorithm grows squarely with the number of states in the HMM. How-
ever, this is not always the fastest algorithm. For a biologically important HMM, it is
possible to reduce the Θ(5nLn) running time of the Forward algorithm to Θ(2nLn)
with a more sophisticated algorithm [44, 45]. However, it is unknown whether or not
similar acceleration exist for the Viterbi algorithm. The Zuker-Tinoco model [76]
defines free energies for RNA secondary structure elements, and the free energy of
an RNA structure is the sum of free energies of the elements. The Zuker-Sankoff
algorithm calculates in Θ(l4) time the minimum free energy structure, using Θ(l2)

1012 21. Bioinformatics

memory, where l is the length of the RNA sequence. It is also possible to calculate
the partition function of the Boltzmann distribution with the same running time and
memory requirement [48]. For a special case of free energies, both the optimal struc-
ture and the partition function can be calculated in Θ(l3) time, using still only Θ(l2)
memory [47]. Two base-pairings, i ·j and i′ ·j′ forms a pseudo-knot if i < i′ < j < j′.
Predicting the optimal RNA secondary structure in which arbitrary pseudo-knots are
allowed is NP-complete [46]. For special types of pseudo-knots, polynomial running
time algorithms exist [2, 46, 66, 77]. RNA secondary structures can be compared
with aligning ordered forests [?]. Atteson gave a mathematical definition for the
goodness of tree-constructing methods, and showed that the Neighbor-Joining

algorithm is the best one for some definitions [5]. Elias and Lagergren recently pub-
lished an improved algorithm for Neighbor-Joining that has only O(n2) running
time [15]. There are three possible tree topologies for four species that are called
quartets. If we know all the quartets of the tree, it is possible to reconstruct it. It
is proved that it is enough to know only the short quartets of a tree that are the
quartets of closely related species [16]. A genome might contain more than one DNA
sequences, the DNA sequences are called chromosomes. A genome rearrangement
might happen between chromosomes, too, such mutations are called translocations.
Hannenhalli gave a Θ(n3) running time algorithm for calculating the translocation
and reversal distance [31]. Pisanti and Sagot generalised the problem and gave re-
sults for the translocation diameter [62]. The generalisation of sorting permutations
is the problem of finding the minimum length generating word for an element of a
group. The problem is known to be NP-complete [36]. Above the reversal distance
and translocation distance problem, only for the block interchange distance exists a
polynomial running time algorithm [11]. We mention that Bill Gates, the owner of
Microsoft worked also on sorting permutations, actually, with prefix reversals [24].

Description of many algorithms of bioinformatics can be found in the book of
Pevzner and Jones [61]. We wrote only about the most important topics of bioin-
formatics, and we did not cover several topics like recombination, pedigree analy-
sis, character-based tree reconstructing methods, partial digesting, protein threading
methods, DNA chip analysis, knowledge representation, biochemical pathways, scale-
free networks, etc. We close the chapter with the words of Donald Knuth: ”It is hard
for me to say confidently that, after fifty more years of explosive growth of computer
science, there will still be a lot of fascinating unsolved problems at peoples’ finger-
tips, that it won’t be pretty much working on refinements of well-explored things.
Maybe all of the simple stuff and the really great stuff has been discovered. It may
not be true, but I can’t predict an unending growth. I can’t be as confident about
computer science as I can about biology. Biology easily has 500 years of exciting
problems to work on, it’s at that level."

Bibliography

[1] L. Addario-Berry, B. Chor, M. Hallett, J. Lagergren, A. Panconesi, T. Wareham. Ancestral

maximum likelihood of phylogenetic trees is hard. Lecture Notes in Bioinformatics, 2812:202–
215, 2003. 1011

[2] T. Akutsu. Dynamic programming algorithms for RNA secondary prediction with pseudo-
knots. Discrete Applied Mathematics, 104:45–62, 2000. 1012

[3] E. Althaus, A. Caprara, H. Lenhof, K. Reinert. Multiple sequence alignment with arbitrary
gap costs: Computing an optimal solution using polyhedral combinatorics. Bioinformatics,
18:S4–S16, 2002. 1011

[4] V. Arlazanov. A. Dinic, M. Kronrod, I. Faradzev. On economic construction of the transitive
closure of a directed graph. Doklady Academii Nauk SSSR, 194:487–488, 1970. 1010

[5] K. Atteson. The performance of the neighbor-joining method of phylogeny reconstruction.
Algorithmica, 25(2/3):251–278, 1999. 1012

[6] M. Bader, E. Ohlebusch. Sorting by weighted reversals, transpositions and inverted transpsi-
tions. Lecture Notes in Bioinformatics, 3909:563–577, 2006. 1007

[7] S. A. Benner, M. A. Cohen, H. G. H. Gonnet. Empirical and structural models for inser-
tions and deletions in the divergent evolution of proteins. Journal of Molecular Biology,
229(4):1065–1082, 1993. 978, 979

[8] A. Caprara. Sorting permutations by reversals and eulerian cycle decompositions. SIAM Jour-
nal on Discrete Mathematics, 12(1):91–110, 1999. 1007

[9] H. Carillo, D. Lipman. The multiple sequence alignment problem in biology. SIAM Journal
on Applied Mathematics, 48:1073–1082, 1988. 986

[10] B. Chor, T. Tuller. Maximum likelihood of evolutionary trees: hardness and approximation.
Bioinformatics, 21:i97–i106, 2005. 1011

[11] D. Christie. Sorting permutations by block-interchanges. Information Processing Letters,

60(4):165–169, 1996. 1012

[12] F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research,
16:10881–10890, 1988. 982

[13] M. O. Dayhoff, R. M. Schwartz, B. Orcutt. A model of evolutionary change in proteins. Atlas
of Protein Sequence and Structure, 5:345–352, 1978. 979

[14] I. Elias, T. Hartman. A 1.375 approximation algorithm for sorting by transpositions. Lecture
Notes in Bioinformatics, 3692:204–215, 2005. 1007

[15] I. Elias, J. Lagergren. Fast neighbor joining. Lecture Notes in Computer Science, 3580:1263–
1274, 2005. 1012

[16] P. L. Erdős, M. Steel, L. Székely, T. Warnow. Local quartet splits of a binary tree infer all

quartet splits via one dyadic inference rule. Computers and Artificial Intelligence, 16(2):217–
227, 1997. 1012

[17] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17:368–376, 1981. 988

[18] D. Feng, R. F. Doolittle. Progressive sequence alignment as a prerequisite to correct phyloge-
netic trees. Journal of Molecular Evolution, 25:351–360, 1987. 982

http://www.math.mcgill.ca/louigi/
http://www.math.tau.ac.il/~bchor/
http://www.mcb.mcgill.ca/~hallett/
http://www.nada.kth.se/~jensl/
http://www.dsi.uniroma1.it/~ale/
http://web.cs.mun.ca/~harold/
http://www.bic.kyoto-u.ac.jp/takutsu/members/takutsu/
http://www.sciencedirect.com/science/journal/0166218X
http://www.informatik.uni-mainz.de/~althaus/
http://www.labmeeting.com/papers/author/lenhof-hp
http://www.imprs-cbsc.mpg.de/faculty/reinert.shtml
http://link.springer.de/link/service/journals/00453/
http://www.searlescholars.net/people/benner.html
http://www.sciencedirect.com/science/journal/00222836
http://epubs.siam.org/sam-bin/dbq/toclist/SIDMA
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/
http://www.renyi.hu/~elp/
http://www.math.canterbury.ac.nz/~m.steel/
http://www.math.sc.edu/~szekely/
http://userweb.cs.utexas.edu/~tandy/
http://www.springerlink.com/app/home/journal.asp?wasp=ege9fdlrul6xnnwvuxv2&referrer=parent&backto=linkingpublicationresults,id:100107,1

1014 Bibliography

[19] J. W. Fickett. Fast optimal alignment. Nucleid Acids Research, 12:175–180, 1984. 985

[20] W. M. Fitch. Toward defining the course of evolution: minimum change for a specified tree
topology. Systematic Zoology, 20:406–416, 1971. 989

[21] L. Foulds, R. L. Graham. The Steiner problem in phylogeny is NP-complete. Advances in
Applied Mathematics, 3:43–49, 1982. 987

[22] Z. Galil, R. Giancarlo. Speeding up dynamic programming with applications to molecular
biology. Theoretical Computer Science, 64:107–118, 1989. 978

[23] J. Gallant, D. Maier, J. Storer. On finding minimal length superstrings. Journal of Computer

and System Sciences, 20(1):50–58, 1980. 1009

[24] W. H. Gates, C. H. Papadimitriouhttp://www.cs.berkeley.edu/ christos/. Bounds for sorting

by prefix reversals. Discrete Mathematics, 27:47–57, 1979. 1012

[25] N. Goldman, J. Thorne, D. Jones. Using evolutionary trees in protein secondary structure pre-

diction and other comparative sequence analyses. Journal of Molecular Biology, 263(2):196–
208, 1996. 1011

[26] H. G. H. Gonnet, M. A. Cohen, S. A. Benner. Exhaustive matching of the entire protein
sequence database. Science, 256:1443–1445, 1992. 978

[27] O. Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular
Biology, 162:705–708, 1982. 978

[28] Q-P. Gu, S. Peng, H. Sudborough. A 2-approximation algorithm for genome rearrangements
by reversals and transpositions. Theoretical Computer Science, 210(2):327–339, 1999. 1007

[29] D. M. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error
bounds. Bulletin of Mathematical Biology, 55:141–154, 1993. 983

[30] D. M. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
1997. 982, 986

[31] S. Hannenhalli. Polynomial-time algorithm for computing translocation distance between
genomes. Discrete Applied Mathematics, 71:137–151, 1996. 1012

[32] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.

Communications of the ACM, 18:341–343, 1975. 984

[33] T. J. P. Hubbard, A. M. Lesk, A. Tramontano. Gathering them into the fold. Nature Structural
Biology, 4:313, 1996. 982

[34] R. Hughey, A. Krogh. Hidden markov models for sequence analysis: Extension and analysis
of the basic method. CABIOS, 12(2):95–107, 1996. 1011

[35] J. Hunt, T. Szymanski. A fast algorithm for computing longest common subsequences. Com-
munications of the ACM, 20(5):350–353, 1977. 1010

[36] M. R. Jerrum. The complexity of finding minimum-length generator sequences. Theoretical
Computer Science, 36:265–289, 1986. 1012

[37] J. Kececioglu, H. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, M. Vingron. A polyhedral

approach to sequence alignment problems. Discrete Applied Mathematics, 104((1-3)):143–186,
2000. 1011

[38] B. Knudsen, J. Hein. RNA secondary structure prediction using stochastic context free gram-
mars and evolutionary history. Bioinformatics, 15(6):446–454, 1999. 994

[39] B. Knudsen, J. Hein. Pfold: RNA secondary structure prediction using stochastic context-free
grammars. Nucleic Acids Researchs, 31(13):3423–3428, 2003. 994, 1011

[40] D. E. Knuth, J. Morris, V. R. Pratt. Fast pattern matching in strings. SIAM Journal on
Computing, 6(2):323–350, 1977. 1010

[41] G. Lancia. Integer programming models for computational biology problems. Journal of Com-
puter Science and Technology, 19(1):60–77, 2004. 1011

[42] G. Landau, U. Vishkin. Eficient string matching with k mismatches. Theoretical Computer
Science, 43:239–249, 1986. 1010

[43] D. Lipman, S. J. Altshuland, J. Kecioglu. A tool for multiple sequence alignment. Proc. Natl.

Academy Science, 86:4412–4415, 1989. 986

[44] G. Lunter, I. Miklós, A. Drummond, J. L. Jensen, J. Hein. Bayesian phylogenetic inference
under a statistical indel model. Lecture Notes in Bioinformatics, 2812:228–244, 2003. 1011

[45] G. Lunter, I. Miklós, Y., J. Hein. An efficient algorithm for statistical multiple alignment on
arbitrary phylogenetic trees. Journal of Computational Biology, 10(6):869–889, 2003. 1011

http://nar.oupjournals.org/
http://www.jstor.org/journals/00397989.html
http://math.ucsd.edu/~fan/ron
http://www.sciencedirect.om.hu/science/journal/01968858
http://www.cs.columbia.edu/~galil/
http://www.sciencedirect.com/science/journal/00220000/
http://www.microsoft.com/billgates/default.asp
http://www.sciencedirect.com/science/journal/0012365X
http://www.sanger.ac.uk/Software/analysis/projector/
http://www.searlescholars.net/people/benner.html
http://www.cbrc.jp/~gotoh/
http://www.sciencedirect.com/science/journal/00222836
http://wwwcsif.cs.ucdavis.edu/~gusfield/
http://wwwcsif.cs.ucdavis.edu/~gusfield/
http://uk.cambridge.org/
http://cagr.pcbi.upenn.edu/
http://www.sciencedirect.com/science/journal/0166218X
http://www.ics.uci.edu/~dan/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://www.cs.arizona.edu/~kece/
http://bioinf-www.bioinf.uni-sb.de/people/lenhof/
http://www.mpi-sb.mpg.de/~mehlhorn/
http://www.imprs-cbsc.mpg.de/faculty/reinert.shtm
http://www.sciencedirect.com/science/journal/0166218X
http://www.clcbioconsulting.com/bjarne.php
http://www.clcbioconsulting.com/bjarne.php
http://www-cs-faculty.stanford.edu/~knuth/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.cs.arizona.edu/~kece/
http://www.stats.ox.ac.uk/~miklos/
http://www.stats.ox.ac.uk/~miklos/
http://www.liebertpub.com/publication.aspx?pub_id=31

Bibliography 1015

[46] R. Lyngso, C. N. S. Pedersen. RNA pseudoknot prediction in energy based models. Journal
of Computational Biology, 7(3/4):409–428, 2000. 1012

[47] R. Lyngso, M. Zuker, C. Pedersen. Fast evaluation of internal loops in RNA secondary struc-
ture prediction. Bioinformatics, 15(6):440–445, 1999. 1012

[48] J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for
RNA secondary structure. Biopolymers, 29:1105–1119, 1990. 1012

[49] I. M. Meyer, R. Durbin. Comparative ab initio prediction of gene structures using pair HMMs.

Bioinformatics, 18(10):1309–1318, 2002. 1011

[50] I. M. Meyer, R. Durbin. Gene structure conservation aids similarity based gene prediction.

Nucleic Acids Research, 32(2):776–783, 2004. 1011

[51] W. Miller, E. Myers. A file comparison program. Software – Practice and Experience,

15(11):1025–1040, 1985. 1010

[52] W. Miller, E. W. Myers. Sequence comparison with concave weighting functions. Bulletin of

Mathematical Biology, 50:97–120, 1988. 978

[53] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach to multiple

sequence alignment. Bioinformatics, 15:211–218, 1999. 983

[54] B. Morgenstern, A. Dress, T. Werner. Multiple DNA and protein sequence alignment based

on segment-to-segment comparison. Proc. Natl. Academy Science, 93:12098–12103, 1996. 983

[55] B. Morgenstern, K. Frech, A. Dress, T. Werner. DIALIGN: Finding local similarities by mul-

tiple sequence alignment. Bioinformatics, 14:290–294, 1998. 983

[56] S. N. Needleman, C. Wunch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48:443–453, 1970. 1010

[57] R. Nussinov, G. Pieczenk, J. Griggs, D. Kleitman. Algorithms for loop matching. SIAM
Journal of Applied Mathematics, 35:68–82, 1978. 994

[58] L. Pachter, B. Sturmfels (Eds.). Algebraic Statistics for Computational Biology. Cambridge

University Press, 2005. 1011

[59] R. Page, E. Holmes. Molecular Evolution: a Phylogenetic Approach. Blackwell, 1998. 982

[60] J. S. Pedersen, J. Hein. Gene finding with a hidden Markov model of genome structure and
evolution. Bioinformatics, 19(2):219–227, 2003. 1011

[61] P. A. Pevzner, N. Jones. Bioinformatics Algorithms. The MIT Press, 2004. 1012

[62] N. Pisanti, M. Sagot. Further thoughts on the syntenic distance between genomes.
Algorithmica, 34(2):157–180, 2002. 1012

[63] T. Pupko, I. Peer, R. Shamir, D. Graur. A fast algorithm for joint reconstruction of ancestral
amino acid sequences. Molecular Biology and Evolution, 17:890–896, 2000. 1011

[64] K. Räihä, E. Ukkonen. The shortest common supersequence problem over binary alphabet is
NP-complete. Theoretical Computer Science, 16:187–198, 1981. 1009

[65] R. Ravi, J. D. Kececioglu. Approximation algorithms for multiple sequence alignment under

a fixed evolutionary tree. Discrete Applied Mathematics, 88(1–3):355–366, 1998. 983

[66] E. Rivas, S. Eddy. A dynamic programming algorithm for RNA structure prediction including
pseudoknots. Journal of Molecular Biology, 285(5):2053–2068, 1999. 1012

[67] S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
EEE Transactions on Computational Biology and Bioinformatics, 3(1):92–94, 2006. 1011

[68] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics,
28:35–42, 1975. 982, 988

[69] P. H. Sellers. On the theory and computation of evolutionary distances. SIAM Journal of
Applied Mathematics, 26:787–793, 1974. 975

[70] I. Shindyalov, P. Bourne. Protein structure alignment by incremental combinatorial extension
(CE) of the optimal path. Protein Engineering, 11(9):739–747, 1998. 1011

[71] T. F. Smith, M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195–197, 1981. 981

[72] J. L. Spouge. Speeding up dynamic programming algorithms for finding optimal lattice paths.
SIAM Journal of Applied Mathematics, 49:1552–1566, 1989. 985

http://www.liebertpub.com/publication.aspx?pub_id=31
http://www.cs.ubc.ca/people/profile.jsp?id=irmtraud
http://www.cs.ubc.ca/people/profile.jsp?id=irmtraud
http://research.janelia.org/myers/
http://research.janelia.org/myers/
http://www.gobics.de/burkhard/
http://www.gobics.de/burkhard/
http://www.gobics.de/burkhard/
http://epubs.siam.org/SIAP/siap_toc.html
http://math.berkeley.edu/~lpachter/
http://math.berkeley.edu/~bernd/
http://uk.cambridge.org/
http://www.blackwellpublishing.com/
http://users.soe.ucsc.edu/~jsp/
http://cseweb.ucsd.edu/~ppevzner/
http://cseweb.ucsd.edu/~ncjones/bio.html
http://link.springer.de/link/service/journals/00453/
http://www.cs.arizona.edu/~kece/
http://www.sciencedirect.com/science/journal/0166218X
http://epubs.siam.org/SIAP/siap_toc.html
http://epubs.siam.org/SIAP/siap_toc.html
http://www-hto.usc.edu/people/Waterman.html
http://www.sciencedirect.com/science/journal/00222836
http://epubs.siam.org/SIAP/siap_toc.html

1016 Bibliography

[73] J. L. Spouge. Fast optimal alignment. CABIOS, 7:1–7, 1991. 985, 986

[74] J. Tarhio, J. E. Ukkonen A greedy approximation algorithm for constructing shortest common

superstrings. Theoretical Computer Science, 57:131–145, 1988. 1009

[75] J. D. Thompson, D. G. Higgins, T. J. Gibson. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific penalties
and weight matrix choice. Nucleic Acids Research, 22:4673–4680, 1994. 978, 982, 1010

[76] I. Tinoco, O., Uhlenbeck M. Levine. Estimation of secondary structure in ribonucleic acids.
Nature, 230:362–367, 1971. 1011

[77] Y. Uemura, A. Hasegawa, Y. Kobayashi, T. Yokomori. Tree adjoining grammars for RNA
structure prediction. Theoretical Computer Science, 210:277–303, 1999. 1012

[78] E. Ukkonen. On approximate string matching. Lecture Notes in Computer Science, 158:487–
495, 1984. 985

[79] E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64:100–
118, 1985. 985

[80] L. Wang, T. Jiang. On the complexity of multiple sequence alignment. Journal of Computa-
tional Biology, 1:337–348, 1994. 982

[81] M. S. Waterman, T. F. Smithand, W. A. Beyer. Some biological sequence metrics. Advances
in Mathematics, 20:367–387, 1976. 977

[82] J. W. Weber, E. Myers. Human whole genome shotgun sequencing. Genome Research, 7:401–
409, 1997. 1009

[83] S. Wu, E.. W. Myers, U. Manber, W. Miller. An O(NP) sequence comparison algorithm.

Information Processing Letters, 35(6):317–323, 1990. 1010

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

file:.
http://www.cs.helsinki.fi/u/ukkonen/
http://www.cs.helsinki.fi/u/ukkonen/
http://www-hto.usc.edu/people/Waterman.html
http://research.janelia.org/myers/
http://research.janelia.org/myers/
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A
additive metric, 1002
affine function, 978

B
bioinformatics, 974–1012

C
cherry motif, 998
Chomsky normal form, 992
CYK algorithm, 992

D
dendrograms, 999
DNA, 974
dynamic programming table, 976

F
Felsenstein algorithm, 988
fortress, 1009exe
Forward-Looking, 979
forward looking algorithm, 979
Forward-Looking-Binary-Searching, 980
four-point metric, 1002

G
gap, 977
gap penalty, 977
guide-tree, 982

H
Hidden Markov Model, 990
Hirschberg algorithm, 984, 987exe

HMM, see Hidden Markov Model

I
Inside, 992
iterative sequence alignment, 982

L
log-odds, 981

M
metric

ultrametric, 999
minimum evolution, 975

N
Neighbor-Joining, 1012
Neighbour-Joining, 1001, 1004

O
optimal alignment, 976
Outside, 992

P
profile, 983

S
sequence alignment, 975
shotgun sequencing, 1009
small parsimony problem, 987
Smith-Waterman algorithm, 987exe
Smith–Waterman-algorithm, 1009pr
Spogue algorithm, 987exe
Spouge-algorithm, 1009pr
substring, 981
sum-of-pairs, 986

T

1018 Index

trace-back, 977

U

ultrametric, 999

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A
Addario-Berry, L., 1013
Akutsu, Tatsuya, 1013
Althaus, E., 1013
Altshuland, S. J., 1014
Arlazarov, V. L., 1013
Atteson, Kevin, 1013

B
Bader, M., 1008, 1013
Benner, Steven A., 1013, 1014
Beyer, W. A., 1016
Bourne, P. E., 1015

C
Caprara, Alberto, 1013
Carillo, H., 1013
Chor, B., 1013
Christie, D. A., 1013
Cohen, Mark A., 1013, 1014
Corpet, F., 1013

D
Dayhoff, M. O., 1013
Dinic, E., 1013
Doolittle, R. F., 1013
Dress, A., 1015
Drummond, A., 1014
Durbin, Richard, 1015

E
Eddy, Sean, 1015
Elias, I., 1013
Erdős Péter L., 1013

F
Faradzev, I. A., 1013
Felsenstein, Joseph, 1013
Feng, D., 1013
Fickett, J. W., 1014
Fitch, W. M., 1014

Foulds, L. R., 1014
French, K., 1015

G
Galil, Ziv, 1014
Gallant, J. K., 1014
Gates, William Henry, 1014
Giancarlo, R., 1014
Gibson, T. J., 1016
Goldman, N., 1014
Gonnet, Haas Gaston Henry, 1013, 1014
Gotoh, Osamu, 1014
Graham, Ronald L., 1014
Graur, D., 1015
Griggs, J. R., 1015
Gu, Q-P., 1014
Gusfield, Daniel M., 1014

H
Hallett, Michael T., 1013
Hannenhali, Sridhar, 1012
Hannenhalli, Sridhar, 1014
Hartman, T., 1013
Hasegawa, A., 1016
Hein, Jotun, 1011, 1014, 1015
Higgins, D. G., 1016
Hirschberg, Daniel S., 1014
Hirschberg, D. S., 984
Holmes, Eddie C., 1015
Hubbard, T. J. P., 1014
Hughey, R., 1014
Hunt, J. W., 1014

J
Jensen, J. L., 1014
Jerrum, Mark R., 1014
Jiang, T., 1016
Jones, D. T., 1014
Jones, Neil C., 1012, 1015

K
Kececioglu, John D., 1014, 1015

1020 Name Index

Kleitman, D. J., 1015
Knudsen, Bjarne, 1014
Knuth, Donald Ervin, 1014
Kobayashi, Y., 1016
Krogh, Anders, 1014
Kronrod, M. A., 1013

L
Lagergren, Jens, 1013
Lancia, G., 1014
Landau, G. M., 1014
Lenhof, H. P., 1013, 1014
Lesk, A. M., 1014
Levine, M. D., 1016
Lipman, David, 1013, 1014
Lunter, Gerton A., 1014
Lyngso, Rune, 1015

M
Maier, D., 1014
Manber, U., 1010, 1016
McCaskill, J. S., 1015
Mehlhorn, Kurt, 1014
Meyer, Irmtraud M., 1015
Miklós, István, 974, 1014
Miller, Webb, 1010, 1015, 1016
Morgenstern, Burkhard, 1015
Morris, J. H., 1014
Mutzel, P., 1014
Myers, Eugene W., 1010, 1015, 1016

N
Needleman, S. B., 1010, 1015
Nussinov, R., 1015

O
Ohlebusch, E., 1013
Orcutt, B. C., 1013

P
Pachter, Lior, 1011, 1015
Page, Roderic D. M., 1015
Panconesi, Alessandro, 1013
Papadimitrou, Christos H., 1014
Pedersen, Christian N. S., 1015
Pedersen, Jakob Skou, 1011, 1015
Peer, I., 1015
Peng, S., 1014
Pevzner, Pavel A., 1008, 1012, 1015
Pieczenk, G., 1015
Pisanti, N., 1012, 1015
Pratt, V. R., 1014
Pupko, Tal, 1015

R
Räihä, K. J., 1015
Ravi, R., 1015
Reinert, K., 1013, 1014

Rivas, E., 1015
Roch, S., 1015

S
Sagot, Marie-France, 1012, 1015
Sankoff, David, 1015
Schwartz, R. M., 1013
Sellers, P. H., 1015
Shamir, R., 1015
Shindyalov, I. N., 1015
Smith, T. F., 1015
Smithand, T. F., 1016
Song, Y. S., 1014
Spouge, John L., 1015, 1016
Steel, Mike, 1013
Storer, J. A., 1014
Sturmfels, Bernd, 1011, 1015
Sudborough, H. I., 1014

SZ
Székely, László A., 1013
Szymanski, T. G., 1014

T
Tarhio, J., 1016
Thompson, J. D., 1016
Thorne, J. L., 1014
Tinoco, I., 1016
Tramontano, A., 1014
Tuller, T., 1013

U
Uemura, Y., 1016
Uhlenbeck, O. C., 1016
Ukkonen, Esko, 1015, 1016

V
Vingron, M., 1014
Vishkin, U., 1014

W
Wang, L., 1016
Wareham, T., 1013
Warnow, T., 1013
Waterman, Michael S., 1015, 1016
Weber, E. W., 1016
Werner, T., 1015
Wu, S., 1010, 1016
Wunch, C. D., 1010, 1015

Y
Yokomori, T., 1016

Z
Zuker, Michael, 1015

	I. APPLICATIONS
	21. Bioinformatics
	 21.1. Algorithms on sequences
	 21.1.1. Distances of two sequences using linear gap penalty
	 21.1.2. Dynamic programming with arbitrary gap function
	 21.1.3. Gotoh algorithm for affine gap penalty
	 21.1.4. Concave gap penalty
	 21.1.5. Similarity of two sequences, the Smith-Waterman algorithm
	 21.1.6. Multiple sequence alignment
	 21.1.7. Memory-reduction with the Hirschberg algorithm
	 21.1.8. Memory-reduction with corner-cutting

	 21.2. Algorithms on trees
	 21.2.1. The small parsimony problem
	 21.2.2. The Felsenstein algorithm

	 21.3. Algorithms on stochastic grammars
	 21.3.1. Hidden Markov Models
	 21.3.2. Stochastic context-free grammars

	 21.4. Comparing structures
	 21.4.1. Aligning labelled, rooted trees
	 21.4.2. Co-emission probability of two HMMs

	 21.5. Distance based algorithms for constructing evolutionary trees
	 21.5.1. Clustering algorithms
	 21.5.2. Neighbour joining

	 21.6. Miscellaneous topics
	 21.6.1. Genome rearrangement
	 21.6.2. Shotgun sequencing

	Bibliography
	Index
	Name Index

