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17. Memory Management

The main task of computers is to execute programs (even usually several programs
running simultaneously). These programs and their data must be in the main mem-
ory of the computer during the execution.

Since the main memory is usually too small to store all these data and programs,
modern computer systems have a secondary storage too for the provisional storage
of the data and programs.

In this chapter the basic algorithms of memory management will be covered. In
Section 17.1 static and dynamic partitioning, while in Section 17.2 the most popular
paging methods will be discussed.

In Section 17.3 the most famous anomaly of the history of operating systems—
the stunning features of FIFO page changing algorithm, interleaved memory and
processing algorithms with lists—will be analysed.

Finally in Section 17.4 the discussion of the optimal and approximation algo-
rithms for the optimisation problem in which there are files with given size to be
stored on the least number of disks can be found.

17.1. Partitioning

A simple way of sharing the memory between programs is to divide the whole address
space into slices, and assign such a slice to every process. These slices are called
partitions. The solution does not require any special hardware support, the only
thing needed is that programs should be ready to be loaded to different memory
addresses, i.e., they should be relocatable. This must be required since it cannot
be guaranteed that a program always gets into the same partition, because the total
size of the executable programs is usually much more than the size of the whole
memory. Furthermore, we cannot determine which programs can run simultaneously
and which not, for processes are generally independent of each other, and in many
cases their owners are different users. Therefore, it is also possible that the same
program is executed by different users at the same time, and different instances
work with different data, which can therefore not be stored in the same part of
the memory. Relocation can be easily performed if the linker does not work with
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absolute but with relative memory addresses, which means it does not use exact
addresses in the memory but a base address and an offset. This method is called
base addressing, where the initial address is stored in the so called base register.
Most processors know this addressing method, therefore, the program will not be
slower than in the case using absolute addresses. By using base addressing it can
also be avoided that—due to an error or the intentional behaviour of a user—the
program reads or modifies the data of other programs stored at lower addresses
of the memory. If the solution is extended by another register, the so called limit
register which stores the biggest allowed offset, i.e. the size of the partition, then
it can be assured that the program cannot access other programs stored at higher
memory addresses either.

Partitioning was often used in mainframe computer operating systems before.
Most of the modern operating systems, however, use virtual memory management
which requires special hardware support.

Partitioning as a memory sharing method is not only applicable in operating
systems. When writing a program in a language close to machine code, it can hap-
pen that different data structures with variable size—which are created and can-
celled dynamically—have to be placed into a continuous memory space. These data
structures are similar to processes, with the exception that security problems like ad-
dressing outside their own area do not have to be dealt with. Therefore, most of the
algorithms listed below with some minor modifications can be useful for application
development as well.

Basically, there are two ways of dividing the address space into partitions. One
of them divides the initially empty memory area into slices, the number and size of
which is predetermined at the beginning, and try to place the processes and other
data structures continuously into them, or remove them from the partitions if they
are not needed any more. These are called fixed partitions, since both their place
and size have been fixed previously, when starting the operating system or the ap-
plication. The other method is to allocate slices from the free parts of the memory
to the newly created processes and data structures continuously, and to deallocate
the slices again when those end. This solution is called dynamic partitioning, since
partitions are created and destroyed dynamically. Both methods have got advan-
tages as well as disadvantages, and their implementations require totally different
algorithms. These will be discussed in the following.

17.1.1. Fixed partitions

Using fixed partitions the division of the address space is fixed at the beginning,
and cannot be changed later while the system is up. In the case of operating systems
the operator defines the partition table which is activated at next reboot. Before
execution of the first application, the address space is already partitioned. In the
case of applications partitioning has to be done before creation of the first data
structure in the designated memory space. After that data structures of different
sizes can be placed into these partitions.

In the following we examine only the case of operating systems, while we leave
to the Reader the rewriting of the problem and the algorithms according to given
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applications, since these can differ significantly depending on the kind of the appli-
cations.

The partitioning of the address space must be done after examination of the
sizes and number of possible processes running on the system. Obviously, there is a
maximum size, and programs exceeding it cannot be executed. The size of the largest
partition corresponds to this maximum size. To reach the optimal partitioning, often
statistic surveys have to be carried out, and the sizes of the partitions have to be
modified according to these statistics before restarting the system next time. We do
not discuss the implementation of this solution now.

Since there are a constant number (m) of partitions, their data can be stored
in one or more arrays with constant lengths. We do not deal with the particular
place of the partitions on this level of abstraction either; we suppose that they are
stored in a constant array as well. When placing a process in a partition, we store
the index of that partition in the process header instead of its starting address.
However, concrete implementation can differ from this method, of course. The sizes
of the partitions are stored in array size[1 . . m]. Our processes are numbered from 1
to n. The array part[1 . . m] keeps track of the processes executed in the individual
partitions, while its inverse, array place[1 . . n] stores the places where individual
processes are executed. A process is either running, or waiting for a partition. This
information is stored in Boolean array waiting[1 . . n]: if process number i is waiting,
then waiting[i] = true, else waiting[i] = false. The space requirements of the
processes are different. Array spacereq[1 . . n] stores the minimum sizes of partitions
required to execute the individual processes.

Having partitions of different sizes and processes with different space require-
ments, we obviously would not like small processes to be placed into large partitions,
while smaller partitions are empty, in which larger processes do not fit. Therefore,
our goal is to assign each partition to a process fitting into it in a way that there
is no larger process that would fit into it as well. This is ensured by the following
algorithm:

Largest-Fit(place,spacereq,size,part,waiting)

1 for j← 1 to m
2 do if part[j] = 0
3 then Load-Largest(place,spacereq,size,j,part,waiting)

Finding the largest process the whose space requirement is not larger than a par-
ticular size is a simple conditional maximum search. If we cannot find any processes
meeting the requirements, we must leave the the partition empty.

Load-Largest(place,spacereq,size,p,part,waiting)

1 max← 0
2 ind← 0
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3 for i← 1 to n
4 do if waiting[i] and spacereq[i] ≤ size[p] and spacereq[i] > max
5 then ind← i
6 max← spacereq[i]
7 if ind > 0
8 then part[p]← ind
9 place[ind]← p

10 waiting[ind]← false

The basic criteria of the correctness of all the algorithms loading the processes
into the partitions is that they should not load a process into a partition which
does not fit. This requirement is fulfilled by the above algorithm, since it can be
derived from the conditional maximum search theorem exactly with the mentioned
condition.

Another essential criterion is that it should not load more than one processes into
the same partition, and also should not load one single process into more partitions
simultaneously. The first case can be excluded, because we call the Load-Largest
algorithm only for the partitions for which part[j] = 0 and if we load a process into
partition number p, then we give part[p] the index of the loaded process as a value,
which is a positive integer. The second case can be proved similarly: the condition of
the conditional maximum search excludes the processes for which waiting[i] = false,
and if the process number ind is loaded into one of the partitions, then the value of
waiting[ind] is set to false.

However, the fact that the algorithm does not load a process into a partition
where it does not fit, does not load more then one processes into the same partition,
or one single process into more partitions simultaneously is insufficient. These re-
quirements are fulfilled even by an empty algorithm. Therefore, we have to require
something more: namely that it should not leave a partition empty, if there is a
process that would fit into it. To ensure this, we need an invariant, which holds
during the whole loop, and at the end of the loop it implies our new requirement.
Let this invariant be the following: after examination of j partitions, there is no
positive k ≤ j, for which part[k] = 0, and for which there is a positive i ≤ n, such
as waiting[i] = true, and spacereq[i] ≤ size[k].

Initialisation: At the beginning of the algorithm we have examined j = 0 parti-
tions, so there is not any positive k ≤ j.

Maintenance: If the invariant holds for j at the beginning of the loop, first we
have to check whether it holds for the same j at the end of the loop as well.
It is obvious, since the first j partitions are not modified when examining the
(j + 1)-th one, and for the processes they contain waiting[i] = false, which
does not satisfy the condition of the conditional maximum search in the Load-
Largest algorithm. The invariant holds for the (j + 1)-th partition at the end
of the loop as well, because if there is a process which fulfills the condition,
the conditional maximum search certainly finds it, since the condition of our
conditional maximum search corresponds to the requirement of our invariant set
on each partition.
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Termination: Since the loop traverses a fixed interval by one, it will certainly
stop. Since the loop body is executed exactly as many times as the number of
the partitions, after the end of the loop there is no positive k ≤ m, for which
part[k] = 0„ and for which there is a positive i ≤ n, such that waiting[i] = true
and spacereq[i] ≤ size[k], which means that we did not fail to fill any partitions
that could be assigned to a process fitting into it.

The loop in rows 1–3 of the Largest-Fit algorithm is always executed in
its entirety, so the loop body is executed Θ(m) times. The loop body performs
a conditional maximum search on the empty partitions – or on partitions for which
part[j] = 0. Since the condition in row 4 of the Load-Largest algorithm has to be
evaluated for each j, the conditional maximum search runs in Θ(n). Although the
loading algorithm will not be called for partitions for which part[j] > 0, as far as
running time is concerned, in the worst case even all the partitions might be empty,
therefore the time complexity of our algorithm is Θ(mn).

Unfortunately, the fact that the algorithm fills all the empty partitions with
waiting processes fitting into them whenever possible is not always sufficient. A very
usual requirement is that the execution of every process should be started within a
determined time limit. The above algorithm does not ensure it, even if there is an
upper limit for the execution time of the processes. The problem is that whenever
the algorithm is executed, there might always be new processes that prevent the
ones waiting for long from execution. This is shown in the following example.

Example 17.1 Suppose that we have two partitions with sizes of 5 kB and 10 kB. We also
have two processes with space requirements of 8 kB and 9 kB. The execution time of both
processes is 2 seconds. But at the end of the first second a new process appears with space
requirement of 9 kB and execution time of 2 seconds again, and the same happens in every
2 seconds, i. e., in the third, fifth, etc. second. If we have a look at our algorithm, we can
see that it always has to choose between two processes, and the one with space requirement
of 9 kB will always be the winner. The other one with 8 kB will never get into the memory,
although there is no other partition into which it would fit.

To be able to fulfill this new requirement mentioned above, we have to slightly
modify our algorithm: the long waiting processes must be preferred over all the other
processes, even if their space requirement is smaller than that of the others. Our new
algorithm will process all the partitions, just like the previous one.

Largest-or-Long-Waiting-Fit(place,spacereq,threshold,size,part,waiting)

1 for j← 1 to m
2 do if part[j] = 0
3 then Load-Largest-or-Long-Waiting( place,spacereq,threshold,

size,j,part,waiting)

However, this time we keep track on the waiting time of each process. Since
the algorithm is only executed when one or more partitions become free, we cannot
examine the concrete time, but the number of cases where the process would have
fit into a partition but we have chosen another process to fill it. To implement this,
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the conditional maximum search algorithm has to be modified: operations have to
be performed also on items that meet the requirement (they are waiting for memory
and they would fit), but they are not the largest ones among those. This operation
is a simple increment of the value of a counter. We assume that the value of the
counter is 0 when the process starts. The condition of the search has to be modified
as well: if the value of the counter of a process is too high, (i. e., higher than a
certain threshold), and it is higher than the value of the counter of the process with
the largest space requirement found so far, then we replace it with this new process.
The pseudo code of the algorithm is the following:

Load-Largest-or-Long-Waiting(place,spacereq,threshold,size,p,part,waiting)

1 max← 0
2 ind← 0
3 for i← 1 to n
4 do if waiting[i] and spacereq[i] ≤ size[p]
5 then if (points[i] > threshold and points[i] > points[ind]) or

spacereq[i] > max
6 then points[ind]← points[ind] + 1
7 ind← i
8 max← spacereq[i]
9 else points[i]← points[i] + 1

10 if ind > 0
11 then part[p]← ind
12 place[ind]← p
13 waiting[ind]← false

The fact that the algorithm does not place multiple processes into the same
partition can be proved the same way as for the previous algorithm, since the outer
loop and the condition of the branch has not been changed. To prove the other two
criteria (namely that a process will be placed neither into more then one partitions,
nor into a partition into which it does not fit), we have to see that the condition
of the conditional maximum search algorithm has been modified in a way that this
property stays. It is easy to see that the condition has been split into two parts,
so the first part corresponds exactly to our requirement, and if it is not satisfied,
the algorithm certainly does not place the process into the partition. The property
that there are no partitions left empty also stays, since the condition for choosing a
process has not been restricted, but extended. Therefore, if the previous algorithm
found all the processes that met the requirements, the new one finds them as well.
Only the order of the processes fulfilling the criteria has been altered. The time
complexity of the loops has not changed either, just like the condition, according to
which the inner loop has to be executed. So the time complexity of the algorithm is
the same as in the original case.

We have to examine whether the algorithm satisfies the condition that a process
can wait for memory only for a given time, if we suppose that there is some p upper
limit for the execution time of the processes (otherwise the problem is insoluble, since
all the partitions might be taken by an infinite loop). Furthermore, let us suppose



802 17. Memory Management

that the system is not overloaded, i. e., we can find a q upper estimation for the
number of the waiting processes in every instant of time. Knowing both limits it is
easy to see that in the worst case to get assigned to a given partition a process has to
wait for the processes with higher counters than its own one (at most q many), and
at most threshold many processes larger than itself. Therefore, it is indeed possible
to give an upper limit for the maximum waiting time for memory in the worst case:
it is (q + threshold)p.

Example 17.2 In our previous example the process with space requirement of 8 kB has to
wait for threshold + 1 = k other processes, all of which lasts for 2 seconds, i. e., the process
with space requirement of 8 kB has to wait exactly for 2k seconds to get into the partition
with size of 10 kB.

In our algorithms so far the absolute space requirement of the processes served as
the basis of their priorities. However this method is not fair: if there is a partition, into
which two processes would fit, and neither of them fits into a smaller partition, then
the difference in their size does not matter, since sooner or later also the smaller one
has to be placed into the same, or into another, but not smaller partition. Therefore,
instead of the absolute space requirement, the size of the smallest partition into
which the given process fits should be taken into consideration when determining
the priorities. Furthermore, if the partitions are increasingly ordered according to
their sizes, then the index of the smallest partition in this ordered list is the priority
of the process. It is called the rank of the process. The following algorithm calculates
the ranks of all the processes.

Calculate-Rank(spacereq,size,rank)

1 order← Sort(size)
2 for i← 1 to n
3 do u← 1
4 v← m
5 rank[i]← b(u + v)/2c
6 while order[rank[i]] < spacereq[i] or order[rank[i] + 1] > spacereq[i]
7 do if order[rank[i]] < spacereq[i]
8 then u← rank[i] + 1
9 else v← rank[i]− 1

10 rank[i]← b(u + v)/2c

It is easy to see that this algorithm first orders the partitions increasingly ac-
cording to their sizes, and then calculates the rank for each process. However, this
has to be done only at the beginning, or when a new process comes. In the latter
case the inner loop has to be executed only for the new processes. Ordering of the
partitions does not have to be performed again, since the partitions do not change.
The only thing that must be calculated is the smallest partition the process fits
into. This can be solved by a logarithmic search, an algorithm whose correctness is
proved. The time complexity of the rank calculation is easy to determine: the order-
ing of the partition takes Θ(m log2 m) steps, while the logarithmic search Θ(log2 m),
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which has to be executed for n processes. Therefore the total number of steps is
Θ((n + m) log2 m).

After calculating the ranks we have to do the same as before, but for ranks
instead of space requirements.

Long-Waiting-or-Not-Fit-Smaller(place,spacereq,threshold,size,part,waiting)

1 for j← 1 to m
2 do if part[j] = 0
3 then Load-Long-Waiting-or-Not-Smaller( place,spacereq,

threshold,size,j,
part,waiting)

In the loading algorithm, the only difference is that the conditional maximum
search has to be executed not on array size, but on array rank:

Load-Long-Waiting-or-Not-Smaller(place,spacereq,threshold,size,p,part,waiting)

1 mx← 0
2 ind← 0
3 for i← 1 to n
4 do if waiting[i] and spacereq[i] ≤ size[p]
5 then if (points[i] > threshold and points[i] > points[ind]) or

rank[i] > max
6 then points[ind]← points[ind] + 1
7 ind← i
8 max← rank[i]
9 else points[i]← points[i] + 1

10 if ind > 0
11 then part[p]← ind
12 place[ind]← p
13 waiting[ind]← false

The correctness of the algorithm follows from the previous version of the algo-
rithm and the algorithm calculating the rank. The time complexity is the same as
that of the previous versions.

Example 17.3 Having a look at the previous example it can be seen that both the processes
with space requirement of 8 kB and 9 kB can fit only into the partition with size of 10 kB,
and cannot fit into the 5 kB one. Therefore their ranks will be the same (it will be two),
so they will be loaded into the memory in the order of their arrival, which means that the
8 kB one will be among the first two.

17.1.2. Dynamic partitions

Dynamic partitioning works in a totally different way from the fixed one. Us-
ing this method we do not search for the suitable processes for every empty partition,
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but search for suitable memory space for every waiting process, and there we create
partitions dynamically. This section is restricted to the terminology of operating
systems as well, but of course, the algorithms can be rewritten to solve problems
connected at the application level as well.

If all the processes would finish at the same time, there would not be any prob-
lems, since the empty memory space could be filled up from the bottom to the top
continuously. Unfortunately, however, the situation is more complicated in the prac-
tice, as processes can differ significantly from each other, so their execution time
is not the same either. Therefore, the allocated memory area will not always be
contiguous, but there might be free partitions between the busy ones. Since copying
within the memory is an extremely expensive operation, in practice it is not effective
to collect the reserved partitions into the bottom of the memory. Collecting the par-
titions often cannot even be carried out due to the complicated relative addressing
methods often used. Therefore, the free area on which the new processes have to
be placed is not contiguous. It is obvious, that every new process must be assigned
to the beginning of a free partition, but the question is, which of the many free
partitions is the most suitable.

Partitions are the simplest to store in a linked list. Naturally, many other, maybe
more efficient data structures could be found, but this is sufficient for the presen-
tation of the algorithms listed below. The address of the first element of linked list
P is stored in head[P ]. The beginning of the partition at address p is stored in
beginning[p], its size in size[p], and the process assigned to it is stored in variable
part[p]. If the identifier of a process is 0, then it is an empty one, otherwise it is a
allocated. In the linked list the address of the next partition is next[p].

To create a partition of appropriate size dynamically, first we have to divide a
free partition, which is at least as big as needed into two parts. This is done by the
next algorithm.

Split-Partition(border,beginning,next,size,p,q)

1 beginning[q]← beginning[p] + border
2 size[q]← size[p]− border
3 size[p]← border
4 next[q]← next[p]
5 next[q]← q

In contrast to the algorithms connected to the method of fixed partitions, where
processes were chosen to partitions, here we use a reverse approach. Here we inspect
the list of the processes, and try to find to each waiting process a free partition into
which it fits. If we found one, we cut the required part off from the beginning of
the partition, and allocate it to the process by storing its beginning address in the
process header. If there is no such free partition, then the process remains in the
waiting list.
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Place(P,head,next,last,beginning,size,part,spacereq,place)

1 for i← 1 to n
2 do if waiting[i] = true
3 then ?-Fit(P,head,next,last,beginning,size,part,spacereq,place,

waiting, i)

The ? in the pseudo code is to be replaced by one of the words First, Next,
Best, Limited-Best, Worst or Limited-Worst.

There are several possibilities for choosing the suitable free partition. The more
simple idea is to go through the list of the partitions from the beginning until we
find the first free partition into which it fits. This can easily be solved using linear
searching.

First-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 p← head[P]
2 while waiting[f] = true and p 6= nil
3 do if part[p] = 0 and size[p] ≥ spacereq[f]
4 then Split-Partition(p,q,spacereq[f ])
5 part[p]← f
6 place[f]← p
7 waiting[f]← false
8 p← next[p]

To prove the correctness of the algorithm several facts have to be examined.
First, we should not load a process into a partition into which it does not fit. This
is guaranteed by the linear search theorem, since this criteria is part of the property
predicate.

Similarly to the fixed partitioning, the most essential criteria of correctness is
that one single process should not be placed into multiple partitions simultaneously,
and at most one processes may be placed into one partition. The proof of this criteria
is word by word the same as the one stated at fixed partitions. The only difference
is that instead of the conditional maximum search the linear search must be used.

Of course, these conditions are not sufficient in this case either, since they are
fulfilled by even the empty algorithm. We also need prove that the algorithm finds
a place for every process that fits into any of the partitions. For this we need an
invariant again: after examining j processes, there is no positive k ≤ j, for which
waiting[k], and for which there is a p partition, such that part[p] = 0, and size[p] ≥
spacereq[k].

Initialisation: At the beginning of the algorithm we have examined j = 0 many
partitions, so there is no positive k ≤ j.

Maintenance: If the invariant holds for j at the beginning of the loop, first we
have to check whether it holds for the same j at the end of the loop as well.
It is obvious, since the first j processes are not modified when examining the
(j + 1)-th one, and for the partitions containing them part[p] > 0, which does
not satisfy the predicate of the linear search in the First-Fit algorithm. The
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invariant statement holds for the (j + 1)-th process at the end of the loop as
well, since if there is a free memory slice which fulfills the condition, the linear
search certainly finds it, because the condition of our linear search corresponds
to the requirement of our invariant set on each partition.

Termination: Since the loop traverses a fixed interval by one, it certainly stops.
Since the loop body is executed exactly as many times as the number of the
processes, after the loop has finished, it holds that there is no positive k ≤ j,
for which waiting[k], and for which there is a p partition, such that part[p] = 0,
and size[p] ≥ spacereq[i], which means that we did not keep any processes fitting
into any of the partitions waiting.

Again, the time complexity of the algorithm can be calculated easily. We examine
all the n processes in any case. If, for instance, all the processes are waiting, and the
partitions are all reserved, the algorithm runs in Θ(nm).

However, when calculating the time complexity, we failed to take some impor-
tant points of view into consideration. One of them is that m is not constant, but
executing the algorithm again and again it probably increases, since the processes
are independent of each other, start and end in different instances of time, and their
sizes can differ considerably. Therefore, we split a partition into two more often than
we merge two neighbouring ones. This phenomenon is called fragmentation the
memory. Hence, the number of steps in the worst case is growing continuously
when running the algorithm several times. Furthermore, linear search divides al-
ways the first partition with appropriate size into two, so after a while there will
be a lot of small partitions at the beginning of the memory area, unusable for most
processes. Therefore the average execution time will grow as well. A solution for the
latter problem is to not always start searching at the beginning of the list of the
partitions, but from the second half of the partition split last time. When reaching
the end of the list, we can continue at the beginning until finding the first suitable
partition, or reaching the starting partition again. This means we traverse the list
of the partitions cyclically.

Next-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 if last[P] 6= nil
2 then p← next[last[P]]
3 else p← head[P]
4 while waiting[f] and p 6= last[P]
5 do if p = nil
6 then p← head[P]
7 if part[p] = 0 and size[p] ≥ spacereq[f]
8 then Split-Partition(p,q,spacereq[f ])
9 part[p]← f

10 place[f]← p
11 waiting[f]← false
12 last[P]← p
13 p← next[p]
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The proof of the correctness of the algorithm is basically the same as that of
the First-Fit, as well as its time complexity. Practically, there is a linear search
in the inner loop again, only the interval is always rotated in the end. However,
this algorithm traverses the list of the free areas evenly, so does not fragment the
beginning of the list. As a consequence, the average execution time is expected to
be smaller than that of the First-Fit.

If the only thing to be examined about each partition is whether a process fits
into it, then it can easily happen that we cut off large partitions for small processes,
so that there would not be partitions with appropriate sizes for the later arriving
larger processes. Splitting unnecessarily large partitions can be avoided by assigning
each process to the smallest possible partition into which it fits.

Best-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 min←∞
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and size[p] < min
6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

All the criteria of the correctness of the algorithm can be proved in the same way
as previously. The only difference from the First-Fit is that conditional minimum
search is applied instead of linear search. It is also obvious that this algorithm will
not split a partition larger than minimally required.

However, it is not always efficient to place each process into the smallest space
into which it fits. It is because the remaining part of the partition is often too
small, unsuitable for most of the processes. It is disadvantageous for two reasons.
On the one hand, these partitions are still on the list of free partitions, so they are
examined again and again whenever searching for a place for a process. On the other
hand, many small partitions together compose a large area that is useless, since it
is not contiguous. Therefore, we have to somehow avoid the creation of too small
free partitions. The meaning of too small can be determined by either a constant
or a function of the space requirement of the process to be placed. (For example,
the free area should be twice as large as the space required for the process.) Since
this limit is based on the whole partition and not only its remaining part, we will
always consider it as a function depending on the process. Of course, if there is no
partition to fulfill this extra condition, then we should place the process into the
largest partition. So we get the following algorithm.
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Limited-Best-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 min←∞
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and

((size[p] < min and size[p] ≥ Limit(f))
or ind = nil or (min < Limit(f) and size[p] > min))

6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

This algorithm is more complicated than the previous ones. To prove its correct-
ness we have to see that the inner loop is a conditional minimum searching. The first
part of the condition, i. e. that part[p] = 0, and size[p] ≥ spacereq[f ] means that we
try to find a free partition suitable for the process. The second part is a disjunction:
we replace the item found so far with the newly examined one in three cases. The
first case is when size[p] < min, and size[p] ≥ Limit(spacereq[f ]), which means that
the size of the examined partition is at least as large as the described minimum, but
it is smaller than the the smallest one found so far. If there were no more conditions,
this would be a conditional minimum search for the conditions of which we added
that the size of the partition should be above a certain limit. But there are two other
cases, when we replace the previously found item to the new one. One of the cases is
that ind = nil, i. e., the newly examined partition is the first one which is free, and
into which the process fits. This is needed because we stick to the requirement that if
there is a free partition suitable for the process, then the algorithm should place the
process into such a partition. Finally, according to the third condition, we replace the
previously found most suitable item to the current one, if min < Limit(spacereq[f ])
and size[p] > min, which means that the minimum found so far did not reach the
described limit, and the current item is bigger than this minimum. This condition
is important for two reasons. First, if the items examined so far do not fulfill the
most recent condition, but the current one does, then we replace it, since in this
case min < Limit(spacereq[f ]) ≤ size[p], i. e., the size of the current partition is
obviously larger. Second, if neither the size of partition found so far, nor that of the
current one reaches the described limit, but the currently examined one approaches
it better from below, then min < size[p] < Limit(spacereq[f ]) holds, therefore, also
in this case we replace the item found so far by the current one. Hence, if there are
partitions at least as large as the described limit, then the algorithm places each
process into the smallest one among them, and if there is no such partition, then in
the largest suitable one.

There are certain problems, where the only requirement is that the remaining
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free spaces should be the largest possible. It can be guaranteed if each process is
placed into the largest free partition:

Worst-Fit(P,head,next,last,beginning,size,part,spacereq,place,waiting,f )

1 max← 0
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and size[p] > max
6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

We can prove the correctness of the algorithm similarly to the Best-Fit algo-
rithm; the only difference is that maximum search has to be used instead of con-
ditional maximum search. As a consequence, it is also obvious that the sizes of the
remaining free areas are maximal.

The Worst-Fit algorithm maximises the smallest free partition, i. e. there will
be only few partitions which are too small for most of the processes. It follows from
the fact that it always splits the largest partitions. However, it also often prevents
large processes from getting into the memory, so they have to wait on an auxiliary
storage. To avoid this we may extend our conditions with an extra an one, similarly
to the Best-Fit algorithm. In this case, however, we give an upper limit instead
of a lower one. The algorithm only tries to split partitions smaller than a certain
limit. This limit also depends on the space requirement of the process. (For example
the double of the space requirement.) If the algorithm can find such partitions, then
it chooses the largest one to avoid creating too small partitions. If it finds only
partitions exceeding this limit, then it splits the smallest one to save bigger ones for
large processes.

Limited-Worst-Fit(f,beginning,head,place,spacereq,next,size,part,waiting,waiting)

1 max← 0
2 ind← nil
3 p← head[P]
4 while p 6= nil
5 do if part[p] = 0 and size[p] ≥ spacereq[f] and

((size[p] > max and size[p] ≤ Limit(f )) or ind = nil or
(max > Limit(f ) and size[p] < max))
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6 then ind← p
7 min← size[p]
8 p← next[p]
9 if ind 6= nil

10 then Split-Partition(ind,q,spacereq[f ])
11 part[ind]← f
12 place[f]← ind
13 waiting[f]← false

It is easy to see that this algorithm is very similar to the Limited-Best-Fit,
only the relation signs are reversed. The difference is not significant indeed. In both
algorithms the same two conditions are to be fulfilled: there should not be too small
partitions, and large free partitions should not be wasted for small processes. The
only difference is which condition is taken account in the first place and which in
the second. The actual problem decides which one to use.

Exercises
17.1-1 We have a system containing two fixed partitions with sizes of 100 kB,
one of 200 kB and one of 400 kB. All of them are empty at the beginning. One
second later five processes arrive almost simultaneously, directly after each other
without significant delay. Their sizes are 80 kB, 70 kB, 50 kB, 120 kB and 180 kB
respectively. The process with size of 180 kB ends in the fifth second after its ar-
rival, but by that time another process arrives with space requirement of 280 kB.
Which processes are in which partitions in the sixth second after the first arrivals,
if we suppose that other processes do not end until that time, and the Largest-
Fit algorithm is used? What is the case if the Largest-or-Long-Waiting-Fit or
the Long-Waiting-or-Not-Fit-Smaller algorithm is used with threshold value
of 4?
17.1-2 In a system using dynamic partitions the list of free partition consists of the
following items: one with size of 20 kB, followed by one of 100 kB, one of 210 kB,
one of 180 kB, one of 50 kB, one of 10 kB, one of 70 kB, one of 130 kB and one of
90 kB respectively. The last process was placed into the partition preceding the one
of 180 kB. A new process with space requirement of 40 kB arrives into the system.
Into which partition is it to be placed using the First-Fit, Next-Fit, Best-Fit,
Limited-Best-Fit, Worst-Fit or the Limited-Worst-Fit algorithms?
17.1-3 An effective implementation of the Worst-Fit algorithm is when the par-
titions are stored in a binary heap instead of a linear linked list. What is the time
complexity of the Place algorithm perform in this case?

17.2. Page replacement algorithms

As already mentioned, the memory of the modern computer systems consists of
several levels. These levels usually are organised into a seemingly single-level memory,
called virtual memory. Users do not have to know this structure with several levels
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in detail: operating systems manage these levels.
The most popular methods to control this virtual memory are paging and seg-

mentation. Paging divides both memory levels into fixed-sized units, called frames.
In this case programs are also divided into parts of the same size as frams have:
these parts of the programs (and data) are called pages. Segmentation uses parts
of a program with changing size—these parts are called segments.

For the simplicity let us suppose that the memory consists of only two levels:
the smaller one with shorter access time is called main memory (or memory for
short), and the larger one with larger access time is called backing memory.

At the beginning, the main memory is empty, and there is only one program
consisting of n parts in the backing memory. Suppose that during the run of the
program there are instructions to be executed, and the execution of each instruction
there requires an access to a certain page of the program. After processing the
reference string, the following problems have to be solved.

1. Where should we place the segment of the program responsible for executing
the next instruction in the main memory (if it is not there)?

2. When should we place the segments of the program in the main memory?

3. How should we deallocate space for the segments of the program to be placed
into the main memory?

It is the placing algorithms that give the answer to the first question: as far as
paging is concerned, the answer is simply anywhere—since the page frames of the
main memory are of the same size and access time. During segmentation there
are program segments and free memory areas, called holes alternating in the main
memory–and it is the segment placing algorithms that gives the answer to the first
question.

To the second question the answer is given by the transferring algorithms: in
working systems the answer is on demand in most of the cases, which means that a
new segment of the program starts to be loaded from the backing memory when it
turns out that this certain segment is needed. Another solution would be preloading,
but according to the experiences it involves a lot of unnecessary work, so it has not
become wide-spread.

It is the replacement algorithms that give the answer to the third question: as
far as paging is concerned, these are the page replacement algorithms, which we
present in this section. Segment replacement algorithms used by segmentation apply
basically the ideas of page replacement algorithms—completed them according to
the different sizes of the segments.

Let us suppose that the size of the physical memory is m page frames, while
that of the backing memory is n page frames. Naturally the inequality 1 ≤ m ≤ n
holds for the parameters. In practice, n is usually many times bigger than m. At the
beginning the main memory is empty, and there is only one program in the backing
memory. Suppose that during the run of the program there are p instructions to be
executed, and to execute the t-th instruction (1 ≤ t ≤ p) the page rt is necessary,
and the result of the execution of the instruction also can be stored in the same
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page, i. e., we are modelling the execution of the program by reference string
R = 〈r1, r2, . . . , rp〉. In the following we examine only the case of demand paging, to
be more precise, only the page replacement algorithms within it.

If it is important to differentiate reading from writing, we will use writing array
W = 〈w1, w2, . . . , wp〉 besides array R. Entry wt of array W is true if we are writing
onto page rt, otherwise w1 = false.

Demand paging algorithms fall into two groups; there are static and dynamic
algorithms. At the beginning of the running of the program both types fill the
page frames of the physical memory with pages, but after that static algorithms
keep exactly m page frames reserved until the end of the running, while dynamic
algorithms allocate at most m page frames.

17.2.1. Static page replacement

The input data of static page replacement algorithms are: the size of the main mem-
ory measured in number of the page frames (m), the size of the program measured
in number of of pages (n), the running time of the program measured in number of
instructions (p) and the reference string (R); while their output is the number of
the page faults. (pagefault)

Static algorithms are based on managing the page table. The page table is a
matrix with size of n × 2, the i-th (i ∈ [0 . . n − 1]) row of which refers to the i-
th page. The first entry of the row is a logical variable (present/absent bit), the
value of which keeps track of whether the page is in the main memory in that certain
instant of time: if the i-th page is in the main memory, then pagetable[i, 1] = true
and pagetable[i, 2] = j, where j ∈ [0 . . m − 1] shows us that the page is in the j-th
page frame of the main memory. If the i-th page is not in the main memory, then
pagetable[i, 1] = false and pagetable[i, 2] is non-defined. Work variable busy contains
the number of the busy page frames
indexframe!free of the main memory.

If the size of the pages is z, then the physical address f can be calculated
from virtual address v so that j = bv/zc gives us the index of the virtual page
frame, and v − zbv/zc gives us offset s referring to virtual address v. If the j-th
page is in the main memory in the given instant of time—which is indicated by
pagetable[i, 1] = true—, then f = s + z · pagetable[i, 2]. If, however, the i-th page is
not in the main memory, then a page fault occurs. In this case we choose one of the
page frames of the main memory using the page replacement algorithm, load the
j-th page into it, refresh the j-th row of the page table and then calculate f .

The operation of the demand paging algorithms can be described by a Mealy
automaton having an initial status. This automaton can be given as (Q, q0, X, Y, δ, λ),
where Q is the set of the control states, qo ∈ Q is the initial control state, X is the
input alphabet, Y is the output alphabet, δ : Q × X → Q is the state transition
function and λ : Q×X → Y is the output function.

We do not discuss the formalisation of how the automaton stop.
Sequence Rp = 〈r1, r2, . . . , rp〉 (or Rp = 〈r1, r2, . . . , r∞〉) is called reference

string.
The description of the algorithms can be simplified introducing memory states
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St (t = 1, 2, . . .): this state is the set of the pages stored in the main memory of the
automat after processing the t-th input sign. In the case of static demand paging
algorithms S0 = ∅. If the new memory status differs from the old one (which means
that a new page had to be swapped in), then a page fault has occurred. Consequently,
both a swapping of a page into an empty frame and page replacement are called page
fault.

In case of page replacement algorithms—according to Denning’s proposition—
instead of λ and δ we use the state transition function gP : Q×M×X → Q×Y . Since
for the page replacement algorithms X = {0, 1, . . . , n − 1} and Y = X ∪ ∅, holds,
these two items can be omitted from the definition, so page replacement algorithm
P can be described by the triple (Q, q0, gP ).

Our first example is one of the simplest page replacement algorithms, the FIFO
(First In First Out), which replaces the pages in the order of their loading in. Its
definition is the following: q0 = 〈〉 and

gFIFO(S, q, x) =











(S, q, ε), if x ∈ S ,

(S ∪ {x}, q′, ε), if x /∈ S, |S| = k < m ,

(S \ {y1} ∪ {x}, q”, y1), if x /∈ S and |S| = k = m ,

(17.1)

where q = 〈y1, y2, . . . , yk〉, q′ = 〈y1, y2, . . . , yk, x〉 and q′′ = 〈y2, y3, . . . , ym, x〉.
Running of the programs is carried out by the following ∗-Run algorithm. In

this section the ∗ in the name of the algorithms has to be replaced by the name of
the page replacement algorithm to be applied (FIFO, LRU OPT, LFU or NRU). In
the pseudocodes it is supposed that the called procedures know the values of the
variable used in the calling procedure, and the calling procedure accesses to the new
values.

∗-Run(m, n, p, R, faultnumber, pagetable)

1 faultnumber← 0
2 busy← 0
3 for i← 0 to n− 1 � Preparing the pagetable.
4 do pagetable[i, 1]← false
5 *-Prepare(pagetable)
6 for i← 1 to p � Run of the program.
7 do *-Executes(pagetable, i)
8 return faultnumber

The following implementation of the algorithm keeps track of the order of loading
in the pages by queue Q. The preparing algorithm has to create the empty queue, i.
e., to execute the instruction Q← ∅.

In the following pseudocode swap-out is the index of the page to be replaced,
and swap-in is the index of the page of the main memory into which the new page
is going to be swapped in.
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FIFO-Executes(pagetable, t),

1 if pagetable[rt, 1] = true � The next page is in.
2 then nil
3 if pagetable[rt, 1] = false � The next page is out.
4 then pagefault← pagefault + 1
5 if busy < m � Main memory is not full.
6 then Inqueue(Q, rt)
7 swap-in← busy
8 busy← busy + 1
9 if busy = m � Main memory is full.

10 then replaces← Enqueue(Q)
11 pagetable[swap-out, 1]← false
12 swap-in← pagetable[swap-out, 2]
13 Write(swap-in, swap-out)
14 Read(rt, load) � Reading.
15 pagetable[rt, 1]← true � Updating of the data.
16 pagetable[rt, 2]← loads

Procedure writing writes the page chosen to be swapped out into the backing
memory: its first parameter answers the question where from (from which page frame
of the memory) and its second parameter answers where to (to which page frame
of the backing memory). Procedure Reading reads the page needed to execute the
next instruction from the backing memory into the appropriate page frame of the
physical memory: its first parameter is where from (from which page frame of the
backing memory) and its second parameter is where to (to which page frame of the
memory). When giving the parameters of both the procedures we use the fact that
the page frames are of the same size, therefore, the initial address of the j-th page
frame is j-times the page size z in both memories. Most of the page replacement
algorithms do not need to know the other entries of reference string R to process
reference rt, so when calculating space requirement we do not have to take the space
requirement of the series into consideration. An exception for this is algorithm OPT
for example. The space requirement of the FIFO-RUN algorithm is determined by
the size of the page frame - this space requirement is O(m). The running time of the
FIFO-RUN algorithm is de-termined by the loop. Since the procedure called in rows
6 and 7 performs only a constant number of steps (provided that queue-handling
operations can be performed in O(1), the run-ning time of the FIFO-RUN algorithm
is O(p). Note that some of the pages do not change while being in the memory, so if
we assign a modified bit to the pages in the memory, then we can spare the writing
in row 12 in some of the cases.

Our next example is one of the most popular page replacement algorithms,
the LRU (Least Recently Used), which replaces the page used least recently. Its
definition is the following: q0 = () and

gLRU(S, q, x) =











(S, q′′′, ε), if x ∈ S ,

(S ∪ {x}, q′, ε), if x /∈ S, |S| = k < m ,

(S \ {y1} ∪ {x}, q”, y1), if x /∈ S and |S| = k = m ,

(17.2)
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where q = 〈y1, y2, . . . , yk〉, q′ = 〈y1, y2, . . . , yk, x〉, q′′ = 〈y2, y3, . . . , ym,x〉 and if
x = yk, then q′′′ = 〈y1, y2, . . . , yk−1, . . . , yk+1 . . . ym, yk〉.

The next implementation of LRU does not need any preparations. We keep a
record of the time of the last usage of the certain pages in array last-call[0..n − 1],
and when there is a replacement needed, the least recently used page can be found
with linear search.

LRU-Executes(pagetable, t)

1 if pagetable[rt, 1] = true � The next page is in.
2 then last-ref[rt]← t
3 if pagetable[rt, 1] = false � The next page is not in.
4 then pagefault← pagefault + 1
5 if busy < m � The physical memory is not full.
6 then swap-in← busy
7 busy← busy + 1
8 if busy = m � The physical memory is full.
9 then swap-out← rt−1

10 for i← 0 to n− 1
11 do if pagetable[i, 1] = true and

last-ref[i] < last-ref[swap-out]
12 then swap-out← last-ref[i]
13 pagetable[swap-out, 1]← false
14 swap-in← pagetable[swap-out, 2]
15 Write(swap-in, swap-out)
16 Read(rt, swap-in) � Reading.
17 pagetable[rt, 1]← true � Updating.
18 pagetable[rt, 2]← swap-in
19 last-ref[rt]← t

If we consider the values of both n and p as variables, then due to the linear
search in rows 10–11, the running time of the LRU-RUN algorithm is O(np).

The following algorithm is optimal in the sense that with the given conditions
(fixed m and n) it causes a minimal number of page faults. This algorithm chooses
the page from the ones in the memory, which is going to be used at the latest (if
there are several page that are not needed any more, then we choose the one at the
lowest memory address from them) to be replaced. This algorithm does not need
any preparations either.

OPT-Executes(t, pagetable, R)

1 if pagetable[rt, 1] = true � The next page is in.
2 then nil
3 if pagetable[rt, 1] = false � The next page is not in.
4 then pagefault← pagefault + 1
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5 if busy < m � The main memory is not full.
6 then swap-in← busy
7 busy← busy + 1
8 if busy = m � The main memory is full.
9 then OPT-Swap-Out(t, R)

10 pagetable[swap-out, 1]← false
11 swap-in← pagetable[swap-out, 2]
12 Write(swap-in, swap-out)
13 Read(rt, swap-in) � Reading.
14 pagetable[rt, 1]← true � Updating.
15 pagetable[rt, 2]← swap-in

Procedure OPT-Swap-Out determines the index of the page to be replaced.

OPT-Swap-Out(t, R)

1 guarded← 0 � Preparation.
2 for j ← 0 to m− 1
3 do frame[j]← false
4 s← t + 1 � Determining the protection of the page frames.
5 while s ≤ p and pagetable[rs, 1] = true and frame[pagetable[rs, 2]] = false and

guarded < m− 1
6 do guarded← guarded + 1
7 frame[rs]← true
8 s← s + 1
9 swap-out← m− 1 � Finding the frame containing the page to be replaced.

10 j ← 0
11 while frame[j] = true
12 do j ← j + 1
13 swap-out← j
14 return swap-out

Information about pages in the main memory is stored in frame[0 . . m − 1]:
frame[j] = true means that the page stored in the j-th frame is protected from
being replaced due to its going to be used soon. Variable protected keeps track of
how many protected pages we know about. If we either find m−1 protected pages or
reach the end of R, then we will choose the unprotected page at the lowest memory
address for the page to be replaced.

Since the OPT algorithm needs to know the entire array R, its space requirement
is O(p). Since in rows 5–8 of the OPT-Swap-Out algorithm at most the remaining
part of R has to be looked through, the running time of the OPT-Swap-Out
algorithm is O(p2). The following LFU (Least Frequently Used) algorithm chooses
the least frequently used page to be replaced. So that the page replacement would
be obvious we suppose that in the case of equal frequencies we replace the page at
the lowest address of the physical memory. We keep a record of how many times
each page has been referenced since it was loaded into the physical memory with
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the help of array frequency[1..n - 1]. This algorithm does not need any preparations
either.

LFU-Executes(pagetable, t)

1 if pagetable[rt, 1] = true � The next page is in.
2 then frequency[rt]← frequency[rt] + 1
3 if pagetable[rt, 1] = false � The next page is not in.
4 then pagefault← pagefault + 1
5 if busy < m � The main memory is not full.
6 then swap-in← busy
7 busy← busy + 1
8 if busy = m � The physical memory is full.
9 then swap-out← rt−1

10 for i← n− 1 downto 0
11 do if pagetable[i, 1] = true and

frequency[i] ≤ frequency[swap-out]
12 then swap-out← last-ref[i]
13 pagetable[swap-out, 1]← false
14 swap-in← pagetable[swap-out, 2]
15 Kiír(swap-in, swap-out)
16 Read(rt, pagetable[swap-out, 2]) � Reading.
17 pagetable[rt, 1]← true � Updating.
18 pagetable[rt, 2]← swap-in
19 frequency[rt]← 1

Since the loop body in rows 11–13 of the LFU-Executes algorithm has to be
executed at most n-times, the running time of the algorithm is O(np). There are
certain operating systems in which there are two status bits belonging to the pages
in the physical memory. The referenced bit is set to true whenever a page is refer-
enced (either for reading or writing), while the dirty bit is set to true whenever
modifying (i.e. writing) a page. When starting the program both of the status bits of
each page is set to false. At stated intervals (e. g. after every k-th instruction) the
operating system sets the referenced bit of the pages which has not been referenced
since the last setting to false. Pages fall into four classes according to the values
of their two status bits: class 0 contains the pages not referenced and not modified,
class 1 the not referenced but modified, class 2 the referenced, but not modified, and
finally, class 3 the referenced and modified ones.

The NRU (Not Recently Used) algorithm chooses a page to be replaced from
the nonempty class with the smallest index. So that the algorithm would be deter-
ministic, we suppose that the NRU algorithm stores the elements of each class in a
row.

The preparation of this algorithm means to fill arrays referenced and dirty con-
taining the indicator bits with false values, to zero the value of variable performed
showing the number of the operations performed since the last zeroing and to create
four empty queues.
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NRU-Prepares(n)

1 for i← 0 to n− 1
2 do referenced[j]← false
3 dirty[j]← false
4 Q0 ← ∅
5 Q1 ← ∅
6 Q2 ← ∅
7 Q3 ← ∅

NRU-Executes(referenced, dirty, k, R, W )

1 if pagetable[rt, 1] = true � The next page is in.
2 then if W [rt] = true
3 then dirty[rt]← true
4 if pagetable[rt, 1] = false � The next page is not in.
5 then pagefault← pagefault + 1
6 if busy < m � The main memory is not full.
7 then swap-in← busy
8 busy← busy + 1
9 referenced[rt]← true

10 if W [rt] = true
11 then dirty[rt]← true
12 if busy = m � The main memory is full.
13 then NRU-Swap-Out(t, swap-out)
14 pagetable[swap-out, 1]← false
15 swap-in← pagetable[swap-out, 2]
16 if dirty[sap-out] = true
17 then Write(swap-in, swap-out)
18 Read(rt, pagetable[swap-in, 2]) � Reading.
19 pagetable[rt, 1]← true � Updating.
20 pagetable[rt, 2]← swap-in
21 if t/k = bt/kc
22 then for i← 0 to n− 1
23 do if referenced[i] = false
24 then dirty[i]← false

Choosing the page to be replaced is based on dividing the pages in the physical
memory into four queues (Q1, Q2, Q3, Q4).

NRU-Swap-Out(time)

1 for i← 0 to n− 1 � Classifying the pages.
2 do if referenced[i] = false
3 then if dirty[i] = false
4 then Enqueue(Q1,i)
5 else Enqueue(Q2,i)
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6 elseif dirty[i] = false
7 then Enqueue(Q3,i)
8 else Enqueue(Q4,i)
9 if Q1 6= ∅ � Choosing the page to be replaced.

10 then swap-out← Dequeue(Q1)
11 else if Q2NE∅
12 then swap-out← Dequeue(Q2)
13 else if Q3 6= ∅
14 then swap-out← Dequeue(Q3)
15 else swap-out← Dequeue(Q4)
16 return swap-out

The space requirement of the RUN-NRU algorithm is O(m) and its running time
is O(np). The Second-Chance algorithm is a modification of FIFO. Its main point
is that if the referenced bit of the page to be replaced is false according to FIFO,
then we swap it out. If, however, its referenced bit is true, then we set it to false
and put the page from the beginning of the queue to the end of the queue. This is
repeated until a page is found at the be-ginning of the queue, the referenced bit of
which is false. A more efficient implementation of this idea is the Clock algorithm
which stores the in-dices of the m pages in a circular list, and uses a hand to point
to the next page to be replaced.

The essence of the LIFO (Last In First Out) algorithm is that after filling in the
physical memory according to the requirements we always replace the last arrived
page, i. e., after the initial period there are m−1 pages constantly in the memory—
and all the replacements are performed in the page frame with the highest address.

17.2.2. Dynamic paging

It is typical of most of the computers that there are multiple programs running
simultane-ously on them. If there is paged virtual memory on these computers, it
can be managed both locally and globally. In the former case each program’s demand
is dealt with one by one, while in the latter case a program’s demand can be satisfied
even at other programs’ expenses. Static page replacement algorithms using local
management have been discussed in the last section. Now we present two dynamic
algorithms. The WS (Working-Set) algorithm is based on the experience that
when a program is run-ning, in relatively short time there are only few of its pages
needed. These pages form the working set belonging to the given time interval. This
working set can be defined for example as the set of the pages needed for the last h
instructions. The operation of the algorithm can be illustrated as pushing a "window"
with length of h along reference array R, and keeping the pages seen through this
window in the memory.
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WS(pagetable, t, h)

1 if pagetable[rt, 1] = false � The next page is not in.
2 then WS-swap-out(t)
3 Write(pagetable[swap-out, 2], swap-out)
4 pagetable[rt, 1]← true
5 pagetable[rt, 2]← swap-out
6 if t > h � Does rt−h in the memory?
7 then j ← h− 1
8 while rj 6= rt−h and j < t
9 do j ← j + 1

10 if j > t
11 then pagetable[rt−h, 1]← false

When discussing the WS algorithm, to make it as simple as possible, we suppose
that h ≤ n,, therefore, storing the pages seen through the window in the memory is
possible even if all the h references are different (in practice, h is usually significantly
bigger than n due to the many repetitions in the reference string).

The WS-Swap-Oout algorithm can be a static page replacement algorithm, for
instance, which chooses the page to be replaced from all the pages in the memory—i.
e., globally. If, for example, the FIFO algorithm with running time Θ(p) is used for
this purpose, then the running time of the WS algorithm will be Θ(hp), since in
the worst case it has to examine the pages in the window belonging to every single
instruction.

The PFF (Page Frequency Fault) algorithm uses a parameter as well. This
algorithm keeps record of the number of the instructions executed since the last page
fault. If this number is smaller when the next page fault occurs than a previously
determined value of parameter d, then the program will get a new page frame to
be able to load the page causing page fault. If, however, the number of instructions
executed without any page faults reaches value d, then first all the page frames
containing pages that have not been used since the last page fault will be taken
away from the program, and after that it will be given a page frame for storing the
page causing page fault.

PFF(pagetable, t, d)

1 counter← 0 � Preparation.
2 for i← 1 to n
3 do pagetable[i, 1]← false
4 referenced[i]← false
5 for j ← 1 to p � Running.
6 do if pagetable[rt, 1] = true
7 then counter← counter + 1
8 else PFF-Swap-In(t, d, swap-out)
9 Write(pagetable[swap-out, 2], swap-out)

10 pagetable[rt, 1]← true



17.3. Anomalies 821

11 for i← to n
12 do if referenced[i] = false
13 then pagetable[i, 1]← false
14 referenced[i]← false

Exercises
17.2-1 Consider the following reference string: R = 〈1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2,
3, 7, 6, 3, 2, 1, 2, 3, 6〉. How many page faults will occur when using FIFO, LRU or
OPT algorithm on a computer with main memory containing k (1 ≤ k ≤ 8) page
frames?
17.2-2 Implement the FIFO algorithm using a pointer—instead of queue Q—
pointing to the page frame of the main memory, which is the next one to load a
page.
17.2-3 What would be the advantages and disadvantages of the page replacement
algorithms’ using an m×2 page map—besides the page table—the j-th row of which
indicating whether the j-th row of the physical memory is reserved, and also reflect-
ing its content?
17.2-4 Write and analyse the pseudo code pseudocode of Second-Chance, Clock
and LIFO algorithms.
17.2-5 Is it possible to decrease the running time of the NFU algorithm (as far as
its order of magnitude is concerned) if the pages are not classed only after each page
faults, but the queues are maintained continuously?
17.2-6 Another version, NFU’, of the NRU algorithm is also known, which uses four
sets for classing the pages, and it chooses the page to be replaced from the nonempty
set with the smallest index by chance. Write the pseudo code of operations In-Set
and From-Set needed for this algorithm, and calculate the space requirement and
running time of the NFU’ algorithm.
17.2-7? Extend the definition of the page replacement automat so that it would
stop after processing the last entry of the finite reference sequence. Hint. Complete
the set of incoming signs with an ’end of the sequence’ sign.

17.3. Anomalies

When the first page replacement algorithms were tested in the IBM Watson Research
Institute at the beginning of the 1960’s, it caused a great surprise that in certain
cases increasing the size of the memory leads to an increase in running time of the
programs. In computer systems the phenomenon, when using more recourses leads
to worse results is called anomaly. Let us give three concrete examples. The first one
is in connection with the FIFO page replacement algorithm, the second one with the
List-Scheduling algorithm used for processor scheduling, and the third one with
parallel program execution in computers with interleaved memories.

Note that in two examples out of the three ones a very rare phenomenon can be
observed, namely that the degree of the anomaly can be any large.
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17.3.1. Page replacement

Let m, M , n and p be positive integers (1 ≤ m ≤ n <∞), k a non-negative integer,
A = {a1, a2, . . . , an} a finite alphabet. Ak is the set of the words over A with length
k, and A∗ the words over A with finite length. Let m be the number of page frames
in the main memory of a small, and M a big computer. The FIFO algorithm has
already been defined in the previous section. Since in this subsection only the FIFO
page replacement algorithm is discussed, the sign of the page replacement algorithm
can be omitted from the notations.

Let us denote the number of the page faults by fP (R, m). The event, when
M > m and fP (R, M) > fP (R, m) is called anomaly. In this case the quotient
fP (R, M)/fP (R, m) is the degree of the anomaly. The efficiency of algorithm P is
measured by paging speed EP (R, m) which is defined as

EP (R, m) =
fP (R, m)

p
, (17.3)

for a finite reference string R = 〈r1, r2, . . .〉, while for an infinite reference string
R = 〈r1, r2, . . .〉 by

EP (R, m) = lim inf
k→∞

fP (Rk, m)

k
. (17.4)

Let 1 ≤ m < n and let C = (1, 2, . . . , n)∗ be an infinite, circular reference
sequence. In this case EFIFO(C, m) = 1.

If we process the reference string R = 〈1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5〉, then we will
get 9 page faults in the case of m = 3, and 10 ones in the case of m = 4, therefore,
fFIFO(R, m) = 10/9. Bélády, Nelson and Shedler has given the following necessary
and sufficient condition for the existing of the anomaly.

Theorem 17.1 There exists a reference sequence R for which the FIFO page re-
placement algorithm causes an anomaly if, and only if m < M < 2m− 1.

The following has been proved as far as the degree of the anomaly is concerned.

Theorem 17.2 If m < M < 2m− 1, then for every ε > 0 there exists a reference
sequence R = 〈r1, r2, . . . , rp〉 for which

f(R, M)

f(R, m)
> 2− ε . (17.5)

Bélády, Nelson and Shedler had the following conjecture.

Conjecture 17.3 For every reference sequence R and memory sizes M > m ≥ 1

fFIFO(R, M)

fFIFO(R, m)
≤ 2 . (17.6)

This conjecture can be refuted e. g. by the following example. Let m = 5, M =
6, n = 7, k ≥ 1, and R = UV k, where V = (1, 2, 3, 4, 5, 6, 7)3 and U = 〈1, 2,
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3, 4, 5, 6, 7, 1, 2, 4, 5, 6, 7, 3, 1, 2, 4, 5, 7, 3, 6, 2, 1, 4, 7, 3, 6, 2, 5, 7, 3, 6, 2, 5〉. If execution
sequence U is executed using a physical memory with m = 5 page frames, then there
will be 29 page faults, and the processing results in controlling status (7,3,6,2,5). Af-
ter that every execution of reference sequence V causes 7 new page faults and results
in the same controlling status.

If the reference string U is executed using a main memory with M = 6 page
frames, then we get control state 〈2, 3, 4, 5, 6, 7〉 and 14 page faults. After that every
execution of reference sequence V causes 21 new page faults and results in the same
control state.

Choosing k = 7 the degree of the anomaly will be (14 + 7× 21)/(29 + 7× 7) =
161/78 > 2. As we increment the value of k, the degree of the anomaly will go to
three. Even more than that is true: according to the following theorem by Péter
Fornai and Antal Iványi the degree of the anomaly can be any arbitrarily large.

Theorem 17.4 For any large number L it is possible to give parameters m, M and
R so that the following holds:

f(R, M)

f(R, m)
> L . (17.7)

17.3.2. Scheduling with lists

Suppose that we would like to execute n tasks on p processors. By the execution
the priority order of the programs has to be taken into consideration. The processors
operate according to First Fit, and the execution is carried out according to a given
list L. E. G. Coffman jr. wrote in 1976 that decreasing the number of processors,
decreasing execution time ti of the tasks, reducing the precedence restrictions,
and altering the list can each cause an anomaly. Let the vector of the execution
times of the tasks denoted by t, the precedence relation by <, the list by L, and
execution time of all the tasks with a common list on p equivalent processors by
C(p, L, <, t).

The degree of the anomaly is measured by the ratio of the execution time C ′ at
the new parameters and execution time C at the original parameters. First let us
show four examples for the different types of the anomaly.

Example 17.4 Consider the following task system τ1 and its scheduling S1 received using
list L = (T1, T2, . . . , T9) on m = 3 equivalent processors. In this case Cmax(S1) = 12 (see
Figure 17.1), which can be easily proved to be the optimal value.

Example 17.5 Schedule the previous task system τ1 for m = 3 equivalent processors with
list L′ = 〈T1, T2, T4, T5, T6, T3, T9, T7, T8〉. In this case for the resulting scheduling S2 we
get Cmax(S2) = 14 (see Figure 17.2).

Example 17.6 Schedule the task system τ1 with list L for m′ = 4 processors. It results in
Cmax(S3) = 15 (see Figure 17.3).
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T1/3 T2/2 T3/2 T4/2

T9/9 T5/4 T6/4 T7/4 T8/4

S1 :
P1

P2

P3

T1 T9

T2 T4 T5 T7

T3 - T6 T8

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 17.1 Task system τ1, and its optimal schedule.

S2 :

P1

P2

P3

T1 T3 T9

T2 T5 T7 -

T4 T6 T8 -

0 1 2 3 4 5 6 7 8 9 10 11 13 12 14

Figure 17.2 Scheduling of the task system τ1 at list L′.

S3 :

P1

P2

P3

P4

T1 T8 -

T2 T5 T9

T3 T6 -

T4 T7 -

0 1 2 3 4 5 6 7 8 9 10 11 13 12 14 15

Figure 17.3 Scheduling of the task system τ1 using list L on m′ = 4 processors.

S4 :

P1

P2

P3

T1 T5 T8 -

T2 T4 T6 T9

T3 - T7 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 17.4 Scheduling of τ2 with list L on m = 3 processors.

Example 17.7 Decrement the executing times by one in τ1. Schedule the resulting task
system τ2 with list L for m = 3 processors. The result is: Cmax(S4) = 13 (see Figure 17.4).

Example 17.8 Reduce the precedence restrictions: omit edges (T4, T5) and (T4, T6) from
the graph. The result of scheduling S5 of the resulting task system τ3 can be seen in Figure
17.5: Cmax(S5) = 16.

The following example shows that the increase of maximal finishing time in the
worst case can be caused not only by a wrong choice of the list.
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S5 :

P1

P2

P3

T1 T6 T9

T2 T4 T7 -

T3 T5 T8 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 17.5 Scheduling task system τ3 on m = 3 processors.

Example 17.9 Let task system τ and its optimal scheduling SOPT be as showed by Figure
17.6. In this case Cmax(SOPT) = 19.

T1/4 T2/2

T3/2

T4/5T5/5 T6/10

T7/10

SOP T :
P1

P2

T1 T4 T6

T2 T3 T5 T7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 17.6 Task system τ and its optimal scheduling SOPT on two processors.

We can easily prove that if the executing times are decremented by one, then
in the resulting task system τ ′ we cannot reach a better result than Cmax(S6) = 20
with any lists (see Figure 17.7).

After these examples we give a relative limit reflecting the effects of the schedul-
ing parameters. Suppose that for given task systems τ and τ ′ we have T′ = T,
<′⊆<, t′ ≤ t. Task system τ is scheduled with the help of list L, and τ ′ with L′—
the former on m, while the latter on m′ equivalent processors. For the resulting
schedulings S and S′ let C(S) = C and C(S′) = C ′.

Theorem 17.5 (scheduling limit). . With the above conditions

C ′

C
≤ 1 +

m− 1

m′
. (17.8)

Proof Consider scheduling diagram D′ for the parameters with apostrophes (for S′).
Let the definition of two subsets—A and B—of the interval [0, C ′) be the following:
A = {t ∈ [0, C ′)| all the processors are busy in time t}, B = [0, C ′) \ A. Note that
both sets are unions of disjoint, half-open (closed from the left and open from the
right) intervals.
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S6 :
P1

P2

T1 T4 T5 T7

T2 T3 T6 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 17.7 Optimal list scheduling of task system τ ′.

Let Tj1
be a task the execution of which ends in C ′ instant of time according to

D1 (i. e., fj1
= C ′). In this case there are two possibilities: Starting point sj1

of task
Tj1

is either an inner point of B, or not.

1. If sj1
is an inner point of B, then according to the definition of B there is a

processor for which with ε > 0 it holds that it does not work in the interval
[sj1
− ε, sj1

). This can only occur if there is a task Tj2
for which Tj2

<′ Tj1

and fj2
= sj1

(case a).

2. If sj1
is not an inner point of B, then either sj1

= 0 (case b), or sj1
> 0.

If B has got a smaller element than sj1
(case c), then let x1 = sup{x | x <

sj1
and x ∈ B}, else let x1 = 0 (case d). If x1 > 0, then it follows from the

construction of A and B that there is a processor for which a task Tj2
can be

found the execution of which is still in progress in this time interval, and for
which Tj2

<′ Tj1
.

Summarising the two cases we can say that either there is a task Tj2
<′ Tj1

for
which in the case of y ∈ [fj2

, sj1
) holds y ∈ A (case a or c), or for every number

x < sj1
x ∈ A or x < 0 holds (case a or d).

Repeating this procedure we get a task chain Tjr
, Tjr−1

, . . . , Tj1
for which it

holds that in the case of x < sjr
either x ∈ A or x < 0. This proves that there are

tasks for which
Tjr

<′ Tjr−1
<′ · · · <′ Tj1

, (17.9)

and in every instant of time t there is a processor which is working, and is executing
one of the elements of the chain. It yields

∑

φ∈S′

t′(φ) ≤ (m′ − 1)

r
∑

k=1

t′

jk
, (17.10)

where f denotes the empty periods, so the sum on the left hand side refers to all
the empty periods in S′.

Based on (11.9) and <′⊆<, therefore,

C ≥
r
∑

k=1

tjk
≥

r
∑

k=1

t′

jk
. (17.11)

Since

mC ≥
n
∑

i=1

ti ≥
n
∑

i=1

t′

i , (17.12)
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S7 :

T1 Tm+1

T2 Tm+2

...
...

Tm−1 T2m−1

Tm

Figure 17.8 Scheduling S7(τ4) belonging to list L = (T1, . . . , Tn).

and

C ′ =
1

m′





n
∑

i=1

t′

i +
∑

φ∈S′

t′(φ)



 ,

így (17.10), (17.11) and (17.12)

C ′ ≤
1

m′

(

mC + (m′ − 1)C
)

,

based on (17.10), (17.11) and (17.12) we get

C ′ ≤
1

m′

(

mC + (m′ − 1)C
)

,

implying C ′/C ≤ 1 + (m− 1)/m′.

The following examples show us not only that the limit in the theory is the best
possible, but also that we can get the given limit (at least asymptotically) by altering
any of the parameters.

Example 17.10 In this example the list has changed, < is empty, m is arbitrary. Execution
times are the following:

ti =

{

1, if i = 1, . . . , m − 1 ,
m, if i = m ,
m − 1, if i = m + 1, . . . , 2m − 1 .

If this task system τ4 is scheduled for m processors with list L = (T1, . . . , T2m−1n),
then we get the optimal scheduling S7(τ4) which can be seen in Figure 17.8.

If we use the list L′ = (Tm+1, . . . , T2m−1, T1, . . . , Tm−1, Tm) instead of list L, then we
get scheduling S8(τ4) which can be seen in Figure 17.9.

In this case C = (S7) = m, C′(S8) = 2m − 1, therefore C′/C = 2 − 1/m; which means
that altering the list results in the theorem holding with equality, i.e., the expression on
the right hand side of the ≤ sign cannot be decreased.

Example 17.11 In this example we decrease the execution times. We use list L = L′ =
〈T1, . . . , T3m〉. in both cases. Here as well as in the remaining part of the chapter ε denotes
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S8 :

Tm+1 Tm

Tm+2 -
...

...

T2m−1 -

T1 T2 . . . Tm−1 -

Figure 17.9 Scheduling S8(τ4) belonging to list L′.

...

...

...

...T1 T2 Tm−1 Tm

Tm+1 Tm+2 T2m−1 T2m

T2m+1

T2m+2 T2m+3 T3m

Figure 17.10 Identical graph of task systems τ5 and τ ′

5.

an arbitrarily small positive number. Original execution times are stored in vector t =
(t1, . . . , tn), where

ti =

{

2ε, if i = 1, . . . , m ,
1, if i = m + 1, . . . , 2m ,
m − 1, if i = 2m + 1, . . . , 3m .

The new execution times are

t′

i =

{

ti − ε, if i = 1, . . . , m − 1 ,
ti, if i = m, . . . , 3m .

The precedence graph of task system τ5, and its modification τ ′

5 are shown in Figure
17.10, while optimal scheduling S9(τ5) and scheduling S10(τ ′

5) can be seen in Figure 17.11.
Here C = Cmax(S9(τ5)) = m+2ε and C′ = Cmax(S10(τ ′

5) = 2m−1+εC = Cmax, therefore,
increasing ε C′/C goes to value 2−1/m (limε→0 C′/C = 2−1/m). This means that altering
the execution times we can approach the limit in the theorem arbitrarily closely.

Example 17.12 In this example we reduce the precedence restrictions. The precedence
graph of task system τ6 is shown in Figure 17.12.

The execution times of the tasks are: t1 = ε, ti = 1, if i = 1, . . . , m2 − m + 1,
and tm2

−m+2 = m. The optimal scheduling S11(τ6) of τ6 belonging to list L =
(T1, . . . , Tm2

−m+2) can be seen in Figure 17.13.
Omitting all the precedence restrictions from τ6 we get the task system τ ′

6. Scheduling
S12(τ ′

6) is shown in Figure 17.14.

Example 17.13 This time the number of the processors will be increased from m to m′.
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S9 :

T1 Tm+1 T2m+1

T2 Tm+2 T2m+2

...
...

...

Tm−1 T2m−1 T3m−1

Tm T2m T3m

S10 :

T1 T2m+2 T2m−1 T2m+1

T2 T2m+3 -
...

...
...

Tm−1 T3m -

Tm Tm+1 . . . T2m−1 -

Figure 17.11 Schedulings S9(τ5) and S10(τ ′

5).

 
...

T1

T2 T3 T
m

2
−m+1

T
m

2
−m+2

Figure 17.12 Graph of the task system τ6.

S11 :

T1 T2 Tm+1 . . . Tm2
−2m+2

Tm2
−m+2 -

- T3 Tm+2 . . . Tm2
−2m+3

...
...

...
. . .

...

- Tm T2m−1 . . . Tm2
−m+1

Figure 17.13 Optimal scheduling S11(τ6).

S12 :

T1 Tm+1 . . . Tm2
−m+1 -

T2 Tm+2 . . . Tm2
−m+2

T3 Tm+3 . . . -
...

...
. . .

...

Tm−1 T2m+1 . . . -

Tm T2m
. . . -

Figure 17.14 Scheduling S12(τ ′

6).

The graph of task system τ7 is shown by Figure 17.15, and the running times are

ti =

{

ε, if i = 1, . . . , m + 1 ,
1, if i = m + 2, . . . , mm′ − m′ + m + 1 ,
m′, if i = mm′ − m′ + m + 2 .
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...

...T1 T2 Tm Tm+1

Tm+2 Tm+3 Tmm
′
−m

′+m+1Tmm
′
−m

′+m+2

Figure 17.15 Precedence graph of task system τ7.

S13 :

T1 Tm+1 Tm+2 . . . Ta

T2 Tmm′
−m′+2 -

T3 - Tm+3 . . . Tb

...
...

...
. . .

...

Tm - T2m
. . . Tc

Figure 17.16 The optimal scheduling S13(τ7) (a = mm′
−m′ +3, b = a+1, c = mm′

−m′ +m+1).

S14 :

T1 Tm+2 . . . Ta Tmm′
−m′+m+2

T2 Tm+3 . . . Ta+1 -
...

...
. . .

...
...

Tb Tc
. . . Td -

-
...

. . .
...

...

- Te
. . . Tf -

Figure 17.17 The optimal scheduling S14(τ7) (a = mm′
− 2m′ + m + 2, b = m + 1, c = 2m + 2,

d = mm′
− 2m′ + 2m + 2, e = m + m′ + 1, f = mm′

− m′ + m + 1).

The optimal scheduling of the task system on m, and m′ processors is shown by Figure
17.16 and Figure 17.17.

Comparing the C = Cmax(S13(τ7)) = m′ +2ε, and C′ = Cmax(S14(τ7)) = m′ +m−1+ε
maximal finishing times we get the ratio C′/C = 1 + (m − 1 − ε)(m′ + 2ε) and so again the
required asymptotic value: limε→0 C′/C = 1 + (m − 1)/m′

With the help of these examples we proved the following statement.

Theorem 17.6 (sharpness of the scheduling limit). The limit given for the relative
speed (11.8) is asymptotically sharp for the changing of (any of the) parameters m,
t, < and L.

17.3.3. Parallel processing with interleaved memory

We describe the parallel algorithm modelling the operating of computers with in-
terleaved memory in a popular way. The sequence of dumplings is modelling the
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reference string, the giants the processors and the bites the commands executed si-
multaneously. Dwarfs D0, D1, . . . , Dr (r ≥ 0) cook dumplings of n different types.
Every dwarf creates an infinite sequence of dumplings.

These sequences are usually given as random variables with possible values 1,
2, . . . , n. For the following analysis of the extreme cases deterministic sequences are
used.

The dumplings eating giants Gb (b = 1, 2, . . .) eat the dumplings. The units of
the eating are the bits.

The appetite of the different giants is characterised by the parameter b. Giant
]b is able to eat up most b dumplings of the same sort at one bite.

Giant Gb eats the following way. He chooses for his first bite from the beginning
from the beginning of the dumpling sequence of dwarf T0 so many dumplings, as
possible (at most b of the same sort), and he adds to these dumplings so many ones
from the beginning of the sequences of the dwarfs D1, D2, . . . , as possible.

After assembling the first bite the giant eats it, then he assembles and eats the
second, third, . . . bites.

Example 17.14 To illustrate the model let us consider an example. We have two dwarfs
(D0 and D1) and the giant G2. The dumpling sequences are

12121233321321321
24444444,

(17.13)

or in a shorter form
(12)(3)2(321)∗

2(4)∗,
(17.14)

where the star (*) denotes a subsequence repeated infinitely many times.
For his first bite G2 chooses from the first sequence the first four dumlings 1212 (because

the fifth dumpling is the third one of the sort 1) and no dumpling from the second sequence
(because the beginning element is 2, and two dumplings of this sort is chosen already). The
second bite contains the subsequence 1233 from the first sequence, and the dumplings 244
from the second one. The other bites are identical: 321321 from the first sequence and 44
from the second one. In a short form the bites are as follows:

‖1212 ‖1233 ‖321321 ‖∗

‖ − − ‖244 ‖44 ‖
(17.15)

(bites are separated by double lines).

For given dumpling sequences and a given giant Gb let Bt (t = 1, 2, . . .) denote
the number of dumplings in the t-th bite. According to the eating-rules b ≤ Bt ≤ bn
holds for every t.

Considering the elements of the dumpling sequences as random variables with
possible values 1, 2, . . . ,n and given distribution we define the dumpling-eating speed
Sb (concerning the given sequences) of Gb as the average number of dumplings in
one bite for a long time, more precisely

Sb = lim inf
t→∞

E

(

∑t
i=1 Bi

t

)

, (17.16)
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where E(ξ) denotes the expected value of the random variable ξ.
One can see that the defined limit always exists.

Maximal and minimal speed-ratio Let us consider the case, when we have
at least one dumpling sequence, at least one type of dumplings, and two different
giants, that is let r ≥ 0, n ≥ 1, b > c ≥ 1. Let the sequences be deterministic.

Since for every bite-size Bt (t = 1, 2, . . .) of Gb holds b ≤ Bt ≤ bn, the same
bounds are right for every average value (

∑

Bi)
t
i=1)/t and for every expected value

E((
∑t

i=1 Bi)/t), too. From this it follows, that the limits Sb and Sc defined in (17.16)
also must lie between these bounds, that is

b ≤ Sb ≤ bn, g ≤ Sc ≤ cn . (17.17)

Choosing the maximal value of Sb and the minimal value of Sc and vice versa
we get the following trivial upper and lower bounds for the speed ratio Sb/Sc:

b

cn
≤

Sb

Sc

≤
bn

c
. (17.18)

Now we show that in many cases these trivial bounds cannot be improved (and
so the dumpling eating speed of a small giant can be any times bigger than that of
a big giant).

Theorem 17.7 If r ≥ 1, n ≥ 3, b > c ≥ 1, then there exist dumpling sequences,
for which

Sb

Sc

=
b

cn
, (17.19)

further
Sb

Sc

=
bn

c
. (17.20)

Proof To see the sharpness of the lower limit in the inequality (17.18) giving the
natural limits let consider the following sequences:

1b22b+11∗

1b+1(23 . . . n)∗ .
(17.21)

Giant Gb eats these sequences in the following manner:

‖1b2b ‖2b ‖21b ‖1b ‖∗

‖ − − ‖1b ‖ − − ‖ − − ‖.
(17.22)

Here B1 = 2b, B2 = 2b, B3 = b + 1, Bt = b (for t = 4, 5, . . ..
For the given sequences we have

Sb = lim
t→∞

2b + 1 + tb

t
= b. (17.23)
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Gc eats these sequences as follows:

‖1c ‖α 1c12c ‖2c ‖β 2c ‖2c ‖γ 2c41c ‖1c ‖∗

‖ − − ‖1c2 ‖1c ‖1c3 ‖ − − ‖(23 . . .)c3 ‖(23 . . .)c ‖.
(17.24)

Here

α =

⌈

b− c

c

⌉

; c1 = b− αc; c2 = c− c1 ;

β =

⌈

b + 1− c2 − c

c

⌉

; c3 = b + 1− c2 − βc ;

γ =

⌈

2b + 1− c(β + 2)

c

⌉

; c4 = 2b + 1− c(β + γ + 2) ;

c5 = c− c4.

In this case we get (in a similar way, as we have got Sb)

Sc = cn (17.25)

and therefore
Sb

Sc

=
b

cn
. (17.26)

In order to derive the exact upper bound, we consider the following sequence:

122b+11∗

1b−132b1b(23 . . . n)∗ .
(17.27)

Gb eats these sequences as follows:

‖12b ‖2b ‖21b ‖1b ‖∗

‖1b−13b ‖3b1b ‖(23 . . .)b−1 ‖(23 . . . n)b ‖ .
(17.28)

From here we get

Sb = lim
t→∞

3b + 3b + n(b− 1) + 2 + (t− 3)bn

t
= bn . (17.29)

Gc’c eating is characterised by

‖12c ‖2c ‖α2c ‖2c ‖β 2c31c ‖1c ‖1c ‖1c ‖∗

‖1c1 ‖1c ‖1c23c ‖3c ‖3c ‖3c ‖3c4 ‖ − − ‖ ,
(17.30)

where

c1 = c− 1; α =

⌈

b− c− c1

c

⌉

; c2 = b− 1− c1 − αc ;

β =

⌈

2b + 1− c(α + β)

c

⌉

; γ =

⌈

2b− c(β + 2)

c

⌉

;
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c4 = 2b− c(β + γ + 2)c3 = 2b + 1− c(α + β + 2) .

Since Bt = c for t = α + β + γ + 5, t = α + β + γ + 6, . . . , therefore Sc = c, and
so Sb/Sc = bn/c.

α =

⌈

b− c

c

⌉

; c1 = b− αc; c2 = c− c1 ;

β =

⌈

b + 1− c2 − c

c

⌉

; c3 = b + 1− c2 − βc ;

γ =

⌈

2b + 1− c(β + 2)

c

⌉

; c4 = 2b + 1− c(β + γ + 2) ;

c5 = c− c4.

17.3.4. Avoiding the anomaly

We usually try to avoid anomalies.
For example at page replacing the sufficient condition of avoiding it is that the

replacing algorithm should have the stack property: if the same reference string is
run on computers with memory sizes of m and m + 1, then after every reference it
holds that the bigger memory contains all the pages that the smaller does. At the
examined scheduling problem it is enough not to require the scheduling algorithm’s
using a list.

Exercises
17.3-1 Give parameters m, M, n, p and R so that the FIFO algorithm would cause
at least three more page faults with a main memory of size M than with that of size
m.
17.3-2 Give such parameters that using scheduling with list when increasing the
number of processors the maximal stopping time increases at least to half as much
again.
17.3-3 Give parameters with which the dumpling eating speed of a small giant is
twice as big as that of a big giant.

17.4. Optimal file packing

In this section we will discuss a memory managing problem in which files with given
sizes have to be placed onto discs with given sizes. The aim is to minimise the number
of the discs used. The problem is the same as the bin-packing problem that can be
found among the problems in Section Approximation algorithms in the book titled
Introduction to Algorithms. Also scheduling theory uses this model in connection
with minimising the number of processors. There is the number n of the files given,
and array vector t = (t1, t2, . . . , tn) containing the sizes of the files to be stored,
for the elements of which 0 < ti ≤ 1 holds (i = 1, 2, . . . , n). The files have to be
placed onto the discs taking into consideration that they cannot be divided and the
capacity of the discs is a unit.
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17.4.1. Approximation algorithms

The given problem is NP-complete. Therefore, different approaching algorithms are
used in practice. The input data of these algorithms are: the number n of files, a
vector t = 〈t1, t2, . . . , tn〉 with the sizes of the files to be placed. And the output data
are the number of discs needed (discnumber) and the level array h = (h1, h2, . . . , hn)
of discs.

Linear Fit (LF) According to Linear Fit file Fi is placed to disc Di. The
pseudocode of LF is the following.

LF(n, t)

1 for i← 1 to n
2 do h[i]← t[i]
3 number-of-discs← n
4 return number-of-discs

Both the running time and the place requirement of this algorithm are O(n). If,
however, reading the sizes and printing the levels are carried out in the loop in rows
2–3, then the space requirement can be decreased to O(1).

Next Fit (NF) Next Fit packs the files onto the disc next in line as long as
possible. Its pseudocode is the following.

NF(n, t)

1 h[1]← t[1]
2 number-of-discs← 1
3 for i← 2 to n
4 do if h[number-of-discs] + t[i] ≤ 1
5 then h[number-of-discs]← h[number-of-discs] + t[i]
6 else number-of-discs← number-of-discs + 1
7 h[number-of-discs]← t[i]
8 return number-of-discs

Both the running time and the place requirement of this algorithm are O(n).
If, however, reading the sizes and taking the levels out are carried out in the loop
in rows 3–6, then the space requirement can be decreased to O(1), but the running
time is still O(n).

First Fit (FF) First Fit packs each files onto the first disc onto which it fits.
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FF(n, t)

1 number-of-discs ← 1
2 for i← 1 to n
3 do h[i]← 0
3 for i← 1 to n
4 do k ← 1
5 while t[i] + h[k] > 1
6 do k ← k + 1
7 h[k]← h[k] + t[i]
8 if k > number-of-discs
9 then number-of-discs← number-of-discs + 1

10 return number-of-discs

The space requirement of this algorithm is O(n), while its time requirement is
O(n2). If, for example, every file size is 1, then the running time of the algorithm is
Θ(n2).

Best Fit (BF) Best Fit places each file onto the first disc on which the remaining
capacity is the smallest.

BF(n, t)

1 number-of-discs← 1
2 for i← 1 to n
3 do h[i]← 0
4 for i← 1 to n
5 do free← 1.0
6 ind← 0
7 for k ← 1 to number-of-discs
8 doif h[k] + t[i] ≤ 1 and 1− h[k]− t[i] < free
9 then ind← k

10 szabad← 1− h[k]− t[i]
11 if ind > 0
12 then h[ind]← h[ind] + t[i]
13 else number-of-discs← number-of-discs + 1
14 h[number-of-discs]← t[i]
15 return number-of-discs

The space requirement of this algorithm is O(n), while its time requirement is
O(n2).

Pairwise Fit (PF) Pairwise Fit creates a pair of the first and the last element
of the array of sizes, and places the two files onto either one or two discs—according
to the sum of the two sizes. In the pseudocode there are two auxiliary variables:
bind is the index of the first element of the current pair, and eind is the index of the
second element of the current pair.
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PF(n, t)

1 number-of-discs← 0
2 beg-ind← 1
3 end-ind← n
4 while end-ind ≥ beg-ind
5 do if end-ind− beg-ind ≥ 1
6 then if t[beg-ind] + t[end-ind] > 1
7 then number-of-discs← number-of-discs + 2
8 h[number-of-discs− 1]← t[bind]
9 h[number-of-discs]← t[eind]

10 else number-of-discs← number-of-discs + 1
11 h[number-of-discs]← t[beg-ind] + t[eind]
12 if end-ind = beg-ind
13 then number-of-discs← number-of-discs + 1
14 h[number-of-discs]← t[end-ind]
15 beg-ind← beg-ind + 1
16 end-ind← end-ind− 1
17 return number-of-discs

The space requirement of this algorithm is O(n), while its time requirement is
O(n2). If, however, reading the sizes and taking the levels of the discs out are carried
out online, then the space requirement will only be O(1).

Next Fit Decreasing (NFD) The following five algorithms consist of two parts:
first they put the tasks into decreasing order according to their executing time, and
then they schedule the ordered tasks. Next Fit Decreasing operates according to
NF after ordering. Therefore, both its space and time requirement are made up of
that of the applied ordering algorithm and NF.

First Fit Decreasing (FFD) First Fit Decreasing operates according to First
Fit (FF) after ordering, therefore its space requirement is O(n) and its time require-
ment is O(n2).

Best Fit Decreasing (BFD) Best Fit Decreasing operates according to Best
Fit (BF) after ordering, therefore its space requirement is O(n) and its time require-
ment is O(n2).

Pairwise Fit Decreasing (PFD) Pairwise Fit Decreasing creates pairs of the
first and the last tasks one after another, and schedules them possibly onto the same
processor (if the sum of their executing time is not bigger than one). If it is not
possible, then it schedules the given pair onto two processors.

Quick Fit Decreasing (QFD) Quick Fit Decreasing places the first file after
ordering onto the next empty disc, and then adds the biggest possible files (found
from the end of the ordered array of sizes) to this file as long as possible. The
auxiliary variables used in the pseudocode are: bind is the index of the first file to
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be examined, and eind is the index of the last file to be examined.

QFD(n, s)

1 beg-ind← 1
2 end-ind← n
4 number-of-discs← 0
5 while end-ind ≥ beg-ind
6 do number-of-discs← number-of-discs + 1
7 h[number-of-discs]← s[bind]
8 beg-ind← beg-ind + 1
9 while end-ind ≥ beg-ind and h[number-of-discs] + s[eind] ≤ 1

10 do ind← end-ind
11 while ind > beg-ind and h[number-of-discs] + s[ind− 1] ≤ 1
12 do ind← ind− 1
13 h[number-of-discs]← h[number-of-discs] + s[ind]
14 if end-ind > ind
15 then for i← ind to end-ind− 1
16 do s[i]← s[i + 1]
17 end-ind← end-ind− 1
18 return number-of-discs

The space requirement of this program is O(n), and its running time in worst
case is Θ(n2), but in practice—in case of executing times of uniform distribution—it
is (n lg n).

17.4.2. Optimal algorithms

Simple Power (SP) This algorithm places each file—independently of each
other—on each of the n discs, so it produces nn placing, from which it chooses an
optimal one. Since this algorithm produces all the different packing (supposing that
two placing are the same if they allocate the same files to all of the discs), it certainly
finds one of the optimal placing.

Factorial Algorithm (FACT) This algorithm produces the permutations of
all the files (the number of which is n!), and then it places the resulted lists using
NF.

The algorithm being optimal can be proved as follows. Consider any file system
and its optimal packing is SOPT(t). Produce a permutation P of the files based
on SOPT(t) so that we list the files placed onto P1, P2, . . . , POPT(t) respectively.
If permutation P is placed by NF algorithm, then we get either SOPT or another
optimal placing (certain tasks might be placed onto processors with smaller indices).

Quick Power (QP) This algorithm tries to decrease the time requirement of
SP by placing ’large’ files (the size of which is bigger than 0.5) on separate discs,
and tries to place only the others (the ’small’ ones) onto all the n discs. Therefore,
it produces only nK placing instead of nn, where K is the number of small files.



17.4. Optimal file packing 839

Economic Power (EP) This algorithm also takes into consideration that two
small files always fit onto a disc—besides the fact that two large ones do not fit.
Therefore, denoting the number of large files by N and that of the small ones by K
it needs at most N + (K + 1)/2 discs. So first we schedule the large discs to separate
discs, and then the small ones to each of the discs of the number mentioned above.
If, for instance, N = K = n/2, then according to this we only have to produce
(0.75n)0.5n.

17.4.3. Shortening of lists (SL)

With certain conditions it holds that list t can be split into lists t1 and t2 so that
OPT(t1) + OPT(t2) ≤ OPT(t) (in these cases the formula holds with equality).
Its advantage is that usually shorter lists can be packed optimally in a shorter time
than the original list. For example, let us assume that ti + tj = 1. Let t1 = (ti, tj)
and t2 = t \ t1. In this case OPT(t1) = 1 and OPT(t2) = OPT(t) − 1. To prove
this, consider the two discs onto which the elements of list t1 have been packed by
an optimal algorithm. Since next to them there can be files whose sum is at most
1 − t1 and 1 − t2, their executing time can sum up to at most 2 − (t1 + t2), i.e., 1.
Examining the lists on both ends at the same time we can sort out the pairs of files
the sum of whose running time is 1 in O(n). After that we order the list t. Let the
ordered list be s. If, for example s1 + sn < 1, then the first file will be packed onto
a different disc by every placing, so t1 = (t1, tj) and t2 = t \ t1 is a good choice.
If for the ordered list s1 + sn < 1 and s1 + sn−1 + sn > 1 hold, then let sj be the
largest element of the list that can be added to s1 without exceeding one. In this
case with choices t1 = (t1, tj) and t2 = t \ t1 list t2 is two elements shorter than list
t. With the help of the last two operations lists can often be shortened considerably
(in favourable case they can be shortened to such an extent that we can easily get
the optimal number of processors for both lists). Naturally, the list remained after
shortening has to be processed—for example with one of the previous algorithms.

17.4.4. Upper and lower estimations (ULE)

Algorithms based on upper and lower estimations operate as follows. Using one of
the approaching algorithms they produce an upper estimation A(t) of OPT(t), and
then they give a lower estimation for the value of OPT(t as well. For this—among
others—the properties of packing are suitable, according to which two large files
cannot be placed onto the same disc, and the sum of the size cannot be more than
1 on any of the discs. Therefore, both the number of the large files and the sum
of the size of the files, and so also their maximum MAX(t) is suitable as a lower
estimation. If A(t = MAX(t), then algorithm A produced an optimal scheduling.
Otherwise it can be continued with one of the time-consuming optimum searching
algorithms.
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LF NF FF BF PF NFD FFD BFD PFD QFD OPT

t1 4 3 3 3 3 3 2 2 2 2 2

t2 6 2 2 2 3 3 3 3 3 3 2

t3 7 3 2 3 4 3 2 3 4 2 2

t4 8 3 3 2 4 3 3 2 4 3 2

t5 5 3 3 3 3 2 2 2 3 2 2

t6 4 3 2 2 2 3 2 2 2 2 2

t7 4 3 3 3 2 3 2 2 2 2 2

Figure 17.18 Summary of the numbers of discs.

17.4.5. Pairwise comparison of the algorithms

If there are several algorithms known for a scheduling (or other) problem, then a
simple way of comparing the algorithms is to examine whether the values of the
parameters involved can be given so that the chosen output value is more favourable
in the case of one algorithm than in the case of the other one.

In the case of the above discussed placing algorithm the number of processors
discs allocated to size array t by algorithm A and B is denoted by A(t and B(t,
and we examine whether there are arrays t1 and t2 for which A(t1) < B(t1) and
A(t2) > B(t2) hold. We answer this question in the case of the above defined ten
approaching algorithms and for the optimal one. It follows from the definition of the
optimal algorithms that for each t and each algorithm A holds OPT(t ≤ A(t). In
the following the elements of the arrays in the examples will be twentieth.

Consider the following seven lists:

t1 = (12/20, 6/20, 8/20, 14/20),
t2 = (8/20, 6/20, 6/20, 8/20, 6/20, 6/20),
t3 = (15/20, 8/20, 8/20, 3/20, 2/20, 2/20, 2/20),
t4 = (14/20, 8/20, 7/20, 3/20, 2/20, 2/20, 2/20, 2/20),
t5 = (10/20, 8/20, 10/20, 6/20, 6/20),
t6 = (12/20, 12/20, 8/20, 8/20),
t7 = (8/20, 8/20, 12/20, 12/20).

The packing results of these lists are summarised in Figure 17.18.
As shown in Figure 17.18, LF needs four discs for the first list, while the others

need fewer than that. In addition, the row of list t1 shows that FFD, BFD, PFD,
QFD and OPT need fewer discs than NF, FF, BF, PF and NFD. Of course, there
are no lists for which any of the algorithms would use fewer discs than OPT. It is
also obvious that there are no lists for which LF would use fewer discs than any of
the other ten algorithms.

These facts are shown in Figure 17.19. In the figure symbols X in the main
diagonal indicate that the algorithms are not compared to themselves. Dashes in the
first column indicate that for the algorithm belonging to the given row there is no list
which would be processed using more disc by this algorithm than by the algorithm
belonging to the given column, i.e., LF. Dashes in the last column show that there
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LF NF FF BF PF NFD FFD BFD PFD QFD OPT

LF X 1 1 1 1 1 1 1 1 1 1

NF – X 1 1 1 1 1

FF – X 1 1 1 1 1

BF – X 1 1 1 1 1

PF – X 1 1 1 1 1

NFD – X 1 1 1 1 1

FFD – X

BFD – X

PFD – X

QFD – X

OPT – – – – – – – – – – X

Figure 17.19 Pairwise comparison of algorithms.

LF NF FF BF PF NFD FFD BFD PFD QFD OPT

LF X 1 1 1 1 1 1 1 1 1 1

NF – X 3 4 7 5 1 1 1 1 1

FF – – X 4 7 5 1 1 1 1 1

BF – – 3 X 8 5 1 1 1 1 1

PF – 2 2 2 X 3 1 1 1 1 1

NFD – 2 2 2 6 X 1 1 1 1 1

FFD – 2 2 2 – X 4 – 2

BFD – 2 2 2 – 3 X 3 2

PFD – 2 2 2 3 3 3 3 X 3 2

QFD – 2 2 2 – – 4 X 2

OPT – – – – – – – – – – X

Figure 17.20 Results of the pairwise comparison of algorithms.

is no list for which the optimal algorithm would use more discs than any of the
examined algorithms. Finally, 1’s indicate that for list t1 the algorithm belonging to
the row of the given cell in the figure needs more discs than the algorithm belonging
to the column of the given cell.

If we keep analysing the numbers of discs in Figure 17.19, we can make up this
figure to Figure 17.20.

Since the first row and the first column of the table is filled, we do not deal more
with algorithm LF.

For list t2 NF, FF, BF and OPT use two discs, while the other 6 algorithms
use three ones. Therefore we write 2’s in the points of intersection of the columns
of the ’winners’ and the rows of the ’losers’ (but we do not rewrite the 1’s given in
the points of intersection of PF and OPT, and NFD and OPT, so we write 2’s in
4× 6− 2 = 22 cells. Since both the row and the column of OPT have been filled in,
it is not dealt with any more in this section. The third list is disadvantageous for
PF and PFD, therefore we write 3’s in the empty cells in their rows. This list shows
an example also for the fact that NF can be worse than FF, BF can be worse than
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FF, and BFD than FFD and QFD.
The fourth list can be processed only by BF and BFD optimally, i.e., using two

discs. Therefore we can write 4’s in the empty cells in the columns of these two
algorithms. For the fifth list NFD, FFD, BFD and QFD use only two, while NF,
FF, BF, PF and PDF use three discs. So we can fill the suitable cells with 5’s. The
’losers’ of list t6 are NF and NFD—therefore, we write 6’s in the empty cells in their
rows. PF performs better when processing list t7 than FF. The following theorem
helps us filling in the rest of the cells.

Theorem 17.8 If t ∈ D, then

FF(t) ≤ NF(t) .

Proof We perform an induction according to the length of the list. Let t =
〈t1, t2, . . . , tn〉 and ti = 〈t1, t2, . . . , ti〉 (i = 1, 2, . . . , n). Let NF(ti) = Ni and FF(ti) =
Fi, and let ni be the level of the last disc according to NF, which means the sum of
the lengths of the files placed onto the non empty disc with the higher index, when
NF has just processed ti. Similarly, let fi be the level of the last disc according to
FF. We are going to prove the following invariant property for each i: either Fi < Ni,
or Fi = Ni and fi ≤ ni. If i = 1, then F1 = N1 and f1 = n1 = t1, i.e., the second
part of the invariant property holds. Suppose that the property holds for the value
1 ≤ i < n. If the first part of the invariant property holds before packing ti+1, then
either inequality Fi < Ni stays true, or the numbers of discs are equal, and fi < ni

holds. If the numbers of discs were equal before packing of ti+1, then after placing
it either the number of discs of FF is smaller, or the numbers of discs are equal and
the level of the last disc of FF is at most as big as that of NF.

A similar statement can be proved for the pairs of algorithms NF-BF, NFD-
FFD and NFD-BFD. Using an induction we could prove that FFD and QFD need
the same number of discs for every list. The previous statements are summarised in
Figure 11.20.

17.4.6. The error of approximate algorithms

The relative efficiency of two algorithms (A and B) is often described by the ratio
of the values of the chosen efficiency measures, this time the relative number of
processors A(t)/B(t). Several different characteristics can be defined using this ratio.
These can be divided into two groups: in the first group there are the quantities
describing the worst case, while in the other group there are those describing the
usual case. Only the worst case is going to be discussed here (the discussion of the
usual case is generally much more difficult). Let Dn denote the real list of n elements
and D the set of all the real lists, i.e.,

D = ∪∞

i=1Di .

Let And be the set of algorithms, determining the number of discs, that is of
algorithms, connecting a nonnegative real number to each list t ∈ D, so implementing
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the mapping D → R
+
0 ).

Let Aopt be the set of the optimal algorithms, that is of algorithms ordering
the optimal number of discs to each list, and OPT an element of this set (i.e., an
algorithm that gives the number of discs sufficient and necessary to place the files
belonging to the list for each list t ∈ D).

Let Aapp be the set of the approximation algorithms, that is of algorithms A ∈
And for which A(t) ≥ OPT(t) for each list t ∈ D, and there is a list t ∈ D, for
which A(t) > OPT(t)..

Let Aest be the set of estimation algorithms, that is of algorithms E ∈ Alsz for
which E(t) ≤ OPT(t) for each list t ∈ D, and there is a list t ∈ D, for which
E(t) < OPT(t).. Let Fn denote the set of real lists for which OPT(t) = n,, i.e.,
Fn = {t|t ∈ D and OPT(t) = n} (n = 1, 2, . . .).. In the following we discuss only
algorithms contained inAnd. We define (A, B ∈ A) RA,B,n error function, RA,B error
(absolute error) and RA,∞ asymptotic error of algorithms A and B (A, B ∈ A) as
follows:

RA,B,n = sup
t∈Fn

A(t)

B(t)
,

RA,B = sup
t∈D

A(t)

B(t)
,

RA,B,∞ = lim sup
n→∞

RA,B,n .

These quantities are interesting especially if B ∈ Aopt. In this case, to be as sim-
ple as possible, we omit B from the denotations, and speak about the error function,
error and asymptotic error of algorithms A ∈ A, and E ∈ A. The characteristic
values of NF file placing algorithm are known.

Theorem 17.9 If t ∈ Fn, then

n = OPT(t) ≤ NF(t) ≤ 2OPT(t)− 1 = 2n− 1 . (17.31)

Furthermore, if k ∈ Z,, then there are lists uk and vk for which

k = OPT(uk) = NF(uk) (17.32)

and

k = OPT(vk) and NF(vk) = 2k − 1 . (17.33)

From this statement follows the error function, absolute error and asymptotic
error of NF placing algorithm.

Corollary 17.10 If n ∈ Z, then

RNF,n = 2−
1

n
, (17.34)

and

RNF = RNF,∞ = 2 . (17.35)
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The following statement refers to the worst case of the FF and BF file packing
algorithms.

Theorem 17.11 If t ∈ Fn, then

OPT(t) ≤ FF(t), BF(t) ≤ 1.7OPT(t) + 2 . (17.36)

Furthermore, if k ∈ Z,, then there are lists uk and vk for which

k = OPT(uk) = FF(uk) = BF(uk) (17.37)

and
k = OPT(vk) and FF(vk) = BF(vk) = b1.7kc . (17.38)

For the algorithm FF holds the following stronger upper bound too.

Theorem 17.12 If t ∈ Fn, then

OPT(t) ≤ FF(t) < 1.7OPT(t) + 1 . (17.39)

From this statement follows the asymptotic error of FF and BF, and the good
estimation of their error function.

Corollary 17.13 If n ∈ Z, then

b1.7nc

n
≤ RFF,n ≤

d1.7ne

n
(17.40)

and
b1.7nc

n
≤ RBF,n ≤

b1.7n + 2c

n
(17.41)

further
RFF,∞ = RBF,∞ = 1.7 . (17.42)

If n is divisible by 10, then the upper and lower limits in inequality (17.40) are
equal, thus in this case 1.7 = RFF,n = RBF,n.

Exercises
17.4-1 Prove that the absolute error of the FF and BF algorithms is at least 1.7
by an example.
17.4-2 Implement the basic idea of the FF and BF algorithms so that the running
time would be O(n lg n).
17.4-3 Complete Figure 11.20.

Problems

17-1 Smooth process selection for an empty partition
Modify the Long-Waiting-or-Not-Fit-Smaller algorithm in a way that instead
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of giving priority to processes with points above the threshold, selects the process
with the highest rank + points among the processes fitting into the partition. Prove
the correctness of the algorithm and give an upper bound for the waiting time of a
process.
17-2 Partition search algorithms with restricted scope
Modify the Best-Fit, Limited-Best-Fit, Worst-Fit, Limited-Worst-Fit al-
gorithms to only search for their optimal partitions among the next m suitable one
following the last split partition, where m is a fixed positive number. Which algo-
rithms do we get in the m = 1 and m =∞ cases. Simulate both the original and the
new algorithms, and compare their performance regarding execution time, average
number of waiting processes and memory fragmentation.
17-3 Avoiding page replacement anomaly
Class the discussed page replacement algorithms based on whether they ensure to
avoid the anomaly or not.
17-4 Optimal page replacement algorithm
Prove that for each demanding page replacement algorithm A, memory size m and
reference string R holds

fA(m, R) ≤ fOPT(m, R) .

17-5 Anomaly
Plan (and implement) an algorithm with which it can occur that a given problem
takes longer to solve on q > p processors than on p > 1 ones.
17-6 Error of file placing algorithms
Give upper and lower limits for the error of the BF, BFD, FF and FFD algorithms.

Chapter Notes

The basic algorithms for dynamic and fixed partitioning and page replacement are
discussed according to textbooks by Silberschatz, Galvin and Gagne [15], and Tanen-
baum and Woodhull [16].

Defining page replacement algorithms by a Mealy-automat is based on the sum-
marising article by Denning [5], and textbooks by Ferenc Gécseg and István Peák
[6], Hopcroft, Motwani and Ullman [7].

Optimizing the MIN algorithm was proved by Mihnovskiy and Shor in 1965 [13],
after that by Mattson, Gecsei, Slutz and Traiger in 1970 [12].

The anomaly experienced in practice when using FIFO page replacement al-
gorithm was first described by László Bélády [2] in 1966, after that he proved in a
constructive way that the degree of the anomaly can approach two arbitrarily closely
in his study he wrote together with Shedler. The conjecture that it cannot actually
reach two can be found in the same article (written in 1969).

Péter Formai and Antal Iványi [?] showed that the ratio of the numbers of page
replacements needed on a big and on a smaller computer can be arbitrarily large in
2002.

Examples for scheduling anomalies can be found in the books by Coffman [3],
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Iványi and Smelyanskiy [9] and Roosta [14], and in the article by Lai and Sahni [11].

Analysis of the interleaved memory derives from the article [?].
The bound NF(t) ≤ 2OPT(t) + 2 can be found in D. S. Johnson’s PhD disser-

tation [?], the precise Theorem 17.9. comes from [8]. The upper limit for FF and BF
is a result by Johnson, Demers, Ullman, Garey and Graham [10], while the proof of
the accuracy of the limit is that by [8, ?]. The source of the upper limit for FFD and
BFD is [10], and that of the limit for NFD is [1]. The proof of the NP-completeness
of the file packing problem—leading it back to the problem of partial sum—can be
found in the chapter on approximation algorithms in Introduction to Algorithms [4].
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A
anomaly, 822

B
backing memory, 811
base addressing, 797
Best Fit, 836
Best-Fit, 807, 810exe
Best Fit Decreasing, 837
BF, 836, see Best Fit
BFD, see Best Fit Decreasing
busy page frame, 812

C
Calculate-Rank, 802
Clock, 819, 821exe

D
dynamic page replacement algorithms, 812
dynamic partitions, 803

E
Economic Power, 839
EP, see Economic Power
execution time, 823

F
FACT, see Factorial
Factorial, 838
FF, 836, see First Fit
FFD, 837, see First Fit decreasing
FIFO, 813, see First In First Out
FIFO-Executes, 814

First Fit, 835
First-Fit, 805, 810exe
First In First Out, 813
fixed partitions, 797

fragmentation the memory, 806
frame, 811

busy, 812

I
index of the virtual page frame, 812

L
Largest-Fit, 798, 810exe
Largest-or-Long-Waiting-Fit, 800
Largest-or-long-waiting-Fit, 810exe
LF, 835, see Linear Fit
LFU-Executes, 817
LIFO, 821exe
Limited-Best-Fit, 808, 810exe
Limited-Worst-Fit, 809, 810exe
Linear Fit, 835
List-Scheduling, 821
Load-Largest, 798
Load-Largest-or-Long-Waiting, 801
Load-Long-Waiting-or-Not-Smaller, 803
Long-Waiting-or-Not-Fit-Smaller, 803,

810exe
LRU, 814, see Least Recently Used
LRU-Executes, 815

M
main memory, 811
memory, 811
memory management, 796–846

N
Next Fit, 835
Next-Fit, 806, 810exe
NF, 835, see Next Fit
NFD, 837, see Next Fit Decreasing
NFU, 821exe
NRU, 817, 821exe
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NRU-Executes, 818
NRU-Prepares, 818
NRU-Swap-Out, 818
number of page faults, 812

O
OPT-Executes, 815
OPT-Swap-Out, 816

P
page, 811
Page Frequency Fault, 820
page replacement algorithm

dynamic, 812
static, 812

page replacement algorithms,
page table, 812
Pairwise Fit, 836
Pairwise Fit Decreasing, 837
partition, 796

dynamic, 803
fixed, 797

PF, 837, see Pairwise Fit
PFD, see pairwise Fit Decreasing
PFF, 820, see Page Frequency Fault
Place, 805, 810exe
present/absent bit, 812

Q
QFD, 838, see Quick Fit Decreasing
QP, see Quick Power
Quick Fit Decreasing, 837
Quick Power, 838

R
reference string, 812
relocatable programs, 796

S
Second-Chance, 821exe
segment, 811
Shortening of lists, 839
Simple Power, 838
SL, see Shortening of lists
SP, see Simple Power
Split-Partition, 804

*-Run, 813
static page replacement algorithms, 812
swap-in, 813
swap-out, 813

T
task, 823
beg-ind, 837
counter, 820
end-ind, 837
free, 836
guarded, 816
ind, 836

U
ULE, see upper and lower estimations
upper and lower estimations, 839

V
vector of the execution times, 823
virtual memory, 811

W
Working-Set, 819
Worst-Fit, 809, 810exe
writing array, 812
WS, 820, see Working Set
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