
Contents

16. Systolic Systems . 757

16.1. Basic concepts of systolic systems 758
16.1.1. An introductory example: matrix product 758
16.1.2. Problem parameters and array parameters 759
16.1.3. Space coordinates . 760
16.1.4. Serialising generic operators 761
16.1.5. Assignment-free notation . 762
16.1.6. Elementary operations . 763
16.1.7. Discrete timesteps . 763
16.1.8. External and internal communication 764
16.1.9. Pipelining . 766

16.2. Space-time transformation and systolic arrays 767
16.2.1. Further example: matrix product 767
16.2.2. The space-time transformation as a global view 768
16.2.3. Parametric space coordinates 770
16.2.4. Symbolically deriving the running time 773
16.2.5. How to unravel the communication topology 773
16.2.6. Inferring the structure of the cells 774

16.3. Input/output schemes . 776
16.3.1. From data structure indices to iteration vectors 777
16.3.2. Snapshots of data structures 778
16.3.3. Superposition of input/output schemes 779
16.3.4. Data rates induced by space-time transformations 780
16.3.5. Input/output expansion . 780
16.3.6. Coping with stationary variables 781
16.3.7. Interleaving of calculations 782

16.4. Control . 784
16.4.1. Cells without control . 784
16.4.2. Global control . 785
16.4.3. Local control . 786
16.4.4. Distributed control . 789
16.4.5. The cell program as a local view 793

16.5. Linear systolic arrays . 797

756 Contents

16.5.1. Matrix-vector product . 797
16.5.2. Sorting algorithms . 798
16.5.3. Lower triangular linear equation systems 799

Bibliography . 802

Index . 803

Name Index . 806

16. Systolic Systems

Systolic arrays probably constitute a perfect kind of special purpose computer. In
their simplest appearance, they may provide only one operation, that is repeated
over and over again. Yet, systolic arrays show an abundance of practice-oriented
applications, mainly in fields dominated by iterative procedures: numerical mathe-
matics, combinatorial optimisation, linear algebra, algorithmic graph theory, image
and signal processing, speech and text processing, et cetera.

For a systolic array can be tailored to the structure of its one and only algorithm
thus accurately! So that time and place of each executed operation are fixed once
and for all. And communicating cells are permanently and directly connected, no
switching required. The algorithm has in fact become hardwired. Systolic algorithms
in this respect are considered to be hardware algorithms.

Please note that the term systolic algorithms usually does not refer to a set of
concrete algorithms for solving a single specific computational problem, as for in-
stance sorting. And this is quite in contrast to terms like sorting algorithms. Rather,
systolic algorithms constitute a special style of specification, programming, and com-
putation. So algorithms from many different areas of application can be systolic in
style. But probably not all well-known algorithms from such an area might be suited
to systolic computation.

Hence, this chapter does not intend to present all systolic algorithms, nor will it
introduce even the most important systolic algorithms from any field of application.
Instead, with a few simple but typical examples, we try to lay the foundations for
the Readers’ general understanding of systolic algorithms.

The rest of this chapter is organised as follows: Section 16.1 shows some basic
concepts of systolic systems by means of an introductory example. Section 16.2 ex-
plains how systolic arrays formally emerge from space-time transformations. Section
16.3 deals with input/output schemes. Section 16.4 is devoted to all aspects of con-
trol in systolic arrays. In Section 16.5 we study the class of linear systolic arrays,
raising further questions.

758 16. Systolic Systems

16.1. Basic concepts of systolic systems

The designation systolic follows from the operational principle of the systolic archi-
tecture. The systolic style is characterised by an intensive application of both pipelin-
ing and parallelism, controlled by a global and completely synchronous clock. Data
streams pulsate rhythmically through the communication network, like streams of
blood are driven from the heart through the veins of the body. Here, pipelining is
not constrained to a single space axis but concerns all data streams possibly moving
in different directions and intersecting in the cells of the systolic array.

A systolic system typically consists of a host computer, and the actual systolic
array. Conceptionally, the host computer is of minor importance, just controlling the
operation of the systolic array and supplying the data. The systolic array can be
understood as a specialised network of cells rapidly performing data-intensive com-
putations, supported by massive parallelism. A systolic algorithm is the program
collaboratively executed by the cells of a systolic array.

Systolic arrays may appear very differently, but usually share a couple of key
features: discrete time scheme, synchronous operation, regular (frequently two-
dimensional) geometric layout, communication limited to directly neighbouring cells,
and spartan control mechanisms.

In this section, we explain fundamental phenomena in context of systolic ar-
rays, driven by a running example. A computational problem usually allows several
solutions, each implemented by a specific systolic array. Among these, the most at-
tractive designs (in whatever respect) may be very complex. Note, however, that
in this educational text we are less interested in advanced solutions, but strive to
present important concepts compactly and intuitively.

16.1.1. An introductory example: matrix product

Figure 16.1 shows a rectangular systolic array consisting of 15 cells for multiplying
a 3 ×N matrix A by an N × 5 matrix B. The parameter N is not reflected in the
structure of this particular systolic array, but in the input scheme and the running
time of the algorithm.

The input scheme depicted is based on the special choice of parameter N = 4.
Therefore, Figure 16.1 gives a solution to the following problem instance:

A ·B = C ,

where

A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 ,

B =

b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

,

16.1. Basic concepts of systolic systems 759

C =

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

 ,

and

cij =

4
∑

k=1

aik · bkj (1 ≤ i ≤ 3, 1 ≤ j ≤ 5) .

The cells of the systolic array can exchange data through links, drawn as arrows
between the cells in Figure 16.1(a). Boundary cells of the systolic array can also
communicate with the outside world. All cells of the systolic array share a common
connection pattern for communicating with their environment. The completely
regular structure of the systolic array (placement and connection pattern of the
cells) induces regular data flows along all connecting directions.

Figure 16.1(b) shows the internal structure of a cell. We find a multiplier, an
adder, three registers, and four ports, plus some wiring between these units. Each
port represents an interface to some external link that is attached to the cell. All
our cells are of the same structure.

Each of the registers A, B, C can store a single data item. The designations of
the registers are suggestive here, but arbitrary in principle. Registers A and B get
their values from input ports, shown in Figure 16.1(b) as small circles on the left
resp. upper border of the cell.

The current values of registers A and B are used as operands of the multiplier
and, at the same time, are passed through output ports of the cell, see the circles
on the right resp. lower border. The result of the multiplication is supplied to the
adder, with the second operand originating from register C. The result of the addition
eventually overwrites the past value of register C.

16.1.2. Problem parameters and array parameters

The 15 cells of the systolic array are organised as a rectangular pattern of three
rows by five columns, exactly as with matrix C. Also, these dimensions directly
correspond to the number of rows of matrix A and the number of columns of matrix
B. The size of the systolic array, therefore, corresponds to the size of some data
structures for the problem to solve. If we had to multiply an N1 ×N3 matrix A by
an N3 ×N2 matrix B in the general case, then we would need a systolic array with
N1 rows and N2 columns.

The quantities N1, N2, N3 are parameters of the problem to solve, because the
number of operations to perform depends on each of them; they are thus problem
parameters. The size of the systolic array, in contrast, depends on the quantities
N1 and N2, only. For this reason, N1 and N2 become also array parameters, for
this particular systolic array, whereas N3 is not an array parameter.

Remark. For matrix product, we will see another systolic array in Section 16.2,
with dimensions dependent on all three problem parameters N1, N2, N3.

760 16. Systolic Systems

+*

(b)(a)

A

B

C0

0 0

0 0

0

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

Figure 16.1 Rectangular systolic array for matrix product. (a) Array structure andinput scheme.
(b)Cell structure.

An N1×N2 systolic array as shown in Figure 16.1 would also permit to multiply
an M1 ×M3 matrix A by an M3 ×M2 matrix B, where M1 ≤ N1 and M2 ≤ N2.
This is important if we intend to use the same systolic array for the multiplication of
matrices of varying dimensions. Then we would operate on a properly dimensioned
rectangular subarray, only, consisting of M1 rows and M2 columns, and located, for
instance, in the upper left corner of the complete array. The remaining cells would
also work, but without any contribution to the solution of the whole problem; they
should do no harm, of course.

16.1.3. Space coordinates

Now let’s assume that we want to assign unique space coordinates to each cell
of a systolic array, for characterising the geometric position of the cell relative to
the whole array. In a rectangular systolic array, we simply can use the respective
row and column numbers, for instance. The cell marked with c11 in Figure 16.1 thus
would get the coordinates (1,1), the cell marked with c12 would get the coordinates
(1,2), cell c21 would get (2,1), and so on. For the remainder of this section, we take
space coordinates constructed in such a way for granted.

In principle it does not matter where the coordinate origin lies, where the
axes are pointing to, which direction in space corresponds to the first coordinate,
and which to the second. In the system presented above, the order of the coordi-
nates has been chosen corresponding to the designation of the matrix components.
Thus, the first coordinate stands for the rows numbered top to bottom from posi-
tion 1, the second component stands for the columns numbered left to right, also
from position 1.

Of course, we could have made a completely different choice for the coordinate
system. But the presented system perfectly matches our particular systolic array: the
indices of a matrix element cij computed in a cell agree with the coordinates of this
cell. The entered rows of the matrix A carry the same number as the first coordinate

16.1. Basic concepts of systolic systems 761

of the cells they pass; correspondingly for the second coordinate, concerning the
columns of the matrix B. All links (and thus all passing data flows) are in parallel
to some axis, and towards ascending coordinates.

It is not always so clear how expressive space coordinates can be determined; we
refer to the systolic array from Figure 16.3(a) as an example. But whatsoever the
coordinate system is chosen: it is important that the regular structure of the systolic
array is obviously reflected in the coordinates of the cells. Therefore, almost always
integral coordinates are used. Moreover, the coordinates of cells with minimum Eu-
clidean distance should differ in one component, only, and then with distance 1.

16.1.4. Serialising generic operators

Each active cell (i, j) from Figure 16.1 computes exactly the element cij of the result
matrix C. Therefore, the cell must evaluate the dot product

4
∑

k=1

aik · bkj .

This is done iteratively: in each step, a product aik ·bkj is calculated and added to
the current partial sum for cij . Obviously, the partial sum has to be cleared—or set
to another initial value, if required—before starting the accumulation. Inspired by
the classical notation of imperative programming languages, the general proceeding
could be specified in pseudocode as follows:

Matrix-Product(N1, N2, N3)

1 for i← 1 to N1

2 do for j ← 1 to N2

3 do c(i, j)← 0
4 for k ← 1 to N3

5 do c(i, j)← c(i, j) + a(i, k) · b(k, j)
6 return C

If N1 = N2 = N3 = N , we have to perform N3 multiplications, additions, and
assignments, each. Hence the running time of this algorithm is of order Θ(N3) for
any sequential processor.

The sum operator
∑

is one of the so-called generic operators, that combine
an arbitrary number of operands. In the systolic array from Figure 16.1, all additions
contributing to a particular sum are performed in the same cell. However, there are
plenty of examples where the individual operations of a generic operator are spread
over several cells—see, for instance, the systolic array from Figure 16.3.

Remark. Further examples of generic operators are: product, minimum, maxi-
mum, as well as the Boolean operators and, or, and exclusive or.

Thus, generic operators usually have to be serialised before the calculations to
perform can be assigned to the cells of the systolic array. Since the distribution of
the individual operations to the cells is not unique, generic operators generally must

762 16. Systolic Systems

be dealt with in another way than simple operators with fixed arity, as for instance
the dyadic addition.

16.1.5. Assignment-free notation

Instead of using an imperative style as in algorithm Matrix-product, we better
describe systolic programs by an assignment-free notation which is based on
an equational calculus. Thus we avoid side effects and are able to directly express
parallelism. For instance, we may be bothered about the reuse of the program vari-
able c(i, j) from algorithm Matrix-product. So, we replace c(i, j) with a sequence
of instances c(i, j, k), that stand for the successive states of c(i, j). This approach
yields a so-called recurrence equation We are now able to state the general matrix
product from algorithm Matrix-product by the following assignment-free expres-
sions:

input operations

c(i, j, 0) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 .

calculations

c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

output operations

cij = c(i, j, N3) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 .

(16.1)

System (16.1) explicitly describes the fine structure of the executedsystolic al-
gorithm. The first equation specifies all input data, the third equation all output
data. The systolic array implements these equations byinput/output operations.
Only the second equation corresponds to real calculations.

Each equation of the system is accompanied, on the right side, by a quantifi-
cation. The quantification states the set of values the iteration variables i and j
(and, for the second equation, also k) should take. Such a set is called a domain.
The iteration variables i, j, k of the second equation can be combined in an iteration
vector (i, j, k). For the input/output equations, the iteration vector would consist of
the components i and j, only. To get a closed representation, we augment this vector
by a third component k, that takes a fixed value. Inputs then are characterised by
k = 0, outputs by k = N3. Overall we get the following system:

input operations

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations

c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

output operations

cij = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(16.2)

16.1. Basic concepts of systolic systems 763

Note that although the domains for the input/output equations now are formally
also of dimension 3, as a matter of fact they are only two-dimensional in the classical
geometric sense.

16.1.6. Elementary operations

From equations as in system (16.2), we directly can infer the atomic entities to
perform in the cells of the systolic array. We find these operations by instantiating
each equation of the system with all points of the respective domain. If an equation
contains several suboperations corresponding to one point of the domain, these are
seen as a compound operation, and are always processed together by the same
cell in one working cycle.

In the second equation of system (16.2), for instance, we find the multiplica-
tion a(i, k) · b(k, j) and the successive addition c(i, j, k) = c(i, j, k − 1) + · · · . The
corresponding elementary operations—multiplication and addition—are indeed
executed together as a multiply-add compound operation by the cell of the systolic
array shown in Figure 16.1(b).

Now we can assign a designation to each elementary operation, also called co-
ordinates. A straight-forward method to define suitable coordinates is provided by
the iteration vectors (i, j, k) used in the quantifications.

Applying this concept to system (16.1), we can for instance assign the tuple of
coordinates (i, j, k) to the calculation c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j). The
same tuple (i, j, k) is assigned to the input operation c(i, j, k) = 0, but with setting
k = 0. By the way: all domains are disjoint in this example.

If we always use the iteration vectors as designations for the calculations and
the input/output operations, there is no further need to distinguish between coor-
dinates and iteration vectors. Note, however, that this decision also mandates that
all operations belonging to a certain point of the domain together constitute a com-
pound operation—even when they appear in different equations and possibly are
not related. For simplicity, we always use the iteration vectors as coordinates in the
sequel.

16.1.7. Discrete timesteps

The various elementary operations always happen in discrete timesteps in the
systolic cells. All these timesteps driving a systolic array are of equal duration.
Moreover, all cells of a systolic array work completely synchronous, i.e., they all
start and finish their respective communication and calculation steps at the same
time. Successive timesteps controlling a cell seamlessly follow each other.

Remark. But haven’t we learned from Albert Einstein that strict simultaneity is
physically impossible? Indeed, all we need here are cells that operate almost simul-
taneously. Technically this is guaranteed by providing to all systolic cells a common
clock signal that switches all registers of the array. Within the bounds of the usu-
ally achievable accuracy, the communication between the cells happens sufficiently
synchronised, and thus no loss of data occurs concerning send and receive operations.
Therefore, it should be justified to assume a conceptional simultaneity for theoretical

764 16. Systolic Systems

reasoning.
Now we can slice the physical time into units of a timestep, and number the

timesteps consecutively. The origin on the time axis can be arbitrarily chosen, since
time is running synchronously for all cells. A reasonable decision would be to take
t = 0 as the time of the first input in any cell. Under this regime, the elementary
compound operation of system (16.1) designated by (i, j, k) would be executed at
time i+ j+ k− 3. On the other hand, it would be evenly justified to assign the time
i+ j + k to the coordinates (i, j, k); because this change would only induce a global
time shift by three time units.

So let us assume for the following that the execution of an instance (i, j, k) starts
at time i+j+k. The first calculation in our example then happens at time t = 3, the
last at time t = N1 +N2 +N3. The running time thus amounts to N1 +N2 +N3− 2
timesteps.

16.1.8. External and internal communication

Normally, the data needed for calculation by the systolic array initially are not yet
located inside the cells of the array. Rather, they must be infused into the array from
the outside world. The outside world in this case is a host computer, usually
a scalar control processor accessing a central data storage. The control processor,
at the right time, fetches the necessary data from the storage, passes them to the
systolic array in a suitable way, and eventually writes back the calculated results
into the storage.

Each cell (i, j) must access the operands aik and bkj during the timestep con-
cerning index value k. But only the cells of the leftmost column of the systolic array
from Figure 16.1 get the items of the matrix A directly as input data from the out-
side world. All other cells must be provided with the required values aik from a
neighbouring cell. This is done via the horizontal links between neighbouring cells,
see Figure 16.1(a). The item aik successively passes the cells (i, 1), (i, 2), . . . , (i,N2).
Correspondingly, the value bkj enters the array at cell (1, j), and then flows through
the vertical links, reaching the cells (2, j), (3, j), . . . up to cell (N1, j). An arrowhead
in the figure shows in which direction the link is oriented.

Frequently, it is considered problematic to transmit a value over large distances
within a single timestep, in a distributed or parallel architecture. Now suppose that,
in our example, cell (i, j) got the value aik during timestep t from cell (i, j − 1), or
from the outside world. For the reasons described above, aik is not passed from cell
(i, j) to cell (i, j + 1) in the same timestep t, but one timestep later, i.e., at time
t+1. This also holds for the values bkj . The delay is visualised in the detail drawing
of the cell from Figure 16.1(b): input data flowing through a cell always pass one
register, and each passed register induces a delay of exactly one timestep.

Remark. For systolic architectures, it is mandatory that any path between two
cells contains at least one register—even when forwarding data to a neighbouring
cell, only. All registers in the cells are synchronously switched by the global clock
signal of the systolic array. This results in the characteristic rhythmical traffic on all
links of the systolic array. Because of the analogy with pulsating veins, the medical
term systole has been reused for the name of the concept.

16.1. Basic concepts of systolic systems 765

To elucidate the delayed forwarding of values, we augment system (16.1) with
further equations. Repeatedly used values like aik are represented by separate in-
stances, one for each access. The result of this proceeding—that is very characteristic
for the design of systolic algorithms—is shown as system (16.3).

input operations

a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bkj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding

a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1)

+ a(i, j − 1, k) · b(i − 1, j, k)
1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

output operations

cij = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(16.3)

Each of the partial sums c(i, j, k) in the progressive evaluation of cij is calculated
in a certain timestep, and then used only once, namely in the next timestep. There-
fore, cell (i, j) must provide a register (named C in Figure 16.1(b)) where the value
of c(i, j, k) can be stored for one timestep. Once the old value is no longer needed, the
register holding c(i, j, k) can be overwritten with the new value c(i, j, k + 1). When
eventually the dot product is completed, the register contains the value c(i, j,N3),
that is the final result cij . Before performing any computation, the register has to
be cleared, i.e., preloaded with a zero value—or any other desired value.

In contrast, there is no need to store the values aik and bkj permanently in cell
(i, j). As we can learn from Figure 16.1(a), each row of the matrix A is delayed
by one timestep with respect to the preceding row. And so are the columns of the
matrix B. Thus the values a(i, j − 1, k) and b(i− 1, j, k) arrive at cell (i, j) exactly
when the calculation of c(i, j, k) is due. They are put to the registers A resp. B,
then immediately fetched from there for the multiplication, and in the same cycle
forwarded to the neighbouring cells. The values aik and bkj are of no further use for
cell (i, j) after they have been multiplied, and need not be stored there any longer.
So A and B are overwritten with new values during the next timestep.

It should be obvious from this exposition that we urgently need to make economic
use of the memory contained in a cell. Any calculation and any communication must
be coordinated in space and time in such a way that storing of values is limited to
the shortest-possible time interval. This goal can be achieved by immediately using
and forwarding the received values. Besides the overall structure of the systolic array,
choosing an appropriateinput/output scheme and placing the corresponding number
of delays in the cells essentially facilitates the desired coordination. Figure 16.1(b)
in this respect shows the smallest possible delay by one timestep.

766 16. Systolic Systems

Geometrically, the input scheme of the example resulted from skewing the matri-
ces A and B. Thereby some places in the input streams for matrix A became vacant
and had to be filled with zero values; otherwise, the calculation of the cij would have
been garbled. The input streams in length depend on the problem parameter N3.

As can been seen in Figure 16.1, the items of matrix C are calculated sta-
tionary, i.e., all additions contributing to an item cij happen in the same cell.
Stationary variables don’t move at all during the calculation in the systolic ar-
ray. Stationary results eventually must be forwarded to a border of the array in
a supplementary action for getting delivered to the outside world. Moreover, it is
necessary to initialise the register for item cij . Performing these extra tasks requires
a high expenditure of runtime and hardware. We will further study this problem in
Section 16.4.

16.1.9. Pipelining

The characteristic operating style with globally synchronised discrete timesteps of
equal duration and the strict separation in time of the cells by registers suggest
systolic arrays to be special cases of pipelined systems. Here, the registers of the
cells correspond to the well-known pipeline registers. However, classical pipelines
come as linear structures, only, whereas systolic arrays frequently extend into more
spatial dimensions—as visible in our example. A multi-dimensional systolic array
can be regarded as a set of interconnected linear pipelines, with some justification.
Hence it should be apparent that basic properties of one-dimensional pipelining also
apply to multi-dimensional systolic arrays.

A typical effect of pipelining is the reduced utilisation at startup and during
shut-down of the operation. Initially, the pipe is empty, no pipeline stage active.
Then, the first stage receives data and starts working; all other stages are still idle.
During the next timestep, the first stage passes data to the second stage and it-
self receives new data; only these two stages do some work. More and more stages
become active until all stages process data in every timestep; the pipeline is now
fully utilised for the first time. After a series of timesteps at maximum load, with
duration dependent on the length of the data stream, the input sequence ceases;
the first stage of the pipeline therefore runs out of work. In the next timestep, the
second stage stops working, too. And so on, until eventually all stages have been
fallen asleep again. Phases of reduced activity diminish the average performance of
the whole pipeline, and the relative contribution of this drop in productivity is all
the worse, the more stages the pipeline has in relation to the length of the data
stream.

We now study this phenomenon to some depth by analysing the two-dimensional
systolic array from Figure 16.1. As expected, we find a lot of idling cells when starting
or finishing the calculation. In the first timestep, only cell (1, 1) performs some useful
work; all other cells in fact do calculations that work like null operations—and that’s
what they are supposed to do in this phase. In the second timestep, cells (1, 2) and
(2, 1) come to real work, see Figure 16.2(a). Data is flooding the array until eventually
all cells are doing work. After the last true data item has left cell (1, 1), the latter is
no longer contributing to the calculation but merely reproduces the finished value

16.2. Space-time transformation and systolic arrays 767

(b)(a)

x

x

xa13a14

a22a23

a31a32

b13b22

b23

b31

b32b41

c15

c24 c25

c33 c34

a12 ∗ b21 a11 ∗ b12

a21 ∗ b11

a34 ∗ b45

Figure 16.2 Two snapshots for the systolic array from Figure 16.1.

of c11. Step by step, more and more cells drop off. Finally, only cell (N1, N2) makes
a last necessary computation step; Figure 16.2(b) shows this concluding timestep.

Exercises
16.1-1 What must be changed in the input scheme from Figure 16.1(a) to multiply
a 2× 6 matrix by a 6× 3 matrix on the same systolic array? Could the calculations
be organised such that the result matrix would emerge in the lower right corner of
the systolic array?
16.1-2 Why is it necessary to clear spare slots in the input streams for matrix A,
as shown in Figure 16.1? Why haven’t we done the same for matrix B also?
16.1-3 If the systolic array from Figure 16.1 should be interpreted as a pipeline:
how many stages would you suggest to adequately describe the behaviour?

16.2. Space-time transformation and systolic arrays

Although the approach taken in the preceding section should be sufficient for a
basic understanding of the topic, we have to work harder to describe and judge
the properties of systolic arrays in a quantitative and precise way. In particular the
solution of parametric problems requires a solid mathematical framework. So, in this
section, we study central concepts of a formal theory on uniform algorithms, based
on linear transformations.

16.2.1. Further example: matrix product

System (16.3) can be computed by a multitude of other systolic arrays, besides that
from Figure 16.1. In Figure 16.3, for example, we see such an alternative systolic
array. Whereas the same function is evaluated by both architectures, the appearance

768 16. Systolic Systems

+*

(b)(a)

A
B

C

Figure 16.3 Hexagonal systolic array for matrix product. (a) Array structure and principle of the
data input/output. (b) Cell structure.

of the array from Figure 16.3 is very different:

• The number of cells now is considerably larger, altogether 36, instead of 15.

• The shape of the array is hexagonal, instead of rectangular.

• Each cell now has three input ports and three output ports.

• The input scheme is clearly different from that of Figure 16.1(a).

• And finally: the matrix C here also flows through the whole array.

The cell structure from Figure 16.3(b) at first view does not appear essentially
distinguished from that in Figure 16.1(b). But the differences matter: there are no
cyclic paths in the new cell, thus stationary variables can no longer appear. Instead,
the cell is provided with three input ports and three output ports, passing items of
all three matrices through the cell. The direction of communication at the ports on
the right and left borders of the cell has changed, as well as the assignment of the
matrices to the ports.

16.2.2. The space-time transformation as a global view

How system (16.3) is related to Figure 16.3? No doubt that you were able to fully
understand the operation of the systolic array from Section 16.1 without any special
aid. But for the present example this is considerably more difficult—so now you may
be sufficiently motivated for the use of a mathematical formalism.

We can assign two fundamental measures to each elementary operation of an
algorithm for describing the execution in the systolic array: the time when the op-
eration is performed, and the position of the cell where the operation is performed.

16.2. Space-time transformation and systolic arrays 769

As will become clear in the sequel, after fixing the so-called space-time transfor-
mation there are hardly any degrees of freedom left for further design: practically
all features of the intended systolic array strictly follow from the chosen space-time
transformation.

As for the systolic array from Figure 16.1, the execution of an instance (i, j, k) in
the systolic array from Figure 16.3 happens at time t = i+ j + k. We can represent
this expression as the dot product of a time vector

π =
(

1 1 1
)

(16.4)

by the iteration vector

v =
(

i j k
)

, (16.5)

hence

t = π · v ; (16.6)

so in this case

t =
(

1 1 1
)

·

i
j
k

 = i+ j + k . (16.7)

The space coordinates z = (x, y) of the executed operations in the example
from Figure 16.1 can be inferred as z = (i, j) from the iteration vector v = (i, j, k)
according to our decision in Subsection 16.1.3. The chosen map is a projection of
the space R

3 along the k axis. This linear map can be described by a projection
matrix

P =

(

1 0 0
0 1 0

)

. (16.8)

To find the space coordinates, we multiply the projection matrix P by the iteration
vector v, written as

z = P · v . (16.9)

The projection direction can be represented by any vector u perpendicular to
all rows of the projection matrix,

P · u = ~0 . (16.10)

For the projection matrix P from (16.8), one of the possible projection vectors
would be u = (0, 0, 1).

Projections are very popular for describing the space coordinates when designing
a systolic array. Also in our example from Figure 16.3(a), the space coordinates are
generated by projecting the iteration vector. Here, a feasible projection matrix is
given by

P =

(

0 −1 1
−1 1 0

)

. (16.11)

A corresponding projection vector would be u = (1, 1, 1).
We can combine the projection matrix and the time vector in a matrix T , that

770 16. Systolic Systems

fully describes the space-time transformation,

(

z
t

)

=

(

P
π

)

· v = T · v . (16.12)

The first and second rows of T are constituted by the projection matrix P , the third
row by the time vector π.

For the example from Figure 16.1, the matrix T giving the space-time transfor-
mation reads as

T =

1 0 0
0 1 0
1 1 1

 ; (16.13)

for the example from Figure 16.3 we have

T =

0 −1 1
−1 1 0

1 1 1

 . (16.14)

Space-time transformations may be understood as a global view to the systolic
system. Applying a space-time transformation—that is linear, here, and described
by a matrix T—to a system of recurrence equations directly yields the external
features of the systolic array, i.e., its architecture—consisting of space coordinates,
connection pattern, and cell structure.

Remark. Instead of purely linear maps, we alternatively may consider general
affine maps, additionally providing a translative component, T · v + h. Though as
long as we treat all iteration vectors with a common space-time transformation,
affine maps are not really required.

16.2.3. Parametric space coordinates

If the domains are numerically given and contain few points in particular, we can
easily calculate the concrete set of space coordinates via equation (16.9). But when
the domains are specified parametrically as in system (16.3), the positions of the cells
must be determined by symbolic evaluation. The following explanation especially
dwells on this problem.

Suppose that each cell of the systolic array is represented geometrically by a
point with space coordinates z = (x, y) in the two-dimensional space R

2. From each
iteration vector v of the domain S, by equation (16.9) we get the space coordinates
z of a certain processor, z = P · v: the operations denoted by v are projected onto
cell z. The set P (S) = {P · v : v ∈ S} of space coordinates states the positions of all
cells in the systolic array necessary for correct operation.

To our advantage, we normally use domains that can be described as the set of
all integer points inside a convex region, here a subset of R3—called dense convex
domains. The convex hull of such a domain with a finite number of domain points
is a polytope, with domain points as vertices. Polytopes map to polytopes again
by arbitrary linear transformations. Now we can make use of the fact that each
projection is a linear transformation. Vertices of the destination polytope then are

16.2. Space-time transformation and systolic arrays 771

(1−N2, N2 −N1) (1−N2, N2 − 1)

(N3 −N2, N2 −N1)

(0, 1−N1)
(N3 −N2, N2 − 1)

(0, 0)

(N3 − 1, 1−N1) (N3 − 1, 0)

Figure 16.4 Image of a rectangular domain under projection. Most interior points have been
suppressed for clarity. Images of previous vertex points are shaded.

images of vertices of the source polytope.
Remark. But not all vertices of a source polytope need to be projected to vertices

of the destination polytope, see for instance Figure 16.4.
When projected by an integer matrix P , the lattice Z

3 maps to the lattice Z
2 if

P can be extended by an integer time vector π to a unimodularspace-time matrix
T . Practically any dense convex domain, apart from some exceptions irrelevant to
usual applications, thereby maps to another dense convex set of space coordinates,
that is completely characterised by the vertices of the hull polytope. To determine
the shape and the size of the systolic array, it is therefore sufficient to apply the
matrix P to the vertices of the convex hull of S.

Remark. Any square integer matrix with determinant ±1 is called unimodular.
Unimodular matrices have unimodular inverses.

We apply this method to the integer domain

S = [1, N1]× [1, N2]× [1, N3] (16.15)

from system (16.3). The vertices of the convex hull here are

(1, 1, 1), (N1, 1, 1), (1, N2, 1), (1, 1, N3),

(1, N2, N3), (N1, 1, N3), (N1, N2, 1), (N1, N2, N3) .
(16.16)

For the projection matrix P from (16.11), the vertices of the corresponding image

772 16. Systolic Systems

N1

N2

N3

Figure 16.5 Partitioning of the space coordinates.

have the positions

(N3 − 1, 0), (N3 − 1, 1−N1), (0, 1−N1) ,

(1−N2, N2 −N1), (1−N2, N2 − 1), (N3 −N2, N2 −N1) .
(16.17)

Since S has eight vertices, but the image P (S) only six, it is obvious that two
vertices of S have become interior points of the image, and thus are of no relevance for
the size of the array; namely the vertices (1, 1, 1) and (N1, N2, N3). This phenomenon
is sketched in Figure 16.4.

The settings N1 = 3, N2 = 5, and N3 = 4 yield the vertices (3,0), (3,-2), (0,-2),
(-4,2), (-4,4), and (-1,4). We see that space coordinates in principle can be negative.
Moreover, the choice of an origin—that here lies in the interior of the polytope—
might not always be obvious.

As the image of the projection, we get a systolic array with hexagonal shape
and parallel opposite borders. On these, we find N1, N2, and N3 integer points,
respectively; cf. Figure 16.5. Thus, as opposed to our first example, all problem
parameters here are also array parameters.

The area function of this region is of order Θ(N1 · N2 + N1 · N3 + N2 · N3),
and thus depends on all three matrix dimensions. So this is quite different from the
situation in Figure 16.1(a), where the area function—for the same problem—is of
order Θ(N1 ·N2).

Improving on this approximate calculation, we finally count the exact number
of cells. For this process, it might be helpful to partition the entire region into
subregions for which the number of cells comprised can be easily determined; see
Figure 16.5. The points (0,0), (N3 − 1, 0), (N3 − 1, 1−N1), and (0, 1−N1) are the
vertices of a rectangle with N1 ·N3 cells. If we translate this point set up by N2 − 1
cells and right by N2 − 1 cells, we exactly cover the whole region. Each shift by one
cell up and right contributes just another N1 + N3 − 1 cells. Altogether this yields
N1 ·N3 + (N2− 1) · (N1 +N3− 1) = N1 ·N2 +N1 ·N3 +N2 ·N3− (N1 +N2 +N3) + 1
cells.

For N1 = 3, N2 = 5, and N3 = 4 we thereby get a number of 36 cells, as we have
already learned from Figure 16.3(a).

16.2. Space-time transformation and systolic arrays 773

16.2.4. Symbolically deriving the running time

The running time of a systolic algorithm can be symbolically calculated by an ap-
proach similar to that in Subsection 16.2.3. The time transformation according to
formula (16.6) as well is a linear map. We find the timesteps of the first and the
last calculations as the minimum resp. maximum in the set π(S) = {π · v : v ∈ S}
of execution timesteps. Following the discussion above, it thereby suffices to vary v
over the vertices of the convex hull of S.

The running time is then given by the formula

tΣ = 1 + maxP (S)−minP (S) . (16.18)

Adding one is mandatory here, since the first as well as the last timestep belong
to the calculation.

For the example from Figure 16.3, the vertices of the polytope as enumerated in
(16.16) are mapped by (16.7) to the set of images

{3, 2 +N1, 2 +N2, 2 +N3, 1 +N1 +N2, 1 +N1 +N3, 1 +N2 +N3, N1 +N2 +N3} .

With the basic assumption N1, N2, N3 ≥ 1, we get a minimum of 3 and a maxi-
mum of N1 +N2 +N3, thus a running time of N1 +N2 +N3−2 timesteps, as for the
systolic array from Figure 16.1—no surprise, since the domains and the time vectors
agree.

For the special problem parameters N1 = 3, N2 = 5, and N3 = 4, a running
time of 12− 3 + 1 = 10 timesteps can be derived.

If N1 = N2 = N3 = N , the systolic algorithm shows a running time of order
Θ(N), using Θ(N2) systolic cells.

16.2.5. How to unravel the communication topology

The communication topology of the systolic array is induced by applying the
space-time transformation to the data dependences of the algorithm. Each data de-
pendence results from a direct use of a variable instance to calculate another instance
of the same variable, or an instance of another variable.

Remark. In contrast to the general situation where a data dependence analysis
for imperative programming languages has to be performed by highly optimising
compilers, data dependences here always are flow dependences. This is a direct con-
sequence from the assignment-free notation employed by us.

The data dependences can be read off the quantified equations in our
assignment-free notation by comparing their right and left sides. For example, we
first analyse the equation c(i, j, k) = c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) from
system (16.3).

The value c(i, j, k) is calculated from the values c(i, j, k − 1), a(i, j − 1, k), and
b(i − 1, j, k). Thus we have a data flow from c(i, j, k − 1) to c(i, j, k), a data flow
from a(i, j − 1, k) to c(i, j, k), and a data flow from b(i− 1, j, k) to c(i, j, k).

All properties of such a data flow that matter here can be covered by a de-
pendence vector, which is the iteration vector of the calculated variable instance
minus the iteration vector of the correspondingly used variable instance.

774 16. Systolic Systems

The iteration vector for c(i, j, k) is (i, j, k); that for c(i, j, k − 1) is (i, j, k − 1).
Thus, as the difference vector, we find

dC =

i
j
k

−

i
j

k − 1

 =

0
0
1

 . (16.19)

Correspondingly, we get

dA =

i
j
k

−

i
j − 1
k

 =

0
1
0

 (16.20)

and

dB =

i
j
k

−

i− 1
j
k

 =

1
0
0

 . (16.21)

In the equation a(i, j, k) = a(i, j − 1, k) from system (16.3), we cannot directly
recognise which is the calculated variable instance, and which is the used variable
instance. This example elucidates the difference between equations and assignments.
When fixing that a(i, j, k) should follow from a(i, j−1, k) by a copy operation, we
get the same dependence vector dA as in (16.20). Correspondingly for the equation
b(i, j, k) = b(i− 1, j, k).

A variable instance with iteration vector v is calculated in cell P · v. If for this
calculation another variable instance with iteration vector v′ is needed, implying a
data dependence with dependence vector d = v − v′, the used variable instance is
provided by cell P · v′. Therefore, we need a communication from cell z′ = P · v′ to
cell z = P · v. In systolic arrays, all communication has to be via direct static links
between the communicating cells. Due to the linearity of the transformation from
(16.9), we have z − z′ = P · v − P · v′ = P · (v − v′) = P · d.

If P ·d = ~0, communication happens exclusively inside the calculating cell, i.e., in
time, only—and not in space. Passing values in time is via registers of the calculating
cell.

Whereas for P ·d 6= ~0, a communication between different cells is needed. Then a
link along the flow direction P ·d must be provided from/to all cells of the systolic
array. The vector −P · d, oriented in counter flow direction, leads from space point
z to space point z′.

If there is more than one dependence vector d, we need an appropriate link for
each of them at every cell. Take for example the formulas (16.19), (16.20), and (16.21)
together with (16.11), then we get P · dA = (−1, 1), P · dB = (0,−1), and P · dC =
(1, 0). In Figure 16.3(a), terminating at every cell, we see three links corresponding to
the various vectors P ·d. This results in a hexagonal communication topology—
instead of the orthogonal communication topology from the first example.

16.2.6. Inferring the structure of the cells

Now we apply the space-related techniques from Subsection 16.2.5 to time-related
questions. A variable instance with iteration vector v is calculated in timestep π · v.

16.2. Space-time transformation and systolic arrays 775

If this calculation uses another variable instance with iteration vector v′, the former
had been calculated in timestep π · v′. Hence communication corresponding to the
dependence vector d = v − v′ must take exactly π · v − π · v′ timesteps.

Since (16.6) describes a linear map, we have π · v − π · v′ = π · (v − v′) = π · d.
According to the systolic principle, each communication must involve at least one
register. The dependence vectors d are fixed, and so the choice of a time vector π is
constrained by

π · d ≥ 1 . (16.22)

In case P · d = ~0, we must provide registers for stationary variables in all cells.
But each register is overwritten with a new value in every timestep. Hence, if π·d ≥ 2,
the old value must be carried on to a further register. Since this is repeated for π · d
timesteps, the cell needs exactly π · d registers per stationary variable. The values of
the stationary variable successively pass all these registers before eventually being
used. If P · d 6= ~0, the transport of values analogously goes by π · d registers, though
these are not required to belong all to the same cell.

For each dependence vector d, we thus need an appropriate number of registers.
In Figure 16.3(b), we see three input ports at the cell, corresponding to the depen-
dence vectors dA, dB , and dC . Since for these we have P · d 6= ~0. Moreover, π · d = 1
due to (16.7) and (16.4). Thus, we need one register per dependence vector. Finally,
the regularity of system (16.3) forces three output ports for every cell, opposite to
the corresponding input ports.

Good news: we can infer in general that each cell needs only a few registers,
because the number of dependence vectors d is statically bounded with a system like
(16.3), and for each of the dependence vectors the amount of registers π · d has a
fixed and usually small value.

The three input and output ports at every cell now permit the use of three
moving matrices. Very differently from Figure 16.1, a dot product

∑4

k=1
aik · bkj

here is not calculated within a single cell, but dispersed over the systolic array. As a
prerequisite, we had to dissolve the sum into a sequence of single additions. We call
this principle a distributed generic operator.

Apart from the three input ports with their registers, and the three output ports,
Figure 16.3(b) shows a multiplier chained to an adder. Both units are induced in
each cell by applying the transformation (16.9) to the domain S of the equation
c(i, j, k) = c(i, j, k− 1) + a(i, j− 1, k) · b(i− 1, j, k) from system (16.3). According to
this equation, the addition has to follow the calculation of the product, so the order
of the hardware operators as seen in Figure 16.3(b) is implied.

The source cell for each of the used operands follows from the projection of
the corresponding dependence vector. Here, variable a(i, j − 1, k) is related to the
dependence vector dA = (0, 1, 0). The projection P · dA = (−1, 1) constitutes the
flow direction of matrix A. Thus the value to be used has to be expected, as observed
by the calculating cell, in opposite direction (1,−1), in this case from the port in
the lower left corner of the cell, passing through register A. All the same, b(i −
1, j, k) comes from the right via register B, and c(i, j, k − 1) from above through
register C. The calculated values a(i, j, k), b(i, j, k), and c(i, j, k) are output into the
opposite directions through the appropriate ports: to the upper right, to the left,
and downwards.

776 16. Systolic Systems

If alternatively we use the projection matrix P from (16.8), then for dC we get
the direction (0, 0). The formula π · dC = 1 results in the requirement of exactly one
register C for each item of the matrix C. This register provides the value c(i, j, k−1)
for the calculation of c(i, j, k), and after this calculation receives the value c(i, j, k).
All this reasoning matches with the cell from Figure 16.1(b). Figure 16.1(a) corre-
spondingly shows no links for matrix C between the cells: for the matrix is stationary.

Exercises
16.2-1 Each projection vector u induces several corresponding projection mat-
rices P .

a. Show that

P =

(

0 1 −1
−1 0 1

)

also is a projection matrix fitting with projection vector u = (1, 1, 1).

b. Use this projection matrix to transform the domain from system (16.3).

c. The resulting space coordinates differ from that in Subsection 16.2.3. Why, in
spite of this, both point sets are topologically equivalent?

d. Analyse the cells in both arrangements for common and differing features.

16.2-2 Apply all techniques from Section 16.2 to system (16.3), employing a space-
time matrix

T =

1 0 1
0 1 1
1 1 1

 .

16.3. Input/output schemes

In Figure 16.3(a), the input/output scheme is only sketched by the flow directions
for the matrices A,B,C. The necessary details to understand the input/output op-
erations are now provided by Figure 16.6.

The input/output scheme in Figure 16.6 shows some new phenomena when
compared with Figure 16.1(a). The input and output cells belonging to any matrix
are no longer threaded all on a single straight line; now, for each matrix, they lie
along two adjacent borders, that additionally may differ in the number of links to the
outside world. The data structures from Figure 16.6 also differ from that in Figure
16.1(a) in the angle of inclination. Moreover, the matrices A and B from Figure 16.6
arrive at the boundary cells with only one third of the data rate, compared to Figure
16.1(a).

Spending some effort, even here it might be possible in principle to construct—
item by item—the appropriate input/output scheme fitting the present systolic array.
But it is much more safe to apply a formal derivation. The following subsections are
devoted to the presentation of the various methodical steps for achieving our goal.

16.3. Input/output schemes 777

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 16.6 Detailed input/output scheme for the systolic array from Figure 16.3(a).

16.3.1. From data structure indices to iteration vectors

First, we need to construct a formal relation between the abstract data structures
and the concrete variable instances in the assignment-free representation.

Each item of the matrix A can be characterised by a row index i and a column
index k. These data structure indices can be comprised in a data structure
vector w = (i, k). Item aik in system (16.3) corresponds to the instances a(i, j, k),
with any j. The coordinates of these instances all lie on a line along direction q =
(0, 1, 0) in space R

3. Thus, in this case, the formal change from data structure vector
(i, k) to coordinates (i, j, k) can be described by the transformation

i
j
k

 =

1 0
0 0
0 1

 ·

(

i
k

)

+ j ·

0
1
0

 +

0
0
0

 . (16.23)

In system (16.3), the coordinate vector (i, j, k) of every variable instance equals
the iteration vector of the domain point representing the calculation of this variable
instance. Thus we also may interpret formula (16.23) as a relation between data
structure vectors and iteration vectors. Abstractly, the desired iteration vectors v

778 16. Systolic Systems

can be inferred from the data structure vector w by the formula

v = H · w + λ · q + p . (16.24)

The affine vector p is necessary in more general cases, though always null in our
example.

Because of b(i, j, k) = bkj , the representation for matrix B correspondingly is

i
j
k

 =

0 0
0 1
1 0

 ·

(

k
j

)

+ i ·

1
0
0

 +

0
0
0

 . (16.25)

Concerning matrix C, each variable instance c(i, j, k) may denote a different
value. Nevertheless, all instances c(i, j, k) to a fixed index pair (i, j) can be regarded
as belonging to the same matrix item cij , since they all stem from the serialisation
of the sum operator for the calculation of cij . Thus, for matrix C, following formula
(16.24) we may set

i
j
k

 =

1 0
0 1
0 0

 ·

(

i
j

)

+ k ·

0
0
1

 +

0
0
0

 . (16.26)

16.3.2. Snapshots of data structures

Each of the three matrices A,B,C is generated by two directions with regard to the
data structure indices: along a row, and along a column. The difference vector (0,1)
thereby describes a move from an item to the next item of the same row, i.e., in the
next column: (0, 1) = (x, y+ 1)− (x, y). Correspondingly, the difference vector (1,0)
stands for sliding from an item to the next item in the same column and next row:
(1, 0) = (x+ 1, y)− (x, y).

Input/output schemes of the appearance shown in Figures 16.1(a) and 16.6 de-
note snapshots: all positions of data items depicted, with respect to the entire
systolic array, are related to a common timestep.

As we can notice from Figure 16.6, the rectangular shapes of the abstract data
structures are mapped to parallelograms in the snapshot, due to the linearity of
the applied space-time transformation. These parallelograms can be described by
difference vectors along their borders, too.

Next we will translate difference vectors ∆w from data structure vectors into
spatial difference vectors ∆z for the snapshot. Therefore, by choosing the parameter
λ in formula (16.24), we pick a pair of iteration vectors v, v′ that are mapped to
the same timestep under our space-time transformation. For the moment it is not
important which concrete timestep we thereby get. Thus, we set up

π · v = π · v′ with v = H · w + λ · q + p and v′ = H · w′ + λ′ · q + p , (16.27)

implying
π ·H · (w − w′) + (λ− λ′) · π · q = 0 , (16.28)

16.3. Input/output schemes 779

and thus

∆λ = (λ− λ′) =
−π ·H · (w − w′)

π · q
. (16.29)

Due to the linearity of all used transformations, the wanted spatial difference
vector ∆z hence follows from the difference vector of the data structure ∆w = w−w′

as
∆z = P ·∆v = P ·H ·∆w + ∆λ · P · q , (16.30)

or

∆z = P ·H ·∆w −
π ·H ·∆w

π · q
· P · q . (16.31)

With the aid of formula (16.31), we now can determine the spatial difference
vectors ∆z for matrix A. As mentioned above, we have

H =

1 0
0 0
0 1

 , q =

0
1
0

 , P =

(

0 −1 1
−1 1 0

)

, π =
(

1 1 1
)

.

Noting π · q = 1, we get

∆z =

(

0 1
−1 0

)

·∆w + ∆λ ·

(

−1
1

)

with ∆λ = −
(

1 1
)

·∆w .

For the rows, we have the difference vector ∆w = (0, 1), yielding the spatial
difference vector ∆z = (2,−1). Correspondingly, from ∆w = (1, 0) for the columns
we get ∆z = (1,−2). If we check with Figure 16.6, we see that the rows of A in fact
run along the vector (2,−1), the columns along the vector (1,−2).

Similarly, we get ∆z = (−1, 2) for the rows of B, and ∆z = (1, 1) for the columns
of B; as well as ∆z = (−2, 1) for the rows of C, and ∆z = (−1,−1) for the columns
of C.

Applying these instruments, we are now able to reliably generate appropriate
input/output schemes—although separately for each matrix at the moment.

16.3.3. Superposition of input/output schemes

Now, the shapes of the matrices A,B,C for the snapshot have been fixed. But we
still have to adjust the matrices relative to the systolic array—and thus, also relative
to each other. Fortunately, there is a simple graphical method for doing the task.

We first choose an arbitrary iteration vector, say v = (1, 1, 1). The latter we map
with the projection matrix P to the cell where the calculation takes place,

z =

(

0 −1 1
−1 1 0

)

·

1
1
1

 =

(

0
0

)

.

The iteration vector (1,1,1) represents the calculations a(1, 1, 1), b(1, 1, 1), and
c(1, 1, 1); these in turn correspond to the data items a11, b11, and c11. We now lay
the input/output schemes for the matrices A,B,C on the systolic array in a way

780 16. Systolic Systems

that the entries a11, b11, and c11 all are located in cell z = (0, 0).
In principle, we would be done now. Unfortunately, our input/output schemes

overlap with the cells of the systolic array, and are therefore not easily perceivable.
Thus, we simultaneously retract the input/output schemes of all matrices in counter
flow direction, place by place, until there is no more overlapping. With this method,
we get exactly the input/output scheme from Figure 16.6.

As an alternative to this nice graphical method, we also could formally calculate
an overlap-free placement of the various input/output schemes.

Only after specifying the input/output schemes, we can correctly calculate the
number of timesteps effectively needed. The first relevant timestep starts with the
first input operation. The last relevant timestep ends with the last output of a result.
For the example, we determine from Figure 16.6 the beginning of the calculation with
the input of the data item b11 in timestep 0, and the end of the calculation after
output of the result c35 in timestep 14. Altogether, we identify 15 timesteps—five
more than with pure treatment of the real calculations.

16.3.4. Data rates induced by space-time transformations

The input schemes of the matrices A and B from Figure 16.1(a) have a dense layout:
if we drew the borders of the matrices shown in the figure, there would be no spare
places comprised.

Not so in Figure 16.6. In any input data stream, each data item is followed by
two spare places there. For the input matrices this means: the boundary cells of the
systolic array receive a proper data item only every third timestep.

This property is a direct result of the employed space-time transformation. In
both examples, the abstract data structures themselves are dense. But how close
the various items really come in the input/output scheme depends on the absolute
value of the determinant of the transformation matrix T : in every input/output data
stream, the proper items follow each other with a spacing of exactly |det(T)| places.
Indeed |det(T)| = 1 for Figure 16.1; as for Figure 16.6, we now can rate the fluffy
spacing as a practical consequence of |det(T)| = 3.

What to do with spare places as those in Figure 16.6? Although each cell of the
systolic array from Figure 16.3 in fact does useful work only every third timestep, it
would be nonsense to pause during two out of three timesteps. Strictly speaking, we
can argue that values on places marked with dots in Figure 16.6 have no influence
on the calculation of the shown items cij , because they never reach an active cell at
time of the calculation of a variable c(i, j, k). Thus, we may simply fill spare places
with any value, no danger of disturbing the result. It is even feasible to execute three
different matrix products at the same time on the systolic array from Figure 16.3,
without interference. This will be our topic in Subsection 16.3.7.

16.3.5. Input/output expansion

When further studying Figure 16.6, we can identify another problem. Check, for
example, the itinerary of c22 through the cells of the systolic array. According to the
space-time transformation, the calculations contributing to the value of c22 happen

16.3. Input/output schemes 781

in the cells (−1, 0), (0, 0), (1, 0), and (2, 0). But the input/output scheme from Figure
16.6 tells us that c22 also passes through cell (−2, 0) before, and eventually visits
cell (3, 0), too.

This may be interpreted as some spurious calculations being introduced into
the system (16.3) by the used space-time transformation, here, for example, at the
new domain points (2,2,0) and (2,2,5). The reason for this phenomenon is that the
domains of the input/output operations are not in parallel to the chosen projection
direction. Thus, some input/output operations are projected onto cells that do not
belong to the boundary of the systolic array. But in the interior of the systolic array,
no input/output operation can be performed directly. The problem can be solved by
extending the trajectory, in flow or counter flow direction, from these inner cells up to
the boundary of the systolic array. But thereby we introduce some new calculations,
and possibly also some new domain points. This technique is called input/output
expansion.

We must avoid that the additional calculations taking place in the cells (-2,0)
and (3,0) corrupt the correct value of c22. For the matrix product, this is quite
easy—though the general case is more difficult. The generic sum operator has a
neutral element, namely zero. Thus, if we can guarantee that by new calculations
only zero is added, there will be no harm. All we have to do is providing always at
least one zero operand to any spurious multiplication; this can be achieved by filling
appropriate input slots with zero items.

Figure 16.7 shows an example of a properly extended input/output scheme.
Preceding and following the items of matrix A, the necessary zero items have been
filled in. Since the entered zeroes count like data items, the input/output scheme
from Figure 16.6 has been retracted again by one place. The calculation now begins
already in timestep −1, but ends as before with timestep 14. Thus we need 16
timesteps altogether.

16.3.6. Coping with stationary variables

Let us come back to the example from Figure 16.1(a). For inputting the items
of matrices A and B, no expansion is required, since these items are always used
in boundary cells first. But not so with matrix C! The items of C are calculated
in stationary variables, hence always in the same cell. Thus most results cij are
produced in inner cells of the systolic array, from where they have to be moved—in
a separate action—to boundary cells of the systolic array.

Although this new challenge, on the face of it, appears very similar to the prob-
lem from Subsection 16.3.5, and thus very easy to solve, in fact we here have a
completely different situation. It is not sufficient to extend existing data flows for-
ward or backward up to the boundary of the systolic array. Since for stationary
variables the dependence vector is projected to the null vector, which constitutes
no extensible direction, there can be no spatial flow induced by this dependency.
Possibly, we can construct some auxiliary extraction paths, but usually there are
many degrees of freedom. Moreover, we then need a control mechanism inside the
cells. For all these reasons, the problem is further dwelled on in Section 16.4.

782 16. Systolic Systems

0

0

0

0

0

0

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 16.7 Extended input/output scheme, correcting Figure 16.6.

16.3.7. Interleaving of calculations

As can be easily noticed, the utilisation of the systolic array from Figure 16.3 with
input/output scheme from Figure 16.7 is quite poor. Even without any deeper study
of the starting phase and the closing phase, we cannot ignore that the average
utilisation of the array is below one third—after all, each cell at most in every third
timestep makes a proper contribution to the calculation.

A simple technique to improve this behaviour is to interleave calculations. If we
have three independent matrix products, we can successively input their respective
data, delayed by only one timestep, without any changes to the systolic array or
its cells. Figure 16.8 shows a snapshot of the systolic array, with parts of the corre-
sponding input/output scheme. Now we must check by a formal derivation whether

16.3. Input/output schemes 783

32 21

32 22

33 23

23

22 21

23 31

13

24

12 21

13 31

14 41

14

41

13 32

0 * b31 42

0 * b32 32
1

2

3

2

3

1

3

1

2

1

2

1

3

3 1 2

1

2

1 2

1

3

1

2

1

3

2a

a

a

a

a

a

a

a

a

a

aa

aa

a b

b

b

∗ b

∗ b

∗ b

∗ b

∗ b

∗ b∗ b

∗ 0∗ 0

∗ 0

Figure 16.8 Interleaved calculation of three matrix products on the systolic array from Figure
16.3.

this idea is really working. Therefore, we slightly modify system (16.3). We augment
the variables and the domains by a fourth dimension, needed to distinguish the three
matrix products:

input operations

a(i, j, k, l) = al
ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

b(i, j, k, l) = bl
kj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

c(i, j, k, l) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0, 1 ≤ l ≤ 3 .

calculations and forwarding

a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

b(i, j, k, l) = b(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 ,

c(i, j, k, l) = c(i, j, k − 1, l)

+ a(i, j − 1, k, l)

· b(i − 1, j, k, l)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3 .

output operations

cl
ij = c(i, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3, 1 ≤ l ≤ 3 .

(16.32)

Obviously, in system (16.32), problems with different values of l are not related.
Now we must preserve this property in the systolic array. A suitable space-time
matrix would be

T =

0 −1 1 0
−1 1 0 0

1 1 1 1

 . (16.33)

Notice that T is not square here. But for calculating the space coordinates, the

784 16. Systolic Systems

fourth dimension of the iteration vector is completely irrelevant, and thus can simply
be neutralised by corresponding zero entries in the fourth column of the first and
second rows of T .

The last row of T again constitutes the time vector π. Appropriate choice of
π embeds the three problems to solve into the space-time continuum, avoiding any
intersection. Corresponding instances of the iteration vectors of the three problems
are projected to the same cell with a respective spacing of one timestep, because the
fourth entry of π equals 1.

Finally, we calculate the average utilisation—with or without interleaving—for
the concrete problem parameters N1 = 3, N2 = 5, and N3 = 4. For a single matrix
product, we have to perform N1 ·N2 ·N3 = 60 calculations, considering a multipli-
cation and a corresponding addition as a compound operation, i.e., counting both
together as only one calculation; input/output operations are not counted at all.
The systolic array has 36 cells.

Without interleaving, our systolic array altogether takes 16 timesteps for calcu-
lating a single matrix product, resulting in an average utilisation of 60/(16 · 36) ≈
0.104 calculations per timestep and cell. When applying the described interleaving
technique, the calculation of all three matrix products needs only two timesteps
more, i.e., 18 timesteps altogether. But the number of calculations performed
thereby has tripled, so we get an average utilisation of the cells amounting to
3 · 60/(18 · 36) ≈ 0.278 calculations per timestep and cell. Thus, by interleaving,
we were able to improve the utilisation of the cells to 267 per cent!

Exercises
16.3-1 From equation (16.31), formally derive the spatial difference vectors of ma-
trices B and C for the input/output scheme shown in Figure 16.6.
16.3-2 Augmenting Figure 16.6, draw an extended input/output scheme that forces
both operands of all spurious multiplications to zero.
16.3-3 Apply the techniques presented in Section 16.3 to the systolic array from
Figure 16.1.
16.3-4? Proof the properties claimed in Subsection 16.3.7 for the special space-time
transformation (16.33) with respect to system (16.32).

16.4. Control

So far we have assumed that each cell of a systolic array behaves in completely the
same way during every timestep. Admittedly there are some relevant examples of
such systolic arrays. However, in general the cells successively have to work in several
operation modes, switched to by some control mechanism. In the sequel, we study
some typical situations for exerting control.

16.4.1. Cells without control

The cell from Figure 16.3(b) contains the registers A, B, and C, that—when activated
by the global clock signal—accept the data applied to their inputs and then reliably

16.4. Control 785

+*

(b)(a)

A

B

C

Figure 16.9 Resetting registers via global control. (a) Array structure. (b) Cell structure.

reproduce these values at their outputs for one clock cycle. Apart from this system-
wide activity, the function calculated by the cell is invariant for all timesteps: a
fused multiply-add operation is applied to the three input operands A, B, and C,
with result passed to a neighbouring cell; during the same cycle, the operands A and
B are also forwarded to two other neighbouring cells. So in this case, the cell needs
no control at all.

The initial values c(i, j, 0) for the execution of the generic sum operator—which
could also be different from zero here—are provided to the systolic array via the input
streams, see Figure 16.7; the final results c(i, j,N3) continue to flow into the same
direction up to the boundary of the array. Therefore, the input/output activities for
the cell from Figure 16.3(b) constitute an intrinsic part of the normal cell function.
The price to pay for this extremely simple cell function without any control is a
restriction in all three dimensions of the matrices: on a systolic array like that from
Figure 16.3, with fixed array parameters N1, N2, N3, an M1×M3 matrix A can only
be multiplied by an M3 ×M2 matrix B if the relations M1 ≤ N1, M2 ≤ N2, and
M3 ≤ N3 hold.

16.4.2. Global control

In this respect, constraints for the array from Figure 16.1 are not so restrictive:
though the problem parameters M1 and M2 also are bounded by M1 ≤ N1 and
M2 ≤ N2, there is no constraint for M3. Problem parameters unconstrained in spite
of fixed array parameters can only emerge in time but not in space, thus mandating
the use of stationary variables.

Before a new calculation can start, each register assigned to a stationary variable
has to be reset to an initial state independent from the previously performed cal-
culations. For instance, concerning the systolic cell from Figure 16.3(b), this should
be the case for register C. By a global signal similar to the clock, register C can be
cleared in all cells at the same time, i.e., reset to a zero value. To prevent a corrup-
tion of the reset by the current values of A or B, at least one of the registers A or B

786 16. Systolic Systems

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 16.10 Output scheme with delayed output of results.

must be cleared at the same time, too. Figure 16.9 shows an array structure and a
cell structure implementing this idea.

16.4.3. Local control

Unfortunately, for the matrix product the principle of the global control is not suf-
ficient without further measures. Since the systolic array presented in Figure 16.1
even lacks another essential property: the results cij are not passed to the boundary
but stay in the cells.

At first sight, it seems quite simple to forward the results to the boundary: when
the calculation of an item cij is finished, the links from cell (i, j) to the neighbouring
cells (i, j + 1) and (i + 1, j) are no longer needed to forward items of the matrices
A and B. These links can be reused then for any other purpose. For example, we
could pass all items of C through the downward-directed links to the lower border
of the systolic array.

But it turns out that leading through results from the upper cells is hampered
by ongoing calculations in the lower parts of the array. If the result cij , finished in
timestep i+ j+N3, would be passed to cell (i+ 1, j) in the next timestep, a conflict
would be introduced between two values: since only one value per timestep can be
sent from cell (i+ 1, j) via the lower port, we would be forced to keep either cij or
ci+1 j , the result currently finished in cell (i+ 1, j). This effect would spread over all
cells down.

To fix the problem, we could slow down the forwarding of items cij . If it would
take two timesteps for cij to pass a cell, no collisions could occur. Then, the results
stage a procession through the same link, each separated from the next by one
timestep. From the lower boundary cell of a column, the host computer first receives
the result of the bottom row, then that of the penultimate row; this procedure
continues until eventually we see the result of the top row. Thus we get the output
scheme shown in Figure 16.10.

How can a cell recognise when to change from forwarding items of matrix B to
passing items of matrix C through the lower port? We can solve this task by an
automaton combining global control with local control in the cell:

16.4. Control 787

+

*

(b)(a)

R

SQ

Q

counter

A

B

C

i+j−1

Figure 16.11 Combined local/global control. (a) Array structure. (b) Cell structure.

If we send a global signal to all cells at exactly the moment when the last
items of A and B are input to cell (1, 1), each cell can start a countdown process:
in each successive timestep, we decrement a counter initially set to the number of
the remaining calculation steps. Thereby cell (i, j) still has to perform i + j − 1
calculations before changing to propagation mode. Later, the already mentioned
global reset signal switches the cell back to calculation mode.

Figure 16.11 presents a systolic array implementing this local/global principle.
Basically, the array structure and the communication topology have been preserved.
But each cell can run in one of two states now, switched by a control logic:

1. In calculation mode, as before, the result of the addition is written to register
C. At the same time, the value in register B—i.e., the operand used for the
multiplication—is forwarded through the lower port of the cell.

2. In propagation mode, registers B and C are connected in series. In this mode,
the only function of the cell is to guide each value received at the upper port
down to the lower port, thereby enforcing a delay of two timesteps.

The first value output from cell (i, j) in propagation mode is the currently calcu-
lated value cij , stored in register C. All further output values are results forwarded
from cells above. A formal description of the algorithm implemented in Figure 16.11
is given by the assignment-free system (16.34).

788 16. Systolic Systems

input operations

a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bkj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding

a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1)

+ a(i, j − 1, k)

· b(i − 1, j, k)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

propagation

b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3 ,

c(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i − 1 + N3 ,

output operations

c1+N1+N3−k,j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(16.34)

It rests to explain how the control signals in a cell are generated in this model.
As a prerequisite, the cell must contain a state flip-flop indicating the current
operation mode. The output of this flip-flop is connected to the control inputs of
both multiplexors, see Figure 16.11(b). The global reset signal clears the state flip-
flop, as well as the registers A and C : the cell now works in calculation mode.

The global ready signal starts the countdown in all cells, so in every timestep
the counter is diminished by 1. The counter is initially set to the precalculated value
i+ j − 1, dependent on the position of the cell. When the counter reaches zero, the
flip-flop is set: the cell switches to propagation mode.

If desisting from a direct reset of the register C, the last value passed, before the
reset, from register B to register C of a cell can be used as a freely decidable initial
value for the next dot product to evaluate in the cell. We then even calculate, as
already in the systolic array from Figure 16.3, the more general problem

C = A ·B +D , (16.35)

detailed by the following equation system:

16.4. Control 789

input operations

a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bkj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = dij 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding

a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1)

+ a(i, j − 1, k)

· b(i − 1, j, k)

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

propagation

b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3 ,

c(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i − 1 + N3 .

output operations

c1+N1+N3−k,j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(16.36)

16.4.4. Distributed control

The method sketched in Figure 16.11 still has the following drawbacks:

1. The systolic array uses global control signals, requiring a high technical accuracy.

2. Each cell needs a counter with counting register, introducing a considerable
hardware expense.

3. The initial value of the counter varies between the cells. Thus, each cell must be
individually designed and implemented.

4. The input data of any successive problem must wait outside the cells until all
results from the current problem have left the systolic array.

These disadvantages can be avoided, if control signals are propagated like data—
meaning a distributed control. Therefore, we preserve the connections of the reg-
isters B and C with the multiplexors from Figure 16.11(b), but do not generate
any control signals in the cells; also, there will be no global reset signal. Instead, a
cell receives the necessary control signal from one of the neighbours, stores it in a
new one-bit register S, and appropriately forwards it to further neighbouring cells.
The primary control signals are generated by the host computer, and infused into
the systolic array by boundary cells, only. Figure 16.12(a) shows the required array
structure, Figure 16.12(b) the modified cell structure.

Switching to the propagation mode occurs successively down one cell in a column,
always delayed by one timestep. The delay introduced by register S is therefore

790 16. Systolic Systems

sufficient.
Reset to the calculation mode is performed via the same control wire, and thus

also happens with a delay of one timestep per cell. But since the results cij sink
down at half speed, only, we have to wait sufficiently long with the reset: if a cell is
switched to calculation mode in timestep t, it goes to propagation mode in timestep
t+N3, and is reset back to calculation mode in timestep t+N1 +N3.

So we learned that in a systolic array, distributed control induces a different
macroscopic timing behaviour than local/global control. Whereas the systolic array
from Figure 16.12 can start the calculation of a new problem (16.35) every N1 +N3

timesteps, the systolic array from Figure 16.11 must wait for 2 ·N1 + N2 + N3 − 2
timesteps. The time difference N1 +N3 resp. 2 ·N1 +N2 +N3−2 is called the period,
its reciprocal being the throughput.

System (16.37 and 16.38), divided into two parts during the typesetting, formally
describes the relations between distributed control and calculations. We thereby as-
sume an infinite, densely packed sequence of matrix product problems, the additional
iteration variable l being unbounded. The equation headed variables with alias de-
scribes but pure identity relations.

control

s(i, j, k, l) = 0 i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

s(i, j, k, l) = 1 i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 ,

s(i, j, k, l) = s(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

input operations

a(i, j, k, l) = al
ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k, l) = bl
kj i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k, l) = dl+1

N1+N3+1−k,j i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

variables with alias

c(i, j, k, l) = c(i, j, N1 + N3, l − 1)1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

(16.37)

16.4. Control 791

+

*

(b)(a)

A

B

C

S

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 16.12 Matrix product on a rectangular systolic array, with output of results and distributed
control. (a) Array structure. (b) Cell structure.

calculations and forwarding

a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

b(i, j, k, l) =

b(i − 1, j, k, l),

if s(i − 1, j, k, l) = 0

c(i, j, k − 1, l),

if s(i − 1, j, k, l) = 1

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

c(i, j, k, l) =

c(i, j, k − 1, l)

+ a(i, j − 1, k, l)

· b(i − 1, j, k, l),

if s(i − 1, j, k, l) = 0

b(i − 1, j, k, l),

if s(i − 1, j, k, l) = 1

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

output operations

cl
1+N1+N3−k,j = b(i, j, k, l) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(16.38)

Formula (16.39) shows the corresponding space-time matrix. Note that one entry
of T is not constant but depends on the problem parameters:

T =

1 0 0 0
0 1 0 0
1 1 1 N1 +N3 .

 (16.39)

Interestingly, also the cells in a row switch one timestep later when moving one
position to the right. Sacrificing some regularity, we could use this circumstance to

792 16. Systolic Systems

+

*

(b)

+

*

(c)(a)

A

A

B

B

C

C

S

S

0 0 0 0 1 1 1
a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 16.13 Matrix product on a rectangular systolic array, with output of results and distributed
control. (a) Array structure. (b) Cell on the upper border. (c) Regular cell.

relieve the host computer by applying control to the systolic array at cell (1,1), only.
We therefore would have to change the control scheme in the following way:

control

s(i, j, k, l) = 0 i = 1, j = 0, 1 ≤ k ≤ N3 ,

s(i, j, k, l) = 1 i = 1, j = 0, 1 + N3 ≤ k ≤ N1 + N3 ,

s(i, j, k, l) = s(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

variables with alias

s(i, j, k, l) = s(i + 1, j − 1, k, l) i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

(16.40)

Figure 16.13 shows the result of this modification. We now need cells of two kinds:
cells on the upper border of the systolic array must be like that in Figure 16.13(b);
all other cells would be as before, see Figure 16.13(c). Moreover, the communication
topology on the upper border of the systolic array would be slightly different from
that in the regular area.

16.4. Control 793

16.4.5. The cell program as a local view

The chosen space-time transformation widely determines the architecture of the
systolic array. Mapping recurrence equations to space-time coordinates yields an
explicit view to the geometric properties of the systolic array, but gives no real
insight into the function of the cells. In contrast, the processes performed inside
a cell can be directly expressed by a cell program. This approach is particularly
of interest if dealing with a programmable systolic array, consisting of cells indeed
controlled by a repetitive program.

Like the global view, i.e., the structure of the systolic array, the local view
given by a cell program in fact is already fixed by the space-time transformation.
But, this local view is only induced implicitly here, and thus, by a further mathe-
matical transformation, an explicit representation must be extracted, suitable as a
cell program.

In general, we denote instances of program variables with the aid of index
expressions, that refer to iteration variables. Take, for instance, the equation

c(i, j, k) = c(i, j, k−1)+a(i, j−1, k)·b(i−1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

from system (16.3). The instance c(i, j, k − 1) of the program variable c is specified
using the index expressions i, j, and k − 1, which can be regarded as functions of
the iteration variables i, j, k.

As we have noticed, the set of iteration vectors (i, j, k) from the quantification
becomes a set of space-time coordinates (x, y, t) when applying a space-time trans-
formation (16.12) with transformation matrix T from (16.14),

x
y
t

 = T ·

i
j
k

 =

0 −1 1
−1 1 0

1 1 1

 ·

i
j
k

 . (16.41)

Since each cell is denoted by space coordinates (x, y), and the cell program must
refer to the current time t, the iteration variables i, j, k in the index expressions
for the program variables are not suitable, and must be translated into the new
coordinates x, y, t. Therefore, using the inverse of the space-time transformation
from (16.41), we express the iteration variables i, j, k as functions of the space-time
coordinates (x, y, t),

i
j
k

 = T−1 ·

x
y
t

 =
1

3
·

−1 −2 1
−1 1 1

2 1 1

 ·

x
y
t

 . (16.42)

The existence of such an inverse transformation is guaranteed if the space-time
transformation is injective on the domain—and that it should always be: if not,
some instances must be calculated by a cell in the same timestep. In the example,
reversibility is guaranteed by the square, non singular matrix T , even without referral
to the domain. With respect to the time vector π and any projection vector u, the
property π · u 6= 0 is sufficient.

Replacing iteration variables by space-time coordinates, which might be inter-
preted as a transformation of the domain, frequently yields very unpleasant

794 16. Systolic Systems

index expressions. Here, for example, from c(i, j, k − 1) we get

c((−x− 2 · y + t)/3, (−x+ y + t)/3, (2 · x+ y + t)/3) .

But, by a successive transformation of the index sets, we can relabel the in-
stances of the program variables such that the reference to cell and time appears more
evident. In particular, it seems worthwhile to transform the equation system back
into output normal form, i.e., to denote the results calculated during timestep
t in cell (x, y) by instances (x, y, t) of the program variables. We best gain a real
understanding of this approach via an abstract mathematical formalism, that we
can fit to our special situation.

Therefore, let

r(ψr(v)) = F(. . . , s(ψs(v)), . . .) v ∈ S (16.43)

be a quantified equation over a domain S, with program variables r and s. The index
functions ψr and ψs generate the instances of the program variables as tuples of
index expressions.

By transforming the domain with a function ϕ that is injective on S, equation
(16.43) becomes

r(ψr(ϕ−1(e))) = F(. . . , s(ψs(ϕ−1(e))), . . .) e ∈ ϕ(S) , (16.44)

where ϕ−1 is a function that constitutes an inverse of ϕ on ϕ(S). The new index
functions are ψr ◦ ϕ

−1 and ψs ◦ ϕ
−1. Transformations of index sets don’t touch the

domain; they can be applied to each program variable separately, since only the
instances of this program variable are renamed, and in a consistent way. With such
renamings ϑr and ϑs, equation (16.44) becomes

r(ϑr(ψr(ϕ−1(e)))) = F(. . . , s(ϑs(ψs(ϕ−1(e)))), . . .) e ∈ ϕ(S) . (16.45)

If output normal form is desired, ϑr ◦ ψr ◦ ϕ
−1 has to be the identity.

In the most simple case (as for our example), ψr is the identity, and ψs is
an affine transformation of the form ψs(v) = v − d, with constant d—the already
known dependence vector. ψr then can be represented in the same way, with d = ~0.
Transformation of the domains happens by the space-time transformation ϕ(v) =
T ·v, with an invertible matrix T . For all index transformations, we choose the same
ϑ = ϕ. Thus equation (16.45) becomes

r(e) = F(. . . , s(e− T · d), . . .) e ∈ T (S) . (16.46)

For the generation of a cell program, we have to know the following informa-
tion for every timestep: the operation to perform, the source of the data, and the
destination of the results—known from assembler programs as opc, src, dst.

The operation to perform (opc) follows directly from the function F . For a
cell with control, we must also find the timesteps when to perform this individ-
ual function F . The set of these timesteps, as a function of the space coordinates, can

16.4. Control 795

be determined by projecting the set T (S) onto the time axis; for general poly-
hedric S with the aid of a Fourier-Motzkin elimination, for example.

In system (16.46), we get a new dependence vector T · d, consisting of two com-
ponents: a (vectorial) spatial part, and a (scalar) timely part. The spatial part ∆z,
as a difference vector, specifies which neighbouring cell has calculated the operand.
We directly can translate this information, concerning the input of operands to cell
z, into a port specifier with port position −∆z, serving as the src operand of the
instruction. In the same way, the cell calculating the operand, with position z−∆z,
must write this value to a port with port position ∆z, used as the dst operand in
the instruction.

The timely part of T · d specifies, as a time difference ∆t, when the calculation
of the operand has been performed. If ∆t = 1, this information is irrelevant, because
the reading cell z always gets the output of the immediately preceding timestep
from neighbouring cells. However, for ∆t > 1, the value must be buffered for ∆t− 1
timesteps, either by the producer cell z−∆z, or by the consumer cell z—or by both,
sharing the burden. This need can be realised in the cell program, for example, with
∆t−1 copy instructions executed by the producer cell z−∆z, preserving the value of
the operand until its final output from the cell by passing it through ∆t−1 registers.

Applying this method to system (16.37 and 16.38), with transformation matrix
T as in (16.39), yields

s(x, y, t) = s(x − 1, y, t − 1)

a(x, y, t) = a(x, y − 1, t − 1)

b(x, y, t) =

b(x − 1, y, t − 1),

if s(x − 1, y, t − 1) = 0

c(x, y, t − 1),

if s(x − 1, y, t − 1) = 1

c(x, y, t) =

c(x, y, t − 1) + a(x, y − 1, t − 1) · b(x − 1, y, t − 1) ,

if s(x − 1, y, t − 1) = 0

b(x − 1, y, t − 1),

if s(x − 1, y, t − 1) = 1 .

(16.47)

The iteration variable l, being relevant only for the input/output scheme, can
be set to a fixed value prior to the transformation. The cell program for the systolic
array from Figure 16.12, performed once in every timestep, reads as follows:

Cell-Program

1 S← C(−1, 0)(0)
2 A← C(0,−1)
3 B← C(−1, 0)(1 : N)
4 C(1, 0)(0)← S

5 C(0, 1)← A

796 16. Systolic Systems

6 if S = 1
7 then C(1, 0)(1 : N)← C

8 C← B

9 else C(1, 0)(1 : N)← B

10 C← C + A · B

The port specifiers stand for local input/output to/from the cell. For each, a
pair of qualifiers is derived from the geometric position of the ports relative to the
centre of the cell. Port C(0,−1) is situated on the left border of the cell, C(0, 1)
on the right border; C(−1, 0) is above the centre, C(1, 0) below. Each port specifier
can be augmented by a bit range: C(−1, 0)(0) stands for bit 0 of the port, only;
C(−1, 0)(1 : N) denotes the bits 1 to N . The designations A, B, . . . without port
qualifiers stand for registers of the cell.

By application of matrix T from (16.13) to system (16.36), we get

a(x, y, t) = a(x, y − 1, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

b(x, y, t) = b(x − 1, y, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

c(x, y, t) = c(x, y, t − 1)

+ a(x, y − 1, t − 1)

· b(x − 1, y, t − 1)

1 + x + y ≤ t ≤ x + y + N3 ,

b(x, y, t) = c(x, y, t − 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y + N3 ,

c(x, y, t) = b(x − 1, y, t − 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y − 1 + N3 .

(16.48)

Now the advantages of distributed control become obvious. The cell program
for (16.47) can be written with referral to the respective timestep t, only. And thus,
we need no reaction to global control signals, no counting register, no counting
operations, and no coding of the local cell coordinates.

Exercises
16.4-1 Specify appropriate input/output schemes for performing, on the systolic
arrays presented in Figures 16.11 and 16.12, two evaluations of system (16.36) that
follow each other closest in time.
16.4-2 How could we change the systolic array from Figure 16.12, to efficiently
support the calculation of matrix products with parameters M1 < N1 or M2 < N2?

16.4-3 Write a cell program for the systolic array from Figure 16.3.
16.4-4? Which throughput allows the systolic array from Figure 16.3 for the as-
sumed values of N1, N2, N3? Which for general N1, N2, N3?
16.4-5? Modify the systolic array from Figure 16.1 such that the results stored in
stationary variables are output through additional links directed half right down,
i.e., from cell (i, j) to cell (i + 1, j + 1). Develop an assignment-free equation sys-
tem functionally equivalent to system (16.36), that is compatible with the extended
structure. How looks the resulting input/output scheme? Which period is obtained?

16.5. Linear systolic arrays 797

min

max

(b)(a)

X

M

S

01 1 1 1
MAXMAXMAXMAXMAX

x1

x2

x3

x4

x5

m1

m2

m3

m4

m5

Figure 16.14 Bubble sort algorithm on a linear systolic array. (a) Array structure with in-
put/output scheme. (b) Cell structure.

16.5. Linear systolic arrays

Explanations in the sections above heavily focused on two-dimensional systolic ar-
rays, but in principle also apply to one-dimensional systolic arrays, called linear
systolic arrays in the sequel. The most relevant difference between both kinds
concerns the boundary of the systolic array. Linear systolic arrays can be regarded
as consisting of boundary cells, only; under this assumption, input from and output
to the host computer needs no special concern. However, the geometry of a linear
systolic array provides one full dimension as well as one fictitious dimension, and
thus communication along the full-dimensional axis may involve similar questions as
in Subsection 16.3.5. Eventually, the boundary of the linear systolic array can also
be defined in a radically different way, namely to consist of both end cells, only.

16.5.1. Matrix-vector product

If we set one of the problem parameters N1 or N2 to value 1 for a systolic array as
that from Figure 16.1, the matrix product means to multiply a matrix by a vector,
from left or right. The two-dimensional systolic array then degenerates to a one-
dimensional systolic array. The vector by which to multiply is provided as an input
data stream through an end cell of the linear systolic array. The matrix items are
input to the array simultaneously, using the complete broadside.

As for full matrix product, results emerge stationary. But now, they either can
be drained along the array to one of the end cells, or they are sent directly from
the producer cells to the host computer. Both methods result in different control
mechanisms, time schemes, and running time.

Now, would it be possible to provide all inputs via end cells? The answer is
negative if the running time should be of complexity Θ(N). Matrix A contains
Θ(N2) items, thus there are Θ(N) items per timestep to read. But the number
of items receivable through an end cell during one timestep is bounded. Thus, the
input/output data rate—of order Θ(N), here—may already constrain the possible
design space.

798 16. Systolic Systems

16.5.2. Sorting algorithms

For sorting, the task is to bring the elements from a set {x1, . . . , xN}, subset of a
totally ordered basic set G, into an ascending order {mi}i=1,...,N where mi ≤ mk

for i < k. A solution to this problem is described by the following assignment-free
equation system, where MAX denotes the maximum in G:

input operations

x(i, j) = xi 1 ≤ i ≤ N, j = 0 ,

m(i, j) = MAX 1 ≤ j ≤ N, i = j − 1 .

calculations

m(i, j) = min{x(i, j − 1), m(i − 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i ,

x(i, j) = max{x(i, j − 1), m(i − 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i .

output operations

m(i, j) = mj 1 ≤ j ≤ N, i = N .

(16.49)

By completing a projection along direction u = (1, 1) to a space-time transfor-
mation

(

x
t

)

=

(

1 −1
1 1

)

·

(

i
j

)

, (16.50)

we get the linear systolic array from Figure 16.14, as an implementation of the bubble
sort algorithm.

Correspondingly, the space-time matrix

T =

(

0 1
1 1

)

(16.51)

would induce another linear systolic array, that implements insertion sort. Eventu-
ally, the space-time matrix

T =

(

1 0
1 1

)

(16.52)

would lead to still another linear systolic array, this one for selection sort.
For the sorting problem, we have Θ(N) input items, Θ(N) output items, and

Θ(N) timesteps. This results in an input/output data rate of order Θ(1). In contrast
to the matrix-vector product from Subsection 16.5.1, the sorting problem with any
prescribed input/output data rate in principle allows to perform the communication
exclusively through the end cells of a linear systolic array.

Note that, in all three variants of sorting described so far, direct input is nec-
essary to all cells: the values to order for bubble sort, the constant values MAX
for insertion sort, and both for selection sort. However, instead of inputting the
constants, the cells could generate them, or read them from a local memory.

All three variants require a cell control: insertion sort and selection sort use
stationary variables; bubble sort has to switch between the processing of input data
and the output of calculated values.

16.5. Linear systolic arrays 799

16.5.3. Lower triangular linear equation systems

System (16.53) below describes a localised algorithm for solving the linear equation
system A · x = b, where the N ×N matrix A is a lower triangular matrix.

input operations

a(i, j) = ai,j+1 1 ≤ i ≤ N, 0 ≤ j ≤ i − 1 ,

u(i, j) = bi 1 ≤ i ≤ N, j = 0 .

calculations and forwarding

u(i, j) = u(i, j − 1) − a(i, j − 1) · x(i − 1, j) 2 ≤ i ≤ N, 1 ≤ j ≤ i − 1 ,

x(i, j) = u(i, j − 1)/a(i, j − 1) 1 ≤ i ≤ N, j = i ,

x(i, j) = x(i − 1, j) 2 ≤ i ≤ N − 1, 1 ≤ j ≤ i − 1 .

output operations

xi = x(i, j) 1 ≤ i ≤ N, j = i .

(16.53)

All previous examples had in common that, apart from copy operations, the same
kind of calculation had to be performed for each domain point: fused multiply/add
for the matrix algorithms, minimum and maximum for the sorting algorithms. In
contrast, system (16.53) contains some domain points where multiply and subtract
is required, as well as some others needing division. When projecting system (16.53)
to a linear systolic array, depending on the chosen projection direction we get fixed
or varying cell functions. Peculiar for projecting along u = (1, 1), we see a single
cell with divider; all other cells need a multiply/subtract unit. Projection along
u = (1, 0) or u = (0, 1) yields identical cells, all containing a divider as well as
a multiply/subtract unit. Projection vector u = (1,−1) results in a linear systolic
array with three different cell types: both end cells need a divider, only; all other
cells contain a multiply/subtract unit, with or without divider, alternatingly. Thus,
a certain projection can introduce inhomogeneities into a systolic array—that may
be desirable, or not.

Exercises
16.5-1 For both variants of matrix-vector product as in Subsection 16.5.1—output
of the results by an end cell versus communication by all cells—specify a suitable
array structure with input/output scheme and cell structure, including the necessary
control mechanisms.
16.5-2 Study the effects of further projection directions on system (16.53).
16.5-3 Construct systolic arrays implementing insertion sort and selection sort, as
mentioned in Subsection 16.5.2. Also draw the corresponding cell structures.
16.5-4? The systolic array for bubble sort from Figure 16.14 could be operated
without control by cleverly organising the input streams. Can you find the trick?
16.5-5? What purpose serves the value MAX in system (16.49)? How system (16.49)
could be formulated without this constant value? Which consequences this would
incur for the systolic arrays described?

800 16. Systolic Systems

Problems

16-1 Band matrix algorithms
In Sections 16.1, 16.2, and Subsections 16.5.1, and 16.5.3, we always assumed full
input matrices, i.e., each matrix item aij used could be nonzero in principle. (Though
in a lower triangular matrix, items above the main diagonal are all zero. Note,
however, that these items are not inputs to any of the algorithms described.)

In contrast, practical problems frequently involve band matrices, cf.
Kung/Leiserson [?]. In such a matrix, most diagonals are zero, left alone a small
band around the main diagonal. Formally, we have aij = 0 for all i, j with i− j ≥ K
or j− i ≥ L, where K and L are positive integers. The band width, i.e., the number
of diagonals where nonzero items may appear, here amounts to K + L− 1.

Now the question arises whether we could profit from the band structure in one
or more input matrices to optimise the systolic calculation. One opportunity would
be to delete cells doing no useful work. Other benefits could be shorter input/output
data streams, reduced running time, or higher throughput.

Study all systolic arrays presented in this chapter for improvements with respect
to these criteria.

Chapter Notes

The term systolic array has been coined by Kung and Leiserson in their seminal
paper [?].

Karp, Miller, and Winograd did some pioneering work [2] for uniform recurrence
equations.

Essential stimuli for a theory on the systematic design of systolic arrays have
been Rao’s PhD dissertation [?] and the work of Quinton [?].

The contribution of Teich and Thiele [5] shows that a formal derivation of the
cell control can be achieved by methods very similar to those for a determination of
the geometric array structure and the basic cell function.

The up-to-date book by Darte, Robert, and Vivien [1] joins advanced methods
from compiler design and systolic array design, dealing also with the analysis of data
dependences.

The monograph [?] still seems to be the most comprehensive work on systolic
systems.

Each systolic array can also be modelled as a cellular automaton. The regis-
ters in a cell together hold the state of the cell. Thus, a factorised state space
is adequate. Cells of different kind, for instance with varying cell functionality or
position-dependent cell control, can be described with the aid of further components
of the state space.

Each systolic algorithm also can be regarded as a PRAM algorithm with the
same timing behaviour. Thereby, each register in a systolic cell corresponds to a
PRAM memory cell, and vice versa. The EREW PRAM model is sufficient, because
in every timestep exactly one systolic cell reads from this register, and then exactly

Notes for Chapter 16 801

one systolic cell writes to this register.
Each systolic system also is a special kind of synchronous network as defined by

Lynch [3]. Time complexity measures agree. Communication complexity usually is
no topic with systolic arrays. Restriction to input/output through boundary cells,
frequently demanded for systolic arrays, also can be modelled in a synchronous
network. The concept of failures is not required for systolic arrays.

The book written by Sima, Fountain and Kacsuk [4] considers the systolic sys-
tems in details.

Bibliography

[1] A. Darte, Y. Robert, F. Vivien. Scheduling and Automatic Parallelization. Birkhäuser Boston,
2000. 800

[2] R. M. Karp, R. E. Miller, S. Winograd. The organization of computations for uniform recurrence

equations. Journal of the ACM, 14:563–590, 1967. 800

[3] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publisher, 2001 (5th edition). 801

[4] D. Sima, T. Fountain, P. Kacsuk. Advanced Computer Architectures: a Design Space Approach.
Addison-Wesley Publishing Company, 1998 (2nd edition). 801

[5] J. Teich, L. Thiele. Control generation in the design of processor arrays. International Journal
of VLSI and Signal Processing, 3(2):77–92, 1991. 800

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

http://perso.ens-lyon.fr/alain.darte/
http://graal.ens-lyon.fr/~yrobert/
http://graal.ens-lyon.fr/~fvivien/
http://www.icir.org/karp/
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://theory.lcs.mit.edu/~lynch
http://www.bmf.hu/02szervezeti/sima_dezso.htm
http://www.lpds.sztaki.hu/index.php?menu=staff&&load=staff/member.php&&mid=0
http://www.aw.com/
http://www-date.uni-paderborn.de/MEMBERS/teich.html
http://www.tik.ee.ethz.ch/~thiele/
http://www.kluweronline.com/issn/0922-5773/contents

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A
assignment-free notation, 762, 773

B
band matrix, 800
band width, 800
bubble sort, 797fig, 798

C
calculation mode, 787
cell, 758, 764, 775

boundary, 759, 776, 780, 781, 789, 797
program, 793
structure of, 759, 760fig, 768fig, 770,

774–776, 791fig, 797fig
with distributed control, 789, 791fig
with global control, 785
with local control, 786–789
without control, 785

Cell-Program, 795
cellular automaton, 800
clear, 761, 765, 786
clock signal, 758, 763, 764, 784
communication

external, 764
internal, 764

communication topology
hexagonal, 774

of systolic array, 773, 792
orthogonal, 774

compound operation, 763, 784
connection pattern, 759, 770
control

local/global, 786, 787fig
control signal

propagated, 789
copy operation, 774

D
data

input, 762, 764
output, 762

data dependence, 773
data flow, 773

regular, 759
data rate, 776, 780, 797, 798
data storage, 764
data stream, 758

input, 780, 797
input/output, 780
length of, 766

data structure index, 777, 778
data structure vector, 777
delay, 764, 765, 787

dependence vector, 773, 794
domain, 762

dense convex, 770, 771
of input/output operations, 781
parametric, 770

dot product, 761

E
end cell, 797
equational calculus, 762

F
failure, 801
flow direction, 774, 775, 776

Fourier-Motzkin elimination, 795
full input matrix, 800pr

G
generic operator, 761, 781

distributed, 775
global view, 793

804 Index

H
hardware algorithm, 757
host computer, 758, 764, 786, 789, 792, 797

I
index expression, 793
index function, 794

inhomogeneity, 799
input/output expansion, 781
input/output scheme, 758, 760fig, 765, 776,

777fig, 778, 786fig, 797fig
extended, 780, 781, 781, 782fig
superposition of, 779, 780

input stream, 766, 785
length of, 766

insertion sort, 798
instance, 762, 765
interleaving, 782, 783fig
iteration

variable, 762, 793
vector, 762, 763, 769, 777, 778, 784

L
link, 759, 764, 774

directed, 764
local view, 793

M
matrix

full, 800
unimodular, 771

matrix product, 758, 760fig, 767, 768fig,
791fig

Matrix-Product, 761
matrix-vector product, 797
mode

calculation, 787
propagation, 787

multiply-add, 763

O
operation

elementary, 763
input/output, 762

operation mode, 784, 788
output

delayed, 786fig
output normal form, 794

outside world, 759, 764, 766

P
parallelism

directly express, 762
massive, 758

parametric problem, 767
period, 790
pipelining, 758, 766, 767
port, 759, 775

input, 759, 768, 775
output, 759, 768, 775

PRAM algorithm, 800
problem parameter, 759, 766, 772, 785, 791

projection, 769
direction, 769, 781, 799
matrix, 769, 776exe
vector, 769, 776exe, 793

propagation mode, 787

Q
quantification, 762

R
recurrence equation, 762

uniform, 800
register, 775
reset, 785fig
running time

of systolic algorithm, 758, 761, 764, 773,
797

S
scalar control processor, 764
selection sort, 798
serialisation, 761
side effect, 762
simultaneity, 763
skew, 766
slow down, 786
snapshot, 767fig, 778
sorting algorithms, 798
space coordinates, 760, 769, 770

parametric, 770–772
space-time

matrix, 771, 783
transformation, 767–776, 770, 793

spurious operation, 781
state flip-flop, 788
stationary

matrix, 766, 776
variable, 766, 775, 781, 785

symbolic evaluation, 770
synchronous, 763

network, 801
systolic, 757, 758

algorithm, 758
architecture, 764
system, 757–801, 758
timestep, 763

systolic array, 757–801, 758
architecture of, 770
border of, 766, 772, 776
boundary of, 781, 797
degenerated, 797
hexagonal, 768, 772
linear, 797
multi-dimensional, 766
parameter of, 759, 772, 785
programmable, 793
rectangular, 758, 760fig, 768, 791fig
shape of, 768, 771, 772
size of, 759, 771
structure of, 758, 759, 760fig, 768fig,

791fig, 793, 797fig

T
throughput, 790
timestep, 764

Index 805

discrete, 763
time vector, 769, 775, 784, 793
transformation

of domain, 793, 794
of index set, 794

triangular matrix

lower, 799

U
uniform algorithm, 767
utilisation, 766, 782, 784

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

D
Darte, Alain, 800, 802

E
Einstein, Albert (1879–1955), 763

F
Fountain, Terence J., 801, 802
Fourier, Jean Baptiste Joseph (1768–1830),

795

K
Kacsuk, Péter, 801, 802
Karp, Richard M., 800, 802
Kung, H. T., 800

L
Leiserson, Charles E., 800
Lynch, Nancy Ann, 802

M
Miller, Raymond E., 800, 802
Motzkin, Theodore Samuel, 795

Q
Quinton, Patrice, 800

R
Rao, Sailesh K., 800
Robert, Yves, 800, 802

S
Sima, Dezső, 801, 802

T
Teich, Jürgen, 800, 802
Thiele, Lothar, 800, 802

V
Vivien, Frédéric, 800, 802

W
Winograd, Shmuel, 800, 802

Z
Zehendner, Eberhard, 757, 800

	16. Systolic Systems
	 16.1. Basic concepts of systolic systems
	 16.1.1. An introductory example: matrix product
	 16.1.2. Problem parameters and array parameters
	 16.1.3. Space coordinates
	 16.1.4. Serialising generic operators
	 16.1.5. Assignment-free notation
	 16.1.6. Elementary operations
	 16.1.7. Discrete timesteps
	 16.1.8. External and internal communication
	 16.1.9. Pipelining

	 16.2. Space-time transformation and systolic arrays
	 16.2.1. Further example: matrix product
	 16.2.2. The space-time transformation as a global view
	 16.2.3. Parametric space coordinates
	 16.2.4. Symbolically deriving the running time
	 16.2.5. How to unravel the communication topology
	 16.2.6. Inferring the structure of the cells

	 16.3. Input/output schemes
	 16.3.1. From data structure indices to iteration vectors
	 16.3.2. Snapshots of data structures
	 16.3.3. Superposition of input/output schemes
	 16.3.4. Data rates induced by space-time transformations
	 16.3.5. Input/output expansion
	 16.3.6. Coping with stationary variables
	 16.3.7. Interleaving of calculations

	 16.4. Control
	 16.4.1. Cells without control
	 16.4.2. Global control
	 16.4.3. Local control
	 16.4.4. Distributed control
	 16.4.5. The cell program as a local view

	 16.5. Linear systolic arrays
	 16.5.1. Matrix-vector product
	 16.5.2. Sorting algorithms
	 16.5.3. Lower triangular linear equation systems

	Bibliography
	Index
	Name Index

