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15. Parallel Computations

Parallel computations is concerned with solving a problem faster by using multi-
ple processors in parallel. These processors may belong to a single machine, or to
different machines that communicate through a network. In either case, the use of
parallelism requires to split the problem into tasks that can be solved simultaneously.

In the following, we will take a brief look at the history of parallel computing,
and then discuss reasons why parallel computing is harder than sequential comput-
ing. We explain differences from the related subjects of distributed and concurrent
computing, and mention typical application areas. Finally, we outline the rest of this
chapter.

Although the history of parallel computing can be followed back even longer,
the first parallel computer is commonly said to be Illiac IV, an experimental 64-
processor machine that became operational in 1972. The parallel computing area
boomed in the late 80s and early 90s when several new companies were founded
to build parallel machines of various types. Unfortunately, software was difficult to
develop and non-portable at that time. Therefore, the machines were only adopted
in the most compute-intensive areas of science and engineering, a market too small
to commence for the high development costs. Thus many of the companies had to
give up.

On the positive side, people soon discovered that cheap parallel computers can
be built by interconnecting standard PCs and workstations. As networks became
faster, these so-called clusters soon achieved speeds of the same order as the special-
purpose machines. At present, the Top 500 list, a regularly updated survey of the
most powerful computers worldwide, contains 42% clusters. Parallel computing also
profits from the increasing use of multiprocessor machines which, while designed as
servers for web etc., can as well be deployed in parallel computing. Finally, software
portability problems have been solved by establishing widely used standards for
parallel programming. The most important standards, MPI and OpenMP, will be
explained in Subsections 15.3.1 and 15.3.2 of this book.

In summary, there is now an affordable hardware basis for parallel computing.
Nevertheless, the area has not yet entered the mainstream, which is largely due
to difficulties in developing parallel software. Whereas writing a sequential program
requires to find an algorithm, that is, a sequence of elementary operations that solves
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the problem, and to formulate the algorithm in a programming language, parallel
computing poses additional challenges:

• Elementary operations must be grouped into tasks that can be solved concur-
rently.

• The tasks must be scheduled onto processors.

• Depending on the architecture, data must be distributed to memory modules.

• Processes and threads must be managed, i.e., started, stopped and so on.

• Communication and synchronisation must be organised.

Of course, it is not sufficient to find any grouping, schedule etc. that work, but it
is necessary to find solutions that lead to fast programs. Performance measures and
general approaches to performance optimisation will be discussed in Section 15.2,
where we will also elaborate on the items above. Unlike in sequential computing,
different parallel architectures and programming models favour different algorithms.

In consequence, the design of parallel algorithms is more complex than the design
of sequential algorithms. To cope with this complexity, algorithm designers often use
simplified models. For instance, the Parallel Random Access Machine (see Subsection
15.4.1) provides a model in which opportunities and limitations of parallelisation can
be studied, but it ignores communication and synchronisation costs.

We will now contrast parallel computing with the related fields of distributed
and concurrent computing. Like parallel computing, distributed computing uses in-
terconnected processors and divides a problem into tasks, but the purpose of division
is different. Whereas in parallel computing, tasks are executed at the same time, in
distributed computing tasks are executed at different locations, using different re-
sources. These goals overlap, and many applications can be classified as both parallel
and distributed, but the focus is different. Parallel computing emphasises homoge-
neous architectures, and aims at speeding up applications, whereas distributed com-
puting deals with heterogeneity and openness, so that applications profit from the
inclusion of different kinds of resources. Parallel applications are typically stand-
alone and predictable, whereas distributed applications consist of components that
are brought together at runtime.

Concurrent computing is not bound to the existence of multiple processors, but
emphasises the fact that several sub-computations are in progress at the same time.
The most important issue is guaranteeing correctness for any execution order, which
can be parallel or interleaved. Thus, the relation between concurrency and paral-
lelism is comparable to the situation of reading several books at a time. Reading the
books concurrently corresponds to having a bookmark in each of them and to keep
track of all stories while switching between books. Reading the books in parallel, in
contrast, requires to look into all books at the same time (which is probably impos-
sible in practice). Thus, a concurrent computation may or may not be parallel, but a
parallel computation is almost always concurrent. An exception is data parallelism,
in which the instructions of a single program are applied to different data in parallel.
This approach is followed by SIMD architectures, as described below.

For the emphasis on speed, typical application areas of parallel computing are
science and engineering, especially numerical solvers and simulations. These appli-
cations tend to have high and increasing computational demands, since more com-
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puting power allows one to work with more detailed models that yield more accurate
results. A second reason for using parallel machines is their higher memory capacity,
due to which more data fit into a fast memory level such as cache.

The rest of this chapter is organised as follows: In Section 15.1, we give a brief
overview and classification of current parallel architectures. Then, we introduce basic
concepts such as task and process, and discuss performance measures and general
approaches to the improvement of efficiency in Section 15.2. Next, Section 15.3
describes parallel programming models, with focus on the popular MPI and OpenMP
standards. After having given this general background, the rest of the chapter delves
into the subject of parallel algorithms from a more theoretical perspective. Based on
example algorithms, techniques for parallel algorithm design are introduced. Unlike
in sequential computing, there is no universally accepted model for parallel algorithm
design and analysis, but various models are used depending on purpose. Each of the
models represents a different compromise between the conflicting goals of accurately
reflecting the structure of real architectures on one hand, and keeping algorithm
design and analysis simple on the other. Section 15.4 gives an overview of the models,
Section 15.5 introduces the basic concepts of parallel algorithmics, Sections 15.6 and
15.7 explain deterministic example algorithms for PRAM and mesh computational
model.

15.1. Parallel architectures

A simple, but well-known classification of parallel architectures has been given in
1972 by Michael Flynn. He distinguishes computers into four classes: SISD, SIMD,
MISD, and MIMD architectures, as follows:

• SI stands for “single instruction”, that is, the machine carries out a single in-
struction at a time.

• MI stands for “multiple instruction”, that is, different processors may carry out
different instructions at a time.

• SD stands for “single data”, that is, only one data item is processed at a time.

• MD stands for “multiple data”, that is, multiple data items may be processed
at a time.

SISD computers are von-Neumann machines. MISD computers have probably never
been built. Early parallel computers were SIMD, but today most parallel computers
are MIMD. Although the scheme is of limited classification power, the abbreviations
are widely used.

The following more detailed classification distinguishes parallel machines into
SIMD, SMP, ccNUMA, nccNUMA, NORMA, clusters, and grids.

15.1.1. SIMD architectures

As depicted in Figure 15.1, a SIMD computer is composed of a powerful control
processor and several less powerful processing elements (PEs). The PEs are typically
arranged as a mesh so that each PE can communicate with its immediate neighbours.
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Figure 15.1 SIMD architecture.

A program is a single thread of instructions. The control processor, like the processor
of a sequential machine, repeatedly reads a next instruction and decodes it. If the
instruction is sequential, the control processor carries out the instruction on data in
its own memory. If the instruction is parallel, the control processor broadcasts the
instruction to the various PEs, and these simultaneously apply the instruction to
different data in their respective memories. As an example, let the instruction be
LD reg, 100. Then, all processors load the contents of memory address 100 to reg,
but memory address 100 is physically different for each of them. Thus, all processors
carry out the same instruction, but read different values (therefore “SIMD”). For
a statement of the form if test then if_branch else else_branch, first all
processors carry out the test simultaneously, then some carry out if_branch while
the rest sits idle, and finally the rest carries out else_branch while the formers
sit idle. In consequence, SIMD computers are only suited for applications with a
regular structure. The architectures have been important historically, but nowadays
have almost disappeared.

15.1.2. Symmetric multiprocessors

Symmetric multiprocessors (SMP) contain multiple processors that are connected to
a single memory. Each processor may access each memory location through standard
load/store operations of the hardware. Therefore, programs, including the operat-
ing system, must only be stored once. The memory can be physically divided into
modules, but the access time is the same for each pair of a processor and a memory
module (therefore “symmetric”). The processors are connected to the memory by
a bus (see Figure 15.2), by a crossbar, or by a network of switches. In either case,
there is a delay for memory accesses which, partially due to competition for network
resources, grows with the number of processors.

In addition to main memory, each processor has one or several levels of cache
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Figure 15.3 ccNUMA architecture.

with faster access. Between memory and cache, data are moved in units of cache lines.
Storing a data item in multiple caches (and writing to it) gives rise to coherency
problems. In particular, we speak of false sharing if several processors access the
same cache line, but use different portions of it. Since coherency mechanisms work
at the granularity of cache lines, each processor assumes that the other would have
updated its data, and therefore the cache line is sent back and forth.

15.1.3. Cache-coherent NUMA architectures:

NUMA stands for Non-Uniform Memory Access, and contrasts with the symmetry
property of the previous class. The general structure of ccNUMA architectures is
depicted in Figure 15.3. As shown in the figure, each processor owns a local memory,
which can be accessed faster than the rest called remote memory. All memory is
accessed through standard load/store operations, and hence programs, including
the operating system, must only be stored once. As in SMPs, each processor owns
one or several levels of cache; cache coherency is taken care of by the hardware.

15.1.4. Non-cache-coherent NUMA architectures:

nccNUMA (non cache coherent Non-Uuniform Memory Access) architectures differ
from ccNUMA architectures in that the hardware puts into a processor’s cache only
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data from local memory. Access to remote memory can still be accomplished through
standard load/store operations, but it is now up to the operating system to first move
the corresponding page to local memory. This difference simplifies hardware design,
and thus nccNUMA machines scale to higher processor numbers. On the backside,
the operating system gets more complicated, and the access time to remote memory
grows. The overall structure of Figure 15.3 applies to nccNUMA architectures as
well.

15.1.5. No remote memory access architectures

NORMA (NO Remote Memory Acess) architectures differ from the previous class
in that the remote memory must be accessed through slower I/O operations as
opposed to load/store operations. Each node, consisting of processor, cache and local
memory, as depicted in Figure 15.3, holds an own copy of the operating system, or at
least of central parts thereof. Whereas SMP, ccNUMA, and nccNUMA architectures
are commonly classified as shared memory machines, SIMD architectures, NORMA
architectures, clusters, and grids (see below) fall under the heading of distributed
memory.

15.1.6. Clusters

According to Pfister, a cluster is a type of parallel or distributed system that consists
of a collection of interconnected whole computers that are used as a single, unified
computing resource. Here, the term “whole computer” denotes a PC, workstation or,
increasingly important, SMP, that is, a node that consists of processor(s), memory,
possibly peripheries, and operating system. The use as a single, unified computing
resource is also denoted as single system image SSI. For instance, we speak of SSI if
it is possible to login into the system instead of into individual nodes, or if there is a
single file system. Obviously, the SSI property is gradual, and hence the borderline
to distributed systems is fuzzy. The borderline to NORMA architectures is fuzzy as
well, where the classification depends on the degree to which the system is designed
as a whole instead of built from individual components.

Clusters can be classified according to their use for parallel computing, high
throughput computing, or high availability. Parallel computing clusters can be fur-
ther divided into dedicated clusters, which are solely built for the use as parallel
machines, and campus-wide clusters, which are distributed systems with part-time
use as a cluster. Dedicated clusters typically do not contain peripheries in their
nodes, and are interconnected through a high-speed network. Nodes of campus-wide
clusters, in contrast, are often desktop PCs, and the standard network is used for
intra-cluster communication.

15.1.7. Grids

A grid is a hardware/software infrastructure for shared usage of resources and prob-
lem solution. Grids enable coordinated access to resources such as processors, mem-
ories, data, devices, and so on. Parallel computing is one out of several emerging
application areas. Grids differ from other parallel architectures in that they are
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large, heterogeneous, and dynamic. Management is complicated by the fact that
grids cross organisational boundaries.

15.2. Performance in practice

As explained in the introduction, parallel computing splits a problem into tasks that
are solved independently. The tasks are implemented as either processes or threads.
A detailed discussion of these concepts can be found in operating system textbooks
such as Tanenbaum. Briefly stated, processes are programs in execution. For each
process, information about resources such as memory segments, files, and signals
is stored, whereas threads exist within processes such that multiple threads share
resources. In particular, threads of a process have access to shared memory, while
processes (usually) communicate through explicit message exchange. Each thread
owns a separate PC and other register values, as well as a stack for local variables.
Processes can be considered as units for resource usage, whereas threads are units
for execution on the CPU. As less information needs to be stored, it is faster to
create, destroy and switch between threads than it is for processes.

Whether threads or processes are used, depends on the architecture. On shared-
memory machines, threads are usually faster, although processes may be used for
program portability. On distributed memory machines, only processes are a priori
available. Threads can be used if there is a software layer (distributed shared mem-
ory) that implements a shared memory abstraction, but these threads have higher
communication costs.

Whereas the notion of tasks is problem-related, the notions of processes and
threads refer to implementation. When designing an algorithm, one typically iden-
tifies a large number of tasks that can potentially be run in parallel, and then maps
several of them onto the same process or thread.

Parallel programs can be written in two styles that can also be mixed: With data

parallelism, the same operation is applied to different data at a time. The operation
may be a machine instruction, as in SIMD architectures, or a complex operation such
as a function application. In the latter case, different processors carry out different
instructions at a time. With task parallelism, in contrast, the processes/threads
carry out different tasks. Since a function may have an if or case statement as the
outermost construct, the borderline between data parallelism and task parallelism
is fuzzy.

Parallel programs that are implemented with processes can be further classi-
fied as using Single Program Multiple Data (SPMD) or Multiple Program Multi-
ple Data (MPMD) coding styles. With SPMD, all processes run the same pro-
gram, whereas with MPMD they run different programs. MPMD programs are task-
parallel, whereas SPMD programs may be either task-parallel or data-parallel. In
SPMD mode, task parallelism is expressed through conditional statements.

As the central goal of parallel computing is to run programs faster, performance
measures play an important role in the field. An obvious measure is execution time,
yet more frequently the derived measure of speedup is used. For a given problem,
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Figure 15.4 Ideal, typical, and super-linear speedup curves.

speedup is defined by

speedup(p) =
T1

Tp
,

where T1 denotes the running time of the fastest sequential algorithm, and Tp de-
notes the running time of the parallel algorithm on p processors. Depending on
context, speedup may alternatively refer to using p processes or threads instead of
p processors. A related, but less frequently used measure is efficiency, defined by

efficiency(p) =
speedup(p)

p
.

Unrelated to this definition, the term efficiency is also used informally as a synonym
for good performance.

Figure 15.4 shows ideal, typical, and super-linear speedup curves. The ideal curve
reflects the assumption that an execution that uses twice as many processors requires
half of the time. Hence, ideal speedup corresponds to an efficiency of one. Super-
linear speedup may arise due to cache effects, that is, the use of multiple processors
increases the total cache size, and thus more data accesses can be served from cache
instead of from slower main memory.

Typical speedup stays below ideal speedup, and grows up to some number of pro-
cessors. Beyond that, use of more processors slows down the program. The difference
between typical and ideal speedups has several reasons:

• Amdahl’s law states that each program contains a serial portion s that is not
amenable to parallelisation. Hence, Tp > s, and thus speedup(p) < T1/s, that is,
the speedup is bounded from above by a constant. Fortunately, another observa-
tion, called Gustafson-Barsis law reduces the practical impact of Amdahl’s law.
It states that in typical applications, the parallel variant does not speed up a
fixed problem, but runs larger instances thereof. In this case, s may grow slower
than T1, so that T1/s is no longer constant.

• Task management, that is, the starting, stopping, interrupting and scheduling
of processes and threads, induces a certain overhead. Moreover, it is usually
impossible, to evenly balance the load among the processes/threads.
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• Communication and synchronisation slow down the program. Communication
denotes the exchange of data, and synchronisation denotes other types of coor-
dination such as the guarantee of mutual exclusion. Even with high-speed net-
works, communication and synchronisation costs are orders of magnitude higher
than computation costs. Apart from physical transmission costs, this is due to
protocol overhead and delays from competition for network resources.

Performance can be improved by minimising the impact of the factors listed above.
Amdahl’s law is hard to circumvent, except that a different algorithm with smaller
s may be devised, possibly at the price of larger T1. Algorithmic techniques will be
covered in later sections; for the moment, we concentrate on the other performance
factors.

As explained in the previous section, tasks are implemented as processes or
threads such that a process/thread typically carries out multiple tasks. For high
performance, the granularity of processes/threads should be chosen in relation to
the architecture. Too many processes/threads unnecessarily increase the costs of
task management, whereas too few processes/threads lead to poor machine usage.
It is useful to map several processes/threads onto the same processor, since the pro-
cessor can switch when it has to wait for I/O or other delays. Large-granularity
processes/threads have the additional advantage of a better communication-to-
computation ratio, whereas fine-granularity processes/threads are more amenable
to load balancing.

Load balancing can be accomplished with static or dynamic schemes. If the run-
ning time of the tasks can be estimated in advance, static schemes are preferable. In
these schemes, the programmer assigns to each process/thread some number of tasks
with about the same total costs. An example of a dynamic scheme is master/slave.
In this scheme, first a master process assigns one task to each slave process. Then,
repeatedly, whenever a slave finishes a task, it reports to the master and is assigned
a next task, until all tasks have been processed. This scheme achieves good load
balancing at the price of overhead for task management.

The highest impact on performance usually comes from reducing communica-
tion/synchronisation costs. Obvious improvements result from changes in the archi-
tecture or system software, in particular from reducing latency, that is, the delay
for accessing a remote data item, and bandwidth, that is, the amount of data that
can be transferred per unit of time.

The algorithm designer or application programmer can reduce communica-
tion/synchronisation costs by minimising the number of interactions. An important
approach to achieve this minimisation is locality optimisation. Locality, a property
of (sequential or parallel) programs, reflects the degree of temporal and spatial con-
centration of accesses to the same data. In distributed-memory architectures, for
instance, data should be stored at the processor that uses the data. Locality can be
improved by code transformations, data transformations, or a combination thereof.
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Figure 15.5 Locality optimisation by data transformation.

As an example, consider the following program fragment to be executed on three
processors:

for (i=0; i<N; i++) in parallel

for (j=0; j<N; j++)

f(A[i][j]);

Here, the keyword “in parallel” means that the iterations are evenly distributed
among the processors so that P0 runs iterations i = 0, . . . , N/3, P1 runs iterations
i = N/3 + 1, . . . , 2N/3, and P2 runs iterations i = 2N/3 + 1, . . . , N − 1 (rounded if
necessary). The function f is supposed to be free of side effects.

With the data distribution of Figure 15.5a), locality is poor, since many accesses
refer to remote memory. Locality can be improved by changing the data distribution
to that of Figure 15.5b) or, alternatively, by changing the program into

for (j=0; j<N; j++) in parallel

for (i=0; i<N; i++)

f(A[i][j]);

The second alternative, code transformations, has the advantage of being appli-
cable selectively to a portion of code, whereas data transformations influence the
whole program so that an improvement in one part may slow down another. Data
distributions are always correct, whereas code transformations must respect data
dependencies, which are ordering constraints between statements. For instance, in

a = 3; (1)

b = a; (2)

a data dependence occurs between statements (1) and (2). Exchanging the state-
ments would lead to an incorrect program.

On shared-memory architectures, a programmer does not the specify data distri-
bution, but locality has a high impact on performance, as well. Programs run faster
if data that are used together are stored in the same cache line. On shared-memory
architectures, the data layout is chosen by the compiler, e.g. row-wise in C. The pro-
grammer has only indirect influence through the manner in which he or she declares
data structures.

Another opportunity to reduce communication costs is replication. For instance,
it pays off to store frequently used data at multiple processors, or to repeat short
computations instead of communicating the result.
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Synchronisations are necessary for correctness, but they slow down program ex-
ecution, first because of their own execution costs, and second because they cause
processes to wait for each other. Therefore, excessive use of synchronisation should be
avoided. In particular, critical sections (in which processes/threads require exclusive
access to some resource) should be kept at a minimum. We speak of sequentiali-

sation if only one process is active at a time while the others are waiting.
Finally, performance can be improved by latency hiding, that is, parallelism

between computation and communication. For instance, a process can start a remote
read some time before it needs the result (prefetching), or write data to remote
memory in parallel to the following computations.

Exercises
15.2-1 For standard matrix multiplication, identify tasks that can be solved in par-
allel. Try to identify as many tasks as possible. Then, suggest different opportunities
for mapping the tasks onto (a smaller number of) threads, and compare these map-
pings with respect to their efficiency on a shared-memory architecture.
15.2-2 Consider a parallel program that takes as input a number n and computes
as output the number of primes in range 2 ≤ p ≤ n. Task Ti of the program should
determine whether i is a prime, by systematically trying out all potential factors,
that is, dividing by 2, . . . ,

√
i. The program is to be implemented with a fixed num-

ber of processes or threads. Suggest different opportunities for this implementation
and discuss their pros and cons. Take into account both static and dynamic load
balancing schemes.
15.2-3 Determine the data dependencies of the following stencil code:

for (t=0; t<tmax; t++)

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] += a[i-1][j] + a[i][j-1]

Restructure the code so that it can be parallelised.
15.2-4 Formulate and prove the bounds of the speedup known as Amdahl law and
Gustafson-Barsis law. Explain the virtual contradiction between these laws. What
can you say on the practical speedup?

15.3. Parallel programming

Partly due to the use of different architectures and the novelty of the field, a large
number of parallel programming models has been proposed. The most popular mod-
els today are message passing as specified in the Message Passing Interface standard
(MPI), and structured shared-memory programming as specified in the OpenMP
standard. These programming models are discussed in Subsections 15.3.1 and 15.3.2,
respectively. Other important models such as threads programming, data parallelism,
and automatic parallelisation are outlined in Subsection 15.3.3.
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15.3.1. MPI programming

As the name says, MPI is based on the programming model of message passing.
In this model, several processes run in parallel and communicate with each other
by sending and receiving messages. The processes do not have access to a shared
memory, but accomplish all communication through explicit message exchange. A
communication involves exactly two processes: one that executes a send operation,
and another that executes a receive operation. Beyond message passing, MPI in-
cludes collective operations and other communication mechanisms.

Message passing is asymmetric in that the sender must state the identity of the
receiver, whereas the receiver may either state the identity of the sender, or declare
its willingness to receive data from any source. As both sender and receiver must
actively take part in a communication, the programmer must plan in advance when a
particular pair of processes will communicate. Messages can be exchanged for several
purposes:

• exchange of data with details such as the size and types of data having been
planned in advance by the programmer

• exchange of control information that concerns a subsequent message exchange,
and

• synchronisation that is achieved since an incoming message informs the receiver
about the sender’s progress. Additionally, the sender may be informed about the
receiver’s progress, as will be seen later. Note that synchronisation is a special
case of communication.

The MPI standard has been introduced in 1994 by the MPI forum, a group
of hardware and software vendors, research laboratories, and universities. A signifi-
cantly extended version, MPI-2, appeared in 1997. MPI-2 has about the same core
functionality as MPI-1, but introduces additional classes of functions.

MPI describes a set of library functions with language binding to C, C++, and
Fortran. With notable exceptions in MPI-2, most MPI functions deal with interpro-
cess communication, leaving issues of process management such as facilities to start
and stop processes, open. Such facilities must be added outside the standard, and are
consequently not portable. For this and other reasons, MPI programs typically use
a fixed set of processes that are started together at the beginning of a program run.
Programs can be coded in SPMD or MPMD styles. It is possible to write parallel
programs using only six base functions:

• MPI_Init must be called before any other MPI function.

• MPI_Finalize must be called after the last MPI function.

• MPI_Comm_size yields the total number of processes in the program.

• MPI_Comm_rank yields the number of the calling process, with processes being
numbered starting from 0.
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#include <stdio.h>

#include <string.h>

#include "mpi.h"

int main (int argc, char **argv) {

char msg[20];

int me, total, tag=99;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

MPI_Comm_size(MPI_COMM_WORLD, &total);

if (me==0) {

strcpy(msg, "Hello");

MPI_Send(msg, strlen(msg)+1, MPI_CHAR, 1, tag,

MPI_COMM_WORLD);

}

else if (me==1) {

MPI_Recv(msg, 20, MPI_CHAR, 0, tag, MPI_COMM_WORLD,

&status);

printf("Received: %s \n", msg);

}

MPI_Finalize();

return 0;

}

Figure 15.6 A simple MPI program.

• MPI_Send sends a message. The function has the following parameters:

– address, size, and data type of the message,

– number of the receiver,

– message tag, which is a number that characterises the message in a similar
way like the subject characterises an email,

– communicator, which is a group of processes as explained below.

• MPI_Recv receives a message. The function has the same parameters as
MPI_Send, except that only an upper bound is required for the message size, a
wildcard may be used for the sender, and an additional parameter called status
returns information about the received message, e.g. sender, size, and tag.

Figure 15.6 depicts an example MPI program.
Although the above functions are sufficient to write simple programs, many

more functions help to improve the efficiency and/or structure MPI programs. In
particular, MPI-1 supports the following classes of functions:
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• Alternative functions for pairwise communication: The base MPI_Send function,
also called standard mode send, returns if either the message has been delivered
to the receiver, or the message has been buffered by the system. This decision is
left to MPI. Variants of MPI_Send enforce one of the alternatives: In synchronous
mode, the send function only returns when the receiver has started receiving the
message, thus synchronising in both directions. In buffered mode, the system is
required to store the message if the receiver has not yet issued MPI_Recv.

On both the sender and receiver sides, the functions for standard, synchronous,
and buffered modes each come in blocking and nonblocking variants. Blocking
variants have been described above. Nonblocking variants return immediately
after having been called, to let the sender/receiver continue with program exe-
cution while the system accomplishes communication in the background. Non-
blocking communications must be completed by a call to MPI_Wait or MPI_Test
to make sure the communication has finished and the buffer may be reused. Vari-
ants of the completion functions allow to wait for multiple outstanding requests.

MPI programs can deadlock, for instance if a process P0 first issues a send to
process P1 and then a receive from P1; and P1 does the same with respect to
P0. As a possible way-out, MPI supports a combined send/receive function.

In many programs, a pair of processes repeatedly exchanges data with the same
buffers. To reduce communication overhead in these cases, a kind of address
labels can be used, called persistent communication. Finally, MPI functions
MPI_Probe and MPI_Iprobe allow to first inspect the size and other charac-
teristics of a message before receiving it.

• Functions for Datatype Handling: In simple forms of message passing, an array of
equally-typed data (e.g. float) is exchanged. Beyond that, MPI allows to combine
data of different types in a single message, and to send data from non-contiguous
buffers such as every second element of an array. For these purposes, MPI defines
two alternative classes of functions: user-defined data types describe a pattern of
data positions/types, whereas packaging functions help to put several data into
a single buffer. MPI supports heterogeneity by automatically converting data if
necessary.

• Collective communication functions: These functions support frequent patterns
of communication such as broadcast (one process sends a data item to all
other processes). Although any pattern can be implemented by a sequence of
sends/receives, collective functions should be preferred since they improve pro-
gram compactness/understandability, and often have an optimised implemen-
tation. Moreover, implementations can exploit specifics of an architecture, and
so a program that is ported to another machine may run efficiently on the new
machine as well, by using the optimised implementation of that machine.

• Group and communicator management functions: As mentioned above, the send
and receive functions contain a communicator argument that describes a group
of processes. Technically, a communicator is a distributed data structure that
tells each process how to reach the other processes of its group, and contains
additional information called attributes. The same group may be described by
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different communicators. A message exchange only takes place if the commu-
nicator arguments of MPI_Send and MPI_Recv match. Hence, the use of com-
municators partitions the messages of a program into disjoint sets that do not
influence each other. This way, communicators help structuring programs, and
contribute to correctness. For libraries that are implemented with MPI, commu-
nicators allow to separate library traffic from traffic of the application program.
Groups/communicators are necessary to express collective communications. The
attributes in the data structure may contain application-specific information
such as an error handler. In addition to the (intra)communicators described
so far, MPI supports intercommunicators for communication between different
process groups.

MPI-2 adds four major groups of functions:

• Dynamic process management functions: With these functions, new MPI pro-
cesses can be started during a program run. Additionally, independently started
MPI programs (each consisting of multiple processes) can get into contact with
each other through a client/server mechanism.

• One-sided communication functions: One-sided communication is a type of
shared-memory communication in which a group of processes agrees to use part
of their private address spaces as a common resource. Communication is ac-
complished by writing into and reading from that shared memory. One-sided
communication differs from other shared-memory programming models such as
OpenMP in that explicit function calls are required for the memory access.

• Parallel I/O functions: A large set of functions allows multiple processes to
collectively read from or write to the same file.

• Collective communication functions for intercommunicators: These functions
generalise the concept of collective communication to intercommunicators. For
instance, a process of one group may broadcast a message to all processes of
another group.

15.3.2. OpenMP programming

OpenMP derives its name from being an open standard for multiprocessing, that is
for architectures with a shared memory. Because of the shared memory, we speak of
threads (as opposed to processes) in this section.

Shared-memory communication is fundamentally different from message passing:
Whereas message passing immediately involves two processes, shared-memory com-
munication uncouples the processes by inserting a medium in-between. We speak
of read/write instead of send/receive, that is, a thread writes into memory, and
another thread later reads from it. The threads need not know each other, and a
written value may be read by several threads. Reading and writing may be separated
by an arbitrary amount of time. Unlike in message passing, synchronisation must
be organised explicitly, to let a reader know when the writing has finished, and to
avoid concurrent manipulation of the same data by different threads.

OpenMP is one type of shared-memory programming, while others include one-
sided communication as outlined in Subsection 15.3.1, and threads programming as
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Figure 15.7 Structure of an OpenMP program.

outlined in Subsection 15.3.3. OpenMP differs from other models in that it enforces
a fork-join structure, which is depicted in Figure 15.7. A program starts execution
as a single thread, called master thread, and later creates a team of threads in a
so-called parallel region. The master thread is part of the team. Parallel regions may
be nested, but the threads of a team must finish together. As shown in the figure,
a program may contain several parallel regions in sequence, with possibly different
numbers of threads.

As another characteristic, OpenMP uses compiler directives as opposed to li-
brary functions. Compiler directives are hints that a compiler may or may not take
into account. In particular, a sequential compiler ignores the directives. OpenMP
supports incremental parallelisation, in which one starts from a sequential program,
inserts directives at the most performance-critical sections of code, later inserts more
directives if necessary, and so on.

OpenMP has been introduced in 1998, version 2.0 appeared in 2002. In addi-
tion to compiler directives, OpenMP uses a few library functions and environment
variables. The standard is available for C, C++, and Fortran.

Programming OpenMP is easier than programming MPI since the compiler does
part of the work. An OpenMP programmer chooses the number of threads, and then
specifies work sharing in one of the following ways:

• Explicitly: A thread can request its own number by calling the library function
omp_get_thread_num. Then, a conditional statement evaluating this number
explicitly assigns tasks to the threads, similar as in SPMD-style MPI programs.

• Parallel loop: The compiler directive #pragma omp parallel for indicates that the
following for loop may be executed in parallel so that each thread carries out
several iterations (tasks). An example is given in Figure 15.8. The programmer
can influence the work sharing by specifying parameters such as schedule(static)
or schedule(dynamic). Static scheduling means that each thread gets an about
equal-sized block of consecutive iterations. Dynamic scheduling means that first
each thread is assigned one iteration, and then, repeatedly, a thread that has fin-
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#include <omp.h>

#define N 100

double a[N][N], b[N], c[N];

int main() {

int i, j;

double h;

/* initialisation omitted */

omp_set_num_threads(4);

#pragma omp parallel for shared(a,b,c) private(j)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

c[i] += a[i][j] * b[j];

/* output omitted */

}

Figure 15.8 Matrix-vector multiply in OpenMP using a parallel loop.

ished an iteration gets the next one, as in the master/slave paradigma described
before for MPI. Different from master/slave, the compiler decides which thread
carries out which tasks, and inserts the necessary communications.

• Task-parallel sections: The directive #pragma omp parallel sections allows to spec-
ify a list of tasks that are assigned to the available threads.

Threads communicate through shared memory, that is, they write to or read from
shared variables. Only part of the variables are shared, while others are private to
a particular thread. Whether a variable is private or shared is determined by rules
that the programmer can overwrite.

Many OpenMP directives deal with synchronisation that is necessary for mutual
exclusion, and to provide a consistent view of shared memory. Some synchronisations
are inserted implicitly by the compiler. For instance, at the end of a parallel loop all
threads wait for each other before proceeding with a next loop.

15.3.3. Other programming models

While MPI and OpenMP are the most popular models, other approaches have prac-
tical importance as well. Here, we outline threads programming, High Performance
Fortran, and automatic parallelisation.

Like OpenMP, threads programming or by Java threads uses shared memory.
Threads operate on a lower abstraction level than OpenMP in that the programmer
is responsible for all details of thread management and work sharing. In particular,
threads are created explicitly, one at a time, and each thread is assigned a function to
be carried out. Threads programming focuses on task parallelism, whereas OpenMP
programming focuses on data parallelism. Thread programs may be unstructured,
that is, any thread may create and stop any other. OpenMP programs are often
compiled into thread programs.

Data parallelism provides for a different programming style that is explicitly
supported by languages such as High Performance Fortran (HPF). While data par-
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allelism can be expressed in MPI, OpenMP etc., data-parallel languages center on the
approach. As one of its major constructs, HPF has a parallel loop whose iterations
are carried out independently, that is, without communication. The data-parallel
style makes programs easier to understand since there is no need to take care of con-
current activities. On the backside, it may be difficult to force applications into this
structure. HPF is targeted at single address space distributed memory architectures,
and much of the language deals with expressing data distributions. Whereas MPI
programmers distribute data by explicitly sending them to the right place, HPF pro-
grammers specify the data distribution on a similar level of abstraction as OpenMP
programmers specify the scheduling of parallel loops. Details are left to the compiler.
An important concept of OpenMP is the owner-computes rule, according to which
the owner of the left-hand side variable of an assignment carries out an operation.
Thus, data distribution implies the distribution of computations.

Especially for programs from scientific computing, a significant performance po-
tential comes from parallelising loops. This parallelisation can often be accomplished
automatically, by parallelising compilers. In particular, these compilers check for
data dependencies. that prevent parallelisation. Many programs can be restructured
to circumvent the dependence, for instance by exchanging outer and inner loops.
Parallelising compilers find these restructuring for important classes of programs.

Exercises
15.3-1 Sketch an MPI program for the prime number problem of Exercise 15.2-3.
The program should deploy the master/slave paradigma. Does your program use
SPMD style or MPMD style?
15.3-2 Modify your program from Exercise 15.3-1 so that it uses collective commu-
nication.
15.3-3 Compare MPI and OpenMP with respect to programmability, that is, give
arguments why or to which extent it is easier to program in either MPI or OpenMP.

15.3-4 Sketch an OpenMP program that implements the stencil code example of
Exercise 15.2-3.

15.4. Computational models

15.4.1. PRAM

The most popular computational model is the Parallel Random Access Machine
(PRAM) which is a natural generalisation of the Random Access Machine (RAM).

The PRAM model consists of p synchronised processors P1, P2, . . . , Pp, a shared
memory with memory cells M [1], M [2], . . . , M [m] and memories of the processors.
Figure 15.9. shows processors and the shared random access memory

There are variants of this model. They differ in whether multiple processors are
allowed to access the same memory cell in a step, and in how the resulting conflicts
are resolved. In particular the following variants are distinguished:

Types on the base of the properties of read/write operations are

• EREW (Exclusive-Read Exclusive-Write) PRAM,
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Figure 15.9 Parallel random access machine.
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Figure 15.10 Types of parallel random access machines.

• ERCW (Exclusive-Read Concurrent-Write) PRAM,

• CREW (Concurrent-Read Exclusive-Write) PRAM,

• CRCW (Concurrent-Read Concurrent-Write) PRAM.

Figure 15.10(a) shows the case when at most one processor has access a memory
cell (ER), and Figure 15.10(d) shows, when multiple processors have access the same
cell (CW).

Types of concurrent writing are common, priority, arbitrary, combined.

15.4.2. BSP, LogP and QSM

Here we consider the models BSP, LogP and QSM.
Bulk-synchronous Parallel Model (BSP) describes a computer as a collection of

nodes, each consisting of a processor and memory. BSP supposes the existence of a
router and a barrier synchronisation facility. The router transfers messages between
the nodes, the barrier synchronises all or a subset of nodes. According to BSP compu-
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P1 P2 P3 P4 P5 P6

Figure 15.11 A chain consisting of six processors.

tation is partitioned into supersteps. In a superstep each processor independently
performs computations on data in its own memory, and initiates communications
with other processors. The communication is guaranteed to complete until the be-
ginning of the next superstep.

g is defined such that gh is the time that is takes to route an h-relation under
continuous traffic conditions. An h-relation is a communication pattern in which
each processor sends and receives up to h messages.

The cost of a superstep is determined as x + gh + l, where x is the maximum
number of communications initiated by any processor. The cost of a program is the
sum of the costs of the individual supersteps.

BSP contains a cost model that involves three parameters: the number of proces-
sors (p), the cost of a barrier synchronisation (l) and a characteristics of the available
bandwidth (g).

LogP model was motivated by inaccuracies of BSP and the restrictive require-
ment to follow the superstep structure.

While LogP improves on BSP with respect to reflectivity, QSM improves on it
with respect to simplicity. In contrast to BSP, QSM is a shared-memory model. As
in BSP, the computation is structured into supersteps, and each processor has its
own local memory. In a superstep, a processor performs computations on values in
the local memory, and initiates read/write operations to the shared memory. All
shared-memory accesses complete until the beginning of the next superstep. QSM
allows for concurrent reads and writes. Let the maximum number of accesses to any
cell in a superstep be k. Then QSM charges costs max(x, gh, k), with x, g, and h
being defined in BSP.

15.4.3. Mesh, hypercube and butterfly

Mesh also is a popular computational model. A d-dimensional mesh is an a1 ×
a2 × · · · × ad sized grid having a processor in each grid point. The edges are the
communication lines, working in two directions. Processors are labelled by d-tuples,
as Pi1,i2,...,id

.
Each processor is a RAM, having a local memory. The local memory of the pro-

cessor Pi1,i2,...,id
is M [i1, . . . , id, 1], . . . , M [i1, . . . , id, m]. Each processor can execute

in one step such basic operations as adding, subtraction, multiplication, division,
comparison, read and write from/into the local memory, etc. Processors work in
synchronised way, according to a global clock.

The simplest mesh is the chain, belonging to the value d = 1. Figure 15.11
shows a chain consisting of 6 processors.

The processors of a chain are P1, . . . , Pp. P1 is connected with Pp−1, Pp is con-
nected with Pp−1, the remaining processors Pi are connected with Pi−1 and Pi+1.
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Figure 15.12 A square of size 4 × 4.
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Figure 15.13 A 3-dimensional cube of size 2 × 2 × 2.

If d = 2, then we get a rectangle. If now a1 = a2 =
√

p, then we get a square.

Figure 15.12 shows a square of size 4× 4.
A square contains several chains consisting of a processors. The processors having

identical first index, form a row of processors, and the processors having the same
second index form a column of processors. Algorithms running on a square often
consists of such operations, executed only by processors of some rows or columns.

If d = 3, then the corresponding mesh is a brick. In the special case a1 = a2 =
a3 =3√p the mesh is called cube. Figure 15.13 shows a cube of size 2× 2× 2.

The next model of computation is the d-dimensional hypercube Hd. This
model can be considered as the generalisation of the square and cube: the square
represented on Figure 15.12 is a 2-dimensional, and the cube, represented on Figure
15.13 is a 3-dimensional hypercube. The processors of Hd can be labelled by a binary
number consisting of d bits. Two processors of Hd are connected iff the Hamming-
distance of their labels equals to 1. Therefore each processors ofHd has d neighbours,
and the of Hd is d. Figure 15.14 represents H4.

The butterfly model Bd consists of p = (d + 1)2d processors and 2dd+1 edges.
The processors can be labelled by a pair 〈r, l〉, where r is the columnindex and l is
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Figure 15.14 A 4-dimensional hypercube H4.

level 0

level 1

level 2

level 3

Figure 15.15 A butterfly model.

the level of the given processor. Figure 15.15 shows a butterfly model B3 containing
32 processors in 8 columns and in 4 levels.

Finally Figure 15.16 shows a ring containing 6 processors.

15.5. Performance in theory

In the previous section we considered the performance measures used in the practice.
In the theoretical investigations the algorithms are tested using abstract com-

puters called computation models.
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Figure 15.16 A ring consisting of 6 processors.

The required quantity of resources can be characterised using absolute and rel-
ative measures.

Let W (n, π, A), resp. W (n, π, p, P) denote the time necessary in worst case to
solve the problem π of size n by the sequential algorithm A, resp. parallel algorithm
P (using p processors).

In a similar way let B(n, π, A), resp. B(n, π, p, P) the time necessary for algo-
rithm A, resp. P in best case to solve the problem π of size n (algorithm P can use
p processors).

Let N(n, π), resp. N(n, π, p) the time needed by any sequential, resp. parallel
algorithm to solve problem π of size n (algorithm P can use p processors). These
times represent a lower bound of the corresponding running time.

Let suppose the distribution function D(n, π) of the problem π of size n is given.
Then let E(n, π, A), resp. E(n, π, p, P) the expected value of the time necessary for
algorithm A, resp. P to solve problem π of size n (algorithm P uses p processors).

In the analysis it is often supposed that the input data of equal size have equal
probability. For such cases we use the notation A(n, A), resp. A(n, P, p) and termin
average running time.

The value of the performance measures W, B, N, E and A depend on the used
computation model too. For the simplicity of notations we suppose that the algo-
rithms determine the computation model.

Usually the context shows in a unique way the investigated problem. If so, then
the parameter π is omitted.

Among these performance measures hold the following inequalities:

N(n) ≤ B(n, A) (15.1)

≤ E(n, A) (15.2)

≤ W (n, A) . (15.3)
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In a similar way for the characteristic data of the parallel algorithms the following
inequalities are true:

N(n, p) ≤ B(n, P, p) (15.4)

≤ E(n, P, p) (15.5)

≤ W (n, P, p) . (15.6)

For the expected running time we have

B(n, A) ≤ A(n, A) (15.7)

≤ W (n, A) , (15.8)

and

B(n, P, p) ≤ A(n, P, p) (15.9)

≤ W (n, P, p) . (15.10)

These notations can be used not only for the running time, but also for any
other resource, as memory requirement, number of messages, etc.

Now we define some relative performance measures.

Speedup shows, how many times is smaller the running time of a parallel algo-
rithm, than the running time of the parallel algorithm solving the same problem.

The speedup (or relative number of steps or relative speed) of a given parallel
algorithm P, comparing it with a given sequential algorithm A, is defined as

g(n, A, P) =
W (n, A)

W (n, P, p)
. (15.11)

If for a sequential algorithm A and a parallel algorithm P holds

W (n, A)

W (n, p, P)
= Θ(p) , (15.12)

then the speedup of P comparing with A is linear, if

W (n, A)

W (n, P, p)
= o(p) , (15.13)

then the speedup of P comparing with A is sublinear, and if

W (n, A)

W (n, P, p)
= ω(p) , (15.14)

then the speedup of P comparing with A is superlinear.

In the case of parallel algorithms it is a very important performance measure
the work w(n, p, P), defined by the product of the running time and the number of
the used processors:

w(n, p, P) = pW (n, P, p) . (15.15)
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This definition is used even then if some processors work only in a small fraction
of the running time. Therefore the real work can be much smaller, then given by the
formula 15.15).

The efficiency h(n, p, P, A) is a measure of the fraction of time for which the
processors are usefully employed; it is defined as the ratio of the work of the sequen-
tial algorithm to the work of the parallel algorithm P:

e(n, p, P, A) =
W (n, A)

pW (n, P, p)
. (15.16)

One can observe, that the ratio of the speedup and the number of the used parallel
processors results the same value. If the parallel work is not less than the sequential
one, then efficiency is between zero and one, and the relatively large values are
beneficial.

In connection with the analysis of the parallel algorithms the work-efficiency is
a central concept. If for a parallel algorithm P and sequential algorithm A holds

pW (n, P, p) = O(W (n, A)) , (15.17)

then algorithm P work-optimal comparing with A.
This definition is equivalent with the equality

pW (n, P, p)

W (n, A)
= O(1). (15.18)

According to this definition a parallel algorithm is work-optimal only if the order
of its total work is not greater, than the order of the total work of the considered
sequential algorithm.

A weaker requirement is the following. If there exists a finite positive integer k
such that

pW (n, P, p) = O(W (n, A(lg n)k) , (15.19)

then algorithm P is work-efficient comparing with A.
If a sequential algorithm A, resp. a parallel algorithm P uses only O(N(n)), resp.

O(N(n, p)) units of a given resource, then A, resp. P is called—for the given resource
and the considered model of computation—asymptotically optimal.

If an A sequential or a P parallel algorithm uses only the necessary amount of
some resource for all possible size n ≥ 1 of the input, that is N(n, A), resp. N(n, p, A)
units, and so we have

W (n, A) = N(n, A) , (15.20)

for A and
W (n, P, p) = N(n, P, p) , (15.21)

for P, then we say, that the given algorithm is absolute optimal for the given
resource and the given computation model. In this case we say, that W (n, P, p) =
N(n, P, p) is the accurate complexity of the given problem.

Comparing two algorithms and having

W (n, A) = Θ(W (n, B)) (15.22)
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we say, that the speeds of the growths of algorithms A and B asymptotically have

the same order.

Comparing the running times of two algorithms A and B (e.g. in worst case)
sometime the estimation depends on n: for some values of n algorithm A, while for
other values of n algorithm B is the better. A possible formal definition is as follows.
If the functions f(n) and g(n) are defined for all positive integer n, and for some
positive integer v hold

1. f(v) = g(v);

2. (f(v − 1)− g(v − 1))(f(v + 1)− g(v + 1)) < 0,

then the number v is called crossover point of the functions f(n) and g(n).
For example multiplying two matrices according to the definition and algorithm

of Strassen we get one crossover point, whose value is about 20.

Exercises
15.5-1 Suppose that the parallel algorithms P and Q solve the selection problem.
Algorithm P uses n0.5 processors and its running time is W (n, P, p) = Θ(n0.5). Algo-
rithm Q uses n processors and its running time is W (n, P, p) = Θ(lg n). Determine
the work, speedup and efficiency for both algorithms. Are these algorithms work-
optimal or at least work-efficient?
15.5-2 Analyse the following two assertions.

a) Running time of algorithm P is at least O(n2).
b) Since the running time of algorithm P is O(n2), and the running time of

algorithm B is O(n lg n), therefore algorithm B is more efficient.
15.5-3 Extend the definition of the crossover point to noninteger v values and
parallel algorithms.

15.6. PRAM algorithms

In this section we consider parallel algorithms solving simple problems as prefix
calculation, ranking of the elements of an array, merging, selection and sorting.

In the analysis of the algorithms we try to give the accurate order of the running
time in the worst case and try to decide whether the presented algorithm is work-
optimal or at least work-efficient or not. When parallel algorithms are compared
with sequential algorithms, always the best known sequential algorithm is chosen.

To describe these algorithms we use the following pseudocode conventions.

Pi in parallel for i← 1 to p
do 〈 command 1 〉

〈 command 2 〉
.
.
.
〈 command u 〉
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For m2 PRAM ordered into a square grid of size m×m the instruction begin with

Pi,j in parallel for i← 1 to m, j ← 1 to m
do

For a k-dimensional mesh of size m1×· · ·mk the similar instruction begins with

Pi1,i2,...,ik
in parallel for i1 ← 1 to m1, . . . , ik ← 1 to mk

do

It is allowed that in this commands Pi represents a group of processors.

15.6.1. Prefix

Let ⊕ be a binary associative operator defined over a set Σ. We suppose that the
operator needs only one set and the set is closed for this operation.

A binary operation ⊕ is associative on a Σ set, if for all x, y, z ∈ Σ holds

((x⊕ y)⊕ z) = (x⊕ (y ⊕ z)) . (15.23)

Let the elements of the sequence X = x1, x2, . . . , xp be elements of the set Σ.
Then the input data are the elements of the sequence X, and the prefix problem

is the computation of the elements x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ x3 ⊕ . . .⊕ xp. These
elements are called prefixes.

It is worth to remark that in other topics of parallel computations the starting
sequences x1, x2, . . . , xk of the sequence X are called prefixes.

Example 15.1 Associative operations. If Σ is the set of integer numbers, ⊕ means addition
and the sequence of the input data is X = 3, −5, 8, 2, 5, 4, then the sequence of the prefixes
is Y = 3, −2, 6, 8, 13, 17. If the alphabet and the input data are the same, but the operation
is the multiplication, then Y = 3, −15, −120, −240, −1200, −4800. If the operation is the
minimum (it is also an associative operation), then Y = 3, −5, −5, −5, −5, −5. In this case
the last prefix is the minimum of the input data.

The prefix problem can be solved by sequential algorithms in O(p) time. Any
sequential algorithm A requires Ω(p) time to solve the prefix problem. There are
parallel algorithms for different models of computation resulting a work-optimal
solution of the prefix problem.

In this subsection at first the algorithm CREW-Prefix is introduced, which
solves the prefix problem in Θ(lg p) time, using p CREW PRAM processors.

Next is algorithm EREW-Prefix, having similar quantitative characteristics,
but requiring only EREW PRAM processors.

These algorithms solve the prefix problem quicker, then the sequential algo-
rithms, but the order of the necessary work is larger.

Therefore interesting is algorithm Optimal-Prefix, which uses only dp/ lg pe
CREW PRAM processors, and makes only Θ(lg p) steps. The work of this algorithm
is only Θ(p), therefore its efficiency is Θ(1), and so it is work-optimal. The speedup
of this algorithm equals to Θ(n/ lg n).
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For the sake of simplicity in the further we write usually p/ lg p instead of
dp/ lg pe.

A CREW PRAM algorithm. As first parallel algorithm a recursive algorithm
is presented, which runs on CREW PRAM model of computation, uses p processors
and Θ(lg p) time. Designing parallel algorithm it is often used the principle divide-
and-conquer, as we we will see in the case of the next algorithm too

Input is the number of processors (p) and the array X[1 . . p], output data are
the array Y [1 . . p]. We suppose p is a power of 2. Since we use the algorithms always
with the same number of processors, therefore we omit the number of processors
from the list of input parameters. In the mathematical descriptions we prefer to
consider X and Y as sequences, while in the pseudocodes sometimes as arrays.

CREW-Prefix(X)

1 if p = 1
2 then y1 ← x1

3 return Y
4 if p > 1
5 then Pi in parallel for i← 1 to p/2

do compute recursive y1, y2, . . . , yp/2,
the prefixes, belonging to x1, x2, . . . , xp/2

Pi in parallel for i← p/2 + 1 to p
do compute recursive yp/2+1, yp/2+2, . . . , yp

the prefixes, belonging to xp/2+1, xp/2+2, . . . , xp

6 Pi in parallel for p/2 + 1 ≤ i ≤ p
do read yp/2 from the global memory and compute yp/2 ⊕ yp/2+i

7 return Y

Example 15.2 Calculation of prefixes of 8 elements on 8 processors. Let n = 8 and p = 8.
The input data of the prefix calculation are 12, 3, 6, 8, 11, 4, 5 and 7, the associative
operation is the addition.

The run of the recursive algorithm consists of rounds. In the first round (step 4) the
first four processors get the input data 12, 3, 6, 8, and compute recursively the prefixes 12,
15, 21, 29 as output. At the same time the other four processors get the input data 11, 4,
5, 7, and compute the prefixes 11, 15, 20, 27.

According to the recursive structure P1, P2, P3 and P4 work as follows. P1 and P2

get x1 and x2, resp. P3 and P4 get x3 and x4 as input. Recursivity mean for P1 and P2,
that P1 gets x1 and P2 gets x2, computing at first y1 = x1 and y2 = x2, then P2 updates
y2 = y1 ⊕ y2. After this P3 computes y3 = y2 ⊕ y3 and y4 = y4 ⊕ y4.

While P1, P2, P3 and P4, according to step 4, compute the final values y1, y2, y3 and
y4, P5, P6, P7 and P8 compute the local provisional values of y5, y6, y7 and y8.

In the second round (step 5) the first four processors stay, the second four processors
compute the final values of y5, y6, y7 and y8, adding y4 = 29 to the provisional values 11,
15, 20 and 27 and receiving 40, 44, 49 and 56.

In the remaining part of the section we use the notation W (n) instead of W (n, p)
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and give the number of used processors in verbal form. If p = n, then we usually
prefer to use p.

Theorem 15.1 Algorithm CREW-Prefix uses Θ(lg p) time on p CREW PRAM
processors to compute the prefixes of p elements.

Proof The lines 4–6 require W (p/2) steps, the line 7 does Θ(1) steps. So we get the
following recurrence:

W (p) = W (p/2) + Θ(1). (15.24)

Solution of this recursive equation is W (p) = Θ(lg p).

CREW-prefix is not work-optimal, since its work is Θ(p lg p) and we know
sequential algorithm requiring only O(p) time, but it is work-effective, since all se-
quential prefix algorithms require Ω(p) time.

An EREW PRAM algorithm. In the following algorithm we use exclu-
sive write instead of the parallel one, therefore it can be implemented on the
EREW PRAM model. Its input is the number of processors p and the sequence
X = x1, x2, . . . , xp, and its output is the sequence Y = y1, y2, . . . , yp containing
the prefixes.

EREW-Prefix(X)

1 Y [1]← X[1]
2 Pi in parallel for i← 2 to p
3 do Y [i]← X[i− 1]⊕X[i]
4 k ← 2
5 while k < p
6 do Pi in parallel for i← k + 1 to p
7 do Y [i]← Y [i− k]⊕ Y [i]
8 k ← k + k
9 return Y

Theorem 15.2 Algorithm EREW-Prefix computes the prefixes of p elements on
p EREW PRAM processors in Θ(lg p) time.

Proof The commands in lines 1–3 and 9 are executed in O(1) time. Lines 4–7 are
executed so many times as the assignment in line 8, that is Θ(p) times.

A work-optimal algorithm. Next we consider a recursive work-optimal al-
gorithm, which uses p/ lg p CREW PRAM processors. Input is the length of the
input sequence (p) and the sequence X = x1, x2, . . . , xp, output is the sequence
Y = y1, y2, . . . , yp, containing the computed prefixes.
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Optimal-Prefix(p, X)

1 Pi in parallel for i← 1 to p/ lg p
2 do compute recursive z(i−1) lg p+1, z(i−1) lg p+2, . . . , zi lg p,

the prefixes of the following lg p input data
x(i−1) lg p+1, x(i−1) lg p+2, . . . , xi lg p

3 Pi in parallel for i← 1 to p/ lg p
4 do using CREW-Prefix compute wlg p, w2 lg p, w3 lg p, . . . , wp,

the prefixes of the following p/ lg p elements:
zlg p, z2 lg p, z3 lg p, . . . , , zp

5 Pi in parallel for i← 2 to p/ lg p
6 do for j ← 1 to p
7 do Y [(i− 1) lg p + j]← w(i−1) lg p ⊕ z(i−1) lg p+j

8 P1 for j ← 1 to p
9 do Y [j]← zj

10 return Y

This algorithm runs in logarithmic time. The following two formulas help to
show it:

z(i−1) lg p+k =

i lg p∑

j=(i−1) lg p+1

xj (k = 1, 2, . . . , lg p) (15.25)

and

wi lg p =

i∑

j=1

zj lg p (i = 1, 2, . . . , ), (15.26)

where summing goes using the corresponding associative operation.

Theorem 15.3 (parallel prefix computation in Θ(lg p) time). Algorithm Opti-
mal-Prefix computes the prefixes of p elements on p/ lg p CREW PRAM
processors in Θ(lg p) time.

Proof Line 1 runs in Θ(lg p) time, line 2 runs O(lg(p/ lg p)) = O(lg p) time, line 3
runs Θ(lg p) time.

This theorem imply that the work of Optimal-Prefix is Θ(p), therefore
Optimal-Prefix is a work-optimal algorithm.

Let the elements of the sequence X = x1, x2, . . . , xp be the elements of the
alphabet Σ. Then the input data of the prefix computation are the elements of the
sequence X, and the prefix problem is the computation of the elements x1, x1 ⊕
x2, . . . , x1 ⊕ x2 ⊕ x3 ⊕ . . .⊕ xp. These computable elements are called prefixes.

We remark, that in some books on parallel programming often the elements of
the sequence X are called prefixes.

Example 15.3 Associative operations. If Σ is the set of integers, ⊕ denotes the addition
and the sequence of the input data is 3, -5, 8, 2, 5, 4, then the prefixes are 3, -2, 6, 8, 13,
17. If the alphabet and the input data are the same, the operation is the multiplication,
then the output data (prefixes) are 3, -15, -120, -240, -1200, -4800. If the operation is the
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3, 12, 17, 19 3, 12, 23, 35 1, 6, 12, 19 10, 14, 17, 22

3, 12, 17, 19 3, 12, 23, 35 1, 6, 12, 19 10, 14, 17, 22

3, 9, 5, 2 3, 9, 11, 12 1, 5, 6, 7 10, 4, 3, 5

19, 35, 19, 22

19, 54, 73, 95

3, 12, 17, 19 22, 31, 42, 54 55, 60, 66, 73 83, 87, 90, 95

Processor 1 Processor 2 Processor 3 Processor 4

Step 1

Step 2

Step 3

Figure 15.17 Computation of prefixes of 16 elements using Optimal-Prefix.

minimum (it is also associative), then the prefixes are 3, -5, -5, -5, -5, -5. The last prefix
equals to the smallest input data.

Sequential prefix calculation can be solved in O(p) time. Any A sequential al-
gorithm needs N(p, A) = Ω(n) time. There exist work-effective parallel algorithms
solving the prefix problem.

Our first parallel algorithm is CREW-Prefix, which uses p CREW PRAM
processors and requires Θ(lg p) time. Then we continue with algorithm EREW-
Prefix, having similar qualitative characteristics, but running on EREW PRAM
model too.

These algorithms solve the prefix problem quicker, than the sequential algo-
rithms, but the order of their work is larger.
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5 4 2 0 3 1

A[1] A[2] A[3] A[4] A[5] A[6]

A[6] A[1] A[5] A[3] A[2] A[4]

Figure 15.18 Input data of array ranking and the the result of the ranking.

Algorithm Optimal-Prefix requires only dp/ lg pe CREW PRAM processors
and in spite of the reduced numbers of processors requires only O(lg p) time. So its
work is O(p), therefore its efficiency is Θ(1) and is work-effective. The speedup of
the algorithm is Θ(n/ lg n).

15.6.2. Ranking

The input of the list ranking problem is a list represented by an array A[1 . . p]:
each element contains the index of its right neighbour (and maybe further data).
The task is to determine the rank of the elements. The rank is defined as the number
of the right neighbours of the given element.

Since the further data are not necessary to find the solution, for the simplicity we
suppose that the elements of the array contain only the index of the right neighbour.
This index is called pointer. The pointer of the rightmost element equals to zero.

Example 15.4 Input of list ranking. Let A[1 . . 6] be the array represented in the first row
of Figure 15.18. Then the right neighbour of the element A[1] is A[5], the right neighbour
of A[2] is A[4]. A[4] is the last element, therefore its rank is 0. The rank of A[2] is 1,
since only one element, A[4] is to right from it. The rank of A[1] is 4, since the elements
A[5], A[3], A[2] and A[4] are right from it. The second row of Figure 15.18 shows the elements
of A in decreasing order of their ranks.

The list ranking problem can be solved in linear time using a sequential algo-
rithm. At first we determine the head of the list which is the unique A[i] having
the property that does not exist an index j (1 ≤ j ≤ p) with A[j] = i. In our case
the head of A is A[6]. The head of the list has the rank p − 1, its right neighbour
has a rank p− 2, . . . and finally the rank of the last element is zero.

In this subsection we present a deterministic list ranking algorithm, which uses
p EREW PRAM processors and in worst case Θ(lg p) time. The pseudocode of
algorithm Det-Ranking is as follows.

The input of the algorithm is the number of the elements to be ranked (p), the
array N [1 . . p] containing the index of the right neighbour of the elements of A,
output is the array R[1 . . p] containing the computed ranks.
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5 4 2 0 3 1

3 0 4 0 2 5

4 0 0 0 0 2

0 0 0 0 00

1 1 1 0 1 1

2 2 0 2 21

4 1 2 0 3 4

4 1 2 0 3 5

neighbour rank

q = 3

q = 2

q = 1

(initial state)

Figure 15.19 Work of algorithm Det-Ranking on the data of Example 15.4.

Det-Ranking(p, N)

1 Pi in parallel for i← 1 to p
2 do if N [i] = 0
3 then R[i]← 0
4 else R[i]← 1
5 for j ← 1 to dlg pe
6 do Pi in parallel for i← 1 to p
7 do if N [i] 6= 0
8 then R[i]← R[i] + R[N [i]]
9 N [i]← N [N [i]]

10 return R

The basic idea behind the algorithm Det-Ranking is the pointer jumping.

According to this algorithm at the beginning each element contains the index of its
right neighbour, and accordingly its provisional rank equal to 1 (with exception of the
last element of the list, whose rank equals to zero). This initial state is represented
in the first row of Figure 15.19.

Then the algorithm modifies the element so, that each element points to the
right neighbour of its right neighbour (if it exist, otherwise to the end of the list).
This state is represented in the second row of Figure 15.19.

If we have p processors, then it can be done in O(1) time.
After this each element (with exception of the last one) shows to the element

whose distance was originally two. In the next step of the pointer jumping the
elements will show to such other element whose distance was originally 4 (if there
is no such element, then to the last one), as it is shown in the third row of Figure
15.19.

In the next step the pointer part of the elements points to the neighbour of
distance 8 (or to the last element, if there is no element of distance 8), according to
the last row of Figure 15.19.

In each step of the algorithm each element updates the information on the num-
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ber of elements between itself and the element pointed by the pointer. Let R[i], resp.
N [i] the rank, resp. neighbour field of the element A[i]. The initial value of R[i] is
1 for the majority of the elements, but is 0 for the rightmost element (R(4) = 0 in
the first line of Figure 15.19). During the pointer jumping R[i] gets the new value
(if N [i] 6= 0) gets the new value R[i] + R[N [i]], if N [i] 6= 0. E.g. in the second row
of Figure 15.19) R[1] = 1 + 1 = 2, since its previous rank is 1, and the rank of its
right neighbour is also 1. After this N [i] will be modified to point to N [N [i]]. E.g.
in the second row of Figure 15.19 N [1] = 3, since the right neighbour of the right
neighbour of A[1] is A[3].

Theorem 15.4 Algorithm Det-Ranking computes the ranks of an array consist-
ing of p elements on p EREW PRAM processors in Θ(lg p) time.

Since the work of Det-Ranking is Θ(p lg p), this algorithm is not work-optimal,
but it is work-efficient.

The list ranking problem corresponds to a list prefix problem, where each element
is 1, but the last element of the list is 0. One can easily modify Det-Ranking to
get a prefix algorithm.

15.6.3. Merge

The input of the merging problem is two sorted sequences X1 and X2 and the
output is one sorted sequence Y containing the elements of the input.

If the length of the input sequences is p, then the merging problem can be
solved in O(p) time using a sequential processor. Since we have to investigate all
elements and write them into the corresponding element of Y , the running time of
any algorithm is Ω(p). We get this lower bound even in the case when we count only
the number of necessary comparisons.

Merge in logarithmic time. Let X1 = x1, x2, . . . , xm and X2 =
xm+1, xm+2, . . . , x2m be the input sequences. For the shake of simplicity let m be
the power of two and let the elements be different.

To merge two sequences of length m it is enough to know the ranks of the keys,
since then we can write the keys—using p = 2m processors—into the correspond-
ing memory locations with one parallel write operation. The running time of the
following algorithm is a logarithmic, therefore it is called Logarithmic-Merge.

Theorem 15.5 Algorithm Logarithmic-Merge merges two sequences of length
m on 2m CREW PRAM processors in Θ(lg m) time.

Proof Let the rank of element x be r1 (r2) in X1 (in X2). If x = xj ∈ X1, then let
r1 = j. If we assign a single processor P to the element x, then it can determine,
using binary search, the number q of elements in X2, which are smaller than x. If
q is known, then P computes the rank rj in the union of X1 and X2, as j + q. If x
belongs to X2, the method is the same.

Summarising the time requirements we get, that using one CREW PRAM pro-
cessor per element, that is totally 2m processors the running time is Θ(lg m).
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This algorithm is not work-optimal, only work-efficient.

Odd-even merging algorithm. This following recursive algorithm Odd-Even-
Merge follows the classical divide-and-conquer principle.

Let X1 = x1, x2, . . . , xm and X2 = xm+1, xm+2, . . . , x2m be the two input se-
quences. We suppose that m is a power of 2 and the elements of the arrays are
different. The output of the algorithm is the sequence Y = y1, . . . , y2m, containing
the merged elements. This algorithm requires 2m EREW PRAM processors.

Odd-Even-Merge(X1, X2)

1 if m = 1
2 then get Y by merging x1 and x2 with one comparison
3 return Y
4 if m > 1
5 then Pi in parallel for i← 1 to m
6 do merge recursively Xodd

1 = x1, x3, . . . , xm−1 and
7 Xodd

2 = xm+1, xm+3, . . . , x2m−1 to get L1 = l1, l2, . . . , lm
8 Pi in parallel for 1← m + 1 to 2m
9 do merge recursively Xeven

1 = x2, x4, . . . , xm and
10 Xeven

2 = xm+2, xm+4, . . . , x2m to get L2 = lm+1, lm+2, . . . , l2m

11 Pi in parallel for i← 1 to m
12 do y2i−1 ← li
13 y2i ← lm+i

14 if y[2i] > y[2i + 1]
13 then z ← y[2i]
14 y[2i]← y[2i + 1]
15 y[2i + 1]← z
15 return Y

Example 15.5 Merge of twice eight numbers. Let X1 = 1, 5, 8, 11, 13, 16, 21, 26 and X2

= 3, 9, 12, 18, 23, 27, 31, 65. Figure 15.20 shows the sort of 16 numbers.
At first elements of X1 with odd indices form the sequence Xodd

1 and elements with
even indices form the sequence Xeven

1 , and in the same way we get the sequences Xodd
2

and Xeven
2 . Then comes the recursive merge of the two odd sequences resulting L1 and the

recursive merge of the even sequences resulting L2.
After this Odd-Even-Merge shuffles L1 and L2, resulting the sequence Y =

y1, . . . , y2m: the elements of Y with odd indices come from L1 and the elements with
even indices come from L2.

Finally we compare the elements of Y with even index and the next element (that is
Y [2] with Y [3], Y [4] with Y [5] etc.) and if necessary (that is they are not in the good order)
they are changed.

Theorem 15.6 (merging in Θ(lg m) time). Algorithm Odd-Even-Merge merges
two sequences of length m elements in Θ(lg m) time using 2m EREW PRAM pro-
cessors.
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X1 = 1, 5, 8, 11, 13, 16, 21, 26 X2 = 3, 9, 12, 18, 23, 27, 31, 65

1, 8, 13, 21 5, 11, 16, 26 3, 12, 23, 31 9, 18, 27, 65

Xodd
1

L1 = 1, 3, 8, 12, 13, 21, 23, 31 L2 = 5, 9, 11, 16, 18, 26, 27, 65

Xodd
2

L = 1, 5, 3, 9, 8, 11, 12, 16, 13, 18, 21, 26, 23, 27, 31, 65

Xeven
1 Xeven

2

merge merge

shuffle

compare-exchange

1, 3, 5, 8, 9, 11, 12, 13, 16, 18, 21, 23, 26, 27, 31, 65

Figure 15.20 Sorting of 16 numbers by algorithm Odd-Even-Merge.

Proof Let denote the running time of the algorithm by W (m). Step 1 requires Θ(1)
time, Step 2 m/2 time. Therefore we get the recursive equation

W (m) = W (m/2) + Θ(1), (15.27)

having the solution W (m) = Θ(lg m).

We prove the correctness of this algorithm using the zero-one principle.

A comparison-based sorting algorithm is oblivious, if the sequence of compar-
isons is fixed (elements of the comparison do not depend on the results of the earlier
comparisons). This definition means, that the sequence of the pairs of elements to
be compared (i1, j1), (i2, j2), . . . , (im, jm) is given.

Theorem 15.7 (zero-one principle). If a simple comparison-based sorting algo-
rithm correctly sorts an arbitrary 0-1 sequence of length n, then it sorts also correctly
any sequence of length n consisting of arbitrary keys.

Proof Let A be a comparison-based oblivious sorting algorithm and let S be such
a sequence of elements, sorted incorrectly by A. Let suppose A sorts in increasing
order the elements of S. Then the incorrectly sorted sequence S′ contains an element
x on the i-th (1 ≤ i ≤ n− 1) position in spite of the fact that S contains at least i
keys smaller than x.
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Let x be the first (having the smallest index) such element of S. Substitute in
the input sequence the elements smaller than x by 0’s and the remaining elements
by 1’s. This modified sequence is a 0-1 sequence therefore A sorts it correctly. This
observation implies that in the sorted 0-1 sequence at least i 0’s precede the 1,
written on the place of x.

Now denote the elements of the input sequence smaller than x by red colour,
and the remaining elements by blue colour (in the original and the transformed
sequence too). We can show by induction, that the coloured sequences are identical
at the start and remain identical after each comparison. According to colours we
have three types of comparisons: blue-blue, red-red and blue-red. If the compared
elements have the same colour, in both cases (after a change or not-change) the
colours remain unchanged. If we compare elements of different colours, then in both
sequences the red element occupy the position with smaller index. So finally we get
a contradiction, proving the assertion of the theorem.

Example 15.6 A non comparison-based sorting algorithm. Let x1, x2, . . . , xn be a bit
sequence. We can sort this sequence simply counting the zeros, and if we count z zeros,
then write z zeros, then n − z ones. Of course, the general correctness of this algorithm is
not guaranteed. Since this algorithm is not comparison-based, therefore this fact does not
contradict to the zero-one principle.

But merge is sorting, and Odd-Even-Merge is an oblivious sorting algorithm.

Theorem 15.8 Algorithm Odd-Even-Merge sorts correctly sequences consisting
of arbitrary numbers.

Proof Let X1 and X2 sorted 0-1 sequences of length m. Let q1 (q2) the number
of zeros at the beginning of X1 (X2). Then the number of zeros in Xodd

1 equals
to dq1/2e, while the number of zeros in Xeven

1 is bq1/2c. Therefore the number of
zeros in L1 equals to z1 = dq1/2e+ dq2/2e and the number of zeros in L2 equals to
z2 = bq1/2c+ bq2/2c.

The difference of z1 and z2 is at most 2. This difference is exactly then 2, if q1

and q2 are both odd numbers. Otherwise the difference is at most 1. Let suppose,
that |z1 − z2| = 2 (the proof in the other cases is similar). In this cases L1 contains
two additional zeros. When the algorithm shuffles L1 and L2, L begins with an even
number of zeros, end an even number of ones, and between the zeros and ones is
a short “dirty" part, 0, 1. After the comparison and change in the last step of the
algorithm the whole sequence become sorted.

A work-optimal merge algorithm. Algorithm Work-Optimal-Merge uses
only d2m/ lg me processors, but solves the merging in logarithmic time. This algo-
rithm divides the original problem into m/ lg m parts so, that each part contains
approximately lg m elements.

Let X1 = x1, x2, . . . , xm and X2 = xm+1, xm+2, . . . , xm+m be the input se-
quences. Divide X1 into M = dm/ lg me parts so, that each part contain at most
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A1 A2 A3 AM

B1 B2 B3 BM+1

X2

X1

Figure 15.21 A work-optimal merge algorithm Optimal-Merge.

dlg me elements. Let the parts be denoted by A1, A2, . . . , AM . Let the largest element
in A1 be li (i = 1, 2, . . . , M).

Assign a processor to each li element. These processors determine (by binary
search) the correct place (according to the sorting) of li in X2. These places divide
X2 to M + 1 parts (some of these parts can be empty). Let denote these parts by
B1, B2, . . . , BM+1. We call Bi the subset corresponding to Ai in X2 (see Figure
15.21).

The algorithm gets the merged sequence merging at first A1 with B1, A2 with
B2 and so on, and then joining these merged sequences.

Theorem 15.9 Algorithm Optimal-Merging merges two sorted sequences of
length m in O(lg m) time on d2m/ lg me CREW PRAM processors.

Proof We use the previous algorithm.
The length of the parts Ai is lg m, but the length of the parts Bi can be much

larger. Therefore we repeat the partition. Let Ai, Bi an arbitrary pair. If |Bi| =
O(lg m), then Ai and Bi can be merged using one processor in O(lg m) time. But
if |Bi| = ω(lg m), then divide Bi into |Bi|/ lg m parts—then each part contains at
most lg m keys. Assign a processor to each part. This assigned processor finds the
subset corresponding to this subsequence in Ai: O(lg lg m) time is sufficient to do
this. So the merge of Ai and Bi can be reduced to |Bi|/ lg m subproblems, where
each subproblem is the merge of two sequences of O(lg m) length.

The number of the used processors is
∑M

i=1 d|Bi|/ lg me, and this is at most
m/ lg m + M , what is not larger then 2M .

This theorem imply, that Optimal-Merging is work-optimal.

Corollary 15.10 Optimal-Merging is work-optimal.

15.6.4. Selection

In the selection problem n ≥ 2 elements and a positive integer i (1 ≤ i ≤ n) are
given and the i-th smallest element is to be selected.

Since selection requires the investigation of all elements, and our operations can
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handle at most two elements, so N(n) = Ω(n).
Since it is known sequential algorithm A requiring only W (n,A) = O(n) time,

so A is asymptotically optimal.
The search problem is similar: in that problem the algorithm has to decide,

whether a given element appears in the given sequence, and if yes, then where. Here
negative answer is also possible and the features of any element decide, whether it
corresponds the requirements or not.

We investigate three special cases and work-efficient algorithms to solve them.

Selection in constant time using n2 processors. Let i = n, that is we wish
to select the largest key. Algorithm Quadratic-Select solves this task in Θ(1)
time using n2 CRCW processors.

The input (n different keys) is the sequence X = x1, x2, . . . , xn, and the
selected largest element is returned as y.

Quadratic-Select(X)

1 if n = 1
2 then y ← x1

3 return y
4 Pij in parallel for i← 1 to n, j ← 1 to n

do if ki < kj

5 then xi,j ← false
6 else xi,j ← true
7 Pi1 in parallel for i← 1 to n
8 do Li ← true
9 Pij in parallel for i← 1 to n, j ← 1 to n

10 if xi,j = false
11 then Li ← false
12 Pi1 in parallel for i← 1 to n
13 do if Li = true
14 then y ← xi

15 return y

In the first round (lines 4–6) the keys are compared in parallel manner, using
all the n2 processors. Pij (1 ≤ i, j ≤ n) so, that processor Pij computes the logical
value xi,j = xi < xj . We suppose that the keys are different. If the elements are
not different, then we can use instead of xi the pair (xi, i) (this solution requires
an additional number of length (lg n) bits. Since there is a unique key for which all
comparison result false, this unique key can be found with a logical or operation
is lines 7–11.

Theorem 15.11 (selection in Θ(1) time). Algorithm Quadratic-Select deter-
mines the largest key of n different keys in Θ(1) time using n2 CRCW common
PRAM processors.

Proof First and third rounds require unit time, the second round requires Θ(1)
time, so the total running time is Θ(1).
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The speedup of this algorithm is Θ(n). The work of the algorithm is w = Θ(n2).
So the efficiency is E = Θ(n)/Θ(n2) = Θ(1/n). It follows that this algorithm is not
work-optimal, even it is not work-effective.

Selection in logarithmic time on n processors. Now we show that the
maximal element among n keys can be found, using even only n common CRCW
PRAM processors and Θ(lg lg n) time. The used technique is the divide-and-conquer.
For the simplicity let n be a square number.

The input and the output are the same as at the previous algorithm.

Quick-Selection(X, y)

1 if p = 1
2 then y ← x1

3 return y
4 if p > 1
5 then divide the input into groups G1, G2, . . . , Ga and

divide the processors into groups Q1, Q2, . . . , Qa

6 Qi in parallel for i← 1 to a
6 do recursively determines the maximal element Mi of the group Gi

7 Quadratic-Select(M)
8 return y

The algorithm divides the input into
√

p = a groups (G1, G2, . . . , Ga) so, that
each group contains a elements (x(i−1)a+1, x(i−1)a+2, . . . , xia), and divides the pro-
cessors into a groups (Q1, Q2, . . . , Qa) so, that group Qi contains a processors
P(i−1)a+1, P(i−1)a+2, . . . , Pia. Then the group of processors Qi computes recursively
the maximum Mi of group Gi. Finally the previous algorithm Quadratic-Select
gets as input the sequence M = M1, . . . , Ma and finds the maximum y of the input
sequence X.

Theorem 15.12 (selection in Θ(lg lg p) time). Algorithm Quick-Select deter-
mines the largest of p different elements in O(lg lg p) time using n common CRCW
PRAM processors.

Proof Let the running time of the algorithm denoted by W (n). Step 1 requires
W (
√

n) time, step 2 requires Θ(1) time. Therefore W (p) satisfies the recursive equa-
tion

W (p) = W (
√

p) + Θ(1), (15.28)

having the solution Θ(lg lg p).

The total work of algorithm Quick-Select is Θ(p lg lg p), so its efficiency is
Θ(p)/Θ(p lg lg p) = Θ(1/ lg lg p), therefore Quick-Select is not work-optimal, it is
only work-effective.

Selection from integer numbers. If the problem is to find the maximum of n
keys when the keys consist of one bit, then the problem can be solved using a logical
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Figure 15.22 Selection of maximal integer number.

or operation, and so requires only constant time using n processors. Now we try to
extend this observation.

Let c be a given positive integer constant, and we suppose the keys are integer
numbers, belonging to the interval [0, nc]. Then the keys can be represented using at
most c lg n bits. For the simplicity we suppose that all the keys are given as binary
numbers of length c lg n bits.

The following algorithm Integer-Selection requires only constant time and
n CRCW PRAM processors to find the maximum.

The basic idea is to partition the b1, b2, . . . , b2c bits of the numbers
into parts of length (lg n)/2. The i-th part contains the bits b(i−1)+1,
b(i−1)+2, . . . , b(i−1)+b(i−1)+(lg n)/2

, the number of the parts is 2c. Figure 15.22 shows
the partition.

The input of Integer-Selection is the number of processors (n) and the
sequence X = x1, x2, . . . , xn containing different integer numbers, and output is
the maximal number y.

Integer-Selection(p, X)

1 for i← 1 to 2c
2 do compute the maximum (M) of the remaining numbers on the base of

their i-th part
3 delete the numbers whose i-th part is smaller than M
4 y ← one of the remaining numbers
5 return y



748 15. Parallel Computations

The algorithm starts with searching the maximum on the base of the first part
of the numbers. Then it delete the numbers, whose first part is smaller, than the
maximum. Then this is repeated for the second, ..., last part of the numbers. Any
of the non deleted numbers is maximal.

Theorem 15.13 (selection from integer numbers). If the numbers are integers
drawn from the interval [0, nc], then algorithm Integer-Selection determines the
largest number among n numbers for any positive c in Θ(1) time using n CRCW
PRAM processors.

Proof Let suppose that we start with the selection of numbers, whose (lg n)/2 most
significant bits are maximal. Let this maximum in the first part denoted by M . It is
sure that the numbers whose first part is smaller than M are not maximal, therefore
can be deleted. If we execute this basis operation for all parts (that is 2c times),
then exactly those numbers will be deleted, what are not maximal, and all maximal
element remain.

If a key contains at most (lg n)/2 bits, then its value is at most
√

n − 1. So
algorithm Integer-Select in its first step determines the maximum of integer
numbers taken from the interval [0,

√
n−1]. The algorithm assigns a processor to each

number and uses
√

n common memory locations (M1, M2, . . . , M√
n−1), containing

initially −∞. In one step processor Pi writes ki into Mki
. Later the maximum of all

numbers can be determined from
√

n memory cells using n processors by Theorem
15.11 in constant time.

General selection. Let the sequence X = x1, x2, . . . , xn contain different
numbers and the problem is to select the kth smallest element of X. Let we have
p = n2/ lg n CREW processors.

General-Selection(X)

1 divide the n2/ lg n processors into n groups G1, . . . , Gn so, that group Gi

contains the processors Pi,1, Pi,2, . . . , Pi,n/ lg n and divide
the n elements into n/ lg n groups (X1, X2, . . . , Xn/ lg n) so, that group Xi

contains the elements x(i−1) lg n)+1, x(i−1) lg n)+2, . . . , x(i−1) lg n)+lg n

2 Pij in parallel for i← 1 to n
3 do determine hij (how many elements of Xj are smaller, than xi)
4 Gi in parallel for i← 1 to n
5 do using Optimal-Prefix determine si

(how many elements of X are smaller, than xi)
6 Pi,1 in parallel for i← 1 to n
7 do if si = k − 1
8 then return xi

Theorem 15.14 (general selection). The algorithm General-Selection deter-
mines the i-th smallest of n different numbers in Θ(lg n) time using n2/ lg n proces-
sors.
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Proof In lines 2–3 Pij works as a sequential processor, therefore these lines require
Θlg n time. Lines 4–5 require Θ lg n time according to Theorem 15.3. Lines 6–8 can
be executed in constant time, so the total running time is Θ(lg n).

The work of General-Selection is Θ(n2), therefore this algorithm is not
work-effective.

15.6.5. Sorting

Given a sequence X = x1, x2, . . . , xn the sorting problem is to rearrange the
elements of X e.g. in increasing order.

It is well-known that any A sequential comparison-based sorting algorithm needs
N(n, A) = Ω(n lg n) comparisons, and there are comparison-based sorting algorithms
with O(n lg n) running time.

There are also algorithms, using special operations or sorting numbers with spe-
cial features, which solve the sorting problem in linear time. If we have to investigate
all elements of X and permitted operations can handle at most 2 elements, then we
get N(n) = Ω(n). So it is true, that among the comparison-based and also among
the non-comparison-based sorting algorithms are asymptotically optimal sequential
algorithms.

In this subsection we consider three different sorting algorithm.

Sorting in logarithmic time using n2 processors. Using the ideas of algo-
rithms Quadratic-Selection and Optimal-Prefix we can sort n elements using
n2 processors in lg n time.

Quadratic-Sort(K)

1 if n = 1
2 then y ← x1

3 return Y
4 Pij in parallel for i← 1 to n, j ← 1 to n

do if xi < xj

5 then xi,j ← 0
6 else xi,j ← 1
7 divide the processors into n groups (G1, G2, . . . , Gn) so, that group Gi contains

processors Pi,1, Pi,2, . . . , Pi,n

8 Gi in parallel for i← 1 to n
9 do compute si = xi,1 + xi,2 + · · ·+ xi,n

10 Pi1 in parallel for i← 1 to n
11 do ysi+1 ← xi

12 return Y

In lines 4–7 the algorithm compares all pairs of the elements (as Quadratic-
Selection), then in lines 7–9 (in a similar way as Optimal-Prefix works) it
counts, how many elements of X is smaller, than the investigated xi, and finally in
lines 10–12 one processor of each group writes the final result into the corresponding
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memory cell.

Theorem 15.15 (sorting in Θ(lg n) time). Algorithm Quadratic-Sort sorts n
elements using n2 CRCW PRAM processors in Θ(lg n) time.

Proof Lines 8–9 require Θ(lg n) time, and the remaining lines require only constant
time.

Since the work of Quadratic-Sort is Θ(n2 lg n), this algorithm is not work-
effective.

Odd-even algorithm with O(lg n) running time. The next algorithm uses
the Odd-Even-Merge algorithm and the classical divide-and-conquer principle.
The input is the sequence X = x1, . . . , xp, containing the numbers to be sorted,
and the output is the sequence Y = y1, . . . , yp, containing the sorted numbers.

Odd-Even-Sort(X)

1 if n = 1
2 then Y ← X
3 if n > 1
4 then let X1 = x1, x2, . . . , xn/2 and X2 = xn/2+1, xn/2+2, . . . , xn.
5 Pi in parallel for i← 1 to n/2
6 do sort recursively X1 to get Y1

7 Pi in parallel for i← n/2 + 1 to n
8 do sort recursively X2 to get Y2

9 Pi in parallel for i← 1 to n
10 do merge Y1 and Y2 using Odd-Even-Merge(Y1, Y2)
11 return Y

The running time of this EREW PRAM algorithm is O(lg2 n).

Theorem 15.16 (sorting in Θ(lg2 n) time). Algorithm Odd-Even-Sort sorts n
elements in Θ(lg2 n) time using n EREW PRAM processors.

Proof Let W (n) be the running time of the algorithm. Lines 3–4 require Θ(1) time,
Lines 5–8 require W (n/2) time, and lines 9–10 require Θ(lg n) time, line 11 require
Θ(1) time. Therefore W (n) satisfies the recurrence

W (n) = Θ(1) + W (n/2) + Θ(lg n), (15.29)

having the solution W (n) = Θ(lg2 n).

Example 15.7 Sorting on 16 processors. Sort using 16 processors the following
numbers: 62, 19, 8, 5, 1, 13, 11, 16, 23, 31, 9, 3, 18, 12, 27, 34. At first we
get the odd and even parts, then the first 8 processors gets the sequence X1 =
62, 19, 8, 5, 1, 13, 11, 16, while the other 8 processors get X2 = 23, 31, 9, 4, 18, 12, 27, 34.
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The output of the first 8 processors is Y1 = 1, 5, 8, 11, 13, 16, 19, 62, while the output
of the second 8 processors is Y2 = 3, 9, 12, 18, 23, 27, 31, 34. The merged final result is
Y = 1, 3, 5, 8, 9, 11, 12, 13, 16, 18, 19, 23, 27, 31, 34, 62.

The work of the algorithm is Θ(n lg2 n), its efficiency is Θ(1/ lg n), and its
speedup is Θ (n/ lg n). The algorithm is not work-optimal, but it is work-effective.

Algorithm of Preparata with Θ(lg n) running time. If we have more pro-
cessors, then the running time can be decreased. The following recursive algorithm
due to Preparata uses n lg n CREW PRAM processors and lg n time. Input is the
sequence X = x1, x2, . . . , xn, and the output is the sequence Y = y1, y2, . . . , yn

containing the sorted elements.

Preparata(X)

1 if n ≤ 20
2 then sort X using n processors and Odd-Even-Sort
3 return Y
4 divide the n elements into lg n parts (X1, X2, . . . , Xlg n) so, that each part

contains n/ lg n elements, and divide the processors into lg n groups
(G1, G2, . . . , Gn) so, that each group contains n processors

5 Gi in parallel for i← 1 to lg n
6 do sort the part Xi recursively to get a sorted sequence Si

7 divide the processors into (lg n)2 groups (H1,1, H1,2, . . . , H(lg n,lg n))
containing n/ lg n processors

8 Hi,j in parallel for i← 1 to lg n, j ← 1 to lg n
9 do merge Si and Sj

10 divide the processors into n groups (J1, J2, . . . , Jn) so, that each group
contains lg n processors

11 Ji in parallel for i← 1 to n
12 do determine the ranks of the xi element in X using the local ranks

received in line 9 and using the algorithm Optimal-Prefix
13 Yi ← the elements of X having a rank i
14 return Y

This algorithm uses the divide-and-conquer principle. It divides the input into
lg n parts, then merges each pair of parts. This merge results local ranks of the
elements. The global rank of the elements can be computed summing up these local
ranks.

Theorem 15.17 (sorting in Θ(lg n) time). Algorithm Preparata sorts n ele-
ments in Θ(lg n) time using n lg n CREW PRAM processors.

Proof Let the running time be W (n). Lines 4–6 require W (n/ lg n) time, lines 7–12
together Θ(lg lg n). Therefore W (n) satisfies the equation

W (n) = W (n/ lg n) + Θ(lg lg n), (15.30)

having the solution W (n) = Θ(lg n).
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The work of Preparata is the same, as the work of Odd-Even-Sort, but the
speedup is better: Θ(n). The efficiency of both algorithms is Θ(1/ lg n).

Exercises
15.6-1 The memory cell M1 of the global memory contains some data. Design an
algorithm, which copies this data to the memory cells M2, M3, . . . , Mn in O(lg n)
time, using n EREW PRAM processors.
15.6-2 Design an algorithm which solves the previous Exercise 15.6-1 using only
n/ lg n EREW PRAM processors saving the O(lg n) running time.
15.6-3 Design an algorithm having O(lg lg n) running time and determining the
maximum of n numbers using n/ lg lg n common CRCW PRAM processors.
15.6-4 Let X be a sequence containing n keys. Design an algorithm to determine
the rank of any k ∈ X key using n/ lg n CREW PRAM processors and O(lg n) time.

15.6-5 Design an algorithm having O(1) running time, which decides using n com-
mon CRCW PRAM processors, whether element 5 is contained by a given array
A[1 . . n], and if is contained, then gives the largest index i, for which A[i] = 5 holds.

15.6-6 Design algorithm to merge two sorted sequence of length m in O(1) time,
using n2 CREW PRAM processors.
15.6-7 Determine the running time, speedup, work, and efficiency of all algorithms,
discussed in this section.

15.7. Mesh algorithms

To illustrate another model of computation we present two algorithms solving the
prefix problem on meshes.

15.7.1. Prefix on chain

Let suppose that processor Pi (i = 1, 2, . . . , p) of the chain L = {P1, P2, . . . , Pp}
stores element xi in its local memory, and after the parallel computations the prefix
yi will be stored in the local memory of Pi.

At first we introduce a naive algorithm. Its input is the sequence of elements
X = x1, x2, . . . , xp, and its output is the sequence Y = y1, y2, . . . , yp, containing
the prefixes.
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Chain-Prefix(X)

1 P1 sends y1 = x1 to P2

2 Pi in parallel for i← 2 to p− 1
3 for i← 2top− 1
4 do gets yi−1 from Pi−1, then computes and stores yi ← yi−1 ⊕ xi

stores zi = zp−1 ⊕ xp, and sends zi to Pi+1

5 Pa gets zp−1 from Pp−1, then computes and stores ya = ya−1 ⊕ xa

Saying the truth, this is not a real parallel algorithm.

Theorem 15.18 Algorithm Chain-Prefix determines the prefixes of p elements
using a chain Cp in Θ(p) time.

Proof The cycle in lines 2–5 requires Θ(p) time, line 1 and line 6 requires Θ(1)
time.

Since the prefixes can be determined in O(p) time using a sequential proces-
sor, and w(p, p, Chain-Prefix) = pW (p, p, Chain-Prefix) = Θ(p2), so CHAIN-
Prefix is not work-effective.

15.7.2. Prefix on square

An algorithm, similar to Chain-Prefix, can be developed for a square too.
Let us consider a square of size a× a. We need an indexing of the processors.

There are many different indexing schemes, but for the next algorithm Square-
Prefix sufficient is the one of the simplest solutions, the row-major indexing

scheme, where processor Pi,j gets the index a(i− 1) + j.
The input and the output are the same, as in the case of Chain-Prefix.
The processors Pi−1)a+1, P(i−1)a+2), ...P(i−1)a)+a form the processor row Ri(1 ≤

i ≤ a) and the processors Pa+j , P2a+j , . . . Pa(a−1)+j form the processor column
Cj (1 ≤ j ≤ a). The input stored by the processors of row Ri is denoted by Xi, and
the similar output is denoted by Yi.

The algorithm works in 3 rounds. In the first round (lines 1–8) processor rows
Ri (1 ≤ i ≤ a) compute the row-local prefixes (working as processors of Chain-
Prefix). In the second round (lines 9–17) the column Ca computes the prefixes using
the results of the first round, and the processors of this column Pja (1 ≤ j ≤ a− 1)
send the computed prefix to the neighbour P(j+1)a). Finally in the third round the
rows Ri (2 ≤ i ≤ a) determine the final prefixes.

Square-Prefix(X)

1 Pj,1 in parallel for j ← 1 to a
2 do sends yj,1 = xj,1 to Pj,2
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3 Pj,i in parallel for i← 1 to a− 1
4 for i← 2toa− 1

5 do gets yj,i−1 from Pj,i−1, then computes and
6 stores yj,i = yj,p−1 ⊕ xj,p, and sends yj,i to Pj,i+1

7 Pj,a in parallel for j ← 1 to a
8 do gets yj,a−1 from Pj,a−1, then computes and stores y1,a = y1,a−1 ⊕ x1,a

9 P1,a sends y1,a to P2,a

10 Pj,a in parallel for j ← 2 to a− 1
11 for j ← 2toa− 1

12 do gets yj−1,a from Pj−1,a, then computes and stores
stores yj,a = yj−1,a ⊕ yj,a, and sends yj,a to Pj+1,a

13 Pa,a gets ya−1,a from Pa−1,a, then computes and stores ya,a = ya−1,a ⊕ ya,a

14 Pj,a in parallel for j ← 1 to a− 1
15 do send yj,a to Pj+1,a

16 Pj,a in parallel for j ← 2 to a
17 do sends yj,a to Pj,a−1

18 Pj,i in parallel for i← a− 1 downto 2
19 for j ← 2toa
20 do gets yj,a from Pj,i+1, then computes and
21 stores yj,i = yj,i+1 ⊕ yj,i, and sends yj,a to Pj,i−1

22 Pj,1 in parallel for j ← 2 to a− 1
23 do gets yj,a from Pj,2, then computes and stores yj,1 = yj,a ⊕ yj,1

Theorem 15.19 Algorithm Square-Prefix solves the prefix problem using a
square of size a× a, major row indexing in 3a + 2 = Θ(a) time.

Proof In the first round lines 1–2 contain 1 parallel operation, lines 3–6 require a−1
operations, and line 8 again 1 operation, that is all together a + 1 operations. In a
similar way in the third round lines 18–23 require a + 1 time units, and in round 2
lines 9–17 require a time units. The sum of the necessary time units is 3s + 2.

Example 15.8 Prefix computation on square of size 4 × 4 Figure 15.23(a) shows 16 input
elements. In the first round Square-Prefix computes the row-local prefixes, part (b) of the
figure show the results. Then in the second round only the processors of the fourth column
work, and determine the column-local prefixes – results are in part (c) of the figure. Finally
in the third round algorithm determines the final results shown in part (d) of the figure.

Chapter Notes

Basic sources of this chapter are for architectures and models the book of Leopold
[26], and the book of Sima, Fountaine and Kacsuk [31], for parallel programming the
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Figure 15.23 Prefix computation on square.

book due to Kumar et al. [13] and [26], for parallel algorithms the books of Berman
and Paul, [1] Cormen, Leiserson and Rivest [5], the book written by Horowitz, Sahni
and Rajasekaran [16] and the book [18], and the recent book due to Casanova,
Legrand and Robert [3].

The website [?] contains the Top 500 list, a regularly updated survey of the most
powerful computers worldwide [?]. It contains 42% clusters.

Described classifications of computers are proposed by Flynn [8], and Leopold
[26]. The Figures 15.1, 15.2, 15.3, 15.4, 15.5, 15.7 are taken from the book of Leopold
[26], the program 15.6 from the book written by Gropp et al. [14].

The clusters are characterised using the book of Pfister [29], grids are presented
on the base of the book and manuscript of Foster and Kellerman [9, ?].

With the problems of shared memory deal the book written by Hwang and
Xu [17], the book due to Kleiman, Shah, and Smaalders [22], and the textbook of
Tanenbaum and van Steen [33].

Details on concepts as tasks, processes and threads can be found in many text-
book, e.g. in [30, 32]. Decomposition of the tasks into smaller parts is analysed by
Tanenbaum and van Steen [33].

The laws concerning the speedup were described by Amdahl [?], Gustafson-
Barsis [15] and Brent [2]. Kandemir, Ramanujam and Choudray review the different
methods of the improvement of locality [20]. Wolfe [?] analyses in details the con-
nection between the transformation of the data and the program code. In connection
with code optimisation the book published by Kennedy and Allen [21] is a useful
source.

The MPI programming model is presented according to Gropp, Snir, Nitzberg,
and Lusk [14], while the base of the description of the OpenMP model is the paper
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due to Chandra, Dragum, Kohr, Dror, McDonald and Menon [4], further a review
found on the internet [?].

Lewis and Berg [27] discuss pthreads, while Oaks and Wong [28] the Java threads
in details. Description of High Performance Fortran can be found in the book Koelbel
et al. [23]. Among others Wolfe [?] studied the parallelising compilers.

The concept of PRAM is due to Fortune and Wyllie and is known since 1978 [?].
BSP was proposed in 1990 by Valiant [34]. LogP has been suggested as an alternative
of BSP by Culler et al. in 1993 [7]. QSM was introduced in 1999 by Gibbons, Matias
and Ramachandran [12].

The majority of the pseudocode conventions used in Section 15.6 and the descrip-
tion of crossover points and comparison of different methods of matrix multiplication
can be found in [6].

The Readers interested in further programming models, as skeletons, parallel
functional programming, languages of coordination and parallel mobile agents, can
find a detailed description in [26]. Further problems and parallel algorithms are
analysed in the books of Leighton [24, 25] and in the chapter Memory Management
of this book [?]. and in the book of Horowitz, Sahni and Rajasekaran [16] A model
of scheduling of parallel processes is discussed in [11, 19, 35].

Cost-optimal parallel merge is analysed by Wu and Olariu in [36]. New ideas (as
the application of multiple comparisons to get a constant time sorting algoritm) of
parallel sorting can be found in the paper of Gararch, Golub, and Kruskal [10].
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