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12. Scientific Computing

This title refers to a fast developing interdisciplinary area between mathematics,
computers and applications. The subject is also often called as Computational
Science and Engineering. Its aim is the efficient use of computer algorithms to solve
engineering and scientific problems. One can say with a certain simplification that
our subject is related to numerical mathematics, software engineering, computer
graphics and applications. Here we can deal only with some basic elements of the
subject such as the fundamentals of the floating point computer arithmetic, error
analysis, the basic numerical methods of linear algebra and related mathematical
software.

12.1. Floating point arithmetic and error analysis

12.1.1. Classical error analysis

Let x be the exact value and let a be an approximation of x (a ≈ x). The error of
the approximation a is defined by the formula ∆a = x−a (sometimes with opposite
sign). The quantity δa ≥ 0 is called an (absolute) error (bound) of approximation
a, if |x− a| = |∆a| ≤ δa. For example, the error of the approximation

√
2 ≈ 1.41

is at most 0.01. In other words, the error bound of the approximation is 0.01. The
quantities x and a (and accordingly ∆a and δa) may be vectors or matrices. In such
cases the absolute value and relation operators must be understood componentwise.
We also measure the error by using matrix and vector norms. In such cases, the
quantity δa ∈ R is an error bound, if the inequality ‖∆a‖ ≤ δa holds.

The absolute error bound can be irrelevant in many cases. For example, an ap-
proximation with error bound 0.05 has no value in estimating a quantity of order
0.001. The goodness of an approximation is measured by the relative error δa/ |x|
(δa/ ‖x‖ for vectors and matrices), which compares the error bound to the approxi-
mated quantity. Since the exact value is generally unknown, we use the approximate
relative error δa/ |a| (δa/ ‖a‖). The committed error is proportional to the quantity

(δa)
2
, which can be neglected, if the absolute value (norm) of x and a is much greater

than (δa)
2
. The relative error is often expressed in percentages.

In practice, the (absolute) error bound is used as a substitute for the generally
unknown true error.

In the classical error analysis we assume input data with given error bounds,
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exact computations (operations) and seek for the error bound of the final result. Let
x and y be exact values with approximations a and b, respectively. Assume that the
absolute error bounds of approximations a and b are δa and δb, respectively. Using
the classical error analysis approach we obtain the following error bounds for the
four basic arithmetic operations:

δ (a + b) = δa + δb,
δ(a + b)

|a + b| = max

{
δa

|a| ,
δb

|b|

}
(ab > 0) ,

δ (a− b) = δa + δb,
δ(a− b)

|a− b| =
δa + δb

|a− b| (ab > 0) ,

δ (ab) ≈ |a| δb + |b| δa
δ(ab)

|ab| ≈
δa

|a| +
δb

|b| (ab 6= 0) ,

δ(a/b) ≈ |a| δb + |b| δa

|b|2
δ(a/b)

|a/b| ≈
δa

|a| +
δb

|b| (ab 6= 0) .

We can see that the division with a number near to 0 can make the absolute
error arbitrarily big. Similarly, if the result of subtraction is near to 0, then its
relative error can become arbitrarily big. One has to avoid these cases. Especially
the subtraction operation can be quite dangerous.

Example 12.1 Calculate the quantity
√

1996−
√

1995 with approximations
√

1996 ≈ 44.67
and

√
1995 ≈ 44.66 whose common absolute and relative error bounds are 0.01 and 0.022%,

respectively. One obtains the approximate value
√

1996−
√

1995 ≈ 0.01, whose relative error
bound is

0.01 + 0.01

0.01
= 2 ,

that is 200%. The true relative error is about 10.66%. Yet it is too big, since it is approx-
imately 5 × 102 times bigger than the relative error of the initial data. We can avoid the
subtraction operation by using the following trick

√
1996 −

√
1995 =

1996 − 1995√
1996 +

√
1995

=
1√

1996 +
√

1995
≈ 1

89.33
≈ 0.01119 .

Here the nominator is exact, while the absolute error of the denominator is 0.02. Hence
the relative error (bound) of the quotient is about 0.02/89.33 ≈ 0.00022 = 0.022%. The
latter result is in agreement with the relative error of the initial data and it is substantially
smaller than the one obtained with direct subtraction operation.

The first order error terms of twice differentiable functions can be obtained by
their first order Taylor polynomial:

δ (f (a)) ≈ |f ′(a)| δa, f : R→ R ,

δ (f (a)) ≈
n∑

i=1

∣∣∣∣
∂f(a)

∂xi

∣∣∣∣ δai, f : Rn → R .

The numerical sensitivity of functions at a given point is characterised by the con-
dition number, which is the ratio of the relative errors of approximate function
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Figure 12.1 Forward and backward error.

value and the input data (the Jacobian matrix of functions F : Rn → R
m is denoted

by F ′(a) at the point a ∈ R
n):

c(f, a) =
|f ′(a)| |a|
|f(a)| , f : R→ R ,

c(F, a) =
‖a‖ ‖F ′(a)‖
‖F (a)‖ , F : Rn → R

m .

We can consider the condition number as the magnification number of the input
relative error. Therefore the functions is considered numerically stable (or well-
conditioned) at the point a, if c (f, a) is

”̨ “
small”. Otherwise f is considered as

numerically unstable (ill-conditioned.) The condition number depends on the
point a. A function can be well-conditioned at point a, while it is ill-conditioned at
point b. The term

”̨ “
small” is relative. It depends on the problem, the computer

and the required precision.
The condition number of matrices can be defined as the upper bound of a func-

tion condition number. Let us define the mapping F : Rn → R
n by the solution of

the equation Ay = x (A ∈ R
n×n, det(A) 6= 0), that is, let F (x) = A−1x . Then

F ′ ≡ A−1 and

c(F, a) =
‖a‖

∥∥A−1
∥∥

‖A−1a‖ =
‖Ay‖

∥∥A−1
∥∥

‖y‖ ≤ ‖A‖
∥∥A−1

∥∥ (Ay = a) .

The upper bound of the right side is called the condition number of the
matrix A. This bound is sharp, since there exists a vector a ∈ R

n such that
c(F, a) = ‖A‖

∥∥A−1
∥∥ .

12.1.2. Forward and backward errors

Let us investigate the calculation of the function value f (x). If we calculate the
approximation ŷ instead of the exact value y = f (x), then the forward error ∆y =
ŷ − y. If for a value x + ∆x the equality ŷ = f (x + ∆x) holds, that is, ŷ is the
exact function value of the perturbed input data x̂ = x + ∆x, then ∆x is called the
backward error. The connection of the two concepts is shown on the Figure 12.1.

The continuous line shows exact value, while the dashed one indicates computed
value. The analysis of the backward error is called the backward error analysis.
If there exist more than one backward error, then the estimation of the smallest one
is the most important.

An algorithm for computing the value y = f (x) is called backward stable, if
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for any x it gives a computed value ŷ with small backward error ∆x. Again, the
term

”̨ “
small” is relative to the problem environment.

The connection of the forward and backward errors is described by the approx-
imate thumb rule

δŷ

|y| / c (f, x)
δx̂

|x| , (12.1)

which means that

relative forward error ≤ condition number× relative backward error.

This inequality indicates that the computed solution of an ill-conditioned prob-
lem may have a big relative forward error. An algorithm is said to be forward stable
if the forward error is small. A forward stable method is not necessarily backward
stable. If the forward error and the condition number are small, then the algorithm
is forward stable.

Example 12.2 Consider the function f (x) = log x the condition number of which is
c (f, x) = c (x) = 1/ |log x|. For x ≈ 1 the condition number c (f, x) is big. Therefore the
relative forward error is big for x ≈ 1.

12.1.3. Rounding errors and floating point arithmetic

The classical error analysis investigates only the effects of the input data errors and
assumes exact arithmetic operations. The digital computers however are representing
the numbers with a finite number of digits, the arithmetic computations are carried
out on the elements of a finite set F of such numbers and the results of operations
belong to F . Hence the computer representation of the numbers may add further
errors to the input data and the results of arithmetic operations may also be subject
to further rounding. If the result of operation belongs to F , then we have the exact
result. Otherwise we have three cases:

(i) rounding to representable (nonzero) number;
(ii) underflow (rounding to 0);
(iii) overflow (in case of results whose moduli too large).
The most of the scientific-engineering calculations are done in floating point

arithmetic whose generally accepted model is the following:

Definition 12.1 The set of floating point numbers is given by

F (β, t, L, U) =

=
{
±m× βe | 1

β ≤ m < 1, m = 0.d1d2 . . . dt, L ≤ e ≤ U
}
∪ {0} ,

where
- β is the base (or radix) of the number system,
- m is the mantissa in the number system with base β,
- e is the exponent,
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- t is the length of mantissa (the precision of arithmetic),
- L is the smallest exponent (underflow exponent),
- U is the biggest exponent (overflow exponent).

The parameters of the three most often used number systems are indicated in
the following table

Name β Machines

binary 2 most computer

decimal 10 most calculators

hexadecimal 16 IBM mainframe computers

The mantissa can be written in the form

m = 0.d1d2 . . . dt =
d1

β
+

d2

β2
+ · · ·+ dt

βt
. (12.2)

We can observe that condition 1/β ≤ m < 1 implies the inequality 1 ≤ d1 ≤ β − 1
for the first digit d1. The remaining digits must satisfy 0 ≤ di ≤ β− 1 (i = 2, . . . , t).
Such arithmetic systems are called normalized. The zero digit and the dot is not
represented. If β = 2, then the first digit is 1, which is also unrepresented. Using the
representation (12.2) we can give the set F = F (β, t, L, U) in the form

F =

{
±
(

d1

β
+

d2

β2
+ · · ·+ dt

βt

)
βe | L ≤ e ≤ U

}
∪ {0} , (12.3)

where 0 ≤ di ≤ β − 1 (i = 1, . . . , t) and 1 ≤ d1.

Example 12.3 The set F (2, 3, −1, 2) contains 33 elements and its positive elements are
given by {

1

4
,

5

16
,

6

16
,

7

16
,

1

2
,

5

8
,

6

8
,

7

8
, 1,

10

8
,

12

8
,

14

8
, 2,

20

8
, 3,

28

8

}
.

The elements of F are not equally distributed on the real line. The distance of
two consecutive numbers in [1/β, 1] ∩ F is β−t. Since the elements of F are of the
form ±m × βe, the distance of two consecutive numbers in F is changing with the
exponent. The maximum distance of two consecutive floating point numbers is βU−t,
while the minimum distance is βL−t.

For the mantissa we have m ∈ [1/β, 1− 1/βt] , since

1

β
≤ m =

d1

β
+

d2

β2
+ · · ·+ dt

βt
≤ β − 1

β
+

β − 1

β2
+ · · ·+ β − 1

βt
= 1− 1

βt
.

Using this observation we can easily prove the following result on the range of
floating point numbers.

Theorem 12.2 If a ∈ F , a 6= 0, then ML ≤ |a| ≤MU , where

ML = βL−1, MU = βU (1− β−t).
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Let a, b ∈ F and denote � any of the four arithmetic operations (+,−, ∗, /). The
following cases are possible:

(1) a�b ∈ F (exact result),
(2) |a�b| > MU (arithmetic overflow),
(3) 0 < |a�b| < ML (arithmetic underflow),
(4) a�b /∈ F , ML < |a�b| < MU (not representable result).
In the last two cases the floating point arithmetic is rounding the result a�b to

the nearest floating point number in F . If two consecutive floating point numbers
are equally distant from a�b, then we generally round to the greater number. For
example, in a five digit decimal arithmetic, the number 2.6457513 is rounded to the
number 2.6458.

Let G = [−MU , MU ]. It is clear that F ⊂ G. Let x ∈ G. The fl (x) denotes an
element of F nearest to x. The mapping x→ fl (x) is called rounding. The quantity
|x− fl (x)| is called the rounding error. If fl (x) = 1, then the rounding error is at
most β1−t/2. The quantity u = β1−t/2 is called the unit roundoff. The quantity
u is the relative error bound of fl (x).

Theorem 12.3 If x ∈ G, then

fl(x) = x(1 + ε), |ε| ≤ u .

Proof Without loss of generality we can assume that x > 0. Let m1βe, m2βe ∈ F
be two consecutive numbers such that

m1βe ≤ x ≤ m2βe .

Either 1/β ≤ m1 < m2 ≤ 1 − β−t or 1 − β−t = m1 < m2 = 1 holds. Since
m2 −m1 = β−t holds in both cases, we have

|fl (x)− x| ≤ |m2 −m1|
2

βe =
βe−t

2

either fl (x) = m1βe or fl (x) = m2βe. It follows that

|fl (x)− x|
|x| ≤ |fl (x)− x|

m1βe
≤ βe−t

2m1βe
=

β−t

2m1
≤ 1

2
β1−t = u .

Hence fl (x)− x = λxu, where |λ| ≤ 1. A simple arrangement yields

fl (x) = x(1 + ε) (ε = λu)

Since |ε| ≤ u, we proved the claim.

Thus we proved that the relative error of the rounding is bounded in floating
point arithmetic and the bound is the unit roundoff u.

Another quantity used to measure the rounding errors is the so called the ma-
chine epsilon εM = 2u = β1−t (εM = 2u). The number εM is the distance of 1 and
its nearest neighbour greater than 1. The following algorithm determines εM in the
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case of binary base.

Machine-Epsilon

1 x← 1
2 while 1 + x > 1
3 do x← x/2
4 εM ← 2x
5 return εM

In the MATLAB system εM ≈ 2.2204× 10−16.
For the results of floating point arithmetic operations we assume the following

(standard model):

fl(a�b) = (a�b) (1 + ε) , |ε| ≤ u (a, b ∈ F ) . (12.4)

The IEEE arithmetic standard satisfies this assumption. It is an important conse-
quence of the assumption that for a�b 6= 0 the relative error of arithmetic operations
satisfies

|fl(a�b)− (a�b)|
|a�b| ≤ u.

Hence the relative error of the floating point arithmetic operations is small.
There exist computer floating point arithmetics that do not comply with the

standard model (12.4). The usual reason for this is that the arithmetic lacks a guard
digit in subtraction. For simplicity we investigate the subtraction 1−0.111 in a three
digit binary arithmetic. In the first step we equate the exponents:

2 × 0 . 1 0 0
− 2 × 0 . 0 1 1 1

.

If the computation is done with four digits, the result is the following

21 × 0 . 1 0 0
− 21 × 0 . 0 1 1 1

21 × 0 . 0 0 0 1
,

from which the normalized result is 2−2×0.100. Observe that the subtracted number
is unnormalised. The temporary fourth digit of the mantissa is called a guard digit.
Without a guard digit the computations are the following:

21 × 0 . 1 0 0
− 21 × 0 . 0 1 1

21 × 0 . 0 0 1
.

Hence the normalized result is 2−1 × 0.100 with a relative error of 100%. Several
CRAY computers and pocket calculators lack guard digits.

Without the guard digit the floating point arithmetic operations satisfy only the
weaker conditions

fl (x± y) = x (1 + α)± y (1 + β) , |α| , |β| ≤ u, (12.5)

fl (x�y) = (x�y) (1 + δ) , |δ| ≤ u, � = ∗, / . (12.6)
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Assume that we have a guard digit and the arithmetic complies with standard
model (12.4). Introduce the following notations:

|z| = [|z1| , . . . , |zn|]T (z ∈ R
n) , (12.7)

|A| = [|aij |]m,n
i,j=1

(
A ∈ R

m×n
)

, (12.8)

A ≤ B ⇔ aij ≤ bij

(
A, B ∈ R

m×n
)

. (12.9)

The following results hold:

∣∣fl
(
xT y

)
− xT y

∣∣ ≤ 1.01nu |x|T |y| (nu ≤ 0.01) , (12.10)

fl (αA) = αA + E (|E| ≤ u |αA|) , (12.11)

fl (A + B) = (A + B) + E (|E| ≤ u |A + B|) , (12.12)

fl (AB) = AB + E
(
|E| ≤ nu |A| |B|+ O

(
u2
))

, (12.13)

where E denotes the error (matrix) of the actual operation.
The standard floating point arithmetics have many special properties. It is an

important property that the addition is not associative because of the rounding.

Example 12.4 If a = 1, b = c = 3 × 10−16, then using MATLAB and AT386 type PC we
obtain

1.000000000000000e + 000 = (a + b) + c 6= a + (b + c) = 1.000000000000001e + 000 .

We can have a similar result on Pentium1 machine with the choice b = c = 1.15 × 10−16.

The example also indicates that for different (numerical) processors may produce
different computational results for the same calculations. The commutativity can
also be lost in addition. Consider the computation of the sum

∑n
i=1 xi. The usual

algorithm is the recursive summation.

Recursive-Summation(n, x)

1 s← 0
2 for i← 1 to n
3 do s← s + xi

4 return s

Example 12.5 Compute the sum

sn = 1 +

n∑

i=1

1

i2 + i

for n = 4999. The recursive summation algorithm (and MATLAB) gives the result

1.999800000000002e + 000 .
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If the summation is done in the reverse (increasing) order, then the result is

1.999800000000000e + 000 .

If the two values are compared with the exact result sn = 2 − 1/(n + 1), then we can see
that the second summation gives better result. In this case the sum of smaller numbers
gives significant digits to the final result unlike in the first case.

The last example indicates that the summation of a large number of data varying
in modulus and sign is a complicated task. The following algorithm of W. Kahan is
one of the most interesting procedures to solve the problem.

Compensated-Summation(n, x)

1 s← 0
2 e← 0
3 for i← 1 to n
4 do t← s
5 y ← xi + e
6 s← t + y
7 e← (t− s) + y
8 return s

12.1.4. The floating point arithmetic standard

The ANSI/IEEE Standard 754-1985 of a binary (β = 2) floating point arithmetic
system was published in 1985. The standard specifies the basic arithmetic operations,
comparisons, rounding modes, the arithmetic exceptions and their handling, and
conversion between the different arithmetic formats. The square root is included as
a basic operation. The standard does not deal with the exponential and transcendent
functions. The standard defines two main floating point formats:

Type Size Mantissa e u [ML, MU ] ≈
Single 32 bits 23 + 1 bits 8 bits 2−24 ≈ 5.96 × 10−8 10±38

Double 64 bits 52 + 1 bits 11 bits 2−53 ≈ 1.11 × 10−16 10±308

In both formats one bit is reserved as a sign bit. Since the floating point numbers
are normalized and the first digit is always 1, this bit is not stored. This hidden bit
is denoted by the

”̨ “
+1” in the table.

The arithmetic standard contains the handling of arithmetic exceptions.

Exception type Example Default result

Invalid operation 0/0, 0 × ∞,
√

−1 NaN (Not a Number)

Overflow |x�y| > MU ±∞
Divide by zero Finite nonzero/0 ±∞
Underflow 0 < |x�y| < ML Subnormal numbers

Inexact fl (x�y) 6= x�y Correctly rounded result
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(The numbers of the form ±m× βL−t, 0 < m < βt−1 are called subnormal num-
bers.) The IEEE arithmetic is a closed system. Every arithmetic operations has a
result, whether it is expected mathematically or not. The exceptional operations
raise a signal and continue. The arithmetic standard conforms with the standard
model (12.4).

The first hardware implementation of the IEEE standard was the Intel 8087
mathematical coprocessor. Since then it is generally accepted and used.

Remark. In the single precision we have about 7 significant digit precision in the
decimal system. For double precision we have approximately 16 digit precision in
decimals. There also exists an extended precision format of 80 bits, where t = 63
and the exponential has 15 bits.

Exercises
12.1-1 The measured values of two resistors are R1 = 110.2 ± 0.3Ω and R2 =
65.6 ± 0.2Ω. We connect the two resistors parallel and obtain the circuit resistance
Re = R1R2/(R1 + R2). Calculate the relative error bounds of the initial data and
the approximate value of the resistance Re. Evaluate the absolute and relative error
bounds δRe and δRe/Re, respectively in the following three ways:
(i) Estimate first δRe using only the absolute error bounds of the input data, then
estimate the relative error bound δRe/Re.
(ii) Estimate first the relative error bound δRe/Re using only the relative error
bounds of the input data, then estimate the absolute error bound δRe.
(iii) Consider the circuit resistance as a two variable function Re = F (R1, R2).
12.1-2 Assume that

√
2 is calculated with the absolute error bound 10−8. The fol-

lowing two expressions are theoretically equal:

(i) 1/
(
1 +
√

2
)6

;

(ii) 99− 70
√

2.
Which expression can be calculated with less relative error and why?
12.1-3 Consider the arithmetic operations as two variable functions of the form
f (x, y) = x�y, where � ∈ {+,−, ∗, /}.
(i) Derive the error bounds of the arithmetic operations from the error formula of
two variable functions.
(ii) Derive the condition numbers of these functions. When are they ill-conditioned?
(iii) Derive error bounds for the power function assuming that both the base and
the exponent have errors. What is the result if the exponent is exact?
(iv) Let y = 16x2, x ≈ a and y ≈ b = 16a2. Determine the smallest and the greatest
value of a as a function of x such that the relative error bound of b should be at
most 0.01.
12.1-4 Assume that the number C = EXP(4π2/

√
83) (= 76.1967868 . . .) is calcu-

lated in a 24 bit long mantissa and the exponential function is also calculated with
24 significant bits. Estimate the absolute error of the result. Estimate the relative
error without using the actual value of C.
12.1-5 Consider the emphfloating point number set F (β, t, L, U) and show that
(i) Every arithmetic operation can result arithmetic overflow;
(ii) Every arithmetic operation can result arithmetic underflow.
12.1-6 Show that the following expressions are numerically unstable for x ≈ 0:
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(i) (1− cos x)/ sin2 x;
(ii) sin(100π + x)− sin(x);
(iii) 2− sin x− cos x− e−x.
Calculate the values of the above expressions for x = 10−3, 10−5, 10−7 and estimate
the error. Manipulate the expressions into numerically stable ones and estimate the
error as well.
12.1-7 How many elements does the set F = F (β, t, L, U) have? How many sub-
normal numbers can we find?
12.1-8 If x, y ≥ 0, then (x + y) /2 ≥ √xy and equality holds if and only if x = y.
Is it true numerically? Check the inequality experimentally for various data (small
and large numbers, numbers close to each other or different in magnitude).

12.2. Linear systems of equations

The general form of linear algebraic systems with n unknowns and m equations is
given by

a11x1 + · · ·+ a1jxj + · · ·+ a1nxn = b1

...
ai1x1 + · · ·+ aijxj + · · ·+ ainxn = bi

...
am1x1 + · · ·+ amjxj + · · ·+ amnxn = bm

(12.14)

This system can be written in the more compact form

Ax = b , (12.15)

where

A = [aij ]
m,n
i,j=1 ∈ R

m×n, x ∈ R
n, b ∈ R

m .

The systems is called underdetermined if m < n. For m > n, the systems is called
overdetermined. Here we investigate only the case m = n, when the coefficient matrix
A is square. We also assume that the inverse matrix A−1 exists (or equivalently
det (A) 6= 0). Under this assumption the linear system Ax = b has exactly one
solution: x = A−1b.

12.2.1. Direct methods for solving linear systems

Triangular linear systems

Definition 12.4 The matrix A = [aij ]ni,j=1 is upper triangular if aij = 0 for all
i > j. The matrix A is lower triangular if aij = 0 for all i < j.



514 12. Scientific Computing

Figure 12.2 Gaussian elimination.

For example the general form of the upper triangular matrices is the following:



∗ ∗ · · · · · · ∗
0 ∗

...
...

. . .
. . .

...
...

. . . ∗ ∗
0 · · · · · · 0 ∗




.

We note that the diagonal matrices are both lower and upper triangular. It is easy to
show that det(A) = a11a22 . . . ann holds for the upper or lower triangular matrices.
It is easy to solve linear systems with triangular coefficient matrices. Consider the
following upper triangular linear system:

a11x1+ · · · +a1ixi+ · · · +a1nxn = b1

. . .
...

...
...

aiixi+ · · · +ainxn = bi

. . .
...

...
annxn = bn

This can be solved by the so called back substitution algorithm.

Back-Substitution(A, b, n)

1 xn ← bn/ann

2 for i← n− 1 downto 1
3 do xi ← (bi −

∑n
j=i+1 aijxj)/aii

4 return x

The solution of lower triangular systems is similar.
The Gauss method. The Gauss method or Gaussian elimination (GE) consists

of two phases:
I. The linear system Ax = b is transformed to an equivalent upper triangular system
using elementary operations (see Figure 12.2).
II. The obtained upper triangular system is then solved by the back substitution
algorithm.

The first phase is often called the elimination or forward phase. The second phase
of GE is called the backward phase. The elementary operations are of the following
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three types:
1. Add a multiple of one equation to another equation.
2. Interchange two equations.
3. Multiply an equation by a nonzero constant.
The elimination phase of GE is based on the following observation. Multiply

equation k by γ 6= 0 and subtract it from equation i:

(ai1 − γak1) x1 + · · ·+ (aij − γakj) xj + · · ·+ (ain − γakn) xn = bi − γbk .

If akj 6= 0, then by choosing γ = aij/akj , the coefficient of xj becomes 0 in the new
equivalent equation, which replaces equation i. Thus we can eliminate variable xj

(or coefficient aij) from equation i.
The Gauss method eliminates the coefficients (variables) under the main diagonal

of A in a systematic way. First variable x1 is eliminated from equations i = 2, . . . , n
using equation 1, then x2 is eliminated from equations i = 3, . . . , n using equation
2, and so on.

Assume that the unknowns are eliminated in the first (k − 1) columns under the
main diagonal and the resulting linear system has the form

a11x1+ · · · · · · +a1kxk + · · · + a1nxn = b1

. . .
...

...
...

. . .
...

...
...

akkxk + · · · + aknxn = bk

...
...

...
aikxk + · · · + ainxn = bi

...
...

...
ankxk + · · · + annxn = bn

.

If akk 6= 0, then multiplying row k by γ and subtracting it from equation i we obtain

(aik − γakk)xk + (ai,k+1 − γak,k+1)xk+1 + · · ·+ (ain − γakn)xn = bi − γbk .

Since aik − γakk = 0 for γ = aik/akk, we eliminated the coefficient aik (variable xk)
from equation i > k. Repeating this process for i = k + 1, . . . , n we can eliminate
the coefficients under the main diagonal entry akk. Next we denote by A [i, j] the
element aij of matrix A and by A [i, j : n] the vector [aij , ai,j+1, . . . , ain]. The Gauss
method has the following form (where the pivoting discussed later is also included):
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Gauss-Method(A, b)

1 � Forward phase:
2 n← rows[A]
3 for k ← 1 to n− 1
4 do {pivoting and interchange of rows and columns}
5 for i← k + 1 to n
6 do γik ← A [i, k] /A [k, k]
7 A [i, k + 1 : n]← A [i, k + 1 : n]− γik ∗A [k, k + 1 : n]
8 bi ← bi − γikbk

9 � Backward phase: see the back substitution algorithm.
10 return x

The algorithm overwrites the original matrix A and vector b. It does not write
however the zero entries under the main diagonal since these elements are not neces-
sary for the second phase of the algorithm. Hence the lower triangular part of matrix
A can be used to store information for the LU decomposition of matrix A.

The above version of the Gauss method can be performed only if the elements akk

occurring in the computation are not zero. For this and numerical stability reasons
we use the Gaussian elimination with pivoting.

The Gauss method with pivoting. If akk = 0, then we can interchange row
k with another row, say i, so that the new entry (aki) at position (k, k) should be
nonzero. If this is not possible, then all the coefficients akk, ak+1,k, . . . , ank are zero
and det (A) = 0. In the latter case Ax = b has no unique solution. The element
akk is called the kth pivot element. We can always select new pivot elements by
interchanging the rows. The selection of the pivot element has a great influence on
the reliability of the computed results. The simple fact that we divide by the pivot
element indicates this influence. We recall that δ(a/b) is proportional to 1/ |b|2. It is
considered advantageous if the pivot element is selected so that it has the greatest
possible modulus. The process of selecting the pivot element is called pivoting. We
mention the following two pivoting processes.

Partial pivoting: At the kth step, interchange the rows of the matrix so the
largest remaining element, say aik, in the kth column is used as pivot. After the
pivoting we have

|akk| = max
k≤i≤n

|aik| .

Complete pivoting: At the kth step, interchange both the rows and columns
of the matrix so that the largest element, say aij , in the remaining matrix is used
as pivot After the pivoting we have

|akk| = max
k≤i,j≤n

|aij | .

Note that the interchange of two columns implies the interchange of the corre-
sponding unknowns. The significance of pivoting is well illustrated by the following
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Example 12.6 The exact solution of the linear system

10−17x + y = 1
x + y = 2

is x = 1/(1 − 10−17) and y = 1 − 10−17/(1 − 10−17). The MATLAB program gives the
result x = 1, y = 1 and this is the best available result in standard double precision
arithmetic. Solving this system with the Gaussian elimination without pivoting (also in
double precision) we obtain the catastrophic result x = 0 and y = 1. Using partial pivoting
with the Gaussian elimination we obtain the best available numerical result x = y = 1.

Remark 12.5 Theoretically we do not need pivoting in the following cases: 1. If
A is symmetric and positive definite (A ∈ R

n×n is positive definite ⇔ xT Ax > 0,
∀x ∈ R

n, x 6= 0). 2. If A is diagonally dominant in the following sense:

|aii| >
∑

j 6=i

|aij | (1 ≤ i ≤ n) .

In case of symmetric and positive definite matrices we use the Cholesky method which
is a special version of the Gauss-type methods.

During the Gaussian elimination we obtain a sequence of equivalent linear sys-
tems

A(0)x = b(0) → A(1)x = b(1) → · · · → A(n−1)x = b(n−1) ,

where

A(0) = A, A(k) =
[
a

(k)
ij

]n

i,j=1
.

Note that matrices A(k) are stored in the place of A = A(0). The last coefficient
matrix of phase I has the form

A(n−1) =




a
(0)
11 a

(0)
12 · · · a

(0)
1n

0 a
(1)
22 · · · a

(1)
2n

...
. . .

...

0 · · · · · · a
(n−1)
nn




,

where a
(k−1)
kk is the kth pivot element. The growth factor of pivot elements is

given by

ρ = ρn = max
1≤k≤n

∣∣∣a(k−1)
kk /a

(0)
11

∣∣∣ .

Wilkinson proved that the error of the computed solution is proportional to the
growth factor ρ and the bounds

ρ ≤ √n
(

2 · 3 1
2 · · ·n 1

n−1

) 1
2 ∼ cn

1
2 n

1
4

log(n)

and
ρ ≤ 2n−1
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hold for complete and partial pivoting, respectively. Wilkinson conjectured that ρ ≤
n for complete pivoting. This has been proved by researchers for small values of n.
Statistical investigations on random matrices (n ≤ 1024) indicate that the average of
ρ is Θ

(
n2/3

)
for the partial pivoting and Θ

(
n1/2

)
for the complete pivoting. Hence

the case ρ > n hardly occurs in the statistical sense.
We remark that Wilkinson constructed a linear system on which ρ = 2n−1 for

the partial pivoting. Hence Wilkinson’s bound for ρ is sharp in the case of partial
pivoting. There also exist examples of linear systems concerning discretisations of
differential and integral equations, where ρ is increasing exponentially if Gaussian
elimination is used with partial pivoting.

The growth factor ρ can be very large, if the Gaussian elimination is used without
pivoting. For example, ρ = ρ4 (A) = 1.23× 105, if

A =




1.7846 −0.2760 −0.2760 −0.2760
−3.3848 0.7240 −0.3492 −0.2760
−0.2760 −0.2760 1.4311 −0.2760
−0.2760 −0.2760 −0.2760 0.7240


 .

Operations counts. The Gauss method gives the solution of the linear system
Ax = b (A ∈ R

n×n) in a finite number of steps and arithmetic operations ( +,−,
∗, / ). The amount of necessary arithmetic operations is an important characteristic
of the direct linear system solvers, since the CPU time is largely proportional to the
number of arithmetic operations. It was also observed that the number of additive
and multiplicative operations are nearly the same in the numerical algorithms of
linear algebra. For measuring the cost of such algorithms C. B. Moler introduced
the concept of flop.

Definition 12.6 One (old) flop is the computational work necessary for the op-
eration s = s + x ∗ y (1 addition + 1 multiplication). One (new) flop is the com-
putational work necessary for any of the arithmetic operations +,−, ∗, /.

The new flop can be used if the computational time of additive and multiplicative
operations are approximately the same. Two new flops equals to one old flop. Here
we use the notion of old flop.

For the Gauss method a simple counting gives the number of additive and mul-
tiplicative operations.

Theorem 12.7 The computational cost of the Gauss method is n3/3+Θ(n2) flops.

V. V. Klyuyev and N. Kokovkin-Shcherbak proved that if only elementary row
and column operations (multiplication of row or column by a number, interchange of
rows or columns, addition of a multiple of row or column to another row or column)
are allowed, then the linear system Ax = b cannot be solved in less than n3/3+Ω(n2)
flops.

Using fast matrix inversion procedures we can solve the n × n linear system
Ax = b in O(n2.808) flops. These theoretically interesting algorithms are not used in
practice since they are considered as numerically unstable.

The LU-decomposition. In many cases it is easier to solve a linear system if
the coefficient matrix can be decomposed into the product of two triangular matrices.
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Definition 12.8 The matrix A ∈ R
n×n has an LU-decomposition, if A = LU ,

where L ∈ R
n×n is lower and U ∈ R

n×n is upper triangular matrix.

The LU -decomposition is not unique. If a nonsingular matrix has an LU -
decomposition, then it has a particular LU -decomposition, where the main diagonal
of a given component matrix consists of 1’s. Such triangular matrices are called unit
(upper or lower) triangular matrices. The LU decomposition is unique, if L is
set to be lower unit triangular or U is set to be unit upper triangular.

The LU -decomposition of nonsingular matrices is closely related to the Gaussian
elimination method. If A = LU , where L is unit lower triangular, then lik = γik

(i > k), where γik is given by the Gauss algorithm. The matrix U is the upper
triangular part of the matrix we obtain at the end of the forward phase. The matrix
L can also be derived from this matrix, if the columns of the lower triangular part
are divided by the corresponding main diagonal elements. We remind that the first
phase of the Gaussian elimination does not annihilate the matrix elements under
the main diagonal. It is clear that a nonsingular matrix has LU -decomposition if

and only if a
(k−1)
kk 6= 0 holds for each pivot element for the Gauss method without

pivoting.

Definition 12.9 A matrix P ∈ R
n×n whose every row and column has one and

only one non-zero element, that element being 1, is called a permutation matrix.

In case of partial pivoting we permute the rows of the coefficient matrix (multiply

A by a permutation matrix on the left) so that a
(k−1)
kk 6= 0 (k = 1, . . . , n) holds for

a nonsingular matrix. Hence we have

Theorem 12.10 If A ∈ R
n×n is nonsingular then there exists a permutation matrix

P such that PA has an LU -decomposition.

The the algorithm of LU -decomposition is essentially the Gaussian elimination
method. If pivoting is used then the interchange of rows must also be executed on the
elements under the main diagonal and the permutation matrix P must be recorded.
A vector containing the actual order of the original matrix rows is obviously sufficient
for this purpose.

The LU- and Cholesky-methods. Let A = LU and consider the equation
Ax = b. Since Ax = LUx = L(Ux) = b, we can decompose Ax = b into the
equivalent linear system Ly = b and Ux = b, where L is lower triangular and U is
upper triangular.

LU -Method(A, b)

1 Determine the LU -decomposition A = LU .
2 Solve Ly = b.
3 Solve Ux = y.
4 return x

Remark. In case of partial pivoting we obtain the decomposition Â = PA = LU
and we set b̂ = Pb instead of b.
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In the first phase of the Gauss method we produce decomposition A = LU and
the equivalent linear system Ux = L−1b with upper triangular coefficient matrix.
The latter is solved in the second phase. In the LU -method we decompose the first
phase of the Gauss method into two steps. In the first step we obtain only the
decomposition A = LU . In the second step we produce the vector y = L−1b. The
third step of the algorithm is identical with the second phase of the original Gauss
method.

The LU -method is especially advantageous if we have to solve several linear
systems with the same coefficient matrix:

Ax = b1, Ax = b2, . . . , Ax = bk.

In such a case we determine the LU -decomposition of matrix A only once, and then
we solve the linear systems Lyi = bi, Uxi = yi (xi, yi,bi ∈ Rn, i = 1, . . . , k). The
computational cost of this process is n3/3 + kn2 + Θ (kn) flops.

The inversion of a matrix A ∈ R
n×n can be done as follows:

1. Determine the LU -decomposition A = LU . .
2. Solve Lyi = ei, Uxi = yi (ei is the ith unit vector i = 1, . . . , n).

The inverse of A is given by A−1 = [x1, . . . , xn]. The computational cost of the
algorithm is 4n3/3 + Θ

(
n2
)

flops.

The LU -method with pointers. This implementation of the LU -method is
known since the 60’s. Vector P contains the indices of the rows. At the start we set
P [i] = i (1 ≤ i ≤ n). When exchanging rows we exchange only those components of
vector P that correspond to the rows.

LU-Method-with-Pointers(A, b)

1 n← rows[A]
2 P ← [1, 2, . . . , n]
3 for k ← 1 to n− 1
4 do compute index t such that |A [P [t] , k]| = maxk≤i≤n |A [P [i] , k]| .
5 if k < t
6 then exchange the components P [k] and P [t].
7 for i← k + 1 to n
8 do A [P [i] , k]← A [P [i] , k] /A [P [k] , k]
9 A [P [i] , k + 1 : n]

← A [P [i] , k + 1 : n]−A [P [i] , k] ∗A [P [k] , k + 1 : n]
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10 for i← 1 to n
11 do s← 0
12 for j ← 1 to i− 1
13 do s← s + A [P [i] , j] ∗ x [j]
14 x [i]← b[P [i]]− s
15 for i← n downto 1
16 do s← 0
17 for j ← i + 1 to n
18 s← s + A [P [i] , j] ∗ x [j]
19 x [i]← (x [i]− s) /A [P [i] , i]
20 return x

If A ∈ R
n×n is symmetric and positive definite, then it can be decomposed in

the form A = LLT , where L is lower triangular matrix. The LLT -decomposition is
called the Cholesky-decomposition. In this case we can save approximately half of
the storage place for A and half of the computational cost of the LU -decomposition
(LLT -decomposition). Let

A =




a11 · · · a1n

a21 · · · a2n

...
...

an1 · · · ann


 =




l11 0 · · · 0

l21 l22
. . .

...
...

...
. . . 0

ln1 ln2 · · · lnn







l11 l21 · · · ln1

0 l22 · · · ln2

...
. . .

. . .
...

0 · · · 0 lnn


 .

Observing that only the first k elements may be nonzero in the kth column of LT

we obtain that

akk = l2
k1 + l2

k2 + · · ·+ l2
k,k−1 + l2

kk,

aik = li1lk1 + li2lk2 + · · ·+ li,k−1lk,k−1 + liklkk (i = k + 1, . . . , n) .

This gives the formulae

lkk = (akk −
k−1∑

j=1

l2
kj)1/2,

lik = (aik −
k−1∑

j=1

lij lkj)/lkk (i = k + 1, . . . , n) .

Using the notation
∑k

j=i sj = 0 (k < i) we can formulate the Cholesky-method
as follows.
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Cholesky-Method(A)

1 n← rows[A]
2 for k ← 1 to n

3 do akk ← (akk −
∑k−1

j=1 a2
kj)1/2

4 for i← k + 1 to n

5 do aik ← (aik −
∑k−1

j=1 aijakj)/akk

6 return A

The lower triangular part of A contains L. The computational cost of the al-
gorithm is n3/6 + Θ(n2) flops and n square roots. The algorithm, which can be
considered as a special case of the Gauss-methods, does not require pivoting, at
least in principle.

The LU - and Cholesky-methods on banded matrices. It often happens
that linear systems have banded coefficient matrices.

Definition 12.11 Matrix A ∈ R
n×n is banded with lower bandwidth p and upper

bandwidth q if

aij = 0, if i > j + p or j > i + q .

The possibly non-zero elements aij (i−p ≤ j ≤ i+q) form a band like structure.
Schematically A has the form

A =




a11 a12 · · · · · · a1,1+q 0 · · · · · · 0

a21 a22
. . .

...
...

. . .
. . .

...

a1+p,1
. . .

. . . 0

0
. . .

. . . an−q,n

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . an−1,n

0 · · · · · · · · · 0 an,n−p · · · an,n−1 ann




.

The banded matrices yield very efficient algorithms if p and q are significantly less
than n. If a banded matrix A with lower bandwidth p and upper bandwidth q has
an LU -decomposition, then both L and U are banded with lower bandwidth p and
upper bandwidth q, respectively.

Next we give the LU -method for banded matrices in three parts.
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The-LU-Decomposition-of-Banded-Matrix(A, n, p, q)

1 for k ← 1 to n− 1
2 do for i← k + 1 to min {k + p, n}
3 do aik ← aik/akk

4 for j ← k + 1 to min {k + q, n}
5 do aij ← aij − aikakj

6 return A

Entry aij is overwritten by lij , if i > j and by uij , if i ≤ j. The computational
cost of is c (p, q) flops, where

c (p, q) =

{
npq − 1

2 pq2 − 1
6 p3 + pn, p ≤ q

npq − 1
2 qp2 − 1

6 q3 + qn, p > q
.

The following algorithm overwrites b by the solution of equation Ly = b.

Solution-of-Banded-Unit-Lower-Triangular-System(L, b, n, p)

1 for i← 1 to n

2 do bi ← bi −
∑i−1

j=max{1,i−p} lijbj

3 return b

The total cost of the algorithm is np−p2/2 flops. The next algorithm overwrites
vector b by the solution of Ux = b.

Solution-of-Banded-Upper-Triangular-System(U, b, n, q)

1 for i← n downto 1

2 do bi ←
(

bi −
∑min{i+q,n}

j=i+1 uijbj

)
/uii

3 return b

The computational cost is n (q + 1)− q2/2 flops.
Assume that A ∈ R

n×n is symmetric, positive definite and banded with lower
bandwidth p. The banded version of the Cholesky-methods is given by

Cholesky-decomposition-of-Banded-Matrices(A, n, p)

1 for i← 1 to n
2 do for j ← max {1, i− p} to i− 1

3 do aij ←
(

aij −
∑j−1

k=max{1,i−p} aikajk

)
/ajj

4 aii ←
(

aii −
∑i−1

k=max{1,i−p} a2
ik

)1/2

5 return A

The elements aij are overwritten by lij (i ≥ j). The total amount of work is
given by

(
np2/2

)
−
(
p3/3

)
+ (3/2)

(
np− p2

)
flops és n square roots.

Remark. If A ∈ R
n×n has lower bandwidth p and upper bandwidth q and partial

pivoting takes place, then the upper bandwidth of U increases up to q̂ = p + q.
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12.2.2. Iterative methods for linear systems

There are several iterative methods for solving linear systems of algebraic equations.
The best known iterative algorithms are the classical Jacobi-, the Gauss-Seidel- and
the relaxation methods. The greatest advantage of these iterative algorithms is their
easy implementation to large systems. At the same time they usually have slow
convergence. However for parallel computers the multisplitting iterative algorithms
seem to be efficient.

Consider the iteration

xi = Gxi−1 + b (i = 1, 2, . . .)

where G ∈ R
n×n és x0, b ∈ R

n. It is known that {xi}∞
i=0 converges for all x0, b ∈ R

n

if and only if the spectral radius of G satisfies ρ (G) < 1 (ρ (G) = max |λ| | λ is an

eigenvalue of G). In case of convergence xi → x∗ = (I −G)
−1

b, that is we obtain
the solution of the equation (I −G) x = b. The speed of convergence depends on the
spectral radius ρ (G). Smaller the spectral radiusρ (G), faster the convergence.

Consider now the linear system

Ax = b ,

where A ∈ R
n×n is nonsingular. The matrices Ml, Nl, El ∈ Rn×n form a multisplit-

ting of A if
(i) A = Mi −Ni, i = 1, 2, . . . , L,
(ii) Mi is nonsingular, i = 1, 2, . . . , L,
(iii) Ei is non-negative diagonal matrix, i = 1, 2, . . . , L,

(iv)
∑L

i=1 Ei = I.
Let x0 ∈ R

n be a given initial vector. The multisplitting iterative method is the
following.

Multisplitting-Iteration(x0, b, L, Ml, Nl, El, l = 1, . . . , L)

1 i← 0
2 while exit condition = false
3 do i← i + 1
4 for l← 1 to L
5 do Mlyl ← Nlxi−1 + b

6 xi ←
∑L

l=1 Elyl

7 return xi

It is easy to show that yl = M−1
l Nlxi−1 + M−1

l b and

xi =

L∑

l=1

Elyl =

L∑

l=1

ElM
−1
l Nlxi−1 +

L∑

l=1

ElM
−1
l b

= Hxi−1 + c .

Thus the condition of convergence is ρ (H) < 1. The multisplitting iteration is a true
parallel algorithm because we can solve L linear systems parallel in each iteration
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(synchronised parallelism). The bottleneck of the algorithm is the computation of
iterate xi.

The selection of matrices Mi and Ei is such that the solution of the linear
system Miy = c should be cheap. Let S1, S2, . . . , SL be a partition of {1, . . . , n},
that is Si 6= ∅, Si ∩ Sj = ∅ (i 6= j) and ∪L

i=1Si = {1, . . . , n}. Furthermore let
Si ⊆ Ti ⊆ {1, . . . , n} (i = 1, . . . , L) be such that Sl 6= Tl for at least one l.

The non-overlapping block Jacobi splitting of A is given by

Ml =
[
M

(l)
ij

]n

i,j=1
, M

(l)
ij =





aij , if i, j ∈ Sl ,
aii, if i = j ,
0, otherwise ,

Nl = Ml −A,

El =
[
E

(l)
ij

]n

i,j=1
, E

(l)
ij =

{
1, if i = j ∈ Sl

0, otherwise

for l = 1, . . . , L.
Define now the simple splitting

A = M −N ,

where M is nonsingular,

M = [Mij ]
n
i,j=1 , Mij =

{
aij , if i, j ∈ Sl for some l ∈ {1, . . . , n} ,
0, otherwise.

It can be shown that

H =

L∑

l=1

ElM
−1
l Nl = M−1N

holds for the non-overlapping block Jacobi multisplitting.
The overlapping block Jacobi multisplitting of A is defined by

M̃l =
[
M̃

(l)
ij

]n

i,j=1
, M̃

(l)
ij =





aij , if i, j ∈ Tl

aii, if i = j
0, otherwise

,

Ñl = M̃l −A,

ẽl =
[
ẽ

(l)
ij

]n

i,j=1
, E

(l)
ii = 0, if i /∈ Tl

for l = 1, . . . , L.
A nonsingular matrix A ∈ R

n×n is called an M -matrix, if aij ≤ 0 (i 6= j) and
all the elements of A−1 are nonnegative.
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Theorem 12.12 Assume that A ∈ R
n×n is nonsingular M -matrix, {Mi, Ni, Ei}L

i=1

is a non-overlapping,
{

M̃i, Ñi, Ei

}L

i=1
is an overlapping block Jacobi multisplitting

of A, where the weighting matrices Ei are the same. The we have

ρ
(

H̃
)
≤ ρ (H) < 1 ,

where H =
∑L

l=1 ElM
−1
l Nl and H̃ =

∑L
l=1 ElM̃

−1
l Ñl .

We can observe that both iteration procedures are convergent and the conver-
gence of the overlapping multisplitting is not slower than that of the non-overlapping
procedure. The theorem remains true if we use block Gauss-Seidel multisplittings
instead of the block Jacobi multisplittings. In this case we replace the above defined
matrices Mi and M̃i with their lower triangular parts.

The multisplitting algorithm has multi-stage and asynchronous variants as well.

12.2.3. Error analysis of linear algebraic systems

We analyse the direct and inverse errors. We use the following notations and con-
cepts. The exact (theoretical) solution of Ax = b is denoted by x, while any approx-
imate solution is denoted by x̂. The direct error of the approximate solution is given
by ∆x = x̂− x. The quantity r = r (y) = Ay − b is called the residual error. For
the exact solution r (x) = 0, while for the approximate solution

r (x̂) = Ax̂− b = A (x̂− x) = A∆x .

We use various models to estimate the inverse error. In the most general case we
assume that the computed solution x̂ satisfies the linear systemÂx̂ = b̂, where Â =
A + ∆A and b̂ = b + ∆b. The quantities ∆A and ∆b are called the inverse errors.

One has to distinguish between the sensitivity of the problem and the stability
of the solution algorithm. By sensitivity of a problem we mean the sensitivity
of the solution to changes in the input parameters (data). By the stability (or
sensitivity) of an algorithm we mean the influence of computational errors on the
computed solution. We measure the sensitivity of a problem or algorithm in various
ways. One such characterization is the condition number

”̨ “
condition number”, which

compares the relative errors of the input and output values.
The following general principles are used when applying any algorithm:

- We use only stable or well-conditioned algorithms.
- We cannot solve an unstable (ill-posed or ill-conditioned) problem with a

general purpose algorithm, in general.

Sensitivity analysis. Assume that we solve the perturbed equation

Ax̂ = b + ∆b (12.16)

instead of the original Ax = b. Let x̂ = x + ∆x and investigate the difference of the
two solutions.
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Theorem 12.13 If A is nonsingular and b 6= 0, then

‖∆x‖
‖x‖ ≤ cond(A)

‖∆b‖
‖b‖ = cond(A)

‖r (x̂)‖
‖b‖ , (12.17)

where cond(A) = ‖A‖
∥∥A−1

∥∥ is the condition number of A.

Here we can see that the condition number of A may strongly influence the
relative error of the perturbed solution x̂. A linear algebraic system is said to be
well-conditioned if cond(A) is small, and ill-conditioned, if cond(A) is big. It is
clear that the terms

”̨ “
small” and

”̨ “
big” are relative and the condition number

depends on the norm chosen. We identify the applied norm if it is essential for some
reason. For example cond∞ (A) = ‖A‖∞

∥∥A−1
∥∥

∞
. The next example gives possible

geometric characterization of the condition number.

Example 12.7 The linear system

1000x1 + 999x2 = b1

999x1 + 998x2 = b2

is ill-conditioned (cond∞(A) = 3.99 × 106). The two lines, whose meshpoint defines the
system, are almost parallel. Therefore if we perturb the right hand side, the new meshpoint
of the two lines will be far from the previous meshpoint.

The inverse error is ∆b in the sensitivity model under investigation. Theorem
12.13 gives an estimate of the direct error which conforms with the thumb rule. It
follows that we can expect a small relative error of the perturbed solution x̂, if the
condition number of A is small.

Example 12.8 Consider the linear system Ax = b with

A =

[
1 + ε 1

1 1

]
, b =

[
1
1

]
, x =

[
0
1

]
.

Let x̂ =

[
2

−1

]
. Then r =

[
2ε
0

]
and ‖r‖

∞
/ ‖b‖

∞
= 2ε, but ‖x̂ − x‖

∞
/ ‖x‖

∞
= 2.

Consider now the perturbed linear system

(A + ∆A) x̂ = b (12.18)

instead of Ax = b. It can be proved that for this perturbation model there exist
more than one inverse errors

”̨ “
inverse error” among which ∆A = −r (x̂) x̂T /x̂T x̂ is

the inverse error with minimal spectral norm, provided that x̂, r (x̂) 6= 0.
The following theorem establish that for small relative residual error the relative

inverse error is also small.

Theorem 12.14 Assume that x̂ 6= 0 is the approximate solution of Ax = b,
det (A) 6= 0 and b 6= 0. If ‖r (x̂)‖2 / ‖b‖2 = α < 1, the the matrix ∆A =
−r (x̂) x̂T /x̂T x̂ satisfies (A + ∆A) x̂ = b and ‖∆A‖2 / ‖A‖2 ≤ α/ (1− α) .
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If the relative inverse error and the condition number of A are small, then the
relative residual error is small.

Theorem 12.15 If r (x̂)=Ax̂− b, (A + ∆A) x̂=b, A 6= 0, b 6= 0 and cond (A) ‖∆A‖
‖A‖

<1, then

‖r (x̂)‖
‖b‖ ≤

cond(A) ‖∆A‖
‖A‖

1− cond(A) ‖∆A‖
‖A‖

. (12.19)

If A is ill-conditioned, then Theorem 12.15 is not true.

Example 12.9 Let A =

[
1 + ε 1

1 1 − ε

]
, ∆A =

[
0 0
0 ε2

]
and b =

[
1

−1

]
, (0 < ε �

1). Then cond∞ (A) = (2 + ε)2 /ε2 ≈ 4/ε2 and ‖∆A‖
∞

/ ‖A‖
∞

= ε2/ (2 + ε) ≈ ε2/2. Let

x̂ = (A + ∆A)−1 b =
1

ε3

[
2 − ε + ε2

−2 − ε

]
≈
[

2/ε3

−2/ε3

]
.

Then r (x̂) = Ax̂ − b =

[
0

2/ε + 1

]
and ‖r (x̂)‖

∞
/ ‖b‖

∞
= 2/ε + 1, which is not small.

In the most general case we solve the perturbed equation

(A + ∆A) x̂ = b + ∆b (12.20)

instead of Ax = b. The following general result holds.

Theorem 12.16 If A is nonsingular, cond (A) ‖∆A‖
‖A‖ < 1 and b 6= 0, then

‖∆x‖
‖x‖ ≤

cond(A)
(

‖∆A‖
‖A‖ + ‖∆b‖

‖b‖

)

1− cond(A) ‖∆A‖
‖A‖

. (12.21)

This theorem implies the following
”̨ “

thumb rule”.
Thumb rule. Assume that Ax = b. If the entries of A and b are accurate to about
s decimal places and cond(A) ∼ 10t, where t < s, then the entries of the computed
solution are accurate to about s− t decimal places.

The assumption cond(A) ‖∆A‖ / ‖A‖ < 1 of Theorem 12.16 guarantees that that
matrix A+∆A is nonsingular. The inequality cond(A) ‖∆A‖ / ‖A‖ < 1 is equivalent
with the inequality ‖∆A‖ < 1

‖A−1‖ and the distance of A from the nearest singular

matrix is just 1/
∥∥A−1

∥∥. Thus we can give a new characterization of the condition
number:

1

cond (A)
= min

A+∆A is singular

‖∆A‖
‖A‖ . (12.22)

Thus if a matrix is ill-conditioned, then it is close to a singular matrix. Earlier we
defined the condition numbers of matrices as the condition number of the mapping
F (x) = A−1x.

Let us introduce the following definition.
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Definition 12.17 A linear system solver is said to be weakly stable on a matrix
class H, if for all well-conditioned A ∈ H and for all b, the computed solution x̂ of
the linear system Ax = b has small relative error ‖x̂− x‖ / ‖x‖.

Putting together Theorems 12.13–12.16 we obtain the following.

Theorem 12.18 (Bunch). A linear system solver is weakly stable on a matrix class
H, if for all well-conditioned A ∈ H and for all b, the computed solution x̂ of the
linear system Ax = b satisfies any of the following conditions:
(1) ‖x̂− x‖ / ‖x‖ is small;
(2) ‖r (x̂)‖ / ‖b‖ is small;
(3) There exists ∆A such that (A + ∆A) x̂ = b and ‖∆A‖ / ‖A‖ are small.

The estimate of Theorem 12.16 can be used in practice if we know estimates
of ∆b, ∆A and cond(A). If no estimates are available, then we can only make a
posteriori error estimates.

In the following we study the componentwise error estimates. We first give an
estimate for the absolute error of the approximate solution using the components of
the inverse error.

Theorem 12.19 (Bauer, Skeel). Let A ∈ R
n be nonsingular and assume that the

approximate solution x̂ of Ax = b satisfies the linear system (A + E) x̂ = b + e. If
S ∈ R

n×n , s ∈ R
n and ε > 0 are such that S ≥ 0, s ≥ 0, |E| ≤ εS, |e| ≤ εs and

ε
∥∥∣∣A−1

∣∣S
∥∥

∞
< 1, then

‖x̂− x‖∞ ≤
ε
∥∥∣∣A−1

∣∣ (S |x|+ s)
∥∥

∞

1− ε ‖|A−1|S‖∞

. (12.23)

If e = 0 (s = 0), S = |A| and

kr (A) =
∥∥∣∣A−1

∣∣ |A|
∥∥

∞
< 1 , (12.24)

then we obtain the estimate

‖x̂− x‖∞ ≤
εkr (A)

1− εkr (A)
. (12.25)

The quantity kr (A) is said to be Skeel-norm , although it is not a norm in the
earlier defined sense. The Skeel-norm satisfies the inequality

kr (A) ≤ cond∞ (A) = ‖A‖∞

∥∥A−1
∥∥

∞
. (12.26)

Therefore the above estimate is not worse than the traditional one that uses the
standard condition number.

The inverse error can be estimated componentwise by the following result of
Oettli and Prager. Let A, δA ∈ R

n×n and b, δb ∈ R
n. Assume that δA ≥ 0 and δb

≥ 0. Furthermore let

D =
{

∆A ∈ R
n×n : |∆A| ≤ δA

}
, G = {∆b ∈ R

n : |∆b| ≤ δb} .
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Theorem 12.20 (Oettli, Prager). The computed solution x̂ satisfies a perturbed
equation (A + ∆A) x̂ = b + ∆b with ∆A ∈ D and ∆b ∈ G, if

|r (x̂)| = |Ax̂− b| ≤ δA |x̂|+ δb . (12.27)

We do not need the condition number to apply this theorem. In practice the
entries δA and δb are proportional to the machine epsilon.

Theorem 12.21 (Wilkinson). The approximate solution x̂ of Ax = b obtained by
the Gauss method in floating point arithmetic satisfies the perturbed linear equation

(A + ∆A) x̂ = b (12.28)

with
‖∆A‖∞ ≤ 8n3ρn ‖A‖∞ u + O(u2) , (12.29)

where ρn denotes the groth factor of the pivot elements and u is the unit roundoff.

Since ρn is small in practice, the relative error

‖∆A‖∞

‖A‖∞

≤ 8n3ρnu + O(u2)

is also small. Therefore Theorem12.18 implies that the Gauss method is weakly
stable both for full and partial pivoting.

Wilkinson’s theorem implies that

cond∞(A)
‖∆A‖∞

‖A‖∞

≤ 8n3ρncond∞ (A) u + O
(
u2
)

.

For a small condition number we can assume that 1−cond∞(A) ‖∆A‖∞ / ‖A‖∞ ≈ 1.
Using Theorems 12.21 and 12.16 (case ∆b = 0) we obtain the following estimate of
the direct error:

‖∆x‖
∞

‖x‖
∞

≤ 8n3ρncond∞ (A) u . (12.30)

The obtained result supports the thumb rule in the case of the Gauss method.

Example 12.10 Consider the following linear system whose coefficients can be represented
exactly:

888445x1 + 887112x2 = 1 ,
887112x1 + 885781x2 = 0 .

Here cond(A)∞ is big, but cond∞(A)‖∆A‖
∞

/‖A‖
∞

is negligible. The exact solution of
the problem is x1 = 885781, x2 = −887112. The MATLAB gives the approximate solution
x̂1 = 885827.23, x̂2 = −887158.30 with the relative error

‖x − x̂‖
∞

‖x‖
∞

= 5.22 × 10−5 .

Since s ≈ 16 and cond (A)
∞

≈ 3.15×1012, the result essentially corresponds to the Wilkin-
son theorem or the thumb rule. The Wilkinson theorem gives the bound

‖∆A‖
∞

≤ 1.26 × 10−8
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for the inverse error. If we use the Oettli-Prager theorem with the choice δA = εM |A| and
δb = εM |b|, then we obtain the estimate |r (x̂)| ≤ δA |x̂|+δb. Since ‖|δA|‖

∞
= 3.94×10−10,

this estimate is better than that of Wilkinson.

Scaling and preconditioning. Several matrices that occur in applications are
ill-conditioned if their order n is large. For example the famous Hilbert-matrix

Hn =

[
1

i + j − 1

]n

i,j=1

(12.31)

has cond2 (Hn) ≈ e3.5n, if n→∞. There exist 2n× 2n matrices with integer entries
that can be represented exactly in standard IEEE754 floating point arithmetic while
their condition number is approximately 4× 1032n.

We have two main techniques to solve linear systems with large condition num-
bers. Either we use multiple precision arithmetic or decrease the condition number.
There are two known forms of decreasing the condition number.

1. Scaling. We replace the linear system Ax = b with the equation

(RAC) y = (Rb) , (12.32)

where R and C are diagonal matrices.
We apply the Gauss method to this scaled system and get the solution y. The

quantity x = Cy defines the requested solution. If the condition number of the
matrix RAC is smaller then we expect a smaller error in y and consequently in x.
Various strategies are given to choose the scaling matrices R and C. One of the best
known strategies is the balancing which forces every column and row of RAC to
have approximately the same norm. For example, if

D̂ = diag

(
1∥∥aT
1

∥∥
2

, . . . ,
1

‖aT
n‖2

)

where aT
i is the ith row vector of A, the Euclidean norms of the rows of D̂A will be

1 and the estimate

cond2

(
D̂A

)
≤ √n min

D∈D+

cond2 (DA)

holds with D+ = {diag (d1, . . . , dn) | d1, . . . , dn > 0}. This means that D̂ optimally
scales the rows of A in an approximate sense.

The next example shows that the scaling may lead to bad results.

Example 12.11 Consider the matrix

A =

[
ε/2 1 1
1 1 1
1 1 2

]

for 0 < ε � 1. It is easy to show that cond∞ (A) = 12. Let

R = C =

[
2/

√
ε 0 0

0
√

ε/2 0
0 0

√
ε/2

]
.
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Then the scaled matrix

RAR =

[
2 1 1
1 ε/4 ε/4
1 ε/4 ε/2

]
,

has the condition number cond∞ (RAR) = 32/ε, which a very large value for small ε.

2. Preconditioning. The preconditioning is very close to scaling. We rewrite
the linear system Ax = b with the equivalent form

Ãx = (MA) x = Mb = b̃, (12.33)

where matrix M is such that cond
(
M−1A

)
is smaller and Mz = y is easily solvable.

The preconditioning is often used with iterative methods on linear systems with
symmetric and positive definite matrices.

A posteriori error estimates. The a posteriori estimate of the error of an
approximate solution is necessary to get some information on the reliability of the
obtained result. There are plenty of such estimates. Here we show three estimates
whose computational cost is Θ

(
n2
)

flops. This cost is acceptable when comparing

to the cost of direct or iterative methods (Θ
(
n3
)

or Θ
(
n2
)

per iteration step).

The estimate of the direct error with the residual error.

Theorem 12.22 (Auchmuty). Let x̂ be the approximate solution of Ax = b. Then

‖x− x̂‖2 =
c ‖r(x̂)‖2

2

‖AT r(x̂)‖2

,

where c ≥ 1.

The error constant c depends on A and the direction of error vector x̂ − x.
Furthermore

1

2
cond2 (A) ≈ C2 (A) =

1

2

(
cond2 (A) +

1

cond2 (A)

)
≤ cond2 (A) .

The error constant c takes the upper value C2 (A) only in exceptional cases. The
computational experiments indicate that the average value of c grows slowly with
the order of A and it depends more strongly on n than the condition number of A.
The following experimental estimate

‖x− x̂‖2 / 0.5 dim (A) ‖r (x̂)‖2
2 /
∥∥AT r (x̂)

∥∥
2

(12.34)

seems to hold with a high degree of probability.

The LINPACK estimate of
∥∥A−1

∥∥ . The famous LINPACK program package

uses the following process to estimate
∥∥A−1

∥∥. We solve the linear systems AT y = d

and Aw = y. Then the estimate of
∥∥A−1

∥∥ is given by

∥∥A−1
∥∥ ≈ ‖w‖‖y‖

(
≤
∥∥A−1

∥∥) . (12.35)
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Since

‖w‖
‖y‖ =

∥∥A−1
(
A−T d

)∥∥
‖A−T d‖ ,

we can interpret the process as an application of the power method of the eigenvalue
problem. The estimate can be used with the 1−, 2− and ∞-norms. The entries of
vector d are ±1 possibly with random signs.

If the linear system Ax = b is solved by the LU -method, then the solution of
further linear systems costs Θ(n2) flops per system. Thus the total cost of the LIN-
PACK estimate remains small. Having the estimate

∥∥A−1
∥∥ we can easily estimate

cond(A) and the error of the approximate solution (cf. Theorem 12.16 or the thumb
rule). We remark that several similar processes are known in the literature.

The Oettli-Prager estimate of the inverse error. We use the Oettli-Prager
theorem in the following form. Let r (x̂) = Ax̂ − b be the residual error, E ∈ R

n×n

and f ∈ R
n are given such that E ≥ 0 and f ≥ 0. Let

ω = max
i

|r (x̂)i|
(E |x̂|+ f)i

,

where 0/0 is set to 0-nak, ρ/0 is set to ∞, if ρ 6= 0. Symbol (y)i denotes the ith

component of the vector y. If ω 6=∞, then there exist a matrix ∆A and a vector ∆b
for which

|∆A| ≤ ωE, |∆b| ≤ ωf

holds and

(A + ∆A) x̂ = b + ∆b .

Moreover ω is the smallest number for which ∆A and ∆b exist with the above
properties. The quantity ω measures the relative inverse error in terms of E and
f . If for a given E, f and x̂, the quantity ω is small, then the perturbed problem
(and its solution) are close to the original problem (and its solution). In practice,
the choice E = |A| and f = |b| is preferred

Iterative refinement. Denote by x̂ the approximate solution of Ax = b and let
r(y) = Ay− b be the residual error at the point y. The precision of the approximate
solution x̂ can be improved with the following method.
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Iterative-Refinement(A, b, x̂, tol)

1 k ← 1
2 x1 ← x̂

3 d̂← inf

4 while

∥∥∥d̂
∥∥∥ / ‖xk‖ > tol

5 do r ← Axk − b

6 Compute the approximate solution d̂ of Ad = r with the LU -method.

7 xk+1 ← xk − d̂
8 k ← k + 1
9 return xk

There are other variants of this process. We can use other linear solvers instead
of the LU -method.

Let η be the smallest bound of relative inverse error with

(A + ∆A) x̂ = b + ∆b, |∆A| ≤ η |A| , |∆b| ≤ η |b| .

Furthermore let

σ (A, x) = max
k

(|A| |x|)k / min
k

(|A| |x|)k , min
k

(|A| |x|)k > 0 .

Theorem 12.23 (Skeel). If kr

(
A−1

)
σ (A, x) ≤ c1 < 1/εM , then for sufficiently

large k we have

(A + ∆A) xk = b + ∆b, |∆A| ≤ 4ηεM |A| , |∆b| ≤ 4ηεM |b| . (12.36)

This result often holds after the first iteration, i.e. for k = 2. Jankowski and
Wozniakowski investigated the iterative refinement for any method φ which produces
an approximate solution x̂ with relative error less than 1. They showed that the
iterative refinement improves the precision of the approximate solution even in single
precision arithmetic and makes method φ to be weakly stable.

Exercises
12.2-1 Prove Theorem 12.7.
12.2-2 Consider the linear systems Ax = b and Bx = b, where

A =

[
1 1/2

1/2 1/3

]
, B =

[
1 −1/2

1/2 1/3

]

and b ∈ R
2. Which equation is more sensitive to the perturbation of b? What should

be the relative error of b in the more sensitive equation in order to get the solutions
of both equations with the same precision?
12.2-3 Let χ = 3/229, ζ = 214 and

A =




χζ −ζ ζ
ζ−1 ζ−1 0
ζ−1 −χζ−1 ζ−1


 , b =




1
1 + ε

1


 .
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Solve the linear systems Ax = b for ε = 10−1, 10−3, 10−5, 10−7, 10−10. Explain the
results.
12.2-4 Let A be a 10 × 10 matrix and choose the band matrix consisting of the
main and the neighbouring two subdiagonals of A as a preconditioning matrix. How
much does the condition number of A improves if (i) A is a random matrix; (ii) A
is a Hilbert matrix?
12.2-5 Let

A =




1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6


 ,

and assume that ε is the common error bound of every component of b ∈ R
3. Give the

sharpest possible error bounds for the solution [x1, x2, x3]
T

of the equation Ax = b
and for the sum (x1 + x2 + x3).
12.2-6 Consider the linear system Ax = b with the approximate solution x̂.
(i) Give an error bound for x̂, if (A + E)x̂ = b holds exactly and both A and A + E
is nonsingular.
(ii) Let

A =




10 7 8
7 5 6
8 6 10


 , b =




25
18
24




and consider the solution of Ax = b. Give (if possible) a relative error bound for the
entries of A such that the integer part of every solution component remains constant
within the range of this relative error bound.

12.3. Eigenvalue problems

The set of complex n-vectors will be denoted by C
n. Similarly, Cm×n denotes the

set of complex m× n matrices.

Definition 12.24 Let A ∈ C
n×n be an arbitrary matrix. The number λ ∈ C is the

eigenvalue of A if there is vector x ∈ C
n (x 6= 0) such that

Ax = λx. (12.37)

Vector x is called the (right) eigenvector of A that belongs to the eigenvalue λ.

Equation Ax = λx can be written in the equivalent form (A− λI)x = 0, where
I is the unit matrix of appropriate size. The latter homogeneous linear system has
a nonzero solution x if and only if

φ(λ) = det(A− λI) = det







a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

...
...

. . .
...

an1 an2 . . . ann − λ





 = 0 . (12.38)
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Equation (12.38) is called the characteristic equation of matrix A. The roots of
this equation are the eigenvalues of matrix A. Expanding det (A− λI) we obtain a
polynomial of degree n:

φ(λ) = (−1)n(λn − p1λn−1 − . . .− pn−1λ− pn) .

This polynomial called the characteristic polynomial of A. It follows from the
fundamental theorem of algebra that any matrix A ∈ C

n×n has exactly n eigenvalues
with multiplicities. The eigenvalues may be complex or real. Therefore one needs to
use complex arithmetic for eigenvalue calculations. If the matrix is real and the
computations are done in real arithmetic, the complex eigenvalues and eigenvectors
can be determined only with special techniques.

If x 6= 0 is an eigenvector, t ∈ C (t 6= 0), then tx is also eigenvector. The number
of linearly independent eigenvectors that belong to an eigenvalue λk does not exceed
the multiplicity of λk in the characteristic equation (12.38). The eigenvectors that
belong to different eigenvalues are linearly independent.

The following results give estimates for the size and location of the eigenvalues.

Theorem 12.25 Let λ be any eigenvalue of matrix A. The upper estimate |λ| ≤
‖A‖ holds in any induced matrix norm.

Theorem 12.26 (Gersgorin). Let A ∈ C
n×n,

ri =

n∑

j=1,j 6=i

|aij | (i = 1, . . . , n)

and
Di = {z ∈ C| |z − aii| ≤ ri} (i = 1, . . . , n) .

Then for any eigenvalue λ of A we have λ ∈ ∪n
i=1Di.

For certain matrices the solution of the characteristic equation (12.38) is very
easy. For example, if A is a triangular matrix, then its eigenvalues are entries of
the main diagonal. In most cases however the computation of all eigenvalues and
eigenvectors is a very difficult task. Those transformations of matrices that keeps
the eigenvalues unchanged have practical significance for this problem. Later we see
that the eigenvalue problem of transformed matrices is simpler.

Definition 12.27 The matrices A, B ∈ C
n×n are similar if there is a matrix T

such that B = T −1AT . The mapping A→ T −1AT is said to be similarity trans-
formation of A.

Theorem 12.28 Assume that det(T ) 6= 0. Then the eigenvalues of A and B =
T −1AT are the same. If x is the eigenvector of A, then y = T −1x is the eigenvector
of B.

Similar matrices have the same eigenvalues.
The difficulty of the eigenvalue problem also stems from the fact that the eigen-

values and eigenvectors are very sensitive (unstable) to changes in the matrix entries.
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The eigenvalues of A and the perturbed matrix A + δA may differ from each other
significantly. Besides the multiplicity of the eigenvalues may also change under per-
turbation. The following theorems and examples show the very sensitivity of the
eigenvalue problem.

Theorem 12.29 (Ostrowski, Elsner). For every eigenvalue λi of matrix A ∈
C

n×n there exists an eigenvalue µk of the perturbed matrix A + δA such that

|λi − µk| ≤ (2n− 1) (‖A‖2 + ‖A + δA‖2)
1− 1

n ‖δA‖
1
n

2 .

We can observe that the eigenvalues are changing continuously and the size of
change is proportional to the nth root of ‖δA‖2.

Example 12.12 Consider the following perturbed Jordan matrix of the size r × r:




µ 1 0 . . . 0

0 µ 1
. . .

...
...

. . .
. . .

. . . 0

0
. . . µ 1

ε 0 . . . 0 µ




.

The characteristic equation is (λ − µ)r = ε, which gives the r different eigenvalues

λs = µ + ε1/r (cos (2sπ/r) + i sin (2sπ/r)) (s = 0, . . . , r − 1)

instead of the original eigenvalue µ with multiplicity r. The size of change is ε1/r, which
corresponds to Theorem (12.29 ). If |µ| ≈ 1, r = 16 and ε = εM ≈ 2.2204 × 10−16, then the
perturbation size of the eigenvalues is ≈ 0.1051. This is a significant change relative to the
input perturbation ε.

For special matrices and perturbations we may have much better perturbation
bounds.

Theorem 12.30 (Bauer, Fike). Assume that A ∈ C
n×n is diagonalisable, that

is a matrix X exists such that X−1AX = diag(λ1, . . . , λn). Denote µ an eigenvalue
of A + δA. Then

min
1≤i≤n

|λi − µ| ≤ cond2(X) ‖δA‖2 . (12.39)

This result is better than that of Ostrowski and Elsner. Nevertheless cond2 (X),
which is generally unknown, can be very big.

The eigenvalues are continuous functions of the matrix entries. This is also true
for the normalized eigenvectors if the eigenvalues are simple. The following example
shows that this property does not hold for multiple eigenvalues.

Example 12.13 Let

A (t) =

[
1 + t cos (2/t) −t sin (2/t)

−t sin (2/t) 1 − t cos (2/t)

]
(t 6= 0) .
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The eigenvalues of A (t) are λ1 = 1 + t and λ2 = 1 − t. Vector [sin (1/t) , cos (1/t)]T is the
eigenvector belonging to λ1. Vector [cos (1/t) , − sin (1/t)]T is the eigenvector belonging to
λ2. If t → 0, then

A (t) → I =

[
1 0
0 1

]
, λ1, λ2 → 1 ,

while the eigenvectors do not have limit.

We study the numerical solution of the eigenvalue problem in the next section.
Unfortunately it is very difficult to estimate the goodness of numerical approxima-
tions. From the fact that Ax−λx = 0 holds with a certain error we cannot conclude
anything in general.

Example 12.14 Consider the matrix

A (ε) =

[
1 1
ε 1

]
,

where ε ≈ 0 is small. The eigenvalues of A (ε) are 1 ± √
ε, while the corresponding eigen-

vectors are [1, ±√
ε]T . Let µ = 1 be an approximation of the eigenvalues and let x = [1, 0]T

be the approximate eigenvector. Then

‖Ax − µx‖
2

=

∥∥∥∥
[

0
ε

]∥∥∥∥
2

= ε .

If ε = 10−10, then the residual error under estimate the true error 10−5 by five order.

Remark 12.31 We can define the condition number of eigenvalues for simple
eigenvalues:

ν (λ1) ≈ ‖x‖2 ‖y‖2

|xHy| ,

where x and y are the right and left eigenvectors, respectively. For multiple eigen-
values the condition number is not finite.

12.3.1. Iterative solutions of the eigenvalue problem

We investigate only the real eigenvalues and eigenvectors of real matrices. The meth-
ods under consideration can be extended to the complex case with appropriate mod-
ifications.

The power method. This method is due to von Mieses. Assume that A ∈ R
n×n

has exactly n different real eigenvalues. Then the eigenvectors x1, . . . , xn belonging
to the corresponding eigenvalues λ1, . . . , λn are linearly independent. Assume that
the eigenvalues satisfy the condition

|λ1| > |λ2| ≥ · · · ≥ |λn|

and let v(0) ∈ R
n be a given vector. This vector is a unique linear combination of

the eigenvectors, that is v(0) = α1x1 + α2x2 + · · · + αnxn. Assume that α1 6= 0
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and compute the sequence v(k) = Av(k−1) = Akv(0) (k = 1, 2, . . .). The initial
assumptions imply that

v(k) = Av(k−1) = A(α1λk−1
1 x1 + α2λk−1

2 x2 + . . . + αnλk−1
n xn)

= α1λk
1x1 + α2λk

2x2 + · · ·+ αnλk
nxn

= λk
1

(
α1x1 + α2

(
λ2

λ1

)k

x2 + · · ·+ αn

(
λn

λ1

)k

xn

)
.

Let y ∈ R
n be an arbitrary vector such that yT x1 6= 0. Then

yT Av(k)

yT v(k)
=

yT v(k+1)

yT v(k)
=

λk+1
1

(
α1yT x1 +

∑n
i=2 αi

(
λi

λ1

)k+1

yT xi

)

λk
1

(
α1yT x1 +

∑n
i=2 αi

(
λi

λ1

)k

yT xi

) → λ1 .

Given the initial vector v(0) ∈ R
n, the power method has the following form.

Power-Method(A, v(0))

1 k ← 0
2 while exit condition = false
3 do k ← k + 1
4 z(k) ← Av(k−1)

5 Select vector y such that yT v(k−1) 6= 0
6 γk ← yT z(k)/yT v(k−1)

7 v(k) ← z(k)/
∥∥z(k)

∥∥
∞

8 return γk, v(k)

It is clear that
v(k) → x1, γk → λ1 .

The convergence v(k) → x1 here means that
(
v(k), x1

)
]
→ 0, that is the action line

of v(k) tends to the action line of x1. There are various strategies to select y. We can

select y = ei, where i is defined by
∣∣∣v(k)

i

∣∣∣ =
∥∥v(k)

∥∥
∞

. If we select y = v(k−1), then

γk = v(k−1)T Av(k−1)/
(
v(k−1)T v(k−1)

)
will be identical with the Rayleigh quotient

R
(
v(k−1)

)
. This choice gives an approximation of λ1 that have the minimal residual

norm (Example 12.14 shows that this choice is not necessarily the best option).
The speed of convergence depends on the quotient |λ2/λ1|. The method is very

sensitive to the choice of the initial vector v(0). If α1 = 0, then the process does
not converge to the dominant eigenvalue λ1. For certain matrix classes the power
method converges with probability 1 if the initial vector v(0) is randomly chosen.
In case of complex eigenvalues or multiple λ1 we have to use modifications of the
algorithm. The speed of convergence can be accelerated if the method is applied to
the shifted matrix A− σI, where σ is an appropriately chosen number. The shifted
matrix A− σI has the eigenvalues λ1 − σ, λ2 − σ, . . . , λn − σ and the corresponding
convergence factor |λ2 − σ| / |λ1 − σ|. The latter quotient can be made smaller than



540 12. Scientific Computing

|λ2/λ1| with the proper selection of σ.
The usual exit condition of the power method is

‖Ek‖2 =
‖rk‖2∥∥v(k)

∥∥
2

=

∥∥Av(k) − γkv(k)
∥∥

2∥∥v(k)
∥∥

2

≤ ε .

If we simultaneously apply the power method to the transposed matrix AT and

wk =
(
AT
)k

w0, then the quantity

ν (λ1) ≈
∥∥w(k)

∥∥
2

∥∥v(k)
∥∥

2∣∣wT
k vk

∣∣

gives an estimate for the condition number of λ1 (see Remark 12.31). In such a case
we use the exit condition

ν (λ1) ‖Ek‖2 ≤ ε .

The power method is very useful for large sparse matrices. It is often used to
determine the largest and the smallest eigenvalue. We can approximate the smallest
eigenvalue as follows. The eigenvalues of A−1 are 1/λ1, . . . , 1/λn. The eigenvalue
1/λn will be the eigenvalue with the largest modulus. We can approximate this
value by applying the power method to A−1. This requires only a small modification
of the algorithm. We replace line 4. with the following:

Solve equation Az(k) = v(k−1) for z(k)

The modified algorithm is called the inverse power method. It is clear that
γk → 1/λn and v(k) ⇀ xn hold under appropriate conditions. If we use the LU -
method to solve Az(k) = v(k−1), we can avoid the inversion of A.

If the inverse power method is applied to the shifted matrix A − µI, then the
eigenvalues of (A− µI)

−1
are (λi − µ)

−1
. If µ approaches, say, to λt, then λi−µ→

λi − λt. Hence the inequality

|λt − µ|−1
> |λi − µ|−1

(i 6= t)

holds for the eigenvalues of the shifted matrix. The speed of convergence is deter-
mined by the quotient

q = |λt − µ| / {max |λi − µ|} .

If µ is close enough to λt, then q is very small and the inverse power iteration
converges very fast. This property can be exploited in the calculation of approx-
imate eigenvectors if an approximate eigenvalue, say µ, is known. Assuming that
det (A− µI) 6= 0, we apply the inverse power method to the shifted matrix A− µI.
In spite of the fact that matrix A − µI is nearly singular and the linear equation
(A− µI) z(k) = v(k) cannot be solved with high precision, the algorithm gives very
often good approximations of the eigenvectors.

Finally we note that in principle the von Mieses method can be modified to
determine all eigenvalues and eigenvectors.
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Orthogonalisation processes. We need the following definition and theorem.

Definition 12.32 The matrix Q ∈ R
n×n is said to be orthogonal if QT Q = I.

Theorem 12.33 (QR-decomposition). Every matrix A ∈ R
n×m having linearly in-

dependent column vectors can be decomposed in the product form A = QR, where
Q is orthogonal and R is upper triangular matrix.

We note that the QR-decomposition can be applied for solving linear systems
of equations, similarly to the LU -decomposition. If the QR-decomposition of A is
known, then the equation Ax = QRx = b can be written in the equivalent form
Rx = QT b. Thus we have to solve only an upper triangular linear system.

There are several methods to determine the QR-decomposition of a matrix. In
practice the Givens-, the Householder- and the MGS-methods are used.

The MGS (Modified Gram-Schmidt) method is a stabilised, but algebraically
equivalent version of the classical Gram-Schmidt orthogonalisation algorithm. The
basic problem is the following: We seek for an orthonormal basis {qj}m

j=1 of the
subspace

L{a1, . . . , am} =





m∑

j=1

λjaj | λj ∈ R, j = 1, . . . , m



 ,

where a1, . . . , am ∈ R
n (m ≤ n) are linearly independent vectors. That is we deter-

mine the linearly independent vectors q1, . . . , qm such that

qT
i qj = 0 (i 6= j) , ‖qi‖2 = 1 (i = 1, . . . , m)

and

L{a1, . . . , am} = L{q1, . . . , qm} .

The basic idea of the classical Gram-Schmidt-method is the following:
Let r11 = ‖a1‖2 and q1 = a1/r11. Assume that vectors q1, . . . , qk−1 are already

computed and orthonormal. Assume that vector q̃k = ak −
∑k−1

j=1 rjkqj is such that

q̃k ⊥ qi, that is q̃T
k qi = aT

k qi −
∑k−1

j=1 rjkqT
j qi = 0 holds for i = 1, . . . , k − 1. Since

q1, . . . , qk−1 are orthonormal, qT
j qi = 0 (i 6= j) and rik = aT

k qi (i = 1, . . . , k − 1).
After normalisation we obtain qk = q̃k/ ‖q̃k‖2.

The algorithm is formalised as follows.

CGS-Orthogonalization(m, a1, . . . , am)

1 for k ← 1 to m
2 do for i← 1 to k − 1
3 do rik ← aT

k ai

4 ak ← ak − rikai

5 rkk ← ‖ak‖2

6 ak ← ak/rkk

7 return a1, . . . , am
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The algorithm overwrites vectors ai by the orthonormal vectors qi. The connec-
tion with the QR-decomposition follows from the relation ak =

∑k−1
j=1 rjkqj + rkkqk.

Since
a1 = q1r11,
a2 = q1r12 + q2r22,
a3 = q1r13 + q2r23 + q3r33,

...
am = q1r1m + q2r2m + . . . + qmrmm ,

we can write that

A = [a1, . . . , am] = [q1, . . . , qm]︸ ︷︷ ︸
Q




r11 r12 r13 . . . r1m

0 r22 r23 . . . r2m

0 0 r33 . . . r3m

...
...

...
. . .

...
0 0 0 . . . rmm




︸ ︷︷ ︸
R

= QR .

The numerically stable MGS method is given in the following form

MGS-Orthogonalisation(m, a1, . . . , am)

1 for k ← 1 to m
2 do rkk ← ‖ak‖2

3 ak ← ak/rkk

4 for j ← k + 1 to m
5 do rkj ← aT

j ak

6 aj ← aj − rkjak

7 return a1, . . . , am

The algorithm overwrites vectors ai by the orthonormal vectors qi. The MGS
method is more stable than the CGS algorithm. Björck proved that for m = n the
computed matrix Q̂ satisfies

Q̂T Q̂ = I + E, ‖E‖2
∼= cond (A) u ,

where u is the unit roundoff.

The QR-method. Today the QR-method is the most important numerical
algorithm to compute all eigenvalues of a general matrix. It can be shown that
the QR-method is a generalisation of the power method. The basic idea of the
method is the following: Starting from A1 = A we compute the sequence Ak+1 =
Q−1

k AkQk = QT
k AkQk, where Qk is orthogonal, Ak+1 is orthogonally similar to Ak

(A) and the lower triangular part of Ak tends to a diagonal matrix, whose entries will
be the eigenvalues of A. Here Qk is the orthogonal factor of the QR-decomposition
Ak = QkRk. Therefore Ak+1 = QT

k (QkRk)Qk = RkQk. The basic algorithm is given
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in the following form.

QR-Method(A)

1 k ← 1
2 A1 ← A
3 while exit condition = false
4 do Compute the QR-decomposition Ak = QkRk

5 Ak+1 ← RkQk

6 k ← k + 1
7 return Ak

The following result holds.

Theorem 12.34 (Parlett). If the matrix A is diagonalisable,
X−1AX =diag(λ1, λ2, . . . , λn), the eigenvalues satisfy

|λ1| > |λ2| > . . . > |λn| > 0

and X has an LU -decomposition, then the lower triangular part of Ak converges to
a diagonal matrix whose entries are the eigenvalues of A.

In general, matrices Ak do not necessarily converge to a given matrix. If A has
p eigenvalues of the same modulus, the form of matrices Ak converge to the form




× ×
0

. . .

×
0 0 ∗ · · · ∗

...
...

∗ · · · ∗
0 0 ×

. . .

0 0 ×




, (12.40)

where the entries of the submatrix denoted by ∗ do not converge. However the
eigenvalues of this submatrix will converge. This submatrix can be identified and
properly handled. A real matrix may have real and complex eigenvalues. If there is
a complex eigenvalues, than there is a corresponding conjugate eigenvalue as well.
For pairs of complex conjugated eigenvalues p is at least 2. Hence the sequence Ak

will show this phenomenon .
The QR-decomposition is very expensive. Its cost is Θ(n3) flops for general n×n

matrices. If A has upper Hessenberg form, the cost of QR-decomposition is Θ(n2)
flops.



544 12. Scientific Computing

Definition 12.35 The matrix A ∈ R
n×n has upper Hessenberg form, if

A =




a11 . . . a1n

a21

0 a32

...
... 0

. . .

. . . an−1,n−2 an−1,n−1 an−1,n

0 . . . 0 an,n−1 ann




.

The following theorem guarantees that if A has upper Hessenberg form, then
every Ak of the QR-method has also upper Hessenberg form.

Theorem 12.36 If A has upper Hessenberg form and A = QR, then RQ has also
upper Hessenberg form.

We can transform a matrix A to a similar matrix of upper Hessenberg form in
many ways. One of the cheapest ways, that costs about 5/6n3 flops, is based on
the Gauss elimination method. Considering the advantages of the upper Hessenberg
form the efficient implementation of the QR-method requires first the similarity
transformation of A to upper Hessenberg form.

The convergence of the QR-method, similarly to the power method, depends
on the quotients |λi+1/λi|. The eigenvalues of the shifted matrix A − σI are λ1 −
σ, λ2−σ, . . . , λn−σ. The corresponding eigenvalue ratios are |(λi+1 − σ) / (λi − σ)|.
A proper selection of σ can fasten the convergence.

The usual form of the QR-method includes the transformation to upper Hessen-
berg form and the shifting.

Shifted-QR-Method(A)

1 H1 ← U−1AU (H1 is of upper Hessenberg form)
2 k ← 1
3 while exit condition = false
4 do compute the QR-decomposition Hk − σkI = QkRk

5 Hk+1 ← RkQk + σkI
6 k ← k + 1
7 return Hk

In practice the QR-method is used in shifted form. There are various strategies to

select σi. The most often used selection is given by σk = h
(k)
nn

(
Hk =

[
h

(k)
ij

]n

i,j=1

)
.

The eigenvectors of A can also be determined by the QR-method. For this we
refer to the literature.

Exercises

12.3-1 Apply the power method to the matrix A =

[
1 1
0 2

]
with the initial vector

v(0) =

[
1
1

]
. What is the result of the 20th step?
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12.3-2 Apply the power method, the inverse power method and the QR-method to
the matrix 


−4 −3 −7

2 3 2
4 2 7


 .

12.3-3 Apply the shifted QR-method to the matrix of the previous exercise with
the choice σi = σ (σ is fixed).

12.4. Numerical program libraries and software tools

We have plenty of devices and tools that support efficient coding and implementation
of numerical algorithms. One aim of such developments is to free the programmers
from writing the programs of frequently occurring problems. This is usually done by
writing safe, reliable and standardised routines that can be downloaded from (public)
program libraries. We just mention the LINPACK, EISPACK, LAPACK, VISUAL
NUMERICS (former IMSL) and NAG libraries. Another way of developments is to
produce software that work as a programming language and makes the programming
very easy. Such software systems are the MATLAB and the SciLab.

12.4.1. Standard linear algebra subroutines

The main purpose of the BLAS (Basic Linear Algebra Subprograms) programs is
the standardisation and efficient implementation the most frequent matrix-vector
operations. Although the BLAS routines were published in FORTRAN they can be
accessed in optimised machine code form as well. The BLAS routines have three
levels:

- BLAS 1 (1979),
- BLAS 2 (1988),
- BLAS 3 (1989).
These levels corresponds to the computation cost of the implemented matrix

operations. The BLAS routines are considered as the best implementations of the
given matrix operations. The selection of the levels and individual BLAS routines
strongly influence the efficiency of the program. A sparse version of BLAS also exists.

We note that the BLAS 3 routines were developed mainly for block parallel algo-
rithms. The standard linear algebra packages LINPACK, EISPACK and LAPACK
are built from BLAS routines. The parallel versions can be found in the SCALA-
PACK package. These programs can be found in the public NETLIB library:

http:/www.netlib.org/index.html

BLAS 1 routines. Let α ∈ R, x, y ∈ R
n. The BLAS 1 routines are the programs

of the most important vector operations (z = αx, z = x + y, dot = xT y), the
computation of ‖x‖2, the swapping of variables, rotations and the saxpy operation
which is defined by

z = αx + y .
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The word saxpy means that
”̨ “

scalar alpha x plus y”. The saxpy operation is imple-
mented in the following way.

Saxpy(α, x, y)

1 n← elements [x]
2 for i← 1 to n
3 do z [i] = αx [i] + y [i]
4 return z

The saxpy is a software driven operation. The cost of BLAS 1 routines is Θ (n)
flops.

BLAS 2 routines. The matrix-vector operations of BLAS 2 requires Θ
(
n2
)

flops. These operations are y = αAx + βy, y = Ax, y = A−1x, y = AT x, A ←
A + xyT and their variants. Certain operations work only with triangular matrices.
We analyse two operations in detail. The

”̨ “
outer or dyadic product” update

A← A + xyT
(
A ∈ R

m×n, x ∈ R
m, y ∈ R

n
)

can be implemented in two ways.
The rowwise or

”̨ “
ij” variant:

Outer-Product-Update-Version”ij“ (A, x, y)

1 m← rows[A]
2 for i← 1 to m
3 do A [i, :]← A [i, :] + x [i] yT

4 return A

The notation
”̨ “

:” denotes all allowed indices. In our case this means the indices
1 ≤ j ≤ n. Thus A [i, :] denotes the ith row of matrix A.

The columnwise or
”̨ “

ji” variant:

Outer-Product-Update-Version”ji“(A, x, y)

1 n← columns[A]
2 for j ← 1 to n
3 do A [:, j]← A [:, j] + y [j] x
4 return A

Here A [:, j] denotes the jth column of matrix A. Observe that both variants are
based on the saxpy operation.

The gaxpy operation is defined by

z = y + Ax
(
x ∈ R

n, y ∈ R
m, A ∈ R

m×n
)

.

The word gaxpy means that
”̨ “

general A x plus y”. The gaxpy operation is also
software driven and implemented in the following way:
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Gaxpy(A, x, y)

1 n← columns[A]
2 z ← y
3 for j ← 1 to n
4 do z ← z + x [j] A [:, j]
5 return z

Observe that the computation is done columnwise and the gaxpy operation is
essentially a generalised saxpy.

BLAS 3 routines. These routines are the implementations of Θ
(
n3
)

matrix-
matrix and matrix-vector operations such as the operations C ← αAB + βC, C ←
αABT + βC, B ← αT −1B (T is upper triangular) and their variants. BLAS 3
operations can be implemented in several forms. For example, the matrix product
C = AB can be implemented at least in three ways. Let A ∈ R

m×r, B ∈ R
r×n.

Matrix-Product-Dot-Version(A, B)

1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n]← 0
5 for i← 1 to m
6 do for j ← 1 to n
7 do for k ← 1 to r
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

This algorithm computes cij as the dot (inner) product of the ith row of A and
the jth column of B. This corresponds to the original definition of matrix products.

Now let A, B and C be partitioned columnwise as follows

A = [a1, . . . , ar] (ai ∈ R
m) ,

B = [b1, . . . , bn] (bi ∈ R
r) ,

C = [c1, . . . , cn] (ci ∈ R
m) .

Then we can write cj as the linear combination of the columns of A, that is

cj =
r∑

k=1

bkjak (j = 1, . . . , n) .

Hence the product can be implemented with saxpy operations.
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Matrix-Product-Gaxpy-Variant(A, B)

1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n]← 0
5 for j ← 1 to n
6 do for k ← 1 to r
7 do for i← 1 to m
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

The following equivalent form of the
”̨ “

jki”-algorithm shows that it is indeed a
gaxpy based process.

Matrix-Product-with-Gaxpy-Call(A, B)

1 m← rows[A]
2 n← columns[B]
3 C [1 : m, 1 : n]← 0
4 for j ← 1 to n
5 do C [:, j] = gaxpy (A, B [:, j] , C [:, j])
6 return C

Consider now the partitions A = [a1, . . . , ar] (ai ∈ Rm) and

B =




bT
1
...

bT
r


 (bi ∈ Rn) .

Then C = AB =
∑r

k=1 akbT
k .

Matrix-Product-Outer-Product-Variant(A, B)

1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n] = 0
5 for k ← 1 to r
6 do for j ← 1 to n
7 do for i← 1 to m
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

The inner loop realizes a saxpy operation: it gives the multiple of ak to the jth

column of matrix C.
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12.4.2. Mathematical software

These are those programming tools that help easy programming in concise (possi-
bly mathematical) form within an integrated program development system. Such
systems were developed primarily for solving mathematical problems. By now they
have been extended so that they can be applied in many other fields. For example,
Nokia uses MATLAB in the testing and quality control of mobile phones. We give
a short review on MATLAB in the next section. We also mention the widely used
MAPLE, DERIVE and MATEMATICA systems.

The MATLAB system. The MATLAB software was named after the expres-
sion MATrix LABoratory. The name indicates that the matrix operations are very
easy to make. The initial versions of MATLAB had only one data type: the complex
matrix. In the later versions high dimension arrays, cells, records and objects also
appeared. The MATLAB can be learned quite easily and even a beginner can write
programs for relatively complicated problems.

The coding of matrix operations is similar to their standard mathematical form.
For example if A and B are two matrices of the same size, then their sum is given
by the command C = A + B. As a programming language the MATLAB contains
only four control structures known from other programming languages:

– the simple statement Z =expression, – the if statement of the form
if expression, commands {else/elseif commands} end,

– the for loop of the form
for the values of the loop variable, commands end

– the while loop of the form
while expression, commands end.

The MATLAB has an extremely large number of built in functions that help efficient
programming. We mention the following ones as a sample.

– max(A) selects the maximum element in every column of A,
– [v, s] =eig(A) returns the approximate eigenvalues and eigenvectors of A,
– The command A\b returns the numerical solution of the linear system Ax = b.
The entrywise operations and partitioning of matrices can be done very efficiently

in MATLAB. For example, the statement

A([2, 3], :) = 1./A([3, 2], :)

exchange the second and third rows of A while it takes the reciprocal of each element.
The above examples only illustrate the possibilities and easy programming of

MATLAB. These examples require much more programming effort in other lan-
guages, say e.g. in PASCAL. The built in functions of MATLAB can be easily sup-
plemented by other programs.

The higher number versions of MATLAB include more and more functions and
special libraries (tool boxes) to solve special problems such as optimisation, statistics
and so on.

There is a built in automatic technique to store and handle sparse matrices
that makes the MATLAB competitive in solving large computational problems. The
recent versions of MATLAB offer very rich graphic capabilities as well. There is an
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extra interval arithmetic package that can be downloaded from the WEB site

http:/www.ti3.tu-harburg.de\%7Erump\intlab

There is a possibility to build certain C and FORTRAN programs into MATLAB.
Finally we mention that the system has an extremely well written help system.

Problems

12-1 Without overflow

Write a MATLAB program that computes the norm ‖x‖2 =
(∑n

i=1 x2
i

)1/2
without

overflow in all cases when the result does not make overflow. It is also required that
the error of the final result can not be greater than that of the original formula.
12-2 Estimate
Equation x3 − 3.330000x2 + 3.686300x − 1.356531 = 0 has the solution x1 = 1.01.
The perturbed equation x3 − 3.3300x2 + 3.6863x − 1.3565 = 0 has the solutions
y1, y2, y3. Give an estimate for the perturbation mini |x1 − yi|.
12-3 Double word length
Consider an arithmetic system that has double word length such that every number
represented with 2t digits are stored in two t digit word. Assume that the computer
can only add numbers with t digits. Furthermore assume that the machine can
recognise overflow.
(i) Find an algorithm that add two positive numbers of 2t digit length.
(ii) If the representation of numbers requires the sign digit for all numbers, then
modify algorithm (i) so that it can add negative and positive numbers both of the
same sign. We can assume that the sum does not overflow.
12-4 Auchmuty theorem
Write a MATLAB program for the Auchmuty error estimate (see Theorem 12.22)
and perform the following numerical testing.
(i) Solve the linear systems Ax = bi, where A ∈ R

n×n is a given matrix, bi = Ayi, yi ∈
R

n (i = 1, . . . , N) are random vectors such that ‖yi‖∞ ≤ β. Compare the true errors

‖x̃i − yi‖ (i = 1, . . . , N), and the estimated errors ESTi = ‖r(x̃i)‖2
2 /
∥∥AT r(x̃i)

∥∥
2
,

where x̃i is the approximate solution of Ax = bi. What is the minimum, maximum
and average of numbers ci? Use graphic for the presentation of the results. Suggested
values are n ≤ 200, β = 200 and N = 40.
(ii) Analyse the effect of condition number and size.
(iii) Repeat problems (i) and (ii) using LINPACK and BLAS.
12-5 Hilbert matrix
Consider the linear system Ax = b, where b = [1, 1, 1, 1]T and A is the fourth order
Hilbert matrix, that is ai,j = 1/(i + j). A is ill-conditioned. The inverse of A is
approximated by
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B =




202 −1212 2121 −1131
−1212 8181 −15271 8484

2121 −15271 29694 −16968
−1131 8484 −16968 9898


 .

Thus an x0 approximation of the true solution x is given by x0 = Bb. Although
the true solution is also integer x0 is not an acceptable approximation. Apply the
iterative refinement with B instead of A−1 to find an acceptable integer solution.
12-6 Consistent norm
Let ‖A‖ be a consistent norm and consider the linear system Ax = b
(i) Prove that if A + ∆A is singular, then cond(A) ≥ ‖A‖ / ‖∆A‖.
(ii) Show that for the 2-norm equality holds in (i), if ∆A = −bxT /(btx) and∥∥A−1

∥∥
2
‖b‖2 =

∥∥A−1b
∥∥

2
.

(iii) Using the result of (i) give a lower bound to cond∞(A), if

A =




1 −1 1
−1 ε ε

1 ε ε


 .

12-7 Cholesky-method
Use the Cholesky-method to solve the linear system Ax = b, where

A =




5.5 0 0 0 0 3.5
0 5.5 0 0 0 1.5
0 0 6.25 0 3.75 0
0 0 0 5.5 0 0.5
0 0 3.75 0 6.25 0

3.5 1.5 0 0.5 0 5.5




, b =




1
1
1
1
1
1




.

Also give the exact Cholesky-decomposition A = LLT and the true solution of
Ax = b. The approximate Cholesky-factor L̃ satisfies the relation L̃L̃T = A + F. It
can proved that in a floating point arithmetic with t-digit mantissa and base β the
entries of F satisfy the inequality |fi,j | ≤ ei,j , where

E = β1−t




11 0 0 0 0 3.5
0 11 0 0 0 1.5
0 0 0 0 0 0
0 0 0 11 0 0.5
0 0 0 0 0 0

3.5 1.5 0 0.5 0 11




.

Give a bound for the relative error of the approximate solution x̃, if β = 16 and
t = 14 (IBM3033).
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12-8 Bauer-Fike theorem
Let

A =




10 10
9 10

8 10
. . .

. . .

2 10
ε 1




(i) Analyze the perturbation of the eigenvalues for ε = 10−5, 10−6, 10−7, 0.
(ii) Compare the estimate of Bauer-Fike theorem to the matrix A = A(0).
12-9 Eigenvalues
Using the MATLAB eig routine compute the eigenvalues ofB = AAT for various
(random) matrices A ∈ R

n×n and order n. Also compute the eigenvalues of the
perturbed matrices B + Ri, where Ri are random matrices with entries from the
interval

[
−10−5, 10−5

]
(i = 1, . . . , N). What is the maximum perturbation of the

eigenvalues? How precise is the Bauer-Fike estimate? Suggested values are N = 10
and 5 ≤ n ≤ 200. How do the results depend on the condition number and the order
n? Display the maximum perturbations and the Bauer-Fike estimates graphically.

Chapter Notes

The a posteriori error estimates of linear algebraic systems are not completely re-
liable. Demmel, Diament és Malajovich [?] showed that for the Θ

(
n2
)

number es-
timators there are always cases when the estimate is unreliable (the error of the
estimate exceeds a given order). The first appearance of the iterative improvement
is due to Fox, Goodwin, Turing and Wilkinson (1946). The experiences show that
the decrease of the residual error is not monotone.

Young [?], Hageman and Young [?] give an excellent survey of the theory and
application of iterative methods. Barett, Berry et al. [?] give a software oriented
survey of the subject. Frommer [?] concentrates on the parallel computations.

The convergence of the QR-method is a delicate matter. It is analyzed in great
depth and much better results than Theorem 12.34 exist in the literature. There are
QR-like methods that involve double shifting. Batterson [?] showed that there exists
a 3 × 3 Hessenberg matrix with complex eigenvalues such that convergence cannot
be achieved even with multiple shifting.

Several other methods are known for solving the eigenvalue problems (see, e.g.
[?, ?]). The LR-method is one of the best known ones. It is very effective on positive
definite Hermitian matrices. The LR-method computes the Cholesky-decomposition
Ak = LL∗ and sets Ak+1 = L∗L.
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