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11. Recurrences

The recursive definition of the Fibonacci numbers is well-known: if F, is the n'P
Fibonacci number then
Fo=0, Fi1=1,

Fn+2 :Fn+1+Fn, if 7120

We are interested in an explicit form of the numbers F;, for all natural numbers n.
Actually, the problem is to solve an equation where the unknown is given recursively,
in which case the equation is called a recurrence equation. The solution can be
considered as a function over natural numbers, because Fj, is defined for all n. Such
recurrence equations are also known as difference equations, but could be named
as discrete differential equations for their similarities to differential equations.
Definition 11.1 A k*th order recurrence equation (k > 1) is an equation of
the form

f(mnv$n+1»~~wmn+k):07 n>0, (]-]-]-)

where x,, has to be given in an explicit form.

For a unique determination of x,,, k initial values must be given. Usually these values
are g, T1,...,Tr—1. LThese can be considered as initial conditions. In case of the
equation for Fibonacci-numbers, which is of second order, two initial values must be
given.

A sequence z,, = g(n) satisfying equation (11.1) and the corresponding initial
conditions is called a particular solution. If all particular solutions of equation
(11.1) can be obtained from the sequence x,, = h(n,Cy,Co,...,C), by adequately
choosing of the constants C7,Cy, ..., Ck, then this sequence z,, is a general solu-
tion.

Solving recurrence equations is not an easy task. In this chapter we will discuss
methods which can be used in special cases. For simplicity of writing we will use
the notation z,, instead of z(n) as it appears in several books (sequences can be
considered as functions over natural numbers).

The chapter is divided into three sections. In Section 11.1 we deal with solving
linear recurrence equations, in Section 11.2 with generating functions and their use
in solving recurrence equations and in Section 11.3 we focus our attention on the
numerical solution of recurrence equations.
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11.1. Linear recurrence equations

If the recurrence equation is of the form

fo()zn + fi(n)zni1 + - + fe(M)Tnir = f(n), n>0,

where f, fo, f1,--., [k are functions defined over natural numbers, fo, fr # 0, and
x, has to be given explicitly, then the recurrence equation is linear. If f is the zero
function, then the equation is homogeneous, otherwise nonhomogeneous. If all
the functions fy, f1,..., frx are constant, the equation is called a linear recurrence
equation with constant coefficients.

11.1.1. Linear homogeneous equations with constant coefficients

Let the equation be

a0Tn + 1 Tpy1 + -+ apTpir =0, n>k, (11.2)
where ag, a1, ...,a are real constants, ag,ar # 0, k > 1. If k initial conditions are
given (usually xg,x1,...,2x_1), then the general solution of this equation can be

uniquely given.
To solve the equation let us consider its characteristic equation

ao+arr+---+ap 1" +art =0, (11.3)

a polynomial equation with real coefficients. This equation has k roots in the field
of complex numbers. It can easily be seen after a simple substitution that if rq is
a real solution of the characteristic equation, then Cyr{ is a solution of (11.2), for
arbitrary Cj.

The general solution of equation (11.2) is

Ty = C’lxg) + CQI%Z) + C’ka,’?(f) ,
where 2/ (1 =1,2,...,k) are the linearly independent solutions of equation (11.2).
The constants C7, Cs, . .., C), can be determined from the initial conditions by solving
a system of k equations.

The linearly independent solutions are supplied by the roots of the characteristic
equation in the following way. A fundamental solution of equation (11.2) can be
associated with each root of the characteristic equation. Let us consider the following
cases.

Distinct real roots. Let ry,72,...,7, be distinct real roots of the characteristic
equation. Then
TYS Ty ey Ty
are solutions of equation (11.2), and
Ciry + Cory + -+ Cpry (11.4)

is also a solution, for arbitrary constants Cq, Ca, ..., Cp. If p = k, then (11.4) is
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the general solution of the recurrence equation.

Example 11.1 Solve the recurrence equation
Tnt2 = Tyl + Tn, o =0, 21 =1.
The corresponding characteristic equation is
rP—r—1=0 R

with the solutions

_1+4V5 17\/5.

2 0T
These are distinct real solutions, so the general solution of the equation is

1+v5\" 1-v5\"
e () (7).

1

The constants €1 and C3 can be determined using the initial conditions. From zo = 0,
z1 = 1 the following system of equations can be obtained.

Ci+Cy = 0,
1 5 1-—
Ch +V5 + Cs V5 = 1.
2 2
The solution of this system of equations is C; = 1/v/5, C2 = —1/4/5 . Therefore the

general solution is

oy — L (LEVEBNT L (1=VEYT
"5 2 NG 2 ’
which is the nth Fibonacci number F,,.

Multiple real roots. Let r be a real root of the characteristic equation with mul-
tiplicity p. Then

n n 2.n

v one™, n?rm, o, nPT e

are solutions of equation (11.2) (fundamental solutions corresponding to r), and
(Co+ Cin+Con® + -+ 4 CpynP~ )" (11.5)

is also a solution, for any constants C, C1, ..., Cp—1. If the characteristic equation
has no other solutions, then (11.5) is a general solution of the recurrence equation.

Example 11.2 Solve the recurrence equation
Tn+2 = 4.’En+1 — 4l’n, o = 1, xr1 = 3.

The characteristic equation is
P —dr+4=0,

with 7 = 2 a solution with multiplicity 2. Then
Ty = (C() —+ Cln)Qn

is a general solution of the recurrence equation.
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From the initial conditions we have
Co = 1,
2C0 +2C1 = 3.

From this system of equations Cy = 1, C1 = 1/2, so the general solution is

1 _
xn:(1+§n)2n or x,=(n+2)2""".

Distinct complex roots. If the complex number a(cosbd + isinbd), written
in trigonometric form, is a root of the characteristic equation, then its conjugate
a(cosb —isinb) is also a root, because the coefficients of the characteristic equation
are real numbers. Then

a"cosbn and a"sinbn

are solutions of equation (11.2) and
Cia" cosbn + Cya™ sinbn (11.6)

is also a solution, for any constants C; and Cs. If these are the only solutions of a
second order characteristic equation, then (11.6) is a general solution.

Example 11.3 Solve the recurrence equation
Tp42 = 2Tpt1 — 2Tpn, o =0, 21 =1.
The corresponding characteristic equation is
P —2r+2=0,

with roots 1+ and 1 — i. These can be written in trigonometric form as +/2(cos(r/4) +
isin(r/4)) and v/2(cos(m/4) — isin(r/4)). Therefore

zn = C1(V2)" cos % + C2(V2)" sin Z—ﬂ'

is a general solution of the recurrence equation. From the initial conditions

ci = 0,
Cn/icos%—l—Cg/ﬁsing =

Therefore C; = 0, C2 = 1. Hence the general solution is

Ty = (\/Q)nsin% .

Multiple complex roots. If the complex number written in trigonometric form
as a(cosb + isinb) is a root of the characteristic equation with multiplicity p, then
its conjugate a(cosb — isinb) is also a root with multiplicity p.

Then

a" cosbn, na" cosbn, ..., nP"ta" cosbn
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and

p—1 _n

a” sinbn, na™sinbn, ..., n?~ a" sinbn

are solutions of the recurrence equation (11.2). Then
(Co+Cin+---+ Cp,lnp_l)a” cosbn+ (Do + Din+--- + Dp,lnp_l)a” sin bn

is also a solution, where Cy, C1,...,Cp—1, Dy, D1, ..., D,_1 are arbitrary constants,
which can be determined from the initial conditions. This solution is general if the
characteristic equation has no other roots.

Example 11.4 Solve the recurrence equation
Tnta +2Cp42+2Tn =0, 20 =0, 21 =1, 22 =2, x3=3.

The characteristic equation is
4 2r’ £1=0,

which can be written as (r? + 1) = 0. The complex numbers i and —i are double roots.
The trigonometric form of these are

z'—(:os7r+isin7T and i = cos & — isin~
T2 2’ T2 2
respectively. Therefore the general solution is

zn = (Co + Cin) cos % + (Do + Din) sin % .

From the initial conditions we obtain

Co = 0,
(CO+CI)COSg+(DO+D1)Sing = 1,
(Co+2C1)cosm+ (Do +2D;)sinm = 2,
(Co-i-SC'l)COS?%T—&-(Do—i—?)Dl)sin?%T = 3,
that is

Co = 0,

Do+Di = 1,

—20, = 2,

—Dy—-3D; = 3.

Solving this system of equations Co = 0, C1 = —1, Do = 3 and D; = —2. Thus the general
solution is

nmw nmw
n = (3 —2n)sin — — -
T ( n) sin 5 n.cos -

Using these four cases all linear homogeneous equations with constant coefficients
can be solved, if we can solve their characteristic equations.

Example 11.5 Solve the recurrence equation

Tnts3 =4xpt2 — 6p41 +42Tn, 20=0, 21 =1, z2 =1.
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The characteristic equation is
r374r2+6r74:(),
with roots 2, 1 +¢ and 1 — . Therefore the general solution is
xn = C12" + Cy (\/i)n cos % + Cg(\/i)n sin n477r .
After determining the constants we obtain

v2)"
= —2""1 4 % (CosE + 3sin nﬂ') .

4 4

The general solution. The characteristic equation of the kth order linear
homogeneous equation (11.2) has k roots in the field of complex numbers, which are
not necessarily distinct. Let these roots be the following:

ry real, with multiplicity p; (p1 > 1),

ro real, with multiplicity ps (p2 > 1),

ry real, with multiplicity p; (pr > 1),
s1 = ag(cosby + isinby) complex, with multiplicity ¢; (g1 > 1
S92 = ag(cos by + isinby) complex, with multiplicity ¢ (g2 > 1

),
)
Sm = A (cos by, + isinb,,) complex, with multiplicity ¢, (¢m > 1).

Since the equation has k roots, p1 +po + -+ pt +2(q1 + @2 + -+ + ) = k.
In this case the general solution of equation (11.2) is

&
I
Mﬁ

(6 +CPn oo O it )

.
Il
—

+
NE

(D(()j) + ng)n 4+t Dg)_lnqi_l)a? cosb;n

j=1
+ Z (E(()j) + E%j)n +F Eg)_lnqj_1>a;’ sinb;n , (11.7)
j=1
where . ‘
o, o, o =12,
D((Jl), E(()l), Dgl), Eil), ceey D](Jll)fl, E;ill, [ =1,2,...,m are constants, which

can be determined from the initial conditions.
The above statements can be summarised in the following theorem.

Theorem 11.2 Let k > 1 be an integer and ag, ay, -...,ap real numbers with
ag, ar # 0. The general solution of the linear recurrence equation (11.2) can be
obtained as a linear combination of the terms nir?, where r; are the roots of the
characteristic equation (11.8) with multiplicity p; (0 < j < p;) and the coefficients
of the linear combination depend on the initial conditions.
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The proof of the theorem is left to the Reader (see Exercise 11.1-5).
The algorithm for the general solution is the following.

LINEAR-HOMOGENEOUS

1 determine the characteristic equation of the recurrence equation

2 find all roots of the characteristic equation with their multiplicities

3 find the general solution (11.7) based on the roots

4 determine the constants of (11.7) using the initial conditions, if these exists.

11.1.2. Linear nonhomogeneous recurrence equations

Consider the linear nonhomogeneous recurrence equation with constant coefficients
a0y + G1Tng1 + - F oy = f(n) (11.8)

where ag,aq,...,a, are real constants, ag,ar # 0, kK > 1, and f is not the zero
function.

The corresponding linear homogeneous equation (11.2) can be solved using The-
orem 11.2. If a particular solution of equation (11.8) is known, then equation (11.8)
can be solved.

Theorem 11.3 Let k > 1 be an integer, ag, ay, -..,ar real numbers, ag, ai # 0.

If:c%l) is a particular solution of the linear nonhomogeneous equation (11.8) and :L'%O)

is a general solution of the linear homogeneous equation (11.2), then
Ty = xﬁLO) + xg)
is a general solution of the equation (11.8).

The proof of the theorem is left to the Reader (see Exercise 11.1-6).

Example 11.6 Solve the recurrence equation
Tpyo + Tny1 — 22, =2", 20=0, 21 =1.
First we solve the homogeneous equation
Tnt2 + Tnt1 — 22, =0,
and obtain the general solution
z)) = Ci(-2)" +Cs,
since the roots of the characteristic equation are —2 and 1. It is easy to see that
Ty =C1(=2)" +Cy +2"72
is a solution of the nonhomogeneous equation. Therefore the general solution is

2" — (=2)"
rn= ()" 42 o gy = 2D
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f(n) zy))
nPa™ (Co+Cin+---+ CpnP)a™

a™nPsinbn | (Co+ Cin+ -+ CpnP)a™sinbn + (Do + Din+ - -+ + DpnP)a™ cosbn

a"nP cosbn | (Co+Cin+ -+ CpnP)a™sinbn + (Do + Din + - - - + DpnP)a™ cos bn

Figure 11.1 The form of particular solutions.

The constants C'y and C> can be determined using the initial conditions. Thus,

- 0, if n is even ,
"] 277h, ifnisodd.

A particular solution can be obtained using the method of variation of constants.
However, there are cases when there is an easier way of finding a particular solution.
In Figure 11.1 we can see types of functions f(n), for which a particular solution
x$} ) can be obtained in the given form in the table. The constants can be obtained
by substitutions.

In the previous example f(n) = 2", so the first case can be used with a = 2
and p = 0. Therefore we try to find a particular solution of the form Cy2". After

substitution we obtain Cy = 1/4, thus the particular solution is

x’sll) _ 2n—2 )

Exercises
11.1-1 Solve the recurrence equation

H,=2H, 1+1, ifn>1, and Hy=0.

(Here H,, is the optimal number of moves in the problem of the Towers of Hanoi.)

11.1-2 Analyse the problem of the Towers of Hanoi if n discs have to be moved
from stick A to stick C in such a way that no disc can be moved directly from A to
C and vice versa.

Hint. Show that if the optimal number of moves is denoted by M,,, and n > 1,
then M,, = 3M,_1 + 2.
11.1-3 Solve the recurrence equation

n+1)R,=2(2n—1)R,,—1, ifn>1, and Ry=1.
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11.1-4 Solve the linear nonhomogeneous recurrence equation
Tp=2"—-24+22,_1, ifn>2 and x1=0.

Hint. Try to find a particular solution of the form C1n2" + Cs.
11.1-5* Prove Theorem 11.2.
11.1-6 Prove Theorem 11.3.

11.2. Generating functions and recurrence equations

Generating functions can be used, among others, to solve recurrence equations, count
objects (e.g. binary trees), prove identities and solve partition problems. Counting
the number of objects can be done by stating and solving recurrence equations.
These equations are usually not linear, and generating functions can help us in
solving them.

11.2.1. Definition and operations

Associate a series with the infinite sequence (an)n>0 = (@0, @1,a2,...,an,...) the
following way

A(z):ao+a12+a222+~~+anz"+~-~:Zanz".
n>0

This is called the generating function of the sequence (ay,)n>0-
For example, in case of the Fibonacci numbers this generating function is

F(Z):ZFnZ”:Z+22+223+3z4+525+826+1327+... ]
n>0

Multiplying both sides of the equation by z, then by 22, we obtain

F(z) = FO+F12+F222+F323+~--+Fnz"_|_...’
2F(2) = FOZ+F122+F223+-~~+Fn_1zn+... ,
PF(z) = Fo? + P22+ 4 Fy g2 4o

If we subtract the second and the third equations from the first one term by term,
then use the defining formula of the Fibonacci numbers, we get

F2)1—z—-2%) =2z,

that is
z

Tl 22
The correctness of these operations can be proved mathematically, but here we do

not want to go into details. The formulae obtained using generating functions can
usually also be proved using other methods.

F(2) (11.9)
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Let us consider the following generating functions

Zanz and B(z sz

n>0 n>0

The generating functions A(z) and B(z) are equal, if and ouly if a,, = b, for all
n natural numbers.

Now we define the following operations with the generating functions: addition,
multiplication by real number, shift, multiplication, derivation and integration.

Addition and multiplication by real number.

A(z) + BB(z) = Z (avay, + Bby)z"

n>0

Shift. The generating function

= E an2" "tk = E Ap—p 2"

n>0 n>k
represents the sequence < 0,0,...,0,aq,a1,... >, while the generating function
———
k
1 A 2 _ n
Z—k( (2) —agp— a1z —agz” — -+ —ag_ 12k E An2 —g Apan?
n>k n>0

represents the sequence < ag,ag+1,ax42,... > .

Example 11.7 Let A(z) =1+ z+ 2> +---. Then

1
1—2°

(A0 -1) =46) ad AG) =

z

Multiplication. If A(z) and B(z) are generating functions, then

A(z)B(z) = (ag+aiz+--Fapz"+--)bo+biz+--+bz"+--)
(lobo + (a0b1 —+ ale)Z —+ (a0b2 =+ a1b1 =+ a2b0)22 + -

g sp2",

n>0

n
where s,, = g apbn_ k.

Special case. If b, = 1 for all natural numbers n, then

=> (Z ak> . (11.10)

n>0
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If, in addition, a,, = 1 for all n, then

! ;= (n+1)2". (11.11)

(1-2) n>0
Derivation.

A'(2) = ay + 2a0z + 3azz® + -+ = Z (n+1Day12"
n>0

Example 11.8 After differentiating both sides of the generating function

we obtain 1
’ _ n—1 __
A(z)—an B
n>1
Integration.
ZA(t)dt +ia2 sty Zl n
=apz + —a12 —asz P —Qp_ 1%
; 0 5 3% ,, dn—1
n>1
Example 11.9 Let
1 2, .3
1—=z
After integrating both sides we get
1
lnliz—z—i—fz —l—fz—l— Zfz
n>1
Multiplying the above generating functions we obtain
1 1
1 = H, " )
1—-=2 " 1—-=2 Z i
n>1
1 1 1 .

where H,, =1+ 5 + 3 R - (Ho =0, H; = 1) are the so-called harmonic numbers.

Changing the arguments. Let A(z) = > ., anz" represent the se-
quence (ag,ai,asz,...), then A(cz) = > .,c"a,2" represents the sequence

{ag, cay, c?az,...c"ay,...). The following statements holds

1
S(AR +AC2)) = a0+ w4 a4

1
5(14(2) - A(—Z)) ozt as 4 +am, 2
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Example 11.10 Let A(z) =1+ 2+ 22+ 25 +... = % . Then
—z
1 1 1 1 1
14224 4...=2(A A(— :7( ):
+25+2 + 2( (2) + A(—2)) 5 1—z+1+z T— 2

which can also be obtained by substituting z by z* in A(z). We can obtain the sum of the
odd power terms in the same way,

3 5 _ 1 - o 7} 1 o 1 o z
2420+ 4= (A(z) A Z))_2<1—z 1—|—z)_1—22'

Using generating functions we can obtain interesting formulae. For example, let
A(z)=1/(1—2)=1+z+2%+ 2%+ ... Then zA(2(1 + z)) = F(2), which is the
generating function of the Fibonacci numbers. From this

zA(2(142)) =2+ 221 +2) + 221+ 22 + 21 +2)° + - .

The coefficient of 2”1 on the left-hand side is F}, 11, that is the (n + 1)th Fibonacci
number, while the coefficient of z"*! on the right-hand side is

é(n;k>>

after using the binomial formula in each term. Hence

Fupi=Y <" . k) - ng (" B k) . (11.12)

k>0 k=0
Remember that the binomial formula can be generalised for all real r, namely
=3 ()
n )
n>0
r
which is the generating function of the binomial coefficients for a given r. Here >
n

is a generalisation of the number of combinations for any real number r, that is

r(rfl)(er)...(rfnJrl), >0,
LA n(n—1)...1
n) ] 1 in=0,
0, ifn<0.

We can obtain useful formulae using this generalisation for negative r. Let
1 —-m
G = ()t
(1—2)m k%% k

Since, by a simple computation, we get

()= (),
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the following formula can be obtained

o)

k>0
Then
z™m B m+k\ i m+k\ e E\ &
(1—z)m+1_z< k )Z _Z< m )° _Z m)°
k>0 k>0 k>0
and

m

,; (i)zk - (l_zzm : (11.13)

where m is a natural number.

11.2.2. Solving recurrence equations by generating functions

If the generating function of the general solution of a recurrence equation to be
solved can be expanded in such a way that the coefficients are in closed form, then
this method is successful.

Let the recurrence equation be

F(zp,@n-1,.. ., Tp_k) =0. (11.14)

To solve it, let us consider the generating function

X(z) = Z AL

n>0

If (11.14) can be written as G(X(z)) = 0 and can be solved for X (z), then X(z)
can be expanded into series in such a way that z,, can be written in closed form,
equation (11.14) can be solved.

Now we give a general method for solving linear nonhomogeneous recurrence
equations. After this we give three examples for the nonlinear case. In the first
two examples the number of elements in some sets of binary trees, while in the
third example the number of leaves of binary trees is computed. The corresponding
recurrence equations (11.15), (11.17) and (11.18) will be solved using generating
functions.

Linear nonhomogeneous recurrence equations with constant coefficients.
Multiply both sides of equation (11.8) by z™. Then

apxn 2" + a1Tp412" + o+ apzpppz” = f(n)2" .

Summing up both sides of the equation term by term we get

aOZznz" + ay an+1z" 4 tag merkz" — Zf(n)zn )

n>0 n>0 n>0 n>0
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Then
ay 1 Ak
ao E Tp2" + — E Tpp12™t + E xn+kz"+k = E fln)z".
z z
n>0 n>0 n>0 n>0

Let

The equation can be written as
al ag k—1
apX (2) + ?(X(z) —xo) +- 4+ Z—k(X(z) — Lo — L1z —— Tp_12 ) =F(z).

This can be solved for X (z). If X(z) is a rational fraction, then it can be decomposed
into partial (elementary) fractions which, after expanding them into series, will give
us the general solution x,, of the original recurrence equation. We can also try to use
the expansion into series in the case when the function is not a rational fraction.

Example 11.11 Solve the following equation using the above method
Tng1 — 22, =2"T1—2 ifn>0 andzo=0.
After multiplying and summing we have
1 n+1 n __ n_n n
;Zmn.,.lz —Qanz —2222 —QZz ,
n>0 n>0 n>0 n>0

and
1 (X(z) _ :ro) _2X(2)

z

22
T 1-22 1-—2z°

Since zo = 0, after decomposing the right-hand side into partial fractions'), the solution of
the equation is

22, 2 2
(1-22)2 1—2z 1-2z°

After differentiating the generating function

1 n_n
1—222222 ‘

n>0

X(z) =

term by term we get

2 n_n—1

n>1
Thus
X(z)=) m2"z" 423 -2y 2= ((n— 2)2" +2)z" ,
n>0 n>0 n>0 n>0
therefore

Tn=(n—2)2"+2.



492 11. Recurrences

AA

n=2 n=3

Figure 11.2 Binary trees with two and three vertices.

The number of binary trees. Let us denote by b,, the number of binary trees
with n vertices. Then by = 1, by = 2, by = 5 (see Figure 11.2). Let by = 1. (We will
see later that this is a good choice.)

In a binary tree with n vertices, there are altogether n — 1 vertices in the left and
right subtrees. If the left subtree has k vertices and the right subtree hasn — 1 — k
vertices, then there exists byb,_1_j such binary trees. Summing over k = 0,1,...,n—
1, we obtain exactly the number b, of binary trees. Thus for any natural number
n > 1 the recurrence equation in b,, is

by, = bobn_1 + bibn_g + -+ bp_1bo - (11.15)

This can also be written as .
n

b= bibu-1-k -
k=0

Multiplying both sides by 2™, then summing over all n, we obtain

n—1
> bp = (Z bkbn1k> P (11.16)
k

n>1 n>1 =0

Let B(z) = Z bnz" be the generating function of the numbers b,,. The left-hand
n>0

side of (11.16) is exactly B(z) — 1 (because by = 1). The right-hand side looks like

a product of two generating functions. To see which functions are in consideration,

let us use the notation

A(z) = zB(z) = Z b2 = Z bp_12" .

n>0 n>1
Then the right-hand side of (11.16) is exactly A(z)B(z), which is zB?(z). Therefore

B(z) —1=2B*z), B(0)=1.

1 For decomposing the fraction into partial fractions we can use the Method of Undetermined
Coeflicients.
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Solving this equation for B(z) gives

1++1—-4z

B(z) = 2z

We have to choose the negative sign because B(0) = 1. Thus

Be) = (V)= (1- (- a2)7)
= % 12(1£2>(4z)" :iz 1Z<1/2>( 1)"22n "

2020 <1/2>22z - 1/2)(1)nW N

1 2z n

1 2
Therefore b,, = ot ") he numbers b,, are also called the Catalan numbers.
n n

Remark. In the previous computation we used the following formula that can be

proved easily
12\ (-1)"  (2n
n+1) 22nti(n+1)\n )’

The number of leaves of all binary trees of n vertices. Let us count the
number of leaves (vertices with degree 1) in the set of all binary trees of n vertices.
Denote this number by f,,. We remark that the root is not considered leaf even if
it is of degree 1. It is easy to see that fo = 2, f3 = 6. Let fo = 0 and f; = 1,
conventionally. Later we will see that this choice of the initial values is appropriate.

As in the case of numbering the binary trees, consider the binary trees of n
vertices having k vertices in the left subtree and n — k — 1 vertices in the right
subtree. There are by such left subtrees and b,,_1_j right subtrees. If we consider
such a left subtree and all such right subtrees, then together there are f,,_1_j leaves
in the right subtrees. So for a given k there are b, _1_j fr + br frn_1_1 leaves. After

summing we have
n—1

Fo = (frbn1-k +brfu1-k) -

k=0
By an easy computation we get

fn =2(fobn—1 + fibn—2 + -+ fno1bo), n>2. (11.17)

This is a recurrence equation, with solution f,. Let

z):anz" and B(z sz

n>0 n>0



494 11. Recurrences

Multiplying both sides of (11.17) by 2™ and summing gives
n—1
Iy (z fkbn1k> :
n>2 n>2 \k=0

Since fy =0 and f; =1,
F(z) —z=22F(2)B(z) .

Thus ;
&) =550
and since .
B(z)=— (1—-+v1—-4
we have

F(z)fﬁfz(l—élz) Wzﬂ%jo( . >(—4z) .

After the computations

o=y ()£ ()

n>1

fn = (2:__12) or fn+1 = (2:> - (TL + 1)bn .

The number of binary trees with n vertices and k leaves. A bit harder
problem: how many binary trees are there with n vertices and k leaves? Let us denote
this number by b\, It is easy to see that by = 0, if k > [(n+1)/2]. By a simple
by

and

reasoning the case kK = 1 can be solved. The result is = 2"~ for any natural
number n > 1. Let b(o) 1, conventionally. We will see later that this choice of
the initial value is appropriate. Let us consider, as in case of the previous problems,
the left and right subtrees. If the left subtree has i vertices and j leaves, then the

right subtree has n — ¢ — 1 vertices and k — j leaves. The number of these trees is

b(j )bflk Z] 1- Summing over k and j gives
n—2k—1
b =267 + 33T, (11.18)
i=1 j=1

For solving this recurrence equation the generating function

(k) Z b k)z where k > 1

n>0
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will be used. Multiplying both sides of equation (11.18) by z" and summing over
n=0,1,2,..., we get

n—2k—1
k k— g
SRR SIS 3y ST B
n>1 n>1 n>1 \ i=1 j=1

Changing the order of summation gives

S =23 bl et Z > (Z b7 1) "

n>1 n>1 j=1n>1 \i=1
Thus
k—1 ‘
BW(z) =2:B¥(2) + 2 [ Y BY(2)B%9)(z)
Jj=1
or

B®)(z) ZBU) BF=0(z) ] . (11.19)

Step by step, we can write the following:

B = 2 (BO)

22
BY(z) = (132@ (B(l)(z))3’

B = 2 (80)

Let us try to find the solution in the form

cpzkt
B®(z) = (1’922)161(3(1)@))1@ |

where ¢o = 1, ¢3 = 2, ¢4 = 5. Substituting in (11.19) gives a recursion for the

numbers ¢,
k—1

Cp = E CiCl—j -
i=1

We solve this equation using the generating function method. If £ = 2, then ¢y =
cicy, and so ¢; = 1. Let ¢ = 1. If C(2) = >, 5, cn2" is the generating function of
the numbers ¢,,, then, using the formula of multiplication of the generating functions
we obtain

Cz)=1—2=(C(z)—1)* or C*2)—-3C(2)+2+2=0,
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thus
3—+v1—-4z
5 .
Since C'(0) = 1, only the negative sign can be chosen. After expanding the generating
function we get

C(z) =

3 1 3 1 1 2n
Clz) = Z—-(1—-4x)2=2_2 2"
(2) 5 =% 9~ Z2n—1
n>0
3 1 2n 1 2n
= 2 - n_q - o
5" 2(2n—1)<n)z +ZQ(2n—l)(n>Z
n>0 n>1
From this

1 2n
Cp = ——— , n>1.
22n -1\ n

Since by = 271 for n > 1, it can be proved easily that BX) = 2/(1 — 2z). Thus

1 2k z2k—1
BY(z) = (2k-1)<k)(1—zz)2k—1 ‘

()

Using the formula

n>0
therefore
2k 2k +n —
B(k) — n 2k+n—1
@ = ()5 ()
n>0
— 2k n—1 2n72k+lzn
2k -1\ k n—2k+1 '

n>2k—1

Thus
(k) _ n—2k
00 = 51 (3) k)2

or

1 /2k n
b(k) I 271—2/43 )
w=2C) )

11.2.3. The Z-transform method

When solving linear nonhomogeneous equations using generating functions, the solu-
tion is usually done by the expansion of a rational fraction. The Z-transform method
can help us in expanding such a function. Let P(z)/Q(z) be a rational fraction, where
the degree of P(z) is less, than the degree of Q(z). If the roots of the denominator
are known, the rational fraction can be expanded into partial fractions using the
Method of Undetermined Coefficients.
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Let us first consider the case when the denominator has distinct roots
a1,09,...,0L. Then

Ple) o A A A
Q(z) z—m z— z—ap

It is easy to see that

| P(2)
A, = lim (= — o, =1,2,.
1 Zl{gl(’z aZ)Q(Z)’ ? ) ) ’k:
But
A; A; _ —AB

z—o; ( 1 >_lﬂiz
—a; | 1——=2
Q;

where 3; = 1/a;. Now, by expanding this partial fraction, we get

1_;452 =—ABi (L4 Biz 4+ B+ ).
Denote the coefficient of 2" by C;(n), then Cj(n) = —A4;8", so
Ciln) = ~Agp* = —5*1 Jim (2 - ) )
. (2 — a))P(2)
Ci(n) = —pp* Zh%h TZZ)

After the transformation z — 1/z and using ; = 1/«; we obtain

Ci(n) = lim <(z . @)Zn—l??(z)) 7

where

p(z) _ P(1/z)
q(z)  Q(1/z)
P(z)
Q(z

)
( )+Cg(n) —I—C'k(n) .

Thus in the expansion of X (z) = the coefficient of 2"

If o is a root of the polynomial Q(z), then § = 1/« is a root of ¢(z). E.g. if

P(2) _ 22% then p(2) _ 2
Qlz) (1-2)(1-22)" qz)  (z=1)(z-2)

If case of multiple roots, e.g. if 5; has multiplicity p, their contribution to the solution

is B 1 . dr—1 » n_1P(2)
Ci(n) = T Jim ((z—ﬁi) z q(z)) :
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P
Here o f(2) is the derivative of order p of the function f(z).

All these can be summarised in the following algorithm. Suppose that the coef-
ficients of the equation are in array A, and the constants of the solution are in array
C.

LINEAR-NONHOMOGENEOUS(A, k, f)

1 let apzy, + a1Tp41 + -+ - + agxnir = f(n) be the equation, where f(n)
is a rational fraction; multiply both sides by z", and sum over all n
2 transform the equation into the form X (z) = P(z)/Q(z), where
X(2) =) ,50%n2", P(2) and Q(z) are polynomials
3 use the transformation z — 1/z, and let the result be
p(2)/q(2), where p(z) are g(z) are polynomials
4 denote the roots of ¢(z) by
B1, with multiplicity p1, p1 > 1,
B2, with multiplicity ps, p2 > 1,

B, with multiplicity pg, pr > 1;
then the general solution of the original equation is
xn, = C1(n) + Ca(n) + - -+ 4+ Ci(n), where

p;—1

Ci(n) =1/((p; — 1)) lim,_, g, % ((z = Bi)Piz" " (p(2)/a(2))) ,i=1,2,... k.
5 return C

If we substitute z by 1/z in the generating function, the result is the so-called Z-
transform, for which similar operations can be defined as for the generating functions.
The residue theorem for the Z-transform gives the same result. The name of the
method is derived from this observation.

Example 11.12 Solve the recurrence equation
Tng1 — 22, =2"T1 =2 if n>0, z0=0.

Multiplying both sides by 2" and summing we obtain

Z:rnﬂz" — Qanz" = ZQ"HZ" — ZZ,Z" ,

n>0 n>0 n>0 n>0
or
%X(z) —2X(2) = 1 —22z - %, where X (z) = anz" .
n>0
Thus 5
X(2) = 2z

(1—2)(1—22)2 "

After the transformation z — 1/z we get

~—

p(z) 2z

q(z)  (z=1)(z-2)*"

where the roots of the denominator are 1 with multiplicity 1 and 2 with multiplicity 2.
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Thus 0
. 2"
G=lmpogp =2 e
d [ 22" nz" "Mz —1) - 2"
Cy = li 7( ):21' —9"(n—2) .
e=lm o o07) =2 = =y (n=2)

Therefore the general solution is

Tn=2"n—-2)+2, n>0.

Example 11.13 Solve the recurrence equation

Tnt2 = 2Tpt1 — 2%y, if n>0, x20=0, x1=1.

Multiplying by 2" and summing gives

1 2
- E .’L’n+22n+2 = - E :cn+1z”+1 -2 E xnz" 5
22 z

n>0 n>0 n>0
so
L (F(z) - z) —2pe) —2F(2)
22 Tz ’
that is 1 9 1
FG) (= - 242)=—=.
(2) (22 z + ) z
Then
—z
P2 = a5

The roots of the denominator are 1+ ¢ and 1 — 4. Let us compute C1(n) and Ca(n):

) —zm Tt i(1+4)"
Giln) = lm —— =y =~ 5 and
) —zm Tt —i(1 — )"
Caln) = lm ——0 5 = — 3

Since

) T o T T
1+z—\/§<cosz+zsmz), 1—@-\/5(0054 zsm4),

raising to the nth power gives
an n nm ... nmw AN n nm ... nm
(1+9)" = (\/5) (COST +zsmT) , (1=9)" = (\@) (COST —zsmT> ,
n ., NT
Exercises on = Ci(n) + Ca(n) = (V2) " sin -~ .
11.2-1 How many binary trees are there with n vertices and no empty left and right
subtrees?
11.2-2 How many binary trees are there with n vertices, in which each vertex which
is not a leaf, has exactly two descendants?
11.2-3 Solve the following recurrent equation using generating functions.

H,=2H, 1 +1, Hy=0.

(H,, is the number of moves in the problem of the Towers of Hanoi.)
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11.2-4 Solve the following recurrent equation using the Z-transform method.

Fn+2:Fn+1+Fn+17 1fn20, and FQZO,Flzl.

11.2-5 Solve the following system of recurrence equations:

Up = Up—1+ Up—2,

Un, Uy + Up—1 )

where ug = 1,u; = 2,v9 = 1.

11.3. Numerical solution

Using the following function we can solve the linear recurrent equations numerically.
The equation is given in the form

ATy + 1 Tpy1 + -+ Znyr = f(0)

where ag,ar # 0,k > 1. The coefficients ag, aq,...,a; are kept in array A, the
initial values xq,z1,...,zr_1 in array X. To find x, we will compute step by step
the values zp, zg41,. .., 2y, keeping in the previous k values of the sequence in the

first k positions of X (i.e. in the positions with indices 0,1,...,k —1).

RECURRENCE(A, X, k,n, f)

1 for j+ kton
2 do v < A[0] - X[0]

3 fori<1tok—1

4 do v« v + Afi] - X[i]

5 v (F(G — k) —v) JAIK]

6 if j#n

7 then for i < 0 to k — 2

8 do X[i] + X[i+ 1]
9 X[k—-1] v

10 return v

Lines 2-5 compute the values z; (j = k,k+1,...,n) (using the previous k
values), denoted by v in the algorithm. In lines 7-9, if n is not yet reached, we copy
the last k values in the first k& positions of X. In line 10 z,, is obtained. It is easy
to see that the computation time is ©(kn), if we disregard the time to compute the
values of the function.

Exercises

11.3-1 How many additions, subtractions, multiplications and divisions are required
using the algorithm RECURRENCE, while it computes x1999 using the data given in
Example 11.47
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Problems

11-1 Existence of a solution of a homogeneous equation using generating
function

Prove that a linear homogeneous equation cannot be solved using generating func-
tions (because X (z) = 0 is obtained) if and only if z,, = 0 for all n.

11-2 Complex roots in case of Z-transform

What happens if the roots of the denominator are complex when applying the Z-
transform method? The solution of the recurrence equation must be real. Does the
method ensure this?

Chapter Notes

Recurrence equations are discussed in details by Agarwal [1], Elaydi [3], Flajolet and
Sedgewick [11], Greene and Knuth [6], Mickens [10], and also in the recent books
written by Drmota [2], further by Flajolet and Sedgewick [4].

Knuth [7] and Graham, Knuth and Patashnik [5] deal with generating functions.
In the book of Vilenkin [12] there are a lot of simple and interesting problems about
recurrences and generating functions.

In [9] Lovasz also presents problems on generating functions.

Counting the binary trees is from Knuth [7], counting the leaves in the set of
all binary trees and counting the binary trees with n vertices and k leaves are from
Zoltan Késa [8].
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