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10. Game Theory

In many situations in engineering and economy there are cases when the conflicting
interests of several decision makers have to be taken into account simultaneously,
and the outcome of the situation depends on the actions of these decision makers.
One of the most popular methodology and modeling is based on game theory.
Let N denote the number of decision makers (who will be called players), and
for each k = 1, 2, . . . , N let Sk be the set of all feasible actions of player Pk. The
elements sk ∈ Sk are called strategies of player Pk, Sk is the strategy set of this
player. In any realization of the game each player selects a strategy, then the vector
s = (s1, s2, . . . , sN ) (sk ∈ Sk, k = 1, 2, . . . , N) is called a simultaneous strategy

vector of the players. For each s ∈ S = S1 × S2 × · · · × SN each player has an
outcome which is assumed to be a real value. This value can be imagined as the
utility function value of the particular outcome, in which this function represents
how player Pk evaluates the outcomes of the game. If fk(s1, . . . , sN ) denotes this
value, then fk : S → R is called the payoff function of player Pk. The value
fk(s) is called the payoff of player Pk and (f1(s), . . . , fN (s)) is called the payoff

vector. The number N of players, the sets Sk of strategies and the payoff functions
fk (k = 1, 2, . . . , N) completely determine and define the N -person game. We will
also use the notation G = {N ; S1, S2, . . . , SN ; f1, f2, . . . , fN} for this game.

The solution of game G is the Nash-equilibrium, which is a simultaneous
strategy vector s? = (s?

1, . . . , s?
N ) such that for all k,

1. s?
k ∈ Sk;

2. for all sk ∈ Sk,

fk(s?
1, s?

2, . . . , s?
k−1, sk, s?

k+1, . . . , s?
N )≤fk(s?

1, s?
2, . . . , s?

k−1, s?
k, s?

k+1, . . . , s?
N ).
(10.1)

Condition 1 means that the k-th component of the equilibrium is a feasible strategy
of player Pk, and condition 2 shows that none of the players can increase its payoff
by unilaterally changing its strategy. In other words, it is the interest of all players
to keep the equilibrium since if any player departs from the equilibrium, its payoff
does not increase.
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Figure 10.1 Prisoner’s dilemma.

10.1. Finite games

Game G is called finite if the number of players is finite and all strategy sets Sk

contain finitely many strategies. The most famous two-person finite game is the
prisoner’s dilemma, which is the following.

Example 10.1 The players are two prisoners who committed a serious crime, but the
prosecutor has only insufficient evidence to prosecute them. The prisoners are held in
separate cells and cannot communicate, and the prosecutor wants them to cooperate with
the authorities in order to get the needed additional information. So N = 2, and the strategy
sets for both players have two elements: cooperating (C), or not cooperating (N). It is told
to both prisoners privately that if he is the only one to confess, then he will get only a light
sentence of 1 year, while the other will go to prison for a period of 10 years. If both confess,
then their reward will be a 5 year prison sentence each, and if none of them confesses, then
they will be convicted to a less severe crime with sentence of 2 years each. The objective
of both players are to minimize the time spent in prison, or equivalently to maximize its
negative. Figure 10.1 shows the payoff values, where the rows correspond to the strategies
of player P1, the columns show the strategies of player P2, and for each strategy pair the
first number is the payoff of player P1, and the second number is the payoff of player P2.
Comparing the payoff values, it is clear that only (C, C) can be equilibrium, since

f2(N,N) = −2 < f2(N,C) = −1 ,

f1(N,C) = −10 < f1(C,C) = −5 ,

f2(C,N) = −10 < f2(C, C) = −5 .

The strategy pair (C, C) is really an equilibrium, since

f1(C,C) = −5 > f1(N,C) = −10 ,

f2(C,C) = −5 > f2(C,N) = −10 .

In this case we have a unique equilibrium.

The existence of an equilibrium is not guaranteed in general, and if equilibrium
exists, it might not be unique.

Example 10.2 Modify the payoff values of Figure 10.1 as shown in Figure 10.2. It is easy
to see that no equilibrium exists:

f1(N,N) = 1 < f1(C,N) = 2 ,

f2(C,N) = 4 < f2(C,C) = 5 ,

f1(C,C) = 0 < f1(N,C) = 2 ,

f2(N,C) = 1 < f2(N,N) = 2 .
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Figure 10.2 Game with no equilibrium.

If all payoff values are identical, then we have multiple equilibria: any strategy
pair is an equilibrium.

10.1.1. Enumeration

Let N denote the number of players, and for the sake of notational conve-

nience let s
(1)
k , . . . , s

(nk)
k denote the feasible strategies of player Pk. That is, Sk =

{s(1)
k , . . . , s

(nk)
k }. A strategy vector s? = (s

(i1)
1 , . . . , s

(iN )
N ) is an equilibrium if and

only if for all k = 1, 2, . . . , N and j ∈ {1, 2, . . . , nk} \ ik,

fk(s
(i1)
1 , . . . , s

(ik−1)
k−1 , s

(j)
k , s

(ik+1)
k+1 , . . . , s

(iN )
N )

≤ fk(s
(i1)
1 , . . . , s

(ik−1)
k−1 , s

(ik)
k , s

(ik+1)
k+1 , . . . , s

(iN )
N ). (10.2)

Notice that in the case of finite games inequality (10.1) reduces to (10.2).
In applying the enumeration method, inequality (10.2) is checked for all possible

strategy N -tuples s? = (s
(i1)
1 , . . . , s

(iN )
N ) to see if (10.2) holds for all k and j. If it

does, then s? is an equilibrium, otherwise not. If during the process of checking for
a particular s? we find a k and j such that (10.2) is violated, then s? is not an
equilibrium and we can omit checking further values of k and j. This algorithm is
very simple, it consists of N + 2 imbedded loops with variables i1, i2, . . . , iN , k and
j.

The maximum number of comparisons needed equals

(

N
∏

k=1

nk

)(

N
∑

k=1

(nk − 1)

)

,

however in practical cases it might be much lower, since if (10.2) is violated with
some j, then the comparison must stop for the same strategy vector.

The algorithm can formally be given as follows:
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Prisoner-Enumeration(Sk)

1 for i1 ← 1 to n1

2 do for i2 ← 1 to n2

3
. . .

4 do for iN ← 1 to nN

5 do key ← 0
6 for k ← 1 to N
7 do for j ← 1 to nk

8 do if (10.2) fails
9 then key ← 1 and go to 10

10 if key = 0

11 then (s
(i1)
1 , . . . , s

(iN )
N ) is equilibrium

12 return (s
(i1)
1 , . . . , s

(iN )
N )

Consider next the two-person case, N=2, and introduce the n1×n2 real matrixes
A(1) and A(2) with (i, j) elements f1(i, j) and f2(i, j) respectively. Matrixes A(1)

and A(2) are called the payoff matrixes of the two players. A strategy vector
(

s
(i1)
1 , s

(i2)
2

)

is an equilibrium if and only if the (i1, i2) element in matrix A(1) is the

largest in its column, and in matrix A(2) it is the largest in its row. In the case when
f2 = −f1, the game is called zero-sum, and A(2) = −A(1), so the game can be
completely described by the payoff matrix A(1) of the first player. In this special case

a strategy vector (s
(i1)
1 , s

(i2)
2 ) is an equilibrium if and only if the element (i1, i2) is

the largest in its column and smallest in its row. In the zero-sum cases the equilibria
are also called the saddle points of the games. Clearly, the enumeration method to
find equilibria becomes more simple since we have to deal with a single matrix only.

The simplified algorithm is as follows:

EquilibriumA(2)

1 for i1 ← 1 to n1

2 do for i2 ← 1 to n2

3 do key ← 0
4 for j ← 1 to n1

5 do if a
(1)
ji2

> a
(1)
i1i2

6 then key ← 1
7 go to 12
8 for j ← 1 to n2

9 do if a
(2)
i1j > a

(2)
i1i2

10 then key ← 1
11 go to 12
12 if key = 0

13 then return (s
(1)
i1

, s
(2)
i2

)
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10.1.2. Games represented by finite trees

Many finite games have the common feature that they can be represented by a finite
directed tree with the following properties:

1. there is a unique root of the tree (which is not the endpoint of any arc), and the
game starts at this node;

2. to each node of the tree a player is assigned and if the game reaches this node at
any time, then this player will decide on the continuation of the game by selecting
an arc originating from this node. Then the game moves to the endpoint of the
chosen arc;

3. to each terminal node (in which no arc originates) an N -dimensional real vector
is assigned which gives the payoff values for the players if the game terminates
at this node;

4. each player knows the tree, the nodes he is assigned to, and all payoff values at
the terminal nodes.

For example, the chess-game satisfies the above properties in which N = 2, the
nodes of the tree are all possible configurations on the chessboard twice: once with
the white player and once with the black player assigned to it. The arcs represent
all possible moves of the assigned player from the originating configurations. The
endpoints are those configurations in which the game terminates. The payoff values
are from the set {1, 0,−1} where 1 means win, −1 represents loss, and 0 shows that
the game ends with a tie.

Theorem 10.1 All games represented by finite trees have at least one equilibrium.

Proof We present the proof of this result here, since it suggests a practical algorithm
to find equilibria. The proof goes by induction with respect to the number of nodes of
the game tree. If the game has only one node, then clearly it is the only equilibrium.

Assume next that the theorem holds for any tree with less than n nodes (n ≥
2), and consider a game T0 with n nodes. Let R be the root of the tree and let
r1, r2, . . . , rm (m < n) be the nodes connected to R by an arc. If T1, T2, . . . , Tm

denote the disjoint subtrees of T0 with roots r1, r2, . . . , rm, then each subtree has
less than n nodes, so each of them has an equilibrium. Assume that player Pk is
assigned to R. Let e1, e2, . . . , em be the equilibrium payoffs of player Pk on the
subtrees T1, T2, . . . , Tm and let ej = max{e1, e2, . . . , em}. Then player Pk will move
to node rj from the root, and then the equilibrium continues with the equilibrium
obtained on the subtree Tj . We note that not all equilibria can be obtained by this
method, however the payoff vectors of all equilibria, which can obtained by this
method, are identical.

We note that not all equilibria can be obtained by this method, however the
payoff vectors of all equilibria, which can be obtained by this method, are identical.

The proof of the theorem suggests a dynamic programming-type algorithm which
is called backward induction. It can be extended to the more general case when
the tree has chance nodes from which the continuations of the game are random
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Figure 10.3 Finite tree of Example 10.3.

according to given discrete distributions.
The solution algorithm can be formally presented as follows. Assume that the

nodes are numbered so each arc connects nodes i and j only for i < j. The root has
to get the smallest number 1, and the largest number n is given to one of the terminal
nodes. For each node i let J(i) denote the set of all nodes j such that there is an

arc from i to j. For each terminal node i, J(i) is empty, and let p(i) = (p
(i)
1 , . . . , p

(i)
N )

denote the payoff vector associated to this node. And finally we will denote player
assigned to node i by Ki for all i. The algorithm starts at the last node n and moves
backward in the order n, n− 1, n− 2, . . . , 2 and 1. Node n is an endpoint, so vector
p(n) has been already assigned. If in the process the next node i is an endpoint, then

p(i) is already given, otherwise we find the largest among the values p
(j)
Ki

, j ∈ J(i).
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Assume that the maximal value occurs at node ji, then we assign p(i) = p(ji) to node
i, and move to node i − 1. After all payoff vectors p(n), p(n−1), . . . , p(2) and p(1)

are determined, then vector p(1) gives the equilibrium payoffs and the equilibrium
path is obtained by nodes:

1→ i1 = j1 → i2 = ji1
→ i3 = ji2

→ . . . ,

until an endpoint is reached, when the equilibrium path terminates.
At each node the number of comparisons equals the number of arcs starting at

that node minus 1. Therefore the total number of comparisons in the algorithm is
the total number of arcs minus the number of nodes.

This algorithm can be formally given as follows:

Backward-Induction

1 for i← n to 1

2 do p
(ji)
Ki
← max{p(l)

Ki
, l ∈ J(i)}

3 p(i) ← p(ji)

4 print sequence 1, i1(= j1), i2(= ji1
), i3(= ji2

), . . .
until an endpoint is reached

Example 10.3 Figure 10.3 shows a finite tree. In the circle at each nonterminal node we
indicate the player assigned to that node. The payoff vectors are also shown at all terminal
nodes. We have three players, so the payoff vectors have three elements.

First we number the nodes such that the beginning of each arc has a smaller number
than its endpoint. We indicated these numbers in a box under each node. All nodes i for
i ≥ 11 are terminal nodes, as we start the backward induction with node 10. Since player
P3 is assigned to this node we have to compare the third components of the payoff vectors
(2, 0, 0) and (1, 0, 1) associated to the endpoints of the two arcs originating from node 10.
Since 1 > 0, player P3 will select the arc to node 22 as his best choice. Hence j10 = 22,
and p(10) = p(22) = (1, 0, 1). Then we check node 9. By comparing the third components
of vectors p(19) and p(20) it is clear that player P3 will select node 20, so j9 = 20, and
p(9) = p(20) = (4, 1, 4). In the graph we also indicated the choices of the players by thicker
arcs. Continuing the procedure in the same way for nodes 8, 7, . . . , 1 we finally obtain the
payoff vector p(1) = (4, 1, 4) and equilibrium path 1 → 4 → 9 → 20.

Exercises
10.1-1 An entrepreneur (E) enters to a market, which is controlled by a chain store
(C). Their competition is a two-person game. The strategies of the chain store are
soft (S), when it allows the competitor to operate or tough (T), when it tries to drive
out the competitor. The strategies of the entrepreneur are staying in (I) or leaving
(L) the market. The payoff tables of the two player are assumed to be

I L

S 2 5

T 0 5

payoffs of C

I L

S 2 1

T 0 1

payoffs of E
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Figure 10.4 Tree for Exercise 10.1-5

Find the equilibrium.
10.1-2 A salesman sells an equipment to a buyer, which has 3 parts, under the
following conditions. If all parts are good, then the customer pays $α to the salesman,
otherwise the salesman has to pay $β to the customer. Before selling the equipment,
the salesman is able to check any one or more of the parts, but checking any one
costs him $γ. Consider a two-person game in which player P1 is the salesman with
strategies 0, 1, 2, 3 (how many parts he checks before selling the equipment), and
player P2 is the equipment with strategies 0, 1, 2, 3 (how many parts are defective).
Show that the payoff matrix of player P1 is given as below when we assume that the
different parts can be defective with equal probability.

player P2

0 1 2 3

player P1

0

1

2

3

α

α − γ

α − 2γ

α − 3γ

−β

−
2
3

β − γ

−
1
3

β −
5
3

γ

−2γ

−β

−
1
3

β − γ

−
4
3

γ

−
4
3

γ

−β

−γ

−γ

−γ

10.1-3 Assume that in the previous problem the payoff of the second player is the
negative of the payoff of the salesman. Give a complete description of the number
of equilibria as a function of the parameter values α, β, γ. Determine the equilibria
in all cases.
10.1-4 Assume that the payoff function of the equipment is its value (V if all parts
are good, and zero otherwise) in the previous exercise. Is there an equilibrium point?

10.1-5 Exercise 10.1-1 can be represented by the tree shown in Figure 10.4.
Find the equilibrium with backward induction.
10.1-6 Show that in the one-player case backward induction reduces to the classical
dynamic programming method.
10.1-7 Assume that in the tree of a game some nodes are so called “chance nodes"
from which the game continuous with given probabilities assigned to the possible
next nodes. Show the existence of the equilibrium for this more general case.
10.1-8 Consider the tree given in Figure 10.3, and double the payoff values of player
P1, change the sign of the payoff values of player P2, and do not change those for
Player P3. Find the equilibrium of this new game.
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10.2. Continuous games

If the strategy sets Sk are connected subsets of finite dimensional Euclidean Spaces
and the payoff functions are continuous, then the game is considered continuous.

10.2.1. Fixed-point methods based on best responses

It is very intuitive and usefull from algorithmic point of view to reformulate the
equilibrium concept as follows. For all players Pk and s = (s1, s2, . . . , sN ) ∈ S =
S1 × S2 × · · · × SN define the mapping:

Bk(s) = {sk ∈ Sk|fk(s1, s2, . . . , sk−1, sk, sk+1, . . . , sN )

= max
tk∈Sk

fk(s1, s2, . . . , sk−1, tk, sk+1, . . . , sN )}, (10.3)

which is the set of the best choices of player Pk with given strategies s1, s2, . . . , sk−1,
sk+1, . . . , sN of the other players. Note that Bk(s) does not depend on sk, it depends
only on all other strategies sl, k 6= l. There is no guarantee that maximum exists
for all s ∈ S1 × S2 × · · · × SN . Let

∑

⊆ S be the subset of S such that Bk(s)
exists for all k and s ∈ ∑. A simultaneous strategy vector s? = (s?

1, s?
2, . . . , s?

N ) is
an equilibrium if and only if s? ∈ ∑, and s?

k ∈ Bk(s?) for all k. By introducing
the best reply mapping, Bk(s) = (B1(s), . . . , BN (s)) we can further simplify the
above reformulation:

Theorem 10.2 Vector s? is equilibrium if and only if s? ∈
∑

and s? ∈ B(s?).

Hence we have shown that the equilibrium-problem of N -person games is equiv-
alent to find fixed points of certain point-to-set mappings.

The most frequently used existence theorems of equilibria are based on fixed
point theorems such as the theorems of Brouwer, Kakutani, Banach, Tarski etc.
Any algorithm for finding fixed points can be successfully applied for computing
equilibria.

The most popular existence result is a straightforward application of the
Kakutani-fixed point theorem.

Theorem 10.3 Assume that in an N -person game

1. the strategy sets Sk are nonempty, closed, bounded, convex subsets of finite di-

mensional Euclidean spaces;

for all k,

2. the payoff function fk are continuous on S;

3. fk is concave in sk with all fixed s1, . . . , sk−1, sk+1, . . . , sN .

Then there is at least one equilibrium.

Example 10.4 Consider a 2-person game, N = 2, with strategy sets S1 = S2 = [0, 1], and
payoff functions f1(s1, s2) = s1s2 − 2s2

1 + 5, and f2(s1, s2) = s1s2 − 2s2
2 + s2 + 3. We will

first find the best responses of both players. Both payoff functions are concave parabolas
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in their variables with vertices:

s1 =
s2

4
and s2 =

s1 + 1

4
.

For all s2 ∈ [0, 1] and s1 ∈ [0, 1] these values are clearly feasible strategies, so

B1(s) =
s2

4
and B2(s) =

s1 + 1

4
.

So (s?
1, s?

2) is equilibrium if and only if it satisfies equations:

s?
1 =

s?
2

4
and s?

2 =
s?

1 + 1

4
.

It is easy to see that the unique solution is:

s?
1 =

1

15
and s?

2 =
4

15
,

which is therefore the unique equilibrium of the game.

Example 10.5 Consider a portion of a sea-channel, assume it is the unit interval [0, 1].
Player P2 is a submarine hiding in location s2 ∈ [0, 1], player P1 is an airplane drop-

ping a bomb at certain location s1 ∈ [0, 1] resulting in a damage αe−β(s1−s2)2

to the
submarine. Hence a special two-person game is defined in which S1 = S2 = [0, 1],

f1(s1, s2) = αe−β(s1−s2)2

and f2(s1, s2) = −f1(s1, s2). With fixed s2, f1(s1, s2) is max-
imal if s1 = s2, therefore the best response of player P1 is B1(s) = s2. Player P2 wants to
minimize f1 which occurs if |s1 − s2| is as large as possible, which implies that

B2(s) =

{

1, if s1 < 1/2,
0, if s1 > 1/2,
{0, 1}, if s1 = 1/2.

Clearly, there is no (s1, s2) ∈ [0, 1]×[0, 1] such that s1 = B1(s) and s2 ∈ B2(s), consequently
no equilibrium exists.

10.2.2. Applying Fan’s inequality

Define the aggregation function H : S × S → R as:

Hr(s, z) =

N
∑

k=1

rkfk(s1, . . . , sk−1, zk, sk+1, . . . , sN ) (10.4)

for all s = (s1, . . . , sN ) and z = (z1, . . . , zN ) from S and some r = (r1, r2, . . . , rN ) >
0.

Theorem 10.4 Vector s? ∈ S is an equilibrium if and only if

Hr(s?, z) ≤ Hr(s?, s?) (10.5)

for all z ∈ S.
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Proof Assume first that s? is an equilibrium, then inequality (10.1) holds for all
k and sk ∈ Sk. Adding the rk-multiples of these relations for k = 1, 2, . . . , N we
immediately have (10.5).

Assume next that (10.5) holds for all z ∈ S. Select any k and sk ∈ Sk, define
z = (s?

1, . . . , s?
k−1, sk, s?

k+1, . . . , s?
N ), and apply inequality (10.5). All but the k-th

terms cancel and the remaining term shows that inequality (10.1) holds. Hence s?

is an equilibrium.

Introduce function φ(s, z) = Hr(s, z) −Hr(s, s), then clearly s? ∈ S is an equi-
librium if and only if

φ(s?, z) ≤ 0 for all z ∈ S. (10.6)

Relation (10.6) is known as Fan’s inequality. It can be rewritten as a variational
inequality (see Section 10.2.9 later), or as a fixed point problem. We show here the
second approach. For all s ∈ S define

Φ(s) = {z|z ∈ S, φ(s, z) = max
t∈S

φ(s, t)}. (10.7)

Since φ(s, s) = 0 for all s ∈ S, relation (10.6) holds if and only if s? ∈ Φ(s?), that is
s? is a fixed-point of mapping Φ : S → 2S . Therefore any method to find fixed point
is applicable for computing equilibria.

The computation cost depends on the type and size of the fixed point problem
and also on the selected method.

Example 10.6 Consider again the problem of Example 10.4. In this case

f1(z1, s2) = z1s2 − 2z2
1 + 5 ,

f2(s1, z2) = s1z2 − 2z2
2 + z2 + 3 ,

so the aggregate function has the form with r1 = r2 = 1 :

Hr(s, z) = z1s2 − 2z2
1 + s1z2 − 2z2

2 + z2 + 8 .

Therefore
Hr(s, s) = 2s1s2 − 2s2

1 − 2s2
2 + s2 + 8 ,

and
φ(s, z) = z1s2 − 2z2

1 + s1z2 − 2z2
2 + z2 − 2s1s2 + 2s2

1 + 2s2
2 − s2 .

Notice that this function is strictly concave in z1 and z2, and is separable in these variables.
At the stationary points:

∂φ

∂z1
= s2 − 4z1 = 0

∂φ

∂z2
= s1 − 4z2 + 1 = 0

implying that at the optimum

z1 =
s2

4
and z2 =

s1 + 1

4
,

since both right hand sides are feasible. At the fixed point:

s1 =
s2

4
and s2 =

s1 + 1

4
,
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giving the unique solution:

s1 =
1

15
and s2 =

4

15
.

10.2.3. Solving the Kuhn-Tucker conditions

Assume that for all k,
Sk = {sk|gk(sk) ≥ 0} ,

where gk : Rnk → R
mk is a vector variable vector valued function which is contin-

uously differentiable in an open set Ok containing Sk. Assume furthermore that for
all k, the payoff function fk is continuously differentiable in sk on Ok with any fixed
s1, . . . , sk−1, sk+1, . . . , sN .

If s? = (s?
1, . . . , s?

N ) is an equilibrium, then for all k, s?
k is the optimal solution

of problem:
maximize fk(s?

1, . . . , s?
k−1, sk, s?

k+1, . . . , s?
N )

subject to gk(sk) ≥ 0.
(10.8)

By assuming that at sk the Kuhn-Tucker regularity condition is satisfied, the
solution has to satisfy the Kuhn-Tucker necessary condition:

uk ≥ 0

gk(sk) ≥ 0

∇kfk(s) + uT
k∇kgk(sk) = 0T

uT
k gk(sk) = 0 ,

(10.9)

where uk is an mk-element column vector, uT
k is its transpose, ∇kfk is the gradient

of fk (as a row vector) with respect to sk and ∇kgk is the Jacobian of function gk.

Theorem 10.5 If s? is an equilibrium, then there are vectors u?
k such that relations

(10.9) are satisfied.

Relations (10.9) for k = 1, 2, . . . , N give a (usually large) system of equations
and inequalities for the unknowns sk and uk (k = 1, 2, . . . , N). Any equilibrium (if
exists) has to be among the solutions. If in addition for all k, all components of
gk are concave, and fk is concave in sk, then the Kuhn-Tucker conditions are also
sufficient, and therefore all solutions of (10.9) are equilibria.

The computation cost in solving system (10.9) depends on its type and the
chosen method.

Example 10.7 Consider again the two-person game of the previous example. Clearly,

S1 = {s1|s1 ≥ 0, 1 − s1 ≥ 0},

S2 = {s2|s2 ≥ 0, 1 − s2 ≥ 0},

so we have

g1(s1) =

(

s1

1 − s1

)

and g2(s2) =

(

s2

1 − s2

)

.
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Simple differentiation shows that

∇1g1(s1) =

(

1

−1

)

, ∇2g2(s2) =

(

1

−1

)

,

∇1f1(s1, s2) = s2 − 4s1, ∇2f2(s1, s2) = s1 − 4s2 + 1,

therefore the Kuhn-Tucker conditions can be written as follows:

u
(1)
1 , u

(1)
2 ≥ 0

s1 ≥ 0

s1 ≤ 1

s2 − 4s1 + u
(1)
1 − u

(1)
2 = 0

u
(1)
1 s1 + u

(1)
2 (1 − s1) = 0

u
(2)
1 , u

(2)
2 ≥ 0

s2 ≥ 0

s2 ≤ 1

s1 − 4s2 + 1 + u
(2)
1 − u

(2)
2 = 0

u
(2)
1 s2 + u

(2)
2 (1 − s2) = 0 .

Notice that f1 is concave in s1, f2 is concave in s2, and all constraints are linear, there-
fore all solutions of this equality-inequality system are really equilibria. By systematically
examining the combination of cases

s1 = 0, 0 < s1 < 1, s1 = 1 ,

and
s2 = 0, 0 < s2 < 1, s2 = 1 ,

it is easy to see that there is a unique solution

u
(1)
1 = u

(2)
1 = u

(1)
2 = u

(2)
2 = 0, s1 =

1

15
, s2 =

4

15
.

By introducing slack and surplus variables the Kuhn-Tucker conditions can be
rewritten as a system of equations with some nonnegative variables. The nonnega-
tivity conditions can be formally eliminated by considering them as squares of some
new variables, so the result becomes a system of (usually) nonlinear equations with-
out additional constraints. There is a large set of numerical methods for solving such
systems.

10.2.4. Reduction to optimization problems

Assume that all conditions of the previous section hold. Consider the following op-
timization problem:

minimize
∑N

k=1 uT
k gk(sk)

subjective to uk ≥ 0

gk(sk) ≥ 0

∇kfk(s) + uT
k∇kgk(sk) = 0 .

(10.10)
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The two first constraints imply that the objective function is nonnegative, so is
the minimal value of it. Therefore system (10.9) has feasible solution if and only if
the optimal value of the objective function of problem (10.10) is zero, and in this
case any optimal solution satisfies relations (10.9).

Theorem 10.6 The N -person game has equilibrium only if the optimal value of

the objective function is zero. Then any equilibrium is optimal solution of problem

(10.10). If in addition all components of gk are concave and fk is concave in sk for

all k, then any optimal solution of problem (10.10) is equilibrium.

Hence the equilibrium problem of the N -person game has been reduced to finding
the optimal solutions of this (usually nonlinear) optimization problem. Any nonlinear
programming method can be used to solve the problem.

The computation cost in solving the optimization problem (10.10) depends on
its type and the chosen method. For example, if (10.10) is an LP, and solved by the
simplex method, then the maximum number of operations is exponential. However
in particular cases the procedure terminates with much less operations.

Example 10.8 In the case of the previous problem the optimization problem has the
following form:

minimize u
(1)
1 s1 + u

(1)
2 (1 − s1) + u

(2)
1 s2 + u

(2)
2 (1 − s2)

subject to u
(1)
1 , u

(2)
1 , u

(1)
2 , u

(2)
2 ≥ 0

s1 ≥ 0

s1 ≤ 1

s2 ≥ 0

s2 ≤ 1

s2 − 4s1 + u
(1)
1 − u

(1)
2 = 0

s1 − 4s2 + 1 + u
(2)
1 − u

(2)
2 = 0 .

Notice that the solution u
(1)
1 = u

(2)
1 = u

(1)
2 = u

(2)
2 = 0, s1 = 1/15 and s2 = 4/15 is feasible

with zero objective function value, so it is also optimal. Hence it is a solution of system
(10.9) and consequently an equilibrium.

Mixed extension of finite games We have seen earlier that a finite game does
not necessary have equilibrium. Even if it does, in the case of repeating the game
many times the players wish to introduce some randomness into their actions in order
to make the other players confused and to seek an equilibrium in the stochastic sense.
This idea can be modeled by introducing probability distributions as the strategies
of the players and the expected payoff values as their new payoff functions.

Keeping the notation of Section 10.1. assume that we have N players, the finite

strategy set of player Pk is Sk = {s(1)
k , . . . , s

(nk)
k }. In the mixed extension of this

finite game each player selects a discrete probability distribution on its strategy set
and in each realization of the game an element of Sk is chosen according to the
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selected distribution. Hence the new strategy set of player Pk is

Sk = {xk|xk = (x
(1)
k , . . . , x

(nk)
k ),

nk
∑

i=1

x
(i)
k = 1, x

(i)
k ≥ 0 for all i}, (10.11)

which is the set of all nk-element probability vectors. The new payoff function of
this player is the expected value:

fk(x1, . . . , xN ) =

n1
∑

i1=1

n2
∑

i2=1

. . .

nN
∑

iN =1

fk(s
(i1)
1 , s

(i2)
2 , . . . , s

(iN )
N )x

(i1)
1 x

(i2)
2 . . . x

(iN )
N . (10.12)

Notice that the original “pure” strategies s
(i)
k can be obtained by selecting xk as the

k-th basis vector. This is a continuous game and as a consequence of Theorem 10.3
it has at least one equilibrium. Hence if a finite game is without an equilibrium, its
mixed extension has always at least one equilibrium, which can be obtained by using
the methods outlined in the previous sections.

Example 10.9 Consider the two-person case in which N = 2, and as in section 10.1
introduce matrices A(1) and A(2) with (i, j) elements f1(s

(i)
1 , s

(j)
2 ) and f2(s

(i)
1 , s

(j)
2 ). In this

special case

fk(x1, x2) =

n1
∑

i=1

n2
∑

j=1

a
(k)
ij x

(1)
i x

(2)
j = x

T
1 A

(k)
x2 . (10.13)

The constraints of Sk can be rewritten as:

x
(i)
k ≥ 0 (i = 1, 2, . . . , nk) ,

−1 +

nk
∑

i=1

x
(i)
k ≥ 0 ,

1 −
nk
∑

i=1

x
(i)
k ≥ 0 .

so we may select

gk(xk) =















x
(1)
k

...

x
(nk)
k

∑nk

i=1
x

(i)
k − 1

−
∑nk

i=1
x

(i)
k + 1















. (10.14)

The optimization problem (10.10) now reduces to the following:

minimize
∑2

k=1
[
∑nk

i=1
u

(i)
k x

(i)
k + u

(nk+1)
k (

∑nk

j=1
x

(j)
k − 1) + u

(nk+2)
k (−

∑nk

j=1
x

(j)
k + 1)]

subject to u
(i)
k ≥ 0 (1 ≤ i ≤ nk + 2)

x
(i)
k ≥ 0 (1 ≤ i ≤ nk)

1T xk = 1

xT
2 (A(1))T + vT

1 + (u
(n1+1)
1 − u

(n1+2)
1 )1T

1 = 0T
1

xT
1 (A(2)) + vT

2 + (u
(n2+1)
2 − u

(n2+2)
2 )1T

2 = 0T
2 ,

(10.15)
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where vT
k = (u

(1)
k , . . . .u

(nk)
k ), 1T

k = (1(1), . . . , 1(nk)) and 0T
k = (0(1), . . . , 0(nk)), k = 1, 2 .

Notice this is a quadratic optimization problem. Computation cost depends on the
selected method. Observe that the problem is usually nonconvex, so there is the
possibility of stopping at a local optimum.

Bimatrix games. Mixed extensions of two-person finite games are called bi-

matrix games. They were already examined in Example 10.9. For notational con-
venience introduce the simplifying notation:

A = A(1), B = A(2), x = x1, y = x2, m = n1 and n = n2 .

We will show that problem (10.15) can be rewritten as quadratic programming
problem with linear constraints.

Consider the objective function first. Let

α = u
(m+2)
1 − u

(m+1)
1 , and β = u

(n+2)
2 − u

(n+1)
2 ,

then the objective function can be rewritten as follows:

vT
1 x + vT

2 y− α(1T
mx− 1)− β(1T

n y − 1). (10.16)

The last two constraints also simplify:

yT AT + vT
1 − α1T

m = 0T
m ,

xT B + vT
2 − β1T

n = 0T
n ,

implying that
vT

1 = α1T
m − yT AT and vT

2 = β1T
n − xT B , (10.17)

so we may rewrite the objective function again:

(α1T
m − yT AT )x + (β1T

n − xT B)y− α(1T
mx− 1)− β(1T

n y− 1)

= α + β − xT (A + B)y ,

since
1T

mx = 1T
n y = 1 .

Hence we have the following quadratic programming problem:

maximize xT (A + B)y− α− β
subject to x ≥ 0

y ≥ 0

1T
mx = 1

1T
n y = 1

Ay ≤ α1m

BT x ≤ β1n ,

(10.18)

where the last two conditions are obtained from (10.17) and the nonnegativity of
vectors v1, v2.
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Theorem 10.7 Vectors x? and y? are equilibria of the bimatrix game if and only

if with some α? and β?, (x?, y?, α?, β?) is optimal solution of problem (10.18). The

optimal value of the objective function is zero.

This is a quadratic programming problem. Computation cost depends on the
selected method. Since it is usually nonconvex, the algorithm might terminate at
local optimum. We know that at the global optimum the objective function must be
zero, which can be used for optimality check.

Example 10.10 Select

A =

(

2 −1
−1 1

)

and

B =

(

1 −1
−1 2

)

.

Then

A + B =

(

3 −2
−2 3

)

,

so problem (10.18) has the form:

maximize 3x1y1 − 2x1y2 − 2x2y1 + 3x2y2 − α − β

subject to x1, x2, y1, y2 ≥ 0

x1 + x2 = 1

y1 + y2 = 1

2y1 − y2 ≤ α

−y1 + y2 ≤ α

x1 − x2 ≤ β

−x1 + 2x2 ≤ β ,

where x = (x1, x2)T and y = (y1, y2)T . We also know from Theorem 10.7 that the optimal
objective function value is zero, therefore any feasible solution with zero objective function
value is necessarily optimal. It is easy to see that the solutions

x =

(

1

0

)

, y =

(

0

1

)

, α = 2, β = 1 ,

x =

(

0

1

)

, y =

(

1

0

)

, α = 1, β = 2 ,

x =

(

0.6

0.4

)

, y =

(

0.4

0.6

)

, α = 0.2, β = 0.2

are all optimal, so they provide equilibria.

One might apply relations (10.9) to find equilibria by solving the equality-
inequality system instead of solving an optimization problem. In the case of bimatrix
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games problem (10.9) simplifies as

xT Ay = α
xT By = β

Ay ≤ α1m

BT x ≤ β1n

x ≥ 0m

y ≥ 0n

1T
mx = 1T

n y = 1 ,

(10.19)

which can be proved along the lines of the derivation of the quadratic optimization
problem.

The computation cost of the solution of system (10.19) depends on the particular
method being selected.

Example 10.11 Consider again the bimatrix game of the previous example. Substitute the
first and second constraints α = xT Ay and β = xT By into the third and fourth condition
to have

2y1 − y2 ≤ 2x1y1 − x1y2 − x2y1 + x2y2

−y1 + y2 ≤ 2x1y1 − x1y2 − x2y1 + x2y2

x1 − x2 ≤ x1y1 − x1y2 − x2y1 + 2x2y2

−x1 + 2x2 ≤ x1y1 − x1y2 − x2y1 + 2x2y2

x1, x2, y1, y2 ≥ 0

x1 + x2 = y1 + y2 = 1 .

It is easy to see that the solutions given in the previous example solve this system, so they
are equilibria.

We can also rewrite the equilibrium problem of bimatrix games as an equality-
inequality system with mixed variables. Assume first that all elements of A and B

are between 0 and 1. This condition is not really restrictive, since by using linear
transformations

A = a1A + b11 and B = a2B + b21 ,

where a1, a2 > 0, and 1 is the matrix all elements of which equal 1, the equilibria
remain the same and all matrix elements can be transformed into interval [0, 1].

Theorem 10.8 Vectors x, y are an equilibrium if and only if there are real num-

bers α, β and zero-one vectors u, and v such that

0 ≤ α1m −Ay ≤ 1m − u ≤ 1m − x

0 ≤ β1n −BT x ≤ 1n − v ≤ 1n − y

x ≥ 0m

y ≥ 0n

1T
mx = 1T

n y = 1 ,

(10.20)

where 1 denotes the vector with all unit elements.
Proof Assume first that x, y is an equilibrium, then with some α and β, (10.19) is
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satisfied. Define

ui =

{

1, if xi > 0 ,
0, if xi = 0 ,

and vj =

{

1, if yj > 0 ,
0, if yj = 0 .

Since all elements of A and B are between 0 and 1, the values α = xT Ay and
β = xT By are also between 0 and 1. Notice that

0 = xT (α1m −Ay) = yT (β1n −BT x) ,

which implies that (10.20) holds.
Assume next that (10.20) is satisfied. Then

0 ≤ x ≤ u ≤ 1m and 0 ≤ y ≤ v ≤ 1n .

If ui = 1, then α− eT
i Ay = 0, (where ei is the i-th basis vector), and if ui = 0, then

xi = 0. Therefore

xT (α1m −Ay) = 0 ,

implying that α = xT Ay. We can similarly show that β = xT By. Thus (10.19) is
satisfied, so, x, y is an equilibrium.

The computation cost of the solution of system (10.20) depends on the particular
method being seleced.

Example 10.12 In the case of the bimatrix game introduced earlier in Example 10.10 we
have the following:

0 ≤ α − 2y1 + y2 ≤ 1 − u1 ≤ 1 − x1

0 ≤ α + y1 − y2 ≤ 1 − u2 ≤ 1 − x2

0 ≤ β − x1 + x2 ≤ 1 − v1 ≤ 1 − y1

0 ≤ β + x1 − 2x2 ≤ 1 − v2 ≤ 1 − y2

x1 + x2 = y1 + y2 = 1

x1, x2, y1, y2 ≥ 0
u1, u2, v1, v2 ∈ {0, 1} .

Notice that all three solutions given in Example 10.10 satisfy these relations with

u = (1, 0), v = (0, 1)

u = (0, 1), v = (1, 0)

and

u = (1, 1), v = (1, 1) ,

respectively.
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Matrix games. In the special case of B = −A, bimatrix games are called
matrix games and they are represented by matrix A. Sometimes we refer to the
game as matrix A game. Since A + B = 0, the quadratic optimization problem
(10.18) becomes linear:

minimize α + β
subject to x ≥ 0

y ≥ 0

1mx = 1
1ny = 1
Ay ≤ α1m

AT x ≥ −β1n .

(10.21)

From this formulation we see that the set of the equilibrium strategies is a convex
polyhedron. Notice that variables (x, β) and (y, α) can be separated, so we have the
following result.

Theorem 10.9 Vectors x? and y? give an equilibrium of the matrix game if and

only if with some α? and β?, (x?, β?) and (y?, α?) are optimal solutions of the linear

programming problems:

minimize α minimize β
subject to y ≥ 0n subject to x ≥ 0m

1T
n y = 1 1T

mx = 1
Ay ≤ α1m AT x ≥ −β1n .

(10.22)

Notice that at the optimum, α + β = 0. The optimal α value is called the value of

the matrix game.

Solving problem (10.22) requires exponential number of operations if the simplex
method is chosen. With polynomial algorithm (such as the interior point method)
the number of operations is only polynomial.

Example 10.13 Consider the matrix game with matrix:

A =

(

2 1 0
2 0 3

−1 3 3

)

.

In this case problems (10.22) have the form:

minimize α and minimize β
subject to y1, y2, y3 ≥ 0 subject to x1, x2, x3 ≥ 0

y1 + y2 + y3 = 1 x1 + x2 + x3 = 1
2y1 + y2 − α ≤ 0 2x1 + 2x2 − x3 + β ≥ 0
2y1 + 3y3 − α ≤ 0 x1 + 3x3 + β ≥ 0
−y1 + 3y2 + 3y3 − α ≤ 0 3x2 + 3x3 + β ≥ 0 .

The application of the simplex method shows that the optimal solutions are α = 9/7,
y = (3/7, 3/7, 1/7)T , β = −9/7, and x = (4/7, 4/21, 5/21)T .

We can also obtain the equilibrium by finding feasible solutions of a certain set
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of linear constraints. Since at the optimum of problem (10.21), α + β = 0, vectors
x, y and scalers α and β are optimal solutions if and only if

x, y ≥ 0

1T
mx = 1

1T
n y = 1
Ay ≤ α1m

AT x ≥ α1n .

(10.23)

The first phase of the simplex method has to be used to solve system (10.23),
where the number of operations might be experimental. However in most practical
examples much less operations are needed.

Example 10.14 Consider again the matrix game of the previous example. In this case
system (10.23) has the following form:

x1, x2, x3, y1, y2, y3 ≥ 0

x1 + x2 + x3 = y1 + y2 + y3 = 1

2y1 + y2 ≤ α

2y1 + 3y3 ≤ α

−y1 + 3y2 + 3y3 ≤ α

2x1 + 2x2 − x3 ≥ α

x1 + 3x3 ≥ α

3x2 + 3x3 ≥ α .

It is easy to see that α = 9/7, x = (4/7, 4/21, 5/21)T , y = (3/7, 3/7, 1/7)T satisfy these
relations, so x, y is an equilibrium.

10.2.5. Method of fictitious play

Consider now a matrix game with matrix A. The main idea of this method is that
at each step both players determine their best pure strategy choices against the
average strategies of the other player of all previous steps. Formally the method can
be described as follows.

Let x1 be the initial (mixed) strategy of player P1. Select y1 = ej1
(the j1st

basis vector) such that

xT
1 Aej1

= min
j
{xT

1 Aej} . (10.24)

In any further step k ≥ 2, let

yk−1 =
1

k − 1
((k − 2)yk−2 + yk−1) , (10.25)

and select xk = eik
so that

eT
ik

Ayk−1 = max
i
{eT

i Ayk−1} . (10.26)
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Let then

xk =
1

k
((k − 1)xk−1 + xk) , (10.27)

and select yk = ejk
so that

xT
k Aejk

= min
j
{xT

k Aej} . (10.28)

By repeating the general step for k = 2, 3, . . . two sequences are generated: {xk},
and {yk}. We have the following result:

Theorem 10.10 Any cluster point of these sequences is an equilibrium of the

matrix game. Since all xk and yk are probability vectors, they are bounded. Therefore

there is at least one cluster point.

Assume, matrix A is m × n. In (10.24) we need mn multiplications. In (10.25)
and (10.27) m +n multiplications and divisions. In (10.26) and (10.28) mn multipli-
cations. If we make L iteration steps, then the total number of multiplications and
divisions is:

mn + L[2(m + n) + 2mn] = 	(Lmn) .

The formal algorithm is as follows:

Matrix-Equilibrium(A, xT
1 )

1 k ← 1
2 define j1 such that xT

1 Aej1
= minj{xT

1 Aej}
3 y1 ← ej1

4 k ← k + 1
5 yk−1 ← 1

k−1 ((k − 2)yk−2 + yk−1)

6 define ik such that eT
ik

Ayk−1 = maxi{eT
i Ayk−1}

7 xk ← eik

8 xk ← 1
k ((k − 1)xk−1 + xk)

9 define jk such that xT
k Aejk

= minj{xT
k Aej}

10 yk ← ejk

11 if ||xk − xk−1|| < ε and ||yk−1 − xk−2|| < ε
12 then

(

xk, yk−1

)

is equilibrium
13 else go back to 4

Here ε > 0 is a user selected error tolerance.

Example 10.15 We applied the above method for the matrix game of the previous
example and started the procedure with x1 = (1, 0, 0)T . After 100 steps we obtained
x101 = (0.446, 0.287, 0.267)T and y101 = (0.386, 0.436, 0.178)T . Comparing it to the true
values of the equilibrium strategies we see that the error is below 0.126, showing the very
slow convergence of the method.
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10.2.6. Symmetric matrix games

A matrix game with skew-symmetric matrix is called symmetric. In this case
AT = −A and the two linear programming problems are identical. Therefore at
the optimum α = β = 0, and the equilibrium strategies of the two players are the
same. Hence we have the following result:

Theorem 10.11 A vector x? is equilibrium of the symmetric matrix game if and

only if
x ≥ 0

1T x = 1
Ax ≤ 0 .

(10.29)

Solving system (10.29) the first phase of the simplex method is needed, the
number of operations is exponential in the worst case but in practical case usually
much less.

Example 10.16 Consider the symmetric matrix game with matrix A =

(

0 1
−1 0

)

. In

this case relations (10.29) simplify as follows:

x1, x2 ≥ 0

x1 + x2 = 1

x2 ≤ 0

−x1 ≤ 0 .

Clearly the only solution is x1 = 1 and x2 = 0, that is the first pure strategy.

We will see in the next subsection that linear programming problems are equiva-
lent to symmetric matrix games so any method for solving such games can be applied
to solve linear programming problems, so they serve as alternative methodology to
the simplex method. As we will see next, symmetry is not a strong assumption, since
any matrix game is equivalent to a symmetric matrix game.

Consider therefore a matrix game with matrix A, and construct the skew-
symmetric matrix

P =





0m×m A −1m

−AT 0n×n 1n

1T
m −1T

n 0



 ,

where all components of vector 1 equal 1. Matrix games A and P are equivalent in the
following sense. Assume that A > 0, which is not a restriction, since by adding the
same constant to all element of A they become positive without changing equilibria.

Theorem 10.12

1. If z =





u

v

λ



 is an equilibrium strategy of matrix game P then with a =

(1− λ)/2, x = (1/a)u and y = (1/a)v is an equilibrium of matrix game A with

value v = λ/a;
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2. If x, y is an equilibrium of matrix game A and v is the value of the game, then

z =
1

2 + v





x

y

v





is equilibrium strategy of matrix game P.

Proof Assume first that z is an equilibrium strategy of game P, then u ≥ 0, v ≥ 0,
Pz ≤ 0, so

Av− λ1m ≤ 0

−AT u + λ1n ≤ 0

1T
mu− 1T

n v ≤ 0 .
(10.30)

First we show that 0 < λ < 1, that is a 6= 0. If λ = 1, then (since z is a probability
vector) u = 0 and v = 0, contradicting the second inequality of (10.30). If λ = 0,
then 1T

mu + 1T
n v = 1, and by the third inequality of (10.30), v must have at least

one positive component which makes the first inequality impossible.
Next we show that 1T u = 1T v. From (10.30) we have

uT Av− λuT 1m ≤ 0 ,

−vT AT u + λuT 1n ≤ 0

and by adding these inequalities we see that

vT 1n − uT 1m ≤ 0 ,

and combining this relation with the third inequality of (10.30) we see that 1T
mu−

1T
n v = 0.

Select a = (1− λ)/2 6= 0, then 1T
mu = 1T

n v = a, so both x = u/a, and y = v/a
are probability vectors, furthermore from (10.30),

AT x = 1
a AT u ≥ λ

a 1n ,
Ay = 1

a Av ≤ λ
a 1m .

So by selecting α = λ/a and β = −λ/a, x and y are feasible solutions of the
pair (10.22) of linear programming problems with α + β = 0, therefore x, y is an
equilibrium of matrix game A. Part 2. can be proved in a similar way, the details
are not given here.

10.2.7. Linear programming and matrix games

In this section we will show that linear programming problems can be solved by
finding the equilibrium strategies of symmetric matrix games and hence, any method
for finding the equilibria of symmetric matrix games can be applied instead of the
simplex method.
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Consider the primal-dual linear programming problem pair:

maximize cT x and minimize bT y

subject to x ≥ 0 subject to y ≥ 0

Ax ≤ b AT y ≥ c .
(10.31)

Construct the skew-symmetric matrix:

P =





0 A −b

−AT 0 c

bT −cT 0



 .

Theorem 10.13 Assume z =





u

v

λ



 is an equilibrium strategy of the symmetric

matrix game P with λ > 0. Then

x =
1

λ
v and y =

1

λ
u

are optimal solutions of the primal and dual problems, respectively.

Proof If z is an equilibrium strategy, then Pz ≤ 0, that is,

Av− λb ≤ 0

−AT u + λc ≤ 0

bT u− cT v ≤ 0 .
(10.32)

Since z ≥ 0 and λ > 0, both vectors x = (1/λ)v, and y = (1/λ)u are nonnegative,
and by dividing the first two relations of (10.32) by λ,

Ax ≤ b and AT y ≥ c ,

showing that x and y are feasible for the primal and dual, respectively. From the
last condition of (10.32) we have

bT y ≤ cT x .

However
bT y ≥ (xT AT )y = xT (AT y) ≥ xT c = cT x ,

consequently, bT y = cT x, showing that the primal and dual objective functions are
equal. The duality theorem implies the optimality of x and y.

Example 10.17 Consider the linear programming problem:

maximize x1 + 2x2

subject to x1 ≥ 0

−x1 + x2 ≥ 1

5x1 + 7x2 ≤ 25 .
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First we have to rewrite the problem as a primal problem. Introduce the new variables:

x+
2 =

{

x2, if x2 ≥ 0 ,
0 otherwise ,

x−

2 =

{

−x2, if x2 < 0 ,
0 otherwise .

and multiply the ≥-type constraint by −1. Then the problem becomes the following:

maximize x1 + 2x+
2 − 2x−

2

subject to x1, x+
2 , x−

2 ≥ 0

x1 − x+
2 + x−

2 ≤ −1

5x1 + 7x+
2 − 7x−

2 ≤ 25 .

Hence

A =

(

1 −1 1
5 7 −7

)

, b =

(

−1

25

)

, c
T = (1, 2, −2),

and so matrix P becomes:

P =





































0 0
... 1 −1 1

... 1

0 0
... 5 7 −7

... −25
· · · · · · · · · · · · · · · · · · · · · · · ·

−1 −5
... 0 0 0

... 1

1 −7
... 0 0 0

... 2

−1 7
... 0 0 0

... −2
· · · · · · · · · · · · · · · · · · · · · · · ·

−1 25
... −1 −2 2

... 0





































.

10.2.8. The method of von Neumann

The fictitious play method is an iteration algorithm in which at each step the players
adjust their strategies based on the opponent’s strategies. This method can therefore
be considered as the realization of a discrete system where the strategy selections of
the players are the state variables. For symmetric matrix games John von Neumann
introduced a continuous systems approach when the players continuously adjust their
strategies. This method can be applied to general matrix games, since–as we have
seen earlier–any matrix game is equivalent to a symmetric matrix game. The method
can also be used to solve linear programming problems as we have seen earlier that
any primal-dual pair can be reduced to the solution of a symmetric matrix game.

Let now P be a skew-symmetric n × n matrix. The strategy of player P2, y(t)
is considered as the function of time t ≥ 0. Before formulating the dynamism of the
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system, introduce the following notation:

ui : R
n → R, ui(y(t)) = eT

i Py(t) (i = 1, 2, . . . , n) ,
φ : R → R, φ(ui) = max{0, ui} ,
Φ : R

n → R, Φ(y(t)) =
∑n

i=1 φ(ui(y(t))) .
(10.33)

For arbitrary probability vector y0 solve the following nonlinear initial-value prob-
lem:

y′
j(t) = φ(uj(y(t)))− Φ(y(t))yj(t), yj(0) = yj0 (1 ≤ j ≤ n) . (10.34)

Since the right-hand side is continuous, there is at least one solution. The right hand
side of the equation can be interpreted as follows. Assume that φ(uj(y(t))) > 0. If
player P2 selects strategy y(t), then player P1 is able to obtain a positive payoff
by choosing the pure strategy ej , which results in a negative payoff for player P2.
However if player P2 increases yj(t) to one by choosing the same strategy ej its
payoff eT

j Pej becomes zero, so it increases. Hence it is the interest of player P2 to
increase yj(t). This is exactly what the first term represents. The second term is
needed to ensure that y(t) remains a probability vector for all t ≥ 0.

The computation of the right hand side of equations (10.34) for all t requires
n2 +n multiplications. The total computation cost depends on the length of solution
interval, on the selected step size, and on the choice of the differential equation
solver.

Theorem 10.14 Assume that t1, t2, . . . is a positive strictly increasing sequence

converging to ∞, then any cluster point of the sequence {y(tk)} is equilibrium strat-

egy, furthermore there is a constant c such that

eT
i Py(tk) ≤

√
n

c + tk
(i = 1, 2, . . . , n) . (10.35)

Proof First we have to show that y(t) is a probability vector for all t ≥ 0. Assume
that with some j and t1 > 0, yj(t1) < 0. Define

t0 = sup{t|0 < t < t1, yj(t) ≥ 0} .

Since yj(t) is continuous and yj(0) ≥ 0, clearly yj(t0) = 0, and for all τ ∈ (t0, t1),
yj(τ) < 0. Then for all τ ∈ (t0, t1],

y′
j(τ) = φ(uj(y(τ)))− Φ(y(τ))yj(τ) ≥ 0 ,

and the Lagrange mean-value theorem implies that with some τ ∈ (t0, t1),

yj(t1) = yj(t0) + y′
j(τ)(t1 − t0) ≥ 0 ,

which is a contradiction. Hence yj(t) is nonnegative. Next we show that
∑n

j=1 yj(t) =

1 for all t. Let f(t) = 1−∑n
j=1 yj(t), then

f ′(t) = −
n
∑

j=1

y′
j(t) = −

n
∑

j=1

φ(uj(y(t)))+Φ(y(t))(
n
∑

j=1

yj(t)) = −Φ(y(t))(1−
n
∑

j=1

yj(t)) ,
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so f(t) satisfies the homogeneous equation

f ′(t) = −Φ(y(t))f(t)

with the initial condition f(0) = 1 −
∑n

j=1 yj0 = 0. Hence for all t ≥ 0, f(t) = 0,
showing that y(t) is a probability vector.

Assume that for some t, φ(ui(y(t))) > 0. Then

d

dt
φ(ui(y(t))) =

n
∑

j=1

pijy′
j(t) =

n
∑

j=1

pij [φ(uj(y(t)))− Φ(y(t))yj(t)]

=

n
∑

j=1

pijφ(uj(y(t)))− Φ(y(t))φ(ui(y(t))) .

(10.36)

By multiplying both sides by φ(ui(y(t))) and adding the resulted equations for
i = 1, 2, . . . , n we have:

n
∑

i=1

φ(ui(y(t)))
d

dt
φ(ui(y(t))) =

n
∑

i=1

n
∑

j=1

pijφ(ui(y(t)))φ(uj(y(t)))

−Φ(y(t))(

n
∑

i=1

φ2(ui(y(t)))) .

(10.37)

The first term is zero, since P is skew-symmetric. Notice that this equation re-
mains valid even as φ(ui(y(t))) = 0 except the break-points (where the derivative of
φ(ui(y(t))) does not exist) since (10.36) remains true.

Assume next that with a positive t, Φ(y(t)) = 0. Then for all i, φ(ui(y(t))) = 0.
Since equation (10.37) can be rewritten as

1

2

d

dt
Ψ(y(t)) = −Φ(y(t))Ψ(y(t)) (10.38)

with

Ψ : Rn → R and Ψ(y(t)) =

n
∑

i=1

φ2(ui(y(t))) ,

we see that Ψ(y(t)) satisfies a homogeneous equation with zero initial solution at t,
so the solution remains zero for all τ ≥ t. Therefore φ(ui(y(τ))) = 0 showing that
Py(τ) ≤ 0, that is, y(τ) is equilibrium strategy.

If Φ(y(t)) > 0 for all t ≥ 0, then Ψ(y(t)) > 0, and clearly

1

2

d

dt
Ψ(y(t)) ≤ −

√

Ψ(y(t))Ψ(y(t)) ,

that is
1

2

d

dt
Ψ(y(t))(Ψ(y(t)))− 3

2 ≤ −1 .
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Integrate both sides in interval [0, t] to have

−Ψ(y(t))−(1/2) + c ≤ −t ,

with c = (Ψ(y(0)))−(1/2), which implies that

(Ψ(y(t)))1/2 ≤ 1

c + t
. (10.39)

By using the Cauchy–Schwartz inequality we get

eT
i Py(t) = ui(y(t)) ≤ φ(ui(y(t))) ≤ Φ(y(t)) ≤

√

nΨ(y(t)) ≤
√

n

c + t
, (10.40)

which is valid even at the break points because of the continuity of functions ui. And
finally, take a sequence {y(tk)} with tk increasingly converging to ∞. The sequence
is bounded (being probability vectors), so there is at least one cluster point y?. From
(10.40), by letting tk →∞ we have that Py? ≤ 0 showing that y? is an equilibrium
strategy.

Example 10.18 Consider the matrix game with matrix

A =

(

2 1 0
2 0 3

−1 3 3

)

,

which was the subject of our earlier Example 10.13 In order to apply the method of von
Neumann we have to find first an equivalent symmetric matrix game. The application of
the method given in Theorem 10.12. requires that the matrix has to be positive. Without
changing the equilibria we can add 2 to all matrix elements to have

Anew =

(

4 3 2
4 2 5
1 5 5

)

,

and by using the method we get the skew-symmetric matrix

P =











































0 0 0
... 4 3 2

... −1

0 0 0
... 4 2 5

... −1

0 0 0
... 1 5 5

... −1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

−4 −4 −1
... 0 0 0

... 1

−3 −2 −5
... 0 0 0

... 1

−2 −5 −5
... 0 0 0

... 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 1 1
... −1 −1 −1

... 0











































.
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The differential equations (10.34) were solved by using the 4th order Runge–Kutta method
in the interval [0, 100] with the step size h = 0.01 and initial vector y(0) = (1, 0, . . . , 0)T .
From y(100) we get the approximations

x ≈ (0.563619, 0.232359, 0.241988) ,

y ≈ (0.485258, 0.361633, 0.115144)

of the equilibrium strategies of the original game. Comparing these values to the exact
values:

x =
(

4

7
,

4

21
,

5

21

)

and y =
(

3

7
,

3

7
,

1

7

)

we see that the maximum error is about 0.067.

10.2.9. Diagonally strictly concave games

Consider an N -person continuous game and assume that all conditions presented at
the beginning of Subsection 10.2.3 are satisfied. In addition, assume that for all k, Sk

is bounded, all components of gk are concave and fk is concave in sk with any fixed
s1, . . . , sk−1, sk+1, . . . , sN . Under these conditions there is at least one equilibrium
(Theorem 10.3). The uniqueness of the equilibrium is not true in general, even if all
fk are strictly concave in sk. Such an example is shown next.

Example 10.19 Consider a two-person game with S1 = S2 = [0, 1] and f1(s1, s2) =
f2(s1, s2) = 1 − (s1 − s2)2. Clearly both payoff functions are strictly concave and there are
infinitely many equilibria: s?

1 = s?
2 ∈ [0, 1].

Select an arbitrary nonnegative vector r ∈ R
N and define function

h : RM → R
M , h(s, r) =











r1∇1f1(s)T

r2∇2f2(s)T

...
rN∇N fN (s)T











, (10.41)

where M =
∑N

k=1 nk, and ∇kfk is the gradient (as a row vector) of fk with respect
to sk. The game is said to be diagonally strictly concave if for all s(1) 6= s(2),
s(1), s(2) ∈ S and for some r ≥ 0,

(s(1) − s(2))T (h(s(1), r)− h(s(2), r)) < 0. (10.42)

Theorem 10.15 Under the above conditions the game has exactly one equilibrium.

Proof The existence of the equilibrium follows from Theorem 10.3. In proving
uniqueness assume that s(1) and s(2) are both equilibria, and both satisfy relations
(10.9). Therefore for l = 1, 2,

u
(l)
k

T
gk(s

(l)
k ) = 0

∇kfk(s(l)) + u
(l)T

k ∇kgk(s
(l)
k ) = 0T ,
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and the second equation can be rewritten as

∇kfk(s(l)) +

mk
∑

j=1

u
(l)
kj∇kgkj(s

(l)
k ) = 0 , (10.43)

where u
(l)
kj and gkj are the jth components of u

(l)
k and gk, respectively. Multiplying

(10.43) by (rk(s
(2)
k − s

(1)
k )T ) for l = 1 and by rk(s

(1)
k − s

(2)
k )T for l = 2 and adding

the resulted equalities for k = 1, 2, . . . , N we have

0 = {(s(2) − s(1))T h(s(1), r) + (s(1) − s(2))T h(s(2), r)}

+

N
∑

k=1

mk
∑

j=1

rk[u
(1)
kj (s

(2)
k − s

(1)
k )T∇kgkj(s

(1)
k ) + u

(2)
kj (s

(1)
k − s

(2)
k )T∇kgkj(s

(2)
k )] .

(10.44)

Notice that the sum of the first two terms is positive by the diagonally strict con-
cavity of the game, the concavity of the components of gk implies that

(s
(2)
k − s

(1)
k )T∇kgkj(s

(1)
k ) ≥ gkj(s

(2)
k )− gkj(s

(1)
k )

and
(s

(1)
k − s

(2)
k )T∇kgkj(s

(2)
k ) ≥ gkj(s

(1)
k )− gkj(s

(2)
k ) .

Therefore from (10.44) we have

0 >
N
∑

k=1

mk
∑

j=1

rk[u
(1)
kj (gkj(s

(2)
k )− gkj(s

(1)
k )) + u

(2)
kj (gkj(s

(1)
k )− gkj(s

(2)
k ))]

=

N
∑

k=1

mk
∑

j=1

rk[u
(1)
kj gkj(s

(2)
k ) + u

(2)
kj gkj(s

(1)
k )] ≥ 0 ,

where we used the fact that for all k and l,

0 = u
(l)
k

T
gk(s

(l)
k ) =

mk
∑

j=1

u
(l)
kj gkj(s

(l)
k ) .

This is an obvious contradiction, which completes the proof.

Checking for uniqueness of equilibrium. In practical cases the following
result is very useful in checking diagonally strict concavity of N -person games.

Theorem 10.16 Assume S is convex, fk is twice continuously differentiable for

all k, and J(s, r) + J(s, r)T is negative definite with some r ≥ 0, where J(s, r) is the

Jacobian of h(s, r). Then the game is diagonally strictly concave.
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Proof Let s(1) 6= s(2), s(1), s(2) ∈ S. Then for all α ∈ [0, 1], s(α) = αs(1) + (1 −
α)s(2) ∈ S and

d

dα
h(s(α), r) = J(s(α), r)(s(1) − s(2)) .

Integrate both side in [0, 1] to have

h(s(1), r)− h(s(2), r) =

∫ 1

0

J(s(α), r)(s(1) − s(2))dα ,

and by premultiplying both sides by (s(1) − s(2))T we see that

(s(1) − s(2))T (h(s(1), r)− h(s(2), r)) =

∫ 1

0

(s(1) − s(2))T J(s(α), r)(s(1) − s(2))dα

=
1

2

∫ 1

0

(s(1) − s(2))T (J(s(α), r) + J(s(α), r)T )(s(1) − s(2))dα < 0 ,

completing the proof.

Example 10.20 Consider a simple two-person game with strategy sets S1 = S2 = [0, 1],
and payoff functions

f1(s1, s2) = −s2
1 + s1 − s1s2

and
f2(s1, s2) = −s2

2 + s2 − s1s2 .

Clearly all conditions, except diagonally strict concavity, are satisfied. We will use Theorem
10.16 to show this additional property. In this case

∇1f1(s1, s2) = −2s1 + 1 − s2, ∇2f2(s1, s2) = −2s2 + 1 − s1 ,

so

h(s, r) =

(

r1(−2s1 + 1 − s2)

r2(−2s2 + 1 − s1

)

with Jacobian

J(s, r) =

(

−2r1 −r1

−r2 −2r2

)

.

We will show that

J(s, r) + J(s, r)T =

(

−4r1 −r1 − r2

−r1 − r2 −4r2

)

is negative definite with some r ≥ 0. For example, select r1 = r2 = 1, then this matrix
becomes

(

−4 −2
−2 −4

)

with characteristic polynomial

φ(λ) = det

(

−4 − λ −2
−2 −4 − λ

)

= λ2 + 8λ + 12 ,

having negative eigenvalues λ1 = −2, λ2 = −6.
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Iterative computation of equilibrium. We have see earlier in Theorem 10.4
that s? ∈ S is an equilibrium if and only if

Hr(s?, s?) ≥ Hr(s?, s) (10.45)

for all s ∈ S, where Hr is the aggregation function (10.4). In the following analysis
we assume that the N -person game satisfies all conditions presented at the beginning
of Subsection 10.2.9 and (10.42) holds with some positive r.

We first show the equivalence of (10.45) and a variational inequality.

Theorem 10.17 A vector s? ∈ S satisfies (10.45) if and only if

h(s?, r)T (s− s?) ≤ 0 (10.46)

for all s ∈ S, where h(s, r) is defined in (10.41).

Proof Assume s? satisfies (10.45). Then Hr(s?, s) as function of s obtains maximum
at s = s?, therefore

∇sHr(s?, s?)(s− s?) ≤ 0

for all s ∈ S, and since ∇sHr(s?, s?) is h(s?, r), we proved that s? satisfies (10.46).
Assume next that s? satisfies (10.46). By the concavity of Hr(s?, s) in s and the

diagonally strict concavity of the game we have

Hr(s?, s?)−Hr(s?, s) ≥ h(s, r)T (s? − s) ≥ h(s, r)T (s? − s) + h(s?, r)T (s− s?) > 0 ,

so s? satisfies (10.45).

Hence any method available for solving variational inequalities can be used to
find equilibria.

Next we construct a special two-person, game the equilibrium problem of which
is equivalent to the equilibrium problem of the original N -person game.

Theorem 10.18 Vector s? ∈ S satisfies (10.45) if and only if (s?, s?) is an equi-

librium of the two-person game D = {2; S, S; f,−f} where f(s, z) = h(z, r)T (s− z).

Proof

• Assume first that s? ∈ S satisfies (10.45). Then it satisfies (10.46) as well, so

f(s, s?) ≤ 0 = f(s?, s?).

We need in addition to show that

−f(s?, s) ≤ 0 = −f(s?, s?).

In contrary assume that with some s, f(s?, s) < 0. Then

0 > f(s?, s) = h(s, r)T (s? − s) > h(s, r)T (s? − s) + (s− s?)T (h(s, r)− h(s?, r))

= h(s?, r)T (s? − s) ≥ 0,

where we used (10.42) and (10.46). This is a clear contradiction.
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• Assume next that (s?, s?) is an equilibrium of game D. Then for any s, z ∈ S,

f(s, s?) ≤ f(s?, s?) = 0 ≤ f(s?, z).

The first part can be rewritten as

h(s?, r)T (s− s?) ≤ 0,

showing that (10.46) is satisfied, so is (10.45).

Consider the following iteration procedure.
Let s(1) ∈ S be arbitrary, and solve problem

maximize f(s, s(1))
subject to s ∈ S .

(10.47)

Let s(2) denote an optimal solution and define µ1 = f(s(2), s(1)). If µ1 = 0, then for
all s ∈ S,

f(s, s(1)) = h(s(1), r)T (s− s(1)) ≤ 0 ,

so by Theorem 10.17, s(1) is an equilibrium. Since f(s(1), s(1)) = 0, we assume that
µ1 > 0. In the general step k ≥ 2 we have already k vectors s(1), s(2), . . . , s(k), and
k − 1 scalers µ1, µ2, . . . , µk−1 > 0. Then the next vector s(k+1) and next scaler µk

are the solutions of the following problem:

maximize µ
subject to f(s, s(i)) ≥ µ (i = 1, 2, . . . , k)

s ∈ S.
(10.48)

Notice that
f(s(k), s(i)) ≥ µk−1 ≥ 0 (i = 1, 2, . . . , k − 1)

and
f(s(k), s(k)) = 0 ,

so we know that µk ≥ 0.
The formal algorithm is as follows:

Continuous-Equilibrium

1 k ← 1
2 solve problem (10.47), let s(2) be optimal solution
3 if f(s(2), s(1)) = 0
4 then s(1) is equilibrium
5 return s(1)

6 k ← k + 1
7 solve problem (10.48), let s(k+1) be optimal solution
8 if ||s(k+1) − s(k)|| < ε
9 then s(k+1) is equilibrium

10 return s(k+1)

11 else go to 5
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Before stating the convergence theorem of the algorithm we notice that in the
special case when the strategy sets are defined by linear inequalities (that is, all
functions gk are linear) then all constraints of problem (10.48) are linear, so at each
iteration step we have to solve a linear programming problem.

In this linear case the simplex method has to be used in each iteration step with
exponential computational cost, so the overall cost is also exponential (with prefixed
number of steps).

Theorem 10.19 There is a subsequence {s(ki)} of {s(k)} generated by the method

that converges to the unique equilibrium of the N -person game.

Proof The proof consists of several steps.
First we show that µk → 0 as k → ∞. Since at each new iteration an addi-

tional constraint is added to (10.48), sequence {µk} is nonincreasing. Since it is also
nonnegative, it must be convergent. Sequence {s(k)} is bounded, since it is from the
bounded set S, so it has a convergent subsequence {s(ki)}. Notice that from (10.48)
we have

0 ≤ µki−1 = min
1≤k≤ki−1

h(s(k), r)T (s(ki) − s(k)) ≤ h(s(ki−1), r)T (s(ki) − s(ki−1)) ,

where the right hand side tends to zero. Thus µki−1 → 0 and since the entire sequence
{µk} is monotonic, the entire sequence converges to zero.

Let next s? be an equilibrium of the N -person game, and define

δ(t) = min{(h(s, r)− h(z, r))T (z− s)|‖s− z‖ ≥ t, z, s ∈ S} . (10.49)

By (10.42), δ(t) > 0 for all t > 0. Define the indices ki so that

δ(‖s(ki) − s?‖) = min
1≤k≤i

δ(‖s(k) − s?‖) (i = 1, 2, . . .) ,

then for all k = 1, 2, . . . , i,

δ(‖s(ki) − s?‖) ≤ (h(s(k), r)− h(s?, r))T (s? − s(k))

= h(s(k), r)T (s? − s(k))− h(s?, r)T (s? − s(k))

≤ h(s(k), r)T (s? − s(k)) ,

which implies that

δ(‖s(ki) − s?‖) ≤ min
1≤k≤i

h(s(k), r)T (s? − s(k))

≤ max
s∈S

min
1≤k≤i

h(s(k), r)T (s− s(k))

= min
1≤k≤i

h(s(k), r)T (s(i+1) − s(k))

= µi

where we used again problem (10.48). From this relation we conclude that δ(‖s(ki)−
s?‖) → 0 as i → ∞. And finally, notice that function δ(t) satisfies the following
properties:
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1. δ(t) is continuous in t;

2. δ(t) > 0 if t > 0 (as it was shown just below relation (10.49));

3. if for a convergent sequence {t(k)}, δ(t(k))→ 0, then necessarily t(k) → 0.

By applying property 3. with sequence {‖s(ki)−s?‖} it is clear that ‖s(ki)−s?‖ → 0
so s(ki) → s?. Thus the proof is complete.

Exercises
10.2-1 Consider a 2-person game with strategy sets S1 = S2 = [0, 1], and payoff
functions f1(x1, x2) = x2

1 + x1x2 + 2 and f2(x1, x2) = x1 + x2. Show the existence
of a unique equilibrium point by computing it. Show that Theorem 10.3. cannot be
applied to prove existence.
10.2-2 Consider the “price war" game in which two firms are price setting. Assume
that p1 and p2 are the strategies of the players, p1, p2 ∈ [0, pmax] and the payoff
functions are:

f1(p1, p2) =

{

p1, if p1 ≤ p2 ,
p1 − c, if p1 > p2 ,

f2(p1, p2) =

{

p2, if p2 ≤ p1 ,
p2 − c, if p2 > p1 ,

by assuming that c < pmax. Is there an equilibrium? How many equilibria were
found?
10.2-3 A portion of the sea is modeled by the unit square in which a submarine
is hiding. The strategy of the submarine is the hiding place x ∈ [0, 1] × [0, 1]. An
airplane drops a bomb in a location y = [0, 1] × [0, 1],j which is its strategy. The
payoff of the airplane is the damage αe−β‖x−y‖ occurred by the bomb, and the payoff
of the submarine is its negative. Does this 2-person game have an equilibrium?
10.2-4 In the second-price auction they sell one unit of an item to N bidders.
They value the item as v1 < v2 < · · · < vN . Each of them offers a price for the
item simultaneously without knowing the offers of the others. The bidder with the
highest offer will get the item, but he has to pay only the second highest price. So
the strategy of bidder k is [0,∞], so xk ∈ [0,∞], and the payoff function for this
bidder is:

fk(x1, x2, . . . , xN ) =

{

vk −maxj 6=k xj , if xk = maxj xj ,
0 otherwise .

What is the best response function of bidder k? Does this game have equilibrium?
10.2-5 Formulate Fan’s inequality for Exercise 10.2-1
10.2-6 Formulate and solve Fan’s inequality for Exercise 10.2-2.
10.2-7 Formulate and solve Fan’s inequality for Exercise 10.2-4.
10.2-8 Consider a 2-person game with strategy sets S1 = S2 = [0, 1], and payoff
functions

f1(x1, x2) = −(x1 − x2)2 + 2x1 − x2 + 1

f2(x1, x2) = −(x1 − 2x2)2 − 2x1 + x2 − 1 .
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Formulate Fan’s inequality.
10.2-9 Let n = 2, S1 = S2 = [0, 10], f1(x1, x2) = f2(x1, x2) = 2x1+2x2−(x1+x2)2.
Formulate the Kuhn-Tucker conditions to find the equilibrium. Solve the resulted
system of inequalities and equations.
10.2-10 Consider a 3-person game with S1 = S2 = S3 = [0, 1], f1(x1, x2, x3) =
(x1−x2)2 + x3, f2(x1, x2, x3) = (x2−x3)2 + x1 and f3(x1, x2, x3) = (x3−x1)2 + x2.
Formulate the Kuhn-Tucker condition.
10.2-11 Formulate and solve system (10.9) for exercise 10.2-8
10.2-12 Repeat the previous problem for the game given in exercise 10.2-1
10.2-13 Rewrite the Kuhn-Tucker conditions for exercise 10.2-8 into the optimiza-
tion problem (10.10) and solve it.
10.2-14 Formulate the mixed extension of the finite game given in Exercise 10.1-1.

10.2-15 Formulate and solve optimization problem (10.10) for the game obtained
in the previous problem.
10.2-16 Formulate the mixed extension of the game introduced in Exercise 10.2-3.
Formulate and solve the corresponding linear optimization problems (10.22) with
α = 5, β = 3, γ = 1.
10.2-17 Use fictitious play method for solving the matrix game of exercise 10.2-16

10.2-18 Generalize the fictitious play method for bimatrix games.
10.2-19 Generalize the fictitious play method for the mixed extensions of finite
n-person games.

10.2-20 Solve the bimatrix game with matrics A =

(

2 −1
−1 1

)

and B =
(

1 −1
−1 2

)

with the method you have developed in Exercise 10.2-18.

10.2-21 Solve the symmetric matrix game A =





0 1 5
−1 0 −3
−5 3 0



 by linear pro-

gramming.
10.2-22 Repeat exercise 10.2-21 with the method of fictitious play.
10.2-23 Develop the Kuhn-Tucker conditions (10.9) for the game given in Exercise
10.2-21 above.
10.2-24? Repeat Exercises 10.2-21, 10.2-22 and 10.2-23 for the matrix game

A =

(

1 2 3
−1 0 1

)

. (First find the equivalent symmetric matrix game!).

10.2-25 Formulate the linear programming problem to solve the matrix game with

matrix A =

(

1 2
3 1

)

.

10.2-26 Formulate a linear programming solver based on the method of fictitious
play and solve the LP problem:

maximize x1 + x2

subject to x1, x2 ≥ 0

3x1 + x2 ≤ 4

x1 + 3x2 ≤ 4 .



10.3. The oligopoly problem 467

10.2-27 Solve the LP problem given in Example 8.17 by the method of fictitious
play.
10.2-28 Solve Exercise 10.2-21 by the method of von Neumann.
10.2-29 Solve Exercise 10.2-24 by the method of von Neumann.
10.2-30 Solve Exercise 10.2-17 by the method of von Neumann.
10.2-31? Check the solution obtained in the previous exercises by verifying that all
constraints of (10.21) are satisfied with zero objective function. Hint. What α and
β should be selected?
10.2-32 Solve exercise 10.2-26 by the method of von Neumann.
10.2-33 Let N = 2, S1 = S2 = [0, 10], f1(x1, x2) = f2(x1, x2) = 2x1 + 2x2 − (x1 +
x2)2. Show that both payoff functions are strictly concave in x1 and x2 respectively.
Prove that there are infinitely many equilibria, that is , the strict concavity of the
payoff functions does not imply the uniqueness of the equilibrium.
10.2-34 Can matrix games be strictly diagonally concave?
10.2-35 Consider a two-person game with strategy sets S1 = S2 = [0, 1], and payoff
functions f1(x1, x2) = −2x2

1 + x1(1−x2), f2(x1, x2) = −3x2
2 + x2(1−x1). Show that

this game satisfies all conditions of Theorem 10.16.
10.2-36 Solve the problem of the previous exercise by algorithm (10.47)–(10.48).

10.3. The oligopoly problem

The previous sections presented general methodology, however special methods are
available for almost all special classes of games. In the following parts of this chapter a
special game, the oligopoly game will be examined. It describes a real-life economic
situation when N -firms produce a homogeneous good to a market, or offers the same
service. This model is known as the classical Cournot model. The firms are the
players. The strategy of each player is its production level xk with strategy set
Sk = [0, Lk], where Lk is its capacity limit. It is assumed that the market price
depends on the total production level s = x1 + x2 + · · ·+ xN offered to the market:
p(s), and the cost of each player depends on its own production level: ck(xk). The
profit of each firm is given as

fk(x1, . . . , xN ) = xkp

(

N
∑

l=1

xl

)

− ck(xk). (10.50)

In this way an N -person game G = {N ; S1, . . . , SN ; f1, . . . , fN} is defined.
It is usually assumed that functions p and ck (k = 1, 2, . . . , N) are twice contin-

uously differentiable, furthermore

1. p′(s) < 0;

2. p′(s) + xkp′′(s) ≤ 0;

3. p′(s)− c′′
k(xk) < 0

for all k, xk ∈ [0, Lk] and s ∈ [0,
∑N

l=1 Ll]. Under assumptions 1–3. the game satisfies
all conditions of Theorem 10.3, so there is at least one equilibrium.
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Best reply mappings. Notice that with the notation sk =
∑

l 6=k xl, the payoff
function of player Pk can be rewritten as

xkp(xk + sk)− ck(xk) . (10.51)

Since Sk is a compact set and this function is strictly concave in xk, with fixed sk

there is a unique profit maximizing production level of player Pk, which is its best
reply and is denoted by Bk(sk).

It is easy to see that there are three cases: Bk(sk) = 0 if p(sk) − c′
k(0) ≤ 0,

Bk(sk) = Lk if p(sk + Lk) + Lkp′(sk + Lk) − c′
k(Lk) ≥ 0, and otherwise Bk(sk) is

the unique solution of the monotonic equation

p(sk + xk) + xkp′(sk + xk)− c′
k(xk) = 0 .

Assume that xk ∈ (0, Lk). Then implicit differentiation with respect to sk shows
that

p′(1 + B′
k) + B′

kp′ + xkp′′(1 + B′
k)− c′′

kB′
k = 0

showing that

B′
k(sk) = − p′ + xkp′′

2p′ + xkp′′ − c′′
k

.

Notice that from assumptions 2. and 3.,

− 1 < B′
k(sk) ≤ 0 , (10.52)

which is also true for the other two cases except for the break points.
As in Subsection 10.2.1. we can introduce the best reply mapping:

B(x1, . . . , xN ) =



B1





∑

l 6=1

xl



 , . . . , BN





∑

l 6=N

xl







 (10.53)

and look for its fixed points. Another alternative is to introduce dynamic process
which converges to the equilibrium.

Similarly to the method of fictitious play a discrete system can be developed in
which each firm selects its best reply against the actions of the competitors chosen
at the previous time period:

xk(t + 1) = Bk(
∑

l 6=k

xl(t)) (k = 1, 2, . . . , N) . (10.54)

Based on relation (10.52) we see that for N = 2 the right hand side mapping R
2 → R

2

is a contraction, so it converges, however if N > 2, then no convergence can be
established. Consider next a slight modification of this system: with some Kk > 0:

xk(t + 1) = xk(t) + Kk(Bk(
∑

l 6=k

xl(t))− xk(t)) (10.55)

for k = 1, 2, . . . , N . Clearly the steady-states of this system are the equilibria, and it
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can be proved that if Kk is sufficiently small, then sequences xk(0), xk(1), xk(2), . . .
are all convergent to the equilibrium strategies.

Consider next the continuous counterpart of model (10.55), when (similarly to
the method of von Neumann) continuous time scales are assumed:

ẋk(t) = Kk(Bk(
∑

l 6=k

xl(t))− xk(t)) (k = 1, 2, . . . , N) . (10.56)

The following result shows the convergence of this process.

Theorem 10.20 Under assumptions 1–3, system (10.56) is asymptotically stable,

that is, if the initial xk(0) values are selected close enough to the equilibrium, then

as t→∞, xk(t) converges to the equilibrium strategy for all k.

Proof It is sufficient to show that the eigenvalues of the Jacobian of the system
have negative real parts. Clearly the Jacobian is as follows:

J =











−K1 K1b1 · · · K1b1

K2b2 −K2 · · · K2b2

...
...

...
KN bN KN bN · · · −KN











, (10.57)

where bk = B′
k(
∑

l 6=k xl) at the equilibrium. From (10.52) we know that −1 < bk ≤ 0
for all k. In order to compute the eigenvalues of J we will need a simple but very
useful fact. Assume that a and b are N -element real vectors. Then

det(I + abT ) = 1 + bT a , (10.58)

where I is the N × N identity matrix. This relation can be easily proved by using
finite induction with respect to N . By using (10.58), the characteristic polynomial
of J can be written as

φ(λ) = det(J− λI) = det(D + abT − λI)

= det(D− λI)det(I + (D− λI)−1abT )

= det(D− λI)[1 + bT (D− λI)−1a]

= ΠN
k=1(−Kk(1 + bk)− λ)[1 +

N
∑

k=1

Kkbk

−Kk(1 + bk)− λ
] ,

where we used the notation

a =











K1b1

K2b2

...
KN bN











, bT = (1, 1, . . . , 1), D =







−K1(1 + b1)
. . .

−KN (1 + bN )






.

The roots of the first factor are all negative: λ = −Kk(1 + bk), and the other
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eigenvalues are the roots of equation

1 +

N
∑

k=1

Kkbk

−Kk(1 + bk)− λ
= 0.

Notice that by adding the terms with identical denominators this equation becomes

1 +

m
∑

l=1

αk

βk + λ
= 0 (10.59)

with αk, βk > 0, and the βks are different. If g(λ) denotes the left hand side then
clearly the values λ = −βk are the poles,

lim
λ→±∞

g(λ) = 1, lim
λ→−βk±0

g(λ) = ±∞,

g′(λ) =
m
∑

l=1

−αl

(βl + λ)2
< 0 ,

so g(λ) strictly decreases locally. The graph of the function is shown in Figure 10.3.
Notice first that (10.59) is equivalent to a polynomial equation of degree m, so there
are m real or complex roots. The properties of function g(λ) indicate that there is
one root below −β1, and one root between each −βk and −βk+1 (k = 1, 2, . . . , m−1).
Therefore all roots are negative, which completes the proof.

The general discrete model (10.55) can be examined in the same way. If Kk = 1
for all k, then model (10.55) reduces to the simple dynamic process (10.54).

Example 10.21 Consider now a 3-person oligopoly with price function

p(s) =

{

2 − 2s − s2, if 0 ≤ s ≤
√

3 − 1 ,
0 otherwise ,

strategy sets S1 = S2 = S3 = [0, 1], and cost functions

ck(xk) = kx3
k + xk (k = 1, 2, 3) .

The profit of firm k is therefore the following:

xk(2 − 2s − s2) − (kx3
k + xk) = xk(2 − 2xk − 2sk − x2

k − 2xksk − s2
k) − kx3

k − xk .

The best reply of play k can be obtained as follows. Following the method outlined at the
beginning of Section 10.3 we have the following three cases. If 1−2sk −s2

k ≤ 0, then xk = 0
is the best choice. If (−6−3k)−6sk −s2

k ≥ 0, then xk = 1 is the optimal decision. Otherwise
xk is the solution of equation

∂

∂xk

[xk(2 − 2xk − 2sk − s2
k − 2skxk − x2

k) − kx3
k − xk]

= 2 − 4xk − 2sk − s2
k − 4skxk − 3x2

k − 3kx2
k − 1 = 0 ,
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1

λ

g(λ)

−β1 −β2 −βm−1 −βm

Figure 10.5 The graph of function g(λ).

where the only positive solution is

xk =
−(4 + 4sk) +

√

(4 + 4sk)2 − 12(1 + k)(s2
k + 2sk − 1)

6(1 + k)
.

After the best replies are found, we can easily construct any of the methods presented
before.

Reduction to single-dimensional fixed point problems. Consider an N -
firm oligopoly with price function p and cost functions ck (k = 1, 2, . . . , N). Introduce
the following function

Ψk(s, xk, tk) = tkp(s− xk + tk)− ck(tk) , (10.60)

and define

Xk(s) = {xk|xk ∈ Sk, Ψk(s, xk, xk) = max
tk∈Sk

Ψk(s, xk, tk)} (10.61)
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for k = 1, 2, . . . , N and let

X(s) = {u|u =
N
∑

k=1

xk, xk ∈ Xk(s), k = 1, 2, . . . , N} . (10.62)

Notice that if s ∈ [0,
∑N

k=1 Lk], then all elements of X(s) are also in this interval,
therefore X is a single-dimensional point-to-set mapping. Clearly (x?

1, . . . , x?
N ) is an

equilibrium of the N -firm oligopoly game if and only if s? =
∑N

k=1 x?
k is a fixed

point of mapping X and for all k, x?
k ∈ Xk(s?). Hence the equilibrium problem

has been reduced to find fixed points of only one-dimensional mappings. This is
a significant reduction in the difficulty of the problem, since best replies are N -
dimensional mappings.

If conditions 1–3 are satisfied, then Xk(s) has exactly one element for all s and
k:

X(s) =







0, if p(s)− c′
k(0) ≤ 0 ,

Lk, if p(s) + Lkp′
k(s)− c′

k(Lk) ≥ 0 ,
z? otherwise ,

(10.63)

where z? is the unique solution of the monotonic equation

p(s) + zp′(s)− c′
k(z) = 0 (10.64)

in the interval (0, Lk). In the third case, the left hand side is positive at z = 0,
negative at z = Lk, and by conditions 2–3, it is strictly decreasing, so there is a
unique solution.

In the entire interval [0,
∑N

k=1 Lk], Xk(s) is nonincreasing. In the first two cases
it is constant and in the third case strictly decreasing. Consider finally the single-
dimensional equation

N
∑

k=1

Xk(s)− s = 0 . (10.65)

At s = 0 the left hand side is nonnegative, at s =
∑N

k=1 Lk it is nonpositive, and is
strictly decreasing. Therefore there is a unique solution (that is, fixed point of map-
ping X), which can be obtained by any method known to solve single-dimensional
equations.

Let [0, Smax] be the initial interval for the solution of equation (10.65). After K
bisection steps the accuracy becomes Smax/2K , which will be smaller than an error
tolerance ε > 0 if K > log2(Smax/ε).

Oligopoly-Equilibrium(p(s), X(s))

1 solve equation (10.65) for s
2 for k ← 1 to n
3 do solve equation (10.64), and let xk ← z
4 (x1, . . . , xN ) is equilibrium

Example 10.22 Consider the 3-person oligopoly examined in the previous example. From
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(10.63) we have

X(s) =

{

0, if 1 − 2s − s2 ≤ 0,
1, if − (1 + 3k) − 4s − s2 ≥ 0,
z? otherwise,

where z? is the unique solution of equation

3kz2 + z(2s + 2) + (−1 + 2s + s2) = 0.

The first case occurs for s ≥
√

2 − 1, the second case never occurs, and in the third case
there is a unique positive solution:

z? =
−(2s + 2) +

√

(2s + 2)2 − 12k(−1 + 2s + s2)

6k
. (10.66)

And finally equation (10.65) has the special form

3
∑

k=1

−(s + 1) +
√

(s + 1)2 − 3k(−1 + 2s + s2)

3k
− s = 0 .

A single program based on the bisection method gives the solution s? ≈ 0.2982 and then
equation (10.66) gives the equilibrium strategies x?

1 ≈ 0.1077, x?
2 ≈ 0.0986, x?

3 ≈ 0.0919.

Methods based on Kuhn-Tucker conditions Notice first that in the case of
N -player oligopolies Sk = {xk|xk ≥ 0, Lk − xk ≥ 0}, so we select

gk(xk) =

(

xk

Lk − xk

)

, (10.67)

and since the payoff functions are

fk(x1, . . . , xN ) = xkp(xk + sk)− ck(xk) , (10.68)

the Kuhn-Tucker conditions (10.9) have the following form. The components of the

2-dimensional vectors uk will be denoted by u
(1)
k and u

(2)
k . So we have for k =

1, 2, . . . , N ,

u
(1)
k , u

(2)
k ≥ 0
xk ≥ 0

Lk − xk ≥ 0

p(
∑N

l=1 xl) + xkp′(
∑N

l=1 xl)− c′
k(xk) + (u

(1)
k , u

(2)
k )
(

1
−1

)

= 0

u
(1)
k xk + u

(2)
k (Lk − xk) = 0 .

(10.69)

One might either look for feasible solutions of these relations or rewrite them as the
optimization problem (10.10), which has the following special form in this case:

minimize
∑N

k=1(u
(1)
k xk + u

(2)
k (Lk − xk))

subject to u
(1)
k , u

(2)
k ≥ 0

xk ≥ 0
Lk − xk ≥ 0

p(
∑N

l=1 xl) + xkp′(
∑N

l=1 xl)− c′
k(xk) + u

(1)
k − u

(2)
k = 0

(k = 1, 2, . . . , N).

(10.70)
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Computational cost in solving (10.69) or (10.70) depends on the type of functions
p and ck. No general characterization can be given.

Example 10.23 In the case of the three-person oligopoly introduced in Example 10.21 we
have

minimize

3
∑

k=1

(u
(1)
k xk + u

(2)
k (1 − xk))

subject to u
(1)
k , u

(2)
k ≥ 0

xk ≥ 0

1 − xk ≥ 0

1 − 2s − s2 − 2xk − 2xks − 3kx2
k + u

(1)
k − u

(2)
k = 0

x1 + x2 + x3 = s.

A professional optimization software was used to obtain the optimal solutions:

x?
1 ≈ 0.1077, x?

2 ≈ 0.0986, x?
3 ≈ 0.0919 ,

and all u
(1)
k = u

(2)
k = 0 .

Reduction to complementarity problems. If (x?
1, . . . , x?

N ) is an equilibrium
of an N -person oligopoly, then with fixed x?

1, . . . , x?
k−1, x?

k+1, . . . , x?
N , xk = x?

k max-
imizes the payoff fk of player Pk. Assuming that condition 1–3 are satisfied, fk is
concave in xk, so x?

k maximizes fk if and only if at the equilibrium

∂fk

∂xk
(x?) =







≤ 0, if x?
k = 0 ,

= 0, if 0 < x?
k < Lk ,

≥ 0, if x?
k = Lk .

So introduce the slack variables

zk =

{

= 0, if xk > 0 ,
≥ 0, if xk = 0

vk =

{

= 0, if xk < Lk ,
≥ 0, if xk = Lk

and
wk = Lk − xk . (10.71)

Then clearly at the equilibrium

∂fk

∂xk
(x)− vk + zk = 0 (10.72)

and by the definition of the slack variables

zkxk = 0 (10.73)
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vkwk = 0 , (10.74)

and if we add the nonnegativity conditions

xk, zk, vk, wk ≥ 0 , (10.75)

then we obtain a system of nonlinear relations (10.71)–(10.75) which are equivalent
to the equilibrium problem.

We can next show that relations (10.71)–(10.75) can be rewritten as a nonlinear
complementarity problem, for the solution of which standard methods are available.
For this purpose introduce the notation

v =











v1

v2

...
vN











, L =











L1

L2

...
LN











, h(x) =













∂f1

∂x1
(x)

∂f2

∂x2
(x)
...

∂fN

∂xN

(x)













,

t =

(

x

v

)

, and g(t) =

(−h(x) + v

L− x

)

,

then system (10.72)–(10.75) can be rewritten as

t ≥ 0

g(t) ≥ 0

tT g(t) = 0 .
(10.76)

This problem is the usual formulation of nonlinear complementarity prob-
lems. Notice that the last condition requires that in each component either t or g(t)
or both must be zero.

The computational cost in solving problem (10.76) depends on the type of the
involved functions and the choice of method.

Example 10.24 In the case of the 3-person oligopoly introduced and examined in the
previous examples we have:

t =















x1

x2

x3

v1

v2

v3















and g(t) =















−1 + 2
∑3

l=1
xl + (

∑3

l=1
xl)

2 + 2x1 + 2x1

∑3

l=1
xl + 3x2

1 + v1

−1 + 2
∑3

l=1
xl + (

∑3

l=1
xl)

2 + 2x2 + 2x2

∑3

l=1
xl + 6x2

2 + v2

−1 + 2
∑3

l=1
xl + (

∑3

l=1
xl)

2 + 2x3 + 2x3

∑3

l=1
xl + 9x2

3 + v3

1 − x1

1 − x2

1 − x3















.

Linear oligopolies and quadratic programming. In this section N -player
oligopolies will be examined under the special condition that the price and all cost
functions are linear :

p(s) = As + B, ck(xk) = bkxk + ck (k = 1, 2, . . . , N) ,
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where B, bk, and ck are positive, but A < 0. Assume again that the strategy set of
player Pk is the interval [0, Lk]. In this special case

fk(x1, . . . , xN ) = xk(Ax1 + · · ·+ AxN + B)− (bkxk + ck) (10.77)

for all k, therefore
∂fk

∂xk
(x) = 2Axk + A

∑

l 6=k

xl + B − bk , (10.78)

and relations (10.71)–(10.75) become more special:

2Axk + A
∑

l 6=k

xl + B − bk − vk + zk = 0

zkxk = vkwk = 0

xk + wk = Lk

xk, vk, zk, wk ≥ 0 ,

where we changed the order of them. Introduce the following vectors and matrixes:

Q =











2A A · · · A
A 2A · · · A
...

...
...

A A · · · 2A











, B =











B
B
...
B











, b =











b1

b2

...
bN











,

v =











v1

v2

...
vN











, w =











w1

w2

...
wN











, z =











z1

z2

...
zN











, and L =











L1

L2

...
LN











.

Then the above relations can be summarized as:

Qx + B− b− v + z = 0

x + w = L

xT z = vT w = 0
x, v, z, w ≥ 0 .

(10.79)

Next we prove that matrix Q is negative definite. With any nonzero vector a = (ai),

aT Qa = 2A
∑

i

a2
i + A

∑

i

∑

j 6=i

aiaj = A(
∑

i

a2
i + (

∑

i

ai)
2) < 0 ,

which proves the assertion.
Observe that relations (10.79) are the Kuhn-Tucker conditions of the strictly

concave quadratic programming problem:

maximize 1
2 xT Qx + (B− b)x

subject to 0 ≤ x ≤ L ,
(10.80)
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and since the feasible set is a bounded linear polyhedron and the objective function
is strictly concave, the Kuhn-Tucker conditions are sufficient and necessary. Conse-
quently a vector x? is an equilibrium if and only if it is the unique optimal solution
of problem (10.80). There are standard methods to solve problem (10.80) known
from the literature.

Since (10.79) is a convex quadratic programming problem, several algorithms are
available. Their costs are different, so computation cost depends on the particular
method being selected.

Example 10.25 Consider now a duopoly (two-person oligopoly) where the price function
is p(s) = 10 − s and the cost functions are c1(x1) = 4x1 + 1 and c2(x2) = x2 + 1 with
capacity limits L1 = L2 = 5. That is,

B = 10, A = −1, b1 = 4, b2 = 1, c1 = c2 = 1 .

Therefore,

Q =

(

−2 −1
−1 −2

)

, B =

(

10

10

)

, b =

(

4

1

)

, L =

(

5

5

)

,

so the quadratic programming problem can be written as:

maximize
1

2
(−2x2

1 − 2x1x2 − 2x2
2) + 6x1 + 9x2

subject to 0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 5 .

It is easy to see by simple differentiation that the global optimum at the objective function
without the constraints is reached at x?

1 = 1 and x?
2 = 4. They however satisfy the con-

straints, so they are the optimal solutions. Hence they provide the unique equilibrium of
the duopoly.

Exercises
10.3-1 Consider a duopoly with S1 = S2 = [0, 1], p(s) = 2 − s and costs c1(x) =
c2(x) = x2 + 1. Examine the convergence of the iteration scheme (10.55).
10.3-2 Select n = 2, S1 = S2 = [0, 1.5], ck(xk) = 0.5xk (k = 1, 2) and

p(s) =







1.75− 0.5s, if 0 ≤ s ≤ 1.5 ,
2.5− s, if 1.5 ≤ s ≤ 2.5 ,
0, if 2.5 ≤ s .

Show that there are infinitely many equilibria:

{(x?
1, x?

2)|0.5 ≤ x1 ≤ 1, 0.5 ≤ x2 ≤ 1, x1 + x2 = 1.5} .

10.3-3 Consider the duopoly of Exercise 10.3-1 above. Find the best reply mappings
of the players and determine the equilibrium.
10.3-4 Consider again the duopoly of the previous problem.
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(a) Construct the one-dimensional fixed point problem of mapping (10.62) and solve
it to obtain the equilibrium.
(b) Formulate the Kuhn-Tucker equations and inequalities (10.69).
(c) Formulate the complementarity problem (10.76) in this case.

Chapter Notes

(Economic) Nobel Prize was given only once, in 1994 in the field of game theory. One
of the winner was John Nash , who received this honor for his equilibrium concept,
which was introduced in 1951 [11].

Backward induction is a more restrictive equilibrium concept. It was developed
by Kuhn and can be found in [7]. Since it is more restrictive equilibrium, it is also
a Nash equilibrium.

The existence and computation of equilibria can be reduced to those of fixed
points. the different variants of fixed point theorems-such as that of Brouwer [2],
Kakutani[5], Tarski [21] are successfully used to prove existence in many game
classes. The article [13] uses the fixed point theorem of Kakutani. The books [20]
and [3] discuss computer methods for computing fixed points. The most popular
existence result is the well known theorem of Nikaido and Isoda [13].

The Fan inequality is discussed in the book of Aubin [1]. The Kuhn-Tucker
conditions are presented in the book of Martos [9]. By introducing slack and surplus
variables the Kuhn-Tucker conditions can be rewritten as a system of equations. For
their computer solutions well known methods are available ([20] and [9]).

The reduction of bimatrix games to mixed optimization problems is presented in
the papers of Mills [10] and Shapiro [18]. The reduction to quadratic programming
problem is given in ([8]).

The method of fictitious play is discussed in the paper of Robinson [16]. In
order to use the Neumann method we have to solve a system of nonlinear ordinary
differential equations. The Runge–Kutta method is the most popular procedure for
doing it. It can be found in [20].

The paper of Rosen [17] introduces diagonally strictly concave games. The com-
puter method to find the equilibria of N -person concave games is introduced in
Zuhovitsky et al. [22].

The different extensions and generalizations of the classical Cournot model can
be found in the books of Okuguchi and Szidarovszky [14, 15]. The proof of Theorem
10.20 is given in [19]. For the proof of Lemma (10.58) see the monograph [15]. The
bisection method is described in [20]. The paper [6] contains methods which are
applicable to solve nonlinear complementarity problems. The solution of problem
(10.80) is discussed in the book of Hadley [4].

The book of von Neumann and Morgenstern [12] is considered the classical text-
book of game theory. There is a large variety of game theory textbooks (see for
example [3]).
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