
Contents

III. NUMERICAL METHODS . 430

10. Competitive Analysis . 431

10.1. Notions, definitions . 431
10.2. The k-server problem . 433
10.3. Models related to computer networks 439

10.3.1. The data acknowledgement problem 439
10.3.2. The file caching problem . 441
10.3.3. On-line routing . 444

10.4. On-line bin packing models . 448
10.4.1. On-line bin packing . 448
10.4.2. Multidimensional models . 452

10.5. On-line scheduling . 455
10.5.1. On-line scheduling models 456
10.5.2. LIST model . 457
10.5.3. TIME model . 461

Bibliography . 466

Index . 469

Name Index . 471

III. NUMERICAL METHODS

10. Competitive Analysis

In on-line computation an algorithm must make its decisions based only on past
events without secure information on future. Such methods are called on-line al-

gorithms. On-line algorithms have many applications in different areas such as
computer science, economics and operations research.

The first results in this area appeared around 1970, and later since 1990 more
and more researchers have started to work on problems related to on-line algorithms.
Many subfields have been developed and investigated. Nowadays new results of the
area have been presented on the most important conferences about algorithms. This
chapter does not give a detailed overview about the results, because it is not possible
in this framework. The goal of the chapter is to show some of the main methods of
analysing and developing on-line algorithms by presenting some subareas in more
details.

In the next section we define the basic notions used in the analysis of on-line
algorithms. After giving the most important definitions we present one of the best-
known on-line problems—the on-line k-server problem—and some of the related
results. Then we deal with a new area by presenting on-line problems belonging
to computer networks. In the next section the on-line bin packing problem and its
multidimensional generalisations are presented. Finally in the last section of this
chapter we show some basic results concerning the area of on-line scheduling.

10.1. Notions, definitions

Since an on-line algorithm makes its decisions based on partial information without
knowing the whole instance in advance, we cannot expect it to give the optimal
solution which can be given by an algorithm having full information. An algorithm
which knows the whole input in advance is called off-line algorithm.

There are two main methods to measure the performance of on-line algorithms.
One possibility is to use average case analysis where we hypothesise some distri-
bution on events and we study the expected total cost.

The disadvantage of this approach is that usually we do not have any information
about the distribution of the possible inputs. In this chapter we do not use the

432 10. Competitive Analysis

average case analysis.
An another approach is a worst case analysis, which is called competitive anal-

ysis. In this case we compare the objective function value of the solution produced
by the on-line algorithm to the optimal off-line objective function value.

In case of on-line minimisation problems an on-line algorithm is called C-

competitive, if the cost of the solution produced by the on-line algorithm is at
most C times more than the optimal off-line cost for each input. The competitive

ratio of an algorithm is the smallest C for which the algorithm is C-competitive.
For an arbitrary on-line algorithm ALG we denote the objective function value

achieved on input I by ALG(I). The optimal off-line objective function value on
I is denoted by OPT(I). Using this notation we can define the competitiveness as
follows.

Algorithm ALG is C-competitive, if ALG(I) ≤ C · OPT(I) is valid for each
input I.

There are two further versions of the competitiveness which are often used. For a
minimisation problem an algorithm ALG is called weakly C-competitive, if there
exists such a constant B that ALG(I) ≤ C ·OPT(I) + B is valid for each input I.

The weak competitive ratio of an algorithm is the smallest C for which the
algorithm is weakly C-competitive.

A further version of the competitive ratio is the asymptotic competitive ratio.
For minimisation problems the asymptotic competitive ratio of algorithm ALG
(R∞

ALG) can be defined as follows:

Rn
ALG = sup

{

ALG(I)

OPT(I)
| OPT(I) = n

}

,

R∞

ALG = lim sup
n→∞

Rn
ALG .

An algorithm is called asymptotically C-competitive if its asymptotic com-
petitive ratio is at most C.

The main property of the asymptotic ratio is that it considers the performance
of the algorithm under the assumption that the size of the input tends to ∞. This
means that this ratio is not effected by the behaviour of the algorithm on the small
size inputs.

Similar definitions can be given for maximisation problems. In that case algo-
rithm ALG is called C-competitive, if ALG(I) ≥ C · OPT(I) is valid for each
input I, and the algorithm is weakly C-competitive if there exists such a constant
B that ALG(I) ≥ C ·OPT(I) + B is valid for each input I. The asymptotic ratio
for maximisation problems can be given as follows:

Rn
ALG = inf

{

ALG(I)

OPT(I)
| OPT(I) = n

}

,

R∞

ALG = lim inf
n→∞

Rn
ALG .

The algorithm is called asymptotically C-competitive if its asymptotic ratio
is at least C.

Many papers are devoted randomised on-line algorithms, in which case the

10.2. The k-server problem 433

objective function value achieved by the algorithm is a random variable, and the
expected value of this variable is used in the definition of the competitive ratio.
Since we consider only deterministic on-line algorithms in this chapter, we do not
detail the notions related to randomised on-line algorithms.

10.2. The k-server problem

One of the best-known on-line problems is the on-line k-server problem. To give the
definition of the general problem the notion of metric spaces is needed. A pair (M, d)
(where M contains the points of the space and d is the distance function defined on
the set M ×M) is called metric space if the following properties are valid:

• d(x, y) ≥ 0 for all x, y ∈M ,

• d(x, y) = d(y, x) for all x, y ∈M ,

• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈M ,

• d(x, y) = 0 holds if and only if x = y.

In the k-server problem a metric space is given, and there are k servers which
can move in the space. The decision maker has to satisfy a list of requests appearing
at the points of the metric space by sending a server to the point where the request
appears.

The problem is on-line which means that the requests arrive one by one, and we
must satisfy each request without any information about the further requests. The
goal is to minimise the total distance travelled by the servers. In the remaining parts
of the section the multiset which contains the points where the servers are is called
the configuration of the servers. We use multisets, since different servers can be
at the same points of the space.

The first important results for the k-server problem were achieved by Manasse,
McGeoch and Sleator. They developed the following algorithm called Balance,
which we denote by BAL. During the procedure the servers are in different points.
The algorithm stores for each server the total distance travelled by the server. The
servers and the points in the space where the servers are located are denoted by
s1, . . . , sk. Let the total distance travelled by the server si be Di. After the arrival of
a request at point P algorithm BAL uses server i for which the value Di + d(si, P)
is minimal. This means that the algorithm tries to balance the distances travelled by
the servers. Therefore the algorithm maintains server configuration S = {s1, . . . , sk}
and the distances travelled by the servers which distances have starting values D1 =
· · · = Dk = 0. The behaviour of the algorithm on input I = P1, . . . , Pn can be given
by the following pseudocode:

434 10. Competitive Analysis

BAL(I)

1 for j ← 1 to n
2 do i← argmin{Di + d(si, Pj)}
3 serve the request with server i
4 Di ← Di + d(si, Pj)
5 si ← Pj

Example 10.1 Consider the two dimensional Euclidean space as the metric space. The
points are two dimensional real vectors (x, y), and the distance between (a, b) and (c, d) is
√

(a − c)2 + (b − d)2. Suppose that there are two servers which are located at points (0, 0)
and (1, 1) at the beginning. Therefore at the beginning D1 = D2 = 0, s1 = (0, 0), s2 = (1, 1).
Suppose that the first request appears at point (1, 4). Then D1 + d((0, 0), (1, 4)) =

√
17 >

D2 + d((1, 1), (1, 4)) = 3, thus the second server is used to satisfy the request and after the
action of the server D1 = 0, D2 = 3, s1 = (0, 0), s2 = (1, 4). Suppose that the second request
appears at point (2, 4), so D1+d((0, 0), (2, 4)) =

√
20 > D2+d((1, 4), (2, 4)) = 3+1 = 4, thus

again the second server is used, and after serving the request D1 = 0, D2 = 4, s1 = (0, 0),
s2 = (2, 4). Suppose that the third request appears at point (1, 4), so D1 +d((0, 0), (1, 4)) =√

17 < D2 + d((2, 4), (1, 4)) = 4 + 1 = 5, thus the first server is used, and after serving the
request D1 =

√
17, D2 = 4, s1 = (1, 4), s2 = (2, 4).

The algorithm is efficient in the cases of some particular metric spaces as it is
shown by the following statement. The references where the proof of the following
theorem can be found are in the chapter notes at the end of the chapter.

Theorem 10.1 Algorithm Balance is weakly k-competitive for the metric spaces
containing k + 1 points.

The following statement shows that there is no on-line algorithm which is better
than k-competitive for the general k-server problem.

Theorem 10.2 There is no metric space containing at least k + 1 points where an
on-line algorithm exists with smaller competitive ratio than k.

Proof Consider an arbitrary metric space containing at least k + 1 points and an
arbitrary on-line algorithm say ONL. Denote the points of the starting configuration
of ONL by P1, P2, . . . , Pk, and let Pk+1 be another point of the metric space. Con-
sider the following long list of requests I = Q1, . . . , Qn. The next request appears at
the point among P1, P2, . . . , Pk+1 where ONL has no server.

First calculate the value ONL(I). The algorithm does not have any servers at
point Qj+1 after serving Qj , thus the request appeared at Qj is served by the server
located at point Qj+1. Therefore the cost of serving Qj is d(Qj , Qj+1), which yields

ONL(I) =

n
∑

j=1

d(Qj , Qj+1) ,

where Qn+1 denotes the point from which the server was sent to serve Qn. (This
is the point where the (n + 1)-th request would appear.) Now consider the cost

10.2. The k-server problem 435

OPT(I). Instead of calculating the optimal off-line cost we define k different off-line
algorithms, and we use the mean of the costs resulting from these algorithms. Since
the cost of each off-line algorithm is at least as much as the optimal off-line cost,
the calculated mean is an upper bound for the optimal off-line cost.

We define the following k off-line algorithms, denoted by OFF1, . . . , OFFk. Sup-
pose that the servers are at points P1, P2, . . . , Pj−1, Pj+1, . . . Pk+1 in the starting
configuration of OFFj . We can move the servers into this starting configuration
using an extra constant cost Cj .

The algorithms satisfy the requests as follows. If an algorithm OFFj has a server
at point Qi, then none of the servers moves. Otherwise the request is served by the
server located at point Qi−1. The algorithms are well-defined, if Qi does not contain
a server, then each of the other points P1, P2, . . . , Pk+1 contains a server, thus there is
a server located at Qi−1. Moreover Q1 = Pk+1, thus at the beginning each algorithm
has a server at the requested point.

We show that the servers of algorithms OFF1, . . . , OFFk are always in different
configurations. At the beginning this property is valid because of the definition of
the algorithms. Now consider the step where a request is served. Call the algorithms
which do not move a server for serving the request stable, and the other algorithms
unstable. The server configurations of the stable algorithms remain unchanged, so
these configurations remain different from each other. Each unstable algorithm moves
a server from point Qi−1. This point is the place of the last request, thus the stable
algorithms have server at it. Therefore, an unstable algorithm and a stable algorithm
cannot have the same configuration after serving the request. Furthermore, each
unstable algorithms moves a server from Qi−1 to Qi, thus the server configurations
of the unstable algorithms remain different from each other.

So at the arrival of the request at point Qi the servers of the algorithms are in
different configurations. On the other hand, each configuration has a server at point
Qi−1, therefore there is only one configuration where there is no server located at
point Qi. Consequently, the cost of serving Qi is d(Qi−1, Qi) for one of the algorithms
and 0 for the other algorithms.

Therefore

k
∑

j=1

OFFj(I) = C +
n

∑

i=2

d(Qi, Qi−1) ,

where C =
∑k

j=1 Cj is an absolute constant which is independent of the input
(this is the cost of moving the servers to the starting configuration of the defined
algorithms).

On the other hand, the optimal off-line cost cannot be larger than the cost of
any of the above defined algorithms, thus k ·OPT(I) ≤

∑k
j=1 OFFj(I). This yields

k ·OPT(I) ≤ C +

n
∑

i=2

d(Qi, Qi−1) ≤ C + ONL(I) ,

which inequality shows that the weak competitive ratio of ONL cannot be smaller
than k, since the value OPT(I) can be arbitrarily large as the length of the input

436 10. Competitive Analysis

is increasing.

There are many interesting results in connection with this problem.have ap-
peared during the next few years. For the general case the first constant-competitive
algorithm (O(2k)-competitive) was developed by Fiat, Rabani and Ravid. Later
Koutsoupias and Papadimitriou could analyse an algorithm based on the work func-
tion technique and they could prove that it is (2k − 1)-competitive. They could not
determine the competitive ratio of the algorithm, but it is a widely believed hypoth-
esis that the algorithm is k-competitive. Determining the competitive ratio of the
algorithm, or developing a k-competitive algorithm is still among the most impor-
tant open problems in the area of on-line algorithms. We present the work function
algorithm below.

Denote the starting configuration of the on-line servers by A0. Then after the t-th
request the work function value belonging to multiset X is the minimal cost needed
to serve the first t requests starting at configuration A0 and ending at configuration
X. This value is denoted by wt(X). The Work-Function algorithm is based on the
above defined work function. Suppose that At−1 is the server configuration before
the arrival of the t-th request, and denote the place of the t-th request by Rt. The
Work-Function algorithm uses server s to serve the request for which the value
wt−1(At−1 \ {P} ∪ {Rt}) + d(P, Rt) is minimal, where P denotes the point where
the server is actually located.

Example 10.2 Consider the metric space containing three points A, B and C with the
distances d(A, B) = 1, d(B, C) = 2, d(A, C) = 3. Suppose that we have two servers and
the starting configuration is {A, B}. In this case the starting work function values are
w0({A, A}) = 1, w0({A, B}) = 0, w0({A, C}) = 2, w0({B, B}) = 1, w0({B, C}) = 3,
w0({C, C}) = 5. Suppose that the first request appears at point C. Then w0({A, B} \
{A} ∪ {C}) + d(A, C) = 3 + 3 = 6 and w0({A, B} \ {B} ∪ {C}) + d(B, C) = 2 + 2 = 4, thus
algorithm Work Function uses the server from point B to serve the request.

The following statement is valid for the algorithm.

Theorem 10.3 The Work-Function algorithm is weakly 2k − 1-competitive.

Besides the general problem many particular cases have been investigated. If
the distance of any pair of points is 1, then we obtain the on-line paging problem
as a special case. Another well investigated metric space is the line. The points
of the line are considered as real numbers, and the distance of points a and b is
|a − b|. In this special case a k-competitive algorithm was developed by Chrobak
and Larmore, which algorithm is called Double-Coverage. A request at point P
is served by server s which is the closest to P . Moreover, if there are servers also on
the opposite side of P , then the closest server among them moves distance d(s, P)
into the direction of P . Hereafter we denote the Double-Coverage algorithm by
DC. The input of the algorithm is the list of requests which is a list of points (real
numbers) denoted by I = P1, . . . , Pn and the starting configuration of the servers is
denoted by S = (s1, . . . , sk) which contains points (real numbers) too. The algorithm
can be defined by the following pseudocode:

10.2. The k-server problem 437

DC(I, S)

1 for j ← 1 to n
2 do i← argminld(Pj , sl)
3 if si = minl sl or si = maxl sl

4 then � the request is served by the i-th server
5 si ← Pj

6 else if si ≤ Pj

7 then m← argminl:sl>Pj
d(sl, Pj)

8 � the request is served by the i-th server
9 sm ← sm − d(si, Pj)

10 si ← Pj

11 else if si ≥ Pj

12 then r ← argminl:sl<Pj
d(sl, Pj)

13 � the request is served by the i-th server
14 sr ← sr + d(si, Pj)
15 si ← Pj

Example 10.3 Suppose that there are three servers s1, s2, s3 located at points 0, 1, 2. If
the next request appears at point 4, then DC uses the closest server s3 to serve the request.
The locations of the other servers remain unchanged, the cost of serving the request is 2
and the servers are at points 0, 1, 4. If the next request appears at point 2, then DC uses
the closest server s2 to serve the request, but there are servers on the opposite side of the
request, thus s3 also travels distance 1 into the direction of 2. Therefore the cost of serving
the request is 2 and the servers will be at points 0, 2, 3.

The following statement, which can be proved by the potential function tech-
nique, is valid for algorithm DC. This technique is often used in the analysis of
on-line algorithms.

Theorem 10.4 Algorithm DC is weakly k-competitive on the line.

Proof Consider an arbitrary sequence of requests and denote this input by I. During
the analysis of the procedure we suppose that one off-line optimal algorithm and DC
are running parallel on the input. We also suppose that each request is served first
by the off-line algorithm and then by the on-line algorithm. The servers of the on-
line algorithm and also the positions of the servers (which are real numbers) are
denoted by s1, . . . , sk, and the servers of the optimal off-line algorithm and also the
positions of the servers are denoted by x1, . . . , xk. We suppose that for the positions
s1 ≤ s2 ≤ · · · ≤ sk and x1 ≤ x2 ≤ · · · ≤ xk are always valid, this can be achieved by
swapping the notations of the servers.

We prove the theorem by the potential function technique. The potential function
assigns a value to the actual positions of the servers, so the on-line and off-line costs
are compared using the changes of the potential function. Let us define the following
potential function:

Φ = k
k

∑

i=1

|xi − si|+
∑

i<j

(sj − si) .

438 10. Competitive Analysis

The following statements are valid for the potential function.

• While OPT is serving a request the increase of the potential function is not
more than k times the distance travelled by the servers of OPT.

• While DC is serving a request, the decrease of Φ is at least as much as the cost
of serving the request.

If the above properties are valid, then one can prove the theorem easily. In this
case Φf −Φ0 ≤ k ·OPT(I)−DC(I), where Φf and Φ0 are the final and the starting
values of the potential function. Furthermore, Φ is nonnegative, so we obtain that
DC(I) ≤ kOPT(I) + Φ0, which yields that the algorithms is weakly k-competitive
(Φ0 does not depend on the input sequence only on the starting position of the
servers).

Now we prove the properties of the potential function.
First consider the case when one of the off-line servers travels distance d. The

first part of the potential function increases at most by kd. The second part does
not change, thus we proved the first property of the potential function.

Consider the servers of DC. Suppose that the request appears at point P . Since
the request is first served by OPT, xj = P for some j. The following two cases are
distinguished depending on the positions of the on-line servers.

First suppose that the on-line servers are on the same side of P . We can assume
that the positions of the servers are not smaller than P , since the other case is
completely similar. In this case s1 is the closest server and DC sends s1 to P and
the other on-line servers do not move. Therefore the cost of DC is d(s1, P). In the
first sum of the potential function only |x1 − s1| changes; it decreases by d(s1, P),
thus the first part decreases by kd(s1, P). The second sum is increasing; the increase
is (k − 1)d(s1, P), thus the value of Φ decreases by d(s1, P).

Assume that there are servers on both sides of P ; suppose that the closest servers
are si and si+1. We assume that si is closer to P , the other case is completely similar.
In this case the cost of DC is 2d(si, P). Consider the first sum of the potential
function. The i-th and the i + 1-th part are changing. Since xj = P for some j, thus
one of the i-th and the i + 1-th parts decreases by d(si, P) and the increase of the
other one is at most d(si, P), thus the first sum does not increase. The change of
the second sum of Φ is

d(si, P)
(

− (k − i) + (i− 1)− (i) + (k − (i + 1))
)

= −2d(si, P) .

Thus we proved that the second property of the potential function is also valid in
this case.

Exercises
10.2-1 Suppose that (M, d) is a metric space. Prove that (M, q) is also a metric
space where q(x, y) = min{1, d(x, y)}.
10.2-2 Consider the greedy algorithm which serves each request by the server which
is closest to the place of the request. Prove that the algorithm is not constant com-
petitive for the line.

10.3. Models related to computer networks 439

10.2-3 Prove that for arbitrary k-element multisets X and Z and for arbitrary t
the inequality wt(Z) ≤ wt(X) + d(X, Z) is valid, where d(X, Z) is the cost of the
minimal matching of X and Z, (the minimal cost needed to move the servers from
configuration X to configuration Z).
10.2-4 Consider the line as a metric space. Suppose that the servers of the on-line
algorithm are at points 2, 4, 5, 7, and the servers of the off-line algorithm are at points
1, 3, 6, 9. Calculate the value of the potential function used in the proof of Theorem
10.4. How does this potential function change, if the on-line server moves from point
7 to point 8?

10.3. Models related to computer networks

The theory of computer networks has become one of the most significant areas of
computer science. In the planning of computer networks many optimisation problems
arise and most of these problems are actually on-line, since neither the traffic nor
the changes in the topology of a computer network cannot be precisely predicted.
Recently some researchers working at the area of on-line algorithms have defined
some on-line mathematical models for problems related to computer networks. In
this section we consider this area; we present three problems and show the basic
results. First the data acknowledgement problem is considered, then we present the
web caching problem, and the section is closed by the on-line routing problem.

10.3.1. The data acknowledgement problem

In the communication of a computer network the information is sent by packets. If
the communication channel is not completely safe, then the arrival of the packets
are acknowledged. The data acknowledgement problem is to determine the time
of sending acknowledgements. An acknowledgement can acknowledge many packets
but waiting for long time can cause the resending of the packets and that results
in the congestion of the network. On the other hand, sending an acknowledgement
about the arrival of each packet immediately would cause again the congestion of
the network. The first optimisation model for determining the sending times of the
acknowledgements was developed by Dooly, Goldman and Scott in 1998. We present
the developed model and some of the basic results.

In the mathematical model of the data acknowledgement problem the input is
the list of the arrival times a1, . . . , an of the packets. The decision maker has to
determine when to send acknowledgements; these times are denoted by t1, . . . , tk. In
the optimisation model the cost function is:

k +

k
∑

j=1

νj ,

where k is the number of the sent acknowledgements and νj =
∑

tj−1<ai≤tj
(tj − ai)

is the total latency collected by the j-th acknowledgement. We consider the on-line
problem which means that at time t the decision maker only knows the arrival times

440 10. Competitive Analysis

of the packets already arrived and has no information about the further packets. We
denote the set of the unacknowledged packets at the arrival time ai by σi.

For the solution of the problem the class of the alarming algorithms has been de-
veloped. An alarming algorithm works as follows. At the arrival time aj an alarm
is set for time aj + ej . If no packet arrives before time aj + ej , then an acknowledge-
ment is sent at time aj + ej which acknowledges all of the unacknowledged packets.
Otherwise at the arrival of the next packet at time aj+1 the alarm is reset for time
aj+1 +ej+1. Below we analyse an algorithm from this class in details. This algorithm
sets the alarm to collect total latency 1 by the acknowledgement. The algorithm is
called Alarm. We obtain the above defined rule from the general definition using
the solution of the following equation as value ej :

1 = |σj |ej +
∑

ai∈σj

(aj − ai) .

Example 10.4 Consider the following example. The first packet arrives at time 0 (a1 = 0),
so Alarm sets an alarm with value e1 = 1 for time 1. Suppose that the next arrival time
is a2 = 1/2. This arrival is before the alarm time, thus the first packet has not been
acknowledged yet and we reset the alarm with value e2 = (1 − 1/2)/2 = 1/4 for time
1/2 + 1/4. Suppose that the next arrival time is a3 = 5/8. This arrival is before the alarm
time, thus the first two packets have not been acknowledged yet and we reset the alarm
with value e3 = (1−5/8−1/8)/3 = 1/12 for time 5/8+1/12. Suppose that the next arrival
time is a4 = 1. No packet arrived before the alarm time 5/8 + 1/12, thus at that time the
first three packets were acknowledged and the alarm is set for the new packet with value
e4 = 1 for time 2.

Theorem 10.5 Algorithm Alarm is 2-competitive.

Proof Suppose that algorithm Alarm sends k acknowledgements. These acknowl-
edgements divide the time into k time intervals. The cost of the algorithm is 2k, since
k is the cost of the acknowledgements, and the alarm is set to have total latency 1
for each acknowledgement.

Suppose that the optimal off-line algorithm sends k∗ acknowledgements. If k∗ ≥
k, then OPT(I) ≥ k = Alarm(I)/2 is obviously valid, thus we obtain that the
algorithm is 2-competitive. If k∗ < k, then at least k − k∗ time intervals among the
ones defined by the acknowledgements of algorithm Alarm do not contain any of
the off-line acknowledgements. This yields that the off-line total latency is at most
k − k∗, thus we obtain that OPT(I) ≥ k which inequality proves that Alarm is
2-competitive.

As the following theorem shows, algorithm Alarm has the smallest possible
competitive ratio.

Theorem 10.6 There is no on-line algorithm for the data acknowledgement prob-
lem which has smaller competitive ratio than 2.

Proof Consider an arbitrary on-line algorithm and denote it by ONL. Analyse the

10.3. Models related to computer networks 441

following input. Consider a long sequence of packets where the packets always arrive
immediately after the time when ONL sends an acknowledgement. The on-line cost
of a sequence containing 2n packets is ONL(I2n) = 2n + t2n, since the cost resulted
from the acknowledgements is 2n, and the latency of the i-th acknowledgement is
ti − ti−1, where the value t0 = 0 is used.

Consider the following two on-line algorithms. ODD sends the acknowledge-
ments after the odd numbered packets and EVEN sends the acknowledgements
after the even numbered packets.

The costs achieved by these algorithms are

EVEN(I2n) = n +
n−1
∑

i=0

(t2i+1 − t2i) ,

and

ODD = n + 1 +
n

∑

i=1

(t2i − t2i−1) .

Therefore EVEN(I2n) + ODD(I2n) = ONL(I2n) + 1. On the other hand,
none of the costs achieved by ODD and EVEN is greater than the optimal
off-line cost, thus OPT(I2n) ≤ min{EVEN(I2n), ODD(I2n)}, which yields that
ONL(I2n)/OPT(I2n) ≥ 2 − 1/OPT(I2n). From this inequality it follows that the
competitive ratio of ONL is not smaller than 2, because using a sufficiently long
sequence of packets the value OPT(I2n) can be arbitrarily large.

10.3.2. The file caching problem

The file caching problem is a generalisation of the caching problem presented in the
chapter on memory management. World-wide-web browsers use caches to store some
files. This makes it possible to use the stored files if a user wants to see some web-
page many times during a short time interval. If the cache becomes full, then some
files must be eliminated to make space for the new file. The file caching problem
models this scenario; the goal is to find good strategies for determining which files
should be eliminated. It differs from the standard paging problem in the fact that
the files have size and retrieval cost (the problem is reduced to the paging if each
size and each retrieval cost are 1). So the following mathematical model describes
the problem.

There is a given cache of size k and the input is a sequence of pages. Each page p
has a size denoted by s(p) and a retrieval cost denoted by c(p). The pages arrive
from a list one by one and after the arrival of a page the algorithm has to place it
into the cache. If the page is not contained in the cache and there is not enough
space to put it into the cache, then the algorithm has to delete some pages from the
cache to make enough space for the requested page. If the required page is in the
cache, then the cost of serving the request is 0, otherwise the cost is c(p). The aim is
to minimise the total cost. The problem is on-line which means that for the decisions
(which pages should be deleted from the cache) only the earlier pages and decisions

442 10. Competitive Analysis

can be used, the algorithm has no information about the further pages. We assume
that the size of the cache and also the sizes of the pages are positive integers.

For the solution of the problem and for its special cases many algorithms have
been developed. Here we present algorithm Landlord which was developed by
Young.

The algorithm stores a credit value 0 ≤ cr(f) ≤ c(f) for each page f which is
contained in the current cache. In the rest of the section the set of the pages in the
current cache of Landlord is denoted by LA. If Landlord has to retrieve a page
g then the following steps are performed.

Landlord(LA, g)

1 if g is not contained in LA
2 then while there is not enough space for g
3 do ∆← minf∈LA cr(f)/s(f)
4 for each f ∈ LA let cr(f)← cr(f)−∆ · s(f)
5 evict some pages with cr(f) = 0
6 place g into cache LA and let cr(g)← c(g)
7 else reset cr(g) to any value between cr(g) and c(g)

Example 10.5 Suppose that k = 10 and LA contains the following three pages: g1 with
s(g1) = 2, cr(g1) = 1, g2 with s(g2) = 4, cr(g2) = 3 and g3 with s(g3) = 3, cr(g3) = 3.
Suppose that the next requested page is g4, with parameters s(g4) = 4 and c(g4) = 4.
Therefore, there is not enough space for it in the cache, so some pages must be evicted.
Landlord determines the value ∆ = 1/2 and changes the credits as follows: cr(g1) =
0, cr(g2) = 1 and cr(g3) = 3/2, thus g1 is evicted from cache LA. There is still not enough
space for g4 in the cache. The new ∆ value is ∆ = 1/4 and the new credits are: cr(g2) =
0, cr(g3) = 3/4, thus g2 is evicted from the cache. Then there is enough space for g4, thus
it is placed into cache LA with the credit value cr(g4) = 4.

Landlord is weakly k-competitive, but a stronger statement is also true. For
the web caching problem an on-line algorithm ALG is called (C, k, h)-competitive,
if there exists such a constant B, that ALGk(I) ≤ C ·OPTh(I)+B is valid for each
input, where ALGk(I) is the cost of ALG using a cache of size k and OPTh(I) is
the optimal off-line cost using a cache of size h. The following statement holds for
algorithm Landlord.

Theorem 10.7 If h ≤ k, then algorithm Landlord is (k/(k − h + 1), k, h)-
competitive.

Proof Consider an arbitrary input sequence of pages and denote the input by I.
We use the potential function technique. During the analysis of the procedure we
suppose that an off-line optimal algorithm with cache size h and Landlord with
cache size k are running parallel on the input. We also suppose that each page is
placed first into the off-line cache by the off-line algorithm and then it is placed into
LA by the on-line algorithm. We denote the set of the pages contained in the actual
cache of the optimal off-line algorithm by OPT. Consider the following potential
function:

10.3. Models related to computer networks 443

Φ = (h− 1)
∑

f∈LA

cr(f) + k
∑

f∈OPT

(c(f)− cr(f)) .

The changes of the potential function during the different steps are as follows.

• OPT places g into its cache.

In this case OPT has cost c(g). In the potential function only the second part
may change. On the other hand, cr(g) ≥ 0, thus the increase of the potential
function is at most k · c(g).

• Landlord decreases the credit value for each f ∈ LA.

In this case for each f ∈ LA the decrease of cr(f) is ∆ · s(f), thus the decrease
of Φ is

∆((h− 1)s(LA)− ks(OPT ∩ LA)) ,

where s(LA) and s(OPT∩LA) denote the total size of the pages contained in sets
LA and OPT∩LA, respectively. At the time when this step is performed, OPT
have already placed page g into its cache OPT , but the page is not contained
in cache LA. Therefore s(OPT ∩ LA) ≤ h − s(g). On the other hand, this step
is performed if there is not enough space for the page in LA thus s(LA) >
k − s(g), which yields s(LA) ≥ k − s(g) + 1, because the sizes are positive
integers. Therefore we obtain that the decrease of Φ is at least

∆
(

(h− 1)(k − s(g) + 1)− k(h− s(g))
)

.

Since s(g) ≥ 1 and k ≥ h, this decrease is at least ∆((h−1)(k−1+1)−k(h−1)) =
0.

• Landlord evicts a page f from cache LA.

Since Landlord only evicts pages having credit 0, during this step Φ remains
unchanged.

• Landlord places page g into cache LA and sets the value cr(g) = c(g).

The cost of Landlord is c(g). On the other hand, g was not contained in cache
LA before the performance of this step, thus cr(g) = 0 was valid. Furthermore,
first OPT places the page into its cache, thus g ∈ OPT is also valid. Therefore
the decrease of Φ is −(h− 1)c(g) + kc(g) = (k − h + 1)c(g).

• Landlord resets the credit of a page g ∈ LA to a value between cr(g) and c(g).

In this case g ∈ OPT is valid, since OPT places page g into its cache first. Value
cr(g) is not decreased and k > h− 1, thus Φ can not increase during this step.

Hence the potential function has the following properties..

• If OPT places a page into its cache, then the increase of the potential function
is at most k times more than the cost of OPT.

• If Landlord places a page into its cache, then the decrease of Φ is (k − h + 1)
times more than the cost of Landlord.

444 10. Competitive Analysis

• During the other steps Φ does not increase.

By the above properties we obtain that Φf − Φ0 ≤ k ·OPTh(I)− (k − h + 1) ·
Landlordk(I), where Φ0 and Φf are the starting and final values of the potential
function. The potential function is nonnegative, thus we obtain that (k − h + 1) ·
Landlordk(I) ≤ k ·OPTh(I) + Φ0, which proves that Landlord is (k/(k − h +
1), k, h)-competitive.

10.3.3. On-line routing

In computer networks the congestion of the communication channels decreases the
speed of the communication and may cause loss of information. Thus congestion
control is one of the most important problems in the area of computer networks. A
related important problem is the routing of the communication, where we have to
determine the path of the messages in the network. Since we have no information
about the further traffic of the network, thus routing is an on-line problem. Here
we present two on-line optimisation models for the routing problem.

The mathematical model

The network is given by a graph, each edge e has a maximal available bandwidth
denoted by u(e) and the number of edges is denoted by m. The input is a sequence
of requests, where the j-th request is given by a vector (sj , tj , rj , dj , bj) which means
that to satisfy the request bandwidth rj must be reserved on a path from sj to tj for
time duration dj and the benefit of serving a request is bj . Hereafter, we assume that
dj =∞, and we omit the value of dj from the requests. The problem is on-line which
means that after the arrival of a request the algorithm has to make the decisions
without any information about the further requests. We consider the following two
models.

Load balancing model: In this model all requests must be satisfied. Our aim is
to minimise the maximum of the overload of the edges. The overload is the ratio of
the total bandwidth assigned to the edge and the available bandwidth. Since each
request is served, thus the benefit is not significant in this model.

Throughput model: In this model the decision maker is allowed to reject some
requests. The sum of the bandwidths reserved on an edge can not be more than the
available bandwidth. The goal is to maximise the sum of the benefits of the accepted
requests. We investigate this model in details. It is important to note that this is a
maximisation problem thus the notion of competitiveness is used in the form defined
for maximisation problems.

Below we define the exponential algorithm. We need the following notations
to define and analyse the algorithm. Let Pi denote the path which is assigned to
the accepted request i. Let A denote the set of requests accepted by the on-line
algorithm. In this case le(j) =

∑

i∈A,i<j,e∈Pi
ri/u(e) is the ratio of the total reserved

bandwidth and the available bandwidth on e before the arrival of request j.
The basic idea of the exponential algorithm is the following. The algorithm

assigns a cost to each e, which is exponential in le(j) and chooses the path which

10.3. Models related to computer networks 445

has the minimal cost. Below we define and analyse the exponential algorithm for
the throughput model. Let µ be a constant which depends on the parameters of
the problem; its value will be given later. Let ce(j) = µle(j), for each request j and
edge e. The exponential algorithm performs the following steps after the arrival of
a request (sj , tj , rj , bj).

EXP(sj , tj , rj , bj)

1 let Uj be the set of the paths (sj , tj)
2 Pj ← argminP ∈Uj

{
∑

e∈P
rj

u(e) ce(j)}

3 if C(Pj) =
∑

e∈Pj

rj

u(e) ce(j) ≤ 2mbj

4 then reserve bandwidth rj on path Pj

5 else reject the request

Note. If we modify this algorithm to accept each request, then we obtain an
exponential algorithm for the load balancing model.

Example 10.6 Consider the network which contains vertices A, B, C, D and edges
(A, B), (B, D), (A, C), (C, D), where the available bandwidths of the edges are u(A, B) =
1, u(B, D) = 3/2, u(A, C) = 2, u(C, D) = 3/2. Suppose that µ = 10 and that the reserved
bandwidths are: 3/4 on path (A, B, D), 5/4 on path (A, C, D), 1/2 on path (B, D), 1/2 on
path (A, C). The next request j is to reserve bandwidth 1/8 on some path between A and D.
Therefore values le(j) are: l(A,B)(j) = (3/4) : 1 = 3/4, l(B,D)(j) = (3/4+1/2) : (3/2) = 5/6,
l(A,C)(j) = (5/4 + 1/2) : 2 = 7/8, l(C,D)(j) = (5/4) : (3/2) = 5/6. There are two paths
between A and D and the costs are:

C(A, B, D) = 1/8 · 103/4 + 1/12 · 105/6 = 1.269 ,

C(A, C, D) = 1/16 · 107/8 + 1/12 · 105/6 = 1.035 .

The minimal cost belongs to path (A, C, D). Therefore, if 2mbj = 8bj ≥ 1, 035, then
the request is accepted and the bandwidth is reserved on path (A, C, D). Otherwise the
request is rejected.

To analyse the algorithm consider an arbitrary input sequence I. Let A denote
the set of the requests accepted by EXP, and A∗ the set of the requests which
are accepted by OPT and rejected by EXP. Furthermore let Pj

∗ denote the path
reserved by OPT for each request j accepted by OPT. Define the value le(v) =
∑

i∈A,e∈Pi
ri/u(e) for each e, which value gives the ratio of the reserved bandwidth

and the available bandwidth for e at the end of the on-line algorithm. Furthermore,
let ce(v) = µle(v) for each e.

Let µ = 4mPB, where B is an upper bound on the benefits and for each request
and each edge the inequality

1

P
≤

r(j)

u(e)
≤

1

lg µ

is valid. In this case the following statements hold.

Lemma 10.8 The solution given by algorithm EXP is feasible, i.e. the sum of the

446 10. Competitive Analysis

reserved bandwidths is not more than the available bandwidth for each edge.

Proof We prove the statement by contradiction. Suppose that there is an edge f
where the available bandwidth is violated. Let j be the first accepted request which
violates the available bandwidth on f .

The inequality rj/u(f) ≤ 1/ lg µ is valid for j and f (it is valid for all edges and
requests). Furthermore, after the acceptance of request j the sum of the bandwidths
is greater than the available bandwidth on edge f , thus we obtain that lf (j) >
1− 1/ lg µ. On the other hand, this yields that the inequality

C(Pj) =
∑

e∈Pj

rj

u(e)
ce(j) ≥

rj

u(f)
cf (j) >

rj

u(f)
µ1−1/ lg µ

holds for value C(Pj) used in algorithm EXP. Using the assumption on P we obtain
that

rj

u(e) ≥
1
P , and µ1−1/ lg µ = µ/2, thus from the above inequality we obtain that

C(P) >
1

P

µ

2
= 2mB .

On the other hand, this inequality is a contradiction, since EXP would reject the
request. Therefore we obtained a contradiction thus we proved the statement of the
lemma.

Lemma 10.9 For the solution given by OPT the following inequality holds:

∑

j∈A∗

bj ≤
1

2m

∑

e∈E

ce(v) .

Proof Since EXP rejected each j ∈ A∗, thus bj < 1
2m

∑

e∈Pj
∗

rj

u(e) ce(j) for each

j ∈ A∗, and this inequality is valid for all paths between sj and tj . Therefore

∑

j∈A∗

bj <
1

2m

∑

j∈A∗

∑

e∈Pj
∗

rj

u(e)
ce(j) .

On the other hand, ce(j) ≤ ce(v) holds for each e, thus we obtain that

∑

j∈A∗

bj <
1

2m

∑

e∈E

ce(v)
(

∑

j∈A∗:e∈Pj
∗

rj

u(e)

)

.

The sum of the bandwidths reserved by OPT is at most the available bandwidth
u(e) for each e, thus

∑

j∈A∗:e∈P ∗(j)
rj

u(e) ≤ 1.

Consequently,

∑

j∈A∗

bj ≤
1

2m

∑

e∈E

ce(v) ,

which inequality is the one which we wanted to prove.

10.3. Models related to computer networks 447

Lemma 10.10 For the solution given by algorithm EXP the following inequality
holds:

1

2m

∑

e∈E

ce(v) ≤ (1 + lg µ)
∑

j∈A

bj .

Proof It is enough to show that the inequality
∑

e∈Pj
(ce(j+1)−ce(j)) ≤ 2mbj log2 µ

is valid for each request j ∈ A. On the other hand,

ce(j + 1)− ce(j) = µle(j)+
rj

u(e) − µle(j) = µle(j)(2log2 µ
rj

u(e) − 1) .

Since 2x−1 < x, if 0 ≤ x ≤ 1, and because of the assumptions 0 ≤ log2 µ
rj

u(e) ≤ 1,

we obtain that
ce(j + 1)− ce(j) ≤ µle(j) log2 µ

rj

u(e)
.

Summarising the bounds given above we obtain that

∑

e∈Pj

(ce(j + 1)− ce(j)) ≤ log2 µ
∑

e∈Pj

µle(j) rj

u(e)
= log2 µ · C(Pj) .

Since EXP accepts the requests with the property C(Pj) ≤ 2mbj , the above in-
equality proves the required statement.

With the help of the above lemmas we can prove the following theorem.

Theorem 10.11 Algorithm EXP is Ω(1/ lg µ)-competitive, if µ = 4mPB, where
B is an upper bound on the benefits, and for all edges and requests

1

P
≤

r(j)

u(e)
≤

1

lg µ
.

Proof From Lemma 10.8 it follows that the algorithm results in a feasible solution
where the available bandwidths are not violated. Using the notations defined above
we obtain that the benefit of algorithm EXP on the input I is EXP(I) =

∑

j∈A bj ,
and the benefit of OPT is at most

∑

j∈A∪A∗ bj . Therefore by Lemma 10.9 and
Lemma 10.10 it follows that

OPT(I) ≤
∑

j∈A∪A∗

bj ≤ (2 + log2 µ)
∑

j∈A

bj ≤ (2 + log2 µ)EXP(I) ,

which inequality proves the theorem.

Exercises
10.3-1 Consider the modified version of the data acknowledgement problem with
the objective function k +

∑k
j=1 µj , where k is the number of acknowledgements and

µj = maxtj−1<ai≤tj
{tj − ai} is the maximal latency of the j-th acknowledgement.

Prove that algorithm Alarm is also 2-competitive in this modified model.

448 10. Competitive Analysis

10.3-2 Represent the special case of the web caching problem, where s(g) = c(g) = 1
for each page g as a special case of the k-server problem. Define the metric space
which can be used.
10.3-3 In the web caching problem cache LA of size 8 contains three pages a, b, c
with the following sizes and credits: s(a) = 3, s(b) = 2, s(c) = 3, cr(a) = 2, cr(b) =
1/2, cr(c) = 2. We want to retrieve a page d of size 3 and retrieval cost 4. The optimal
off-line algorithm OPT with cache of size 6 already placed the page into its cache,
so its cache contains the pages d and c. Which pages are evicted by Landlord to
place d? In what way does the potential function defined in the proof of Theorem
10.7 change?
10.3-4 Prove that if in the throughput model no bounds are given for the ratios
r(j)/u(e), then there is no constant-competitive on-line algorithm.

10.4. On-line bin packing models

In this section we consider the on-line bin packing problem and its multidimensional
generalisations. First we present some fundamental results of the area. Then we
define the multidimensional generalisations and present some details from the area
of on-line strip packing.

10.4.1. On-line bin packing

In the bin packing problem the input is a list of items, where the i-th item is given
by its size ai ∈ (0, 1]. The goal is to pack the items into unit size bins and minimise
the number of the bins used. In a more formal way we can say that we have to divide
the items into groups where each group has the property that the total size of its
items is at most 1, and the goal is to minimise the number of groups. This problem
appears also in the area of memory management.

In this section we investigate the on-line problem which means that the decision
maker has to make decisions about the packing of the i-th item based on values
a1, . . . , ai without any information about the further items.

Algorithm Next-Fit, bounded space algorithms

First we consider the model where the number of the open bins is limited. The
k-bounded space model means that if the number of open bins reaches bound k,
then the algorithm can open a new bin only after closing some of the bins, and
the closed bins cannot be used for packing further items into them. If only one
bin can be open, then the evident algorithm packs the item into the open bin if it
fits, otherwise it closes the bin, opens a new one and puts the item into it. This
algorithm is called Next-Fit (NF) algorithm. We do not present the pseudocode
of the algorithm, since it can be found in this book in the chapter about memory
management. The asymptotic competitive ratio of algorithm NF is determined by
the following theorem.

Theorem 10.12 The asymptotic competitive ratio of NF is 2.

10.4. On-line bin packing models 449

Proof Consider an arbitrary sequence of items, denote it by σ. Let n denote the
number of bins used by OPT and m the number of bins used by NF. Furthermore,
let Si, i = 1, . . . , m denote the total size of the items packed into the i-th bin by
NF.

Then Si + Si+1 > 1, since in the opposite case the first item of the (i + 1)-th bin
fits into the i-th bin which contradicts to the definition of the algorithm. Therefore
the total size of the items is more than bm/2c.

On the other hand the optimal off-line algorithm cannot put items with total
size more than 1 into the same bin, thus we obtain that n > bm/2c. This yields that
m ≤ 2n− 1, thus

NF(σ)

OPT(σ)
≤

2n− 1

n
= 2− 1/n .

Consequently, we proved that the algorithm is asymptotically 2-competitive.
Now we prove that the bound is tight. Consider the following sequence for each

n denoted by σn. The sequence contains 4n−2 items, the size of the 2i−1-th item is
1/2, the size of the 2i-th item is 1/(4n−2), i = 1, . . . , 2n−1. Algorithm NF puts the
(2i− 1)-th and the 2i-th items into the i-th bin for each bin, thus NF(σn) = 2n− 1.
The optimal off-line algorithm puts pairs of 1/2 size items into the first n−1 bins and
it puts one 1/2 size item and the small items into the n-th bin, thus OPT(σn) = n.
Since NF(σn)/OPT(σn) = 2 − 1/n and this function tends to 2 as n tends to ∞,
we proved that the asymptotic competitive ratio of the algorithm is at least 2.

If k > 1, then there are better algorithms than NF for the k-bounded space
model. The best known bounded space on-line algorithms belong to the family of
harmonic algorithms, where the basic idea is that the interval (0, 1] is divided
into subintervals and each item has a type which is the subinterval of its size.
The items of the different types are packed into different bins. The algorithm runs
several NF algorithms simultaneously; each for the items of a certain type.

Algorithm First-Fit and the weight function technique

In this section we present the weight function technique which is often used
in the analysis of the bin packing algorithms. We show this method by analysing
algorithm First-Fit (FF).

Algorithm FF can be used when the number of open bins is not bounded. The
algorithm puts the item into the first opened bin where it fits. If the item does not
fit into any of the bins, then a new bin is opened and the algorithm puts the item
into it. The pseudocode of the algorithm is also presented in the chapter of memory
management. The asymptotic competitive ratio of the algorithm is bounded above
by the following theorem.

Theorem 10.13 FF is asymptotically 1.7-competitive.

Proof In the proof we use the weight function technique whose idea is that a weight
is assigned to each item to measure in some way how difficult it can be to pack
the certain item. The weight function and the total size of the items are used to

450 10. Competitive Analysis

bound the off-line and on-line objective function values. We use the following weight
function:

w(x) =

6x/5, if 0 ≤ x ≤ 1/6

9x/5− 1/10, if 1/6 ≤ x ≤ 1/3

6x/5 + 1/10, if 1/3 ≤ x ≤ 1/2

6x/5 + 2/5, if 1/2 < x .

Let w(H) =
∑

i∈H w(ai) for any set H of items. The properties of the weight
function are summarised in the following two lemmas. Both lemmas can be proven
by case disjunction based on the sizes of the possible items. The proofs are long and
contain many technical details, therefore we omit them.

Lemma 10.14 If
∑

i∈H ai ≤ 1 is valid for a set H of items, then w(H) ≤ 17/10
also holds.

Lemma 10.15 For an arbitrary list L of items w(L) ≥ FF(L)− 2.

Using these lemmas we can prove that the algorithm is asymptotically 1.7-
competitive. Consider an arbitrary list L of items. The optimal off-line algorithm
can pack the items of the list into OPT(L) bins. The algorithm packs items
with total size at most 1 into each bin, thus from Lemma 10.14 it follows that
w(L) ≤ 1.7OPT(L). On the other hand considering Lemma 10.15 we obtain that
FF(L)− 2 ≤ w(L), which yields that FF (L) ≤ 1.7OPT(L) + 2, and this inequality
proves that the algorithm is asymptotically 1.7-competitive.

It is important to note that the bound is tight, i.e. it is also true that the
asymptotic competitive ratio of FF is 1.7. Many algorithms have been developed
with smaller asymptotic competitive ratio than 17/10, the best algorithm known at
present time is asymptotically 1.5888-competitive.

Lower bounds

In this part we consider the techniques for proving lower bounds on the possible
asymptotic competitive ratio. First we present a simple lower bound and then we
show how the idea of the proof can be extended into a general method.

Theorem 10.16 No on-line algorithm for the bin packing problem can have
smaller asymptotic competitive ratio than 4/3.

Proof Let A be an arbitrary on-line algorithm. Consider the following sequence of
items. Let ε < 1/12 and L1 be a list of n items of size 1/3 + ε, and L2 be a list
of n items of size 1/2 + ε. The input is started by L1. Then A packs two items
or one item into the bins. Denote the number of bins containing two items by k.
In this case the number of the used bins is A(L1) = k + n − 2k = n − k. On the
other hand, the optimal off-line algorithm can pack pairs of items into the bins, thus
OPT(L1) = dn/2e.

Now suppose that the input is the combined list L1L2. The algorithm is an on-
line algorithm, therefore it does not know whether the input is L1 or L1L2 at the

10.4. On-line bin packing models 451

beginning, thus it also uses k bins for packing two items from the part L1. Therefore
among the items of size 1/2 + ε only n − 2k can be paired with earlier items and
the other ones need separate bin. Thus A(L1L2) ≥ n− k + (n− (n− 2k)) = n + k.
On the other hand, the optimal off-line algorithm can pack a smaller (size 1/3 + ε)
item and a larger (size 1/2 + ε) item into each bin, thus OPT(L1L2) = n.

So we obtained that there is a list for algorithm A where

A(L)/OPT(L) ≥ max

{

n− k

n/2
,

n + k

n

}

≥ 4/3 .

Moreover for the above constructed lists OPT(L) is at least dn/2e, which can be
arbitrarily great. This yields that the above inequality proves that the asymptotic
competitive ratio of A is at least 4/3, and this is what we wanted to prove.

The fundamental idea of the above proof is that a long sequence (in this proof
L1L2) is considered, and depending on the behaviour of the algorithm a prefix of
the sequence is selected as input for which the ratio of the costs is maximal. It is
an evident extension to consider more difficult sequences. Many lower bounds have
been proven based on different sequences. On the other hand, the computations
which are necessary to analyse the sequence have become more and more difficult.
Below we show how the analysis of such sequences can be interpreted as a mixed
integer programming problem, which makes it possible to use computers to develop
lower bounds.

Consider the following sequence of items. Let L = L1L2 . . . Lk, where Li contains
ni = αin identical items of size ai. If algorithm A is asymptotically C-competitive,
then the inequality

C ≥ lim sup
n→∞

A(L1 . . . Lj)

OPT(L1 . . . Lj)

is valid for each j. It is enough to consider an algorithm for which the technique can
achieve the minimal lower bound, thus our aim is to determine the value

R = minAmaxj=1,...,k lim sup
n→∞

A(L1 . . . Lj)

OPT(L1 . . . Lj)
,

which value gives a lower bound on the possible asymptotic competitive ratio. We
can determine this value as an optimal solution of a mixed integer programming
problem. To define this problem we need the following definitions.

The contain of a bin can be described by the packing pattern of the bin, which
gives that how many elements are contained in the bin from each subsequence. For-
mally, a packing pattern is a k-dimensional vector (p1, . . . , pk), where coordinate
pj is the number of elements contained in the bin from subsequence Lj . For the

packing patterns the constraint
∑k

j=1 ajpj ≤ 1 must hold. (This constraint ensures
that the items described by the packing pattern fit into the bin.)

Classify the set T of the possible packing patterns. For each j let Tj be the set
of the patterns for which the first positive coordinate is the j-th one. (Pattern p
belongs to class Tj if pi = 0 for each i < j and pj > 0.)

452 10. Competitive Analysis

Consider the packing produced by A. Each bin is packed by some packing pat-
tern, therefore the packing can be described by the packing patterns. For each p ∈ T
denote the number of bins which are packed by the pattern p by n(p). The packing
produced by the algorithm is given by variables n(p).

Observe that the bins which are packed by a pattern from class Tj receive their
first element from subsequence Lj . Therefore we obtain that the number of bins
opened by A to pack the elements of subsequence L1 . . . Lj can be given by variables
n(p) as follows:

A(L1 . . . Lj) =

j
∑

i=1

∑

p∈Ti

n(p) .

Consequently, for a given n the required value R can be determined by the
solution of the following mixed integer programming problem.

Min R
∑

p∈T pjn(p) = nj , 1 ≤ j ≤ k,
∑j

i=1

∑

p∈Ti
n(p) ≤ R ·OPT(L1 . . . Lj), 1 ≤ j ≤ k,

n(p) ∈ {0, 1, . . . }, p ∈ T.

The first k constraints describe that the algorithm has to pack all items. The
second k constraints describe that R is at least as large as the ratio of the on-line
and off-line costs for the subsequences considered.

The set T of the possible packing patterns and also the optimal solutions
OPT (L1 . . . Lj) can be determined by the list L1L2 . . . Lk.

In this problem the number and the value of the variables can be large, thus
instead of the problem its linear programming relaxation is considered. Moreover,
we are interested in the solution under the assumption that n tends to ∞ and it
can be proven that the integer programming and the linear programming relaxation
give the same bound in this case.

The best currently known bound was proven by this method and it states that
no on-line algorithm can have smaller asymptotic competitive ratio than 1.5401.

10.4.2. Multidimensional models

The bin packing problem has three different multidimensional generalisations: the
vector packing, the box packing and the strip packing models. We consider only
the strip packing problem in details. For the other generalisations we give only
the model. In the vector packing problem the input is a list of d-dimensional
vectors, and the algorithm has to pack these vectors into the minimal number of
bins. A packing is legal for a bin if for each coordinate the sum of the values of the
elements packed into the bin is at most 1. In the on-line version the vectors are
coming one by one and the algorithm has to assign the vectors to the bins without
any information about the further vectors. In the box packing problem the input
is a list of d-dimensional boxes and the goal is to pack the items into the minimal
number of d-dimensional unit cube without overlapping. In the on-line version the

10.4. On-line bin packing models 453

items are coming one by one and the algorithm has to pack them into the cubes
without any information about the further items.

On-line strip packing

In the strip packing problem there is a set of two dimensional rectangles,
defined by their widths and heights, and the task is to pack them into a vertical strip
of width w without rotation minimising the total height of the strip. We assume
that the widths of the rectangles is at most w and the heights of the rectangles is
at most 1. This problem appears in many situations. Usually, scheduling of tasks
with shared resource involves two dimensions, namely the resource and the time.
We can consider the widths as the resources and the heights as the times. Our goal
is to minimise the total amount of time used. Some applications can be found in
computer scheduling problems. We consider the on-line version where the rectangles
arrive from a list one by one and we have to pack each rectangle into the vertical
strip without any information about the further items. Most of the algorithms
developed for the strip packing problem belong to the class of shelf algorithms. We
consider this family of algorithms below.

Shelf algorithms

A basic way of packing into the strip is to define shelves and pack the rectangles
onto the shelves. By shelf we mean a rectangular part of the strip. Shelf packing
algorithms place each rectangle onto one of the shelves. If the algorithm decides
which shelf will contain the rectangle, then the rectangle is placed onto the shelf as
much to the left as it is possible without overlapping the other rectangles placed
onto the shelf earlier. Therefore, after the arrival of a rectangle, the algorithm has
to make two decisions. The first decision is whether to create a new shelf or not. If
the algorithm creates a new shelf, it also has to decide the height of the new shelf.
The created shelves always start from the top of the previous shelf. The first shelf is
placed to the bottom of the strip. The algorithm also has to choose which shelf to
put the rectangle onto. Hereafter we will say that it is possible to pack a rectangle
onto a shelf, if there is enough room for the rectangle on the shelf. It is obvious that
if a rectangle is higher than a shelf, we cannot place it onto the shelf.

We consider only one algorithm in details. This algorithm was developed and
analysed by Baker and Schwarz in 1983 and it is called Next-Fit-Shelf (NFSr)
algorithm. The algorithm depends on a parameter r < 1. For each j there is at most
one active shelf with height rj . We define how the algorithm works below.

After the arrival of a rectangle pi = (wi, hi) choose a value for k which satisfies
rk+1 < hi ≤ rk. If there is an active shelf with height rk and it is possible to pack
the rectangle onto it, then pack it there. If there is no active shelf with height rk,
or it is not possible to pack the rectangle onto the active shelf with height rk, then
create a new shelf with height rk, put the rectangle onto it, and let this new shelf
be the active shelf with height rk (if we had an active shelf with height rk earlier,
then we close it).

Example 10.7 Let r = 1/2. Suppose that the size of the first item is (w/2, 3/4). Therefore,
it is assigned to a shelf of height 1. We define a shelf of height 1 at the bottom of the strip;

454 10. Competitive Analysis

this will be the active shelf with height 1 and we place the item into the left corner of this
shelf. Suppose that the size of the next item is (3w/4, 1/4). In this case it is placed onto
a shelf of height 1/4. There is no active shelf with this height so we define a new shelf of
height 1/4 on the top of the previous shelf. This will be the active shelf of height 1/4 and
the item is placed onto its left corner. Suppose that the size of the next item is (3w/4, 5/8).
This item is placed onto a shelf of height 1. It is not possible to pack it onto the active
shelf, thus we close the active shelf and we define a new shelf of height 1 on the top of the
previous shelf. This will be the active shelf of height 1 and the item is placed into its left
corner. Suppose that the size of the next item is (w/8, 3/16). This item is placed onto a
shelf of height 1/4. We can pack it onto the active shelf of height 1/4, thus we pack it onto
that shelf as left as it is possible.

For the competitive ratio of NFSr the following statements are valid.

Theorem 10.17 Algorithm NFSr is
(

2
r + 1

r(1−r)

)

-competitive. Algorithm NFSr is

asymptotically 2/r-competitive.

Proof First we prove that the algorithm is
(

2
r + 1

r(1−r)

)

-competitive. Consider an

arbitrary list of rectangles and denote it by L. Let HA denote the sum of the heights
of the shelves which are active at the end of the packing, and let HC be the sum
of the heights of the other shelves. Let h be the height of the highest active shelf
(h = rj for some j), and let H be the height of the highest rectangle. Since the
algorithm created a shelf with height h, we have H > rh. As there is at most 1
active shelf for each height,

HA ≤ h

∞
∑

i=0

ri =
h

1− r
≤

H

r(1− r)
.

Consider the shelves which are not active at the end. Consider the shelves of
height hri for each i, and denote the number of the closed shelves by ni. Let S be
one of these shelves with height hri. The next shelf S′ with height hri contains one
rectangle which would not fit onto S. Therefore, the total width of the rectangles
is at least w. Furthermore, the height of these rectangles is at least hri+1, thus
the total area of the rectangles packed onto S and S′ is at least hwri+1. If we
pair the shelves of height hri for each i in this way, using the active shelf if the
number of the shelves of the considered height is odd, we obtain that the total
area of the rectangles assigned to the shelves of height hri is at least wnihri+1/2.
Thus the total area of the rectangles is at least

∑∞

i=0 wnihri+1/2, and this yields
that OPT(L) ≥

∑∞

i=0 nihri+1/2. On the other hand, the total height of the closed
shelves is HZ =

∑∞

i=0 nihri, and we obtain that HZ ≤ 2OPT(L)/r.
Since OPT(L) ≥ H is valid we proved the required inequality

NFSr(L) ≤ OPT(L)(2/r + 1/r(1− r)) .

Since the heights of the rectangles are bounded by 1, H and HA are bounded
by a constant, so we obtain the result about the asymptotic competitive ratio im-
mediately.

10.5. On-line scheduling 455

Besides this algorithm some other shelf algorithms have been investigated for
the solution of the problem. We can interpret the basic idea of NFSr as follows. We
define classes of items belonging to types of shelves, and the rectangles assigned to
the classes are packed by the classical bin packing algorithm NF. It is an evident idea
to use other bin packing algorithms. The best shelf algorithm known at present time
was developed by Csirik and Woeginger in 1997. That algorithm uses the harmonic
bin packing algorithm to pack the rectangles assigned to the classes.

Exercises
10.4-1 Suppose that the size of the items is bounded above by 1/3. Prove that
under this assumption the asymptotic competitive ratio of NF is 3/2.
10.4-2 Suppose that the size of the items is bounded above by 1/3. Prove Lemma
10.15 under this assumption.
10.4-3 Suppose that the sequence of items is given by a list L1L2L3, where L1

contains n items of size 1/2, L2 contains n items of size 1/3, L3 contains n items of
size 1/4. Which packing patterns can be used? Which patterns belong to class T2?

10.4-4 Consider the version of the strip packing problem where one can lengthen
the rectangles keeping the area fixed. Consider the extension of NFSr which lengthen
the rectangles before the packing to the same height as the shelf which is chosen to
pack them onto. Prove that this algorithm is 2 + 1

r(1−r) -competitive.

10.5. On-line scheduling

The area of scheduling theory has a huge literature. The first result in on-line schedul-
ing belongs to Graham, who analysed the List scheduling algorithm in 1966. We can
say that despite of the fact that Graham did not use the terminology which was de-
veloped in the area of the on-line algorithms, and he did not consider the algorithm
as an on-line algorithm, he analysed it as an approximation algorithm.

From the area of scheduling we only recall the definitions which are used in this
chapter.

In a scheduling problem we have to find an optimal schedule of jobs. We consider
the parallel machines case, where m machines are given, and we can use them to
schedule the jobs. In the most fundamental model each job has a known processing
time and to schedule the job we have to assign it to a machine, and we have to give
its starting time and a completion time, where the difference between the completion
time and the starting time is the processing time. No machine may simultaneously
run two jobs.

Concerning the machine environment three different models are considered. If
the processing time of a job is the same for each machine, then we call the machines
identical machines. If each machine has a speed si, the jobs have a processing weight
pj and the processing time of job j on the i-th machine is pj/si, then we call the
machines related machines. If the processing time of job j is given by an arbitrary
positive vector Pj = (pj(1), . . . , pj(m)), where the processing time of the job on the
i-th machine is pj(i), then we call the machines unrelated machines.

456 10. Competitive Analysis

Many objective functions are considered for scheduling problems, but here we
consider only such models where the goal is the minimisation of the makespan (the
maximal completion time).

In the next subsection we define the two most fundamental on-line scheduling
models, and in the following two subsections we consider these models in details.

10.5.1. On-line scheduling models

Probably the following models are the most fundamental examples of on-line machine
scheduling problems.

LIST model

In this model we have a fixed number of machines denoted by M1, M2, . . . , Mm,
and the jobs arrive from a list. This means that the jobs and their processing times
are revealed to the on-line algorithm one by one. When a job is revealed, the on-line
algorithm has to assign the job to a machine with a starting time and a completion
time irrevocably.

By the load of a machine, we mean the sum of the processing times of all jobs
assigned to the machine. Since the objective function is to minimise the maximal
completion time, it is enough to consider the schedules where the jobs are scheduled
on the machines without idle time. For these schedules the maximal completion
time is the load for each machine. Therefore this scheduling problem is reduced to
a load balancing problem, i.e. the algorithm has to assign the jobs to the machines
minimising the maximum load, which is the makespan in this case.

Example 10.8 Consider the LIST model and two identical machines. Consider the follow-
ing sequence of jobs where the jobs are given by their processing time: I = {j1 = 4, j2 =
3, j3 = 2, j4 = 5}. The on-line algorithm first receives job j1 from the list, and the algorithm
has to assign this job to one of the machines. Suppose that the job is assigned to machine
M1. After that the on-line algorithm receives job j2 from the list, and the algorithm has
to assign this job to one of the machines. Suppose that the job is assigned to machine
M2. After that the on-line algorithm receives job j3 from the list, and the algorithm has
to assign this job to one of the machines. Suppose that the job is assigned to machine
M2. Finally, the on-line algorithm receives job j4 from the list, and the algorithm has to
assign this job to one of the machines. Suppose that the job is assigned to machine M1.
Then the loads on the machines are 4 + 5 and 3 + 2, and we can give a schedule where the
maximal completion times on the machines are the loads: we can schedule the jobs on the
first machine in time intervals (0, 4) and (4, 9), and we can schedule the jobs on the second
machine in time intervals (0, 3) and (3, 5).

TIME model

In this model there are a fixed number of machines again. Each job has a pro-
cessing time and a release time. A job is revealed to the on-line algorithm at its
release time. For each job the on-line algorithm has to choose which machine it will
run on and assign a start time. No machine may simultaneously run two jobs. Note
that the algorithm is not required to assign a job immediately at its release time.

10.5. On-line scheduling 457

However, if the on-line algorithm assigns a job at time t then it cannot use informa-
tion about jobs released after time t and it cannot start the job before time t. Our
aim is to minimise the makespan.

Example 10.9 Consider the TIME model with two related machines. Let M1 be the first
machine with speed 1, and M2 be the second machine with speed 2. Consider the following
input I = {j1 = (1, 0), j2 = (1, 1), j3 = (1, 1), j4 = (1, 1)}, where the jobs are given by the
(processing time, release time) pairs. Thus a job arrives at time 0 with processing time 1,
and the algorithm can either start to process it on one of the machines or wait for jobs with
larger processing time. Suppose that the algorithm waits till time 1/2 and then it starts
to process the job on machine M1. The completion time of the job is 3/2. At time 1 three
further jobs arrive, and at that time only M2 can be used. Suppose that the algorithm
starts to process job j2 on this machine. At time 3/2 both jobs are completed. Suppose
that the remaining jobs are started on machines M1 and M2, and the completion times are
5/2 and 2, thus the makespan achieved by the algorithm is 5/2. Observe that an algorithm
which starts the first job immediately at time 0 can make a better schedule with makespan
2. But it is important to note that in some cases it can be useful to wait for larger jobs
before starting a job.

10.5.2. LIST model

The first algorithm in this model has been developed by Graham. Algorithm LIST
assigns each job to the machine where the actual load is minimal. If there are more
machines with this property, it uses the machine with the smallest index. This means
that the algorithm tries to balance the loads on the machines. The competitive ratio
of this algorithm is determined by the following theorem.

Theorem 10.18 The competitive ratio of algorithm LIST is 2− 1/m in the case
of identical machines.

Proof First we prove that the algorithm is 2− 1/m-competitive. Consider an arbi-
trary input sequence denoted by σ = {j1, . . . , jn}, and denote the processing times
by p1, . . . , pn. Consider the schedule produced by LIST. Let jl be a job with maximal
completion time. Investigate the starting time Sl of this job. Since LIST chooses the
machine with minimal load, thus the load was at least Sl on each of the machines
when jl was scheduled. Therefore we obtain that

Sl ≤
1

m

n
∑

j=1
j 6=l

pj =
1

m
(

n
∑

j=1

pj − pl) =
1

m
(

n
∑

j=1

pj)−
1

m
pl .

This yields that

LIST(σ) = Sl + pl ≤
1

m
(

n
∑

j=1

pj) +
m− 1

m
pl .

On the other hand, OPT also processes all of the jobs, thus we obtain that
OPT(σ) ≥ 1

m (
∑n

j=1 pj). Furthermore, pl is scheduled on one of the machines of

458 10. Competitive Analysis

OPT, thus OPT(σ) ≥ pl. Due to these bounds we obtain that

LIST (σ) ≤ (1 +
m− 1

m
)OPT(σ) ,

which inequality proves that LIST is 2− 1/m-competitive.

Now we prove that the bound is tight. Consider the following input. It contains
m(m− 1) jobs with processing time 1/m and one job with processing time 1. LIST
assigns m − 1 small jobs to each machine and the last large job is assigned to M1.
Therefore its makespan is 1 + (m− 1)/m. On the other hand, the optimal algorithm
schedules the large job on M1 and m small jobs on the other machines, and its
makespan is 1. Thus the ratio of the makespans is 2 − 1/m which shows that the
competitive ratio of LIST is at least 2− 1/m.

Although it is hard to imagine any other algorithm for the on-line case, many
other algorithms have been developed. The competitive ratios of the better algo-
rithms tend to smaller numbers than 2 as the number of machines tends to∞. Most
of these algorithms are based on the following idea. The jobs are scheduled keeping
the load uniformly on most of the machines, but in contrast to LIST, the loads are
kept low on some of the machines, keeping the possibility of using these machines
for scheduling large jobs which may arrive later.

Below we consider the more general cases where the machines are not identical.
LIST may perform very badly, and the processing time of a job can be very large
on the machine where the actual load is minimal. However, we can easily change the
greedy idea of LIST as follows. The extended algorithm is called Greedy and it
assigns the job to the machine where the load with the processing time of the job is
minimal. If there are several machines which have minimal value, then the algorithm
chooses the machine where the processing time of the job is minimal from them, if
there are several machines with this property, the algorithm chooses the one with
the smallest index from them.

Example 10.10 Consider the case of related machines where there are 3 machines
M1, M2, M3 and the speeds are s1 = s2 = 1, s2 = 3. Suppose that the input is
I = {j1 = 2, j2 = 1, j3 = 1, j4 = 3, j5 = 2}, where the jobs are defined by their pro-
cessing weight. The load after the first job is 2/3 on machine M3 and 2 on the other
machines, thus j1 is assigned to M3. The load after job j2 is 1 on all of the machines, and
its processing time is minimal on machine M3, thus Greedy assigns it to M3. The load
after job j3 is 1 on M1 and M2, and 4/3 on M3, thus the job is assigned to M1. The load
after job j4 is 4 on M1, 3 on M2, and 2 on M3, thus the job is assigned to M3. Finally, the
load after job j5 is 3 on M1, 2 on and M2, and 8/3 on M3, thus the job is assigned to M2.

Example 10.11 Consider the case of unrelated machines with two machines and the
following input: I = {j1 = (1, 2), j2 = (1, 2), j3 = (1, 3), j4 = (1, 3)}, where the jobs are
defined by the vectors of processing times. The load after job j1 is 1 on M1 and 2 on M2,
thus the job is assigned to M1. The load after job j2 is 2 on M1 and also on M2, thus the
job is assigned to M1, because it has smaller processing time. The load after job j3 is 3 on
M1 and M2, thus the job is assigned to M1 because it has smaller processing time. Finally,

10.5. On-line scheduling 459

the load after job j4 is 4 on M1 and 3 on M2, thus the job is assigned to M2.

The competitive ratio of the algorithm is determined by the following theorems.

Theorem 10.19 The competitive ratio of algorithm Greedy is m in the case of
unrelated machines.

Proof First we prove that the competitive ratio of the algorithm is at least m.
Consider the following input sequence. Let ε > 0 be an arbitrarily small number.
The sequence contains m jobs. The processing time of job j1 is 1 on machine M1,
1 + ε on machine Mm, and ∞ on the other machines, (p1(1) = 1, p1(i) = ∞, i =
2, . . . , m − 1, p1(m) = 1 + ε). For job ji, i = 2, . . . , m the processing time is i on
machine Mi, 1+ε on machine Mi−1 and∞ on the other machines (pi(i−1) = 1+ε,
pi(i) = i, pi(j) =∞, if j 6= i− 1 and j 6= i).

In this case job ji is scheduled on Mi by Greedy and the makespan is m. On the
other hand, the optimal off-line algorithm schedules j1 on Mm and ji is scheduled
on Mi−1 for the other jobs, thus the optimal makespan is 1 + ε. The ratio of the
makespans is m/(1 + ε). This ratio tends to m, as ε tends to 0, and this proves that
the competitive ratio of the algorithm is at least m.

Now we prove that the algorithm is m-competitive. Consider an arbitrary input
sequence, denote the makespan in the optimal off-line schedule by L∗ and let L(k)
denote the maximal load in the schedule produced by Greedy after scheduling the
first k jobs. Since the processing time of the i-th job is at least minjpi(j), and the
load is at most L∗ on the machines in the off-line optimal schedule, we obtain that
mL∗ ≥

∑n
i=1 minjpi(j).

We prove by induction that the inequality L(k) ≤
∑k

i=1 minjpi(j) is valid. Since
the first job is assigned to the machine where its processing time is minimal, the
statement is obviously true for k = 1. Let 1 ≤ k < n be an arbitrary number and
suppose that the statement is true for k. Consider the k + 1-th job. Let Ml be the
machine where the processing time of this job is minimal. If we assign the job to
Ml, then we obtain that the load on this machines is at most L(k) + pk+1(l) ≤
∑k+1

i=1 minjpi(j) from the induction hypothesis.
On the other hand, the maximal load in the schedule produced by Greedy can

not be more than the maximal load in the case when the job is assigned to Ml, thus
L(k + 1) ≤

∑k+1
i=1 minjpi(j), which means that we proved the inequality for k + 1.

Therefore we obtained that mL∗ ≥
∑n

i=1 minjpi(j) ≥ L(n), which yields that
the algorithm is m-competitive.

To investigate the case of the related machines consider an arbitrary input. Let
L and L∗ denote the makespans achieved by Greedy and OPT respectively. The
analysis of the algorithm is based on the following lemmas which give bounds on the
loads of the machines.

Lemma 10.20 The load on the fastest machine is at least L− L∗.

Proof Consider the schedule produced by Greedy. Consider a job J which causes
the makespan (its completion time is maximal). If this job is scheduled on the fastest

460 10. Competitive Analysis

machine, then the lemma follows immediately, i.e. the load on the fastest machine
is L. Suppose that J is not scheduled on the fastest machine. The optimal maximal
load is L∗, thus the processing time of J on the fastest machine is at most L∗. On
the other hand, the completion time of J is L, thus at the time when the job was
scheduled the load was at least (L−L∗) on the fastest machine, otherwise Greedy
would assign J to the fastest machine.

Lemma 10.21 If the loads are at least l on all machines having a speed of at least
v then the loads are at least l − 4L∗ on all machines having a speed of at least v/2.

Proof If l < 4L∗, then the statement is obviously valid. Suppose that l ≥ 4L∗.
Consider the jobs which are scheduled by Greedy on the machines having a speed
of at least v in the time interval [l − 2L∗, l]. The total processing weight of these
jobs is at least 2L∗ times the total speed of the machines having a speed of at least
v. This yields that there exists a job among them which is assigned by OPT to a
machine having a speed of smaller than v (otherwise the optimal off-line makespan
would be larger than L∗). Let J be such a job.

Since OPT schedules J on a machine having a speed of smaller than v, thus
the processing weight of J is at most vL∗. This yields that the processing time of J
is at most 2L∗ on the machines having a speed of at least v/2. On the other hand,
Greedy produces a schedule where the completion time of J is at least l − 2L∗,
thus at the time when the job was scheduled the loads were at least l − 4L∗ on the
machines having a speed of at most v/2 (otherwise Greedy would assign J to one
of these machines).

Now we can prove the following statement.

Theorem 10.22 The competitive ratio of algorithm Greedy is Θ(lg m) in the
case of the related machines.

Proof First we prove that Greedy is O(lg m)-competitive. Consider an arbitrary
input. Let L and L∗ denote the makespans achieved by Greedy and OPT, respec-
tively.

Let vmax be the speed of the fastest machine. Then by Lemma 10.20 the load on
this machine is at least L−L∗. Then using Lemma 10.21 we obtain that the loads are
at least L−L∗−4iL∗ on the machines having a speed of at least vmax2−i. Therefore
the loads are at least L− (1 + 4dlg me)L∗ on the machines having a speed of at least
vmax/m. Denote the set of the machines having a speed of at most vmax/m by I.

Denote the sum of the processing weights of the jobs by W . OPT can find a
schedule of the jobs which has maximal load L∗, and there are at most m machines
having smaller speed than vmax/m, thus

W ≤ L∗

m
∑

i=1

vi ≤ mL∗vmax/m + L∗
∑

i/∈I

vi ≤ 2L∗
∑

i/∈I

vi .

On the other hand, Greedy schedules the same jobs, thus the load on some
machine not included in I is smaller than 2L∗ in the schedule produced by Greedy

10.5. On-line scheduling 461

(otherwise we would obtain that the sum of the processing weights is greater than
W).

Therefore we obtain that

L− (1 + 4dlg me)L∗ ≤ 2L∗ ,

which yields that L ≤ 3 + 4dlg me)L∗, which proves that Greedy is O(lg m)-
competitive.

Now we prove that the competitive ratio of the algorithm is at least Ω(lg m).
Consider the following set of machines: G0 contains one machine with speed 1 and G1

contains 2 machines with speed 1/2. For each i = 1, 2, . . . , k, Gi contains machines

with speed 2−i, and Gi contains |Gi| =
∑i−1

j=0 |Gj |2
i−j machines. Observe that the

number of jobs of processing weight 2−i which can be scheduled during 1 time unit is
the same on the machines of Gi and on the machines of G0∪G1 . . . ,∪Gi−1. It is easy
to calculate that |Gi| = 22i−1, if i ≥ 1, thus the number of machines is 1+ 2

3 (4k−1).
Consider the following input sequence. In the first phase |Gk| jobs arrive having

processing weight 2−k, in the second phase |Gk−1| jobs arrive having processing
weight 2−(k−1), in the i-th phase |Gi| jobs arrive with processing weight 2−i, and the
sequence ends with the k+1-th phase, which contains one job with processing weight
1. An off-line algorithm can schedule the jobs of the i-th phase on the machines of
set Gk+1−i achieving maximal load 1, thus the optimal off-line cost is at most 1.

Investigate the behaviour of algorithm Greedy on this input. The jobs of the
first phase can be scheduled on the machines of G0, . . . , Gk−1 during 1 time unit, and
it takes also 1 time unit to process these jobs on the machines of Gk. Thus Greedy
schedules these jobs on the machines of G0, . . . , Gk−1, and each load is 1 on these
machines after the first phase. Then the jobs of the second phase are scheduled
on the machines of G0, . . . , Gk−2, the jobs of the third phase are scheduled on the
machines of G0, . . . , Gk−3 and so on. Finally, the jobs of the k-th and k + 1-th phase
are scheduled on the machine of set G0. Thus the cost of Greedy is k + 1, (this
is the load on the machine of set G0). Since k = Ω(lg m), we proved the required
statement.

10.5.3. TIME model

In this model we investigate only one algorithm. The basic idea is to divide the jobs
into groups by the release time and to use an optimal off-line algorithm to schedule
the jobs of the groups. This algorithm is called interval scheduling algorithm

and we denote it by INTV. Let t0 be the release time of the first job, and i = 0.
The algorithm is defined by the following pseudocode:

462 10. Competitive Analysis

INTV(I)

1 while not end of sequence
2 let Hi be the set of the unscheduled jobs released till ti

3 let OFFi be an optimal off-line schedule of the jobs of Hi

4 schedule the jobs as it is determined by OFFi starting the schedule at ti

5 let qi be the maximal completion time
6 if a new job is released in time interval (ti, qi] or the sequence is ended
7 then ti+1 ← qi

7 else let ti+1 be the release time of the next job
8 i← i + 1

Example 10.12 Consider two identical machines. Suppose that the sequence of jobs is
I = {j1 = (1, 0), j2 = (1/2, 0), j3 = (1/2, 0), j4 = (1, 3/2), j5 = (1, 3/2), j6 = (2, 2)},
where the jobs are defined by the (processing time, release time) pairs. In the first iteration
j1, j2, j3 are scheduled: an optimal off-line algorithm schedules j1 on machine M1 and j2, j3

on machine M2, so the jobs are completed at time 1. Since no new job have been released in
the time interval (0, 1], the algorithm waits for a new job until time 3/2. Then the second
iteration starts: j4 and j5 are scheduled on M1 and M2 respectively in the time interval
[3/2, 5/2). During this time interval j6 has been released thus at time 5/2 the next iteration
starts and INTV schedules j6 on M1 in the time interval [5/2, 9/2].

The following statement holds for the competitive ratio of algorithm INTV.

Theorem 10.23 In the TIME model algorithm INTV is 2-competitive.

Proof Consider an arbitrary input and the schedule produced by INTV. Denote
the number of iterations by i. Let T3 = ti+1 − ti, T2 = ti − ti−1, T1 = ti−1 and let
TOPT denote the optimal off-line cost. In this case T2 ≤ TOPT. This inequality is
obvious if ti+1 6= qi. If ti+1 = qi, then the inequality holds, because also the optimal
off-line algorithm has to schedule the jobs which are scheduled in the i-th iteration
by INTV, and INTV uses an optimal off-line schedule in each iteration. On the
other hand, T1 + T3 ≤ TOPT. To prove this inequality first observe that the release
time is at least T1 = ti−1 for the jobs scheduled in the i-th iteration (otherwise the
algorithm would schedule them in the i− 1-th iteration).

Therefore also the optimal algorithm has to schedule these jobs after time T1.
On the the other hand, it takes at least T3 time units to process these jobs, because
INTV uses optimal off-line algorithm in the iterations. The makespan of the schedule
produced by INTV is T1 + T2 + T3, and we have shown that T1 + T2 + T3 ≤ 2TOPT,
thus we proved that the algorithm is 2-competitive.

Some other algorithms have also been developed in the TIME model. Vestjens
proved that the on-line LPT algorithm is 3/2-competitive. This algorithm sched-
ules the longest unscheduled, released job at each time when some machine is avail-
able. The following lower bound for the possible competitive ratios of the on-line
algorithms is also given by Vestjens.

Theorem 10.24 The competitive ratio of any on-line algorithm is at least 1.3473

Notes for Chapter 10 463

in the TIME model for minimising the makespan.

Proof Let α ≈ 0.3473 be the solution of the equation α3 − 3α + 1 = 0 which
belongs to the interval [1/3, 1/2]. We prove that no on-line algorithm can have smaller
competitive ratio than 1 + α. Consider an arbitrary on-line algorithm, denote it by
ALG. Investigate the following input sequence.

At time 0 one job arrives with processing time 1. Let S1 be the time when the
algorithm starts to process the job on one of the machines. If S1 > α, then the
sequence is finished and ALG(I)/OPT(I) > 1 + α, which proves the statement. So
we can suppose that S1 ≤ α.

The release time of the next job is S1 and its processing time is α/(1 − α).
Denote its starting time by S2. If S2 ≤ S1 + 1−α/(1−α), then we end the sequence
with m − 1 jobs having release time S2, and processing time 1 + α/(1 − α) − S2.
In this case an optimal off-line algorithm schedules the first two jobs on the same
machine and the last m − 1 jobs on the other machines starting them at time S2,
thus its cost is 1+α/(1−α). On the other hand, the on-line algorithm must schedule
one of the last m − 1 jobs after the completion of the first or the second job, thus
ALG(I) ≥ 1+2α/(1−α) in this case, which yields that the competitive ratio of the
algorithm is at least 1 + α. Therefore we can suppose that S2 > S1 + 1−α/(1−α).

At time S1 + 1 − α/(1 − α) further m − 2 jobs arrive with processing times
α/(1 − α) and one job with processing time 1 − α/(1 − α). The optimal off-line
algorithm schedules the second and the last jobs on the same machine, and the
other jobs are scheduled one by one on the other machines and the makespan of the
schedule is 1 + S1. Since before time S1 + 1 − α/(1 − α) none of the last m jobs
is started by ALG, after this time ALG must schedule at least two jobs on one of
the machines and the maximal completion time is at least S1 + 2−α/(1−α). Since
S1 ≤ α, the ratio OPT(I)/ALG(I) is minimal if S1 = α, and in this case the ratio
is 1 + α, which proves the theorem.

Exercises
10.5-1 Prove that the competitive ratio is at least 3/2 for any on-line algorithm in
the case of two identical machines.
10.5-2 Prove that LIST is not constant competitive in the case of unrelated ma-
chines.
10.5-3 Prove that the modification of INTV which uses a c-approximation sched-
ule (a schedule with at most c times more cost than the optimal cost) instead of the
optimal off-line schedule in each step is 2c-competitive.

Problems

10-1 Paging problem

Consider the special case of the k-server problem, where the distance between each
pair of points is 1. (This problem is equivalent with the on-line paging problem.)

464 10. Competitive Analysis

Analyse the algorithm which serves the requests not having server on their place
by the server which was used least recently. (This algorithm is equivalent with the
LRU paging algorithm.) Prove that the algorithm is k-competitive.
10-2 ALARM2 algorithm

Consider the following alarming algorithm for the data acknowledgement problem.
ALARM2 is obtained from the general definition with the values ej = 1/|σj |. Prove
that the algorithm is not constant-competitive.
10-3 Bin packing lower bound

Prove, that no on-line algorithm can have smaller competitive ratio than 3/2 using
a sequence which contains items of size 1/7 + ε, 1/3 + ε, 1/2 + ε, where ε is a small
positive number.
10-4 Strip packing with modifiable rectangles

Consider the following version of the strip packing problem. In the new model the
algorithms are allowed to lengthen the rectangles keeping the area fixed. Develop a
4-competitive algorithm for the solution of the problem.
10-5 On-line LPT algorithm

Consider the algorithm in the TIME model which starts the longest released job to
schedule at each time when a machine is available. This algorithm is called on-line
LPT. Prove that the algorithm is 3/2-competitive.

Chapter Notes

More details about the results on on-line algorithms can be found in the books [7, 19].
The first results about the k-server problem (Theorems 10.1 and 10.2) are pub-

lished by Manasse, McGeoch and Sleator in [33]. The presented algorithm for the
line (Theorem 10.3) was developed by Chrobak, Karloff, Payne and Viswanathan
(see [11]). Later Chrobak and Larmore extended the algorithm for trees in [9]. The
first constant-competitive algorithm for the general problem was developed by Fiat,
Rabani and Ravid (see [18]). The best known algorithm is based on the work func-
tion technique. The first work function algorithm for the problem was developed by
Chrobak and Larmore in [10]. Koutsoupias and Papadimitriou have proven that the
work function algorithm is 2k − 1-competitive in [31].

The first mathematical model for the data acknowledgement problem and the
first results (Theorems 10.5 and 10.6) are presented by Dooly, Goldman, and Scott
in [15]. Online algorithms with lookahead property are presented in [24].. Albers
and Bals considered a different objective function in [1]. Karlin Kenyon and Randall
investigated randomised algorithms for the data acknowledgement problem in [30].
The Landlord algorithm was developed by Young in [39]. The detailed description
of the results in the area of on-line routing can be found in the survey [32] written
by Leonardi. The exponential algorithm for the load balancing model is investigated
by Aspnes, Azar, Fiat, Plotkin and Waarts in [2]. The exponential algorithm for the
throughput objective function is applied by Awerbuch, Azar and Plotkin in [3].

A detailed survey about the theory of on-line bin packing is written by Csirik
and Woeginger (see [13]). The algorithms NF and FF are analysed with competitive
analysis by Johnson, Demers, Ullman, Garey and Graham in [28, 29], further results

Notes for Chapter 10 465

can be found in the PhD thesis of Johnson ([27]). Our Theorem 10.12 is a special
case of Theorem 1 in [26] and Theorem 10.13 is a special case of Theorems 5.8
and 5.9 of the book [12] and Corollary 20.13 in the twentieth chapter of this book
[6]. Van Vliet applied the packing patterns to prove lower bounds for the possible
competitive ratios in [37, 40]. For the on-line strip packing problem algorithm NFSr

was developed and analysed by Baker and Schwarz in [5]. Later further shelf packing
algorithms were developed, the best shelf packing algorithm for the strip packing
problem was developed by Csirik and Woeginger in [14].

A detailed survey about the results in the area of on-line scheduling was written
by Sgall ([34]). The first on-line result is the analysis of algorithm LIST, it was
published by Grahamin [21]. Many further algorithms were developed and analysed
for the case of identical machines, the algorithm with smallest competitive ratio
(tends to 1.9201 as the number of machines tends to ∞) was developed by Fleischer
and Wahl in [20]. The lower bound for the competitive ratio of Greedy in the related
machines model was proved by Cho and Sahni in [8]. The upper bound, the related
machines case and a more sophisticated exponential function based algorithm were
presented by Aspnes, Azar, Fiat, Plotkin and Waarts in [2]. A summary of further
results about the applications of the exponential function technique in the area of
on-line scheduling can be found in the paper of Azar ([4]). The interval algorithm
presented in the TIME model and Theorem 10.23 are based on the results of Shmoys,
Wein and Williamson (see [35]). A detailed description of further results (on-line
LPT, lower bounds) in the area TIME model can be found in the PhD thesis of
Vestjens [41]. We presented only the most fundamental on-line scheduling models
in the chapter, although an interesting model has been developed recently, where
the number of the machines is not fixed, and the algorithm is allowed to purchase
machines. The model is investigated in papers [16, 17, 23, 25].

Problem 10-1 is based on [36], Problem 10-2 is based on [15], Problem 10-3 is
based on [38], Problem 10-4 is based on [22] and Problem 10-5 is based on [41].

Bibliography

[1] S. Albers, H. Bals. Dynamic TCP acknowledgement, penalizing long delays. In Proceedings of
the 25th ACM-SIAM Symposium on Discrete Algorithms, pages 47–55, 2003. 464

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts. On-line load balancing with applications to
machine scheduling and virtual circuit routing. Journal of the ACM, 44:486–504, 1997. 464,
465

[3] B. Awerbuch, Y. Azar S. Plotkin. Throughput-competitive online routing. In Proceedings of
the 34th Annual Symposium on Foundations of Computer Science, pages 32–40, 1993. 464

[4] Y. Azar. On-line load balancing. Lecture Notes in Computer Science, Vol. 1442. Springer-
Verlag, pages 178–195, 1998. 465

[5] B. S. Baker, J. S. Schwartz. Shelf algorithms for two dimensional packing problems. SIAM
Journal on Computing, 12:508–525, 1983. 465

[6] Á. Balogh, A. Iványi. Memory management. In A. Iványi (Ed.) Algorithms of Informatics.
Volume 2, pages 799–850. Mondat Kiadó, 2007. 465

[7] A. Borodin R. El-Yaniv. Online computation and competitive analysis. Cambridge University
Press, 1998. 464

[8] Y. Cho, S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Com-
puting, 9(1):91–103, 1980. 465

[9] M. Chrobak, L. Larmore. An optimal algorithm for k-servers on trees. SIAM Journal on
Computing, 20:144–148, 1991. 464

[10] M. Chrobak, L. Larmore. The server problem and on-line games. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Vol. 7, pages 11-64. American Mathematical
Society, 1992. 464

[11] M. Chrobak, H. J. Karloff, T. Payne, S. Vishwanathan. New results on the server problem.
SIAM Journal on Discrete Mathematics, 4:172–181, 1991. 464

[12] E. Coffman. Computer and Job Shop Scheduling. John Wiley & Sons, 1976. 465

[13] J. Csirik, G. Woeginger. On-line packing and covering problems. Lecture Notes in
Computer Science, Vol. 1442, pages 147–177. Springer-Verlag, 1998. 464

[14] J. Csirik, G. J. Woeginger. Shelf algorithms for on-line strip packing. Information Processing

Letters, 63:171–175, 1997. 465

[15] D. R. Dooly, S. A. Goldman, S. D. Scott. On-line analysis of the TCP acknowledgement delay
problem. Journal of the ACM, 48:243–273, 2001. 464, 465

[16] Gy. Dósa, Y. He. Better online algorithms for scheduling with machine cost. SIAM Journal
on Computing, 33(5):1035–1051, 2004. 465

[17] Gy. Dósa, Z. Tan. New upper and lower bounds for online scheduling with machine cost.
Discrete Optimization, 7(3):125–135, 2010. 465

[18] A. Fiat, Y. Rabani, Y. Ravid. Competitive k-server algorithms. Journal of Computer and

System Sciences, 48:410–428, 1994. 464

http://www.informatik.uni-freiburg.de/~salbers/
http://www.cs.yale.edu/homes/aspnes/
http://www.math.tau.ac.il/~azar/
http://www.math.tau.ac.il/~fiat/
http://troll-w.stanford.edu/plotkin/
http://www.acm.org
http://www.cs.jhu.edu/~baruch/
http://www.math.tau.ac.il/~azar/
http://troll-w.stanford.edu/plotkin/
http://www.math.tau.ac.il/~azar/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.springer.de/
http://cm.bell-labs.com/who/bsb/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.compalg.inf.elte.hu/~tony
http://www.compalg.inf.elte.hu/~tony
http:://www.mondat.hu
http://www.cs.toronto.edu/~bor/
http://www.cs.technion.ac.il/~rani/
http://uk.cambridge.org/
http://ssrnet.snu.ac.kr/~cho/
http://www.cise.ufl.edu/~sahni/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.cs.ucr.edu/~marek/
http://www.egr.unlv.edu/~larmore/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.cs.ucr.edu/~marek/
http://www.egr.unlv.edu/~larmore/
http://dimacs.rutgers.edu/Volumes/index.html
http://www.ams.org/
http://www.cs.ucr.edu/~marek/
http://www.cs.ucr.edu/~thp/
http://www.cse.iitb.ac.in/~sundar/
http://epubs.siam.org/sam-bin/dbq/toclist/SIDMA
http://www.el.columbia.edu/~egc/
http://www.inf.u-szeged.hu/~csirik
http://www.win.tue.nl/~gwoegi/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.springer.de/
http://www.inf.u-szeged.hu/~csirik
http://www.win.tue.nl/~gwoegi/
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/
http://www.cs.wustl.edu/~drd1/
http://www.cs.wustl.edu/~sg/
http://www.cse.unl.edu/~sscott/
http://www.acm.org
http://www.balatoninagyok.hu/sz.t.tanszek.html
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.balatoninagyok.hu/sz.t.tanszek.html
http://www.math.zju.edu.cn/webpagenew/teacherintroen.asp?userid=208
http://www.sciencedirect.com/science/journal/15725286
http://www.math.tau.ac.il/~fiat/
http://www.cs.technion.ac.il/~rabani/
http://www.sciencedirect.com/science/journal/00220000/

Bibliography 467

[19] A. Fiat, G. Woeginger (Eds.). Online Algorithms. The State of Art. Springer-Verlag, 1998.
464

[20] R. Fleischer, M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3(6):343–353, 2000.
465

[21] R. L. Graham. Bounds for certain multiprocessor anomalies. The Bell System Technical Jour-
nal, 45:1563–1581, 1966. 465

[22] Cs. Imreh. Online strip packing with modifiable boxes. Operations Research Letters, 66:79–86,
2001. 465

[23] Cs. Imreh. Online scheduling with general machine cost functions. Discrete Applied Mathe-
matics, 157(9):2070–2077, 2009. 465

[24] Cs. Imreh, T. Németh. On time lookahead algorithms for the online data acknowledgement
problem. In Proceedings of MFCS 2007 32nd International Symposium on Mathematical Foun-
dations of Computer Science, Lecture Notes in Computer Science, Vol. 4708. Springer-Verlag,
2007, pages 288–297. 464

[25] Cs. Imreh, J. Noga. Scheduling with machine cost. In Proceedings of APPROX’99, Lecture
Notes in Computer Science, Vol. 1540, pages 168–176, 1999. 465

[26] A. Iványi. Performance bounds for simple bin packing algorithms. Annales Universitatis Scien-

tiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Computarorica, 5:77–82, 1984.
465

[27] D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, MIT Department of
Mathematics, 1973. 465

[28] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8:272–314, 1974. 464

[29] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham. Worst-case performance-
bounds for simple one-dimensional bin packing algorithms. SIAM Journal on Computing,
3:299–325, 1974. 464

[30] A. R. Karlin, C. Kenyon, D. Randall. Dynamic TCP acknowledgement and other stories about
e/(e − 1). In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 502–
509 pages, 2001. 464

[31] E. Koutsoupias, C. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42:971–
983, 1995. 464

[32] S. Leonardi. On-line network routing. Lecture Notes in Computer Science, Vol. 1442, pages
242–267. Springer-Verlag, 1998. 464

[33] M. Manasse, L. McGeoch, D. Sleator. Competitive algorithms for server problems. Journal of
Algorithms, 11:208–230, 1990. 464

[34] J. Sgall. On-line scheduling. Lecture Notes in Computer Science, Vol. 1442, pages 196–231.
Springer-Verlag, 1998. 465

[35] D. B. Shmoys, J. Wein, D. P. Williamson. Scheduling parallel machines online. SIAM Journal

on Computing, 24:1313–1331, 1995. 465

[36] D. Sleator R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications

of the ACM, 28:202–208, 1985. 465

[37] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Information Pro-

cessing Letters, 43:277–284, 1992. 465

[38] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227, 1980. 465

[39] N. Young. On-line file caching. Algorithmica, 33:371–383, 2002. 464

[40] A. van Vliet. Lower and upper bounds for on-line bin packing and scheduling heuristics. PhD
thesis, Erasmus University, Rotterdam, 1995. 465

[41] A. Vestjens. On-line machine scheduling. PhD thesis, Eindhoven University of Technology,
1997. 465

http://www.math.tau.ac.il/~fiat/
http://www.win.tue.nl/~gwoegi/
http://www.springer.de/
http://www.cs.ust.hk/~rudolf/
http://www3.interscience.wiley.com/cgi-bin/jhome/6265
http://math.ucsd.edu/~fan/ron
http://www.lucent.com/minds/techjournal/
http://www.inf.u-szeged.hu/~cimreh
 http://www.sciencedirect.com/science/journal/01676377
http://www.inf.u-szeged.hu/~cimreh
http://www.sciencedirect.com/science/journal/0166218X
http://www.inf.u-szeged.hu/~cimreh/
http://www.inf.u-szeged.hu/~tnemeth/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.springer.de/
http://www.inf.u-szeged.hu/~cimreh/
http://www.cs.ucr.edu/~jnoga/
http://www.link.springer.de/link/service/series/0558/index.htm
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http:compalg.inf.elte.hu/annales/computatorica
http://www.research.att.com/~dsj/
http://www-math.mit.edu/
http://www.research.att.com/~dsj
http://www.sciencedirect.com/science/journal/00220000/
http://www.research.att.com/~dsj/
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-db.stanford.edu/~ullman/
http://cm.bell-labs.com/cm/ms/former/mrg/
http://math.ucsd.edu/~fan/ron
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.cs.washington.edu/homes/karlin/
http://www.lix.polytechnique.fr/~kenyon/
http://www.math.gatech.edu/~randall/
http://cgi.di.uoa.gr/~elias/
http://www.cs.berkeley.edu/~christos/
http://www.acm.org
http://www.dis.uniroma1.it/~leon/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.springer.de/
http://research.microsoft.com/users/manasse/
http://www.cs.amherst.edu/lam/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sleator/www/
http://www.math.cas.cz/~sgall/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.springer.de/
http://www.orie.cornell.edu/~shmoys/
http://ebbets.poly.edu/PDC-lab/wein.html
http://www.almaden.ibm.com/cs/people/dpw/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sleator/www/
http://www.cs.princeton.edu/~ret/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/
http://www.cs.princeton.edu/~yao/
http://www.acm.org
http://www.cs.ucr.edu/~neal/
http://link.springer.de/link/service/journals/00453/
http://www.eur.nl/
http://w3.tue.nl/en/

468 Bibliography

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A

Alarm algorithm, 440, 464pr

alarming algorithm, 440

asymptotically C-competitive, 432

asymptotic competitive ratio, 432

average case analysis, 431

B

BAL, see Balance
Balance, 434

box packing problem, 452

C

C-competitive, 432

C-(k, h)-competitive, 442

competitive analysis, 432

competitive ratio, 432

competive analysis, 431–465
configuration of the servers, 433

D

data acknowledgement problem, 439, 447exe

DC algorithm, 437

Double-Coverage algorithm, 436

E

EXP algorithm, 445

F

file caching problem, 441

First-Fit algorithm, 449

H

harmonic algorithm, 449

I

interval scheduling algorithm, 461

L

Landlord, 442, 448exe

List algorithm, 463exe
LIST on-line scheduling model, 456

load, 456

load balancing routing model, 444

Lpt, 464pr

N

NF, 455exe
NFSr algorithm, 453, 455exe

O

off-line algorithm, 431

on-line algorithm, 431, 439exe

on-line LPT, 462

P

packing pattern, 451

paging problem, 463pr

R

randomised on-line algorithm, 432

release time, 456

retrieval cost, 441

470 Index

S

Shelf algorithms, 453

size, 441

strip packing problem, 453

T

the mathematical model of routing, 444

throughput routing model, 444

TIME model, 464pr
TIME on-line scheduling model, 456

V

vector packing problem, 452

W

weak competitive ratio, 432

weakly C-competitive, 432

web caching problem, 448exe
work function, 436

Work-Function algorithm, 436

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A

Albers, Susanne, 464, 466
Aspnes, James, 464–466
Awerbuch, Baruch, 464, 466
Azar, Yossi, 464–466

B

Baker, S. Brenda, 453, 465, 466
Balogh, Ádám, 465, 466
Bals, Helge, 464, 466
Borodin, Allan, 466

C

Cho, Yookun, 465, 466
Chrobak, Marek, 436, 464, 466
Coffman, Ed G., Jr., 465, 466

CS

Csirik, János, 455, 464–466

D

Demers, Alan, 464, 467
Dooly, R. Dan, 439, 464, 466
Dósa, György, 466

E

El-Yaniv, Ran, 466

F

Fiat, Amos, 436, 464–467
Fleischer, Rudolf, 465, 467

G

Garey, Michael R., 464, 467
Goldman, A. Sally, 439, 464, 466
Graham, Ronald Lewis, 455, 464, 465, 467

H

He, Yong, 466

I

Imreh, Csanád, 464, 467
Iványi, Antal Miklós, 465–467

J

Johnson, David S., 464, 465, 467

K

Karlin, Anna R., 464, 467
Karloff, J. Howard, 464, 466
Kenyon, Claire, 464, 467
Koutsoupias, Elias, 436, 464, 467

L

Larmore, Lawrence, 436, 464, 466
Leonardi, Stefano, 464, 467

M

Manasse, Mark, 433, 464, 467
McGeoch, Lyle, 433, 464, 467

N

Németh, Tamás, 464, 467
Noga, John, 467

P

Papadimitriou, Christos H., 436, 464, 467
Payne, Tom, 464, 466
Plotkin, Serge, 464–466

R

Rabani, Yuval, 436, 464, 466
Randall, Dana, 464, 467
Ravid, Yiftach, 436, 464, 466

472 Name Index

S

Sahni, Sartaj, 465, 466
Schwarz, S. Jerald, 453, 465, 466
Scott, D. Stephen, 439, 464, 466
Sgall, Jirí, 465, 467
Shmoys, David B., 465, 467
Sleator, Daniel, 433, 464, 467

T

Tan, Zhiyi, 466
Tarjan, Robert Endre, 467

U

Ullman, Jeffrey David, 464, 467

V

van Vliet, André, 465, 467
Vestjens, Arjen, 462, 465, 467
Vishwanathan, Sundar, 464, 466

W

Waarts, Orli, 464–466
Wahl, Michaela, 465, 467
Wein, Joel, 465, 467
Williamson, David P., 465, 467
Woeginger, J. Gerhard, 455, 464–467

Y

Yao, C. C. Andrew, 467
Young, Neal, 442, 464, 467

	III. NUMERICAL METHODS
	10. Competitive Analysis
	 10.1. Notions, definitions
	 10.2. The k-server problem
	 10.3. Models related to computer networks
	 10.3.1. The data acknowledgement problem
	 10.3.2. The file caching problem
	 10.3.3. On-line routing

	 10.4. On-line bin packing models
	 10.4.1. On-line bin packing
	 10.4.2. Multidimensional models

	 10.5. On-line scheduling
	 10.5.1. On-line scheduling models
	 10.5.2. LIST model
	 10.5.3. TIME model

	Bibliography
	Index
	Name Index

