
Contents

7. Cryptology . 333
7.1. Foundations . 334

7.1.1. Cryptography . 335
7.1.2. Cryptanalysis . 339
7.1.3. Algebra, number theory, and graph theory 340

7.2. Diffie and Hellman’s secret-key agreement protocol 347
7.3. RSA and factoring . 350

7.3.1. RSA . 350
7.3.2. Digital RSA signatures . 354
7.3.3. Security of RSA . 354

7.4. The protocols of Rivest, Rabi, and Sherman 356
7.5. Interactive proof systems and zero-knowledge 357

7.5.1. Interactive proof systems and Arthur-Merlin games 357
7.5.2. Zero-knowledge protocol for graph isomorphism 360

8. Complexity Theory . 365
8.1. Foundations . 366
8.2. NP-completeness . 372
8.3. Algorithms for the satisfiability problem 374

8.3.1. A deterministic algorithm 374
8.3.2. A randomised algorithm . 376

8.4. Graph isomorphism and lowness . 379
8.4.1. Reducibilities and complexity hierarchies 379
8.4.2. Graph isomorphism is in the low hierarchy 384
8.4.3. Graph isomorphism is in SPP 387

Bibliography . 394

Index . 398

Name Index . 400

7. Cryptology

This chapter introduces a number of cryptographic protocols and their underlying
problems and algorithms. A typical cryptographic scenario is shown in Figure 7.1
(the design of Alice and Bob is due to Crépeau). Alice and Bob wish to exchange
messages over an insecure channel, such as a public telephone line or via email over
a computer network. Erich is eavesdropping on the channel. Knowing that their
data transfer is being eavesdropped, Alice and Bob encrypt their messages using a
cryptosystem.

Erich

encoding noise (channel) decoding

Figure 7.1 A typical scenario in cryptography.

In Section 7.1, various symmetric cryptosystems are presented. A cryptosystem
is said to be symmetric if one and the same key is used for encryption and decryption.
For symmetric systems, the question of key distribution is central: How can Alice
and Bob agree on a joint secret key if they can communicate only via an insecure
channel? For example, if Alice chooses some key and encrypts it like a message
using a symmetric cryptosystem to send it to Bob, then which key should she use
to encrypt this key?

This paradoxical situation is known as the secret-key agreement problem,
and it was considered unsolvable for a long time. Its surprisingly simple, ingenious
solution by Whitfield Diffie and Martin Hellman in 1976 is a milestone in the history
of cryptography. They proposed a protocol that Alice and Bob can use to exchange
a few messages after which they both can easily determine their joint secret key.
Eavesdropper Erich, however, does not have clue about their key, even if he was able
to intercept every single bit of their transferred messages. Section 7.2 presents the

334 7. Cryptology

Diffie-Hellman secret-key agreement protocol.
It may be considered an irony of history that this protocol, which finally solved

the long-standing secret-key agreement problem that is so important in symmetric
cryptography, opened the door to public-key cryptography in which there is no
need to distribute joint secret keys via insecure channels. In 1978, shortly after Diffie
and Hellman had published their pathbreaking work in 1976, Rivest, Shamir, and
Adleman developed their famous RSA system, the first public-key cryptosystem
in the open literature. Section 7.3 describes the RSA cryptosystem and the related
digital signature scheme. Using the latter protocol, Alice can sign her message to
Bob such that he can verify that she indeed is the sender of the message. Digital
signatures prevent Erich from forging Alice’s messages.

The security of the Diffie-Hellman protocol rests on the assumption that com-
puting discrete logarithms is computationally intractable. That is why modular ex-
ponentiation (the inverse function of which is the discrete logarithm) is considered
to be a candidate of a one-way function. The security of RSA similarly rests on
the assumption that a certain problem is computationally intractable, namely on
the assumption that factoring large integers is computationally hard. However, the
authorised receiver Bob is able to efficiently decrypt the ciphertext by employing the
factorisation of some integer he has chosen in private, which is his private “trapdoor”
information.

Section 7.4 introduces a secret-key agreement protocol developed by Rivest and
Sherman, which is based on so-called strongly noninvertible associative one-way
functions. This protocol can be modified to yield a digital signature scheme as well.

Section 7.5 introduces the fascinating area of interactive proof systems and zero-
knowledge protocols that has practical applications in cryptography, especially for
authentication issues. In particular, a zero-knowledge protocol for the graph iso-
morphism problem is presented. On the other hand, this area is also central to
complexity theory and will be revisited in Chapter 8, again in connection to the
graph isomorphism problem.

7.1. Foundations

Cryptography is the art and science of designing secure cryptosystems, which are
used to encrypt texts and messages so that they be kept secret and unauthorised de-
cryption is prevented, whereas the authorised receiver is able to efficiently decrypt
the ciphertext received. This section presents two classical symmetric cryptosys-
tems. In subsequent sections, some important asymmetric cryptosystems and cryp-
tographic protocols are introduced. A “protocol” is dialog between two (or more)
parties, where a “party” may be either a human being or a computing machine.
Cryptographic protocols can have various cryptographic purposes. They consist of
algorithms that are jointly executed by more than one party.

Cryptanalysis is the art and science of (unauthorised) decryption of cipher-
texts and of breaking existing cryptosystems. Cryptology captures both these fields,
cryptography and cryptanalysis. In this chapter, we focus on cryptographic algo-
rithms. Algorithms of cryptanalysis, which are used to break cryptographic proto-
cols and systems, will be mentioned as well but will not be investigated in detail.

7.1. Foundations 335

7.1.1. Cryptography

Figure 7.1 shows a typical scenario in cryptography: Alice and Bob communicate
over an insecure channel that is eavesdropped by Erich, and thus they encrypt their
messages using a cryptosystem.

Definition 7.1 (Cryptosystem). A cryptosystem is a quintuple (P, C,K, E ,D)
with the following properties:

1. P, C, and K are finite sets, where P is the plaintext space, C is the ciphertext
space, and K is the key space. The elements of P are called the plaintexts,
and the elements of C are called the ciphertexts. A message is a string of
plaintext symbols.

2. E = {Ek | k ∈ K} is a family of functions Ek : P → C, which are used for
encryption. D = {Dk | k ∈ K} is a family of functions Dk : C → P, which are
used for decryption.

3. For each key e ∈ K, there exists some key d ∈ K such that for each plaintext
p ∈ P,

Dd(Ee(p)) = p . (7.1)

A cryptosystem is said to be symmetric (or private-key) if either d = e or if d
at least can “easily” be determined from e. A cryptosystem is said to be asymmetric
(or public-key) if d 6= e and it is “computationally infeasible” to determine the private
key d from the corresponding public key e.

At times, we may use distinct key spaces for encryption and decryption, with
the above definition modified accordingly.

We now introduce some easy examples of classical symmetric cryptosystems.
Consider the alphabet Σ = {A,B, . . . ,Z}, which will be used both for the plaintext
space and for the ciphertext space. We identify Σ with Z26 = {0, 1, . . . , 25} so as to
be able to perform calculations with letters as if they were numbers. The number
0 corresponds to the letter A, the 1 corresponds to B, and so on. This coding of
plaintext or ciphertext symbols by nonnegative integers is not part of the actual
encryption or decryption.

Messages are elements of Σ∗, where Σ∗ denotes the set of strings over Σ. If some
message m ∈ Σ∗ is subdivided into blocks of length n and is encrypted blockwise, as
it is common in many cryptosystems, then each block of m is viewed as an element
of Zn

26.

Example 7.1 (Shift Cipher) The first example is a monoalphabetic symmetric cryptosys-
tem. Let K = P = C = Z26. The shift cipher encrypts messages by shifting every plaintext
symbol by the same number k of letters in the alphabet modulo 26. Shifting each letter in
the ciphertext back using the same key k, the original plaintext is recovered. For each key
k ∈ Z26, the encryption function Ek and the decryption function Dk are defined by:

Ek(m) = (m+ k) mod 26

Dk(c) = (c− k) mod 26 ,

where addition and subtraction by k modulo 26 are carried out characterwise.

336 7. Cryptology

m S H I F T E A C H L E T T E R T O T H E L E F T

c R G H E S D Z B G K D S S D Q S N S G D K D E S

Figure 7.2 Example of an encryption by the shift cipher.

Figure 7.2 shows an encryption of the message m by the shift cipher with key k = 25.
The resulting ciphertext is c. Note that the particular shift cipher with key k = 3 is also
known as the Caesar cipher, since the Roman Emperor allegedly used this cipher during
his wars to keep messages secret.1 This cipher is a very simple substitution cipher in which
each letter is substituted by a certain letter of the alphabet.

Since the key space is very small, the shift cipher can easily be broken. It is
already vulnerable by attacks in which the attacker knows the ciphertext only, simply
by checking which of the 26 possible keys reveals a meaningful plaintext, provided
that the ciphertext is long enough to allow unique decryption.

The shift cipher is a monoalphabetic cryptosystem, since every plaintext letter is
replaced by one and the same letter in the ciphertext. In contrast, a polyalphabetic
cryptosystem can encrypt the same plaintext symbols by different ciphertext sym-
bols, depending on their position in the text. Such a polyalphabetic cryptosystem
that is based on the shift cipher, yet much harder to break, was proposed by the
French diplomat Blaise de Vigenère (1523 until 1596). His system builds on previous
work by the Italian mathematician Leon Battista Alberti (born in 1404), the German
abbot Johannes Trithemius (born in 1492), and the Italian scientist Giovanni Porta
(born in 1675). It works like the shift cipher, except that the letter that encrypts
some plaintext letter varies with its position in the text.

Example 7.2[Vigenère Cipher] This symmetric polyalphabetic cryptosystem uses a so-
called Vigenère square, a matrix consisting of 26 rows and 26 columns, see Figure 7.3.
Every row has the 26 letters of the alphabet, shifted from row to row by one position. That
is, the single rows can be seen as a shift cipher obtained by the keys 0, 1, . . . , 25. Which
row of the Vigenère square is used for encryption of some plaintext symbol depends on its
position in the text.

Messages are subdivided into blocks of a fixed length n and are encrypted blockwise,
i.e., K = P = C = Z

n
26. The block length n is also called the period of the system. In what

follows, the ith symbol in a string w is denoted by wi.
For each key k ∈ Z

n
26, the encryption function Ek and the decryption function Dk,

both mapping from Z
n
26 to Z

n
26, are defined by:

Ek(b) = (b+ k) mod 26

Dk(c) = (c− k) mod 26,

where addition and subtraction by k modulo 26 are again carried out characterwise. That
is, the key k ∈ Z

n
26 is written letter by letter above the symbols of the block b ∈ Z

n
26 to be

encrypted. If the last plaintext block has less than n symbols, one uses less key symbols

1 Historic remark: Gaius Julius Caesar reports in his book De Bello Gallico that he sent an
encrypted message to Q. Tullius Cicero (the brother of the famous speaker) during the Gallic Wars
(58 until 50 B.C.). The system used was monoalphabetic and replaced Latin letters by Greek letters;
however, it is not explicitly mentioned there if the cipher used indeed was the shift cipher with key
k = 3. This information was given later by Suetonius.

7.1. Foundations 337

0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Figure 7.3 Vigenère square: Plaintext “H” is encrypted as “A” by key “T”.

k T O N Y T O N Y T O N Y T O N Y T O N Y T O N Y T O N Y

m H U N G A R I A N I S A L L G R E E K T O G E R M A N S

c A I A E T F V Y G W F Y E Z T P X S X R H U R P F O A Q

Figure 7.4 Example of an encryption by the Vigenère cipher.

accordingly. In order to encrypt the ith plaintext symbol bi, which has the key symbol ki

sitting on top, use the ith row of the Vigenère square as in the shift cipher.
For example, choose the block length n = 4 and the key k = TONY. Figure 7.4 shows

the encryption of the message m, which consists of seven blocks, into the ciphertext c by
the Vigenère cipher using key k.

To the first plaintext letter, “H”, the key symbol “T” is assigned. The intersection of
the “H” column with the “T” row of the Vigenère square yields “A” as the first letter of
the ciphertext, see Figure 7.3.

338 7. Cryptology

There are many other classical cryptosystems, which will not be described in de-
tail here. There are various ways to classify cryptosystems according to their proper-
ties or to the specific way they are designed. In Definition 7.1, the distinction between
symmetric and asymmetric cryptosystems was explained. The two examples above
(the shift cipher and the Vigenère cipher) demonstrated the distinction between
monoalphabetic and polyalphabetic systems. Both are substitution ciphers, which
may be contrasted with permutation ciphers (a.k.a. transposition ciphers) in
which the plaintext letters are not substituted by certain ciphertext letters but go
to another position in the text remaining otherwise unchanged.

Moreover, block ciphers such as the Vigenère system can be contrasted with
stream ciphers, which produce a continuous stream of key symbols depending on
the plaintext context to be encrypted. One can also distinguish between different
types of block ciphers. An important type are the affine linear block ciphers,
which are defined by affine linear encryption functions E(A,~b) and decryption func-

tions D(A−1,~b), both mapping from Z
n
m to Z

n
m. That is, they are of the following

form:

E(A,~b)(~x) = A~x+~b mod m , (7.2)

D(A−1,~b)(~y) = A−1(~y −~b) mod m .

Here, (A,~b) and (A−1,~b) are the keys used for encryption and decryption, respec-
tively; A is a (n× n) matrix with entries from Zm; A−1 is the inverse matrix for A;

~x, ~y, and ~b are vectors in Z
n
m, and all arithmetics is carried out modulo m. Some

mathematical explanations are in order (see also Definition 7.2 in Subsection 7.1.3):
An (n × n) matrix A over the ring Zm has a multiplicative inverse if and only
if gcd(detA,m) = 1. The inverse matrix for A is defined by A−1 = (detA)−1Aadj,
where detA is the determinant of A, and Aadj = ((−1)i+j detAj,i) is the adjunct ma-
trix for A. The determinant detA of A is recursively defined: For n = 1 and A = (a),
detA = a; for n > 1 and each i ∈ {1, 2, . . . , n}, detA =

∑n
j=1(−1)i+jai,j detAi,j ,

where ai,j denotes the (i, j) entry of A and the (n− 1)× (n− 1) matrix Ai,j results
from A by cancelling the ith row and the jth column. The determinant of a matrix
and thus its inverse (if it exists) can be computed efficiently, see Problem 7-3.

For example, the Vigenère cipher is an affine linear cipher whose key contains
the unity matrix as its first component. If ~b in (7.2) is the zero vector, then it is
a linear block cipher. A classical example is the Hill cipher, invented by Lester
Hill in 1929. Here, the key space is the set of all (n × n) matrices A with entries
in Zm such that gcd(detA,m) = 1. This condition guarantees the invertibility of
those matrices that are allowed as keys, since the inverse matrix A−1 is used for
decryption of the messages encrypted by key A. For each key A, the Hill cipher is
defined by the encryption function EA(~x) = A~x mod m and the decryption function
DA−1(~y) = A−1~y mod m. Thus, it is the most general linear cipher. The permutation
cipher also is linear, and hence is a special case of the Hill cipher.

7.1. Foundations 339

7.1.2. Cryptanalysis

Cryptanalysis aims at breaking existing cryptosystems and, in particular, at deter-
mining the decryption keys. In order to characterise the security or vulnerability of
the cryptosystem considered, one distinguishes different types of attacks according
to the information available for the attacker. For the shift cipher, ciphertext-only
attacks were already mentioned. They are the weakest type of attack, and a cryp-
tosystem that does not resist such attacks is not of much value.

Affine linear block ciphers such as the Vigenère and the Hill cipher are vulner-
able to attacks in which the attacker knows the plaintext corresponding to some
ciphertext obtained and is able to conclude the keys used. These attacks are called
known-plaintext attacks. Affine linear block ciphers are even more vulnerable to
chosen-plaintext attacks, in which the attacker can choose some plaintext and is
then able to see which ciphertext corresponds to the plaintext chosen. Another type
of attack is in particular relevant for asymmetric cryptosystems: In an encryption-
key attack, the attacker merely knows the public key but does not know any ci-
phertext yet, and seeks to determine the private key from this information. The
difference is that the attacker now has plenty of time to perform computations,
whereas in the other types of attacks the ciphertext was already sent and much less
time is available to decrypt it. That is why keys of much larger size are required in
public-key cryptography to guarantee the security of the system used. Hence, asym-
metric cryptosystems are much less efficient than symmetric cryptosystems in many
practical applications.

For the attacks mentioned above, the method of frequency counts is often useful.
This method exploits the redundancy of the natural language used. For example,
in many natural languages, the letter “E” occurs statistically significant most fre-
quently. On average, the “E” occurs in long, “typical” texts with a percentage of
12.31% in English, of 15.87% in French, and even of 18.46% in German. In other
languages, different letters may occur most frequently. For example, the “A” is the
most frequent letter in long, “typical” Finnish texts, with a percentage of 12.06%.

That the method of frequency counts is useful for attacks on monoalphabetic
cryptosystems is obvious. For example, if in a ciphertext encrypting a long German
text by the shift cipher, the letter occurring most frequently is “Y”, which is rather
rare in German (as well as in many other languages), then it is most likely that
“Y” encrypts “E”. Thus, the key used for encryption is “U” (k = 20). In addition to
counting the frequency of single letters, one can also count the frequency with which
certain pairs of letters (so-called digrams) and triples of letters (so-called trigrams)
occur, and so on. This kind of attack also works for polyalphabetic systems, provided
the period (i.e., the block length) is known.

Polyalphabetic cryptosystems with an unknown period, however, provide more
security. For example, the Vigenère cipher resisted each attempt of breaking it for a
long time. No earlier than in 1863, about 300 years after its discovery, the German
cryptanalyst Friedrich Wilhelm Kasiski found a method of breaking the Vigenère
cipher. He showed how to determine the period, which initially is unknown, from
repetitions of the same substring in the ciphertext. Subsequently, the ciphertext can
be decrypted by means of frequency counts. Singh writes that the British eccentric

340 7. Cryptology

Charles Babbage, who was considered a genius of his time by many, presumably had
discovered Kasiski’s method even earlier, around 1854, although he didn’t publish
his work.

The pathbreaking work of Claude Shannon (1916 until 2001), the father of mod-
ern coding and information theory, is now considered a milestone in the history
of cryptography. Shannon proved that there exist cryptosystems that guarantee
perfect secrecy in a mathematically rigorous sense. More precisely, a cryptosystem
(P, C,K, E ,D) guarantees perfect secrecy if and only if |P| = |C| = |K|, the keys
in K are uniformly distributed, and for each plaintext p ∈ P and for each cipher-
text c ∈ C there exists exactly one key k ∈ K with Ek(p) = c. That means that
such a cryptosystem often is not useful for practical applications, since in order to
guarantee perfect secrecy, every key must be at least as long as the message to be
encrypted and can be used only once.

7.1.3. Algebra, number theory, and graph theory

In order to understand some of the algorithms and problems to be presented later,
some fundamental notions, definitions, and results from algebra and, in particular,
from number theory, group theory, and graph theory are required. This concerns
both the cryptosystems and zero-knowledge protocols in Chapter 7 and some of the
problems to be considered in upcoming Chapter 8. The present subsection may as
well be skipped for now and revisited later when the required notions and results
come up. In this section, most of the proofs are omitted.

Definition 7.2 (Group, ring, and field).

• A group G = (S, ◦) is defined by some nonempty set S and a two-ary operation
◦ on S that satisfy the following axioms:

– Closure: (∀x ∈ S) (∀y ∈ S) [x ◦ y ∈ S] .

– Associativity: (∀x ∈ S) (∀y ∈ S) (∀z ∈ S) [(x ◦ y) ◦ z = x ◦ (y ◦ z)] .

– Neutral element: (∃e ∈ S) (∀x ∈ S) [e ◦ x = x ◦ e = x] .

– Inverse element: (∀x ∈ S) (∃x−1 ∈ S) [x ◦ x−1 = x−1 ◦ x = e] .

The element e is called the neutral element of the group G. The element x−1

is called the inverse element forx. G is said to be a monoid if G satisfies
associativity and closure under ◦, even if G has no neutral element or if not every
element in G has an inverse. A group G = (S, ◦) (respectively, a monoid G =
(S, ◦)) is said to be commutative (or abelian) if and only if x ◦ y = y ◦x for all
x, y ∈ S. The number of elements of a finite group G is said to be the order G

and is denoted by |G|.
• H = (T, ◦) is said to be a subgroup of a group G = (S, ◦) (denoted by H ≤ G)

if and only if T ⊆ S and H satisfies the group axioms.

• A ring is a triple R = (S,+, ·) such that (S,+) is an abelian group and (S, ·) is
a monoid and the distributive laws are satisfied:

(∀x ∈ S) (∀y ∈ S) (∀z ∈ S) :

7.1. Foundations 341

(x · (y + z) = (x · y) + (x · z)) ∧ ((x+ y) · z = (x · z) + (y · z)) .
A ring R = (S,+, ·) is said to be commutative if and only if the monoid (S, ·)
is commutative. The neutral element group (S,+) is called the zero element
(the zero, for short) of the ring R. A neutral element of the monoid (S, ·) is
called the one element (the one, for short) of the ring R.

• Let R = (S,+, ·) be a ring with one. An element x of R is said to be invertible
(or a unity of R) if and only if it is invertible in the monoid (S, ·).

• A field is a commutative ring with one in which each nonzero element is invert-
ible.

Example 7.3[Group, ring, and field]

• Let k ∈ N. The set Zk = {0, 1, . . . , k − 1} is a finite group with respect to addition
modulo k, with neutral element 0. With respect to addition and multiplication mod-
ulo k, Zk is a commutative ring with one, see Problem 7-1. If p is a prime number, then
Zp is a field with respect to addition and multiplication modulo p.

• Let gcdn,m denote the greatest common divisor of two integers m and n. For k ∈ N,
define the set Z

∗
k = {i | 1 ≤ i ≤ k − 1 and gcdi, k = 1}. With respect to multiplication

modulo k, Z∗
k is a finite group with neutral element 1.

If the operation ◦ of a group G = (S, ◦) is clear from the context, we omit
stating it explicitly. The group Z

∗
k from Example 7.3 will play a particular role in

Section 7.3, where the RSA cryptosystem is introduced. The Euler function ϕ gives
the order of this group, i.e., ϕ(k) = |Z∗

k|. The following properties of ϕ follow from
the definition:

• ϕ(m · n) = ϕ(m) · ϕ(n) for all m,n ∈ N with gcdm,n = 1, and

• ϕ(p) = p− 1 for all prime numbers p.

The proof of these properties is left to the reader as Exercise 7.1-3. In particular,
we will apply the following fact in Subsection 7.3.1, which is a consequence of the
properties above.

Claim 7.3 If n = p · q for prime numbers p and q, then ϕ(n) = (p− 1)(q − 1).

Euler’s Theorem below is a special case (namely, for the group Z
∗
n) of Lagrange’s

Theorem, which says that for each group element a of a finite multiplicative group
G of order |G| and with neutral element e, a|G| = e. The special case of Euler’s
theorem, where n is a prime number not dividing a, is known as Fermat’s Little
Theorem.

Theorem 7.4 (Euler). For each a ∈ Z
∗
n, aϕ(n) ≡ 1 mod n.

Corollary 7.5 (Fermat’s Little Theorem). If p is a prime number and a ∈ Z
∗
p,

then ap−1 ≡ 1 mod p.

In Section 8.4, algorithms for the graph isomorphism problem will be presented.
This problem, which also is related to the zero-knowledge protocols to be introduced

342 7. Cryptology

in Subsection 7.5.2, can be seen as a special case of certain group-theoretic problems.
In particular, permutation groups are of interest here. Some examples for illustration
will be presented later.

Definition 7.6 (Permutation group).

• A permutation is a bijective mapping of a set onto itself. For each integer
n ≥ 1, let [n] = {1, 2, . . . , n}. The set of all permutations of [n] is denoted by Sn.
For algorithmic purposes, permutations π ∈ Sn are given as pairs (i, π(i)) from
[n]× [n].

• If one defines the composition of permutations as an operation on Sn, then Sn

becomes a group. For two permutations π and τ in Sn, their composition πτ is
defined to be that permutation in Sn that results from first applying π and then
τ to the elements of [n], i.e., (πτ)(i) = τ(π(i)) for each i ∈ [n]. The neutral
element of the permutation group Sn is the identical permutation, which is
defined by id(i) = i for each i ∈ [n]. The subgroup of Sn that contains id as its
only element is denoted by id.

• For any subset T of Sn, the permutation group 〈T〉 generated by T is defined
as the smallest subgroup of Sn containing T. Subgroups G of Sn are represented
by their generating sets, sometimes dubbed the generators of G. In G, the orbit
of an element i ∈ [n] is defined as G(i) = {π(i) | π ∈ G}.

• For any subset T of [n], let ST
n denote the subgroup of Sn that maps every

element of T onto itself. In particular, for i ≤ n and a subgroup G of Sn, the
(pointwise) stabiliser of [i] in G is defined by

G(i) = {π ∈ G | π(j) = j for each j ∈ [i]} .

Observe that G(n) = id and G(0) = G.

• Let G and H be permutation groups with H ≤ G. For τ ∈ G, Hτ = {πτ | π ∈ H}
is said to be a right coset of H in G. Any two right cosets of H in G are either
identical or disjoint. Thus, the permutation group G is partitioned by the right
cosets of H in G:

G = Hτ1 ∪ Hτ2 ∪ · · · ∪ Hτk . (7.3)

Every right coset of H in G has the cardinality |H|. The set {τ1, τ2, . . . , τk}
in (7.3) is called the complete right transversal of H in G.

The notion of pointwise stabilisers is especially important for the design of al-
gorithms solving problems on permutation groups. The crucial structure exploited
there is the so-called tower of stabilisers of a permutation group G:

id = G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G .

For each i with 1 ≤ i ≤ n, let Ti be the complete right transversal of G(i) in G(i−1).
Then, T =

⋃n−1
i=1 Ti is said to be a strong generator of G, and we have G = 〈T〉.

Every π ∈ G then has a unique factorisation π = τ1τ2 · · · τn with τi ∈ Ti. The
following basic algorithmic results about permutation groups will be useful later in
Section 8.4.

7.1. Foundations 343

Theorem 7.7 Let a permutation group G ≤ Sn be given by a generator. Then,
we have:

1. For each i ∈ [n], the orbit G(i) of i in G can be computed in polynomial time.

2. The tower of stabilisers id = G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G can be
computed in time polynomially in n, i.e., for each i with 1 ≤ i ≤ n, the complete
right transversals Ti of G(i) in G(i−1) and thus a strong generator of G can be
determined efficiently.

The notions introduced in Definition 7.6 for permutation groups are now ex-
plained for concrete examples from graph theory. In particular, we consider the
automorphism group and the set of isomorphisms between graphs. We start by in-
troducing some useful graph-theoretical concepts.

Definition 7.8 (Graph isomorphism and graph automorphism). A graph G con-
sists of a finite set of vertices, V (G), and a finite set of edges, E(G), that connect
certain vertices with each other. We assume that no multiple edges and no loops
occur. In this chapter, we consider only undirected graphs, i.e., the edges are not
oriented and can be seen as unordered vertex pairs. The disjoint union G∪H of two
graphs G and H is defined as the graph with vertex set V (G) ∪ V (H) and edge set
E(G)∪E(H), where we assume that that the vertex sets V (G) and V (H) are made
disjoint (by renaming if necessary).

Let G and H be two graphs with the same number of vertices. An isomorphism
between G and H is an edge-preserving bijection of the vertex set of G onto that
of H. Under the convention that V (G) = {1, 2, . . . , n} = V (H), G and H are iso-
morphic (G ∼= H, for short) if and only if there exists a permutation π ∈ Sn such
that for all vertices i, j ∈ V (G),

{i, j} ∈ E(G) ⇐⇒ {π(i), π(j)} ∈ E(H) . (7.4)

An automorphism of G is an edge-preserving bijection of the vertex set of G
onto itself. Every graph has the trivial automorphism id. By Iso(G,H) we denote the
set of all isomorphisms between G and H, and by Aut(G) we denote the set of all
automorphisms of G. Define the problems graph automorphism (GI, for short)
and graph automorphism (GA, for short) by:

GI = {(G,H) |G and H are isomorphic graphs} ;

GA = {G |G has a nontrivial automorphism} .

For algorithmic purposes, graphs are represented either by their vertex and edge
lists or by an adjacency matrix, which has the entry 1 at position (i, j) if {i, j} is
an edge, and the entry 0 otherwise. This graph representation is suitably encoded
over the alphabet Σ = {0, 1}. In order to represent pairs of graphs, we use a stan-
dard bijective pairing function (·, ·) from Σ∗ × Σ∗ onto Σ∗ that is polynomial-time
computable and has polynomial-time computable inverses.

Example 7.4[Graph isomorphism and graph automorphism] The graphs G and H shown
in Figure 7.5 are isomorphic.

344 7. Cryptology

3

5

2

4

1
F

1 2

3 4

5

3

5

2

4

1
G H

Figure 7.5 Three graphs: G is isomorphic to H, but not to F .

An isomorphism π : V (G) → V (H) preserving adjacency of the vertices according
to (7.4) is given, e.g., by π = (1 2 3 4 5

3 4 1 5 2
), or in cycle notation by π = (1 3)(2 4 5). There

are three further isomorphisms between G and H, i.e., |Iso(G,H)| = 4, see Exercise 7.1-4.
However, neither G nor H is isomorphic to F . This is immediately seen from the fact that
the sequence of vertex degrees (the number of edges fanning out of each vertex) of G and H,
respectively, differs from the sequence of vertex degrees of F : For G and H, this sequence is
(2, 3, 3, 4, 4), whereas it is (3, 3, 3, 3, 4) for F . A nontrivial automorphism ϕ : V (G) → V (G)
of G is given, e.g., by ϕ = (1 2 3 4 5

2 1 4 3 5
), or ϕ = (1 2)(3 4)(5); another one by τ = (1 2 3 4 5

1 2 4 3 5
), or

τ = (1)(2)(3 4)(5). There are two more automorphisms of G, i.e., |Aut(G)| = 4, see Exercise
7.1-4.

The permutation groups Aut(F), Aut(G), and Aut(H) are subgroups of S5. The tower
Aut(G)(5) ≤ Aut(G)(4) ≤ · · · ≤ Aut(G)(1) ≤ Aut(G)(0) of stabilisers of Aut(G) consists
of the subgroups Aut(G)(5) = Aut(G)(4) = Aut(G)(3) = id, Aut(G)(2) = Aut(G)(1) =
〈{id, τ}〉, and Aut(G)(0) = Aut(G). In the automorphism group Aut(G) of G, the vertices
1 and 2 have the orbit {1, 2}, the vertices 3 and 4 have the orbit {3, 4}, and vertex 5 has
the orbit {5}.

Iso(G,H) and Aut(G) have the same number of elements if and only if G and
H are isomorphic. To wit, if G and H are isomorphic, then |Iso(G,H)| = |Aut(G)|
follows from Aut(G) = Iso(G,G). Otherwise, if G 6∼= H, then Iso(G,H) is empty but
Aut(G) contains always the trivial automorphism id. This implies (7.5) in Lemma 7.9
below, which we will need later in Section 8.4. For proving (7.6), suppose that G
and H are connected; otherwise, we simply consider instead of G and H the co-
graphs G and H, see Exercise 7.1-5. An automorphism of G ∪H that switches the
vertices of G and H, consists of an isomorphism in Iso(G,H) and an isomorphism
in Iso(H,G). Thus, |Aut(G∪H)| = |Aut(G)| · |Aut(H)|+ |Iso(G,H)|2, which implies
(7.6) via (7.5).

7.1. Foundations 345

Lemma 7.9 For any two graphs G and H, we have

|Iso(G,H)| =

{
|Aut(G)| = |Aut(H)| if G ∼= H
0 if G 6∼= H ;

(7.5)

|Aut(G ∪H)| =

{
2 · |Aut(G)| · |Aut(H)| if G ∼= H
|Aut(G)| · |Aut(H)| if G 6∼= H .

(7.6)

If G and H are isomorphic graphs and if τ ∈ Iso(G,H), then Iso(G,H) =
Aut(G)τ . Thus, Iso(G,H) is a right coset of Aut(G) in Sn. Since any two right
cosets are either identical or disjoint, Sn can be partitioned into right cosets of
Aut(G) according to (7.3):

Sn = Aut(G)τ1 ∪Aut(G)τ2 ∪ · · · ∪Aut(G)τk , (7.7)

where |Aut(G)τi| = |Aut(G)| for all i, 1 ≤ i ≤ k. The set {τ1, τ2, . . . , τk} of per-
mutations in Sn thus is a complete right transversal of Aut(G) in Sn. Denoting by
π(G) the graph H ∼= G that results from applying the permutation π ∈ Sn to the
vertices of G, we have {τi(G) | 1 ≤ i ≤ k} = {H |H ∼= G}. Since there are exactly
n! = n(n− 1) · · · 2 · 1 permutations in Sn, it follows from (7.7) that

|{H |H ∼= G}| = k =
|Sn|
|Aut(G)| =

n!

|Aut(G)| .

This proves the following corollary.

Corollary 7.10 If G is a graph with n vertices, then there are exactly n!/|Aut(G)|
graphs isomorphic to G.

For the graph G in Figure 7.5 from Example 7.4, there thus exist exactly 5!/4 =
30 isomorphic graphs. The following lemma will be used later in Section 8.4.

Lemma 7.11 Let G and H be two graphs with n vertices. Define the set

A(G,H) = {(F,ϕ) | F ∼= G and ϕ ∈ Aut(F)} ∪ {(F,ϕ) | F ∼= H and ϕ ∈ Aut(F)} .

Then, we have

|A(G,H)| =

{
n! if G ∼= H
2n! if G 6∼= H .

Proof If F and G are isomorphic, then |Aut(F)| = |Aut(G)|. Hence, by Corol-
lary 7.10, we have

|{(F,ϕ) | F ∼= G and ϕ ∈ Aut(F)}| = n!

|Aut(F)| · |Aut(F)| = n! .

Analogously, one can show that |{(F,ϕ) | F ∼= H and ϕ ∈ Aut(F)}| = n!. If G and
H are isomorphic, then

{(F,ϕ) | F ∼= G and ϕ ∈ Aut(F)} = {(F,ϕ) | F ∼= H and ϕ ∈ Aut(F)} .

346 7. Cryptology

c1 W K L V V H Q W H Q F H L V H Q F U B S W H G E B F D H V D U V N H B

c2 N U O S J Y A Z E E W R O S V H P X Y G N R J B P W N K S R L F Q E P

Figure 7.6 Two ciphertexts encrypting the same plaintext, see Exercise 7.1-1.

It follows that |A(G,H)| = n!. If G and H are nonisomorphic, then {(F,ϕ) | F ∼= G
and ϕ ∈ Aut(F)} and {(F,ϕ) | F ∼= H and ϕ ∈ Aut(F)} are disjoint sets. Thus,
|A(G,H)| = 2n!.

Exercises
7.1-1 Figure 7.6 shows two ciphertexts, c1 and c2. It is known that both encrypt
the same plaintext m and that one was obtained using the shift cipher, the other one
using the Vigenère cipher. Decrypt both ciphertexts. Hint. After decryption you will
notice that the plaintext obtained is a true statement for one of the two ciphertexts,
whereas it is a false statement for the other ciphertext. Is perhaps the method of
frequency counts useful here?
7.1-2 Prove that Z is a ring with respect to ordinary addition and multiplication.
Is it also a field? What can be said about the properties of the algebraic structures
(N,+), (N, ·), and (N,+, ·)?
7.1-3 Prove the properties stated for Euler’s ϕ function:

a. ϕ(m · n) = ϕ(m) · ϕ(n) for all m,n ∈ N with gcd(m,n) = 1.
b. ϕ(p) = p− 1 for all prime numbers p.
Using these properties, prove Proposition 7.3.

7.1-4 Consider the graphs F , G, and H from Figure 7.5 in Example 7.4.
a. Determine all isomorphisms between G and H.
b. Determine all automorphisms of F , G, and H.
c. For which isomorphisms between G and H is Iso(G,H) a right coset of Aut(G)

in S5, i.e., for which τ ∈ Iso(G,H) is Iso(G,H) = Aut(G)τ? Determine the complete
right transversals of Aut(F), Aut(G), and Aut(H) in S5.

d. Determine the orbit of all vertices of F in Aut(F) and the orbit of all vertices
of H in Aut(H).

e. Determine the tower of stabilisers of the subgroups Aut(F) ≤ S5 and
Aut(H) ≤ S5.

f. How many graphs with 5 vertices are isomorphic to F?
7.1-5 The co-graph G of a graph G is defined by the vertex set V (G) = V (G) and
the edge set E(G) = {{i, j} | i, j ∈ V (G) and {i, j} 6∈ E(G)}. Prove the following
claims: a. Aut(G) = Aut(G).

b. Iso(G,H) = Iso(G,H).
c. G is connected if G is not connected.

7.2. Diffie and Hellman’s secret-key agreement protocol 347

Step Alice Erich Bob

1 Alice and Bob agree upon a large prime number p and a primitive root r of p;

both p and r are public

2 chooses a large, secret number a
at random and computes α =
ra mod p

chooses a large, secret number b
at random and computes β =
rb mod p

3 α ⇒

⇐ β

4 computes kA = βa mod p computes kB = αb mod p

Figure 7.7 The Diffie-Hellman secret-key agreement protocol.

7.2. Diffie and Hellman’s secret-key agreement
protocol

The basic number-theoretic facts presented in Subsection 7.1.3 will be needed in this
and the subsequent sections. In particular, recall the multiplicative group Z

∗
k from

Example 7.3 and Euler’s ϕ function. The arithmetics in remainder class rings will
be explained at the end of this chapter, see Problem 7-1.

Figure 7.7 shows the Diffie-Hellman secret-key agreement protocol, which is
based on exponentiation with base r and modulus p, where p is a prime number
and r is a primitive root of p. A primitive root of a number n is any element r ∈ Z

∗
n

such that rd 6≡ 1 mod n for each d with 1 ≤ d < ϕ(n). A primitive root r of n gen-
erates the entire group Z

∗
n, i.e., Z∗

n = {ri | 0 ≤ i < ϕ(n)}. Recall that for any prime
number p the group Z

∗
p has order ϕ(p) = p − 1. Z∗

p has exactly ϕ(p − 1) primitive
roots, see also Exercise 7.2-1.

Example 7.5 Consider Z
∗
5 = {1, 2, 3, 4}. Since Z

∗
4 = {1, 3}, we have ϕ(4) = 2, and the two

primitive roots of 5 are 2 and 3. Both 2 and 3 generate all of Z∗
5, since:

20 = 1; 21 = 2; 22 = 4; 23 ≡ 3 mod 5 ;
30 = 1; 31 = 3; 32 ≡ 4 mod 5; 33 ≡ 2 mod 5 .

Not every number has a primitive root; 8 is the smallest such example. It is
known that a number n has a primitive root if and only if n either is from {1, 2, 4},
or has the form n = qk or n = 2qk for some odd prime number q.

Definition 7.12 (Discrete logarithm). Let p be a prime number, and let r be a
primitive root of p. The modular exponential function with base r and modulus p
is the function expr,p that maps from Zp−1 to Z

∗
p, and is defined by expr,p(a) =

ra mod p. Its inverse function is called the discrete logarithm, and maps for fixed p
and r the value expr,p(a) to a. We write a = logr expr,p(a) mod p.

The protocol given in Figure 7.7 works, since (in the arithmetics modulo p)

kA = βa = rba = rab = αb = kB ,

so Alice indeed computes the same key as Bob. Computing this key is not hard, since

348 7. Cryptology

modular exponentiation can be performed efficiently using the square-and-multiply
method from algorithm Square-and-Multiply.

Erich, however, has a hard time when he attempts to determine their key, since
the discrete logarithm is considered to be a hard problem. That is why the modular
exponential function expr,p is a candidate of a one-way function, a function that is
easy to compute but hard to invert. Note that it is not known whether or not one-way
functions indeed exist; this is one of the most challenging open research questions
in cryptography. The security of many cryptosystems rests on the assumption that
one-way functions indeed exist.

Square-and-Multiply(a, b,m)

1 � m is the modulus, b < m is the base, and a is the exponent

2 determine the binary expansion of the exponent a =
∑k

i=0 ai2
i, where ai ∈ {0, 1}

3 compute successively b2i

, where 0 ≤ i ≤ k, using that b2i+1

=
(
b2i

)2

4 compute ba =
∏k

i = 0
ai=1

b2i

in the arithmetics modulo m

5 � as soon as a factor b2i

in the product and b2i+1

are determined,

� b2i

can be deleted and need not be stored
6 return ba

Why can the modular exponential function expr,p(a) = ra mod p be computed
efficiently? Naively performed, this computation may require many multiplications,
depending on the size of the exponent a. However, using algorithm Square-and-

Multiply there is no need to perform a−1 multiplications as in the naive approach;
no more than 2 log a multiplications suffice. The square-and-multiply algorithm thus
speeds modular exponentiation up by an exponential factor.

Note that in the arithmetics modulo m, we have

ba = b
∑

k

i=0
ai2i

=

k∏

i=0

(
b2i

)ai

=

k∏

i = 0
ai=1

b2i

.

Thus, the algorithm Square-and-Multiply is correct.

Example 7.6[Square-and-Multiply in the Diffie-Hellman Protocol] Alice and Bob have
chosen the prime number p = 5 and the primitive root r = 3 of 5. Alice picks the secret
number a = 17. In order to send her public number α to Bob, Alice wishes to compute
α = 317 = 129140163 ≡ 3 mod 5. The binary expansion of the exponent is 17 = 1 + 16 =
20 + 24. Alice successively computes the values:

320

= 3; 321

= 32 ≡ 4 mod 5; 322

≡ 42 ≡ 1mod 5; 323

≡ 12 ≡ 1mod 5; 324

≡ 12 ≡ 1 mod 5 .

Then, she computes 317 ≡ 320

· 324

≡ 3 · 1 ≡ 3 mod 5. Note that Alice does not have to
multiply 16 times but merely performs four squarings and one multiplication to determine
α = 3 mod 5.

Suppose that Bob has chosen the secret exponent b = 23. By the same method, he
can compute his part of the key, β = 323 = 94143178827 ≡ 2 mod 5. Now, Alice and Bob

7.2. Diffie and Hellman’s secret-key agreement protocol 349

determine their joint secret key according to the Diffie-Hellman protocol from Figure 7.7;
see Exercise 7.2-2.

Note that the protocol is far from being secure in this case, since the prime number
p = 5 and the secret exponents a = 17 and b = 23 are much too small. This toy example
was chosen just to explain how the protocol works. In practice, a and b should have at least
160 bits each.

If Erich was listening very careful, he knows the values p, r, α, and β after Alice
and Bob have executed the protocol. His aim is to determine their joint secret key
kA = kB . This problem is known as the Diffie-Hellman problem. If Erich were able to
determine a = logr α mod p and b = logr β mod p efficiently, he could compute the
key kA = βa mod p = αb mod p = kB just like Alice and Bob and thus would have
solved the Diffie-Hellman problem. Thus, this problem is no harder than the problem
of computing discrete logarithms. The converse question of whether or not the Diffie-
Hellman problem is at least as hard as solving the discrete logarithm (i.e., whether
or not the two problems are equally hard) is still just an unproven conjecture. As
many other cryptographic protocols, the Diffie-Hellman protocol currently has no
proof of security.

However, since up to date neither the discrete logarithm nor the Diffie-Hellman
problem can be solved efficiently, this direct attack is not a practical threat. On the
other hand, there do exist other, indirect attacks in which the key is determined not
immediately from the values α and β communicated in the Diffie-Hellman protocol.
For example, Diffie-Hellman is vulnerable by the “man-in-the-middle” attack. Unlike
the passive attack described above, this attack is active, since the attacker Erich aims
at actively altering the protocol to his own advantage. He is the “man in the middle”
between Alice and Bob, and he intercepts Alice’s message α = ra mod p to Bob and
Bob’s message β = rb mod p to Alice. Instead of α and β, he forwards his own values
αE = rc mod p to Bob and βE = rd mod p to Alice, where the private numbers c and
d were chosen by Erich. Now, if Alice computes her key kA = (βE)a mod p, which
she falsely presumes to share with Bob, kA in fact is a key for future communications
with Erich, who determines the same key by computing (in the arithmetics modulo p)

kE = αd = rad = rda = (βE)a = kA .

Similarly, Erich can share a key with Bob, who has not the slightest idea that he in
fact communicates with Erich. This raised the issue of authentication, which we will
deal with in more detail later in Section 7.5 about zero-knowledge protocols.

Exercises
7.2-1 a. How many primitive roots do Z

∗
13 and Z

∗
14 have?

b. Determine all primitive roots of Z∗
13 and Z

∗
14, and prove that they indeed are

primitive roots.
c. Show that every primitive root of 13 and of 14, respectively, generates all of

Z
∗
13 and Z

∗
14.

7.2-2 a. Determine Bob’s number β = 323 = 94143178827 ≡ 2 mod 5 from Example
7.6 using the algorithm Square-and-Multiply.

b. For α and β from Example 7.6, determine the joint secret key of Alice and
Bob according to the Diffie-Hellman protocol from Figure 7.7.

350 7. Cryptology

Step Alice Erich Bob

1 chooses large prime numbers p and q at ran-
dom and computes n = pq and ϕ(n) = (p −
1)(q − 1), his public key (n, e) and his private
key d, which satisfy (7.8) and (7.9)

2 ⇐ (n, e)

3 encrypts m as c =
me mod n

4 c ⇒

5 decrypts c as m = cd mod n

Figure 7.8 The RSA protocol.

7.3. RSA and factoring

7.3.1. RSA

The RSA cryptosystem, which is named after its inventors Ron Rivest, Adi Shamir,
and Leonard Adleman [49], is the first public-key cryptosystem. It is very popular
still today and is used by various cryptographic applications. Figure 7.8 shows the
single steps of the RSA protocol, which we will now describe in more detail, see also
Example 7.7.

1. Key generation: Bob chooses two large prime numbers at random, p and q with
p 6= q, and computes their product n = pq. He then chooses an exponent e ∈ N

satisfying

1 < e < ϕ(n) = (p− 1)(q − 1) and gcd(e, ϕ(n)) = 1 (7.8)

and computes the inverse of e mod ϕ(n), i.e., the unique number d such that

1 < d < ϕ(n) and e · d ≡ 1 mod ϕ(n) . (7.9)

The pair (n, e) is Bob’s public key, and d is Bob’s private key.

2. Encryption: As in Section 7.1, messages are strings over an alphabet Σ. Any
message is subdivided into blocks of a fixed length, which are encoded as positive
integers in |Σ|-adic representation. These integers are then encrypted. Let m < n
be the number encoding some block of the message Alice wishes to send to Bob.
Alice knows Bob’s public key (n, e) and encrypts m as the number c = E(n,e)(m),
where the encryption function is defined by

E(n,e)(m) = me mod n .

3. Decryption: Let c with 0 ≤ c < n be the number encoding one block of the
ciphertext, which is received by Bob and also by the eavesdropper Erich. Bob
decrypts c by using his private key d and the following decryption function

Dd(c) = cd mod n .

7.3. RSA and factoring 351

Theorem 7.13 states that the RSA protocol described above indeed is a cryp-
tosystems in the sense of Definition 7.1. The proof of Theorem 7.13 is left to the
reader as Exercise 7.3-1.

Theorem 7.13 Let (n, e) be the public key and d be the private key in the RSA
protocol. Then, for each message m with 0 ≤ m < n,

m = (me)
d

mod n .

Hence, RSA is a public-key cryptosystem.

To make RSA encryption and (authorised) decryption efficient, the algorithm
Square-and-Multiply algorithm is again employed for fast exponentiation.

How should one choose the prime numbers p and q in the RSA protocol? First
of all, they must be large enough, since otherwise Erich would be able to factor
the number n in Bob’s public key (n, e) using the extended Euclidean algorithm.
Knowing the prime factors p and q of n, he could then easily determine Bob’s private
key d, which is the unique inverse of e mod ϕ(n), where ϕ(n) = (p−1)(q−1). To keep
the prime numbers p and q secret, they thus must be sufficiently large. In practice, p
and q should have at least 80 digits each. To this end, one generates numbers of this
size randomly and then checks using one of the known randomised primality tests
whether the chosen numbers are primes indeed. By the Prime Number Theorem,
there are about N/ lnN prime numbers not exceeding N . Thus, the odds are good
to hit a prime after reasonably few trials.

In theory, the primality of p and q can be decided even in deterministic polyno-
mial time. Agrawal et al. [1, 2] recently showed that the primality problem, which
is defined by

PRIMES = {bin(n) | n is prime} ,

is a member of the complexity class P. Their breakthrough solved a longstanding
open problem in complexity theory: Among a few other natural problems such as
the graph isomorphism problem, the primality problem was considered to be one
of the rare candidates of problems that are neither in P nor NP-complete.2 For
practical purposes, however, the known randomised algorithms are more useful than
the deterministic algorithm by Agrawal et al. The running time of O(n12) obtained
in their original paper [1, 2] could be improved to O(n6) meanwhile, applying a
more sophisticated analysis, but this running time is still not as good as that of the
randomised algorithms.

2 The complexity classes P and NP will be defined in Section 8.1 and the notion of NP-completeness
will be defined in Section 8.2.

352 7. Cryptology

Miller-Rabin(n)

1 determine the representation n− 1 = 2km, where m and n are odd
2 choose a number z ∈ {1, 2, . . . , n− 1} at random under the uniform distribution
3 compute x = zm mod n
4 if (x ≡ 1 mod n)
5 then return “n is a prime number”
6 else for j ← 0 to k − 1
7 do if (x ≡ −1 mod n)
8 then return “n is a prime number”
9 else x← x2 mod n

10 return “n is not a prime number”

One of the most popular randomised primality tests is the algorithm Miller-

Rabin developed by Rabin [47], which is based on the ideas underlying the deter-
ministic algorithm of Miller [40]. The Miller-Rabin test is a so-called Monte Carlo
algorithm, since the “no” answers of the algorithm are always reliable, whereas its
“yes” answers have a certain error probability. An alternative to the Miller-Rabin
test is the primality test of Solovay and Strassen [62]. Both primality tests run in
time O(n3). However, the Solovay-Strassen test is less popular because it is not as
efficient in practice and also less accurate than the Miller-Rabin test.

The class of problems solvable via Monte Carlo algorithms with always reliable
“yes” answers is named RP, which stands for Randomised Polynomial Time. The
complementary class, coRP = {L | L ∈ RP}, contains all those problems solvable
via Monte Carlo algorithms with always reliable “no” answers. Formally, RP is de-
fined via nondeterministic polynomial-time Turing machines (NPTMs, for short; see
Section 8.1 and in particular Definitions 8.1, 8.2, and 8.3) whose computations are
viewed as random processes: For each nondeterministic guess, the machine flips an
unbiased coin and follows each of the resulting two next configurations with probabil-
ity 1/2 until a final configuration is reached. Depending on the number of accepting
computation paths of the given NPTM, one obtains a certain acceptance probability
for each input. Errors may occur. The definition of RP requires that the error prob-
ability must be below the threshold of 1/2 for an input to be accepted, and there
must occur no error at all for an input to be rejected.

Definition 7.14 (Randomised polynomial time). The class RP consists of exactly
those problems A for which there exists an NPTM M such that for each input x,
if x ∈ A then M(x) accepts with probability at least 1/2, and if x 6∈ A then M(x)
accepts with probability 0.

Theorem 7.15 PRIMES is in coRP.

Theorem 7.15 follows from the fact that, for example, the Miller-Rabin test is a
Monte Carlo algorithm for the primality problem. We present a proof sketch only. We
show that the Miller-Rabin test accepts PRIMES with one-sided error probability as in
Definition 7.14: If the given number n (represented in binary) is a prime number then
the algorithm cannot answer erroneously that n is not prime. For a contradiction,

7.3. RSA and factoring 353

suppose n is prime but the Miller-Rabin test halts with the output: “n is not a prime
number”. Hence, zm 6≡ 1 mod n. Since x is squared in each iteration of the for loop,
we sequentially test the values

zm, z2m, . . . , z2k−1m

modulo n. By assumption, for none of these values the algorithm says n were prime.
It follows that for each j with 0 ≤ j ≤ k − 1,

z2jm 6≡ −1 mod n .

Since n − 1 = 2km, Fermat’s Little Theorem (see Corollary 7.5) implies z2km ≡
1 mod n. Thus, z2k−1m is a square roots of 1 modulo n. Since n is prime, there are
only two square roots of 1 modulo n, namely ±1 mod n, see Exercise 7.3-1. Since

z2k−1m 6≡ −1 mod n, we must have z2k−1m ≡ 1 mod n. But then, z2k−2m again is a

square root of 1 modulo n. By the same argument, z2k−2m ≡ 1 mod n. Repeating
this argument again and again, we eventually obtain zm ≡ 1 mod n, a contradiction.
It follows that the Miller-Rabin test works correctly for each prime number. On the
other hand, if n is not a prime number, it can be shown that the error probability of
the Miller-Rabin tests does not exceed the threshold of 1/4. Repeating the number
of independent trials, the error probability can be made arbitrarily close to zero, at
the cost of increasing the running time of course, which still will be polynomially in
log n, where log n is the size of the input n represented in binary.

Example 7.7[RSA] Suppose Bob chooses the prime numbers p = 67 and q = 11. Thus,
n = 67 · 11 = 737, so we have ϕ(n) = (p− 1)(q− 1) = 66 · 10 = 660. If Bob now chooses the
smallest exponent possible for ϕ(n) = 660, namely e = 7, then (n, e) = (737, 7) is his public
key. Using the extended Euclidean algorithm, Bob determines his private key d = 283, and
we have e ·d = 7 ·283 = 1981 ≡ 1 mod 660; see Exercise 7.3-2. As in Section 7.1, we identify
the alphabet Σ = {A,B, . . . ,Z} with the set Z26 = {0, 1, . . . , 25}. Messages are strings over
Σ and are encoded in blocks of fixed length as natural numbers in 26-adic representation.
In our example, the block length is ` = blog26 nc = blog26 737c = 2.

More concretely, any block b = b1b2 · · · b` of length ` with bi ∈ Z26 is represented by
the number

mb =

`∑

i=1

bi · 26`−i
.

Since ` = blog26 nc, we have

0 ≤ mb ≤ 25 ·

`∑

i=1

26`−i = 26` − 1 < n .

The RSA encryption function encrypts the block b (i.e., the corresponding number mb) as
cb = (mb)e mod n. The ciphertext for block b then is cb = c0c1 · · · c` with ci ∈ Z26. Thus,
RSA maps blocks of length ` injectively to blocks of length `+ 1. Figure 7.9 shows how to
subdivide a message of length 34 into 17 blocks of length 2 and how to encrypt the single
blocks, which are represented by numbers. For example, the first block, “RS”, is turned
into a number as follows: “R” corresponds to 17 and “S” to 18, and we have

17 · 261 + 18 · 260 = 442 + 18 = 460 .

354 7. Cryptology

M R S A I S T H E K E Y T O P U B L I C K E Y C R Y P T O G R A P H Y

mb 460 8 487 186 264 643 379 521 294 62 128 69 639 508 173 15 206

cb 697 387 229 340 165 223 586 5 189 600 325 262 100 689 354 665 673

Figure 7.9 Example of an RSA encryption (M = Message).

Step Alice Erich Bob

1 chooses n = pq, her public
key (n, e) and her private key
d just as Bob does in the RSA
protocol in Figure 7.8

2 (n, e) ⇒

3 signs the message m by

sigA(m) = md mod n

4 (m, sigA(m)) ⇒

5 checks m ≡ (sigA(m))e mod
n to verify Alice’s signature

Figure 7.10 Digital RSA signatures.

The resulting number cb is written again in 26-adic representation and can have the
length `+1: cb =

∑`

i=0
ci ·26`−i, where ci ∈ Z26, see also Exercise 7.3-2. So, the first block,

697 = 676 + 21 = 1 · 262 + 0 · 261 + 21 · 260, is encrypted to yield the ciphertext “BAV”.
Decryption is also done blockwise. In order to decrypt the first block with the private

key d = 283, compute 697283 mod 737, again using fast exponentiation with Square-

and-Multiply. To prevent the numbers from becoming too large, it is recommendable to
reduce modulo n = 737 after each multiplication. The binary expansion of the exponent is
283 = 20 + 21 + 23 + 24 + 28, and we obtain

697283 ≡ 69720

· 69721

· 69723

· 69724

· 69728

≡ 697 · 126 · 9 · 81 · 15 ≡ 460 mod 737

as desired.

7.3.2. Digital RSA signatures

The public-key cryptosystem RSA from Figure 7.8 can be modified so as to produce
digital signatures. This protocol is shown in Figure 7.10. It is easy to see that this
protocol works as desired; see Exercise 7.3-2. This digital signature protocol is vul-
nerable to “chosen-plaintext attacks” in which the attacker can choose a plaintext
and obtains the corresponding ciphertext. This attack is described, e.g., in [50].

7.3.3. Security of RSA

As mentioned above, the security of the RSA cryptosystem crucially depends on the
assumption that large numbers cannot be factored in a reasonable amount of time.
Despite much effort in the past, no efficient factoring algorithm has been found until
now. Thus, it is widely believed that there is no such algorithm and the factoring
problem is hard. A rigorous proof of this hypothesis, however, has not been found

7.3. RSA and factoring 355

either. And even if one could prove this hypothesis, this would not imply a proof
of security of RSA. Breaking RSA is at most as hard as the factoring problem;
however, the converse is not known to hold. That is, it is not known whether these
two problems are equally hard. It may be possible to break RSA without factoring n.

We omit listing potential attacks on the RSA system here. Rather, the interested
reader is pointed to the comprehensive literature on this subject; note also Problem
7-4 at the end of this chapter. We merely mention that for each of the currently
known attacks on RSA, there are suitable countermeasures, rules of thumb that ei-
ther completely prevent a certain attack or make its probability of success negligibly
small. In particular, it is important to take much care when choosing the prime
numbers p and q, the modulus n = pq, the public exponent e, and the private key d.

Finally, since the factoring attacks on RSA play a particularly central role, we
briefly sketch two such attacks. The first one is based on Pollard’s (p−1) method [45].
This method is effective for composite numbers n having a prime factor p such that
the prime factors of p − 1 each are small. Under this assumption, a multiple ν
of p − 1 can be determined without knowing p. By Fermat’s Little Theorem (see
Corollary 7.5), it follows that aν ≡ 1 mod p for all integers a coprime with p. Hence,
p divides aν−1. If n does not divide aν−1, then gcd(aν−1, n) is a nontrivial divisor
of n. Thus, the number n can be factored.

How can the multiple ν of p − 1 be determined? Pollard’s (p − 1) method uses
as candidates for ν the products of prime powers below a suitably chosen bound S:

ν =
∏

q is prime, qk ≤ S

qk .

If all prime powers dividing p− 1 are less than S, then ν is a multiple of p− 1. The
algorithm determines gcd(aν − 1, n) for a suitably chosen base a. If no nontrivial
divisor of n is found, the algorithm is restarted with a new bound S′ > S.

Other factoring methods, such as the quadratic sieve, are described, e.g., in [52,
63]. They use the following simple idea. Suppose n is the number to be factored.
Using the sieve, determine numbers a and b such that:

a2 ≡ b2 mod n and a 6≡ ±b mod n . (7.10)

Hence, n divides a2−b2 = (a−b)(a+b) but neither a−b nor a+b. Thus, gcd(a−b, n)
is a nontrivial factor of n.

There are also sieve methods other than the quadratic sieve. These methods are
distinguished by the particular way of how to determine the numbers a and b such
that (7.10) is satisfied. A prominent example is the “general number field sieve”,
see [36].

Exercises
7.3-1 a. Prove Theorem 7.13. Hint. Show (me)

d ≡ m mod p and (me)
d ≡ m mod q

using Corollary 7.5, Fermat’s Little Theorem. Since p and q are prime numbers
with p 6= q and n = pq, the claim (me)

d ≡ m mod n now follows from the Chinese
remainder theorem.

b. The proof sketch of Theorem 7.15 uses the fact that any prime number n can

356 7. Cryptology

Step Alice Erich Bob

1 chooses two large numbers x
and y at random, keeps x se-
cret and computes xσy

2 (y, xσy) ⇒

3 chooses a large number z at
random, keeps z secret and
computes yσz

4 ⇐ yσz

5 computes kA = xσ(yσz) computes kB = (xσy)σz

Figure 7.11 The Rivest-Sherman protocol for secret-key agreement, based on σ.

have only two square roots of 1 modulo n, namely ±1 mod n. Prove this fact. Hint.
It may be helpful to note that r is a square root of 1 modulo n if and only if n
divides (r − 1)(r + 1).
7.3-2 a. Let ϕ(n) = 660 and e = 7 be the values from Example 7.7. Show that the
extended Euclidean algorithm indeed provides the private key d = 283, the inverse
of 7 mod 660.

b. Consider the plaintext in Figure 7.9 from Example 7.7 and its RSA en-
cryption. Determine the encoding of this ciphertext by letters of the alphabet
Σ = {A,B, . . . ,Z} for each of the 17 blocks.

c. Decrypt each of the 17 ciphertext blocks in Figure 7.9 and show that the
original message is obtained indeed.

d. Prove that the RSA digital signature protocol from Figure 7.10 works.

7.4. The protocols of Rivest, Rabi, and Sherman

Rivest, Rabi, and Sherman proposed protocols for secret-key agreement and digital
signatures. The secret-key agreement protocol given in Figure 7.11 is due to Rivest
and Sherman. Rabi and Sherman modified this protocol to a digital signature pro-
tocol, see Exercise 7.4-1

The Rivest-Sherman protocol is based on a total, strongly noninvertible, associa-
tive one-way function. Informally put, a one-way function is a function that is easy to
compute but hard to invert. One-way functions are central cryptographic primitives
and many cryptographic protocols use them as their key building blocks. To capture
the notion of noninvertibility, a variety of models and, depending on the model used,
various candidates for one-way functions have been proposed. In most cryptographic
applications, noninvertibility is defined in the average-case complexity model. Un-
fortunately, it is not known whether such one-way functions exist; the security of the
corresponding protocols is merely based on the assumption of their existence. Even
in the less challenging worst-case model, in which so-called “complexity-theoretic”
one-way functions are usually defined, the question of whether any type of one-way
function exists remains an open issue after many years of research.

A total (i.e., everywhere defined) function σ mapping from N×N to N is asso-
ciative if and only if (xσy)σz = xσ(yσz) holds for all x, y, z ∈ N, where we use the

7.5. Interactive proof systems and zero-knowledge 357

infix notation xσy instead of the prefix notation σ(x, y). This property implies that
the above protocol works:

kA = xσ(yσz) = (xσy)σz = kB ,

so Alice and Bob indeed compute the same secret key.
The notion of strong noninvertibility is not to be defined formally here. Infor-

mally put, σ is said to be strongly noninvertible if σ is not only a one-way function,
but even if in addition to the function value one of the corresponding arguments
is given, it is not possible to compute the other argument efficiently. This property
implies that the attacker Erich, knowing y and xσy and yσz, is not able to compute
the secret numbers x and z, from which he could easily determine the secret key
kA = kB .

Exercises
7.4-1 Modify the Rivest-Sherman protocol for secret-key agreement from Fig-
ure 7.11 to a protocol for digital signatures.
7.4-2 (a. Try to give a formal definition of the notion of “strong noninvertibility”
that is defined only informally above. Use the worst-case complexity model.

b. Suppose σ is a partial function from N×N to N, i.e., σ may be undefined for
some pairs in N×N. Give a formal definition of “associativity” for partial functions.
What is wrong with the following (flawed) attempt of a definition: “A partial function
σ : N × N → N is said to be associative if and only if xσ(yσz) = (xσy)σz holds for
all x, y, z ∈ N for which each of the four pairs (x, y), (y, z), (x, yσz), and (xσy, z) is
in the domain of σ.” Hint. A comprehensive discussion of these notions can be found
in [23, 25, 26].

7.5. Interactive proof systems and zero-knowledge

7.5.1. Interactive proof systems and Arthur-Merlin games

In Section 7.2, the “man-in-the-middle” attack on the Diffie-Hellman protocol was
mentioned. The problem here is that Bob has not verified the true identity of his
communication partner before executing the protocol. While he assumes to commu-
nicate with Alice, he in fact exchanges messages with Erich. In other words, Alice’s
task is to convince Bob of her true identity without any doubt. This cryptographic
task is called authentication. Unlike digital signatures, whose purpose is to authenti-
cate electronically transmitted documents such as emails, electronic contracts, etc.,
the goal now is to authenticate individuals such as human or computer parties par-
ticipating in a cryptographic protocol.3

In order to authenticate herself, Alice might try to prove her identity by a secret
information known to her alone, say by giving her PIN (“Personal I dentifaction
Number”) or any other private information that no one knows but her. However,
there is a catch. To prove her identity, she would have to give her secret away to Bob.

3 Here, an “individual” or a “party” is not necessarily a human being; it may also be a computer
program that automatically executes a protocol with another computer program.

358 7. Cryptology

But then, it no longer is a secret! Bob, knowing her secret, might pretend to be Alice
in another protocol he executes with Chris, a third party. So the question is how to
prove knowledge of a secret without giving it away. This is what zero-knowledge is all
about. Zero-knowledge protocols are special interactive proof systems, which were
introduced by Goldwasser, Micali, and Rackoff and, independently, by Babai and
Moran. Babai and Moran’s notion (which is essentially equivalent to the interactive
proof systems proposed by Goldwasser et al.) is known as Arthur-Merlin games,
which we will now describe informally.

Merlin and Arthur wish to jointly solve a problem L, i.e., they wish to jointly
decide whether or not a given input x belongs to L. The mighty wizard Merlin is
represented by an NP machine M , and the impatient King Arthur is represented by
a randomised polynomial-time Turing machine A. To make their decision, they play
the following game, where they are taking turns to make alternating moves. Merlin’s
intention is always to convince Arthur that x belongs to L (no matter whether or
not that indeed is the case). Thus, each of Merlin’s moves consists in presenting a
proof for “x ∈ L”, which he obtains by simulating M(x, y), where x is the input
and y describes all previous moves in this game. That is, the string y encodes all
previous nondeterministic choices of M and all previous random choices of A.

King Arthur, however, does not trust Merlin. Of course, he cannot check the
mighty wizard’s proofs all alone; this task simply exceeds his computational power.
But he knows Merlin well enough to express some doubts. So, he replies with a nifty
challenge to Merlin by picking some details of his proofs at random and requiring
certificates for them that he can verify. In order to satisfy Arthur, Merlin must
convince him with overwhelming probability. Thus, each of Arthur’s moves consists
in the simulation of A(x, y), where x again is the input and y describes the previous
history of the game.

The idea of Arthur-Merlin games can be captured via alternating existential
and probabilistic quantifiers, where the former formalise Merlin’s NP computation
and the latter formalise Arthur’s randomised polynomial-time computation.4 In this
way, a hierarchy of complexity classes can be defined, the so-called Arthur-Merlin
hierarchy. We here present only the class MA from this hierarchy, which corresponds
to an Arthur-Merlin game with two moves, with Merlin moving first.

Definition 7.16 (MA in the Arthur-Merlin hierarchy). The class MA contains
exactly those problems L for which there exists an NP machine M and a randomised
polynomial-time Turing machine A such that for each input x:

• If x ∈ L then there exists a path y of M(x) such that A(x, y) accepts with
probability at least 3/4 (i.e., Arthur cannot refute Merlin’s proof y for “x ∈ L”,
and Merlin thus wins).

• If x 6∈ L then for each path y of M(x), A(x, y) rejects with probability at least
3/4 (i.e., Arthur is not taken in by Merlin’s wrong proofs for “x ∈ L” and thus
wins).

Analogously, the classes AM,MAM,AMA, . . . can be defined, see Exercise 7.5-1.

4 This is similar to the well-known characterisation of the levels of the polynomial hierarchy via
alternating ∃ and ∀ quantifiers, see Section 8.4 and in particular item 3 Theorem 8.11.

7.5. Interactive proof systems and zero-knowledge 359

In Definition 7.16, the probability threshold of 3/4 for Arthur to accept or to
reject, respectively, is chosen at will and does not appear to be large enough at first
glance. In fact, the probability of success can be amplified using standard techniques
and can be made arbitrarily close to one. In other words, one might have chosen even
a probability threshold as low as 1/2 + ε, for an arbitrary fixed constant ε > 0, and
would still have defined the same class. Furthermore, it is known that for a constant
number of moves, the Arthur-Merlin hierarchy collapses down to AM:

NP ⊆ MA ⊆ AM = AMA = MAM = · · · .

It is an open question whether or not any of the inclusions NP ⊆ MA ⊆ AM is a
strict one.

A similar model, which can be used as an alternative to the Arthur-Merlin
games, are the interactive proof systems mentioned above. The two notions use
different terminology: Merlin now is called the “prover” and Arthur the “verifier”.
Also, their communication is not interpreted as a game but rather as a protocol.
Another difference between the two models, which appears to be crucial at first, is
that Arthur’s random bits are public (so, in particular, Merlin knows them), whereas
the random bits of the verifier in an interactive proof system are private. However,
Goldwasser and Sipser [21] proved that, in fact, it does not matter whether the
random bits are private or public, so Arthur-Merlin games essentially are equivalent
to interactive proof systems.

If one allows a polynomial number of moves (instead of a constant number),
then one obtains the complexity class IP. Note that interactive proof systems are
also called IP protocols. By definition, IP contains all of NP. In particular, the graph
isomorphism problem is in IP. We will see later that IP also contains problems from
coNP = {L |L ∈ NP} that are supposed to be not in NP. In particular, the proof of
Theorem 8.16 shows that the complement of the graph isomorphism problem is in
AM and thus in IP. A celebrated result by Shamir [59] says that IP equals PSPACE,
the class of problems solvable in polynomial space.

Let us now turn back to the problem of authentication mentioned above, and
to the related notion of zero-knowledge protocols. Here is the idea. Suppose Arthur
and Merlin play one of their games. So, Merlin sends hard proofs to Arthur. Merlin
alone knows how to get such proofs. Being a wise wizard, he keeps this knowledge
secret. And he uses his secret to authenticate himself in the communication with
Arthur.

Now suppose that malicious wizard Marvin wishes to fool Arthur by pretending
to be Merlin. He disguises as Merlin and uses his magic to look just like him. How-
ever, he does not know Merlin’s secret of how to produce hard proofs. His magic
is no more powerful than that of an ordinary randomised polynomial-time Turing
machine. Still, he seeks to simulate the communication between Merlin and Arthur.
An interactive proof system has the zero-knowledge property if the information
communicated between Marvin and Arthur cannot be distinguished from the infor-
mation communicated between Merlin and Arthur. Note that Marvin, who does not
know Merlin’s secret, cannot introduce any information about this secret into the
simulated IP protocol. Nonetheless, he is able to perfectly copy the original protocol,
so no one can tell a difference. Hence, the (original) protocol itself must have the

360 7. Cryptology

property that it does not leak any information whatsoever about Merlin’s secret. If
there is nothing to put in, there can be nothing to take out.

Definition 7.17 (Zero-knowledge protocol). Let L be any set in IP, and let (M,A)
be an interactive proof system for L, where M is an NPTM and A is a randomised
polynomial-time Turing machine. The IP protocol (M,A) is a zero-knowledge pro-
tocol for L if and only if there exists a randomised polynomial-time Turing machine
such that (M̂,A) simulates the original protocol (M,A) and, for each x ∈ L, the
tuples (m1,m2, . . . ,mk) and (m̂1, m̂2, . . . , m̂k) representing the information commu-

nicated in (M,A) and in (M̂,A), respectively, are identically distributed over the

random choices in (M,A) and in (M̂,A), respectively.

The notion defined above is called “honest-verifier perfect zero-knowledge” in
the literature, since (a) it is assumed that the verifier is honest (which may not
necessarily be true in cryptographic applications though), and (b) it is required
that the information communicated in the simulated protocol perfectly coincides
with the information communicated in the original protocol. Assumption (a) may
be somewhat too idealistic, and assumption (b) may be somewhat too strict. That
is why also other variants of zero-knowledge protocols are studied, see the notes at
the end of this chapter.

7.5.2. Zero-knowledge protocol for graph isomorphism

Let us consider a concrete example now. As mentioned above, the graph isomorphism
problem (GI, for short) is in NP, and the complementary problem GI is in AM, see the
proof of Theorem 8.16. Thus, both problems are contained in IP. We now describe a
zero-knowledge protocol for GI that is due to Goldreich, Micali, and Wigderson [16].
Figure 7.12 shows this IP protocol between the prover Merlin and the verifier Arthur.

Although there is no efficient algorithm known for GI, Merlin can solve this
problem, since GI is in NP. However, there is no need for him to do so in the
protocol. He can simply generate a large graph G0 with n vertices and a random
permutation π ∈ Sn. Then, he computes the graph G1 = π(G0) and makes the pair
(G0, G1) public. The isomorphism π between G0 and G1 is kept secret as Merlin’s
private information.

Of course, Merlin cannot send π to Arthur, since he does not want to give his
secret away. Rather, to prove that the two graphs, G0 and G1, indeed are isomorphic,
Merlin randomly chooses an isomorphism ρ under the uniform distribution and a bit
a ∈ {0, 1} and computes the graph H = ρ(Ga). He then sends H to Arthur whose
response is a challenge for Merlin: Arthur sends a random bit b ∈ {0, 1}, chosen
under the uniform distribution, to Merlin and requests to see an isomorphism σ
between Gb and H. Arthur accepts if and only if σ indeed satisfies σ(Gb) = H.

The protocol works, since Merlin knows his secret isomorphism π and his random
permutation ρ: It is no problem for Merlin to compute the isomorphism σ between
Gb and H and thus to authenticate himself. The secret π is not given away. Since
G0 and G1 are isomorphic, Arthur accepts with probability one. The case of two
nonisomorphic graphs does not need to be considered here, since Merlin has chosen
isomorphic graphs G0 and G1 in the protocol; see also the proof of Theorem 8.16.

7.5. Interactive proof systems and zero-knowledge 361

Step Merlin Arthur

1 randomly chooses a permutation ρ on
V (G0) and a bit a, computes H =
ρ(Ga)

2 H ⇒

3 chooses a random bit b and re-
quests to see an isomorphism
between Gb and H

4 ⇐ b

5 computes the isomorphism σ satisfying
σ(Gb) = H as follows:
if b = a then σ = ρ;
if 0 = b 6= a = 1 then σ = πρ;
if 1 = b 6= a = 0 then σ = π−1ρ.

6 σ ⇒

7 verifies that σ(Gb) = H and ac-
cepts accordingly

Figure 7.12 Goldreich, Micali, and Wigderson’s zero-knowledge protocol for GI.

Step Marvin Arthur

1 randomly chooses a permutation ρ on
V (G0) and a bit a, computes H =
ρ(Ga)

2 H ⇒

3 chooses a random bit b and re-
quests to see an isomorphism
between Gb and H

4 ⇐ b

5 if b 6= a then M̂ deletes all information
communicated in this round; if b = a

then M̂ sends σ = ρ

6 σ ⇒

7 b = a implies σ(Gb) = H, so
Arthur accepts Marvin’s faked
identity

Figure 7.13 Simulation of the zero-knowledge protocol for GI without knowing π.

Now, suppose, Marvin wishes to pretend to be Merlin when communicating with
Arthur. He does know the graphs G0 and G1, but he doesn’t know the secret isomor-
phism π. Nonetheless, he tries to convince Arthur that he does know π. If Arthur’s
random bit b happens to be the same as his bit a, to which Marvin committed
before he sees b, then Marvin wins. However, if b 6= a, then computing σ = πρ or
σ = π−1ρ requires knowledge of π. Since GI is not efficiently solvable (and even too
hard for a randomised polynomial-time Turing machine), Marvin cannot determine
the isomorphism π for sufficiently large graphs G0 and G1. But without knowing π,
all he can do is guess. His chances of hitting a bit b with b = a are at most 1/2. Of
course, Marvin can always guess, so his success probability is exactly 1/2. If Arthur
challenges him in r independent rounds of this protocol again and again, the prob-
ability of Marvin’s success will be only 2−r. Already for r = 20, this probability is
negligibly small: Marvin’s probability of success is then less than one in one million.

362 7. Cryptology

It remains to show that the protocol from Figure 7.12 is a zero-knowledge proto-
col. Figure 7.13 shows a simulated protocol with Marvin who does not know Merlin’s
secret π but pretends to know it. The information communicated in one round of
the protocol has the form of a triple: (H, b, σ). If Marvin is lucky enough to choose
a random bit a with a = b, he can simply send σ = ρ and wins: Arthur (or any
third party watching the communication) will not notice the fraud. On the other
hand, if a 6= b then Marvin’s attempt to betray will be uncovered. However, that is
no problem for the malicious wizard: He simply deletes this round from the protocol
and repeats. Thus, he can produce a sequence of triples of the form (H, b, σ) that
is indistinguishable from the corresponding sequence of triples in the original proto-
col between Merlin and Arthur. It follows that Goldreich, Micali, and Wigderson’s
protocol for GI is a zero-knowledge protocol.

Exercises
7.5-1 Arthur-Merlin hierarchy:

a. Analogously to MA from Definition 7.16, define the other classes AM, MAM,
AMA, . . . of the Arthur-Merlin hierarchy.

b. What is the inclusion structure between the classes MA, coMA, AM, coAM,
and the classes of the polynomial hierarchy defined in Definition 8.10 of Subsection
8.4.1.7.5-2 Zero-knowledge protocol for graph isomorphism:

a. Consider the graphs G and H from Example 7.4 in Section 7.1.3. Execute
the zero-knowledge protocol from Figure 7.12 with the graphs G0 = G and G1 = H
and the isomorphism π = (1 2 3 4 5

3 4 1 5 2
). Use an isomorphism ρ of your choice, and try all

possibilities for the random bits a and b. Repeat this Arthur-Merlin game with an
unknown isomorphism ρ chosen by somebody else.

b. Modify the protocol from Figure 7.12 such that, with only one round of the
protocol, Marvin’s success probability is less than 2−25.

Problems

7-1 Arithmetics in the ring Zk

Let k ∈ N and x, y, z ∈ Z. We say x is congruent to y modulo k (x ≡ y mod k, for
short) if and only if k divides the difference y − x. For example, −10 ≡ 7 mod 17
and 4 ≡ 0 mod 2. The congruence ≡ modulo k defines an equivalence relation on Z,
i.e., it is reflexive (x ≡ x mod k), symmetric (if x ≡ y mod k then y ≡ x mod k),
and transitive (x ≡ y mod k and y ≡ z mod k imply x ≡ z mod k).

The set x+ kZ = {y ∈ Z | y ≡ x mod k} is the remainder class of x mod k. For
example, the remainder class of 3 mod 7 is

3 + 7Z = {3, 3± 7, 3± 2 · 7, . . .} = {3, 10,−4, 17,−11, . . .} .
We represent the remainder class of x mod k by the smallest natural number in
x + kZ. For instance, 3 represents the remainder class of 3 mod 7. The set of all
remainder classes mod k is Zk = {0, 1, . . . , k − 1}. On Zk, addition is defined by
(x+kZ)+(y+kZ) = (x+y)+kZ, and multiplication is defined by (x+kZ)·(y+kZ) =

Notes for Chapter 7 363

(x ·y)+kZ. For example, in the arithmetics modulo 7, we have (4+7Z)+(5+7Z) =
(4 + 5) + 7Z = 2 + 7Z and (4 + 7Z) · (5 + 7Z) = (4 · 5) + 7Z = 6 + 7Z.

Prove that in the arithmetics modulo k:

a. (Zk,+, ·) is a commutative ring with one;

b. Z
∗
k, which is defined in Example 7.3, is a multiplicative group;

c. (Zp,+, ·) is a field for each prime number p.

d. Prove that the neutral element of a group and the inverse of each group element
are unique.

e. Let R be a commutative ring with one. Prove that the set of all invertible
elements in R forms a multiplicative group. Determine this group for the ring Zk.

7-2 Tree isomorphism
The graph isomorphism problem can be solved efficiently on special graph classes,
such as on the class of trees. An (undirected) tree is a connected graph without
cycles. (A cycle is a sequence of pairwise incident edges that returns to the point of
origin.) The leaves of a tree are the vertices with degree one. The tree isomorphism
problem is defined by

TI = {(G,H) |G and H are isomorphic trees} .

Design an efficient algorithm for this problem.
Hint. Label the vertices of the given pair of trees successively by suitable number

sequences. Compare the resulting sequences of labels in the single loops of the algo-
rithm. Starting from the leaves of the trees and then working step by step towards
the center of the trees, the algorithm halts as soon as all vertices are labelled. This
algorithm can be found, e.g., in [32].
7-3 Computing the determinant
Design an efficient algorithm in pseudocode for computing the determinant of a ma-
trix. Implement your algorithm in a programming language of your choice. Can the
inverse of a matrix be computed efficiently?
7-4 Low-exponent attack

a. Consider the RSA cryptosystem from Figure 7.8. For the sake of efficiency, the
public exponent e = 3 has been popular. However, this choice is dangerous.
Suppose Alice, Bob, and Chris encrypt the same message m with the same
public exponent e = 3, but perhaps with distinct moduli, nA, nB , and nC . Erich
intercepts the resulting three ciphertexts: ci = m3 mod ni for i ∈ {A,B,C}.
Then, Erich can easily decrypt the message m. How?

Hint. Erich knows the Chinese remainder theorem, which also was useful in
Exercise 7.3-1.

A recommended value for the public exponent is e = 216 + 1, since its binary
expansion has only two ones. Thus, the square-and-multiply algorithm runs fast
for this e.

b. The attack described above can be extended to k ciphertexts that are related
with each other as follows. Let ai and bi be known, 1 ≤ i ≤ k, and suppose

364 7. Cryptology

that k messages ci = (aim+ bi)
e mod ni are sent and are intercepted by Erich.

Further, suppose that k > e(e+1)/2 and min(ni) > 2e2

. How can attacker Erich
now determine the original message m?

Hint. Apply so-called lattice reduction techniques (see, e.g., Micciancio and Gold-
wasser [39]). The attack mentioned here is due to Håstad [22] and has been
strengthened later by Coppersmith [12].

c. How can the attacks described above be prevented?

Chapter Notes

Singh’s book [61] gives a nice introduction to the history of cryptology, from its
ancient roots to modern cryptosystems. For example, you can find out there about
recent discoveries related to the development of RSA and Diffie-Hellman in the
nonpublic sector. Ellis, Cocks, and Williamson from the Communications Electronics
Security Group (CESG) of the British Government Communications Head Quarters
(GCHQ) proposed the RSA system from Figure 7.8 and the Diffie-Hellman protocol
from Figure 7.7 even earlier than Rivest, Shamir, and Adleman and at about the
same time as but independent of Diffie and Hellman, respectively. RSA and Diffie-
Hellman are described in probably every book about cryptography written since
their invention. A more comprehensive list of attacks against RSA than that of
Section 7.3 can be found in, e.g., [7, 30, 42, 50, 52, 60].

Primality tests such as the Miller-Rabin test and factoring algorithms are also
described in many books, e.g., in [18, 52, 53, 63].

The notion of strongly noninvertible associative one-way functions, on which the
secret-key agreement protocol from Figure 7.11 is based, is due to Rivest and Sher-
man. The modification of this protocol to a digital signature scheme is due to Rabi
and Sherman. In their paper [46], they also proved that commutative, associative
one-way function exist if and only if P 6= NP. However, the one-way functions they
construct are neither total nor strongly noninvertible, even if P 6= NP is assumed.
Hemaspaandra and Rothe [26] proved that total, strongly noninvertible, commuta-
tive, associative one-way functions exist if and only if P 6= NP. Further investigations
on this topic can be found in [6, 23, 25, 28].

The notion of interactive proof systems and zero-knowledge protocols is due
to Goldwasser, Micali, and Rackoff [20]. One of the best and most comprehensive
sources on this field is Chapter 4 in Goldreich’s book [18]; see also the books [34,
43, 52] and the surveys [19, 17, 50]. Arthur-Merlin games were introduced by Babai
and Moran [5, 4] and have been investigated in many subsequent papers. Variants of
the notion of zero-knowledge, which differ from the notion in Definition 7.17 in their
technical details, are extensively discussed in, e.g., [18] and also in, e.g., [17, 19, 50].

8. Complexity Theory

In Chapter 7, efficient algorithms were introduced that are important for cryp-
tographic protocols. Designing efficient algorithms of course is a central task in all
areas of computer science. Unfortunately, many important problems have resisted
all attempts in the past to devise efficient algorithms solving them. Well-known ex-
amples of such problems are the satisfiability problem for boolean formulas and the
graph isomorphism problem.
One of the most important tasks in complexity theory is to classify such problems
according to their computational complexity. Complexity theory and algorithmics
are the two sides of the same medal; they complement each other in the following
sense. While in algorithmics one seeks to find the best upper bound for some problem,
an important goal of complexity theory is to obtain the best possible lower bound
for the same problem. If the upper and the lower bound coincide, the problem has
been classified.

The proof that some problem cannot be solved efficiently often appears to be
“negative” and not desirable. After all, we wish to solve our problems and we wish
to solve them fast. However, there is also some “positive” aspect of proving lower
bounds that, in particular, is relevant in cryptography (see Chapter 7). Here, we are
interested in the applications of inefficiency: A proof that certain problems (such
as the factoring problem or the discrete logarithm) cannot be solved efficiently can
support the security of some cryptosystems that are important in practical applica-
tions.

In Section 8.1, we provide the foundations of complexity theory. In particular,
the central complexity classes P and NP are defined. The question of whether or
not these two classes are equal is still open after more than three decades of intense
research. Up to now, neither a proof of the inequality P 6= NP (which is widely
believed) could be achieved, nor were we able to prove the equality of P and NP.
This question led to the development of the beautiful and useful theory of NP-
completeness.

One of the best understood NP-complete problems is SAT, the satisfiability prob-
lem of propositional logic: Given a boolean formula ϕ, does there exist a satisfying
assignment for ϕ, i.e., does there exist an assignment of truth values to ϕ’s variables
that makes ϕ true? Due to its NP-completeness, it is very unlikely that there exist
efficient deterministic algorithms for SAT. In Section 8.3, we present a deterministic

366 8. Complexity Theory

and a randomised algorithm for SAT that both run in exponential time. Even though
these algorithms are asymptotically inefficient (which is to say that they are useless
in practice for large inputs), they are useful for sufficiently small inputs of sizes still
relevant in practice. That is, they outperform the naive deterministic exponential-
time algorithm for SAT in that they considerably increase the input size for which
the algorithm’s running time still is tolerable.

In Section 8.4, we come back to the graph isomorphism problem, which was
introduced in Section 7.1.3 (see Definition 7.8) and which was useful in Section 7.5.2
with regard to the zero-knowledge protocols. This problem is one of the few natural
problems in NP, which (under the plausible assumption that P 6= NP) may be
neither efficiently solvable nor be NP-complete. In this regard, this problem is special
among the problems in NP. Evidence for the hypothesis that the graph isomorphism
problem may be neither in P nor NP-complete comes from the theory of lowness,
which is introduced in Section 8.4. In particular, we present Schöning’s result that
GI is contained in the low hierarchy within NP. This result provides strong evidence
that GI is not NP-complete. We also show that GI is contained in the complexity
class SPP and thus is low for certain probabilistic complexity classes. Informally put,
a set is low for a complexity class C if it does not provide any useful information
when used as an “oracle” in C computations. For proving the lowness of GI, certain
group-theoretic algorithms are useful.

8.1. Foundations

As mentioned above, complexity theory is concerned with proving lower bounds.
The difficulty in such proofs is that it is not enough to analyse the runtime of just
one concrete algorithm for the problem considered. Rather, one needs to show that
every algorithm solving the problem has a runtime no better than the lower bound
to be proven. This includes also algorithms that have not been found as yet. Hence,
it is necessary to give a formal and mathematically precise definition of the notion
of algorithm.

Since the 1930s, a large variety of formal algorithm models has been proposed.
All these models are equivalent in the sense that each such model can be trans-
formed (via an algorithmic procedure) into any other such model. Loosely speaking,
one might consider this transformation as some sort of compilation between dis-
tinct programming languages. The equivalence of all these algorithm models justifies
Church’s thesis, which says that each such model captures precisely the somewhat
vague notion of “intuitive computability”. The algorithm model that is most com-
mon in complexity theory is the Turing machine, which was introduced in 1936 by
Alan Turing (1912 until 1954) in his pathbreaking work [65]. The Turing machine is
a very simple abstract model of a computer. In what follows, we describe this model
by defining its syntax and its semantics, and introduce at the same time two basic
computation paradigms: determinism and nondeterminism. It makes sense to first
define the more general model of nondeterministic Turing machines. Deterministic
Turing machines then are easily seen to be a special case.

First, we give some technical details and describe how Turing machines work. A

8.1. Foundations 367

finite
control

2 S H H KROW2! 2 I N 2 P R G R E S S !O 2

TUPNI2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22

input tape

work tape

head

head

H

Figure 8.1 A Turing machine with one input and two work tapes.

Turing machine has k infinite work tapes that are subdivided into cells. Every cell
may contain one letter of the work alphabet. If a cell does not contain a letter, we
indicate this by a special blank symbol, denoted by 2. The computation is done on
the work tapes. Initially, a designated input tape contains the input string, and all
other cells contain the blank. If a computation halts, its result is the string contained
in the designated output tape.1 To each tape belongs a head that accesses exactly
one cell of this tape. In each step of the computation, the head can change the
symbol currently read and then moves to the left or to the right or does not move at
all. At the same time, the current state of the machine, which is stored in its “finite
control” can change. Figure 8.1 displays a Turing machine with one input and two
work tapes.

Definition 8.1 (Syntax of Turing machines). A nondeterministic Turing ma-
chine with k tapes (a k-tape NTM, for short) is a 7-tuple M =
(Σ,Γ, Z, δ, z0,2, F), where Σ is the input alphabet, Γ is the work alphabet, Z is
a finite set of states disjoint with Γ, δ : Z × Γk → P(Z × Γk × {L,R,N}k) is the
transition function, z0 ∈ Z is the initial state, 2 ∈ Γ− Σ is the blank symbol, and
F ⊆ Z is the set of final states. Here, P(S) denotes the power set of set S, i.e., the
set of all subsets of S.

For readability, we write (z, a) 7→ (z′, b, x) instead of (z′, b, x) ∈ δ(z, a) with
z, z′ ∈ Z, x ∈ {L,R,N} and a, b ∈ Γ. This transition has the following meaning. If
the current state is z and the head currently reads a symbol a, then:

• a is replaced by b,

• z′ is the new state, and

• the head moves according to x ∈ {L,R,N}, i.e., the head either moves one cell
to the left (if x = L), or one cell to the right (if x = R), or it does not move at
all (if x = N).

The special case of a deterministic Turing machine with k tapes (k-tape DTM,
for short) is obtained by requiring that the transition function δ maps from Z × Γk

to Z × Γk × {L,R,N}k.

For k = 1, we obtain the one-tape Turing machine, abbreviated simply by NTM

1 One can require, for example, that the input tape is a read-only and the output tape is a write-
only tape. Similarly, one can specify a variety of further variations of the technical details, but we
do not pursue this any further here.

368 8. Complexity Theory

and DTM, respectively. Every k-tape NTM or k-tape DTM can be simulated by
a Turing machine with only one tape, where the runtime at most doubles. Tur-
ing machines can be considered both as acceptors (which accept languages) and as
transducers (which compute functions).

Definition 8.2 (Semantics of Turing machines). Let M = (Σ,Γ, Z, δ, z0,2, F) be
an NTM. A configuration of M is a string k ∈ Γ∗ZΓ∗, where k = αzβ is interpreted
as follows: αβ is the current tape inscription, the head reads the first symbol of β,
and z is the current state of M .

On the set KM = Γ∗ZΓ∗ of all configurations of M , define a binary relation
`M , which describes the transition from a configuration k ∈ KM into a configuration
k′ ∈ KM according to δ. For any two strings α = a1a2 · · · am and β = b1b2 · · · bn

in Γ∗, where m ≥ 0 and n ≥ 1, and for all z ∈ Z, define

αzβ `M

a1a2 · · · amz
′cb2 · · · bn if (z, b1) 7→ (z′, c,N) and m ≥ 0 and n ≥ 1

a1a2 · · · amcz
′b2 · · · bn if (z, b1) 7→ (z′, c, R) and m ≥ 0 and n ≥ 2

a1a2 · · · am−1z
′amcb2 · · · bn if (z, b1) 7→ (z′, c, L) and m ≥ 1 and n ≥ 1 .

Two special cases need be considered separately:

1. If n = 1 and (z, b1) 7→ (z′, c, R) (i.e., M ’s head moves to the right and reads a
2 symbol), then a1a2 · · · amzb1 `M a1a2 · · · amcz

′
2.

2. If m = 0 and (z, b1) 7→ (z′, c, L) (i.e., M ’s head moves to the left and reads a 2

symbol), then zb1b2 · · · bn `M z′
2cb2 · · · bn.

The initial configuration of M on input x is always z0x. The final configurations
of M on input x have the form αzβ with z ∈ F and α, β ∈ Γ∗.

Let `∗
M be the reflexive, transitive closure of `M : For k, k′ ∈ KM , we have

k `∗
M k′ if and only if there is a finite sequence k0, k1, . . . , kt of configurations in

KM such that
k = k0 `M k1 `M · · · `M kt = k′ ,

where possibly k = k0 = kt = k′. If k0 = z0x is the initial configuration of M on
input x, then this sequence of configurations is a finite computation of M(x), and
we say M halts on input x. The language accepted by M is defined by

L(M) = {x ∈ Σ∗ | z0x `∗
M αzβ with z ∈ F and α, β ∈ Γ∗} .

For NTMs, any configuration may be followed by more than one configuration.
Thus, they have a computation tree, whose root is labelled by the initial configuration
and whose leaves are labelled by the final configurations. Note that trees are special
graphs (recall Definition 7.8 in Section 7.1.3 and Problem 7-2), so they have vertices
and edges. The vertices of a computation tree M(x) are the configurations of M on
input x. For any two configurations k and k′ from KM , there is exactly one directed
edge from k to k′ if and only if k `M k′. A path in the computation tree of M(x) is a
sequence of configurations k0 `M k1 `M · · · `M kt `M · · · . The computation tree of
an NTM can have infinite paths on which never a halting configuration is reached.
For DTMs, each non-halting configuration has a unique successor configuration.
Thus, the computation tree of a DTM degenerates to a linear chain.

8.1. Foundations 369

(s0, a) 7→ (s1, $, R) (s2, $) 7→ (s2, $, R) (s5, c) 7→ (s5, c, L)

(s1, a) 7→ (s1, a, R) (s3, c) 7→ (s3, c, R) (s5, $) 7→ (s5, $, L)

(s1, b) 7→ (s2, $, R) (s3,2) 7→ (s4,2, L) (s5, b) 7→ (s5, b, L)

(s1$) 7→ (s1, $, R) (s4, $) 7→ (s4, $, L) (s5, a) 7→ (s5, a, L)

(s2, b) 7→ (s2, b, R) (s4,2) 7→ (s6,2, R) (s5,2) 7→ (s0,2, R)

(s2, c) 7→ (s3, $, R) (s4, c) 7→ (s5, c, L) (s0, $) 7→ (s0, $, R)

Figure 8.2 Transition function δ of M for L = {anbncn | n ≥ 1}.

Z Meaning Intention

s0 initial state start next cycle

s1 one a stored look for next b

s2 one a and one b stored look for next c

s3 one a, one b, and one c deleted look for right boundary

s4 right boundary reached move back and test if all a, b, and c are deleted

s5 test not successful move back and start next cycle

s6 test successful accept

Figure 8.3 M ’s states, their meaning and their intention.

Example 8.1 Consider the language L = {anbncn | n ≥ 1}. A Turing machine accepting
L is given by

M = ({a, b, c}, {a, b, c, $,2}, {s0, s1, . . . , s6}, δ, s0,2, {s6}) ,

where the transitions of δ are stated in Figure 8.2. Figure 8.3 provides the meaning of the
single states of M and the intention corresponding to the each state. See also Exercise
8.1-2.

In order to classify problems according to their computational complexity, we
need to define complexity classes. Each such class is defined by a given resource
function and contains all problems that can be solved by a Turing machine that
requires no more of a resource (e.g., computation time or memory space) than is
specified by the resource function. We consider only the resource time here, i.e., the
number of steps—as a function of the input size—needed to solve (or to accept)
the problem. Further, we consider only the traditional worst-case complexity model.
That is, among all inputs of size n, those that require the maximum resource are
decisive; one thus assumes the worst case to occur. We now define deterministic and
nondeterministic time complexity classes.

Definition 8.3 (Deterministic and nondeterministic time complexity).

• Let M be a DTM with L(M) ⊆ Σ∗ and let x ∈ Σ∗ be an input. Define the time
function of M(x), which maps from Σ∗ to N, as follows:

TimeM (x) =

{
k if M(x) has exactly k + 1 configurations
undefined otherwise.

370 8. Complexity Theory

Define the function timeM : N→ N by:

timeM (n) =

maxx:|x|=n TimeM (x) if TimeM (x) is defined
for all x with |x| = n

undefined otherwise .

• Let M be an NTM with L(M) ⊆ Σ∗ and let x ∈ Σ∗ be an input. Define the time
function of M(x), which maps from Σ∗ to N, as follows:

NTimeM (x) =

{
min{TimeM (x, α) |M(x) accepts on path α} if x ∈ L(M)
undefined otherwise .

Define the function ntimeM : N→ N by

ntimeM (n) =

maxx:|x|=n NTimeM (x) if NTimeM (x) is defined
for all x with |x| = n

undefined otherwise .

• Let t be a computable function that maps from N to N. Define the deterministic
and nondeterministic complexity classes with time function t by

DTIME(t) =

{
A

A = L(M) for some DTM M and
for all n ∈ N, timeM (n) ≤ t(n)

}
;

NTIME(t) =

{
A

A = L(M) for an NTM M and
for all n ∈ N is ntimeM (n) ≤ t(n)

}
.

• Let IPol be the set of all polynomials. Define the complexity classes P and NP as
follows:

P =
⋃

t∈IPol

DTIME(t) and NP =
⋃

t∈IPol

NTIME(t) .

Why are the classes P and NP so important? Obviously, exponential-time algo-
rithms cannot be considered efficient in general. Garey and Johnson compare the
rates of growth of some particular polynomial and exponential time functions t(n)
for certain input sizes relevant in practice, see Figure 8.4. They assume that a com-
puter executes one million operations per second. Then all algorithms bounded by
a polynomial run in a “reasonable” time for inputs of size up to n = 60, whereas for
example an algorithm with time bound t(n) = 3n takes more than 6 years already
for the modest input size of n = 30. For n = 40 it takes almost 4000 centuries, and
for n = 50 a truly astronomic amount of time.

The last decades have seen an impressive development of computer and hardware
technology. Figure 8.5 (taken from [15]) shows that this is not enough to provide an
essentially better runtime behaviour for exponential-time algorithms, even assuming
that the previous trend in hardware development continues. What would happen if
one had a computer that is 100 times or even 1000 times as fast as current computers

8.1. Foundations 371

t(n) n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

n .00001 sec .00002 sec .00003 sec .00004 sec .00005 sec .00006 sec

n2 .0001 sec .0004 sec .0009 sec .0016 sec .0025 sec .0036 sec

n3 .001 sec .008 sec .027 sec .064 sec .125 sec .256 sec

n5 .1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min 13.0 min

2n .001 sec 1.0 sec 17.9 min 12.7 days 35.7 years 366 cent.

3n .059 sec 58 min 6.5 years 3855 cent. 2 · 108 cent. 1.3 · 1013 cent.

Figure 8.4 Comparison of some polynomial and exponential time functions.

ti(n) Computer today 100 times faster 1000 times faster

t1(n) = n N1 100 · N1 1000 · N1

t2(n) = n2 N2 10 · N2 31.6 · N2

t3(n) = n3 N3 4.64 · N3 10 · N3

t4(n) = n5 N4 2.5 · N4 3.98 · N4

t5(n) = 2n N5 N5 + 6.64 N5 + 9.97

t6(n) = 3n N6 N6 + 4.19 N6 + 6.29

Figure 8.5 What happens when the computers get faster?

are? For functions ti(n), 1 ≤ i ≤ 6, let Ni be the maximum size of inputs that can
be solved by a ti(n) time-bounded algorithm within one hour. Figure 8.5 also taken
from [15]) shows that a computer 1000 times faster than today’s computers increases
N5 for t5(n) = 2n by only an additive value close to 10. In contrast, using computers
with the same increase in speed, an n5 time-bounded algorithm can handle problem
instances about four times as large as before.

Intuitively, the complexity class P contains the efficiently solvable problems.
The complexity class NP contains many problems important in practice but cur-
rently not efficiently solvable. Examples are the satisfiability problem and the graph
isomorphism problem that will be dealt with in more detail later in this chapter.
The question of whether or not the classes P and NP are equal is still open. This
famous P-versus-NP question gave rise to the theory of NP-completeness, which is
briefly introduced in Section 8.2.

Exercises
8.1-1 Can Church’s thesis ever be proven formally?
8.1-2 Consider the Turing machine M in Example 8.1.

a. What are the sequences of configurations of M for inputs x = a3b3c2 and
y = a3b3c3, respectively?

b. Prove that M is correct, i.e., show that L(M) = {anbncn | n ≥ 1}.
c. Estimate the running time of M .
d. Show that the graph isomorphism problem and the graph automorphism

problem introduced in Definition 7.8 are both in NP.

372 8. Complexity Theory

8.2. NP-completeness

The theory of NP-completeness provides methods to prove lower bounds for problems
in NP. An NP problem is said to be complete in NP if it belongs to the hardest
problems in this class, i.e., if it is at least as hard as any NP problem. The complexity
of two given problems can be compared by polynomial-time reductions. Among the
different types of reduction one can consider, we focus on the polynomial-time many-
one reducibility in this section. In Section 8.4, more general reducibilities will be
introduced, such as the polynomial-time Turing reducibility and the polynomial-time
(strong) nondeterministic Turing reducibility.

Definition 8.4 (Reducibility, NP-Completeness). A set A is reducible to a set B
(in symbols, A ≤p

m B) if and only if there exists a polynomial-time computable
function r such that for all x ∈ Σ∗, x ∈ A ⇐⇒ r(x) ∈ B. A set B is said to be
≤p

m-hard for NP if and only if A ≤p
m B for each set A ∈ NP. A set B is said to be

≤p
m-complete in NP (NP-complete, for short) if and only if B is ≤p

m-hard for NP
and B ∈ NP.

Reductions are efficient algorithms that can be used to show that problems are
not efficiently solvable. That is, if one can efficiently transform a hard problem into
another problem via a reduction, the hardness of the former problem is inherited
by the latter problem. At first glance, it might seem that infinitely many efficient
algorithms are required to prove some problem X NP-hard, namely one reduction
from each of the infinitely many NP problems to X. However, an elementary result
says that it is enough to find just one such reduction, from some NP-complete
problem V . Since the ≤p

m-reducibility is transitive (see Exercise 8.2-2), the NP-
hardness of V implies the NP-hardness of X via the reduction A ≤p

m V ≤p
m X for

each NP problem A.
In 1971, Stephen Cook found a first such NP-complete problem: the satisfiability

problem of propositional logic, SAT for short. For many NP-completeness result, it
is useful to start from the special problem 3-SAT, the restriction of the satisfiability
problem in which each given Boolean formula is in conjunctive normal form and
each clause contains exactly three literals. 3-SAT is also NP-complete.

Definition 8.5 (Satisfiability problem). The Boolean constants false and true are
represented by 0 and 1. Let x1, x2, . . . , xm be Boolean variables, i.e., xi ∈ {0, 1}
for each i. Variables and their negations are called literals. A Boolean formula ϕ is
satisfiable if and only if there is an assignment to the variables in ϕ that makes the
formula true. A Boolean formula ϕ is in conjunctive normal form (CNF, for short)

if and only if ϕ is of the form ϕ(x1, x2, . . . , xm) =
∧n

i=1

(∨ki

j=1 `i,j

)
, where the `i,j

are literals over {x1, x2, . . . , xm}. The disjunctions
∨ki

j=1 `i,j of literals are called the
clauses of ϕ. A Boolean formula ϕ is in k-CNF if and only if ϕ is in CNF and each
clause of ϕ contains exactly k literals. Define the following two problems:

SAT = {ϕ | ϕ is a satisfiable Boolean formula in CNF} ;

3-SAT = {ϕ | ϕ is a satisfiable Boolean formula in 3-CNF} .

8.2. NP-completeness 373

Example 8.2[Boolean formulas] Consider the following two satisfiable Boolean formulas
(see also Exercise 8.2-1):

ϕ(w, x, y, z) = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (w ∨ ¬y ∨ z) ∧ (¬w ∨ ¬x ∨ z);

ψ(w, x, y, z) = (¬w ∨ x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (¬w ∨ y ∨ z) ∧ (w ∨ ¬x ∨ ¬z) .

Here, ϕ is in 3-CNF, so ϕ is in 3-SAT. However, ψ is not in 3-CNF, since the first clause
contains four literals. Thus, ψ is in SAT but not in 3-SAT.

Theorem 8.6 states the above-mentioned result of Cook.

Theorem 8.6 (Cook). The problems SAT and 3-SAT are NP-complete.

The proof that SAT is NP-complete is omitted. The idea is to encode the com-
putation of an arbitrary NP machine M running on input x into a Boolean formula
ϕM,x such that ϕM,x is satisfiable if and only if M accepts x.

SAT is a good starting point for many other NP-completeness results. In fact, in
many cases it is very useful to start with its restriction 3-SAT. To give an idea of
how such proofs work, we now show that SAT ≤p

m 3-SAT, which implies that 3-SAT is
NP-complete. To this end, we need to find a reduction r that transforms any given
Boolean formula ϕ in CNF into another Boolean formula ϕ̂ in 3-CNF (i.e., with
exactly three literals per clause) such that

ϕ is satisfiable ⇐⇒ ϕ̂ is satisfiable . (8.1)

Let ϕ(x1, x2, . . . , xn) be the given formula with clauses C1, C2, . . . , Cm. Con-
struct the formula ϕ̂ from ϕ as follows. The variables of ϕ̂ are

• ϕ’s variables x1, x2, . . . , xn and

• for each clause Cj of ϕ, a number of additional variables yj
1, y

j
2, . . . , y

j
kj

as needed,
where kj depends on the structure of Cj according to the case distinction below.

Now, define ϕ̂ = Ĉ1 ∧ Ĉ2 ∧ · · · ∧ Ĉm, where each clause Ĉj of ϕ̂ is constructed from
the clause Cj of ϕ as follows. Suppose that Cj = (z1 ∨ z2 ∨ · · · ∨ zk), where each zi

is a literal over {x1, x2, . . . , xn}. Distinguish the following four cases.

• If k = 1, define

Ĉj = (z1 ∨ yj
1 ∨ yj

2) ∧ (z1 ∨ ¬yj
1 ∨ yj

2) ∧ (z1 ∨ yj
1 ∨ ¬yj

2) ∧ (z1 ∨ ¬yj
1 ∨ ¬yj

2) .

• If k = 2, define Ĉj = (z1 ∨ z2 ∨ yj
1) ∧ (z1 ∨ z2 ∨ ¬yj

1).

• If k = 3, define Ĉj = Cj = (z1 ∨ z2 ∨ z3), i.e., the jth clause remains unchanged.

• If k ≥ 4, define

Ĉj = (z1 ∨ z2 ∨ yj
1) ∧ (¬yj

1 ∨ z3 ∨ yj
2) ∧ (¬yj

2 ∨ z4 ∨ yj
3) ∧ · · · ∧

(¬yj
k−4 ∨ zk−2 ∨ yj

k−3) ∧ (¬yj
k−3 ∨ zk−1 ∨ zk) .

It remains to show that (a) the reduction r is polynomial-time computable, and
(b) the equivalence (8.1) is true. Both claims are easy to see; the details are left to

374 8. Complexity Theory

the reader as Exercise 8.2-4.
Thousands of problems have been proven NP-complete by now. A comprehensive

collection can be found in the work of Garey und Johnson [15].

Exercises
8.2-1 Find a satisfying assignment each for the Boolean formulas ϕ and ψ from
Example 8.2.
8.2-2 Show that the ≤p

m-reducibility is transitive: (A ≤p
m B ∧ B ≤p

m C) =⇒
A ≤p

m C.
8.2-3 Prove that SAT is in NP.
8.2-4 Consider the reduction SAT ≤p

m 3-SAT. Prove the following:
a. the reduction r is polynomial-time computable, and
b. the equivalence (8.1) holds.

8.3. Algorithms for the satisfiability problem

By Theorem 8.6, SAT and 3-SAT are both NP-complete. Thus, if SAT were in P, it
would immediately follow that P = NP, which is considered unlikely. Thus, it is very
unlikely that there is a polynomial-time deterministic algorithm for SAT or 3-SAT.
But what is the runtime of the best deterministic algorithms for them? And what
about randomised algorithms? Let us focus on the problem 3-SAT in this section.

8.3.1. A deterministic algorithm

The “naive” deterministic algorithm for 3-SAT works as follows: Given a Boolean
formula ϕ with n variables, sequentially check the 2n possible assignments to the
variables of ϕ. Accept if the first satisfying assignment is found, otherwise reject.
Obviously, this algorithm runs in time O(2n). Can this upper bound be improved?

Yes, it can. We will present an slightly better deterministic algorithm for 3-SAT

that still runs in exponential time, namely in time Õ(1.9129n), where the Õ notation
neglects polynomial factors as is common for exponential-time algorithms.2 The
point of such an improvement is that a Õ(cn) algorithm, where 1 < c < 2 is a
constant, can deal with larger instances than the naive Õ(2n) algorithm in the same
amount of time before the exponential growth rate eventually hits and the running

time becomes infeasible. For example, if c =
√

2 ≈ 1.414 then Õ
(√

2
2n

)
= Õ(2n).

Thus, this algorithm can deal with inputs twice as large as the naive algorithm in
the same amount of time. Doubling the size of inputs that can be handled by some
algorithm can be quite important in practice.

The deterministic algorithm for 3-SAT is based on a simple “backtracking” idea.
Backtracking is useful for problems whose solutions consist of n components each
having more than one choice possibility. For example, a solution of 3-SAT is composed
of the n truth values of a satisfying assignment, and each such truth value can be

2 The result presented here is not the best result known, but see Figure 8.7 on page 393 for further
improvements.

8.3. Algorithms for the satisfiability problem 375

either true (represented by 1) or false (represented by 0).
The idea is the following. Starting from the initially empty solution (i.e., the

empty truth assignment), we seek to construct by recursive calls to our backtrack-
ing algorithm, step by step, a larger and larger partial solution until eventually a
complete solution is found, if one exists. In the resulting recursion tree,3 the root is
marked by the empty solution, and the leaves are marked with complete solutions
of the problem. If the current branch in the recursion tree is “dead” (which means
that the subtree underneath it cannot lead to a correct solution), one can prune
this subtree and “backtracks” to pursue another extention of the partial solution
constructed so far. This pruning may save time in the end.

Backtracking-SAT(ϕ, β)

1 if (β assigns truth values to all variables of ϕ)
2 then return ϕ(β)
3 else if (β makes one of the clauses of ϕ false)
4 then return 0
5 ‘ � “dead branch”
6 else if Backtracking-SAT(ϕ, β0))
7 then return 1
8 else return Backtracking-SAT(ϕ, β1))

The input of algorithm Backtracking-SAT are a Boolean formula ϕ and a
partial assignment β to some of the variables of ϕ. This algorithm returns a Boolean
value: 1, if the partial assignment β can be extended to a satisfying assignment to
all variables of ϕ, and 0 otherwise. Partial assignments are here considered to be
strings of length at most n over the alphabet {0, 1}.

The first call of the algorithm is Backtracking-SAT(ϕ, λ), where λ denotes
the empty assignment. If it turns out that the partial assignment constructed so far
makes one of the clauses of ϕ false, it cannot be extended to a satisfying assignment
of ϕ. Thus, the subtree underneath the corresponding vertex in the recursion tree
can be pruned; see also Exercise 8.3-1.

To estimate the runtime of Backtracking-SAT, note that this algorithm can
be specified so as to select the variables in an “intelligent” order that minimises the
number of steps needed to evaluate the variables in any clause. Consider an arbitrary,
fixed clause Cj of the given formula ϕ. Each satisfying assignment β of ϕ assigns
truth values to the three variables in Cj . There are 23 = 8 possibilities to assign
a truth value to these variables, and one of them can be excluded certainly: the
assignment that makes Cj false. The corresponding vertex in the recursion tree of
Backtracking-SAT(ϕ, β) thus leads to a “dead” branch, so we prune the subtree
underneath it.

Depending on the structure of ϕ, there may exist further “dead” branches whose
subtrees can also be pruned. However, since we are trying to find an upper bound in

3 The inner vertices of the recursion tree represent the recursive calls of the algorithm, its root is
the first call, and the algorithm terminates at the leaves without any further recursive call.

376 8. Complexity Theory

the worst case, we do not consider these additional “dead” subtrees. It follows that

Õ
((

23 − 1
) n

3

)
= Õ(

3
√

7
n
) ≈ Õ(1.9129n)

is an upper bound for Backtracking-SAT in the worst case. This bound slightly
improves upon the trivial Õ(2n) upper bound of the “naive” algorithm for 3-SAT.

As mentioned above, the deterministic time complexity of 3-SAT can be improved
even further. For example, Monien and Speckenmeyer [41] proposed a divide-and-
conquer algorithm with runtime Õ(1.618n). Dantsin et al. [13] designed a determin-
istic “local search with restart” algorithm whose runtime is Õ(1.481n), which was
further improved by Brueggemann and Kern [9] in 2004 to a Õ(1.4726n) bound.

There are also randomised algorithms that have an even better runtime. One
will be presented now, a “random-walk” algorithm that is due to Schöning [56].

8.3.2. A randomised algorithm

A random walk can be done on a specific structure, such as in the Euclidean space,
on an infinite grid or on a given graph. Here we are interested in random walks
occurring on a graph that represents a certain stochastic automaton. To describe
such automata, we first introduce the notion of a finite automaton.

A finite automaton can be represented by its transition graph, whose vertices
are the states of the finite automaton, and the transitions between states are di-
rected edges marked by the symbols of the alphabet Σ. One designated vertex is
the initial state in which the computation of the automaton starts. In each step of
the computation, the automaton reads one input symbol (proceeding from left to
right) and moves to the next state along the edge marked by the symbol read. Some
vertices represent final states. If such a vertex is reached after the entire input has
been read, the automaton accepts the input, and otherwise it rejects. In this way, a
finite automaton accepts a set of input strings, which is called its language.

A stochastic automaton S is a finite automaton whose edges are marked by
probabilities in addition. If the edge from u to v in the transition graph of S is
marked by pu,v, where 0 ≤ pu,v ≤ 1, then S moves from state u to state v with
probability pu,v. The process of random transitions of a stochastic automaton is
called a Markov chain in probability theory. Of course, the acceptance of strings by
a stochastic automaton depends on the transition probabilities.

Random-SAT(ϕ)

1 for i← 1 to d(4/3)
ne)

� n is the number of variables in ϕ
2 do randomly choose an assignment β ∈ {0, 1}n

under the uniform distribution

8.3. Algorithms for the satisfiability problem 377

0 1 2 3 4 5 6

s

1
64

6
64

15
64

20
64

15
64

6
64

1
64

1
3 1

3
1
3

1
3

1
3

1
3

2
3

2
3

2
3

2
3

2
3

2
3

1

Figure 8.6 Transition graph of a stochastic automaton for describing Random-SAT.

3 for j ← 1 to n
4 if (ϕ(β) = 1)
5 then return the satisfying assignment β to ϕ
6 else choose a clause C = (x ∨ y ∨ z) with C(β) = 0
7 randomly choose a literal ` ∈ {x, y, z}

under the uniform distribution
8 determine the bit β` ∈ {0, 1} in β assigning `
9 swap β` to 1− β` in β

10 return “ϕ is not satisfiable”

Here, we are not interested in recognising languages by stochastic automata,
but rather we will use them to describe a random walk by the randomised algorithm
Random-SAT. Given a Boolean formula ϕ with n variables, Random-SAT tries
to find a satisfying assignment to ϕ’s variables, if one exists.

On input ϕ, Random-SAT starts by guessing a random initial assignment β,
where each bit of β takes on the value 0 and 1 with probability 1/2. Suppose ϕ is
satisfiable. Let β̃ be an arbitrary fixed assignment of ϕ. Let X be a random variable
that expresses the Hamming distance between β and β̃, i.e., X gives the number of
bits in which β and β̃ differ. Clearly, X can take on values j ∈ {0, 1, . . . , n} and is
distributed according to the binomial distribution with parameters n and 1/2. That
is, the probability for X = j is exactly

(
n
j

)
2−n.

Random-SAT now checks whether the initial assignment β already satisfies ϕ,
and if so, it accepts. Otherwise, if β does not satisfy ϕ, there must exist a clause in ϕ
not satisfied by β. Random-SAT now picks any such clause, randomly chooses under
the uniform distribution some literal in this clause, and “flips” the corresponding bit
in the current assignment β. This procedure is repeated n times. If the current
assignment β still does not satisfy ϕ, Random-SAT restarts with a new initial
assignment, and repeats this entire procedure t times, where t = d(4/3)

ne.
Figure 8.6 shows a stochastic automaton S, whose edges are not marked by

symbols but only by transition probabilities. The computation of Random-SAT on
input ϕ can be viewed as a random walk on S as follows. Starting from the initial
state s, which will never be reached again later, Random-SAT(ϕ) first moves to one
of the states j ∈ {0, 1, . . . , n} according to the binomial distribution with parameters
n and 1/2. This is shown in the upper part of Figure 8.6 for a formula with n = 6
variables. Reaching such a state j means that the randomly chosen initial assignment
β and the fixed satisfying assignment β̃ have Hamming distance j. As long as j 6= 0,

378 8. Complexity Theory

Random-SAT(ϕ) changes one bit β` to 1−β` in the current assignment β, searching
for a satisfying assignment in each iteration of the inner for loop. In the random
walk on S, this corresponds to moving one step to the left to state j − 1 or moving
one step to the right to state j + 1, where only states less than or equal to n can be
reached.

The fixed assignment β̃ satisfies ϕ, so it sets at least one literal in each clause of
ϕ to true. If we fix exactly one of the literals satisfied by β̃ in each clause, say `, then
Random-SAT(ϕ) makes a step to the left if and only if ` was chosen by Random-

SAT(ϕ). Hence, the probability of moving from state j > 0 to state j − 1 is 1/3,
and the probability of moving from state j > 0 to state j + 1 is 2/3.

If the state j = 0 is reached eventually after at most n iterations of this process,
β and β̃ have Hamming distance 0, so β satisfies ϕ and Random-SAT(ϕ) returns β
and halts accepting. Of course, one might also hit a satisfying assignment (distinct
from β̃) in some state j 6= 0. But since this would only increase the acceptance
probability, we neglect this possibility here.

If this process is repeated n times unsuccessfully, then the initial assignment
β was chosen so badly that Random-SAT now dumps it, and restarts the above
process from scratch with a new initial assignment. The entire procedure is repeated
at most t times, where t = d(4/3)

ne. If it is still unsuccessful after t trials, Random-

SAT rejects its input.
Since the probability of moving away from state 0 to the right is larger than

the probability of moving toward 0 to the left, one might be tempted to think that
the success probability of Random-SAT is very small. However, one should not
underestimate the chance that one already after the initial step from s reaches a
state close to 0. The closer to 0 the random walk starts, the higher is the probability
of reaching 0 by random steps to the left or to the right.

We only give a rough sketch of estimating the success probability (assuming that
ϕ is satisfiable) and the runtime of Random-SAT(ϕ). For convenience, suppose that
3 divides n. Let pi be the probability for the event that Random-SAT(ϕ) reaches
the state 0 within n steps after the initial step, under the condition that it reaches
some state i ≤ n/3 with the initial step from s. For example, if the state n/3 is
reached with the initial step and if no more than n/3 steps are done to the right,
then one can still reach the final state 0 by a total of at most n steps. If one does
more than n/3 steps to the right starting from state n/3, then the final state cannot
be reached within n steps. In general, starting from state i after the initial step, no
more than (n − i)/2 steps to the right may be done. As noted above, a step to the
right is done with probability 2/3, and a step to the left is done with probability 1/3.
It follows that

pi =

(
n

n−i
2

) (
2

3

) n−i
2

(
1

3

)n− n−i
2

. (8.2)

Now, let qi be the probability for the event that Random-SAT(ϕ) reaches some
state i ≤ n/3 with the initial step. Clearly, we have

qi =

(
n

i

)
· 2−n . (8.3)

8.4. Graph isomorphism and lowness 379

Finally, let p be the probability for the event that Random-SAT(ϕ) reaches the
final state 0 within the inner for loop. Of course, this event can occur also when
starting from a state j > n/3. Thus,

p ≥
n/3∑

i=0

pi · qi .

Approximating this sum by the entropy function and estimating the binomial
coefficients from (8.2) and (8.3) in the single terms by Stirling’s formula, we obtain
the lower bound Ω((3/4)

n
) for p.

To reduce the error probability, Random-SAT performs a total of t independent
trials, each starting with a new initial assignment β. For each trial, the probability of
success (i.e., the probability of finding a satisfying assignment of ϕ, if one exists) is at
least (3/4)

n
, so the error is bounded by 1− (3/4)

n
. Since the trials are independent,

these error probabilities multiply, which gives an error of (1− (3/4)
n
)
t ≤ e−1. Thus,

the total probabilitiy of success of Random-SAT(ϕ) is at least 1− 1/e ≈ 0.632 if ϕ
is satisfiable. On the other hand, Random-SAT(ϕ) does not make any error at all
if ϕ is unsatisfiable; in this case, the output is : “ϕ is not satisfiable”.

The particular choice of this value of t can be explained as follows. The runtime
of a randomised algorithm, which performs independent trials such as Random-

SAT(ϕ), is roughly reciprocal to the success probability of one trial, p ≈ (3/4)
n
.

In particular, the error probability (i.e., the probability that that in none of the
t trials a satisfying assignment of ϕ is found even though ϕ is satisfiable) can be
estimated by (1− p)t ≤ e−t·p. If a fixed error of ε is to be not exceeded, it is enough
to choose t such that e−t·p ≤ ε; equivalently, such that t ≥ ln(1/ε)/p. Up to constant
factors, this can be accomplished by choosing t = d(4/3)

ne. Hence, the runtime of
the algorithm is in Õ ((4/3)n).

Exercises
8.3-1 Start the algorithm Backtracking-SAT for the Boolean formula ϕ = (¬x∨
y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬u ∨ y ∨ z) ∧ (u ∨ ¬y ∨ z) and construct step by step a
satisfying assignment of ϕ. How does the resulting recursion tree look like?

8.4. Graph isomorphism and lowness

In this section, we need some of the group-theoretic and graph-theoretic foundations
presented in Section 7.1.3. In particular, recall the notion of permutation group from
Definition 7.6 and the graph isomorphism problem (GI, for short) and the graph
automorphism problem (GA, for short) from Definition 7.8; see also Example 7.4 in
Chapter 7. We start by providing some more background from complexity theory.

8.4.1. Reducibilities and complexity hierarchies

In Section 8.2, we have seen that the problems SAT and 3-SAT are NP-complete.
Clearly, P = NP if and only if every NP problem (including the NP-complete prob-

380 8. Complexity Theory

lems) is in P, which in turn is true if and only if some NP-complete problem is
in P. So, no NP-complete problem can be in P if P 6= NP. An interesting question is
whether, under the plausible assumption that P 6= NP, every NP problem is either
in P or NP-complete. Or, assuming P 6= NP, can there exist NP problems that are
neither in P nor NP-complete? A result by Ladner [35] answers this question.

Theorem 8.7 (Ladner). If P 6= NP then there exist sets in NP that are neither in
P nor NP-complete.

The problems constructed in the proof of Theorem 8.7 are not overly natural
problems. However, there are also good candidates of “natural” problems that are
neither in P nor NP-complete. One such candidate is the graph isomorphism prob-
lem. To provide some evidence for this claim, we now define two hierarchies of com-
plexity classes, the low hierarchy and the high hierarchy, both introduced by Schön-
ing [54]. First, we need to define the polynomial hierarchy, which builds upon NP.
And to this end, we need a more flexible reducibility than the (polynomial-time)
many-one reducibility ≤p

m from Definition 8.4, namely the Turing reducibility ≤p
T.

We will also define the (polynomial-time) nondeterministic Turing reducibility, ≤NP
T ,

and the (polynomial-time) strong nondeterministic Turing reducibility, ≤NP
sT . These

two reducibilities are important for the polynomial hierarchy and for the high hi-
erarchy, respectively. Turing reducibilities are based on the notion of oracle Turing
machines, which we now define.

Definition 8.8 (Oracle Turing machine). An oracle set is a set of strings. An
oracle Turing machine M , with oracle B, is a Turing machine that has a special
worktape, which is called the oracle tape or query tape. In addition to other states,
M contains a special query state, s?, and the two answer states syes and sno. During
a computation on some input, if M is not in the query state s?, it works just like a
regular Turing machine. However, when M enters the query state s?, it interrupts
its computation and queries its oracle about the string q currently written on the
oracle tape. Imagine the oracle B as some kind of “black box”: B answers the query
of whether or not it contains q within one step of M ’s computation, regardless of
how difficult it is to decide the set B. If q ∈ B, then M changes its current state into
the new state syes and continues its computation. Otherwise, if q 6∈ B, M continues
its computation in the new state sno. We say that the computation of M on input x
is performed relative to the oracle B, and we write MB(x).

The language accepted by MB is denoted L(MB). We say a language L is rep-
resented by an oracle Turing machine M if and only if L = L(M∅). We say a class
C of languages is relativizable if and only if it can be represented by oracle Tur-
ing machines relative to the empty oracle. For any relativizable class C and for any
oracle B, define the class C relative to B by

CB = {L(MB) |M is an oracle Turing machine representing some set in C} .

For any class B of oracle sets, define CB =
⋃

B∈B CB.

Let NPOTM (respectively, DPOTM) be a shorthand for nondeterministic (re-
spectively, deterministic) polynomial-time oracle Turing machine. For example, the

8.4. Graph isomorphism and lowness 381

following classes can be defined:

NPNP =
⋃

B∈NP

NPB = {L(MB) |M is an NPOTM and B is in NP} ;

PNP =
⋃

B∈NP

PB = {L(MB) |M is a DPOTM and B is in NP} .

For the empty oracle set ∅, we obtain the unrelativized classes NP = NP∅ and P =
P∅, and we then write NPTM instead of NPOTM and DPTM instead of DPOTM.

In particular, oracle Turing machines can be used for prefix search. Let us con-
sider an example.

Example 8.3[Prefix search by an oracle Turing machine]
Suppose we wish to find the smallest solution of the graph isomorphism problem, which

is in NP; see Definition 7.8 in Subsection 7.1.3. Let G and H be two given graphs with n ≥ 1
vertices each. An isomorphism between G and H is called a solution of “(G,H) ∈ GI”. The
set of isomorphisms between G and H, Iso(G,H), contains all solutions of “(G,H) ∈ GI”.

Our goal is to find the lexicographically smallest solution if (G,H) ∈ GI; otherwise, we
output the empty string λ to indicate that (G,H) 6∈ GI. That is, we wish to compute the
function f defined by f(G,H) = min{π | π ∈ Iso(G,H)} if (G,H) ∈ GI, and f(G,H) = λ

if (G,H) 6∈ GI, where the minimum is to be taken according to the lexicographic order on
Sn. More precisely, we view a permutation π ∈ Sn as the string π(1)π(2) · · ·π(n) of length
n over the alphabet [n] = {1, 2, . . . , n}, and we write π < σ for π, σ ∈ Sn if and only if
there is a j ∈ [n] such that π(i) = σ(i) for all i < j and π(j) < σ(j).

From a permutation σ ∈ Sn, one obtains a partial permutation by cancelling some pairs
(i, σ(i)). A partial permutation can be represented by a string over the alphabet [n] ∪ {∗},
where ∗ indicates an undefined position. Let k ≤ n. A prefix of length k of σ ∈ Sn is a
partial permutation of σ containing each pair (i, σ(i)) with i ≤ k, but none of the pairs
(i, σ(i)) with i > k. In particular, for k = 0, the empty string λ is the (unique) length 0
prefix of σ. For k = n, the total permutation σ is the (unique) length n prefix of itself.
Suppose that π is a prefix of length k < n of σ ∈ Sn and that w = i1i2 · · · i|w| is a string
over [n] of length |w| ≤ n − k with none of the ij occurring in π. Then, πw denotes the
partial permutation that extends π by the pairs (k + 1, i1), (k + 2, i2), . . . , (k + |w|, i|w|). If
in addition σ(k+j) = ij for 1 ≤ j ≤ |w|, then πw is also a prefix of σ. For our prefix search,
given two graphs G and H, we define the set of prefixes of the isomorphisms in Iso(G,H)
by

Pre-Iso =

{
(G,H, π)

G and H are graphs with n vertices each and
(∃w ∈ [n]∗) [w = i1i2 · · · in−|π| and πw ∈ Iso(G,H)]

}
.

Note that, for n ≥ 1, the empty string λ does not encode a permutation in Sn. Furthermore,
Iso(G,H) = ∅ if and only if (G,H, λ) 6∈ Pre-Iso, which in turn is true if and only if
(G,H) 6∈ GI.

Starting from the empty string, we will construct, bit by bit, the smallest isomorphism
between the two given graphs (if there exists any). We below present an DPOTM N that,
using the NP set Pre-Iso as its oracle, computes the function f by prefix search; see also
Exercise 8.4-2. Denoting the class of functions computable in polynomial time by FP, we
thus have shown that f is in FPPre-Iso. Since Pre-Iso is in NP (see Exercise 8.4-2), it follows
that f is in FPNP.

382 8. Complexity Theory

N-Pre-Iso(G,H)

1 if ((G,H, λ) 6∈ Pre-Iso)
2 then return λ
3 else π ← λ
4 j ← 0
5 while j < n � G and H have n vertices each.
6 do i← 1
7 while (G,H, πi) 6∈ Pre-Iso
8 do i← i+ 1
9 π ← πi
10 j ← j + 1
11 return π

Example 8.3 shows that also Turing machines computing functions can be
equipped with an oracle, and that also function classes such as FP can be rela-
tivizable. We now return to oracle machines accepting languages and use them to
define several reducibilities. All reducibilities considered here are polynomial-time
computable.

Definition 8.9 (Turing reducibilities). Let Σ = {0, 1} be a binary alphabet, let
A and B be sets of strings over Σ, and let C be any complexity class. The set of
complements of sets in C is defined by coC = {L | L ∈ C}.

Define the following reducibilities:

• Turing reducibility: A≤p
T B ⇐⇒ A = L(MB) for some DPOTM M.

• Nondeterministic Turing reducibility: A≤NP
T B ⇐⇒ A = L(MB) for

some NPOTM M.

• Strong nondeterministic Turing reducibility: A≤NP
sT B ⇐⇒ A ∈ NPB ∩

coNPB .

• Let ≤r be one of the reducibilities defined above. We call a set B ≤r-hard for C
if and only if A ≤r B for each set A ∈ C. A set B is said to be ≤r-complete in
C if and only if B is ≤r-hard for C and B ∈ C.

• PC = {A | (∃B ∈ C) [A≤p
T B]} is the closure of C under the ≤p

T-reducibility.

• NPC = {A | (∃B ∈ C) [A≤NP
T B]} is the closure of C under the ≤NP

T -
reducibility.

Using the ≤p
T-reducibility and the ≤NP

T -reducibility introduced in Definition 8.9,
we now define the polynomial hierarchy, and the low and the high hierarchy within
NP.

Definition 8.10 (Polynomial hierarchy). Define the polynomial hierarchy PH

inductively as follows: ∆p
0 = Σp

0 = Πp
0 = P, ∆p

i+1 = PΣp

i , Σp
i+1 = NPΣp

i and
Πp

i+1 = coΣp
i+1 for i ≥ 0, and PH =

⋃
k≥0 Σp

k.

In particular, ∆p
1 = PΣp

0 = PP = P and Σp
1 = NPΣp

0 = NPP = NP and Πp
1 =

coΣp
1 = coNP. The following theorem, which is stated without proof, provides some

8.4. Graph isomorphism and lowness 383

properties of the polynomial hierarchy, see Problem 8-2.

Theorem 8.11 (Meyer and Stockmeyer). For alle i ≥ 1 holds:

1. Σp
i−1 ∪Πp

i−1 ⊆ ∆p
i ⊆ Σp

i ∩Πp
i .

2. Σp
i , Πp

i , ∆p
i , and PH are closed under ≤p

m-reductions. ∆p
i is even closed under

≤p
T-reductions.

3. Σp
i contains exactly those sets A for which there exist a set B in P and a poly-

nomial p such that for each x ∈ Σ∗:

x ∈ A ⇐⇒ (∃pw1) (∀pw2) · · · (Qpwi) [(x,w1, w2, . . . , wi) ∈ B],

where the quantifiers ∃p and ∀p are polynomially length-bounded, and Qp = ∃p

if i is odd, and Qp = ∀p if i is even.

4. If Σp
i−1 = Σp

i for some i, then PH collapses to Σp
i−1 = Πp

i−1 = ∆p
i = Σp

i = Πp
i =

· · · = PH.

5. If Σp
i = Πp

i for some i, then PH collapses to Σp
i = Πp

i = ∆p
i+1 = Σp

i+1 = Πp
i+1 =

· · · = PH.

6. There are ≤p
m-complete problems for each of the classes Σp

i , Πp
i , and ∆p

i . In
contrast, if PH has a ≤p

m-complete problem, then PH collapses to a finite level,
i.e., PH = Σp

k = Πp
k for some k.

Definition 8.12 (Low hierarchy and high hierarchy within NP). For k ≥ 0, de-
fine the kth level of the

• low hierarchy LH =
⋃

k≥0 Lowk in NP by Lowk = {L ∈ NP | Σp,L
k ⊆ Σp

k};
• high hierarchy HH =

⋃
k≥0 Highk in NP by Highk = {H ∈ NP | Σp

k+1 ⊆ Σp,H
k }.

Informally put, a set L is in Lowk if and only if it is useless as an oracle for a Σp
k

computation. All information contained in L ∈ Lowk can be computed by the Σp
k

machine itself without the help of an oracle. On the other hand, a set H in Highk

is so rich and provides so useful information that the computational power of a Σp
k

machine is increased by the maximum amount an NP set can provide: it “jumps”
to the next level of the polynomial hierarchy. That is, by using an oracle H from
Highk, a Σp

k machine can simulate any Σp
k+1 computation. Thus, H is as useful for

a Σp
k machine as any NP-complete set.
For k = 0, the question of whether or not Σp

k 6= Σp
k+1 is nothing other than

the P-versus-NP question. Theorem 8.13 lists some important properties of these
hierarchies, omitting the proofs, see [54] and Exercise 8-2. For the class coAM men-
tioned in the first item of Theorem 8.13, the reader is referred to the definition of the
Arthur-Merlin hierarchy introduced in Subsection 7.5.1; cf. Definition 7.16. Ladner’s
theorem (Theorem 8.7) is a special case (for n = 0) of item 7 in Theorem 8.13.

Theorem 8.13 (Schöning).

1. Low0 = P and Low1 = NP ∩ coNP and NP ∩ coAM ⊆ Low2.

384 8. Complexity Theory

2. High0 = {H |H is ≤p
T-complete in NP}.

3. High1 = {H |H is ≤NP
sT -complete in NP}.

4. Low0 ⊆ Low1 ⊆ · · · ⊆ Lowk ⊆ · · · ⊆ LH ⊆ NP.

5. High0 ⊆ High1 ⊆ · · · ⊆ Highk ⊆ · · · ⊆ HH ⊆ NP.

6. For each n ≥ 0, Lown∩Highn is nonempty if and only if Σp
n = Σp

n+1 = · · · = PH.

7. For each n ≥ 0, NP contains sets that are neither in Lown nor in Highn if and
only if Σp

n 6= Σp
n+1.

8. There exist sets in NP that are neither in LH nor in HH if and only if PH is
a strictly infinite hierarchy, i.e., if and only if PH does not collapse to a finite
level.

8.4.2. Graph isomorphism is in the low hierarchy

We now turn to the result that the graph isomorphism problem (GI) is in Low2,
the second level of the low hierarchy. This result provides strong evidence against
the NP-completeness of GI, as can be seen as follows. If GI were NP-complete,
then GI would be in High0 ⊆ High2, since by Theorem 8.13 High0 contains exactly
the ≤p

T-complete NP sets and in particular the ≤p
m-complete sets in NP. Again by

Theorem 8.13, we have that Low2 ∩ High2 is nonempty if and only if PH collapses
to Σp

2, which is considered very unlikely.
To prove the lowness of the graph isomorphism problem, we first need a technical

prerequisite, the so-called hashing lemma, stated here as Lemma 8.15. Hashing is
method widely used in computer science for dynamic data management. The idea
is the following. Assign to every data set some (short) key in a unique manner. The
set of all potential keys, called the universe U , is usually very large. In contrast,
the set V ⊆ U of those keys actually used is often much smaller. A hash function
h : U → T maps the elements of U to the hash table T = {0, 1, . . . , k − 1}. Hash
functions are many-to-one mappings. That is, distinct keys from U can be mapped
to the same address in T . However, if possible, one wishes to map two distinct keys
from V to distinct addresses in T . That is, one seeks to avoid collisions on the set
of keys actually used. If possible, a hash function thus should be injective on V .

Among the various known hashing techniques, we are here interested in universal
hashing, which was introduced by Carter and Wegman [10] in 1979. The idea is to
randomly choose a hash function from a suitable family of hash functions. This
method is universal in the sense that it does no longer depend on a particular set V
of keys actually used. Rather, it seeks to avoid collisions with high probability on all
sufficiently small sets V . The probability here is with respect to the random choice
of the hash function.

In what follows, we assume that keys are encoded as strings over the alphabet
Σ = {0, 1}. The set of all length n strings in Σ∗ is denoted by Σn.

Definition 8.14 (Hashing). Let Σ = {0, 1}, and let m and t be positive integers
with t > m. A hash function h : Σt → Σm is a linear mapping determined by a
Boolean t×m matrix Bh = (bi,j)i,j, where bi,j ∈ {0, 1}. For x ∈ Σt and 1 ≤ j ≤ m,

8.4. Graph isomorphism and lowness 385

the jth bit of y = h(x) in Σm is given by yj = (b1,j∧x1)⊕(b2,j∧x2)⊕· · ·⊕(bt,j∧xt),
where ⊕ denotes the logical exclusive-or operation, i.e.,

a1 ⊕ a2 ⊕ · · · ⊕ an = 1 ⇐⇒ |{i | ai = 1}| ≡ 1 mod 2 .

Let Ht,m be a family of hash functions for the parameters t and m:

Ht,m = {h : Σt → Σm |Bh is a Boolean t×m matrix} .

On Ht,m, we assume the uniform distribution: A hash function h is chosen from
Ht,m by picking the bits bi,j in Bh independently and uniformly distributed.

Let V ⊆ Σt. For any subfamily Ĥ of Ht,m, we say there is a collision on V if

(∃~v ∈ V) (∀h ∈ Ĥ) (∃~x ∈ V) [~v 6= ~x ∧ h(~v) = h(~x)] .

Otherwise, Ĥ is said to be collision-free on V .

A collision on V means that none of the hash functions in a subfamily Ĥ is
injective on V . The following lemma says that, if V is sufficiently small, a randomly
chosen subfamily of Ht,m must be collision-free. In contrast, if V is too large, colli-
sions cannot be avoided. The proof of Lemma 8.15 is omitted.

Lemma 8.15 (Hashing lemma). Let t,m ∈ N be fixed parameters, where t > m.

Let V ⊆ Σt and let Ĥ = (h1, h2, . . . , hm+1) be a family of hash functions randomly
chosen from Ht,m under the uniform distribution. Let

C(V) = {Ĥ | (∃v ∈ V) (∀h ∈ Ĥ) (∃x ∈ V) [v 6= x ∧ h(v) = h(x)]}

be the event that for Ĥ a collision occurs on V . Then, the following two statements
hold:

1. If |V | ≤ 2m−1, then C(V) occurs with probability at most 1/4.

2. If |V | > (m+ 1)2m, then C(V) occurs with probability 1.

In Section 7.5, the Arthur-Merlin hierarchy has been defined, and it was men-
tioned that this hierarchy collapses to its second level. Here, we are interested in the
class coAM, cf. Definition 7.16 in Subsection 7.5.1.

Theorem 8.16 (Schöning). GI is in Low2.

Proof By Theorem 8.13, every NP ∩ coAM set is in Low2. Thus, to prove that GI

in Low2, it is enough to show that GI is in coAM. Let G and H be two graphs with
n vertices each. We wish to apply Lemma 8.15. A first idea is to use

A(G,H) = {(F,ϕ) | F ∼= G ∧ ϕ ∈ Aut(F)} ∪ {(F,ϕ) | F ∼= H ∧ ϕ ∈ Aut(F)}

as the set V from that lemma. By Lemma 7.11, we have |A(G,H)| = n! if G ∼= H,
and |A(G,H)| = 2n! if G 6∼= H.

The coAM machine we wish to construct for GI is polynomial-time bounded.

386 8. Complexity Theory

Thus, the parameters t and m from the hashing lemma must be polynomial in n.
So, to apply Lemma 8.15, we would have to choose a polynomial m = m(n) such
that

n! ≤ 2m−1 < (m+ 1)2m < 2n! . (8.4)

This would guarantee that the set V = A(G,H) would be large enough to tell
two isomorphic graphs G and H apart from two nonisomorphic graphs G and H.
Unfortunately, it is not possible to find a polynomial m that satisfies (8.4). Thus, we
define a different set V , which yields a gap large enough to distinguish isomorphic
graphs from nonisomorphic graphs.

Define V = A(G,H)n = A(G,H)×A(G,H)× · · · ×A(G,H)︸ ︷︷ ︸
n times

. Now, (8.4)

changes to
(n!)n ≤ 2m−1 < (m+ 1)2m < (2n!)n , (8.5)

and this inequality can be satisfied by choosing m = m(n) = 1 + dn log n!e, which is
polynomially in n as desired.

Construct a coAM machine M for GI as follows. Given the graphs G and H
each having n vertices, M first computes the parameter m. The set V = A(G,H)n

contains n-tuples of pairs each having the form (F,ϕ), where F is a graph with n
vertices, and where ϕ is a permutation in the automorphism group Aut(F). The
elements of V can be suitably encoded as strings over the alphabet Σ = {0, 1}, for a
suitable polynomial t = t(n). All computations performed so far are deterministic.

Then, M performs Arthur’s probabilistic move by randomly choosing a family
Ĥ = (h1, h2, . . . , hm+1) of hash functions from Ht,m under the uniform distribution.

Each hash function hi ∈ Ĥ is represented by a Boolean t×m matrix. Thus, the m+1
hash functions hi in Ĥ can be represented as a string z

Ĥ
∈ Σ∗ of length p(n) for a

suitable polynomial p. Modify the collision predicate C(V) defined in the hashing
lemma as follows:

B = {(G,H, z
Ĥ

) | (∃v ∈ V) (∀i : 1 ≤ i ≤ m+ 1) (∃x ∈ V) [v 6= x ∧ hi(v) = hi(x)]} .
Note that the ∀ quantifier in B ranges over only polynomially many i and can thus
be evaluated in deterministic polynomial time. It follows that the two ∃ quantifiers
in B can be merged into a single polynomially length-bounded ∃ quantifier. By
Theorem 8.11, B is a set in Σp

1 = NP. Let N be an NPTM for B. For the string z
Ĥ

that encodes m+1 randomly picked hash functions from Ht,m, M now simulates the
computation of N(G,H, z

Ĥ
). This corresponds to Merlin’s move. Finally, M accepts

its input (G,H) if and only if N(G,H, z
Ĥ

) accepts.
We now estimate the probability (taken over the random choice of the hash

functions in z
Ĥ

that M accepts its input (G,H). If G and H isomorphic, then

|A(G,H)| = n! by Lemma 7.11. Inequality (8.5) implies |V | = (n!)n ≤ 2m−1. By
Lemma 8.15, the probability that (G,H, z

Ĥ
) is in B (and that M(G,H) thus ac-

cepts) is at most 1/4. However, if G and H are nonisomorphic, Lemma 7.11 implies
that |A(G,H)| = 2n!. Inequality (8.5) now gives |V | = (2n!)n > (m + 1)2m. By
Lemma 8.15, the probability that (G,H, z

Ĥ
) is in B and M(G,H) thus accepts is 1.

It follows that GI is in coAM as desired.

8.4. Graph isomorphism and lowness 387

8.4.3. Graph isomorphism is in SPP

The probabilistic complexity class RP was introduced in Definition 7.14 in Subsec-
tion 7.3.1. In this section, two other probabilistic complexity classes are important
that we will now define: PP and SPP, which stand for Probabilistic Polynomial
Time and Stoic Probabilistic Polynomial Time, respectively.

Definition 8.17 (PP and SPP). The class PP contains exactly those problems A
for which there exists an NPTM M such that for each input x: If x ∈ A then M(x)
accepts with probability at least 1/2, and if x 6∈ A then M(x) accepts with probability
less than 1/2.

For any NPTM M running on input x, let accM (x) denote the number of ac-
cepting computation paths of M(x) and let rejM (x) denote the number of rejecting
computation paths of M(x). Define gapM (x) = accM (x)− rejM (x).

The class SPP contains exactly those problems A for which there exists an NPTM
M such that for each input x: (x ∈ A =⇒ gapM (x) = 1) and (x 6∈ A =⇒
gapM (x) = 0).

In other words, an SPP machine is “stoic” in the sense that its “gap” (i.e., the
difference between its accepting and rejecting computation paths) can take on only
two out of an exponential number of possible values, namely 1 and 0. Unlike PP, SPP
is a so-called “promise class”. since an SPP machine M “promises” that gapM (x) ∈
{0, 1} for each x.

The notion of lowness can be defined for any relativizable complexity class C:
A set A is said to be C-low if and only if CA = C. In particular, for each k, the
kth level Lowk of the low hierarchy within NP (see Definition 8.12) contains exactly
the NP sets that are Σp

k-low. It is known that all sets in SPP are PP-low. This and
other useful properties of SPP are listed in the following theorem without proof; see
also [14, 32, 33].

Theorem 8.18

1. SPP is PP-low, i.e., PPSPP = PP.

2. SPP is self-low, i.e., SPPSPP = SPP.

3. Let A be a set in NP via some NPTM N and let L be a set in SPPA via some
NPOTM M such that, for each input x, MA(x) asks only queries q satisfying
accN (q) ≤ 1. Then, L is in SPP.

4. Let A be a set in NP via some NPTM N and let f be a function in FPA via some
DPOTM M such that, for each input x, MA(x) asks only queries q satisfying
accN (q) ≤ 1. Then, f is in FPSPP.

The following theorem says that the lexicographically smallest permutation in
a right coset (see Definition 7.6 in Section 7.1.3) can be determined efficiently. The
lexicographic order on Sn is defined in Example 8.3.

Theorem 8.19 Let G ≤ Sn be a permutation group with G = 〈G〉 and let π
be a permutation in Sn. There is a polynomial-time algorithm that, given (G, π),
computes the lexicographically smallest permutation in the right coset Gπ of G in Sn.

388 8. Complexity Theory

Proof We now state our algorithm LERC for computing the lexicographically small-
est permutation in the right coset Gπ of G in Sn, where the permutation group G

is given by a generator G, see Definition 7.6 in Subsection 7.1.3.

LERC(G, π)

1 compute the tower G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) of stabilisers in G

2 ϕ0 ← π
3 for i← 0 to n− 1
4 do x← i+ 1
5 compute the element y in the orbit G(i)(x) for which ϕi(y)

is minimum
6 compute a permutation τi in G(i) such that τi(x) = y
7 ϕi+1 ← τiϕi

8 return ϕn

By Theorem 7.7, the tower id = G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G of
stabilisers of G can be computed in polynomial time. More precisely, for each i with
1 ≤ i ≤ n, the complete right transversals Ti G(i) in G(i−1) are determined, and
thus a strong generator S =

⋃n−1
i=1 Ti of G.

Note that ϕ0 = π and G(n−1) = G(n) = id. Thus, to prove that the algorithm
works correctly, it is enough to show that for each i with 0 ≤ i ≤ n− 1, the lexico-
graphically smallest permutation of G(i)ϕi is contained in G(i+1)ϕi+1. By induction,
it follows that G(n)ϕn = {ϕn} also contains the lexicographically smallest permuta-
tion of Gπ = G(0)ϕ0. Thus, algorithm LERC indeed outputs the lexicographically
smallest permutation of ϕn of Gπ.

To prove the above claim, let us denote the orbit of an element x ∈ [n] in a
permutation group H ≤ Sn by H(x). Let τi be the permutation in G(i) that maps
i+ 1 onto the element y in the orbit G(i)(i+ 1) for which ϕi(y) = x is the minimal
element in the set {ϕi(z) | z ∈ G(i)(i+ 1)}.

By Theorem 7.7, the orbit G(i)(i + 1) can be computed in polynomial time.
Since G(i)(i + 1) contains at most n − i elements, y can be determined efficiently.
Our algorithm ensures that ϕi+1 = τiϕi. Since every permutation in G(i) maps each
element of [i] onto itself, and since τi ∈ G(i), it follows that for each j with 1 ≤ j ≤ i,
for each τ ∈ G(i), and for each σ ∈ G(i+1),

(σϕi+1)(j) = ϕi+1(j) = (τiϕi)(j) = ϕi(j) = (τϕi)(j) .

In particular, it follows for the lexicographically smallest permutation µ in G(i)ϕi

that every permutation from G(i+1)ϕi+1 must coincide with µ on the first i elements,
i.e. on [i].

Moreover, for each σ ∈ G(i+1) and for the element x = ϕi(y) defined above, we
have

(σϕi+1)(i+ 1) = ϕi+1(i+ 1) = (τiϕi)(i+ 1) = x .

Clearly, G(i+1)ϕi+1 = {ϕ ∈ G(i)ϕi | ϕ(i + 1) = x}. The claim now follows from the
fact that µ(i+ 1) = x for the lexicographically smallest permutation µ of G(i)ϕi.

8.4. Graph isomorphism and lowness 389

Thus, LERC is a correct algorithm. It easy to see that it is also efficient.

Theorem 8.19 can easily be extended to Corollary 8.20, see Exercise 8-3.

Corollary 8.20 Let G ≤ Sn be a permutation group with G = 〈G〉, and let π and
ψ be two given permutations in Sn. There exists a polynomial-time algorithm that,
given (G, π, ψ), computes the lexicographically smallest permutation of ψGπ.

We now prove Theorem 8.21, the main result of this section.

Theorem 8.21 (Arvind and Kurur). GI is in SPP.

Proof Define the (functional) problem AUTO as follows: Given a graph G, compute
a strong generator of the automorphism group Aut(G); see Definition 7.6 and the
subsequent paragraph and Definition 7.8 for these notions. By Mathon’s [37] result,
the problems AUTO and GI are Turing-equivalent (see also [33]), i.e., AUTO is in FPGI

and GI is in PAUTO. Thus, it is enough to show that AUTO is in FPSPP because the self-
lowness of SPP stated in Theorem 8.18 implies that GI is in PAUTO ⊆ SPPSPP ⊆ SPP,
which will complete the proof.

So, our goal is to find an FPSPP algorithm for AUTO. Given a graph G, this
algorithm has to compute a strong generator S =

⋃n−1
i=1 Ti for Aut(G), where

id = Aut(G)(n) ≤ Aut(G)(n−1) ≤ · · · ≤ Aut(G)(1) ≤ Aut(G)(0) = Aut(G)

is the tower of stabilisers of Aut(G) and Ti, 1 ≤ i ≤ n, is a complete right transversal
of Aut(G)(i) in Aut(G)(i−1).

Starting with the trivial case, Aut(G)(n) = id, we build step by step a strong gen-
erator for Aut(G)(i), where i is decreasing. Eventually, we will thus obtain a strong

generator for Aut(G)(0) = Aut(G). So suppose a strong generator Si =
⋃n−1

j=i Tj for

Aut(G)(i) has already been found. We now describe how to determine a complete
right transversal Ti−1 of Aut(G)(i) in Aut(G)(i−1) by our FPSPP algorithm. Define
the oracle set

A =

(G,S, i, j, π)

S ⊆ Aut(G) and 〈S〉 is a pointwise stabilizer of [i]
in Aut(G), π is a partial permutation, which pointwise
stabilises [i− 1], and π(i) = j, and there is a τ in
Aut(G)(i−1) with τ(i) = j and LERC(S, τ) extends π

.

By Theorem 8.19, the lexicographically smallest permutation LERC(S, τ) of the
right coset 〈S〉τ can be determined in polynomial time by our algorithm. The partial
permutation π belongs to the input (G,S, i, j, π), since we wish to use A as an
oracle in order to find the lexicographically smallest permutation by prefix search;
cf. Example 8.3.

Consider the following NPTM N for A:

390 8. Complexity Theory

N(G,S, i, j, π)

1 verify that S ⊆ Aut(G)(i)

2 nondeterministically guess a permutation τ ∈ Sn; // G has n vertices
3 if τ ∈ Aut(G)(i−1) and τ(i) = j and τ extends π and τ = LERC(S, τ)
4 then accept and halt
5 else reject and halt

Thus, A is in NP. Note that if τ(i) = j then σ(i) = j, for each permutation σ in
the right coset 〈S〉τ .

We now show that if 〈S〉 = Aut(G)(i) then the number of accepting computation
paths of N on input (G,S, i, j, π) is either 0 or 1. In general, accN (G,S, i, j, π) ∈{

0, |Aut(G)(i)|/|〈S〉|
}

.

Suppose (G,S, i, j, π) is in A and 〈S〉 = Aut(G)(i). If τ(i) = j for some
τ ∈ Aut(G)(i−1) and j > i, then the right coset 〈S〉τ contains exactly those permu-
tations in Aut(G)(i−1) that map i to j. Thus, the only accepting computation path
of N(G,S, i, j, π) corresponds to the unique lexicographically smallest permutation
τ = LERC(S, τ). If, on the other hand, 〈S〉 is a strict subgroup of Aut(G)(i), then
Aut(G)(i)τ can be written as the disjoint union of k = |Aut(G)(i)|/|〈S〉| right cosets
of 〈S〉. In general, N(G,S, i, j, π) thus possesses k accepting computation paths if
(G,S, i, j, π) is in A, and otherwise it has no accepting computation path.

M-A(G)

1 set Ti := {id} for each i, 0 ≤ i ≤ n− 2; // G has n vertices
� Ti will be a complete right transversal of Aut(G)(i+1) in Aut(G)(i).

3 set Si := ∅ for each i, 0 ≤ i ≤ n− 2
4 set Sn−1 := {id}

� Si will be a strong generator for Aut(G)(i).
5 for i← n− 1 downto 1

� Si is already found at the start
� of the ith iteration, and Si−1 will now be computed.

6 do let π : [i− 1]→ [n] be the partial permutation
with π(a) = a for each a ∈ [i− 1]

7 � For i = 1, π is the nowhere defined partial permutation.
8 for j ← i+ 1 to n
9 do π̂ := πj, i.e., π̂ extends π by the pair (i, j) with π̂(i) = j

10 if ((G,Si, i, j, π̂) ∈ A) {
11 then � Construct the smallest permutation

in Aut(G)(i−1) mapping i to j by prefix search.
12 for k ← i+ 1 to n
13 do find the element ` not in the image

of π̂ with (G,Si, i, j, π̂`) ∈ A
14 π̂ := π̂`
15 � Now, π̂ is a total permutation in Sn

8.4. Graph isomorphism and lowness 391

16 Ti−1 ← Ti−1 ∪ π̂ now, Ti−1 is
a complete right transversal of Aut(G)(i) in Aut(G)(i−1)

17 Si−1 := Si ∪ Ti−1.
18 return S0 � S0 is a strong generator for Aut(G) = Aut(G)(0)

The above algorithm is an FPA algorithm MA for AUTO. The DPOTM M makes
only queries q = (G,Si, i, j, π) to its oracle A for which 〈Si〉 = Aut(G)(i). Thus,
accN (q) ≤ 1 for each query q actually asked. By item 4 of Theorem 8.18, it follows
that AUTO is in FPSPP.

The claim that the output S0 of MA(G) indeed is a strong generator for
Aut(G) = Aut(G)(0) can be shown by induction on n. The induction base is n− 1,
and Sn−1 = {id} of course generates Aut(G)(n−1) = id.

For the induction step, assume that prior to the ith iteration a strong generator
Si for Aut(G)(i) has already been found. We now show that after the ith iteration
the set Si−1 = Si∪Ti−1 is a strong generator for Aut(G)(i−1). For each j with i+1 ≤
j ≤ n, the oracle query “(G,Si, i, j, π̂) ∈ A?” checks whether there is a permutation
in Aut(G)(i−1) mapping i to j. By prefix search, which is performed by making
suitable oracle queries to A again, the lexicographically smallest permutation π̂ in
Aut(G)(i−1) with π̂(i) = j is constructed. Note that, as claimed above, only queries
q satisfying accN (q) ≤ 1 are made to A, since Si is a strong generator for Aut(G)(i),
so 〈Si〉 = Aut(G)(i). By construction, after the ith iteration, Ti−1 is a complete right
transversal of Aut(G)(i) in Aut(G)(i−1). It follows that Si−1 = Si ∪ Ti−1 is a strong
generator for Aut(G)(i−1). Eventually, after n iterations, a strong generator S0 for
Aut(G) = Aut(G)(0) is found.

From Theorem 8.21 and the first two items of Theorem 8.18, we obtain Corol-
lary 8.22.

Corollary 8.22 GI is low for both SPP and PP, i.e., SPPGI = SPP and PPGI =
PP.

Exercises
8.4-1 By Definition 8.9, A≤p

T B if and only if A ∈ PB . Show that A≤p
T B if and

only if PA ⊆ PB.
8.4-2 Show that the set Pre-Iso defined in Example 8.3 is in NP. Moreover, prove
that the machine N defined in Example 8.3 runs in polynomial time, i.e., show that
N is a DPOTM.

392 8. Complexity Theory

Problems

8-1 Strong NPOTM
A strong NPOTM is an NPOTM with three types of final states, i.e., the set F of
final states of M is partitioned into Fa (accepting states), Fr (rejecting states), and
F? (“don’t know” states) such that the following holds: If x ∈ A then MB(x) has at
least one computation path halting in an accepting state from Fa but no computation
path halting in a rejecting state from Fr. If x 6∈ A then MB(x) has at least one
computation path halting in a rejecting state from Fr but no computation path
halting in an accepting state from Fa. In both cases MB(x) may have computation
paths halting in “don’t know” states from F?. In other words, strong NPOTMs are
machines that never lie. Prove the following two assertions:

(a) A≤NP
sT B if and only if there exists a strong NPOTM M with A = L(MB).

(b) A≤NP
sT B if and only if NPA ⊆ NPB .

Hint. Look at Exercise 8.4-1.
8-2 Proofs
Prove the assertions from Theorems 8.11 and 8.13. (Some are far from being trivial!)

8-3 Modification of the proofs
Modify the proof of Theorem 8.19 so as to obtain Corollary 8.20.

Chapter Notes

Parts of the Chapters 7 and 8 are based on the book [52] that provides the proofs
omitted here, such as those of Theorems 8.11, 8.13, and 8.18 and of Lemma 8.15,
and many more details.

More background on complexity theory can be found in the books [24, 43, 67, 68].
A valuable source on the theory of NP-completeness is still the classic [15] by

Garey and Johnson. The ≤p
T-reducibility was introduced by Cook [11], and the

≤p
m-reducibility by Karp [31]. A deep and profound study of polynomial-time re-

ducibilities is due to Ladner, Lynch, and Selman [35].
Exercise 8-1 and Problem 8-1 are due to Selman [58].
Dantsin et al. [13] obtained an upper bound of Õ(1.481n) for the deterministic

time complexity of 3-SAT, which was further improved by Brueggemann and Kern [9]
to Õ(1.4726n). The randomised algorithm presented in Subsection 8.3.2 is due to
Schöning [56]; it is based on a “limited local search with restart”. For k-SAT with
k ≥ 4, the algorithm by Paturi et al. [44] is slightly better than Schöning’s algorithm.
Iwama and Tamaki [29] combined the ideas of Schöning [56] and Paturi et al. [44] to
obtain a bound of Õ(1.324n) for k-SAT with k ∈ {3, 4}. For k-SAT with k ≥ 5, their
algorithm is not better than that by Paturi et al. [44].

Figure 8.7 gives an overview over some algorithms for the satisfiability problem.
For a thorough, comprehensive treatment of the graph isomorphism problem the

reader is referred to the book by Köbler, Schöning, and Torán [34], particularly under
complexity-theoretic aspects. Hoffman [27] investigates group-theoretic algorithms
for the graph isomorphism problem and related problems.

Notes for Chapter 8 393

Algorithm Type 3-SAT 4-SAT 5-SAT 6-SAT

Backtracking det. Õ(1.913n) Õ(1.968n) Õ(1.987n) Õ(1.995n)

Monien and det. Õ(1.618n) Õ(1.839n) Õ(1.928n) Õ(1.966n)

Speckenmeyer [41]

Dantsin et al. [13] det. Õ(1.481n) Õ(1.6n) Õ(1.667n) Õ(1.75n)

Brueggemann and Kern [9] det. Õ(1.4726n) — — —

Paturi et al. [44] prob. Õ(1.362n) Õ(1.476n) Õ(1.569n) Õ(1.637n)

Schöning [56] prob. Õ(1.334n) Õ(1.5n) Õ(1.6n) Õ(1.667n)

Iwama and Tamaki [29] prob. Õ(1.324n) Õ(1.474n) — —

Figure 8.7 Runtimes of some algorithms for the satisfiability problem.

The polynomial hierarchy was introduced by Meyer and Stockmeyer [38, 64]. In
particular, Theorem 8.11 is due to them. Schöning [54] introduced the low hierarchy
and the high hierarchy within NP. The results stated in Theorem 8.13 are due to
him [54]. He also proved that GI is in Low2, see [55]. Köbler et al. [32, 33] obtained
the first lowness results of GI for probabilistic classes such as PP. These results
were improved by Arvind and Kurur [3] who proved that GI is even in SPP. The
class SPP generalises Valiant’s class UP, see [66]. So-called “promise classes” such
as UP and SPP have been thoroughly studied in a number of papers; see, e.g.,
[3, 8, 14, 32, 33, 48, 51]. Lemma 8.15 is due to Carter and Wegman [10].

The author is grateful to Uwe Schöning for his helpful comments on an earlier
version of this chapter and for sending the slides of one of this talks that helped
simplifying the probability analysis for the algorithm Random-SAT sketched in
Subsection 8.3; a more comprehensive analysis can be found in Schöning’s book [57].
Thanks are also due to Dietrich Stoyan, Robert Stoyan, Sigurd Assing, Gábor Erdé-
lyi and Holger Spakowski for proofreading previous versions of Chapters 7 and 8.
This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG)
under grants RO 1202/9-1 and RO 1202/9-3 and by the Alexander von Humboldt
Foundation in the TransCoop program.

Bibliography

[1] M. Agrawal, N. Kayal, N. Saxena. Primes is in p. Annals of Mathematics, 160(2):781–793,
2004. 351

[2] M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P.

http://www.cse.iitk.ac.in/users/manindra/, 2002. 351

[3] V. Arvind, P. Kurur. Graph isomorphism is in SPP. In Proceedings of the 43rd IEEE Sym-
posium on Foundations of Computer Science, 743–750 pages. IEEE Computer Society Press,
2002. 393

[4] L. Babai. Trading group theory for randomness. In Proceedings of the 17th ACM Symposium
on Theory of Computing, 421–429 pages. ACM Press, 1985. 364

[5] L. Babai, S. Moran. Arthur-Merlin games: A randomized proof system, and a hierarchy of
complexity classes. Journal of Computer and Systems Sciences, 36(2):254–276, 1988. 364

[6] A. Beygelzimer, L. A. Hemaspaandra, C. Homan, J. Rothe. One-way functions in worst-case

cryptography: Algebraic and security properties are on the house. SIGACT News, 30(4):25–40,
1999. 364

[7] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46(2):203–
213, 1999. 364

[8] B. Borchert, L. A. Hemaspaandra, J. Rothe. Restrictive acceptance suffices for equivalence

problems. London Mathematical Society Journal of Computation and Mathematics, 86:86–
95, 2000. 393

[9] T. Brueggemann, W. Kern. An improved deterministic local search algorithm for 3-SAT.
Theoretical Computer Science, 329(1–3):303–313, 2004. 376, 392, 393

[10] J. L. Carter, M. N. Wegman. Universal classes of hash functions. Journal of Computer and

System Sciences, 18(2):143–154, 1979. 384, 393

[11] S. Cook. The complexity of theorem proving procedures. In Proceedings of the 3th Annual
ACM Symposium on Theory of Computing, 151–158 pages. ACM Press, 1971. 392

[12] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabil-

ities. Journal of Cryptology, 10(4):233–260, 1997. 364

[13] E. Dantsin, A. Goerdt, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, U. Schöning.

A deterministic (2−2/(k+1))n algorithm for k-sat based on local search. Theoretical Computer
Science, 289(1):69–83, 2002. 376, 392, 393

[14] S. Fenner, L. Fortnow, S. Kurtz. Gap-definable counting classes. Journal of Computer and
System Sciences, 48(1):116–148, 1994. 387, 393

[15] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979. 370, 371, 374, 392

[16] O. Goldreich, S. Micali, A. Wigderson. Proofs that yield nothing but their validity or all

languages in NP. Journal of the ACM, 38(3):691–729, 1991. 360

[17] O. Goldreich. Randomness, interactive proofs, and zero-knowledge – a survey. In R. Herken
(Ed.), The Universal Turing Machine: A Half-Century Survey, 377–405 pages. Oxford Uni-
versity Press, 1988. 364

http://www.cse.iitk.ac.in/users/manindra/
http://www.cse.iitk.ac.in/users/manindra/
http://www.cse.iitk.ac.in/users/manindra/
http://www.ieee.org/organizations/pubs/press/
http://people.cs.uchicago.edu/~laci/
http://isbndb.com/d/publisher/acm_press.html
http://people.cs.uchicago.edu/~laci/
http://www.cs.rochester.edu/~lane/
http://www.cs.uni-duesseldorf.de/~rothe/
http://crypto.stanford.edu/~dabo/
http://www.ams.org/notices/
http://www.cs.rochester.edu/~lane/
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.sciencedirect.com/science/journal/00220000/
http://isbndb.com/d/publisher/acm_press.html
http://www.research.ibm.com/people/c/copper/
http://www.cs.yale.edu/homes/kannan/home.html
http://www.cs.berkeley.edu/~christos/
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.elsevier.com/locate/issn/0022-0000
http://cm.bell-labs.com/cm/ms/former/mrg/
http://www.research.att.com/~dsj/
http://www.whfreeman.com/
http://www.math.ias.edu/~avi/
http://
http://www.wisdom.weizmann.ac.il/~oded/

Bibliography 395

[18] O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001. 364

[19] S. Goldwasser. Interactive proof systems. In J. Hartmanis (Ed.) Computational Complexity

Theory, AMS Short Course Lecture Notes: Introductory Survey Lectures. Proceedings of Sym-
posia in Applied Mathematics, Vol. 38, pages 108–128. American Mathematical Society, 1989.
364

[20] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989. 364

[21] S. Goldwasser, M. Sipser. Private coins versus public coins in interactive proof systems. in
s. micali (ed.). In Randomness and Computation, Advances in Computing Research, Vol. 5,
pages 73–90. JAI Press, 1989. A preliminary version appeared in Proc. 18th Ann. ACM Symp.
on Theory of Computing, 1986. 359

[22] J. Håstad. Solving simultaneous modular equations of low degree. SIAM Journal on Com-
puting, 17(2):336–341, 1988. Special issue on cryptography. 364

[23] L. A. Hemaspaandra, J. Rothe, A. Saxena. Enforcing and defying associativity, commutativity,

totality, and strong noninvertibility for one-way functions in complexity theory. In In M.
Coppo et al. (Eds.) ICTCS 2005, Lecture Notes in Computer Science, Vol. 117, pages 265–

279. Springer verlag, 2005. 357, 364

[24] L. A. Hemaspaandra, M. Ogihara. The Complexity Theory Companion. EATCS Texts in

Theoretical Computer Science. Springer-Verlag, 2002. 392

[25] L. A. Hemaspaandra, K. Pasanen, J. Rothe. If P 6= NP then some strongly noninvertible

functions are invertible. Theoretical Computer Science, 362(1–3):54–62, 2006. 357, 364

[26] L. A. Hemaspaandra, J. Rothe. Creating strong, total, commutative, associative one-way func-

tions from any one-way function in complexity theory. Journal of Computer and Systems

Sciences, 58(3):648–659, 1999. 357, 364

[27] C. Hoffman (Ed.). Group-Theoretic Algorithms and Graph Isomorphism. Lecture Notes in
Computer Science. Springer-Verlag, Vol. 136, 1982. 392

[28] C. Homan. Tight lower bounds on the ambiguity in strong, total, associative, one-way func-
tions. Journal of Computer and System Sciences, 68(3):657–674, 2004. 364

[29] K. Iwama, S. Tamaki. Improved upper bounds for 3-SAT. In In J. Munro (Ed.) Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 328–329. Society
for Industrial and Applied Mathematics, 2004. 392, 393

[30] B. Kaliski, M. Robshaw. The secure use of RSA. CryptoBytes, 1(3):7–13, 1995. 364

[31] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher

(Eds.), Complexity of Computer Computations, 85–103 pages. Plenum Press, 1972. 392

[32] J. Köbler, U. Schöning, S. Toda, J. Torán. Turing machines with few accepting computations

and low sets for PP. Journal of Computer and System Sciences, 44(2):272–286, 1992. 363,
387, 393

[33] J. Köbler, U. Schöning, J. Torán. Graph isomorphism is low for PP. Computational Complex-

ity, 2:301–330, 1992. 387, 389, 393

[34] J. Köbler, U. Schöning, J. Torán. The Graph Isomorphism Problem: Its Structural Complexity.

Birkhäuser, 1993. 364, 392

[35] R. Ladner, N. A. Lynch, A. Selman. A comparison of polynomial time reducibilities.

Theoretical Computer Science, 1(2):103–124, 1975. 380, 392

[36] A. Lenstra, H. Lenstra. The Development of the Number Field Sieve. Lecture Notes in Math-
ematics. Vol. 1554, Springer-Verlag, 1993. 355

[37] R. Mathon. A note on the graph isomorphism counting problem. Information Processing

Letters, 8(3):131–132, 1979. 389

[38] A. Meyer, L. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In Proceedings of the 13th IEEE Symposium on Switching and
Automata Theory, pages 129–129. 1972. 393

[39] D. Micciancio, S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspective.
Vol. 671.,The Kluwer International Series in Engineering and Computer Science. Kluwer Aca-
demic Publishers, 2002. 364

http://www.wisdom.weizmann.ac.il/~oded/
http://uk.cambridge.org/
http://theory.lcs.mit.edu/~shafi/
http://www.cs.cornell.edu/annual_report/99-00/Hartmanis.htm
http://theory.lcs.mit.edu/~shafi/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://theory.lcs.mit.edu/~shafi/
file:isbndb.com/d/publisher/jai_press.html
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.cs.rochester.edu/~lane/
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.cs.rochester.edu/users/faculty/lane/
http://www.springer.de/
http://www.cs.rochester.edu/users/faculty/lane/
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.cs.rochester.edu/users/faculty/lane/
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.link.springer.de/link/service/series/0558/index.htm
http://www.springer.de/
http://www.siam.org/
http://www.rsa.com/rsalabs/node.asp?id=2150
http://www.icir.org/karp/
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.sciencedirect.com/science/journal/00220000/
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.birkhauser.ch/
http://theory.lcs.mit.edu/~lynch
http://www.win.tue.nl/~klenstra/

396 Bibliography

[40] G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and Systems

Sciences, 13(3):300–317, 1976. 352

[41] B. Monien, E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete Applied
Mathematics, 10:287–295, 1985. 376, 393

[42] J. Moore. Protocol failures in cryptosystems. In G. Simmons (Ed.), Contemporary Cryptology:
The Science of Information Integrity, 541–558 pages. IEEE Computer Society Press, 1992.
364

[43] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 364, 392

[44] R. Paturi, P. Pudlák, M. Saks, F. Zane. An improved exponential-time algorithm for k-SAT.
In Proceedings of the 39th IEEE Symposium on Foundations of Computer Science, pages
628–637. IEEE Computer Society Press, 1998. 392, 393

[45] J. M. Pollard. Theorems on factorization and primality testing. Proceedings of the Cambridge
Philosophical Society, 76:521–528, 1974. 355

[46] M. Rabi, A. Sherman. An observation on associative one-way functions in complexity theory.
Information Processing Letters, 64(5):239–244, 1997. 364

[47] M. O. Rabin. Probabilistic algorithms for testing primality. Journal of Number Theory,
12(1):128–138, 1980. 352

[48] R. Rao, J. Rothe, O. Watanabe. Upward separation for FewP and related classes. Information

Processing Letters, 52(4):175–180, 1994 (Corrigendum appears in the same journal,74(1–2):89,
2000). 393

[49] R. L. Rivest, A. Shamir, L. M. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 21(2):120–126, 1978. 350

[50] J. Rothe. Some facets of complexity theory and cryptography: A five-lecture tutorial. ACM
Computing Surveys, 34(4):504–549, 2002. 354, 364

[51] J. Rothe. A promise class at least as hard as the polynomial hierarchy. Journal of Computing
and Information, 1(1):92–107, 1995. 393

[52] J. Rothe. Complexity Theory and Cryptology. An Introduction to Cryptocomplexity. EATCS
Texts in Theoretical Computer Science. Springer-Verlag, 2005. 355, 364, 392

[53] A. Salomaa. Public-Key Cryptography. EATCS Monographs on Theoretical Computer Science.
Vol. 23., Springer-Verlag., 1996 (2nd edition). 364

[54] U. Schöning. A low and a high hierarchy within NP. Journal of Computer and System Sci-

ences, 27:14–28, 1983. 380, 383, 393

[55] U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System

Sciences, 37:312–323, 1987. 393

[56] U. Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.

In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, 410–414
pages. IEEE Computer Society Press, 1999. 376, 392, 393

[57] U. Schöning. Algorithmik. Spektrum Akademischer Verlag, 2001. 393

[58] A. Selman. Polynomial time enumeration reducibility. SIAM Journal on Computing, 7(4):440–
457, 1978. 392

[59] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992. 359

[60] A. Shamir. RSA for paranoids. CryptoBytes, 1(3):1–4, 1995. 364

[61] S. Singh. The Code Book. The Secret History of Codes and Code Breaking. Fourth Estate,
1999. 364

[62] R. Solovay, V. Strassen. A fast Monte Carlo test for primality. SIAM Journal on Computing,
6:84–85, 1977. Erratum appears in the same journal, 7(1):118, 1978. 352

[63] D. Stinson. Cryptography: Theory and Practice. CRC Press, 2002 (2nd edition). 355, 364

[64] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1977. 393

[65] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, ser. 2, 2:230–265, 1936 (Correction, ibid, vol.
43, pages 544–546, 1937). 366

[66] L. G. Valiant. The relative complexity of checking and evaluating. Information Processing

Letters, 5(1):20–23, 1976. 393

http://www.elsevier.com/locate/issn/0022-0000
http://www.cs.berkeley.edu/~christos/
http://www.aw.com/
http://www.ieee.org/organizations/pubs/press/
http://people.deas.harvard.edu/users/faculty/Michael_Rabin/Michael_Rabin.html
http://www.math.ohio-state.edu/JNT/
http://www.cs.uni-duesseldorf.de/~rothe/
http://theory.lcs.mit.edu/~rivest/
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.cs.uni-duesseldorf.de/~rothe/
http://www.springer-ny.com/
http://www.springer-ny.com/
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.elsevier.com/locate/issn/0022-0000
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.elsevier.com/locate/issn/0022-0000
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.ieee.org/organizations/pubs/press/
http://theorie.informatik.uni-ulm.de/Personen/Schoening/index.html
http://www.siam.org/journals/sicomp/sicomp.htm
http://www.acm.org/jacm/
http://www.simonsingh.net/
http://www.math.uni-konstanz.de/~strassen/
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP
http://www.cacr.math.uwaterloo.ca/~dstinson/
http://www.crcpress.com/
http://people.deas.harvard.edu/~valiant/

Bibliography 397

[67] K. Wagner, G. Wechsung. Computational Complexity. D. Reidel Publishing Company, 1986

(and Kluwer Academic Publishers, 2001). 392

[68] G. Wechsung. Vorlesungen zur Komplexitätstheorie. Vol. 32. B. G. Teubner Verlagsge-

sellschaft, 2000. 392

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

http://haegar.informatik.uni-wuerzburg.de/personen/mitarbeiter/wagner/
http://www.minet.uni-jena.de/www/fakultaet/l_wechsung.html
http://www.minet.uni-jena.de/www/fakultaet/l_wechsung.html
http://www.teubner.de/

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A
abelian monoid, see monoid
attack

chosen-plaintext, 339
ciphertext-only, 339
encryption-key, 339
known-plaintext, 339

automorhism
of a graph, 343

B
Backtracking-SAT, 375

C
cipher

affin linear block, 338
block, 338
Caesar, 336
Hill, 338
permutation, 338
shift, 335
stream, 338
substitution, 338
transposition, 338
Vigenère, 336

ciphertext, 335
ciphertext space, 335
complete right transversal, 342

complexity theory, 365–393
computation tree, 368
cryptanalysis, 334

cryptographic algorithms, 334

cryptography, 334

cryptology, 333–364, 334

cryptosystem, 335
symmetric, 335

D
deterministic polynomial time, 351
Diffie-Hellman protocol, 334, 349exe

E
Euler function, 341

F
field, 340, 341

function, 356
function mapping

associative, 356

G
graph automorphism, 343

graph isomorphism, 343

group, 340

H
honest-verifier perfect zero-knowledge, 360

I
identical permutation, 342

inverse element for x, 340

invertible element of a ring, 341

K
key space, 335

L
LERC, 388

Index 399

M
M-A algorithm, 390
message, 335
Miller-Rabin, 352
monoid, 340

commutative, 340

N
N algorithm, 390
neutral element of a group, 340

nondeterministic Turing machine with k
tapes, 367

nondeterministic Turing reducibility, 382
NP-completeness, 372
N-Pre-Iso, 382

O
one element of a group, 341

oracle set, 380
orbit of an element, 342

order of a group, 340

P
perfect secrecy, 340

permutation, 342

identical, 342
permutation group, 342

plaintext, 335
plaintext space, 335
pointwise stabiliser, 342

polynomial hierarchy, 382
public-key, 350
public-key cryptography, 334
public-key cryptosystem, 334

Q
quadratic sieve, 355

R
Random-SAT, 376
right coset, 342

ring, 340

commutative, 341

RSA protocol, 350fig

S
secret-key agreement problem, 333
shift cipher, 335
Square-and-Multiply, 348, 349exe

stabiliser, 342

pointwise, 342
strong generator of a group, 342

strong nondeterministic Turing reducibility,
382

strong NPOTM, 392
subgroup of a group, 340

system
monoalphabetic, 338
polyalphabetic, 338

T
tower of stabilisers, 342

Turing reducibility, 382

U
upper bound, 365

V
Vigenère square, 336

Z
zero element of a group, 341

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A
Adleman, Leonard, 350
Agrawal, Manindra, 351, 394
Alberti, Leon Battista (1404–1472), 336
Arvind, V., 393, 394
Assing, Sigurd, 393

B
Babai, László, 358, 364, 394
Beygelzimer, A., 394
Boneh, D., 394
Borchert, B., 393, 394
Brueggeman, T., 394

C
Carter, J. L., 393, 394
Cook, Stephen Arthur, 394
Coppo, M., 395

D
Dantsin, E., 392, 394
Diffie, Whitfield, 333

E
Erdélyi, Gábor, 393
Euler, Leonhard (1707–1783), 341

F
Fenner, S., 394
Fortnow, L., 394

G
Garey, Michael R., 392, 394
Goerdt, A., 394
Goldreich, Oded, 364, 394, 395
Goldwasser, Shaffi, 395

H
Håstad, Johan, 395

Hartmanis, Juris, 395
Hellman, Martin E., 333
Hemaspaandra, Lane A., 392, 394, 395
Herken, R., 394
Hoffman, C., 392, 395
Homan, C., 394, 395

I
Iwama, K., 392, 395

J
Johnson, David S., 392

K
Köbler, J., 364, 392, 393, 395
Kaliski, B. Jr., 395
Kannan, Ravindran, 394
Karp, Richard M., 395
Kayal, Neeraj, 351, 394
Kern, W., 394
Kleinberg, J., 394
Kurtz, Stefan, 394
Kurur, P., 393, 394

L
Ladner, Richard E., 392, 395
Lenstra, Arjen Klaas, 395
Lenstra, Hendrik Willem, Jr., 395
Lynch, Nancy Ann, 392, 395

M
Mathon, R., 389, 395
Meyer, A., 393, 395
Micali, Silvio, 394, 395
Micciancio, D., 395
Miller, Gary L., 352, 396
Miller, Raymond E., 395
Monien, B., 396
Moore, J., 396
Moran, S., 394
Munro, 395

Name Index 401

O
Ogihara, M., 395

P
Papadimitriou, Christos H., 364, 392, 394,

396
Pasanen, Kari, 395
Paturi, R., 392, 396
Pollard, John Michael, 396
Porta, Giovanni (1675–1755), 336
Pudlák, P., 396

R
Rabi, M., 396
Rabin, Michael O., 352, 396
Rackoff, C., 395
Raghavan, P., 394
Rao, R., 396
Rivest, Ronald Lewis, 350, 396
Robshaw, M., 395
Rothe, Jörg, 354, 355, 392, 394–396

S
Saks, M., 396
Salomaa, Arto, 396
Saxena, Amitabh, 395
Saxena, Nitin, 351, 394
Schöning, Uwe, 392–396
Selman, Alan L., 392, 395, 396
Shamir, Adi, 350, 396
Sherman, A., 396
Simons, G., 396
Singh, Simon, 396

Sipser, M., 395
Solovay, R., 396
Spakowski, Holger, 393
Speckenmeyer, 396
Stinson, Douglas, 355, 396
Stockmeyer, L., 396
Stockmeyer, Larry, 383
Stockmeyer, Larry J., 393
Stoyan, Dietrich, 393
Stoyan, Robert, 393
Strassen, Volker, 396

T
Tamaki, S., 392, 395
Thatcher, J. W., 395
Toda, S., 395
Torán, J., 392, 395
Trithemius, Johannes (1492–1516), 336
Turing, Alan (1912–1954), 396

V
Vigenère, Blaise, de (1523–1596), 336

W
Wagner, Klaus W., 392, 397
Watanabe O., 396
Wechsung, Gerd, 392, 397
Wegman, M. N., 393, 394
Wigderson, Avi, 394

Z
Zane, F., 396

	7. Cryptology
	 7.1. Foundations
	 7.1.1. Cryptography
	 7.1.2. Cryptanalysis
	 7.1.3. Algebra, number theory, and graph theory

	 7.2. Diffie and Hellman's secret-key agreement protocol
	 7.3. RSA and factoring
	 7.3.1. RSA
	 7.3.2. Digital RSA signatures
	 7.3.3. Security of RSA

	 7.4. The protocols of Rivest, Rabi, and Sherman
	 7.5. Interactive proof systems and zero-knowledge
	 7.5.1. Interactive proof systems and Arthur-Merlin games
	 7.5.2. Zero-knowledge protocol for graph isomorphism

	8. Complexity Theory
	 8.1. Foundations
	 8.2. NP-completeness
	 8.3. Algorithms for the satisfiability problem
	 8.3.1. A deterministic algorithm
	 8.3.2. A randomised algorithm

	 8.4. Graph isomorphism and lowness
	 8.4.1. Reducibilities and complexity hierarchies
	 8.4.2. Graph isomorphism is in the low hierarchy
	 8.4.3. Graph isomorphism is in SPP

	Bibliography
	Index
	Name Index

