
Contents

6. Computer Algebra . 276

6.1. Data representation . 277
6.2. Common roots of polynomials . 282

6.2.1. Classical and extended Euclidean algorithm 282
6.2.2. Primitive Euclidean algorithm 288
6.2.3. The resultant . 290
6.2.4. Modular greatest common divisor 297

6.3. Gröbner basis . 302
6.3.1. Monomial order . 303
6.3.2. Multivariate division with remainder 304
6.3.3. Monomial ideals and Hilbert’s basis theorem 305
6.3.4. Buchberger’s algorithm . 307
6.3.5. Reduced Gröbner basis . 309
6.3.6. The complexity of computing Gröbner bases 309

6.4. Symbolic integration . 311
6.4.1. Integration of rational functions 312
6.4.2. The Risch integration algorithm 317

6.5. Theory and practice . 329
6.5.1. Other symbolic algorithms 329
6.5.2. An overview of computer algebra systems 331

Bibliography . 335

Index . 337

Name Index . 339

6. Computer Algebra

Computer systems performing various mathematical computations are inevitable
in modern science and technology. We are able to compute the orbits of planets and
stars, command nuclear reactors, describe and model many of the natural forces.
These computations can be numerical and symbolical.
Although numerical computations may involve not only elementary arithmetical op-
erations (addition, subtraction, multiplication, division) but also more sophisticated
calculations, like computing numerical values of mathematical functions, finding
roots of polynomials or computing numerical eigenvalues of matrices, these opera-
tions can only be carried out on numbers. Furthermore, in most cases these numbers
are not exact. Their degree of precision depends on the floating-point arithmetic of
the given computer hardware architecture.

Unlike numerical calculations, symbolic and algebraic computations operate on
symbols that represent mathematical objects. These objects may be numbers such as
integers, rational numbers, real and complex numbers, but may also be polynomials,
rational and trigonometric functions, equations, algebraic structures such as groups,
rings, ideals, algebras or elements of them, or even sets, lists, tables.

Computer systems with the ability to handle symbolic computations are called
computer algebra systems or symbolic and algebraic systems or formula manipulation
systems. In most cases, these systems are able to handle both numerical and graphical
computations. The word “symbolic” emphasises that, during the problem-solving
procedure, the objects are represented by symbols, and the adjective “algebraic”
refers to the algebraic origin of the operations on these symbolic objects.

To characterise the notion “computer algebra”, one can describe it as a collection
of computer programs developed basically to perform

• exact representations of mathematical objects and

• arithmetic with these objects.

On the other hand, computer algebra can be viewed as a discipline which has been
developed in order to invent, analyse and implement efficient mathematical algo-
rithms based on exact arithmetic for scientific research and applications.

Since computer algebra systems are able to perform error-free computations
with arbitrary precision, first we have to clarify the data structures assigned to the
various objects. Subsection 6.1 deals with the problems of representing mathematical
objects. Furthermore, we describe the symbolic algorithms which are indispensable

6.1. Data representation 277

in modern science and practice.
The problems of natural sciences are mainly expressed in terms of mathematical

equations. Research in solving symbolic linear systems is based on the well-known
elimination methods. To find the solutions of non-linear systems, first we analyse
different versions of the Euclidean algorithm and the method of resultants. In the
mid-sixties of the last century, Bruno Buchberger presented a method in his PhD
thesis for solving multivariate polynomial equations of arbitrary degree. This method
is known as the Gröbner basis method. At that time , the mathematical community
paid little attention to his work, but since then it became the basis of a powerful
set of tools for computing with higher degree polynomial equations. This topic is
discussed in Subsections 6.2 and 6.3.

The next area to be introduced is the field of symbolic integration. Although the
nature of the problem was understood long ago (Liouville’s principle), it was only
in 1969 that Robert Risch invented an algorithm to solve the following: given an
elementary function f(x) of a real variable x, decide whether the indefinite integral∫

f(x)dx is also an elementary function, and if so, compute the integral. We describe
the method in Subsection 6.4.

At the end of this section, we offer a brief survey of the theoretical and practical
relations of symbolic algorithms in Subsection 6.5, devoting an independent part to
the present computer algebra systems.

6.1. Data representation

In computer algebra, one encounters mathematical objects of different kinds. In order
to be able to manipulate these objects on a computer, one first has to represent and
store them in the memory of that computer. This can cause several theoretical and
practical difficulties. We examine these questions in this subsection.

Consider the integers. We know from our studies that the set of integers is count-
able, but computers can only store finitely many of them. The range of values for
such a single-precision integer is limited by the number of distinct encodings that
can be made in the computer word, which is typically 32 or 64 bits in length. Hence,
one cannot directly use the computer’s integers to represent the mathematical inte-
gers, but must be prepared to write programs to handle “arbitrarily” large integers
represented by several computer integers. The term arbitrarily large does not mean
infinitely large since some architectural constraints or the memory size limits in any
case. Moreover, one has to construct data structures over which efficient operations
can be built. In fact, there are two standard ways of performing such a representa-
tion.

• Radix notation (a generalisation of conventional decimal notation), in which n is

represented as
∑k−1

i=0 diB
i, where the digits di (0 ≤ i ≤ k−1) are single precision

integers. These integers can be chosen from the canonical digit set {0 ≤ di ≤
B − 1} or from the symmetrical digit set {−bB/2c < di ≤ bB/2c}, where base
B can be, in principle, any positive integer greater than 1. For efficiency, B is
chosen so that B− 1 is representable in a single computer word. The length k of
the linear list (d0, d1, . . . , dk−1) used to represent a multiprecision integer may be

278 6. Computer Algebra

dynamic (i.e. chosen approximately for the particular integer being represented)
or static (i.e. pre-specified fixed length), depending on whether the linear list
is implemented using linked list allocation or using array (sequential) notation.
The sign of n is stored within the list, possibly as the sign of d0 or one or more
of the other entries.

• Modular notation, in which n is represented by its value modulo a sufficient
number of large (but representable in one computer word) primes. From the
images one can reconstruct n using the Chinese remainder algorithm.

The modular form is fast for addition, subtraction and multiplication but is
much slower for divisibility tasks. Hence, the choice of representation influences
the algorithms that will be chosen. Indeed, not only the choice of representation
influences the algorithms to be used but also the algorithms influence the choice of
representation.

Example 6.1 For the sake of simplicity, in the next example we work only with natural
numbers. Suppose that we have a computer architecture with machine word 32 bits in
length, i.e. our computer is able to perform integer arithmetic with the integers in range
I1 = [0, 232 − 1] = [0, 4 294 967 295]. Using this arithmetic, we carry out a new arithmetic
by which we are able to perform integer arithmetic with the integers in range I2 = [0, 1050].

Using radix representation let B = 104, and let

n1 = 123456789098765432101234567890 ,

n2 = 2110 .

Then,

n1 = [7890, 3456, 1012, 5432, 9876, 7890, 3456, 12] ,

n2 = [2110] ,

n1 + n2 = [0, 3457, 1012, 5432, 9876, 7890, 3456, 12] ,

n1 · n2 = [7900, 3824, 6049, 1733, 9506, 9983, 3824, 6049, 2] ,

where the sum and the product were computed using radix notation.
Switching to modular representation we have to choose pairwise relatively prime inte-

gers from the interval I1 such that their product is greater than 1050. Let, for example, the
primes be

m1 = 4294967291, m2 = 4294967279, m3 = 4294967231 ,

m4 = 4294967197, m5 = 4294967189, m6 = 4294967161 ,

where
∏

6

i=1
mi > 1050. Then, an integer from the interval I2 can be represented by a

6-tuple from the interval I1. Therefore,

n1 ≡ 2009436698 (mod m1), n1 ≡ 961831343 (mod m2) ,

n1 ≡ 4253639097 (mod m3), n1 ≡ 1549708 (mod m4) ,

n1 ≡ 2459482973 (mod m5), n1 ≡ 3373507250 (mod m6) ,

furthermore, n2 ≡ 2110 (mod mi), (1 ≤ i ≤ 6). Hence

n1 + n2 = [2009438808, 961833453, 4253641207, 1551818, 2459485083, 3373509360] ,

n1 · n2 = [778716563, 2239578042, 2991949111, 3269883880, 1188708718, 1339711723] ,

6.1. Data representation 279

where addition and multiplication were carried out using modular arithmetic.

More generally, concerning the choice of representation of other mathematical
objects, it is worth distinguishing three levels of abstraction:

1. Object level. This is the level where the objects are considered as formal mathe-
matical objects. For example 3 + 3, 4 · 4− 10 and 6 are all representations of the
integer 6. On the object level, the polynomials (x−1)2(x+1) and x3−x2−x+1
are considered equal.

2. Form level. On this level, one has to distinguish between different representations
of an object. For example (x − 1)2(x + 1) and x3 − x2 − x + 1 are considered
different representations of the same polynomial, namely the former is a product,
a latter is a sum.

3. Data structure level. On this level, one has to consider different ways of repre-
senting an object in a computer memory. For example, we distinguish between
representations of the polynomial x3 − x2 − x + 1 as

• an array [1,−1,−1, 1] ,

• a linked list [1, 0]→ [−1, 1]→ [−1, 2]→ [1, 3] .

In order to represent objects in a computer algebra system, one has to make choices
on both the form and the data structure level. Clearly, various representations are
possible for many objects. The problem of “how to represent an object” becomes
even more difficult when one takes into consideration other criteria, such as memory
space, computation time, or readability. Let us see an example. For the polynomial

f(x) = (x− 1)2(x + 1)3(2x + 3)4

= 16x9 − 80x8 + 88x7 + 160x6 − 359x5 + x4 + 390x3 − 162x2 − 135x + 81

the product form is more comprehensive, but the second one is more suitable to
know the coefficient of, say, x5. Two other illustrative examples are

• x1000 − 1 and (x− 1)(x999 + x998 + · · ·+ x + 1) ,

• (x + 1)1000 and x1000 + 1000x999 + · · ·+ 1000x + 1 .

It is very hard to find any good strategy to represent mathematical objects satisfying
several criteria. In practice, one object may have several different representations.
This, however, gives rise to the problem of detecting equality when different repre-
sentations of the same object are encountered. In addition, one has to be able to
convert a given representation to others and simplify the representations.

Consider the integers. In the form level, one can represent the integers using
base B representation, while at the data structure level they can be represented by
a linked list or as an array.

Rational numbers can be represented by two integers, a numerator and a denom-
inator. Considering memory constraints, one needs to ensure that rational numbers
are in lowest terms and also that the denominator is positive (although other choices,
such as positive numerator, are also possible). This implies that a greatest common
divisor computation has to be performed. Since the ring of integers is a Euclidean

280 6. Computer Algebra

domain, this can be easily computed using the Euclidean algorithm. The uniqueness
of the representation follows from the choice of the denominator’s sign.

Multivariate polynomials (elements of R[x1, x2, . . . , xn], where R is an integral
domain) can be represented in the form a1xe1 +a2xe2 +· · ·+anxen , where ai ∈ R\{0}
and for ei = (ei1

, . . . , ein
), one can write xei for x

ei1
1 x

ei2
2 · · ·xein

n . In the form level,
one can consider the following levels of abstraction:

1. Expanded or factored representation, where the products are multiplied out or
the expression is in product form. Compare

• x2y − x2 + y − 1 , and
•

(
x2 + 1

)
(y − 1) .

2. Recursive or distributive representation (only for multivariate polynomials). In
the bivariate case, the polynomial f(x, y) can be viewed as an element of the
domain R[x, y], (R[x])[y] or (R[y])[x]. Compare

• x2y2 + x2 + xy2 − 1 ,
• (x2 + x)y2 + x2 − 1 , and
• (y2 + 1)x2 + y2x− 1 .

At the data structure level, there can be dense or sparse representation. Either
all terms are considered, or only those having non-zero coefficients. Compare x4 +
0x3 + 0x2 + 0x− 1 and x4− 1. In practice, multivariate polynomials are represented
mainly in the sparse way.

The traditional approach of representing power series of the form
∑∞

i=0 aix
i is to

truncate at some specified point, and then to regard them as univariate polynomials.
However, this is not a real representation, since many power series can have the
same representation. To overcome this disadvantage, there exists a technique of
representing power series by a procedure generating all coefficients (rather than by
any finite list of coefficients). The generating function is a computable function f
such that f(i) = ai. To perform an operation with power series, it is enough to know
how to compute the coefficients of the resulting series from the coefficients of the
operands. For example, the coefficients hi of the product of the power series f and
g can be computed as hi =

∑i
k=0 fkgi−k. In that way, the coefficients are computed

when they are needed. This technique is called lazy evaluation.

Since computer algebra programs compute in a symbolic way with arbitrary
accuracy, in addition to examining time complexity of the algorithms it is also im-
portant to examine their space complexity.1 Consider the simple problem of solving
a linear system having n equations an n unknowns with integer coefficients which
require ω computer word of storage. Using Gaussian elimination, it is easy to see
that each coefficient of the reduced linear system may need 2n−1ω computer words
of storage. In other words, Gaussian elimination suffers from exponential growth
in the size of the coefficients. Note that if we applied the same method to linear
systems having polynomial coefficients, we would have exponential growth both in

1 We consider the running time as the number of operations executed, according to the RAM-
model. Considering the Turing-machine model, and using machine words with constant length, we
do not have this problem, since in this case space is always bounded by the time.

6.1. Data representation 281

the size of the numerical coefficients of the polynomials and in the degrees of the
polynomials themselves. In spite of the observed exponential growth, the final result
of the Gaussian elimination will always be of reasonable size because by Cramer’s
rule we know that each component of the solution to such a linear system is a ratio
of two determinants, each of which requires approximately nω computer words. The
phenomenon described above is called intermediate expression swell. This often
appears in computer algebra algorithms.

Example 6.2 Using only integer arithmetic we solve the following system of linear equa-
tions:

37x + 22y + 22z = 1 ,

31x − 14y − 25z = 97 ,

−11x + 13y + 15z = −86 .

First, we eliminate variable x from the second equation. We multiply the first row by 31,
the second by −37 and take their sum. If we apply this strategy for the third equation to
eliminate variable x, we get the following system.

37x + 22y + 22z = 1 ,

1200y + 1607z = −3558 ,

723y + 797z = −3171 .

Now, we eliminate variable y multiplying the second equation by 723, the third one by
−1200, then taking their sum. The result is

37x + 22y + 22z = 1 ,

1200y + 1607z = −3558 ,

205461z = 1232766 .

Continuing this process of eliminating variables, we get the following system:

1874311479932400x = 5622934439797200 ,

246553200y = −2712085200 ,

205461z = 1232766 .

After some simplification, we get that x = 3, y = −11, z = 6. If we apply greatest common
divisor computations in each elimination step, the coefficient growth will be less drastic.

In order to avoid the intermediate expression swell phenomenon, one uses mod-
ular techniques. Instead of performing the operations in the base structure R (e.g.
Euclidean ring), they are performed in some factor structure, and then, the result is
transformed back to R (Figure 6.1). In general, modular computations can be per-
formed efficiently, and the reconstruction steps can be made with some interpolation
strategy. Note that modular algorithms are very common in computer algebra, but
it is not a universal technique.

282 6. Computer Algebra

problem in R

solution

in R

problem in R/〈m〉

solution in

R/〈m〉

modular

reduction

reconstruction

direct

computations

modular

computations

-

�

? ?

Figure 6.1 The general scheme of modular computations.

6.2. Common roots of polynomials

Let R be an integral domain and let

f(x) = f0 + f1x + · · ·+ fm−1xm−1 + fmxm ∈ R[x], fm 6= 0 , (6.1)

g(x) = g0 + g1x + · · ·+ gn−1xn−1 + gnxn ∈ R[x], gn 6= 0 (6.2)

be arbitrary polynomials with n, m ∈ N, n + m > 0. Let us give a necessary and
sufficient condition for f and g sharing a common root in R.

6.2.1. Classical and extended Euclidean algorithm

If T is a field, then T [x] is a Euclidean domain. Recall that we call an integral domain
R Euclidean together with the function ϕ : R \ {0} → N if for all a, b ∈ R (b 6= 0),
there exist q, r ∈ R such that a = qb + r, where r = 0 or ϕ(r) < ϕ(b); furthermore,
for all a, b ∈ R \ {0}, we have ϕ(ab) ≥ ϕ(a). The element q = a quo b is called the
quotient and r = a rem b is called the remainder. If we are working in a Euclidean
domain, we would like the greatest common divisor to be unique. For this, a unique
element has to be chosen from each equivalence class obtained by multiplying by
the units of the ring R. (For example, in case of integers we always choose the non-
negative one from the classes {0}, {−1, 1}, {−2, 2}, . . .) Thus, every element a ∈ R
has a unique form

a = unit(a) · normal(a) ,

where normal(a) is called the normal form of a. Let us consider a Euclidean
domain R = T [x] over a field T . Let the normal form of a ∈ R be the corresponding
normalised monic polynomial, that is, normal(a) = a/lc(a), where lc(a) denotes the
leading coefficient of polynomial a. Let us summarise these important cases:

6.2. Common roots of polynomials 283

• If R = Z then unit(a) = sgn(a) (a 6= 0) and ϕ(a) = normal(a) = | a |,
• if R = T [x] (T is a field) then unit(a) = lc(a) (the leading coefficient of polyno-

mial a with the convention unit(0) = 1), normal(a) = a/lc(a) and ϕ(a) = deg a.

The following algorithm computes the greatest common divisor of two arbitrary
elements of a Euclidean domain. Note that this is one of the most ancient algorithms
of the world, already known by Euclid around 300 B.C.

Classical-Euclidean(a, b)

1 c← normal(a)
2 d← normal(b)
3 while d 6= 0
4 do r ← c rem d
5 c← d
6 d← r
7 return normal(c)

In the ring of integers, the remainder in line 4 becomes c − bc/dc. When R =
T [x], where T is a field, the remainder in line 4 can be calculated by the algorithm
Euclidean-Division-Univariate-Polynomials(c, d), the analysis of which is left
to Exercise 6.2-1.

Figure 6.2 shows the operation of the Classical-Euclidean algorithm in Z

and Q[x]. Note that in Z the program only enters the while loop with non-negative
numbers and the remainder is always non-negative, so the normalisation in line 7 is
not needed.

Before examining the running time of the Classical-Euclidean algorithm, we
deal with an extended version of it.

Extended-Euclidean(a, b)

1 (r0, u0, v0)← (normal(a), 1, 0)
2 (r1, u1, v1)← (normal(b), 0, 1)
3 while r1 6= 0
4 do q ← r0 quo r1

5 r ← r0 − qr1

6 u← (u0 − qu1)
7 v ← (v0 − qv1)
8 (r0, u0, v0)← (r1, u1, v1)
9 (r1, u1, v1)← (r, u, v)

10 return (normal(r0), u0/(unit(a) · unit(r0)), v0/(unit(b) · unit(r0)))

It is known that in the Euclidean domain R, the greatest common divisor of
elements a, b ∈ R can be expressed in the form gcd(a, b) = au + bv with appropriate
elements u, v ∈ R. However, this pair u, v is not unique. For if u0, v0 are appropriate,
then so are u1 = u0 + bt and v1 = v0 − at for all t ∈ R:

au1 + bv1 = a(u0 + bt) + b(v0 − at) = au0 + bv0 = gcd(a, b) .

284 6. Computer Algebra

iteration r c d

– – 18 30

1 18 30 18

2 12 18 12

3 6 12 6

4 0 6 0

(a) The operation of Classical-Euclidean(−18, 30).

iteration r c d

– – x4
−

17

3
x3 + 13

3
x2

−
23

3
x + 14

3
x3

−
20

3
x2 + 7x − 2

1 4x2
−

38

3
x + 20

3
x3

−
20

3
x2 + 7x − 2 4x2

−
38

3
x + 20

3

2 −
23

4
x + 23

6
4x2

−
38

3
x + 20

3
−

23

4
x + 23

6

3 0 −
23

4
x + 23

6
0

(b) The operation of

Classical-Euclidean(12x4
− 68x3 + 52x2

− 92x + 56 − 12x3 + 80x2
− 84x + 24).

Figure 6.2 Illustration of the operation of the Classical-Euclidean algorithm in Z and Q[x]. In
case (a), the input is a = −18, b = 30, a, b ∈ Z. The first two lines of the pseudocode compute
the absolute values of the input numbers. The loop between lines 3 and 6 is executed four times,
values r, c and d in these iterations are shown in the table. The Classical-Euclidean(−18,30)
algorithm outputs 6 as result. In case (b), the input parameters are a = 12x4

− 68x3 + 52x2
−

92x + 56, b = −12x3 + 80x2
− 84x + 24 ∈ Q[x]. The first two lines compute the normal form of

the polynomials, and the while loop is executed three times. The output of the algorithm is the
polynomial normal(c) = x − 2/3.

The Classical-Euclidean algorithm is completed in a way that beside the greatest
common divisor it outputs an appropriate pair u, v ∈ R as discussed above.

Let a, b ∈ R, where R is a Euclidean domain together with the function ϕ. The
equations

r0 = u0a + v0b and r1 = u1a + v1b (6.3)

are obviously fulfilled due to the initialisation in the first two lines of the pseu-
docode Extended-Euclidean. We show that equations (6.3) are invariant under
the transformations of the while loop of the pseudocode. Let us presume that the
conditions (6.3) are fulfilled before an iteration of the loop. Then lines 4–5 of the
pseudocode imply

r = r0 − qr1 = u0a + v0b− q(au1 + bv1) = a(u0 − qu1) + b(v0 − qv1) ,

hence, because of lines 6–7,

r = a(u0 − qu1) + b(v0 − qv1) = au + bv .

Lines 8–9 perform the following operations: u0, v0 take the values of u1 and v1, then
u1, v1 take the values of u and v, while r0, r1 takes the value of r1 and r. Thus,
the equalities in (6.3) are also fulfilled after the iteration of the while loop. Since
ϕ(r1) < ϕ(r0) in each iteration of the loop, the series {ϕ(ri)} obtained in lines 8–9
is a strictly decreasing series of natural numbers, so sooner or later the control steps

6.2. Common roots of polynomials 285

out of the while loop. The greatest common divisor is the last non-zero remainder
in the series of Euclidean divisions, that is, r0 in lines 8–9.

Example 6.3 Let us examine the series of remainders in the case of polynomials

a(x) = 63x5 + 57x4 − 59x3 + 45x2 − 8 , (6.4)

b(x) = −77x4 + 66x3 + 54x2 − 5x + 99 . (6.5)

r0 = x5 +
19

21
x4 − 59

63
x3 +

5

7
x2 − 8

63
,

r1 = x4 − 6

7
x3 − 54

77
x2 +

5

77
x − 9

7
,

r2 =
6185

4851
x3 +

1016

539
x2 +

1894

1617
x +

943

441
,

r3 =
771300096

420796475
x2 +

224465568

420796475
x +

100658427

38254225
,

r4 = −125209969836038125

113868312759339264
x − 3541728593586625

101216278008301568
,

r5 =
471758016363569992743605121

180322986033315115805436875
.

The values of the variables u0, v0 before the execution of line 10 are

u0 =
113868312759339264

125209969836038125
x3 − 66263905285897833785656224

81964993651506870820653125
x2

−1722144452624036901282056661

901614930166575579027184375
x +

1451757987487069224981678954

901614930166575579027184375
,

v0 = −113868312759339264

125209969836038125
x4 − 65069381608111838878813536

81964993651506870820653125
x3

+
178270505434627626751446079

81964993651506870820653125
x2 +

6380859223051295426146353

81964993651506870820653125
x

−179818001183413133012445617

81964993651506870820653125
.

The return values are:

gcd(a, b) = 1,

u =
2580775248128

467729710968369
x3 − 3823697946464

779549518280615
x2

− 27102209423483

2338648554841845
x +

7615669511954

779549518280615
,

v =
703847794944

155909903656123
x4 +

3072083769824

779549518280615
x3

− 25249752472633

2338648554841845
x2 − 301255883677

779549518280615
x +

25468935587159

2338648554841845
.

We can see that the size of the coefficients show a drastic growth. One might ask
why we do not normalise in every iteration of the while loop? This idea leads to
the normalised version of the Euclidean algorithm for polynomials.

286 6. Computer Algebra

Extended-Euclidean-Normalised(a, b)

1 e0 ← unit(a)
2 (r0, u0, v0)← (normal(a), e−1

0 , 0)
3 e1 ← unit(b)
4 (r1, u1, v1)← (normal(b), 0, e−1

1)
5 while r1 6= 0
6 do q ← r0 quo r1

7 s← r0 rem r1

8 e← unit(s)
9 r ← normal(s)

10 u← (u0 − qu1)/e
11 v ← (v0 − qv1)/e
12 (r0, u0, v0)← (r1, u1, v1)
13 (r1, u1, v1)← (r, u, v)
14 return

(
r0, u0, v0

)

Example 6.4 Let us look at the series of remainders and series e obtained in the
Extended-Euclidean-Normalised algorithm in case of the polynomials (6.4) and (6.5)

r0 = x5 +
19

21
x4 − 59

63
x3 +

5

7
x2 − 8

63
, e0 =63 ,

r1 = x4 − 6

7
x3 − 54

77
x2 +

5

77
x − 9

7
, e1 = − 77 ,

r2 = x3 +
9144

6185
x2 +

5682

6185
x +

10373

6185
, e2 =

6185

4851
,

r3 = x2 +
2338183

8034376
x +

369080899

257100032
, e3 =

771300096

420796475
,

r4 = x +
166651173

5236962760
, e4 = − 222685475860375

258204790837504
,

r5 = 1, e5 =
156579848512133360531

109703115798507270400
.

Before the execution of line 14 of the pseudocode, the values of the variables gcd(a, b) =
r0, u = u0, v = v0 are

gcd(a, b) = 1,

u =
2580775248128

467729710968369
x3 − 3823697946464

779549518280615
x2

− 27102209423483

2338648554841845
x +

7615669511954

779549518280615
,

v =
703847794944

155909903656123
x4 +

3072083769824

779549518280615
x3

− 25249752472633

2338648554841845
x2 − 301255883677

779549518280615
x +

25468935587159

2338648554841845
.

Looking at the size of the coefficients in Q[x], the advantage of the normalised version
is obvious, but we could still not avoid the growth. To get a machine architecture-
dependent description and analysis of the Extended-Euclidean-Normalised al-

6.2. Common roots of polynomials 287

gorithm, we introduce the following notation. Let

λ(a) = blog2 |a|/wc+ 1 if a ∈ Z \ {0}, and λ(0) = 0 ,

λ(a) = max{λ(b), λ(c)} if a = b/c ∈ Q, b, c ∈ Z, gcd(b, c) = 1 ,

λ(a) = max{λ(b), λ(a0), . . . , λ(an)} if a =
∑

0≤i≤n

aix
i/b ∈ Q[x] ,

ai ∈ Z, b ∈ N+, gcd(b, a0, . . . , an) = 1 ,

where w is the word length of the computer in bits. It is easy to verify that if
a, b ∈ Z[x] and c, d ∈ Q, then

λ(c + d) ≤ λ(c) + λ(d) + 1 ,

λ(a + b) ≤ max{λ(a), λ(b)}+ 1 ,

λ(cd), λ(c/d) ≤ λ(c) + λ(d) ,

λ(ab) ≤ λ(a) + λ(b) + λ(min{deg a, deg b}+ 1) .

We give the following theorems without proof.

Theorem 6.1 If a, b ∈ Z and λ(a) = m ≥ n = λ(b), then the Classical-
Euclidean and Extended-Euclidean algorithms require O(mn) machine-word
arithmetic operations.

Theorem 6.2 If F is a field and a, b ∈ F [x], deg(a) = m ≥ n = deg(b), then
the Classical-Euclidean, Extended-Euclidean and Extended-Euclidean-
Normalised algorithms require O(mn) elementary operations in F .

Can the growth of the coefficients be due to the choice of our polynomials? Let
us examine a single Euclidean division in the Extended-Euclidean-Normalised
algorithm. Let a = bq + e∗r, where

a = xm +
1

c

m−1∑

i=0

aix
i ∈ Q[x] ,

b = xn +
1

d

n−1∑

i=0

bix
i ∈ Q[x] ,

and r ∈ Q[x] are monic polynomials, ai, bi ∈ Z, e∗ ∈ Q, c, d ∈ N+, and consider the
case n = m− 1. Then

q = x +
am−1d− bn−1c

cd
,

λ(q) ≤ λ(a) + λ(b) + 1 ,

e∗r = a− qb =
acd2 − xbcd2 − (am−1d− bn−1c)bd

cd2
,

λ(e∗r) ≤ λ(a) + 2λ(b) + 3 . (6.6)

Note that the bound (6.6) is valid for the coefficients of the remainder polynomial
r as well, that is, λ(r) ≤ λ(a) + 2λ(b) + 3. So in case λ(a) ∼ λ(b), the size of the

288 6. Computer Algebra

coefficients may only grow by a factor of around three in each Euclidean division.
This estimate seems accurate for pseudorandom polynomials, the interested reader
should look at Problem 6-1 The worst case estimate suggests that

λ(rl) = O(3l ·max{λ(a), λ(b)}) ,

where l denotes the running time of the Extended-Euclidean-Normalised al-
gorithm, practically, the number of times the while loop is executed. Luckily, this
exponential growth is not achieved in each iteration of the loop, and altogether the
growth of the coefficients is bounded polynomially in terms of the input. Later we
will see that the growth can be eliminated using modular techniques.

Summarising: after computing the greatest common divisor of the polynomials
f, g ∈ R[x] (R is a field), f and g have a common root if and only if their greatest
common divisor is not a constant. For if gcd(f, g) = d ∈ R[x] is not a constant, then
the roots of d are also roots of f and g, since d divides f and g. On the other hand,
if f and g have a root in common, then their greatest common divisor cannot be a
constant, since the common root is also a root of it.

6.2.2. Primitive Euclidean algorithm

If R is a UFD (unique factorisation domain, where every non-zero, non-unit element
can be written as a product of irreducible elements in a unique way up to reordering
and multiplication by units) but not necessarily a Euclidean domain then, the sit-
uation is more complicated, since we may not have a Euclidean algorithm in R[x].
Luckily, there are several useful methods due to: (1) unique factorisation in R[x],
(2) the existence of a greatest common divisor of two or more arbitrary elements.

The first possible method is to perform the calculations in the field of fractions
of R. The polynomial p(x) ∈ R[x] is called a primitive polynomial if there is
no prime in R that divides all coefficients of p(x). A famous lemma by Gauss says
that the product of primitive polynomials is also primitive, hence, for the primitive
polynomials f, g, d = gcd(f, g) ∈ R[x] if and only if d = gcd(f, g) ∈ H[x], where
H denotes the field of fractions of R. So we can calculate greatest common divisors
in H[x] instead of R[x]. Unfortunately, this approach is not really effective because
arithmetic in the field of fractions H is much more expensive than in R.

A second possibility is an algorithm similar to the Euclidean algorithm: in the
ring of polynomials in one variable over an integral domain, a so-called pseudo-

division can be defined. Using the polynomials (6.1), (6.2), if m ≥ n, then there
exist q, r ∈ R[x], such that

gm−n+1
n f = gq + r ,

where r = 0 or deg r < deg g. The polynomial q is called the pseudo-quotient of f
and g and r is called the pseudo-remainder. The notation is q = pquo(f, g), r =
prem(f, g).

Example 6.5 Let

f(x) = 12x4 − 68x3 + 52x2 − 92x + 56 ∈ Z[x] , (6.7)

g(x) = −12x3 + 80x2 − 84x + 24 ∈ Z[x] . (6.8)

6.2. Common roots of polynomials 289

iteration r c d

– – 3x4
− 17x3 + 13x2

− 23x + 14 −3x3 + 20x2
− 21x + 6

1 108x2
− 342x + 108 −3x3 + 20x2

− 21x + 6 6x2
− 19x + 10

2 621x − 414 6x2
− 19x + 10 3x − 2

3 0 3x − 2 0

Figure 6.3 The illustration of the operation of the Primitive-Euclidean algorithm with input
a(x) = 12x4

− 68x3 + 52x2
− 92x + 56, b(x) = −12x3 + 80x2

− 84x + 24 ∈ Z[x]. The first two lines
of the program compute the primitive parts of the polynomials. The loop between lines 3 and 6 is
executed three times, the table shows the values of r, c and d in the iterations. In line 7, variable
γ equals gcd(4, 4) = 4. The Primitive-Euclidean(a, b) algorithm returns 4 · (3x − 2) as result.

Then pquo(f, g) = −144(x + 1), prem(f, g) = 1152(6x2 − 19x + 10).

On the other hand, each polynomial f(x) ∈ R[x] can be written in a unique form

f(x) = cont(f) · pp(f)

up to a unit factor, where cont(f) ∈ R and pp(f) ∈ R[x] are primitive polynomials.
In this case, cont(f) is called the content, pp(f) is called the primitive part of
f(x). The uniqueness of the form can be achieved by the normalisation of units.
For example, in the case of integers, we always choose the positive ones from the
equivalence classes of Z.

The following algorithm performs a series of pseudo-divisions. The algorithm
uses the function prem(), which computes the pseudo-remainder, and it assumes
that we can calculate greatest common divisors in R, contents and primitive parts
in R[x]. The input is a, b ∈ R[x], where R is a UFD. The output is the polynomial
gcd(a, b) ∈ R[x].

Primitive-Euclidean(a, b)

1 c← pp(f)
2 d← pp(g)
3 while d 6= 0
4 do r ← prem(c, d)
5 c← d
6 d← pp(r)
7 γ ← gcd(cont(a), cont(b))
8 δ ← γc
9 return δ

The operation of the algorithm is illustrated by Figure 6.3. The running time of the
Primitive-Euclidean algorithm is the same as the running time of the previous
versions of the Euclidean algorithm.

The Primitive-Euclidean algorithm is very important because the ring
R[x1, x2, . . . , xt] of multivariate polynomials is a UFD, so we apply the algorithm re-
cursively, e.g. in R[x2, . . . , xt][x1], using computations in the UFDs R[x2, . . . , xt], . . . ,

290 6. Computer Algebra

R[xt]. In other words, the recursive view of multivariate polynomial rings leads to the
recursive application of the Primitive-Euclidean algorithm in a straightforward
way.

We may note that, like above, the algorithm shows a growth in the coefficients.
Let us take a detailed look at the UFD Z[x]. The bound on the size of the

coefficients of the greatest common divisor is given by the following theorem, which
we state without proof.

Theorem 6.3 (Landau-Mignotte). Let a(x) =
∑m

i=0 aix
i, b(x) =

∑n
i=0 bix

i ∈
Z[x], am 6= 0 6= bn and b(x) | a(x). Then

n∑

i=1

|bi| ≤ 2n

∣∣∣∣
bn

am

∣∣∣∣

√√√√
m∑

i=0

a2
i .

Corollary 6.4 With the notations of the previous theorem, the absolute value of
any coefficient of the polynomial gcd(a, b) ∈ Z[x] is smaller than

2min{m,n} · gcd(am, bn) ·min

{
1

|am|

√√√√
m∑

i=1

a2
i ,

1

|bn|

√√√√
n∑

i=1

b2
i

}
.

Proof The greatest common divisor of a and b obviously divides both a and b, and its
degree is at most the minimum of their degrees. Furthermore, the leading coefficient
of the greatest common divisor divides am and bn, so it also divides gcd(am, bn).

Example 6.6 Corollary 6.4 implies that the absolute value of the coefficients of the greatest
common divisor is at most b32/9

√
3197c = 201 for the polynomials (6.4), (6.5), and at most

b32
√

886c = 952 for the polynomials (6.7) and (6.8).

6.2.3. The resultant

The following method describes the necessary and sufficient conditions for the com-
mon roots of (6.1) and (6.2) in the most general context. As a further advantage, it
can be applied to solve algebraic equation systems of higher degree.

Let R be an integral domain and H its field of fractions. Let us consider the small-
est extension K of H over which both f(x) of (6.1) and g(x) of (6.2) splits into linear
factors. Let us denote the roots (in K) of the polynomial f(x) by α1, α2, . . . , αm,
and the roots of g(x) by β1, β2, . . . , βn. Let us form the following product:

res(f, g) = fn
mgm

n (α1 − β1)(α1 − β2) · · · (α1 − βn)

·(α2 − β1)(α2 − β2) · · · (α2 − βn)

...

·(αm − β1)(αm − β2) · · · (αm − βn)

= fn
mgm

n

m∏

i=1

n∏

j=1

(αi − βj) .

6.2. Common roots of polynomials 291

It is obvious that res(f, g) equals to 0 if and only if αi = βj for some i and j, that
is, f and g have a common root. The product res(f, g) is called the resultant of the
polynomials f and g. Note that the value of the resultant depends on the order of f
and g, but the resultants obtained in the two ways can only differ in sign.

res(g, f) = gm
n fn

m

n∏

j=1

m∏

i=1

(βj − αi)

= (−1)mnfn
mgm

n

m∏

i=1

n∏

j=1

(αi − βj) = (−1)mnres(f, g) .

Evidently, this form of the resultant cannot be applied in practice, since it presumes
that the roots are known. Let us examine the different forms of the resultant. Since

f(x) = fm(x− α1)(x− α2) · · · (x− αm) (fm 6= 0) ,

g(x) = gn(x− β1)(x− β2) · · · (x− βn) (gn 6= 0) ,

hence,

g(αi) = gn(αi − β1)(αi − β2) · · · (αi − βn)

= gn

n∏

j=1

(αi − βj) .

Thus,

res(f, g) = fn
m

m∏

i=1

(
gn

n∏

j=1

(αi − βj)

)

= fn
m

m∏

i=1

g(αi) = (−1)mngm
n

n∏

j=1

f(βj) .

Although it looks a lot more friendly, this form still requires the roots of at least one
polynomial. Next we examine how the resultant may be expressed only in terms of
the coefficients of the polynomials. This leads to the Sylvester form of the resultant.

Let us presume that polynomial f in (6.1) and polynomial g in (6.2) have a
common root. This means that there exists a number α ∈ K such that

f(α) = fmαm + fm−1αm−1 + · · ·+ f1α + f0 = 0 ,

g(α) = gnαn + gn−1αn−1 + · · ·+ g1α + g0 = 0 .

Multiply these equations by the numbers αn−1, αn−2,
. . . , α, 1 and αm−1, αm−2, . . . , α, 1, respectively. We get n equations from the
first one and m from the second one. Consider these m + n equations as a
homogeneous system of linear equations in m + n indeterminates. This system has
the obviously non-trivial solution αm+n−1, αm+n−2, . . . , α, 1. It is a well-known
fact that a homogeneous system with as many equations as indeterminates has

292 6. Computer Algebra

non-trivial solutions if and only if its determinant is zero. We get that f and g can
only have common roots if the determinant

D =

fm · · · · · · · · · f0 ↑
. . .

. . . n
fm · · · · · · · · · f0 ↓

gn · · · · · · g0 ↑
. . .

. . . m
. . .

. . .

gn · · · · · · g0 ↓

(6.9)

equals to 0 (there are 0s everywhere outside the dotted areas). Thus, a necessary
condition for the existence of common roots is that the determinant D of order
(m+n) is 0. Below we prove that D equals to the resultant of f and g, hence, D = 0
is also a sufficient condition for common roots. The determinant (6.9) is called the
Sylvester form of the resultant.

Theorem 6.5 Using the above notation

D = fn
m

m∏

i=1

g(αi) .

Proof We will precede by induction on m. If m = 0, then f = fm = f0, so the right-
hand side is fn

0 . The left-hand side is a determinant of order n with f0 everywhere
in the diagonal, and 0 everywhere else. Thus, D = fn

0 , so the statement is true. In
the following, presume that m > 0 and the statement is true for m − 1. If we take
the polynomial

f∗(x) = fm(x− α1) · · · (x− αm−1) = f∗
m−1xm−1 + f∗

m−2xm−2 + · · ·+ f∗
1 x + f∗

0

instead of f , then f∗ and g fulfil the condition:

D∗ =

f∗
m−1 · · · · · · · · · f∗

0

. . .
. . .

f∗
m−1 · · · · · · · · · f∗

0

gn · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · g0

= f∗m
m−1

m−1∏

i=1

g(αi) .

Since f = f∗(x− αm), the coefficients of f and f∗ satisfy

fm = f∗
m−1, fm−1 = f∗

m−2 − f∗
m−1αm, . . . , f1 = f∗

0 − f∗
1 αm, f0 = −f∗

0 αm.

6.2. Common roots of polynomials 293

Thus,

D =

f∗
m−1 f∗

m−2 − f∗
m−1αm · · · · · · −f∗

0 αm

. . .
. . .

f∗
m−1 · · · · · · · · · −f∗

0 αm

gn · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · g0

.

We transform the determinant in the following way: add αm times the first column to
the second column, then add αm times the new second column to the third column,
etc. This way the αm-s disappear from the first n lines, so the first n lines of D∗ and
the transformed D are identical. In the last m rows, subtract αm times the second
one from the first one, and similarly, always subtract αm times a row from the row
right above it. In the end, D becomes

D =

f∗
m−1 · · · · · · · · · f∗

0

. . .
. . .

f∗
m−1 · · · · · · · · · f∗

0

gn · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · g0

gn gnαm + gn−1 · · · g(αm)

.

Using the last row for expansion, we get D = D∗g(αm), which implies D =
fn

m

∏m
i=1 g(αi) by the induction hypothesis.

We get that D = res(f, g), that is, polynomials f and g have a common root in
K if and only if determinant D vanishes.

>From an algorithmic point of view, the computation of the resultant in
Sylvester form for higher degree polynomials means the computation of a large
determinant. The following theorem implies that pseudo-division may simplify the
computation.

Theorem 6.6 For the polynomials f of (6.1) and g of (6.2), in case of m ≥ n > 0

res(f, g) = 0, if prem(f, g) = 0 ,

g
(m−n)(n−1)+d
n res(f, g) = (−1)mnres(g, r), if r = prem(f, g) 6= 0 and d = deg(r) .

Proof Multiply the first line of the determinant (6.9) by gm−n+1
n . Let q =

294 6. Computer Algebra

qm−nxm−n + · · · + q0 ∈ R[x] and r = rdxd + · · · + r0 ∈ R[x] be the uniquely
determined polynomials with

gm−n+1
n (fmxm + · · ·+ f0) = (qm−nxm−n + · · ·+ q0)(gnxn + · · ·+ g0)

+ rdxd + · · ·+ r0 ,

where r = prem(f, g). Then multiplying row (n + 1) of the resultant by qm−n,
row (n + 2) by qm−n−1 etc., and subtracting them from the first row we get the
determinant

gm−n+1
n res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 rd · · · · · · r0

fm · · · · · · · · · · · · · · · f0

. . .
. . .

fm · · · · · · · · · · · · · · · f0

gn · · · · · · · · · g0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

gn · · · · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here rd is in the (m − d + 1)th column of the first row, and r0 is in the (m + 1)th
column of the first row.

Similarly, multiply the second row by gm−n+1
n , then multiply rows (n+2), (n+3),

. . . by qm−n, qm−n−1 etc., and subtract them from the second row. Continue the same

6.2. Common roots of polynomials 295

way for the third, . . ., nth row. The result is

gn(m−n+1)
n res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rd · · · · · · r0

. . .
. . .

. . .
. . .

rd · · · · · · r0

gn · · · · · · · · · g0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

gn · · · · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

After reordering the rows

gn(m−n+1)
n res(f, g) = (−1)mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gn · · · · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · · · · g0

. . .
. . .

gn · · · · · · · · · g0

rd · · · · · · r0

. . .
. . .

. . .
. . .

rd · · · · · · r0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gn · · · · · · · · · g0

. . .
. . .

gn · · · · · · · · · g0

rd · · · · · · r0

. . .
. . .

. . .
. . .

rd · · · · · · r0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= res(g, r) ,

296 6. Computer Algebra

thus,
gn(m−n+1)

n res(f, g) = (−1)mngm−d
n res(g, r) ,

and therefore
g(m−n)(n−1)+d

n res(f, g) = (−1)mnres(g, r) . (6.10)

Equation (6.10) describes an important relationship. Instead of computing the
possibly gigantic determinant res(f, g), we perform a series of pseudo-divisions and
apply (6.10) in each step. We calculate the resultant only when no more pseudo-
division can be done. An important consequence of the theorem is the following
corollary.

Corollary 6.7 There exist polynomials u, v ∈ R[x] such that res(f, g) = fu + gv,
with deg u < deg g, deg v < deg f .

Proof Multiply the ith column of the determinant form of the resultant by xm+n−i

and add it to the last column for i = 1, . . . , (m + n− 1). Then

res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm · · · · · · f0 · · · xn−1f
. . .

. . .
...

fm · · · · · · f
gn · · · · · · g0 · · · xm−1g

. . .
. . .

...
gn · · · · · · g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using the last column for expansion and factoring f and g, we get the statement
with the restrictions on the degrees.

The most important benefit of the resultant method, compared to the previously
discussed methods, is that the input polynomials may contain symbolic coefficients
as well.

Example 6.7 Let

f(x) = 2x3 − ξx2 + x + 3 ∈ Q[x] ,

g(x) = x2 − 5x + 6 ∈ Q[x] .

Then the existence of common rational roots of f and g cannot be decided by variants of
the Euclidean algorithm, but we can decide it with the resultant method. Such a root exists
if and only if

res(f, g) =

∣∣∣∣∣∣∣∣∣

2 −ξ 1 3
2 −ξ 1 3

1 −5 6
1 −5 6

1 −5 6

∣∣∣∣∣∣∣∣∣

= 36ξ2 − 429ξ + 1260 = 3(4ξ − 21)(3ξ − 20) = 0 ,

6.2. Common roots of polynomials 297

that is, when ξ = 20/3 or ξ = 21/4.

The significance of the resultant is not only that we can decide the existence of
common roots of polynomials, but also that using it we can reduce the solution of
algebraic equation systems to solving univariate equations.

Example 6.8 Let

f(x, y) = x2 + xy + 2x + y − 1 ∈ Z[x, y] , (6.11)

g(x, y) = x2 + 3x − y2 + 2y − 1 ∈ Z[x, y] . (6.12)

Consider polynomials f and g as elements of (Z[x])[y]. They have a common root if and
only if

resy(f, g) =

∣∣∣∣∣
x + 1 x2 + 2x − 1 0

0 x + 1 x2 + 2x − 1
−1 2 x2 + 3x − 1

∣∣∣∣∣ = −x3 − 2x2 + 3x = 0 .

Common roots in Z can exist for x ∈ {−3, 0, 1}. For each x, we substitute into
equations (6.11) and (6.12) (already in Z[y]) and get that the integer solutions are
(−3, 1), (0, 1), (1, −1).

We note that the resultant method can also be applied to solve polynomial
equations in several variables, but it is not really effective. One problem is that
computational space explosion occurs in the computation of the determinant. Note
that computing the resultant of two univariate polynomials in determinant form
using the usual Gauss-elimination requires O((m+n)3) operations, while the variants
of the Euclidean algorithm are quadratic. The other problem is that computational
complexity depends strongly on the order of the indeterminates. Eliminating all
variables together in a polynomial equation system is much more effective. This
leads to the introduction of multivariate resultants.

6.2.4. Modular greatest common divisor

All methods considered so far for the existence and calculation of common roots of
polynomials are characterised by an explosion of computational space. The natu-
ral question arises: can we apply modular techniques? Below we examine the case
a(x), b(x) ∈ Z[x] with (a, b 6= 0). Let us consider the polynomials (6.4), (6.5) ∈ Z[x]
and let p = 13 a prime number. Then the series of remainders in Zp[x] in the
Classical-Euclidean algorithm is

r0 = 11x5 + 5x4 + 6x3 + 6x2 + 5 ,

r1 = x4 + x3 + 2x2 + 8x + 8 ,

r2 = 3x3 + 8x2 + 12x + 1 ,

r3 = x2 + 10x + 10 ,

r4 = 7x ,

r5 = 10 .

298 6. Computer Algebra

We get that polynomials a and b are relatively prime in Zp[x]. The following theorem
describes the connection between greatest common divisors in Z[x] and Zp[x].

Theorem 6.8 Let a, b ∈ Z[x], a, b 6= 0. Let p be a prime such that p 6 | lc(a) and
p 6 | lc(b). Let furthermore c = gcd(a, b) ∈ Z[x], ap = a remp, bp = b remp and
cp = c remp. Then

(1) deg
(
gcd(ap, bp)

)
≥ deg

(
gcd(a, b)

)
,

(2) if p 6 | res(a/c, b/c), then gcd(ap, bp) = cp.

Proof (1): Since cp | ap and cp | bp, thus cp | gcd(ap, bp). So

deg
(
gcd(ap, bp)

)
≥ deg

(
gcd(a, b) mod p

)
.

By the hypothesis p 6 | lc
(
gcd(a, b)

)
, which implies

deg
(
gcd(a, b) mod p

)
= deg

(
gcd(a, b)

)
.

(2): Since gcd(a/c, b/c) = 1 and cp is non-trivial,

gcd(ap, bp) = cp · gcd(ap/cp, bp/cp) . (6.13)

If gcd(ap, bp) 6= cp, then the right-hand side of (6.13) is non-trivial, thus
res(ap/cp, bp/cp) = 0. But the resultant is the sum of the corresponding products of
the coefficients, so p | res(a/c, b/c), contradiction.

Corollary 6.9 There are at most a finite number of primes p such that p 6 | lc(a),
p 6 | lc(b) and deg

(
gcd(ap, bp)

)
> deg

(
gcd(a, b)

)
.

In case statement (1) of Theorem 6.8 is fulfilled, we call p a “lucky prime”. We
can outline a modular algorithm for the computation of the gcd.

Modular-Gcd-Bigprime(a, b)

1 M ← the Landau-Mignotte constant (from Corollary 6.4)
2 H ← {}
3 while true
4 do p← a prime with p ≥ 2M , p 6∈ H, p 6 | lc(a) and p 6 | lc(b)
5 cp ← gcd(ap, bp)
6 if cp | a and cp | b
7 then return cp

8 else H ← H ∪ {p}

The first line of the algorithm requires the calculation of the Landau-Mignotte
bound. The fourth line requires a “sufficiently large” prime p which does not divide
the leading coefficient of a and b. The fifth line computes the greatest common divi-
sor of polynomials a and b modulo p (for example with the Classical-Euclidean
algorithm in Zp[x]). We store the coefficients of the resulting polynomials with sym-
metrical representation. The sixth line examines whether cp | a and cp | b are fulfilled,

6.2. Common roots of polynomials 299

in which case cp is the required greatest common divisor. If this is not the case, then
p is an “unlucky prime”, so we choose another prime. Since, by Theorem 6.8, there
are only finitely many “unlucky primes”, the algorithm eventually terminates. If the
primes are chosen according to a given strategy, set H is not needed.

The disadvantage of the Modular-gcd-bigprime algorithm is that the
Landau-Mignotte constant grows exponentially in terms of the degree of the in-
put polynomials, so we have to work with large primes. The question is how we
could modify the algorithm so that we can work with “many small primes”. Since
the greatest common divisor in Zp[x] is only unique up to a constant factor, we
have to be careful with the coefficients of the polynomials in the new algorithm. So,
before applying the Chinese remainder theorem for the coefficients of the modular
greatest common divisors taken modulo different primes, we have to normalise the
leading coefficient of gcd(ap, bp). If am and bn are the leading coefficients of a and
b, then the leading coefficient of gcd(a, b) divides gcd(am, bn). Therefore, we nor-
malise the leading coefficient of gcd(ap, bp) to gcd(am, bn) mod p in case of primitive
polynomials a and b; and finally take the primitive part of the resulting polynomial.
Just like in the Modular-gcd-bigprime algorithm, modular values are stored with
symmetrical representation. These observations lead to the following modular gcd
algorithm using small primes.

Modular-Gcd-Smallprimes(a, b)

1 d← gcd(lc(a), lc(b))
2 p← a prime such that p 6 | d
3 H ← {p}
4 P ← p
5 cp ← gcd(ap, bp)
6 gp ← (d mod p) · cp

7 (n, i, j)← (3, 1, 1)
8 while true
9 do if j = 1

10 then if deg gp = 0
11 then return 1
12 (g, j, P)← (gp, 0, p)
13 if n ≤ i
14 then g ← pp(g)
15 if g | a and g | b
16 then return g
17 p← a prime such that p 6 | d and p 6∈ H
18 H ← H ∪ {p}
19 cp ← gcd(ap, bp)
20 gp ← (d mod p) · cp

21 if deg gp < deg g
22 then (i, j)← (1, 1)

300 6. Computer Algebra

23 if j = 0
24 then if deg gp = deg g
25 then g1 = Coeff-build(g, gp, P, p)
26 if g1 = g
27 then i← i + 1
28 else i← 1
29 P ← P · p
30 g ← g1

Coeff-Build(a, b, m1, m2)

1 p← 0
2 c← 1/m1 mod m2

3 for i← deg a downto 0
4 do r ← ai mod m1

5 s← (bi − r) mod m2

6 p← p + (r + s ·m1)xi

7 return p

We may note that the algorithm Modular-Gcd-Smallprimes does not require
as many small primes as the Landau-Mignotte bound tells us. When the value of
polynomial g does not change during a few iterations, we test in lines 13–16 if
g is a greatest common divisor. The number of these iterations is stored in the
variable n of line six. Note that the value of n could vary according to the input
polynomial. The primes used in the algorithms could preferably be chosen from an
(architecture-dependent) prestored list containing primes that fit in a machine word,
so the use of set H becomes unnecessary. Corollary 6.9 implies that the Modular-
Gcd-Smallprimes algorithm always terminates.

The Coeff-Build algorithm computes the solution of the equation system ob-
tained by taking congruence relations modulo m1 and m2 for the coefficients of
identical degree in the input polynomials a and b. This is done according to the
Chinese remainder theorem. It is very important to store the results in symmetrical
modular representation form.

Example 6.9 Let us examine the operation of the Modular-Gcd-Smallprimes algorithm
for the previously seen polynomials (6.4), (6.5). For simplicity, we calculate with small
primes. Recall that

a(x) = 63x5 + 57x4 − 59x3 + 45x2 − 8 ∈ Z[x] ,

b(x) = −77x4 + 66x3 + 54x2 − 5x + 99 ∈ Z[x] .

After the execution of the first six lines of the algorithm with p = 5, we have d = 7, cp =
x2 + 3x + 2 and gp = 2x2 + x − 1. Since j = 1 due to line 7, lines 10–12 are executed.
Polynomial gp is not zero, so g = 2x2 + x − 1, j = 0, and P = 5 will be the values after
the execution. The condition in line 13 is not fulfilled, so we choose another prime, p = 7
is a bad choice, but p = 11 is allowed. According to lines 19–20, cp = 1, gp = −4. Since
deg gp < deg g, we have j = 1 and lines 25–30 are not executed. Polynomial gp is constant,

6.2. Common roots of polynomials 301

so the return value in line 11 is 1, which means that polynomials a and b are relatively
prime.

Example 6.10 In our second example, consider the already discussed polynomials

a(x) = 12x4 − 68x3 + 52x2 − 92x + 56 ∈ Z[x] ,

b(x) = −12x3 + 80x2 − 84x + 24 ∈ Z[x] .

Let again p = 5. After the first six lines of the polynomials d = 12, cp = x + 1, gp = 2x + 2.
After the execution of lines 10–12, we have P = 5, g = 2x + 2. Let the next prime be p = 7.
So the new values are cp = x + 4, gp = −2x − 1. Since deg gp = deg g, P = 35 and the new
value of g is 12x − 8 after lines 25–30. The value of the variable i is still 1. Let the next
prime be 11. Then cp = gp = x + 3. Polynomials gp and g have the same degree, so we
modify the coefficients of g. Then g1 = 12x−8 and since g = g1, we get i = 2 and P = 385.
Let the new prime be 13. Then cp = x + 8, gp = −x + 5. The degrees of gp and g are still
equal, thus lines 25–30 are executed and the variables become g = 12x−8, P = 4654, i = 3.

After the execution of lines 17–18, it turns out that g | a and g | b, so g = 12x − 8 is
the greatest common divisor.

We give the following theorem without proof.

Theorem 6.10 The Modular-Gcd-Smallprimes algorithm works correctly.
The computational complexity of the algorithm is O(m3(lg m + λ(K))2) machine
word operations, where m = min{deg a, deg b}, and K is the Landau-Mignotte bound
for polynomials a and b.

Exercises
6.2-1 Let R be a commutative ring with identity element, a =

∑m
i=0 aix

i ∈ R[x],
b =

∑n
i=0 bix

i ∈ R[x], furthermore, bn a unit, m ≥ n ≥ 0. The following algorithm
performs Euclidean division for a and b and outputs polynomials q, r ∈ R[x] for
which a = qb + r and deg r < n or r = 0 holds.

Euclidean-Division-Univariate-Polynomials(a, b)

1 r ← a
2 for i← m− n downto 0
3 do if deg r = n + i
4 then qi ← lc(r)/bn

5 r ← r − qix
ib

6 else qi ← 0

7 q ←∑m−n
i=0 qix

i and r
8 return q

Prove that the algorithm uses at most

(2 deg b + 1)(deg q + 1) = O(m2)

operations in R.
6.2-2 What is the difference between the algorithms Extended-Euclidean and

302 6. Computer Algebra

Extended-Euclidean-Normalised in Z[x]?
6.2-3 Prove that res(f · g, h) = res(f, h) · res(g, h).
6.2-4 The discriminant of polynomial f(x) ∈ R[x] (deg f = m, lc(f) = fm) is
the element

discrf =
(−1)

m(m−1)
2

fm
res(f, f ′) ∈ R ,

where f ′ denotes the derivative of f with respect to x. Polynomial f has a multiple
root if and only if its discriminant is 0. Compute discrf for general polynomials of
second and third degree.

6.3. Gröbner basis

Let F be a field and R = F [x1, x2, . . . , xn] be a multivariate polynomial ring in n
variables over F . Let f1, f2, . . . , fs ∈ R. First we determine a necessary and sufficient
condition for the polynomials f1, f2, . . . , fs having common roots in R. We can see
that the problem is a generalisation of the case s = 2 from the previous subsection.
Let

I = 〈f1, . . . , fs〉 =

{ ∑

1≤i≤s

qifi : qi ∈ R

}

denote the ideal generated by polynomials f1, . . . , fs. Then the polynomials
f1, . . . , fs form a basis of ideal I. The variety of an ideal I is the set

V (I) =

{
u ∈ F n : f(u) = 0 for all f ∈ I

}
.

The knowledge of the variety V (I) means that we also know the common roots of
f1, . . . , fs. The most important questions about the variety and ideal I are as follows.

• V (I) 6= ∅ ?

• How “big” is V (I)?

• Given f ∈ R, in which case is f ∈ I?

• I = R ?

Fortunately, in a special basis of ideal I, in the so-called Gröbner basis, these ques-
tions are easy to answer. First let us study the case n = 1. Since F [x] is a Euclidean
ring,

〈f1, . . . , fs〉 = 〈 gcd(f1, . . . , fs) 〉 . (6.14)

We may assume that s = 2. Let f, g ∈ F [x] and divide f by g with remainder. Then
there exist unique polynomials q, r ∈ F [x] with f = gq +r and deg r < deg g. Hence,

f ∈ 〈g〉 ⇔ r = 0 .

6.3. Gröbner basis 303

Moreover, V (g) = {u1, . . . , ud} if x− u1, . . . , x− ud are the distinct linear factors of
g ∈ F [x]. Unfortunately, equality (6.14) is not true in case of two or more variables.
Indeed, a multivariate polynomial ring over an arbitrary field is not necessary Eu-
clidean, therefore we have to find a new interpretation of division with remainder.
We proceed in this direction.

6.3.1. Monomial order

Recall that a partial order ρ ⊆ S × S is a total order (or simply order) if either aρb
or bρa for all a, b ∈ S. The total order ‘�‘ ⊆ Nn is allowable if

(i) (0, . . . , 0) � v for all v ∈ Nn,
(ii) v1 � v2 ⇒ v1 + v � v2 + v for all v1, v2, v ∈ Nn.

It is easy to prove that any allowable order on Nn is a well-order (namely, every
nonempty subset of Nn has a least element). With the notation already adopted
consider the set

T = {xi1
1 · · ·xin

n | i1, . . . , in ∈ N} .

The elements of T are called monomials. Observe that T is closed under multi-
plication in F [x1, . . . , xn], constituting a commutative monoid. The map Nn → T ,
(i1, . . . , in) 7→ xi1

1 · · ·xin
n is an isomorphism, therefore, for an allowable total order �

on T , we have that

(i) 1 � t for all t ∈ T ,
(ii) ∀ t1, t2, t ∈ T t1 ≺ t2 ⇒ t1t ≺ t2t.

The allowable orders on T are called monomial orders. If n = 1, the natural order
is a monomial order, and the corresponding univariate monomials are ordered by
their degree. Let us see some standard examples of higher degree monomial orders.
Let

α = xi1
1 · · ·xin

n , β = xj1

1 · · ·xjn

n ∈ T ,

where the variables are ordered as x1 � x2 � · · · � xn−1 � xn.

• Pure lexicographic order.

α ≺plex β ⇔ ∃l ∈ {1, . . . , n} il < jl and i1 = j1, . . . , il−1 = jl−1.

• Graded lexicographic order.

α ≺grlex β ⇔ i1 + · · · + in < j1 + · · · + jn or (i1 + · · · + in = j1 + · · · + jn and
α ≺plex β).

• Graded reverse lexicographic order.

α ≺grevlex β ⇔ i1 + · · ·+ in < j1 + · · ·+ jn or (i1 + · · ·+ in = j1 + · · ·+ jn and
∃l ∈ {1, . . . , n} il > jl and il+1 = jl+1, . . . , in = jn).

The proof that these orders are monomial orders is left as an exercise. Observe that
if n = 1, then ≺plex=≺grlex=≺grevlex. The graded reverse lexicographic order is
often called a total degree order and it is denoted by ≺tdeg.

Example 6.11

304 6. Computer Algebra

Let ≺=≺plex and let z ≺ y ≺ x. Then

1 ≺ z ≺ z2 ≺ · · · ≺ y ≺ yz ≺ yz2 ≺ · · ·
≺ y2 ≺ y2z ≺ y2z2 ≺ · · · x ≺ xz ≺ xz2 ≺ · · ·
≺ xy ≺ xy2 ≺ · · · ≺ x2 ≺ · · · .

Let ≺=≺tdeg and again, z ≺ y ≺ x. Then

1 ≺ z ≺ y ≺ x

≺ z2 ≺ yz ≺ xz ≺ y2 ≺ xy ≺ x2

≺ z3 ≺ yz2 ≺ xz2 ≺ y2z ≺ xyz

≺ x2z ≺ y3 ≺ xy2 ≺ x2y ≺ x3 ≺ · · · .

Let a monomial order ≺ be given. Furthermore, we identify the vector α =
(α1, . . . , αn) ∈ Nn with the monomial xα = xα1

1 · · ·xαn
n ∈ R. Let f =

∑
α∈Nn cαxα ∈

R be a non-zero polynomial, cα ∈ F . Then cαxα (cα 6= 0) are the terms of poly-
nomial f , mdeg(f) = max{α ∈ Nn : cα 6= 0} is the multidegree of the polynomial
(where the maximum is with respect to the monomial order), lc(f) = cmdeg(f) ∈
F \ {0} is the leading coefficient of f , lm(f) = xmdeg(f) ∈ R is the leading

monomial of f , and lt(f) = lc(f) · lm(f) ∈ R is the leading term of f . Let
lt(0) = lc(0) = lm(0) = 0 and mdeg(0) = −∞.

Example 6.12 Consider the polynomial f(x, y, z) = 2xyz2 −3x3 +4y4 −5xy2z ∈ Q[x, y, z].
Let ≺=≺plex and z ≺ y ≺ x. Then

mdeg(f) = (3, 0, 0), lt(f) = −3x3, lm(f) = x3, lc(f) = −3 .

If ≺=≺tdeg and z ≺ y ≺ x, then

mdeg(f) = (0, 4, 0), lt(f) = 4y4, lm(f) = y4, lc(f) = 4 .

6.3.2. Multivariate division with remainder

In this subsection, our aim is to give an algorithm for division with remainder in R.
Given multivariate polynomials f, f1, . . . , fs ∈ R and monomial order ≺, we want to
compute the polynomials q1, . . . , qs ∈ R and r ∈ R such that f = q1f1 + · · ·+qsfs +r
and no monomial in r is divisible by any of lt(f1), . . . , lt(fs).

6.3. Gröbner basis 305

Multivariate-Division-with-Remainder(f, f1, . . . , fs)

1 r ← 0
2 p← f
3 for i← 1 to s
4 do qi ← 0
5 while p 6= 0
6 do if lt(fi) divides lt(p) for some i ∈ {1, . . . , s}
7 then choose such an i and qi ← qi + lt(p)/lt · (fi)
8 p← p− lt(p)/lt(fi) · fi

9 else r ← r + lt(p)
10 p← p− lt(p)
11 return q1, . . . , qs and r

The correctness of the algorithm follows from the fact that in every iteration of the
while cycle of lines 5–10, the following invariants hold

(i) mdeg(p) � mdeg(f) and f = p + q1f1 + · · ·+ qsfs + r,
(ii) qi 6= 0⇒ mdeg(qifi) � mdeg(f) for all 1 ≤ i ≤ s,
(iii) no monomial in r is divisible by any lt(fi).

The algorithm has a weakness, namely, the multivariate division with remainder is
not deterministic. In line 7, we can choose arbitrarily from the appropriate values of
i.

Example 6.13 Let f = x2y + xy2 + y2 ∈ Q[x, y], f1 = xy − 1, f2 = y2 − 1, the monomial
order ≺plex, y ≺plex x, and in line 7, we always choose the smallest possible i. Then the
result of the algorithm is q1 = x + y, q2 = 1, r = x + y + 1. But if we change the order
of the functions f1 and f2 (that is, f1 = y2 − 1 and f2 = xy − 1), then the output of the
algorithm is q1 = x + 1, q2 = x and r = 2x + 1.

As we have seen in the previous example, we can make the algorithm deter-
ministic by always choosing the smallest possible i in line 7. In this case, the
quotients q1, . . . , qs and the remainder r are unique, which we can express as
r = f rem (f1, . . . , fs).

Observe that if s = 1, then the algorithm gives the answer to the ideal member-
ship problem: f ∈ 〈f1〉 if and only if the remainder is zero. Unfortunately, if s ≥ 2,
then this is not true anymore. For example, with the monomial order ≺plex

xy2 − x rem (xy + 1, y2 − 1) = −x− y ,

and the quotients are q1 = y, q2 = 0. On the other hand, xy2 − x = x · (y2 − 1) + 0,
which shows that xy2 − x ∈ 〈xy + 1, y2 − 1〉.

6.3.3. Monomial ideals and Hilbert’s basis theorem

Our next goal is to find a special basis for an arbitrary polynomial ideal such that
the remainder on division by that basis is unique, which gives the answer to the ideal
membership problem. But does such a basis exist at all? And if it does, is it finite?

306 6. Computer Algebra

The ideal I ⊆ R is a monomial ideal if there exists a subset A ⊆ Nn such that

I = 〈xA〉 = 〈{xα ∈ T : α ∈ A}〉 ,

that is, ideal I is generated by monomials.

Lemma 6.11 Let I = 〈xA〉 ⊆ R be a monomial ideal, and β ∈ Nn. Then

xβ ∈ I ⇔ ∃α ∈ A xα | xβ .

Proof The⇐ direction is obvious. Conversely, let α1, . . . , αs ∈ A and q1, . . . , qs ∈ R
such that xβ =

∑
i qix

αi . Then the sum has at least one member qix
αi which contains

xβ , therefore xαi | xβ .

The most important consequence of the lemma is that two monomial ideals are
identical if and only if they contain the same monomials.

Lemma 6.12 (Dickson’s lemma). Every monomial ideal is finitely generated,
namely, for every A ⊆ Nn, there exists a finite subset B ⊆ A such that 〈xA〉 = 〈xB〉.

Lemma 6.13 Let I be an ideal in R = F [x1, . . . , xn]. If G ⊆ I is a finite subset
such that 〈lt(G)〉 = 〈lt(I)〉, then 〈G〉 = I.

Proof Let G = {g1, . . . , gs}. If f ∈ I is an arbitrary polynomial, then division
with remainder gives f = q1g1 + · · · + qsgs + r, with q1, . . . , qs, r ∈ R, such that
either r = 0 or no term of r is divisible by the leading term of any gi. But r =
f − q1g1 − · · · − qsgs ∈ I, hence, lt(r) ∈ lt(I) ⊆ 〈lt(g1), . . . , lt(gs)〉. This, together
with Lemma (6.11), implies that r = 0, therefore f ∈ 〈g1, . . . , gs〉 = 〈G〉.

Together with Dickson’s lemma applied to 〈lt(I)〉, and the fact that the zero
polynomial generates the zero ideal, we obtain the following famous result.

Theorem 6.14 (Hilbert’s basis theorem). Every ideal I ⊆ R = F [x1, . . . , xn] is
finitely generated, namely, there exists a finite subset G ⊆ I such that 〈G〉 = I and
〈lt(G)〉 = 〈lt(I)〉.

Corollary 6.15 (ascending chain condition). Let I1 ⊆ I2 ⊆ · · · be an ascending
chain of ideals in R. Then there exists an n ∈ N such that In = In+1 = · · · .

Proof Let I = ∪j≥1Ij . Then I is an ideal, which is finitely generated by Hilbert’s
basis theorem. Let I = 〈g1, . . . , gs〉. With n = min{j ≥ 1 : g1, . . . , gs ∈ Ij}, we have
In = In+1 = · · · = I.

A ring satisfying the ascending chain condition is called Noetherian. Specifi-
cally, if F is a field, then F [x1, . . . , xn] is Noetherian.

Let ≺ be a monomial order on R and I ⊆ R an ideal. A finite set G ⊆ I is
a Gröbner basis of ideal I with respect to ≺ if 〈lt(G)〉 = 〈lt(I)〉. Hilbert’s basis
theorem implies the following corollary

6.3. Gröbner basis 307

Corollary 6.16 Every ideal I in R = F [x1, . . . , xn] has a Gröbner basis.

It is easy to show that the remainder on division by the Gröbner basis G does
not depend on the order of the elements of G. Therefore, we can use the notation
f rem G = r ∈ R. Using the Gröbner basis, we can easily answer the ideal member-
ship problem.

Theorem 6.17 Let G be a Gröbner basis of ideal I ⊆ R with respect to a monomial
order ≺ and let f ∈ R. Then f ∈ I ⇔ f rem G = 0.

Proof We prove that there exists a unique r ∈ R such that (1) f−r ∈ I, (2) no term
of r is divisible by any monomial of lt(G). The existence of such an r comes from
division with remainder. For the uniqueness, let f = h1 + r1 = h2 + r2 for arbitrary
h1, h2 ∈ I and suppose that no term of r1 or r2 is divisible by any monomial of
lt(G). Then r1 − r2 = h2 − h1 ∈ I, and by Lemma 6.11, lt(r1 − r2) is divisible by
lt(g) for some g ∈ G. This means that r1 − r2 = 0.

Thus, if G is a Gröbner basis of R, then for all f, g, h ∈ R,

g = f rem G and h = f rem G⇒ g = h.

6.3.4. Buchberger’s algorithm

Unfortunately, Hilbert’s basis theorem is not constructive, since it does not tell us
how to compute a Gröbner basis for an ideal I and basis G. In the following, we
investigate how the finite set G can fail to be a Gröbner basis for an ideal I.

Let g, h ∈ R be nonzero polynomials, α = (α1, . . . , αn) = mdeg(g),
β = (β1, . . . , βn) = mdeg(h), and γ = (max{α1, β1}, . . . , max{αn, βn}). The S-

polynomial of g and h is

S(g, h) =
xγ

lt(g)
g − xγ

lt(h)
h ∈ R .

It is easy to see that S(g, h) = −S(h, g), moreover, since xγ/lt(g), xγ/lt(h) ∈ R,
therefore S(g, h) ∈ 〈g, h〉.

The following theorem yields an easy method to test whether a given set G is a
Gröbner basis of the ideal 〈G〉.

Theorem 6.18 The set G = {g1, . . . , gs} ⊆ R is the Gröbner basis of the ideal
〈G〉 if and only if

S(gi, gj) rem (g1, . . . , gs) = 0 for all i (1 ≤ i < j ≤ s) .

Using the S-polynomials, it is easy to give an algorithm for constructing the
Gröbner basis. We present a simplified version of Buchberger’s method (1965): given
a monomial order ≺ and polynomials f1, . . . , fs ∈ R = F [x1, . . . , xn], the algorithm
yields a G ⊆ R Gröbner basis of the ideal I = 〈f1, . . . , fs〉.

308 6. Computer Algebra

Gröbner-basis(f1, . . . , fs)

1 G← {f1, . . . , fs}
2 P ← {(fi, fj) | fi, fj ∈ G, i < j, fi 6= fj}
3 while P 6= ∅
4 do (f, g)← an arbitrary pair from P
5 P ← P \ (f, g)
6 r ← S(f, g) rem G
7 if r 6= 0
8 then G← G ∪ {r}
9 P ← P ∪ {(f, r) | f ∈ G}

10 return G

First we show the correctness of the Gröbner-basis algorithm assuming that the
procedure terminates. At any stage of the algorithm, set G is a basis of ideal I, since
initially it is, and at any other step only those elements are added to G that are
remainders of the S-polynomials on division by G. If the algorithm terminates, the
remainders of all S-polynomials on division by G are zero, and by Theorem (6.18),
G is a Gröbner basis.

Next we show that the algorithm terminates. Let G and G∗ be the sets corre-
sponding to successive iterations of the while cycle (lines 3 − 9). Clearly, G ⊆ G∗

and 〈lt(G)〉 ⊆ 〈lc(G∗)〉. Hence, ideals 〈lt(G)〉 in successive iteration steps form an
ascending chain, which stabilises by Corollary (6.15). Thus, after a finite number of
steps, we have 〈lt(G)〉 = 〈lc(G∗)〉. We state that G = G∗ in this case. Let f, g ∈ G
and r = S(f, g) rem G. Then r ∈ G∗ and either r = 0 or lt(r) ∈ 〈lt(G∗)〉 = 〈lt(G)〉,
and using the definition of the remainder, we conclude that r = 0.

Example 6.14 Let F = Q, ≺=≺plex, z ≺ y ≺ x, f1 = x − y − z, f2 = x + y − z2, f3 =
x2 + y2 − 1.

G = {f1, f2, f3} by step one, and P = {(f1, f2), (f1, f3), (f2, f3)} by step two.
At the first iteration of the while cycle, let us choose the pair (f1, f2). Then P =

{(f1, f3), (f2, f3)}, S(f1, f2) = −2y − z + z2 and r = f4 = S(f1, f2) rem G = −2y − z + z2.
Therefore, G = {f1, f2, f3, f4} and P = {(f1, f3), (f2, f3), (f1, f4), (f2, f4), (f3, f4)}.

At the second iteration of the while cycle, let us choose the pair (f1, f3). Then P =
P \{f1, f3}, S(f1, f3) = −xy −xz −y2 +1, r = f5 = S(f1, f3) rem G = −1/2z4 −1/2z2 +1,
hence, G = {fi | 1 ≤ i ≤ 5} and P = {(f2, f3), (f1, f4), . . . , (f3, f4), (f1, f5), . . . , (f4, f5)}.

At the third iteration of the while cycle, let us choose the pair (f2, f3). Then P =
P \ {(f2, f3)}, S(f2, f3) = xy − xz2 − y2 + 1, r = S(f2, f3) rem G = 0.

At the fourth iteration, let us choose the pair (f1, f4). Then P = P \{f1, f4}, S(f1, f4) =
2y2 + 2yz + xz − xz2, r = S(f1, f4) rem G = 0.

In the same way, the remainder of the S-polynomials of all the remaining pairs on
division by G are zero hence, the algorithm returns with G = {x − y − z, x + y − z2, x2 +
y2 − 1, −2y − z + z2, −1/2z4 − 1/2z2 + 1} which constitutes a Gröbner basis.

6.3. Gröbner basis 309

6.3.5. Reduced Gröbner basis

In general, the Gröbner basis computed by Buchberger’s algorithm is neither unique
nor minimal. Fortunately, both can be achieved by a little finesse.

Lemma 6.19 If G is a Gröbner basis of I ⊆ R, g ∈ G and lt(g) ∈ 〈lt(G \ {g})〉,
then G \ {g} is a Gröbner basis of I as well.

We say that the set G ⊆ R is a minimal Gröbner basis for ideal I = 〈G〉 if it is a
Gröbner basis, and for all g ∈ G,

• lc(g) = 1,

• lt(g) 6∈ 〈lt(G \ {g})〉.
An element g ∈ G of a Gröbner basis G is said to be reduced with respect to G if
no monomial of g is in the ideal 〈lt(G \ {g})〉. A minimal Gröbner basis G for I ⊆ R
is reduced if all of its elements are reduced with respect to G.

Theorem 6.20 Every ideal has a unique reduced Gröbner basis.

Example 6.15 In Example 6.14 not only G but also G′ = {x−y−z, −2y−z+z2, −1/2z4 −
1/2z2 + 1} is a Gröbner basis. It is not hard to show that Gr = {x − 1/2z2 − 1/2z, y −
1/2z2 − 1/2z, z4 + z2 − z} is a reduced Gröbner basis.

6.3.6. The complexity of computing Gröbner bases

The last forty years (since Buchberger’s dissertation) was not enough to clear up
entirely the algorithmic complexity of Gröbner basis computation. Implementation
experiments show that we are faced with the intermediate expression swell phe-
nomenon. Starting with a few polynomials of low degree and small coefficients, the
algorithm produces a large number of polynomials with huge degrees and enormous
coefficients. Moreover, in contrast to the variants of the Euclidean algorithm, the
explosion cannot be kept under control. In 1996, Kühnle and Mayr gave an expo-
nential space algorithm for computing a reduced Gröbner basis. The polynomial
ideal membership problem over Q is EXPSPACE-complete.

Let f, f1, . . . , fs ∈ F [x1, . . . , xn] be polynomials over a field F with deg fi ≤ d
(≺=≺tdeg). If f ∈ 〈f1, f2, . . . fs〉, then

f = f1g1 + · · ·+ fsgs

for polynomials g1, . . . , gs ∈ F [x1, . . . , xn] for which their degrees are bounded by
β = β(n, d) = (2d)2n

. The double exponential bound is essentially unavoidable,
which is shown by several examples. Unfortunately, in case F = Q, the ideal member-
ship problem falls into this category. Fortunately, in special cases better results are
available. If f = 1 (Hilbert’s famous Nullstellensatz), then in case d = 2, the bound
is β = 2n+1, while for d > 2, the bound is β = dn. But the variety V (f1, . . . , fs)
is empty if and only if 1 ∈ 〈f1, f2, . . . fs〉, therefore the solvability problem of a
polynomial system is in PSPACE. Several results state that under specific circum-
stances, the (general) ideal membership problem is also in PSPACE. Such a criterion

310 6. Computer Algebra

is for example that 〈f1, f2, . . . fs〉 is zero-dimensional (contains finitely many isolated
points).

In spite of the exponential complexity, there are many successful stories for
the application of Gröbner bases: geometric theorem proving, robot kinematics and
motion planning, solving polynomial systems of equations are the most widespread
application areas. In the following, we enumerate some topics where the Gröbner
basis strategy has been applied successfully.

• Equivalence of polynomial equations. Two sets of polynomials generate the same
ideal if and only if their Gröbner bases are equal with arbitrary monomial order.

• Solvability of polynomial equations. The polynomial system of equations
fi(x1, . . . , xn) = 0, 1 ≤ i ≤ s is solvable if and only if 1 6∈ 〈f1, . . . , fs〉.

• Finitely many solutions of polynomial equations. The polynomial system of equa-
tions fi(x1, . . . , xn) = 0, 1 ≤ i ≤ s has a finite number of solutions if and only if
in any Gröbner basis of 〈f1, . . . , fs〉 for every variable xi, there is a polynomial
such that its leading term with respect to the chosen monomial order is a power
of xi.

• The number of solutions. Suppose that the system of polynomial equations
fi(x1, . . . , xn) = 0, 1 ≤ i ≤ s has a finite number of solutions. Then the number
of solutions counted with multiplicityes is equal to the cardinality of the set of
monomials that are not multiples of the leading monomials of the polynomials
in the Gröbner basis, where any monomial order can be chosen.

• Simplification of expressions.

We show an example for the last item.

Example 6.16 Let a, b, c ∈ R be given such that

a + b + c = 3, a2 + b2 + c2 = 9, a3 + b3 + c3 = 24 .

Compute the value of a4 + b4 + c4. So let f1 = a + b + c − 3, f2 = a2 + b2 + c2 − 9 and
a3 + b3 + c3 − 24 be elements of R[a, b, c] and let ≺=≺plex, c ≺ b ≺ a. Then the Gröbner
basis of 〈f1, f2, f3〉 is

G = {a + b + c − 3, b2 + c2 − 3b − 3c + bc, 1 − 3c2 + c3} .

Since a4 + b4 + c4 rem G = 69, the answer to the question follows.

Exercises
6.3-1 Prove that the orders ≺plex,≺grlex and ≺tdeg are monomial orders.
6.3-2 Let ≺ be a monomial order on R, f, g ∈ R \ {0}. Prove the following:

a. mdeg(fg) = mdeg(f) + mdeg(g),
b. if f + g 6= 0, then mdeg(f + g) � max{mdeg(f), mdeg(g)}, where equality

holds if mdeg(f) 6= mdeg(g).
6.3-3 Let f = 2x4y2z − 3x4yz2 + 4xy4z2 − 5xy2z4 + 6x2y4z − 7x2yz4 ∈ Q[x, y, z].

a. Determine the order of the monomials in f for the monomial orders ≺plex,
≺grlex and ≺tdeg with z ≺ y ≺ x in all cases.

b. For each of the three monomial orders from (a.), determine mdeg(f), lc(f),

6.4. Symbolic integration 311

lm(f) and lt(f).
6.3-4? Prove Dickson’s lemma.
6.3-5 Compute the Gröbner basis and the reduced Gröbner basis of the ideal I =
〈x2 +y−1, xy−x〉 ⊆ Q[x, y] using the monomial order ≺=≺lex, where y ≺ x. Which
of the following polynomials belong to I: f1 = x2 +y2−y, f2 = 3xy2−4xy +x+1?

6.4. Symbolic integration

The problem of indefinite integration is the following: given a function f , find a
function g the derivative of which is f , that is, g′(x) = f(x); for this relationship the
notation

∫
f(x) dx = g(x) is also used. In introductory calculus courses, one tries to

solve indefinite integration problems by different methods, among which one tries
to choose in a heuristic way: substitution, trigonometric substitution, integration
by parts, etc. Only the integration of rational functions is usually solved by an
algorithmic method.

It can be shown that indefinite integration in the general case is algorithmically
unsolvable. So we only have the possibility to look for a reasonably large part that
can be solved using algorithms.

The first step is the algebraisation of the problem: we discard every analytical
concept and consider differentiation as a new (unary) algebraic operation connected
to addition and multiplication in a given way, and we try to find the “inverse” of
this operation. This approach leads to the introduction of the concept of differential
algebra.

The integration routines of computer algebra systems (e.g. Maple R©), similarly
to us, first try a few heuristic methods. Integrals of polynomials (or a bit more
generally, finite Laurent-series) are easy to determine. This is followed by a simple
table lookup process (e.g. in case of Maple 35 basic integrals are used). One can, of
course, use integral tables entered from books as well. Next we may look for special
cases where appropriate methods are known. For example, for integrands of the form

eax+b sin(cx + d) · p(x) ,

where p is a polynomial, the integral can be determined using integration by parts.
When the above methods fail, a form of substitution called the “derivative-divides”
method is tried: if the integrand is a composite expression, then for every sub-
expression f(x), we divide by the derivative of f , and check if x vanishes from the
result after the substitution u = f(x). Using these simple methods we can determine
a surprisingly large number of integrals. To their great advantage, they can solve
simple problems very quickly. If they do not succeed, we try algorithmic methods.
The first one is for the integration of rational functions. As we will see, there is a
significant difference between the version used in computer algebra systems and the
version used in hand computations, since the aims are short running times even in
complicated cases, and the simplest possible form of the result. The Risch algorithm
for integrating elementary functions is based on the algorithm for the integration of
rational functions. We describe the Risch algorithm, but not in full detail. In most

312 6. Computer Algebra

cases, we only outline the proofs.

6.4.1. Integration of rational functions

In this subsection, we introduce the notion of differential field and differential ex-
tension field, then we describe Hermite’s method.

Differential fields. Let K be a field of characteristic 0, with a mapping f 7→ f ′

of K into itself satisfying:

(1) (f + g)′ = f ′ + g′ (additivity);

(2) (fg)′ = f ′g + g′f (Leibniz-rule).

The mapping f 7→ f ′ is called a differential operator , differentiation or deriva-

tion, and K is called a differential field. The set C = {c ∈ K : c′ = 0} is the field

of constants or constant subfield in K. If f ′ = g, we also write f =
∫

g. Obvi-
ously, for any constant c ∈ C, we have f + c =

∫
g. The logarithmic derivative of

an element 0 6= f ∈ K is defined as f ′/f (the “derivative of log(f)”).

Theorem 6.21 With the notations of the previous definition, the usual rules of
derivation hold:

(1) 0′ = 1′ = (−1)′ = 0;

(2) derivation is C-linear: (af + bg)′ = af ′ + bg′ for f, g ∈ K, a, b ∈ C;

(3) if g 6= 0, f is arbitrary, then (f/g)′ = (f ′g − g′f)/g2;

(4) (fn)′ = nf ′fn−1 for 0 6= f ∈ K and n ∈ Z;

(5)
∫

fg′ = fg −
∫

gf ′ for f, g ∈ K (integration by parts).

Example 6.17 (1) With the notations of the previous definition, the mapping f 7→ 0 on
K is the trivial derivation, for this we have C = K.

(2) Let K = Q(x). There exists a single differential operator on Q(x) with x′ = 1, it is
the usual differentiation. For this the constants are the elements of Q. Indeed, n′ = 0 for
n ∈ N by induction, so the elements of Z and Q are also constants. We have by induction
that the derivative of power functions is the usual one, thus, by linearity, this is true for
polynomials, and by the differentiation rule of quotients, we get the statement. It is not
difficult to calculate that for the usual differentiation, the constants are the elements of Q.

(3) If K = C(x), where C is an arbitrary field of characteristic 0, then there exists
a single differential operator on K with constant subfield C and x′ = 1: it is the usual
differentiation. This statement is obtained similarly to the previous one.

If C is an arbitrary field of characteristic 0, and K = C(x) with the usual
differentiation, then 1/x is not the derivative of anything. (The proof of the statement
is very much like the proof of the irrationality of

√
2, but we have to work with

divisibility by x rather than by 2.)
The example shows that for the integration of 1/x and other similar functions,

we have to extend the differential field. In order to integrate rational functions, an
extension by logarithms will be sufficient.

6.4. Symbolic integration 313

Extensions of differential fields. Let L be a differential field and K ⊂ L
a subfield of L. If differentiation doesn’t lead out of K, then we say that K is a
differential subfield of L, and L is a differential extension field of K. If for
some f, g ∈ L we have f ′ = g′/g, that is, the derivative of f is the logarithmic
derivative of g, then we write f = log g. (We note that log, just like

∫
is a relation

rather than a function. In other words, log is an abstract concept here and not
a logarithm function to a given base.) If we can choose g ∈ K, we say that f is
logarithmic over K.

Example 6.18 (1) Let g = x ∈ K = Q(x), L = Q(x, f), where f is a new indeterminate,
and let f ′ = g′/g = 1/x, that is, f = log(x). Then

∫
1/x dx = log(x).

(2) Analogically,

∫
1

x2 − 2
=

√
2

4
log(x −

√
2) −

√
2

4
log(x +

√
2)

is in the differential field Q(
√

2)
(
x, log(x −

√
2), log(x +

√
2)
)
.

(3) Since

∫
1

x3 + x
= log(x) − 1

2
log(x + i) − 1

2
log(x − i) = log(x) − 1

2
log(x2 + 1) ,

the integral can be considered as an element of

Q
(
x, log(x), log(x2 + 1)

)

or an element of

Q(i)
(
x, log(x), log(x − i), log(x + i)

)

as well. Obviously, it is more reasonable to choose the first possibility, because in this case
there is no need to extend the base field.

Hermite’s method Let K be a field of characteristic 0, f, g ∈ K[x] non-zero
relatively prime polynomials. To compute the integral

∫
f/g using Hermite’s method,

we can find polynomials a, b, c, d ∈ K[x] with

∫
f

g
=

c

d
+

∫
a

b
, (6.15)

where deg a < deg b and b is monic and square-free. The rational function c/d is
called the rational part, the expression

∫
a/b is called the logarithmic part of

the integral. The method avoids the factorisation of g into linear factors (in a factor
field or some larger field), and even its decomposition into irreducible factors over
K.

Trivially, we may assume that g is monic. By Euclidean division we have f =
pg + h, where deg h < deg g, thus, f/g = p + h/g. The integration of the polynomial
part p is trivial. Let us determine the square-free factorisation of g, that is, find monic
and pairwise relatively prime polynomials g1, . . . , gm ∈ K[x] such that gm 6= 1 and
g = g1g2

2 · · · gm
m . Let us construct the partial fraction decomposition (this can be

314 6. Computer Algebra

achieved by the Euclidean algorithm):

h

g
=

m∑

i=1

i∑

j=1

hi,j

gj
i

,

where every hi,j has smaller degree than gi.
The Hermite-reduction is the iteration of the following step: if j > 1, then

the integral
∫

hi,j/gj
i is reduced to the sum of a rational function and an integral

similar to the original one, with j reduced by 1. Using that gi is square-free, we get
gcd(gi, g′

i) = 1, thus, we can obtain polynomials s, t ∈ K[x] by the application of the
extended Euclidean algorithm such that sgi + tg′

i = hi,j and deg s, deg t < deg gi.
Hence, using integration by parts,

∫
hi,j

gj
i

=

∫
t · g′

i

gj
i

+

∫
s

gj−1
i

=
−t

(j − 1)gj−1
i

+

∫
t′

(j − 1)gj−1
i

+

∫
s

gj−1
i

=
−t

(j − 1)gj−1
i

+

∫
s + t′/(j − 1)

gj−1
i

.

It can be shown that using fast algorithms, if deg f, deg g < n, then the procedure
requires O

(
M(n) log n

)
operations in the field K, where M(n) is a bound on the

number of operations needed to multiply to polynomials of degree at most n.
Hermite’s method has a variant that avoids the partial fraction decomposition

of h/g. If m = 1, then g is square-free. If m > 1, then let

g∗ = g1g2
2 · · · gm−1

m−1 =
g

gm
m

.

Since gcd(gm, g∗g′
m) = 1, there exist polynomials s, t ∈ K[x] such that

sgm + tg∗g′
m = h .

Dividing both sides by g = g∗gm
m and integrating by parts,

∫
h

g
=

−t

(m− 1)gm−1
m

+

∫
s + g∗t′/(m− 1)

g∗gm−1
m

,

thus, m is reduced by one.
Note that a and c can be determined by the method of undetermined coefficients

(Horowitz’s method). After division, we may assume deg f < deg g. As it can be
seen from the algorithm, we can choose d = g2g2

3 · · · gm−1
m and b = g1g2 · · · gm.

Differentiating (6.15), we get a system of linear equations on deg b coefficients of a
and degd coefficients of c, altogether n coefficients. This method in general is not as
fast as Hermite’s method.

The algorithm below performs the Hermite-reduction for a rational function f/g
of variable x.

6.4. Symbolic integration 315

Hermite-Reduction(f, g)

1 p← quo(f, g)
2 h← rem(f, g)
3 (g[1], . . . , g[m])← Square-Free(g)
4 construct the partial fraction decomposition of (h/g), compute numerators

h[i, j] belonging to g[i]j

5 rac← 0
6 int← 0
7 for i← 1 to m
8 do int← int + h[i, 1]/g[i]
9 for j ← 2 to i

10 do n← j
11 while n > 1
12 do determine s and t from the equation s · g[i] + t · g[i]′ = h[i, j]
13 n← n− 1
14 rac← rac− (t/n)/g[i]n

15 h[i, n]← s + t′/n
16 int← int + h[i, 1]/g[i]
17 red← rac +

∫
p +

∫
int

18 return red

If for some field K of characteristic 0, we want to compute the integral
∫

a/b,
where a, b ∈ K[x] are non-zero relatively prime polynomials with deg a < deg b,
b square-free and monic, we can proceed by decomposing polynomial b into linear
factors, b =

∏n
k=1(x − łak), in its splitting field L, then constructing the partial

fraction decomposition, a/b =
∑n

k=1 ck/(x− łak), over L, finally integrating we get

∫
a

b
=

n∑

k=1

ck log(x− łak) ∈ L
(
x, log(x− ła1), . . . , log(x− łan)

)
.

The disadvantage of this method, as we have seen in the example of the function
1/(x3 + x), is that the degree of the extension field L can be too large. An extension
degree as large as n! can occur, which leads to totally unmanageable cases. On the
other hand, it is not clear either if a field extension is needed at all: for example, in
case of the function 1/(x2 − 2), can we not compute the integral without extending
the base field? The following theorem enables us to choose the degree of the field
extension as small as possible.

Theorem 6.22 (Rothstein-Trager integration algorithm). Let K be a field of
characteristic 0, a, b ∈ K[x] non-zero relatively prime polynomials, deg a < deg b,
b square-free and monic. If L is an algebraic extension of K, c1, . . . , ck ∈ L \ K
are square-free and pairwise relatively prime monic polynomials, then the following
statements are equivalent:

(1)

∫
a

b
=

k∑

i=1

ci log vi ,

316 6. Computer Algebra

(2) The polynomial r = resx(b, a− yb′) ∈ K[y] can be decomposed into linear factors
over L, c1, . . . , ck are exactly the distinct roots of r, and vi = gcd(b, a − cib

′) if
i = 1, . . . , k. Here, resx is the resultant taken in the indeterminate x.

Example 6.19 Let us consider again the problem of computing the integral
∫

1/(x3+x) dx.
In this case,

r = resx

(
x3 + x, 1 − y(3x2 + 1)

)
= −4z3 + 3y + 1 = −(2y + 1)2(y − 1) ,

the roots of which are c1 = 1 and c2 = −1/2. Thus,

v1 = gcd
(
x3 + x, 1 − (3x2 + 1)

)
= x ,

v2 = gcd
(
x3 + x, 1 +

1

2
(3x2 + 1)

)
= x2 + 1 .

The algorithm, which can be easily given based on the previous theorem, can be
slightly improved: instead of computing vi = gcd(b, a − cib

′) (by calculations over
the field L), vi can also be computed over K, applying the Extended-Euclidean-
Normalised algorithm. This was discovered by Trager, , and independently by
Lazard and Rioboo. It is not difficult to show that the running time of the complete
integration algorithm obtained this way is O

(
nM(n) lg n

)
if deg f, deg g < n.

Theorem 6.23 (Lazard-Rioboo-Trager-formula). Using the notations of the pre-
vious theorem, let e denote the multiplicity of ci as a root of the polynomial
r = resx(b, a− yb′). Then

(1) deg vi = e;

(2) if w(x, y) ∈ K(y)[x] denotes the remainder of degree e in the Extended-
Euclidean-Normalised algorithm performed in K(y)[x] on b and a − yb′, then
vi = w(x, ci).

The algorithm below is the improved Lazard-Rioboo-Trager version of the
Rothstein-Trager method. We compute

∫
a/b for the rational function a/b of in-

determinate x, where b is square-free and monic, and deg a < deg b.

6.4. Symbolic integration 317

Integrate-Logarithmic-Part(a, b, x)

1 Let r(y)← resx(b, a− yb′) by the subresultant algorithm, furthermore
2 let we(x, y) be the remainder of degree e during the computation
3 (r1(y), . . . , rk(y))←Square-free(r(y))
4 int← 0
5 for i← 1 to k
6 do if ri(y) 6= 1
7 then w(y)← the gcd of the coefficients of wi(x, y)
8 (l(y), s(y), t(y))←

Extended-Euclidean-Normalised(w(y), ri(y))
9 wi(x, y)←Primitive-Part(rem(s(y) · wi(x, y), ri(y)))

10 (ri,1, . . . , ri,k)←Factors(ri)
11 for j ← 1 to k
12 do d← deg(ri,j)
13 c←Solve(ri,j(y) = 0, y)
14 if d = 1
15 then int← int + c · log(wi(x, c))
16 else for n← 1 to d
17 do int← int + c[n] · log(wi(x, c[n]))
18 return int

Example 6.20 Let us consider again the problem of computing the integral
∫

1/(x2−2) dx.
In this case,

r = resx(x2 − 2, 1 − y · 2x) = −8y2 + 1 .

The polynomial is irreducible in Q[x], thus, we cannot avoid the extension of Q. The
roots of r are ±1/

√
8. From the Extended-Euclidean-Normalised-algorithm over Q(y),

w1(x, y) = x − 1/(2y), thus, the integral is

∫
1

x2 − 2
dx =

1√
8

log(x −
√

2) − 1√
8

log(x +
√

2) .

6.4.2. The Risch integration algorithm

Surprisingly, the methods found for the integration of rational functions can be
generalised for the integration of expressions containing basic functions (sin, exp etc.)
and their inverse. Computer algebra systems can compute the integral of remarkably
complicated functions, but sometimes they fail in seemingly very simple cases, for
example the expression

∫
x/(1+ex) dx is returned unevaluated, or the result contains

a special non-elementary function, for example the logarithmic integral. This is due
to the fact that in such cases, the integral cannot be given in “closed form”.

Although the basic results for integration in “closed form” had been discovered
by Liouville in 1833, the corresponding algorithmic methods were only developed by
Risch in 1968.

318 6. Computer Algebra

Elementary functions The functions usually referred to as functions in “closed
form” are the ones composed of rational functions, exponential functions, logarithmic
functions, trigonometric and hyperbolic functions, their inverses and n-th roots (or
more generally “inverses” of polynomial functions, that is, solutions of polynomial
equations); that is, any nesting of the above functions is also a function in “closed
form”.

One might note that while
∫

1/(1 + x2) dx is usually given in the form arctg(x),
the algorithm for the integration of rational functions returns

∫
1

1 + x2
dx =

i

2
log(x + i)− i

2
log(x− i)

as solution. Since trigonometric and hyperbolic functions and their inverses over
C can be expressed in terms of exponentials and logarithms, we can restrict our
attention to exponentials and logarithms. Surprisingly, it also turns out that the
only extensions needed are logarithms (besides algebraic numbers) in the general
case.

Exponential elements. Let L be a differential extension field of the differential
field K. If for a θ ∈ L, there exists a u ∈ K such that θ′/θ = u′, that is, the
logarithmic derivative of θ equals the derivative of an element of K, then we say
that θ is exponential over K and we write θ = exp(u). If only the following is true:
for an element θ ∈ L, there is a u ∈ K such that θ′/θ = u, that is, the logarithmic
derivative of θ is an element of K, then θ is called hyperexponential over K.

Logarithmic, exponential or hyperexponential elements may be algebraic or tran-
scendent over K.

Elementary extensions. Let L be a differential extension field of the differential
field K. If

L = K(θ1, θ2, . . . , θn) ,

where for j = 1, 2, . . . , n, θj is logarithmic, exponential or algebraic over the field

Kj−1 = K(θ1, . . . , θj−1)

(K0 = K), then L is called an elementary extension of K. If for j = 1, 2, . . . , n,
θj is either transcendental and logarithmic, or transcendental and exponential over
Kj−1, then L is a transcendental elementary extension of K.

Let C(x) be the differential field of rational functions with the usual differenti-
ation and constant subfield C. An elementary extension of C(x) is called a field of
elementary functions, a transcendental elementary extension of C(x) is called a field
of transcendental elementary functions.

Example 6.21 The function f = exp(x) + exp(2x) + exp(x/2) can be written in the form
f = θ1 + θ2 + θ3 ∈ Q(x, θ1, θ2, θ3), where θ1 = exp(x), θ2 = exp(2x), θ3 = exp(x/2).
Trivially, θ1 is exponential over Q(x), θ2 is exponential over Q(x, θ1) and θ3 is exponential
over Q(x, θ1, θ2). Since θ2 = θ2

1 and Q(x, θ1, θ2) = Q(θ1), f can be written in the simpler
form f = θ1 + θ2

1 + θ3. The function θ3 is not only exponential but also algebraic over

6.4. Symbolic integration 319

Q(x, θ1), since θ2

3 − θ1 = 0, that is, θ3 = θ
1/2

1
. So f = θ1 + θ2

1 + θ
1/2

1
∈ Q(x, θ1, θ

1/2

1
). But f

can be put in an even simpler form:

f = θ2

3 + θ4

3 + θ3 ∈ Q(x, θ3) .

Example 6.22 The function

f =

√
log(x2 + 3x + 2)

(
log(x + 1) + log(x + 2)

)

can be written in form f = θ4 ∈ Q(x, θ1, θ2, θ3, θ4), where θ1 = log(x2 + 3x + 2), θ2 =
log(x + 1), θ3 = log(x + 2), and θ4 satisfies the algebraic equation θ2

4 − θ1(θ2 + θ3) = 0. But
f can also be given in the much simpler form f = θ1 ∈ Q(x, θ1).

Example 6.23 The function f = exp
(
log(x)/2

)
can be written in the form f = θ2 ∈

Q(x, θ1, θ2), where θ1 = log(x) and θ2 = exp(θ1/2), so θ1 is logarithmic over Q(x), and θ2

is exponential over Q(x, θ1). But θ2

2 − x = 0, so θ2 is algebraic over Q(x), and f(x) = x1/2.

The integration of elementary functions. The integral of an element of a field
of elementary functions will be completely characterised by Liouville’s Principle in
case it is an elementary function. Algebraic extensions, however, cause great difficulty
if not only the constant field is extended.

Here we only deal with the integration of elements of fields of transcendental
elementary functions by the Risch integration algorithm.

In practice, this means an element of the field of transcendental elementary
functions Q(α1, . . . , αk)(x, θ1, . . . , θn), where α1, . . . , αk are algebraic over Q and
the integral is an element of the field

Q(α1, . . . , αk, . . . , αk+h)(x, θ1, . . . , θn, . . . , θn+m)

of elementary functions. In principle, it would be simpler to choose C as constant
subfield but, as we have seen in the case of rational functions, this is impossible, for
we can only compute in an exact way in special fields like algebraic number fields;
and we even have to keep the number and degrees of αk+1, . . . , αk+h as small as
possible. Nevertheless, we will deal with algebraic extensions of the constant subfield
dynamically: we can imagine that the necessary extensions have already been made,
while in practice, we only perform extensions when they become necessary.

After the conversion of trigonometric and hyperbolic functions (and their in-
verses) to exponentials (and logarithms, respectively), the integrand becomes an
element of a field of elementary functions. Examples 6.21 and 6.22 show that there
are functions that do not seem to be elements of a transcendental elementary ex-
tension “at first sight”, and yet they are; while Example 6.23 shows that there are
functions that seem to be elements of such an extension “at first sight”, and yet
they are not. The first step is to represent the integrand as an element of a field of
transcendental elementary functions using the algebraic relationships between the
different exponential and logarithmic functions. We will not consider how this can
be done. It can be verified whether we succeeded by the following structure theorem

320 6. Computer Algebra

by Risch. We omit the proof of the theorem. We will need a definition.

An element θ is monomial over a differential field K if K and K(θ) have
the same constant field, θ is transcendental over K and it is either exponential or
logarithmic over K.

Theorem 6.24 (Structure theorem). Let K be the field of constants and Kn =
K(x, θ1, . . . , θn) a differential extension field of K(x), which has constant field K.
Let us assume that for all j, either θj is algebraic over Kj−1 = K(x, θ1, . . . , θj−1),
or θj = wj, with wj = log(uj) and uj ∈ Kj−1, or θj = uj, with uj = exp(wj) and
wj ∈ Kj−1. Then

1. g = log(f), where f ∈ Kn \K, is monomial over Kn if and only if there is no
product

fk ·
∏

u
kj

j , k, kj ∈ Z, k 6= 0

which is an element of K;

2. g = exp(f), where f ∈ Kn \K, is monomial over Kn if and only if there is no
linear combination

f +
∑

cjwj , cj ∈ Q

which is an element of K.

Product and summation is only taken for logarithmic and exponential steps.

The most important classic result of the entire theory is the following theorem.

Theorem 6.25 (Liouville’s Principle). Let K be a differential field with constant
field C. Let L be a differential extension field of K with the same constant field. Let
us assume that g′ = f ∈ K. Then there exist constants c1, . . . , cm ∈ C and elements
v0, v1, . . . , vm ∈ K such that

f = v′
0 +

m∑

j=1

cj

v′
j

vj
,

that is,

g =

∫
f = v0 +

m∑

j=1

cj log(vj) .

Note that the situation is similar to the case of rational functions.

We will not prove this theorem. Although the proof is lengthy, the idea of the
proof is easy to describe. First we show that a transcendental exponential extension
cannot be “eliminated”, that is differentiating a rational function of it, the new
element does not vanish. This is due to the fact that differentiating a polynomial of
an element of the transcendental exponential extension, we get a polynomial of the
same degree, and the original polynomial does not divide the derivative, except for
the case when the original polynomial is monomial. Next we show that no algebraic
extension is needed to express the integral. This is essentially due to the fact that
substituting an element of an algebraic extension into its minimal polynomial, we get

6.4. Symbolic integration 321

zero, and differentiating this equation, we get the derivative of the extending element
as a rational function of the element. Finally, we have to examine extensions by
transcendental logarithmic elements. We show that such an extending element can
be eliminated by differentiation if and only if it appears in a linear polynomial with
constant leading coefficient. This is due to the fact that differentiating a polynomial
of such an extending element, we get a polynomial the degree of which is either
the same or is reduced by one, the latter case only being possible when the leading
coefficient is constant.

The Risch algorithm. Let K be an algebraic number field over Q, and Kn =
K(x, θ1, . . . , θn) a field of transcendental elementary functions. The algorithm is
recursive in n: using the notation θ = θn, we will integrate a function f(θ)/g(θ) ∈
Kn = Kn−1(θ), where Kn−1 = K(x, θ1, . . . , θn−1). (The case n = 0 is the integration
of rational functions.) We may assume that f and g are relatively prime and g is
monic. Besides differentiation with respect to x, we will also use differentiation with
respect to θ, which we denote by d/dθ. In the following, we will only present the
algorithms.

Risch algorithm: logarithmic case. Using the notations of the previous
paragraph, we first presume that θ is transcendental and logarithmic, θ′ = u′/u,
u ∈ Kn−1. By Euclidean division, f(θ) = p(θ)g(θ) + h(θ), hence,

∫
f(θ)

g(θ)
=

∫
p(θ) +

∫
h(θ)

g(θ)
.

Unlike the integration of rational functions, here the integration of the polynomial
part is more difficult. Therefore, we begin with the integration of the rational part.

Logarithmic case, rational part. Let g(θ) = g1(θ)g2
2(θ) · · · gm

m(θ) be the
square-free factorisation of g(θ). Then

gcd

(
gj(θ),

d

dθ
gj(θ))

)
= 1

is obvious. It can be shown that the much stronger condition gcd
(
gj(θ), gj(θ)′) = 1

is also fulfilled. By partial fraction decomposition,

h(θ)

g(θ)
=

m∑

i=1

i∑

j=1

hi,j(θ)

gi(θ)j
.

We use Hermite-reduction: using the extended Euclidean algorithm we get poly-
nomials s(θ), t(θ) ∈ Kn−1[θ] that satisfy s(θ)gi(θ) + t(θ)gi(θ)′ = hi,j(θ) and
deg s(θ), deg t(θ) < deg gi(θ). Using integration by parts,

∫
hi,j(θ)

gj
i (θ)

=

∫
t(θ) · gi(θ)′

gi(θ)j
+

∫
s(θ)

gi(θ)j−1

322 6. Computer Algebra

=
−t(θ)

(j − 1)gi(θ)j−1
+

∫
t(θ)′

(j − 1)gi(θ)j−1
+

∫
s(θ)

gi(θ)j−1

=
−t(θ)

(j − 1)gi(θ)j−1
+

∫
s(θ) + t(θ)′/(j − 1)

gi(θ)j−1
.

Continuing this procedure while j > 1, we get
∫

h(θ)

g(θ)
=

c(θ)

d(θ)
+

∫
a(θ)

b(θ)
,

where a(θ), b(θ), c(θ), d(θ) ∈ Kn−1[θ], deg a(θ) < deg b(θ) and b(θ) is a square-free
and monic polynomial.

It can be shown that the Rothstein-Trager method can be applied to compute
the integral

∫
a(θ)/b(θ). Let us calculate the resultant

r(y) = resθ
(
b(θ), a(θ)− y · b(θ)′) .

It can be shown that the integral is elementary if and only if r(y) is of the form
r(y) = ør(y)s, where ør(y) ∈ K[y] and s ∈ Kn−1. If we compute the primitive part
of r(y), choose it as ør(y) and any coefficient of ør(y) is not a constant, then there
is no elementary integral. Otherwise, let c1, . . . , ck be the distinct roots of ør(y) in
its factor field and let

vi(θ) = gcd
(
b(θ), a(θ)− cib(θ)′) ∈ Kn−1(c1, . . . , ck)[θ]

for i = 1, . . . , k. It can be shown that

∫
a(θ)

b(θ)
=

k∑

i=1

ci log
(
vi(θ)

)
.

Let us consider a few examples.

Example 6.24 The integrand of the integral
∫

1/ log(x) is 1/θ ∈ Q(x, θ), where θ = log(x)
. Since

r(y) = resθ(θ, 1 − y/x) = 1 − y/x ∈ Q(x)[y]

is a primitive polynomial and it has a coefficient that is, not constant, the integral is not
elementary.

Example 6.25 The integrand of the integral
∫

1/
(
x log(x)

)
is 1/(xθ) ∈ Q(x, θ), where

θ = log(x). Here,

r(y) = resθ(θ, 1/x − y/x) = 1/x − y/x ∈ Q(x)[y] ,

which has primitive part 1 − y. Every coefficient of this is constant, so the integral is
elementary, c1 = 1, v1(θ) = gcd(θ, 1/x − 1/x) = θ, so

∫
1

x log(x)
= c1 log

(
v1(θ)

)
= log

(
log(x)

)
.

6.4. Symbolic integration 323

Logarithmic case, polynomial part The remaining problem is the integration
of the polynomial part

p(θ) = pkθk + pk−1θk−1 + · · ·+ p0 ∈ Kn−1[θ] .

According to Liouville’s Principle
∫

p(θ) is elementary if and only if

p(θ) = v0(θ)′ +

k∑

j=1

cj
vj(θ)′

vj(θ)
,

where cj ∈ øK and vi ∈ øKn−1(θ) for j = 0, 1, . . . , m, øKC is an extension of
K and øKn−1 = øK(x, θ1, . . . , θn−1). We will show that øK can be an algebraic
extension of K. A similar reasoning to the proof of Liouville’s Principle shows that
v0(θ) ∈ øKn−1[θ] and vj(θ) ∈ øKn−1 (that is, independent of θ) for j = 1, 2, . . . , m.
Thus,

p(θ) = v0(θ)′ +

m∑

j=1

cj

v′
j

vj
.

We also get, by the reasoning used in the proof of Liouville’s Principle, that the
degree of v0(θ) is at most k + 1. So if v0(θ) = qk+1θk+1 + qkθk + · · ·+ q0, then

pkθk + pk−1θk−1 + · · ·+ p0 = (qk+1θk+1 + qkθk + · · ·+ q0)′ +
m∑

j=1

cj

v′
j

vj
.

Hence, we get the following system of equations:

0 = q′
k+1 ,

pk = (k + 1)qk+1θ′ + q′
k ,

pk−1 = kqkθ′ + q′
k−1 ,

...
p1 = 2q2θ′ + q′

1 ,
p0 = q1θ′ + øq′

0 ,

where øq0 = q0 +
∑m

j=1 cj log(vj) in the last equation. The solution of the first
equation is simply a constant bk+1. Substituting this into the next equation and
integrating both sides, we get

∫
pk = (k + 1)bk+1 · θ + qk .

Applying the integration procedure recursively, the integral of pk ∈ Kn−1 can be
computed, but this equation can only be solved if the integral is elementary, it uses
at most one logarithmic extension, and it is exactly θ = log(u). If this is not fulfilled,
then

∫
p(θ) cannot be elementary. If it is fulfilled, then

∫
pk = ckθ + dk for some

ck ∈ øK and dk ∈ øKn−1, hence, bk+1 = ck+1/(k + 1) ∈ øK and qk = dk + bk with
an arbitrary integration constant bk. Substituting for qk into the next equation and

324 6. Computer Algebra

rearranging, we get

pk−1 − kdkθ′ = kbkθ′ + q′
k−1 ,

so we have ∫ (
pk−1 − kdk

u′

u

)
= kbkθ + qk−1

after integration. The integrand on the right hand side is in Kn−1, so we can call
the integration procedure in a recursive way. Just like above, the equation can only
be solved when the integral is elementary, it uses at most one logarithmic extension
and it is exactly θ = log(u). Let us assume that this is the case and

∫ (
pk−1 − kdk

u′

u

)
= ck−1θ + dk−1 ,

where ck−1 ∈ øK and dk−1 ∈ øKn−1. Then the solution is bk = ck−1/k ∈ øK and
qk−1 = dk−1 + bk−1, where bk−1 is an arbitrary integration constant. Continuing
the procedure, the solution of the penultimate equation is b2 = c1/2 ∈ øK and
q1 = d1+b1 with an integration constant b1. Substituting for q1 into the last equation,
after rearrangement and integration, we get

∫ (
p0 − d1

u′

u

)
= b1θ + øq0 .

This time the only condition is that the integral should be an elementary function.
If it is elementary, say

∫ (
p0 − d1

u′

u

)
= d0 ∈ øKn−1 ,

then b1 ∈ øK is the coefficient of θ = log(u) in d0, øq0 = d0 − b1 log(u), and the
result is ∫

p(θ) = bk+1θk+1 + qkθk + · · ·+ q1θ + øq0 .

Let us consider a few examples.

Example 6.26 The integrand of the integral
∫

log(x) is θ ∈ Q(x, θ), where θ = log(x). If
the integral is elementary, then

∫
θ = b2θ2 + q1θ + øq0

and 0 = b′

2, 1 = 2b2θ′ + q′

1, 0 = q1θ′ + øq′

0. With the unknown constant b2 from the second
equation,

∫
1 = 2b2θ + q1. Since

∫
1 = x + b1, we get b2 = 0, q1 = x + b1. From the

third equation −xθ′ = b1θ′ + øq′

0. Since θ′ = 1/x, after integration
∫

−1 = b1θ + øq0 and∫
−1 = −x, we get b1 = 0, øq0 = −x, hence,

∫
log(x) = x log(x) − x.

Example 6.27 The integrand of the integral
∫

log
(
log(x)

)
is θ2 ∈ Q(x, θ1, θ2), where

6.4. Symbolic integration 325

θ1 = log(x) and θ2 = log(θ1). If the integral is elementary, then

∫
θ2 = b2θ2

2 + q1θ2 + øq0

and 0 = b′

2, 1 = 2b2θ′

2 + q′

1, 0 = q1θ′

2 + øq′

0. With the unknown constant b2 from the second
equation,

∫
1 = 2b2θ + q1. Since

∫
1 = x + b1, we get b2 = 0, q1 = x + b1. From the third

equation −xθ′

2 = b1θ′

2 + øq′

0. Since θ′

2 = θ′

1/θ1 = 1/
(
x log(x)

)
, the equation

∫
−1

log(x)
= b1θ2 + øq0

must hold but we know from Example 6.24 that the integral on the left hand side is not
elementary.

Risch algorithm: exponential case. Now we assume that θ is transcendental
and exponential, θ′/θ = u′, u ∈ Kn−1. By Euclidean division, f(θ) = q(θ)g(θ)+h(θ),
hence ∫

f(θ)

g(θ)
=

∫
q(θ) +

∫
h(θ)

g(θ)
.

We plan using Hermite’s method for the rational part. But we have to face an
unpleasant surprise: although for the square-free factors gj(θ)

gcd

(
gj(θ),

d

dθ
gj(θ)

)
= 1

is obviously satisfied, the much stronger condition gcd
(
gj(θ), gj(θ)′) = 1 is not. For

example, if gj(θ) = θ, then

gcd
(
gj(θ), gj(θ)′) = gcd(θ, u′θ) = θ .

It can be shown, however, that this unpleasant phenomenon does not appear if
θ 6 | gj(θ), in which case gcd

(
gj(θ), gj(θ)′) = 1. Thus, it will be sufficient to eliminate

θ from the denominator. Let g(θ) = θ`øg(θ), where θ 6 | øg(θ), and let us look for
polynomials øh(θ), s(θ) ∈ Kn−1[θ] with øh(θ)θ` + t(θ)øg(θ) = h(θ), deg øh(θ) <
deg øg(θ) and deg s(θ) < `. Dividing both sides by g(θ), we get

f(θ)

g(θ)
= q(θ) +

t(θ)

θl
+

øh(θ)

øg(θ)
.

Using the notation p(θ) = q(θ)+t(θ)/θl, p(θ) is a finite Laurent-series the integration
of which will be no harder than the integration of a polynomial. This is not surprising
if we note θ−1 = exp(−u). Even so, the integration of the “polynomial part” is more
difficult here, too. We start with the other one.

Exponential case, rational part. Let øg(θ) = g1(θ)g2
2(θ) · · · gm

m(θ) be the
square-free factorisation of øg(θ). Then, since θ 6 | gj(θ), gcd

(
gj(θ), gj(θ)′) = 1.

326 6. Computer Algebra

Using partial fraction decomposition

øh(θ)

øg(θ)
=

m∑

i=1

i∑

j=1

hi,j(θ)

gi(θ)j
.

Hermite-reduction goes the same way as in the logarithmic case. We get

∫
øh(θ)

øg(θ)
=

c(θ)

d(θ)
+

∫
a(θ)

b(θ)
,

where a(θ), b(θ), c(θ), d(θ) ∈ Kn−1[θ], deg a(θ) < deg b(θ) and b(θ) is a square-free
and monic polynomial, θ 6 | b(θ).

It can be shown that the Rothstein-Trager method can be applied to compute
the integral

∫
a(θ)/b(θ). Let us calculate the resultant

r(y) = resθ
(
b(θ), a(θ)− y · b(θ)′) .

It can be shown that the integral is elementary if and only if r(y) is of form r(y) =
ør(y)s, where ør(y) ∈ K[y] and s ∈ Kn−1. If we compute the primitive part of
r(y), choose it as ør(y) and any coefficient of ør(y) is not a constant, then there is
no elementary integral. Otherwise, let c1, . . . , ck be the distinct roots of ør(y) in its
factor field and let

vi(θ) = gcd
(
b(θ), a(θ)− cib(θ)′) ∈ Kn−1(c1, . . . , ck)[θ]

for i = 1, . . . , k. It can be shown that

∫
a(θ)

b(θ)
= −

(
k∑

i=1

ci deg vi(θ)

)
+

k∑

i=1

ci log
(
vi(θ)

)
.

Let us consider a few examples.

Example 6.28 The integrand of the integral
∫

1/
(
1+exp(x)

)
is 1/(1+θ) ∈ Q(x, θ), where

θ = exp(x). Since
r(y) = resθ(θ + 1, 1 − yθ) = −1 − y ∈ Q(x)[y]

is a primitive polynomial which only has constant coefficients, the integral is elementary,
c1 = −1, v1(θ) = gcd(θ + 1, 1 + θ) = 1 + θ, thus,

∫
1

1 + exp(x)
= −c1x deg v1(θ) + c1 log

(
v1(θ)

)
= x − log

(
exp(x) + 1

)
.

Example 6.29 The integrand of the integral
∫

x/
(
1+exp(x)

)
is x/(1+θ) ∈ Q(x, θ), where

θ = exp(x). Since
r(y) = resθ(θ + 1, x − yθ) = −x − y ∈ Q(x)[y]

is a primitive polynomial that has a non-constant coefficient, the integral is not elementary.

6.4. Symbolic integration 327

Exponential case, polynomial part The remaining problem is the integration
of the “polynomial part”

p(θ) =

k∑

i=−`

piθ
i ∈ Kn−1(θ) .

According to Liouville’s Principle
∫

p(θ) is elementary if and only if

p(θ) = v0(θ)′ +

m∑

j=1

cj
vj(θ)′

vj(θ)
,

where cj ∈ øK and vj ∈ øKn−1(θ) for j = 0, 1, . . . , m, øKC is an extension
of K and øKn−1 = øK(x, θ1, . . . , θn−1). It can be shown that øK can be an
algebraic extension of K. A similar reasoning to the proof of Liouville’s Principle
shows that we may assume without breaking generality that vj(θ) is either an element
of øKn−1 (that is, independent of θ), or it is monic and irreducible in øKn−1[θ] for
j = 1, 2, . . . , m. Furthermore, it can be shown that there can be no non-monomial
factor in the denominator of v0(θ), since such a factor would also be present in the
derivative. Similarly, the denominator of vj(θ) (j = 1, 2, . . . , m) can have no non-
monomial factor either. So we get that either vj(θ) ∈ Kn−1, or vj(θ) = θ, since this is
the only irreducible monic monomial. But if vj(θ) = θ, then the corresponding term
of the sum is cjv′

j(θ)/vj(θ) = cju′, which can be incorporated into v0(θ)′. Hence, we
get that if p(θ) has an elementary integral, then

p(θ) =

k∑

j=−`

qjθj

′

+

m∑

j=1

cj

v′
j

vj
,

where qj , vj ∈ øKn−1 and cj ∈ øK. The summation should be taken over the same
range as in p(θ) since

(qjθj)′ = (q′
j + ju′gj)θj .

Comparing the coefficients, we get the system

pj = q′
j + ju′qj , ha −` ≤ j ≤ k, j 6= 0 ,

p0 = øq′
0 ,

where øq0 = q0 +
∑m

j=1 cj log(vj). The solution of the equation p0 = øq′
0 is simply

øq0 =
∫

p0; if this integral is not elementary, then
∫

p(θ) cannot be elementary
either, but if it is, then we have determined øq0. In the case j 6= 0, we have to solve
a differential equation called Risch differential equation to determine qj . The
differential equation is of the form y′ + fy = g, where the given functions f and g
are elements of Kn−1, and we are looking for solutions in øKn−1. At first sight it
looks as if we had replaced the problem of integration with a more difficult problem,
but the linearity of the equations and that the solution has to be in øKn−1 means
a great facility. If any Risch differential equation fails to have a solution in øKn−1,

328 6. Computer Algebra

then
∫

p(θ) is not elementary, otherwise

∫
p(θ) =

∑

j 6=0

qjθj + øq0 .

The Risch differential equation can be solved algorithmically, but we will not go into
details.

Let us consider a few examples.

Example 6.30 The integrand of the integral
∫

exp(−x2) is θ ∈ Q(x, θ), where θ =

exp(−x2). If the integral is elementary, then
∫

θ = q1θ, where q1 ∈ C(x). It is not dif-

ficult to show that the differential equation has no rational solutions, so
∫

exp(−x2) is not
elementary.

Example 6.31 The integrand of the integral
∫

xx is exp
(
(x log(x)

)
= θ2 ∈ Q(x, θ1, θ2),

where θ1 = log(x) and θ2 = exp(xθ1). If the integral is elementary, then
∫

θ2 = q1θ2, where
q1 ∈ C(x, θ1). Differentiating both sides, θ2 = q′

1θ2 + q1(θ1 + 1)θ2, thus, 1 = q′

1 + (θ1 + 1)q1.
Since θ1 is transcendental over C(x), by comparing the coefficients 1 = q′

1 + q1 and 0 = q1,
which has no solutions. Therefore,

∫
xx is not elementary.

Example 6.32 The integrand of the integral

∫
(4x2 + 4x − 1)

(
exp(x2) + 1

)(
exp(x2) − 1

)

(x + 1)2

is

f(θ) =
4x2 + 4x − 1

(x + 1)2
(θ2 − 1) ∈ Q(x, θ) ,

where θ = exp(x2). If the integral is elementary, then it is of the form
∫

f(θ) = q2θ2 + øq0

, where

q′

2 + 4xq2 =
4x2 + 4x − 1

(x + 1)2
,

øq′

0 = −4x2 + 4x − 1

(x + 1)2
.

The second equation can be integrated and øq0 is elementary. The solution of the first
equation is q2 = 1/(1 + x). Hence,

∫
f(θ) =

1

x + 1
exp2(x2) − (2x + 1)2

x + 1
+ 4 log(x + 1) .

Exercises
6.4-1 Apply Hermite-reduction to the following function f(x) ∈ Q(x) :

f(x) =
441x7 + 780x6 − 286x5 + 4085x4 + 769x3 + 3713x2 − 43253x + 24500

9x6 + 6x5 − 65x4 + 20x3 + 135x2 − 154x + 49
.

6.5. Theory and practice 329

6.4-2 Compute the integral
∫

f , where

f(x) =
36x6 + 126x5 + 183x4 + 13807/6x3 − 407x2 − 3242/5x + 3044/15

(x2 + 7/6x + 1/3)2(x− 2/5)3
∈ Q(x) .

6.4-3 Apply the Risch integration algorithm to compute the following integral:
∫

x(x + 1){(x2e2x2 − log(x + 1)2) + 2xe3x2

(x− (2x3 + 2x2 + x + 1) log(x + 1))}
((x + 1) log2(x + 1)− (x3 + x2)e2x2)2

dx .

6.5. Theory and practice

So far in the chapter we tried to illustrate the algorithm design problems of computer
algebra through the presentation of a few important symbolic algorithms. Below
the interested reader will find an overview of the wider universe of the research of
symbolic algorithms.

6.5.1. Other symbolic algorithms

Besides the resultant method and the theory of Gröbner-bases presented in this
chapter, there also exist algorithms for finding real symbolic roots of non-linear
equations and inequalities. (Collins).

There are some remarkable algorithms in the area of symbolic solution of differ-
ential equations. There exists a decision procedure similar to the Risch algorithm for
the computation of solutions in closed form of a homogeneous ordinary differential
equation of second degree with rational function coefficients. In case of higher degree
linear equations, Abramov’s procedure gives closed rational solutions of an equation
with polynomial coefficients, while Bronstein’s algorithm gives solutions of the form
exp(

∫
f(x)dx). In the case of partial differential equations Lie’s symmetry methods

can be used. There also exists an algorithm for the factorisation of linear differential
operators over formal power series and rational functions.

Procedures based on factorisation are of great importance in the research of
computer algebra algorithms. They are so important that many consider the birth
of the entire research field with Berlekamp’s publication on an effective algorithm
for the factorisation of polynomials of one variable over finite fields of small char-
acteristic p. Later, Berlekamp extended his results for larger characteristic. In order
to have similarly good running times, he introduced probabilistic elements into the
algorithm. Today’s computer algebra systems use Berlekamp’s procedure even for
large finite fields as a routine, perhaps without most of the users knowing about the
probabilistic origin of the algorithm. The method will be presented in another chap-
ter of the book. We note that there are numerous algorithms for the factorisation of
polynomials over finite fields.

Not much time after polynomial factorisation over finite fields was solved, Zassen-
haus, taking van der Waerden’s book Moderne Algebra from 1936 as a base, used

330 6. Computer Algebra

Hensel’s lemma for the arithmetic of p-adic numbers to extend factorisation. “Hensel-
lifting” – as his procedure is now called – is a general approach for the reconstruction
of factors from their modular images. Unlike interpolation, which needs multiple
points from the image, Hensel-lifting only needs one point from the image. The
Berlekamp–Zassenhaus-algorithm for the factorisation of polynomials with integer
coefficients is of fundamental importance but it has two hidden pitfalls. First, for
a certain type of polynomial the running time is exponential. Unfortunately, many
“bad” polynomials appear in the case of factorisation over algebraic number fields.
Second, a representation problem appears for multivariable polynomials, similar to
what we have encountered at the Gauss-elimination of sparse matrices. The first
problem was solved by a Diophantine optimisation based on the geometry of num-
bers, a so-called lattice reduction algorithm by Lenstra-Lenstra-Lovász [20]; it is
used together with Berlekamp’s method. This polynomial algorithm is completed by
a procedure which ensures that the Hensel-lifting will start from a “good” modular
image and that it will end “in time”. Solutions have been found for the mentioned
representation problem of the factorisation of multivariable polynomials as well. This
is the second area where randomisation plays a crucial role in the design of effective
algorithms. We note that in practice, the Berlekamp-Zassenhaus-Hensel-algorithm
proves more effective than the Lenstra-Lenstra-Lovász-procedure. As a contrast, the
problem of polynomial factorisation can be solved in polynomial time, while the best
proved algorithmic bound for the factorisation of the integer N is Õ(N1/4) (Pollard
and Strassen) in the deterministic case and L(N)1+o(1) (Lenstra and Pomerance) in

the probabilistic case, where L(N) = e
√

ln N ln ln N .
In fact, a new theory of heuristic or probabilistic methods in computer algebra

is being born to avoid computational or memory explosion and to make algorithms
with deterministically large running times more effective. In the case of probabilistic
algorithms, the probability of inappropriate operations can be positive, which may
result in an incorrect answer (Monte Carlo algorithms) or—although we always get
the correct answer (Las Vegas algorithms)—we may not get anything in polyno-
mial time. Beside the above examples, nice results have been achieved in testing
polynomial identity, irreducibility of polynomials, determining matrix normal forms
(Frobenius, Hilbert, Smith), etc. Their role is likely to increase in the future.

So far in the chapter we gave an overview of the most important symbolic algo-
rithms. We mentioned in the introduction that most computer algebra systems are
also able to perform numeric computations: unlike traditional systems, the precision
can be set by the user. In many cases, it is useful to combine the symbolic and nu-
meric computations. Let us consider for example the symbolically computed power
series solution of a differential equation. After truncation, evaluating the power se-
ries with the usual floating point arithmetics in certain points, we get a numerical
approximation of the solution. When the problem is an approximation of a physical
problem, the attractivity of the symbolic computation is often lost, simply because
they are too complicated or too slow and they are not necessary or useful, since we
are looking for a numerical solution. In other cases, when the problem cannot be
dealt with using symbolic computation, the only way is the numerical approxima-
tion. This may be the case when the existing symbolic algorithm does not find a
closed solution (e.g. the integral of non-elementary functions, etc.), or when a sym-

6.5. Theory and practice 331

bolic algorithm for the specified problem does not exist. Although more and more
numerical algorithms have symbolic equivalents, numerical procedures play an im-
portant role in computer algebra. Let us think of differentiation and integration:
sometimes traditional algorithms—integral transformation, power series approxima-
tion, perturbation methods—can be the most effective.

In the design of computer algebra algorithms, parallel architectures will play
an increasing role in the future. Although many existing algorithms can be paral-
lelised easily, it is not obvious that good sequential algorithms will perform optimally
on parallel architectures as well: the optimal performance might be achieved by a
completely different method.

6.5.2. An overview of computer algebra systems

The development of computer algebra systems is linked with the development of
computer science and algorithmic mathematics. In the early period of computers,
researchers of different fields began the development of the first computer algebra
systems to facilitate and accelerate their symbolic computations; these systems, re-
constructed and continuously updated, are present in their manieth versions today.
General purpose computer algebra systems appeared in the seventies, and pro-
vide a wide range of built-in data structures, mathematical functions and algorithms,
trying to cover a wide area of users. Because of their large need of computational
resources, their expansion became explosive in the beginning of the eighties when
microprocessor-based workstations appeared. Better hardware environments, more
effective resource management, the use of system-independent high-level languages
and, last but not least social-economic demands gradually transformed general pur-
pose computer algebra systems into market products, which also resulted in a better
user interface and document preparation.

Below we list the most widely known general and special purpose computer
algebra systems and libraries.

• General purpose computer algebra systems: Axiom, Derive, Form, GNU-
calc, Jacal, Macsyma, Maxima, Maple, Distributed Maple, Math-
CAD, Matlab Symbolic Math Toolbox, Scilab, MAS, Mathematica,
Mathview, Mock-Mma, MuPAD, Reduce, Risa.

• Algebra and number theory: Bergman, CoCoA, Felix, Fermat, GRB, Kan,
Macaulay, Magma, Numbers, Pari, Simath, Singular.

• Algebraic geometry: Casa, Ganith.

• Group theory: Gap, LiE, Magma, Schur.

• Tensor analysis: Cartan, FeynCalc, GRG, GRTensor, MathTensor,
RedTen, Ricci, TTC.

• Computer algebra libraries: Apfloat, BigNum, GNU MP, Kant, LiDiA,
NTL, Saclib, Ubasic, Weyl, Zen.

Most general purpose computer algebra systems are characterised by

• interactivity,

• knowledge of mathematical facts,

332 6. Computer Algebra

• a high-level, declarative2 programming language with the possibility of func-
tional programming and the knowledge of mathematical objects,

• expansibility towards the operational system and other programs,

• integration of symbolic and numeric computations,

• automatic (optimised) C and Fortran code generation,

• graphical user interface,

• 2- and 3-dimensional graphics and animation,

• possibility of editing text and automatic LATEX conversion,

• on-line help.

Computer algebra systems are also called mathematical expert systems. Today
we can see an astonishing development of general purpose computer algebra systems,
mainly because of their knowledge and wide application area. But it would be a
mistake to underestimate special systems, which play a very important role in many
research fields, besides, in many cases are easier to use and more effective due to
their system of notation and the low-level programming language implementation
of their algorithms. It is essential that we choose the most appropriate computer
algebra system to solve a specific problem.

Problems

6-1 The length of coefficients in the series of remainders in a Euclidean

division

Generate two pseudorandom polynomials of degree n = 10 in Z[x] with coefficients of
l = 10 decimal digits. Perform a single Euclidean division in (in Q[x]) and compute
the ratio of the maximal coefficients of the remainder and the original polynomial
(determined by the function λ). Repeat the computation t = 20 times and compute
the average. What is the result? Repeat the experiment with l = 100, 500, 1000.
6-2 Simulation of the Modular-Gcd-Smallprimes algorithm

Using simulation, give an estimation for the optimal value of the variable n in the
Modular-Gcd-Smallprimes algorithm. Use random polynomials of different de-
grees and coefficient magnitudes.
6-3 Modified pseudo-euclidean division

Let f, g ∈ Z[x], deg f = m ≥ n = deg g. Modify the pseudo-euclidean division in
such a way that in the equation

gs
nf = gq + r

instead of the exponent s = m − n + 1 put the smallest value s ∈ N such that
q, r ∈ Z[x]. Replace the procedures pquo() and prem() in the Primitive-Euclidean
algorithm by the obtained procedures spquo() and sprem(). Compare the amount of

2 Declarative programming languages specify the desired result unlike imperative languages, which
describe how to get the result.

Notes for Chapter 6 333

memory space required by the algorithms.
6-4 Construction of reduced Gröbner basis

Design an algorithm that computes a reduced Gröbner basis from a given Gröbner-
basis G.
6-5 Implementation of Hermite-reduction

Implement Hermite-reduction in a chosen computer algebra language.
6-6 Integration of rational functions

Write a program for the integration of rational functions.

Chapter Notes

The algorithms Classical-Euclidean and Extended-Euclidean for non-
negative integers are described in [7]. A natural continuation of the theory of resul-
tants leads to subresultants, which can help in reducing the growth of the coefficients
in the Extended-Euclidean algorithm (see e.g. [9, 10]).

Gröbner bases were introduced by B. Buchberger in 1965 [2]. Several authors
examined polynomial ideals before this. The most well-known is perhaps Hironaka,
who used bases of ideals of power series to resolve singularities over C. He was
rewarded a Fields-medal for his work. His method was not constructive, however.
Gröbner bases have been generalised for many algebraic structures in the last two
decades.

The bases of differential algebra have been layed by J. F. Ritt in 1948 [25].
The square-free factorisation algorithm used in symbolic integration can be found
for example in the books [9, 10]. The importance of choosing the smallest possible
extension degree in Hermite-reduction is illustrated by Example 11.11 in [10], where
the splitting field has very large degree but the integral can be expressed in an
extension of degree 2. The proof of the Rothstein-Trager integration algorithm can
be found in [9] (Theorem 22.8). We note that the algorithm was found independently
by Rothstein and Trager. The proof of the correctness of the Lazard-Rioboo-Trager
formula, the analysis of the running time of the Integrate-Logarithmic-Part
algorithm, an overview of the procedures that deal with the difficulties of algebraic
extension steps, the determination of the hyperexponential integral (if exists) of a
hyperexponential element over C(x), the proof of Liouville’s principle and the proofs
of the statements connected to the Risch algorithm can be found in the book [9].

There are many books and publications available on computer algebra and re-
lated topics. The interested reader will find mathematical description in the following
general works: Caviness [3], Davenport et al. [8], von zur Gathen et al. [9], Geddes
et al. [10], Knuth [16, 17, 18], Mignotte [21], Mishra [22], Pavelle et al. [24], Winkler
[27].

The computer-oriented reader will find further information on computer algebra
in Christensen [4], Gonnet and Gruntz [11], Harper et al. [13] and on the world wide
web.

A wide range of books and articles deal with applications, e.g. Akritas [1], Cohen
et al. (eds.) [5, 6], Grossman (ed.) [12], Hearn (ed.) [14], Kovács [19] and Odlyzko
[23].

334 6. Computer Algebra

For the role of computer algebra systems in education see for example the works
of Karian [15] and Uhl [26].

Conference proceedings: Aaecc, Disco, Eurocal, Eurosam, Issac and Sym-
sac.

Computer algebra journals: Journal of Symbolic Computation—Academic Press,
Applicable Algebra in Engineering, Communication and Computing—Springer-
Verlag, Sigsam Bulletin—ACM Press.

The Department of Computer Algebra of the Eötvös Loránd University, Bu-
dapest takes works [9, 10, 21, 27] as a base in education.

Bibliography

[1] A. G. Akritas. Elements of Computer Algebra with Applications. John Wiley & Sons, 1989.
333

[2] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal, 1965. PhD dissertation, Leopold-Franzens-
Universität, Innsbruck. 333

[3] B. F. Caviness. Computer algebra: past and future. Journal of Symbolic Computations, 2:217–
263, 1986. 333

[4] S. M. Christensen. Resources for computer algebra. Computers in Physics, 8:308–315, 1994.
333

[5] A. M. Cohen, L. van Gasten, S. Lunel (Eds.). Computer Algebra for Industry 2, Problem
Solving in Practice. John Wiley & Sons, 1995. 333

[6] A. M. Cohen (Ed.). Computer Algebra for Industry: Problem Solving in Practice. John Wiley

& Sons, 1993. 333

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms 3rd edition,
second corrected printing. The MIT Press/McGraw-Hill, 2010. 333

[8] J. Davenport, Y. Siret, E. Tournier. Computer Algebra: Systems and Algorithms for Algebraic
Computation. Academic Press, 2000. 333

[9] J. Gathen, von zur. Modern Computer Algebra. Cambridge University Press, 2003. 333, 334

[10] K. O. Geddes, S. Czapor, G. Labahn. Algorithms for Computer Algebra. Kluwer Academic
Publishers, 1992. 333, 334

[11] G. Gonnet, D. Gruntz, L. Bernardin. Computer algebra systems. In A. Ralston, E. D. Reilly, D.

Hemmendinger (Eds.), Encyclopedia of Computer Science, 287–301 pages. Nature Publishing

Group, 4th edition, 2000. 333

[12] R. Grossman. Symbolic Computation: Applications to Scientific Computing. Frontiers in Ap-
plied Mathematics. Vol. 5 SIAM, 1989. 333

[13] D. Harper, C. Wooff, D. Hodginson. A Guide to Computer Algebra Systems. John Wiley &

Sons, 1991. 333

[14] A. C. Hearn. Future Directions for Research in Symbolic Computation. SIAM Reports on
Issues in the Mathematical Sciences. SIAM, 1990. 333

[15] Z. Karian, A. Starrett. Use of symbolic computation in probability and statistics. In Z. Karian
(Ed.), Symbolic Computation in Undergraduate Mathematics Education, Number 24 in Notes
of Mathematical Association of America. Mathematical Association of America, 1992. 334

[16] D. E. Knuth. Fundamental Algorithms. The Art of Computer Programming. Vol. 1. Addison-
Wesley, 1968 (3rd updated edition). 333

[17] D. E. Knuth. Seminumerical Algorithms. The Art of Computer Programming. Vol. 2. Addison-
Wesley, 1969 (3rd corrected edition). 333

[18] D. E. Knuth. Sorting and Searching. The Art of Computer Programming. Vol. 3. Addison-
Wesley, 1973 (3rd corrected edition). 333

[19] A. Kovács. Computer algebra: Impact and perspectives. Nieuw Archief voor Wiskunde,
17(1):29–55, 1999. 333

http://www.wiley.com/
http://www.aip.org/cip/
http://www.win.tue.nl/~amc/
http://www.win.tue.nl/~amc/
http://www.cs.dartmouth.edu/~thc/
http://theory.lcs.mit.edu/~cel/
http://theory.lcs.mit.edu/~rivest/
http://www.ieor.columbia.edu/~cliff/
http://mitpress.mit.edu/main/home/default.asp?sid=C6EE87F7-92B7-4CC1-8035-E3AB8EAC0886
http://www.academicpress.com/
http://uk.cambridge.org/
http://www.doc.ic.ac.uk/~ar9/
http://home.nycap.rr.com/cybernetic/
http://tardis.union.edu/~hemmendd/
http://npg.nature.com/npg/servlet/Content?data=xml/02_welcome.xml&style=xml/02_welcome.xsl
http://www.siam.org/
http://www.wiley.com/
http://www.siam.org/
http://www-cs-faculty.stanford.edu/~knuth/
http://www.aw.com/
http://www-cs-faculty.stanford.edu/~knuth/
http://www.aw.com/
http://www-cs-faculty.stanford.edu/~knuth/
http://www.aw.com/
http://compalg.inf.elte.hu/~attila/

336 Bibliography

[20] A. K. Lenstra, H. W. Lenstra, Jr., L. Lovász. Factoring polynomials with integer coefficients.

Mathematische Annalen, 261:513–534, 1982. 330

[21] M. E. Mignotte. Mathematics for Computer Algebra. Springer, 1992. 333, 334

[22] B. E. Mishra. Algorithmic Algebra. Springer, 1993. 333

[23] A. Odlyzko. Applications of Symbolic Mathematics to Mathematics. Kluwer Academic Pub-
lishers, 1985. 333

[24] R. Pavelle, M. Rothstein. Computer algebra. Scientific American, 245(12):102–113, 1981. 333

[25] J. Ritt. Integration in Finite Terms. Columbia University Press, 1948. 333

[26] J. J. Uhl. Mathematica and Me. Notices of AMS, 35:1345–1345, 1988. 334

[27] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag, 1990. 333, 334

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

http://www.win.tue.nl/~klenstra/
http://math.berkeley.edu/~hwl/
http://research.microsoft.com/~lovasz
http://www.springer-ny.com/
http://www.springer-ny.com/
http://www.sciam.com/
http://www.risc.jku.at/people/winkler/
http://www.springer.de/

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

A
algebraic

element, 318
extension, 315, 319, 323, 327
number field, 319, 321

ascending chain of ideals, 306, 308

B
basis

of the ideal, 302

C
Classical-Euclidean, 283, 333
Coeff-Build, 300
computer algebra,
computer algebra systems

general purpose, 331
special purpose, 331

constant subfield, 312
content, 289

D
data representation

in computer algebra, 279
derivation, 312

rules of, 312
Dickson’s lemma, 306, 311exe
differential algebra, 311
differential extension, 320
differential extension field, 313, 318
differential field, 312

extensions of, 313
differential operator, 312
differential subfield, 313
differentiation, 312
discriminant, 302exe
Division-with-Remainder

multivariate, 305

E
elementary

extension, 318
extensions, 318
functions, 318

Euclidean-Division-Univariate-
Polynomials, 283,
301

exponential element, 318
Extended-Euclidean, 283, 302exe, 333
Extended-Euclidean-Normalised, 286,

302exe

F
field

of elementary functions, 318, 319, 321
of transcendental elementary functions,

318
field of constants, 312

G
Gauss-elimination, 330
Gröbner basis, 302, 306, 307, 308, 309, 333pr

minimal, 309
reduced, 309

Gröbner-basis, 329

H
Hermite-Reduction, 315
Hermite-reduction, 313, 321, 326, 328exe,

333pr
Hermite’s method, 325
Hilbert’s basis, 306
Horowitz’s method, 314
hyperexponential element, 318

I
integers, 277, 279

338 Index

integral
logarithmic part of, 313
rational part of, 313

Integrate-Logarithmic-Part, 317
integration

by parts, 312
of elementary functions, 319
of rational functions, 312

intermediate expression swell, 281, 309

L
Laurent-series, 325
Lazard-Rioboo-Trager-formula, 316
lazy evaluation, 280
leading coefficient, 282
Leibniz-rule, 312
Liouville’s Principle, 319, 320, 323, 327
logarithmic

derivative, 312, 318
element, 318, 321
extension, 313, 323
function, 319

logarithmic integral, 317
lucky prime, 298

M
mathematical expert systems, 332
Modular-Gcd-Bigprime, 298
Modular-Gcd-Smallprimes, 299
monomial, 303

element, 320
order, 303

monomial ideal, 306
multivariate polynomial

leading coefficient, 304

leading monomial, 304

leading term, 304

multidegree, 304

N
Noetherian ring, 306
normal form, 282

O
operation of the Classical-Euclidean

algorithm, 283fig
operation of the Primitive-Euclidean

algorithm, 289fig
order

allowable, 303
monomial, 303, 310exe

P
partial fraction decomposition, 321
polynomial

multivariate, 280, 304
representation, 280

polynomial equations
equivalence, 310
finitely many solutions, 310
number of finite solutions, 310
solvability, 310

power series, 280
primitive

part, 289
polynomial, 288

Primitive-Euclidean, 289, 333pr
pseudo-division, 288
pseudo-quotient, 288
pseudo-remainder, 288

Q
quotient, 282, 305

R
rational numbers, 279
remainder, 282, 305
resultant, 291, 322, 326

Sylvester form, 292
resultant method, 290
Risch algorithm, 321, 329

exponential case, 325
logarithmic case, 321

Risch differential equation, 327, 328
Risch integration algorithm, 317, 319
Rothstein-Trager integration algorithm, 315
Rothstein-Trager method, 322, 326

S
simplification of expressions, 310
S-polynomial, 307
symbolic

computation, 276
integration, 311

T
transcendent

element, 318
transcendental

element, 321
elementary extension, 318

V
variety, 302

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A
Abramov, Sergey Alexandrovich, 329
Akritas, A. G., 335

B
Berlekamp, Elwyn Ralph, 329, 330
Bernardin, Laurent, 335
Bronstein, Manuel, 329
Buchberger, Bruno, 277, 307–309, 333, 335

C
Caviness, Bob Forrester, 333, 335
Christenswn, S. M., 335
Cohen, Arjeh M., 333, 335
Collins, Georges Edwin, 329
Cormen, Thomas H., 335
Cramer, Gabriel (1704–1752), 281
Czapor, S. R., 335

D
Davenport, J. H., 335
Dickson, Leonard Eugene, 306, 311

E
Euclid of Alexandria (i.e. 365–300), 283

F
Frobenius, Ferdinand Georg (1849–1917),

330

G
Gauss, Johann Carl Friedrich (1777–1855),

280, 288, 297, 330
Geddes, Keith Oliver, 333, 335
Gonnet, Haas Gaston Henry, 333, 335
Gröbner, Wolfgang Anton Maria, 277, 302,

306, 308, 309, 311, 329
Grossman, R., 335
Gruntz, Dominik, 335

H
Harper, D., 335
Hearn, Anthony Clern, 333, 335
Hemmendinger, David, 335
Hensel, Kurt Wilhelm Sebastian

(1861–1913), 330
Hermite, Charles (1822–1901), 312–314, 325,

333
Hilbert, David (1862–1943), 305–307, 330
Hironaka, Heisuke, 333
Hodginson, D., 335
Horowitz, Ellis, 314

K
Karian, Z. A., 335
Knuth, Donald Ervin, 333, 335
Kovács, Attila, 333, 335

L
Labahn, G., 335
Landau, Edmund Georg Hermann

(1877–1938), 290, 298, 300, 301
Laurent, Pierre Alphonse (1813–1854), 299,

311, 325
Lazard, Daniel, 316
Leibniz, Gottfried Wilhelm (1646–1716), 312
Leiserson, Charles E., 335
Lenstra, Arjen Klaas, 330, 336
Lenstra, Hendrik Willem, Jr., 330, 336
Lie, Marius Sophus, 329
Liouville, Joseph, 277, 317, 320, 323, 327
Lovász, László, 330, 336
Lunel, Sjoerd Verduyn, 335

M
Mignotte, Maurice, 290, 298–301, 333, 336
Mishra, Bhubaneswar, 333, 336

N
Noether, Amalia Emmy (1882–1935), 306

340 Name Index

O
Odlyzko, Andrew Michael, 333, 336

P
Pavelle, R., 336
Pollard, John Michael, 330
Pomerance, Karl, 330

R
Ralston, Anthony, 335
Reilly, Edwin D., 335
Rioboo, Renaud, 316
Risch, Robert, 311, 317, 319–321, 327–329
Ritt, Joseph Fels, 333, 336
Rivest, Ronald Lewis, 335
Rothstein, Michael, 315, 322, 326, 336

S
Siret, Y., 335
Smith, Henry John Stephen, 330
Stein, Clifford, 335
Sterrett, A., 335
Strassen, Volker, 330
Sylvester, James Joseph (1814–1897),

291–293

T
Tournier, E., 335
Trager, Barry Marshall, 315, 316, 322, 326

U
Uhl, J. J., 336

V
van der Waerden, Bartel Leendert, 329
van Gastel, Leendert, 335
von zur Gathen, Joachim, 333, 335

W
Winkler, Franz, 333, 336
Wooff, C., 335

Z
Zassenhaus, Hans Julius (1912–1991), 329,

330

	6. Computer Algebra
	 6.1. Data representation
	 6.2. Common roots of polynomials
	 6.2.1. Classical and extended Euclidean algorithm
	 6.2.2. Primitive Euclidean algorithm
	 6.2.3. The resultant
	 6.2.4. Modular greatest common divisor

	 6.3. Gröbner basis
	 6.3.1. Monomial order
	 6.3.2. Multivariate division with remainder
	 6.3.3. Monomial ideals and Hilbert's basis theorem
	 6.3.4. Buchberger's algorithm
	 6.3.5. Reduced Gröbner basis
	 6.3.6. The complexity of computing Gröbner bases

	 6.4. Symbolic integration
	 6.4.1. Integration of rational functions
	 6.4.2. The Risch integration algorithm

	 6.5. Theory and practice
	 6.5.1. Other symbolic algorithms
	 6.5.2. An overview of computer algebra systems

	Bibliography
	Index
	Name Index

