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II. COMPUTER ALGEBRA



4. Algebra

First, in this chapter, we will discuss some of the basic concepts of algebra, such as
fields, vector spaces and polynomials (Section 4.1). Our main focus will be the study
of polynomial rings in one variable. These polynomial rings play a very important
role in constructive applications. After this, we will outline the theory of finite fields,
putting a strong emphasis on the problem of constructing them (Section 4.2) and
on the problem of factoring polynomials over such fields (Section 4.3). Then we
will study lattices and discuss the Lenstra-Lenstra-Lovász algorithm which can be
used to find short lattice vectors (Section 4.4). We will present a polynomial time
algorithm for the factorisation of polynomials with rational coefficients; this was the
first notable application of the Lenstra-Lenstra-Lovász algorithm (Section 4.5).

4.1. Fields, vector spaces, and polynomials

In this section we will overview some important concepts related to rings and poly-
nomials.

4.1.1. Ring theoretic concepts

We recall some definitions introduced in Chapters 31–33 of the textbook Introduction
to Algorithms. In the sequel all cross references to Chapters 31–33 refer to results in
that book.

A set S with at least two elements is called a ring, if it has two binary operations,
the addition, denoted by the + sign, and the multiplication, denoted by the · sign.
The elements of S form an Abelian group with respect to the addition, and they
form a monoid (that is, a semigroup with an identity), whose identity element is
denoted by 1, with respect to the multiplication. We assume that 1 6= 0. Further,
the distributive properties also hold: for arbitrary elements a, b, c ∈ S we have

a · (b+ c) = a · b+ a · c and

(b+ c) · a = b · a+ c · a .

Being an Abelian group with respect to the addition means that the operation
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is associative, commutative, it has an identity element (denoted by 0), and every
element has an inverse with respect to this identity. More precisely, these require-
ments are the following:
associative property: for all triples a, b, c ∈ S we have (a+ b) + c = a+ (b+ c);
commutative property: for all pairs a, b ∈ S we have a+ b = b+ a;
existence of the identity element: for the zero element 0 of S and for all ele-
ments a of S, we have a+ 0 = 0 + a = a;
existence of the additive inverse: for all a ∈ S there exists b ∈ S, such that
a+ b = 0.
It is easy to show that each of the elements a in S has a unique inverse. We usually
denote the inverse of an element a by −a.

Concerning the multiplication, we require that it must be associative and that
the multiplicative identity should exist. The identity of a ring S is the multiplicative
identity of S. The usual name of the additive identity is zero. We usually omit the
· sign when writing the multiplication, for example we usually write ab instead of
a · b.

Example 4.1 Rings.

(i) The set Z of integers with the usual operations + and ·.
(ii) The set Zm of residue classes modulo m with respect to the addition and multiplication
modulo m. (iii) The set Rn×n of (n × n)-matrices with real entries with respect to the
addition and multiplication of matrices.

Let S1 and S2 be rings. A map φ : S1 → S2 is said to be a homomorphism, if φ
preserves the operations, in the sense that φ(a±b) = φ(a)±φ(b) and φ(ab) = φ(a)φ(b)
holds for all pairs a, b ∈ S1. A homomorphism φ is called an isomorphism, if φ is
a one-to-one correspondence, and the inverse is also a homomorphism. We say that
the rings S1 and S2 are isomorphic, if there is an isomorphism between them. If
S1 and S2 are isomorphic rings, then we write S1

∼= S2. From an algebraic point of
view, isomorphic rings can be viewed as identical.

For example the map φ : Z → Z6 which maps an integer to its residue modulo
6 is a homomorphism: φ(13) = 1, φ(5) = 5, φ(22) = 4, etc.

A useful and important ring theoretic construction is the direct sum. The direct
sum of the rings S1 and S2 is denoted by S1 ⊕ S2. The underlying set of the direct
sum is S1×S2, that is, the set of ordered pairs (s1, s2) where si ∈ Si. The operations
are defined componentwise: for si, ti ∈ Si we let

(s1, s2) + (t1, t2) := (s1 + t1, s2 + t2) and

(s1, s2) · (t1, t2) := (s1 · t1, s2 · t2) .

Easy calculation shows that S1 ⊕ S2 is a ring with respect to the operations above.
This construction can easily be generalised to more than two rings. In this case, the
elements of the direct sum are the k-tuples, where k is the number of rings in the
direct sum, and the operations are defined componentwise.

Fields. A ring F is said to be a field, if its non-zero elements form an Abelian
group with respect to the multiplication. The multiplicative inverse of a non-zero
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element a is usually denoted a−1.
The best-known examples of fields are the the sets of rational numbers, real

numbers, and complex numbers with respect to the usual operations. We usually
denote these fields by Q, R, C, respectively.

Another important class of fields consists of the fields Fp of p-elements where p
is a prime number. The elements of Fp are the residue classes modulo p, and the
operations are the addition and the multiplication defined on the residue classes.
The distributive property can easily be derived from the distributivity of the integer
operations. By Theorem 33.12, Fp is a group with respect to the addition, and, by
Theorem 33.13, the set F∗

p of non-zero elements of Fp is a group with respect to the
multiplication. In order to prove this latter claim, we need to use that p is a prime
number.

Characteristic, prime field. In an arbitrary field, we may consider the set of
elements of the form m ·1, that is, the set of elements that can be written as the sum
1 + · · · + 1 of m copies of the multiplicative identity where m is a positive integer.
Clearly, one of the two possibilities must hold:
(a) none of the elements m · 1 is zero;
(b) m · 1 is zero for some m ≥ 1.

In case (a) we say that F is a field with characteristic zero. In case (b) the
characteristic of F is the smallest m ≥ 1 such that m · 1 = 0. In this case, the
number m must be a prime, for, if m = rs, then 0 = m · 1 = rs · 1 = (r · 1)(s · 1),
and so either r · 1 = 0 or s · 1 = 0.

Suppose that P denotes the smallest subfield of F that contains 1. Then P is
said to be the prime field of F. In case (a) the subfield P consists of the elements
(m · 1)(s · 1)−1 where m is an integer and s is a positive integer. In this case,
P is isomorphic to the field Q of rational numbers. The identification is obvious:
(m · 1)(s · 1)−1 ↔ m/s.

In case (b) the characteristic is a prime number, and P is the set of elements
m ·1 where 0 ≤ m < p. In this case, P is isomorphic to the field Fp of residue classes
modulo p.

Vector spaces. Let F be a field. An additively written Abelian group V is said
to be a vector space over F, or simply an F-vector space, if for all elements a ∈ F
and v ∈ V , an element av ∈ V is defined (in other words, F acts on V ) and the
following hold:

a(u+ v) = au+ av, (a+ b)u = au+ bu ,

a(bu) = (ab)u, 1u = u .

Here a, b are arbitrary elements of F, the elements u, v are arbitrary in V , and the
element 1 is the multiplicative identity of F.

The space of (m× n)-matrices over F is an important example of vector spaces.
Their properties are studied in Chapter 31.

A vector space V over a field F is said to be finite-dimensional if there is a
collection {v1, . . . , vn} of finitely many elements in V such that each of the elements
v ∈ V can be written as a linear combination v = a1v1 + · · · + anvn for some
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a1, . . . , an ∈ F. Such a set {vi} is called a generating set of V . The cardinality
of the smallest generating set of V is referred to as the dimension of V over F,
denoted dimF V . In a finite-dimensional vector space, a generating system containing
dimF V elements is said to be a basis.

A set {v1, . . . , vk} of elements of a vector space V is said to be linearly in-
dependent, if, for a1, . . . , ak ∈ F, the equation 0 = a1v1 + · · · + akvk implies
a1 = · · · = ak = 0. It is easy to show that a basis in V is a linearly indepen-
dent set. An important property of linearly independent sets is that such a set can
be extended to a basis of the vector space. The dimension of a vector space coincides
with the cardinality of its largest linearly independent set.

A non-empty subset U of a vector space V is said to be a subspace of V , if it is
an (additive) subgroup of V , and au ∈ U holds for all a ∈ F and u ∈ U . It is obvious
that a subspace can be viewed as a vector space.

The concept of homomorphisms can be defined for vector spaces, but in this
context we usually refer to them as linear maps. Let V1 and V2 be vector spaces
over a common field F. A map φ : V1 → V2 is said to be linear, if, for all a, b ∈ F
and u, v ∈ V1, we have

φ(au+ bv) = aφ(u) + bφ(v) .

The linear mapping φ is an isomorphism if φ is a one-to-one correspondence and
its inverse is also a homomorphism. Two vector spaces are said to be isomorphic if
there is an isomorphism between them.

Lemma 4.1 Suppose that φ : V1 → V2 is a linear mapping. Then U = φ(V1)
is a subspace in V2. If φ is one-to-one, then dimF U = dimF V1. If, in this case,
dimF V1 = dimF V2 <∞, then U = V2 and the mapping φ is an isomorphism.

Proof As

φ(u)± φ(v) = φ(u± v) and aφ(u) = φ(au),

we obtain that U is a subspace. Further, it is clear that the images of the elements
of a generating set of V1 form a generating set for U . Let us now suppose that φ is
one-to-one. In this case, the image of a linearly independent subset of V1 is linearly
independent in V2. It easily follows from these observations that the image of a
basis of V1 is a basis of U , and so dimF U = dimF V1. If we assume, in addition,
that dimF V2 = dimF V1, then a basis of U is also a basis of V2, as it is a linearly
independent set, and so it can be extended to a basis of V2. Thus U = V2 and the
mapping φ must be a one-to-one correspondence. It is easy to see, and is left to the
reader, that φ−1 is a linear mapping.

The direct sum of vector spaces can be defined similarly to the direct sum of
rings. The direct sum of the vector spaces V1 and V2 is denoted by V1 ⊕ V2. The
underlying set of the direct sum is V1 × V2, and the addition and the action of the
field F are defined componentwise. It is easy to see that

dimF (V1 ⊕ V2) = dimF V1 + dimF V2 .
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Finite multiplicative subgroups of fields. Let F be a field and let G ⊆ F
be a finite multiplicative subgroup of F. That is, the set G contains finitely many
elements of F, each of which is non-zero, G is closed under multiplication, and the
multiplicative inverse of an element of G also lies in G. We aim to show that the
group G is cyclic, that is, G can be generated by a single element. The main concepts
related to cyclic groups can be found in Section 33.3.4. ord(a) of an element a ∈ G
is the smallest positive integer k such that ak = 1.

The cyclic group generated by an element a is denoted by 〈a〉. Clearly, |〈a〉| =
ord(a), and an element ai generates the group 〈a〉 if and only if i and n are relatively
prime. Hence the group 〈a〉 has exactly φ(n) generators where φ is Euler’s totient
function (see Subsection 33.3.2).

The following identity is valid for an arbitrary integer n:
∑

d|n
φ(d) = n.

Here the summation index d runs through all positive divisors of n. In order to verify
this identity, consider all the rational numbers i/n with 1 ≤ i ≤ n. The number of
these is exactly n. After simplifying these fractions, they will be of the form j/d
where d is a positive divisor of n. A fixed denominator d will occur exactly φ(d)
times.

Theorem 4.2 Suppose that F is a field and let G be a finite multiplicative subgroup
of F. Then there exists an element a ∈ G such that G = 〈a〉.

Proof Suppose that |G| = n. Lagrange’s theorem (Theorem 33.15) implies that the
order of an element b ∈ G is a divisor of n. We claim, for an arbitrary d, that there
are at most φ(d) elements in F with order d. The elements with order d are roots
of the polynomial xd − 1. If F has an element b with order d, then, by Lemma 4.5,
xd − 1 = (x − b)(x − b2) · · · (x − bd) (the lemma will be verified later). Therefore
all the elements of F with order d are contained in the group 〈b〉, which, in turn,
contains exactly φ(d) elements of order d.

If G had no element of order n, then the order of each of the elements of G
would be a proper divisor of n. In this case, however, using the identity above and
the fact that φ(n) > 0, we obtain

n = |G| ≤
∑

d|n, d<n

φ(d) < n ,

which is a contradiction.

4.1.2. Polynomials

Suppose that F is a field and that a0, . . . , an are elements of F. Recall that an
expression of the form

f = f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ,
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where x is an indeterminate, is said to be a polynomial over F (see Chapter 32).
The scalars ai are the coefficients of the polynomial f . The degree of the zero
polynomial is zero, while the degree of a non-zero polynomial f is the largest index
j such that aj 6= 0. The degree of f is denoted by deg f .

The set of all polynomials over F in the indeterminate x is denoted by F[x]. If

f = f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and
g = g(x) = b0 + b1x+ b2x

2 + · · ·+ bnx
n

are polynomials with degree not larger than n, then their sum is defined as the
polynomial

h = h(x) = f + g = c0 + c1x+ c2x
2 + · · ·+ cnx

n

whose coefficients are ci = ai + bi.
The product fg of the polynomials f and g is defined as the polynomial

fg = d0 + d1x+ d2x
2 + · · ·+ d2nx

2n

with degree at most 2n whose coefficients are given by the equations dj =∑j
k=0 akbj−k. On the right-hand side of these equations, the coefficients with index

greater than n are considered zero. Easy computation shows that F[x] is a commu-
tative ring with respect to these operations. It is also straightforward to show that
F[x] has no zero divisors, that is, whenever fg = 0, then either f = 0 or g = 0.

Division with remainder and divisibility. The ring F[x] of polynomials over
F is quite similar, in many ways, to the ring Z of integers. One of their similar
features is that the procedure of division with remainder can be performed in both
rings.

Lemma 4.3 Let f(x), g(x) ∈ F[x] be polynomials such that g(x) 6= 0. Then there
there exist polynomials q(x) and r(x) such that

f(x) = q(x)g(x) + r(x) ,

and either r(x) = 0 or deg r(x) < deg g(x). Moreover, the polynomials q and r are
uniquely determined by these conditions.

Proof We verify the claim about the existence of the polynomials q and r by induc-
tion on the degree of f . If f = 0 or deg f < deg g, then the assertion clearly holds.
Let us suppose, therefore, that deg f ≥ deg g. Then subtracting a suitable multiple
q∗(x)g(x) of g from f , we obtain that the degree of f1(x) = f(x) − q∗(x)g(x) is
smaller than deg f(x). Then, by the induction hypothesis, there exist polynomials
q1 and r1 such that

f1(x) = q1(x)g(x) + r1(x)

and either r1 = 0 or deg r1 < deg g. It is easy to see that, in this case, the polynomials
q(x) = q1(x) + q∗(x) and r(x) = r1(x) are as required.
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It remains to show that the polynomials q and r are unique. Let Q and R be
polynomials, possibly different from q and r, satisfying the assertions of the lemma.
That is, f(x) = Q(x)g(x) + R(x), and so (q(x) − Q(x))g(x) = R(x) − r(x). If the
polynomial on the left-hand side is non-zero, then its degree is at least deg g, while
the degree of the polynomial on the right-hand side is smaller than deg g. This,
however, is not possible.

Let R be a commutative ring with a multiplicative identity and without zero
divisors, and set R∗ := R \ {0}. The ring R is said to be a Euclidean ring if there
is a function φ : R∗ → N such that φ(ab) ≥ φ(a)φ(b), for all a, b ∈ R∗; and, further,
if a ∈ R, b ∈ R∗, then there are elements q, r ∈ R such that a = qb+ r, and if r 6= 0,
then φ(r) < φ(b). The previous lemma shows that F[x] is a Euclidean ring where the
rôle of the function φ is played by the degree function.

The concept of divisibility in F[x] can be defined similarly to the definition
of the corresponding concept in the ring of integers. A polynomial g(x) is said to
be a divisor of a polynomial f(x) (the notation is g | f), if there is a polynomial
q(x) ∈ F[x] such that f(x) = q(x)g(x). The non-zero elements of F, which are clearly
divisors of each of the polynomials, are called the trivial divisors or units. A non-
zero polynomial f(x) ∈ F[x] is said to be irreducible, if whenever f(x) = q(x)g(x)
with q(x), g(x) ∈ F[x], then either q or g is a unit.

Two polynomials f, g ∈ F[x] are called associates, if there is some u ∈ F∗ such
that f(x) = ug(x).

Using Lemma 4.3, one can easily prove the unique factorisation theorem in the
ring of polynomials following the argument of the proof of the corresponding theorem
in the ring of integers (see Section 33.1). The role of the absolute value of integers
is played by the degree of polynomials.

Theorem 4.4 An arbitrary polynomial 0 6= f ∈ F[x] can be written in the form

f(x) = uq1(x)e1 · · · qr(x)er ,

where u ∈ F∗ is a unit, the polynomials qi ∈ F[x] are pairwise non-associate and
irreducible, and, further, the numbers ei are positive integers. Furthermore, this de-
composition is essentially unique in the sense that whenever

f(x) = UQ1(x)d1 · · ·Qs(x)ds

is another such decomposition, then r = s, and, after possibly reordering the factors
Qi, the polynomials qi and Qi are associates, and moreover di = ei for all 1 ≤ i ≤ r.

Two polynomials are said to be relatively prime, if they have no common irre-
ducible divisors.

A scalar a ∈ F is a root of a polynomial f ∈ F[x], if f(a) = 0. Here the value
f(a) is obtained by substituting a into the place of x in f(x).

Lemma 4.5 Suppose that a ∈ F is a root of a polynomial f(x) ∈ F[x]. Then there
exists a polynomial g(x) ∈ F[x] such that f(x) = (x− a)g(x). Hence the polynomial
f may have at most deg f roots.
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Proof By Lemma 4.3, there exists g(x) ∈ F[x] and r ∈ F such that f(x) = (x −
a)g(x)+r. Substituting a for x, we find that r = 0. The second assertion now follows
by induction on deg f from the fact that the roots of g are also roots of f .

The cost of the operations with polynomials. Suppose that f(x), g(x) ∈
F[x] are polynomials of degree at most n. Then the polynomials f(x) ± g(x) can
obviously be computed using O(n) field operations. The product f(x)g(x) can be
obtained, using its definition, by O(n2) field operations. If the Fast Fourier Trans-
form can be performed over F, then the multiplication can be computed using only
O(n lg n) field operations (see Theorem 32.2). For general fields, the cost of the
fastest known multiplication algorithms for polynomials (for instance the Schön-

hage–Strassen-method) is O(n lg n lg lgn), that is, Õ(n) field operations.
The division with remainder, that is, determining the polynomials q(x) and r(x)

for which f(x) = q(x)g(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x), can
be performed using O(n2) field operations following the straightforward method
outlined in the proof of Lemma 4.3. There is, however, an algorithm (the Sieveking–

Kung algorithm) for the same problem using only Õ(n) steps. The details of this
algorithm are, however, not discussed here.

Congruence, residue class ring. Let f(x) ∈ F[x] with deg f = n > 0, and let
g, h ∈ F[x]. We say that g is congruent to h modulo f , or simply g ≡ h (mod f),
if f divides the polynomial g − h. This concept of congruence is similar to the
corresponding concept introduced in the ring of integers (see 33.3.2). It is easy to
see from the definition that the relation ≡ is an equivalence relation on the set F[x].
Let [g]f (or simply [g] if f is clear from the context) denote the equivalence class
containing g. From Lemma 4.3 we obtain immediately, for each g, that there is a
unique r ∈ F[x] such that [g] = [r], and either r = 0 (if f divides g) or deg r < n. This
polynomial r is called the representative of the class [g]. The set of equivalence
classes is traditionally denoted by F[x]/(f).

Lemma 4.6 Let f, f1, f2, g1, g2 ∈ F[x] and let a ∈ F. Suppose that f1 ≡
f2 (mod f) and g1 ≡ g2 (mod f). Then

f1 + g1 ≡ f2 + g2 (mod f) ,

f1g1 ≡ f2g2 (mod f) ,

and
af1 ≡ af2 (mod f) .

Proof The first congruence is valid, as

(f1 + g1)− (f2 + g2) = (f1 − f2) + (g1 − g2) ,

and the right-hand side of this is clearly divisible by f . The second and the third
congruences follow similarly from the identities

f1g1 − f2g2 = (f1 − f2)g1 + (g1 − g2)f2
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and
af1 − af2 = a(f1 − f2) ,

respectively.

The previous lemma makes it possible to define the sum and the product of two
congruence classes [g]f and [h]f as [g]f + [h]f := [g + h]f and [g]f [h]f := [gh]f ,
respectively. The lemma claims that the sum and the product are independent of
the choice of the congruence class representatives. The same way, we may define the
action of F on the set of congruence classes: we set a[g]f := [ag]f .

Theorem 4.7 Suppose that f(x) ∈ F[x] and that deg f = n > 0.
(i) The set of residue classes F[x]/(f) is a commutative ring with an identity under
the operations + and · defined above.
(ii) The ring F[x]/(f) contains the field F as a subring, and it is an n-dimensional
vector space over F. Further, the residue classes [1], [x], . . . , [xn−1] form a basis of
F[x]/(f).
(iii) If f is an irreducible polynomial in F[x], then F[x]/(f) is a field.

Proof (i) The fact that F[x]/(f) is a ring follows easily from the fact that F[x] is a
ring. Let us, for instance, verify the distributive property:

[g]([h1]+[h2]) = [g][h1+h2] = [g(h1+h2)] = [gh1+gh2] = [gh1]+[gh2] = [g][h1]+[g][h2] .

The zero element of F[x]/(f) is the class [0], the additive inverse of the class [g] is
the class [−g], while the multiplicative identity element is the class [1]. The details
are left to the reader.

(ii) The set {[a] | a ∈ F} is a subring isomorphic to F. The correspondence is
obvious: a↔ [a]. By part (i), F[x]/(f) is an additive Abelian group, and the action
of F satisfies the vector space axioms. This follows from the fact that the polyno-
mial ring is itself a vector space over F. Let us, for example, verify the distributive
property:

a([h1]+[h2]) = a[h1 +h2] = [a(h1 +h2)] = [ah1 +ah2] = [ah1]+[ah2] = a[h1]+a[h2] .

The other properties are left to the reader.
We claim that the classes [1], [x], . . . , [xn−1] are linearly independent. For, if

[0] = a0[1] + a1[x] + · · ·+ an−1[xn−1] = [a0 + a1x+ · · ·+ an−1x
n−1] ,

then a0 = · · · = an−1 = 0, as the zero polynomial is the unique polynomial with
degree less than n that is divisible by f . On the other hand, for a polynomial g,
the degree of the class representative of [g] is less than n. Thus the class [g] can be
expressed as a linear combination of the classes [1], [x], . . . , [xn−1]. Hence the classes
[1], [x], . . . , [xn−1] form a basis of F[x]/(f), and so dimF F[x]/(f) = n.

(iii) Suppose that f is irreducible. First we show that F[x]/(f) has no zero
divisors. If [0] = [g][h] = [gh], then f divides gh, and so f divides either g or h. That
is, either [g] = 0 or [h] = 0. Suppose now that g ∈ F[x] with [g] 6= [0]. We claim that
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the classes [g][1], [g][x], . . . , [g][xn−1] are linearly independent. Indeed, an equation
[0] = a0[g][1]+· · ·+an−1[g][xn−1] implies [0] = [g][a0+· · ·+an−1x

n−1], and, in turn, it
also yields that a0 = · · · = an−1 = 0. Therefore the classes [g][1], [g][x], . . . , [g][xn−1]
form a basis of F[x]/(f). Hence there exist coefficients bi ∈ F for which

[1] = b0[g][1] + · · ·+ bn−1[g][xn−1] = [g][b0 + · · ·+ bn−1x
n−1] .

Thus we find that the class [0] 6= [g] has a multiplicative inverse, and so F[x]/(f) is
a field, as required.

We note that the converse of part (iii) of the previous theorem is also true, and
its proof is left to the reader (Exercise 4.1-1).

Example 4.2 We usually represent the elements of the residue class ring F[x]/(f) by their
representatives, which are polynomials with degree less than deg f .

1. Suppose that F = F2 is the field of two elements, and let f(x) = x3 + x + 1. Then
the ring F[x]/(f) has 8 elements, namely

[0], [1], [x], [x + 1], [x2], [x2 + 1], [x2 + x], [x2 + x + 1].

Practically speaking, the addition between the classes is the is addition of polynomials. For
instance

[x2 + 1] + [x2 + x] = [x + 1] .

When computing the product, we compute the product of the representatives, and substi-
tute it (or reduce it) with its remainder after dividing by f . For instance,

[x2 + 1] · [x2 + x] = [x4 + x3 + x2 + x] = [x + 1] .

The polynomial f is irreducible over F2, since it has degree 3, and has no roots. Hence the
residue class ring F[x]/(f) is a field.

2. Let F = R and let f(x) = x2 − 1. The elements of the residue class ring are the
classes of the form [ax + b] where a, b ∈ R. The ring F[x]/(f) is not a field, since f is not
irreducible. For instance, [x + 1][x − 1] = [0].

Lemma 4.8 Let L be a field containing a field F and let α ∈ L.
(i) If L is finite-dimensional as a vector space over F, then there is a non-zero
polynomial f ∈ F[x] such that α is a root of f .
(ii) Assume that there is a polynomial f ∈ F[x] with f(α) = 0, and let g be such
a polynomial with minimal degree. Then the polynomial g is irreducible in F[x].
Further, if h ∈ F[x] with h(α) = 0 then g is a divisor of h.

Proof (i) For a sufficiently large n, the elements 1, α, . . . , αn are linearly dependent
over F. A linear dependence gives a polynomial 0 6= f ∈ F[x] such that f(α) = 0.

(ii) If g = g1g2, then, as 0 = g(α) = g1(α)g2(α), the element α is a root of either
g1 or g2. As g was chosen to have minimal degree, one of the polynomials g1, g2 is a
unit, and so g is irreducible. Finally, let h ∈ F[x] such that h(α) = 0. Let q, r ∈ F[x]
be the polynomials as in Lemma 4.3 for which h(x) = q(x)g(x) + r(x). Substituting
α for x into the last equation, we obtain r(α) = 0, which is only possible if r = 0.
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Definition 4.9 The polynomial g ∈ F[x] in the last lemma is said to be a minimal
polynomial of α.

It follows from the previous lemma that the minimal polynomial is unique up to
a scalar multiple. It will often be helpful to assume that the leading coefficient (the
coefficient of the term with the highest degree) of the minimal polynomial g is 1.

Corollary 4.10 Let L be a field containing F, and let α ∈ L. Suppose that f ∈ F[x]
is irreducible and that f(α) = 0. Then f is a minimal polynomial of α.

Proof Suppose that g is a minimal polynomial of α. By the previous lemma, g | f
and g is irreducible. This is only possible if the polynomials f and g are associates.

Let L be a field containing F and let α ∈ L. Let F(α) denote the smallest subfield
of L that contains F and α.

Theorem 4.11 Let L be a field containing F and let α ∈ L. Suppose that f ∈ F[x]
is a minimal polynomial of α. Then the field F(α) is isomorphic to the field F[x]/(f).
More precisely, there exists an isomorphism φ : F[x]/(f)→ F(α) such that φ(a) = a,
for all a ∈ F, and φ([x]f ) = α. The map φ is also an isomorphism of vector spaces
over F, and so dimF F(α) = deg f .

Proof Let us consider the map ψ : F[x] → L, which maps a polynomial g ∈ F[x]
into g(α). This is clearly a ring homomorphism, and ψ(F[x]) ⊆ F(α). We claim
that ψ(g) = ψ(h) if and only if [g]f = [h]f . Indeed, ψ(g) = ψ(h) holds if and only
if ψ(g − h) = 0, that is, if g(α) − h(α) = 0, which, by Lemma 4.8, is equivalent
to f | g − h, and this amounts to saying that [g]f = [h]f . Suppose that φ is the
map F[x]/(f) → F(α) induced by ψ, that is, φ([g]f ) := ψ(g). By the argument
above, the map φ is one-to-one. Routine computation shows that φ is a ring, and
also a vector space, homomorphism. As F[x]/(f) is a field, its homomorphic image
φ(F[x]/(f)) is also a field. The field φ(F[x]/(f)) contains F and α, and so necessarily
φ(F[x]/(f)) = F(α).

Euclidean algorithm and the greatest common divisor. Let f(x), g(x) ∈
F[x] be polynomials such that g(x) 6= 0. Set f0 = f , f1 = g and define the polyno-
mials qi and fi using division with reminder as follows:

f0(x) = q1(x)f1(x) + f2(x) ,

f1(x) = q2(x)f2(x) + f3(x) ,

...

fk−2(x) = qk−1(x)fk−1(x) + fk(x) ,

fk−1(x) = qk(x)fk(x) + fk+1(x) .
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Note that if 1 < i < k then deg fi+1 is smaller than deg fi. We form this sequence
of polynomials until we obtain that fk+1 = 0. By Lemma 4.3, this defines a finite
process. Let n be the maximum of deg f and deg g. As, in each step, we decrease
the degree of the polynomials, we have k ≤ n+ 1. The computation outlined above
is usually referred to as the Euclidean algorithm. A version of this algorithm for
the ring of integers is described in Section 33.2.

We say that the polynomial h(x) is the greatest common divisor of the
polynomials f(x) and g(x), if h(x) | f(x), h(x) | g(x), and, if a polynomial h1(x) is a
divisor of f and g, then h1(x) is a divisor of h(x). The usual notation for the greatest
common divisor of f(x) and g(x) is gcd(f(x), g(x)). It follows from Theorem 4.4 that
gcd(f(x), g(x)) exists and it is unique up to a scalar multiple.

Theorem 4.12 Suppose that f(x), g(x) ∈ F[x] are polynomials, that g(x) 6= 0,
and let n be the maximum of deg f and deg g. Assume, further, that the number k
and the polynomial fk are defined by the procedure above. Then
(i) gcd(f(x), g(x)) = fk(x).
(ii) There are polynomials F (x), G(x) with degree at most n such that

fk(x) = F (x)f(x) +G(x)g(x) . (4.1)

(iii) With a given input f, g, the polynomials F (x), G(x), fk(x) can be computed
using O(n3) field operations in F.

Proof (i) Going backwards in the Euclidean algorithm, it is easy to see that the
polynomial fk divides each of the fi, and so it divides both f and g. The same way,
if a polynomial h(x) divides f and g, then it divides fi, for all i, and, in particular,
it divides fk. Thus gcd(f(x), g(x)) = fk(x).

(ii) The claim is obvious if f = 0, and so we may assume without loss of generality
that f 6= 0. Starting at the beginning of the Euclidean sequence, it is easy to see
that there are polynomials Fi(x), Gi(x) ∈ F[x] such that

Fi(x)f(x) +Gi(x)g(x) = fi(x) . (4.2)

We observe that (4.2) also holds if we substitute Fi(x) by its remainder F ∗
i (x) after

dividing by g and substitute Gi(x) by its remainder G∗
i (x) after dividing by f . In

order to see this, we compute

F ∗
i (x)f(x) +G∗

i (x)g(x) ≡ fi(x) (mod f(x)g(x)) ,

and notice that the degree of the polynomials on both sides of this congruence is
smaller than (deg f)(deg g). This gives

F ∗
i (x)f(x) +G∗

i (x)g(x) = fi(x) .

(iii) Once we determined the polynomials fi−1, fi, F
∗
i and G∗

i , the polynomials
fi+1, F ∗

i+1 and G∗
i+1 can be obtained using O(n2) field operations in F. Initially we

have F ∗
1 = 1 and G∗

2 = −q1. As k ≤ n+ 1, the claim follows.
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Remark. Traditionally, the Euclidean algorithm is only used to compute the
greatest common divisor. The version that also computes the polynomials F (x) and
G(x) in (4.1) is usually called the extended Euclidean algorithm. In Chapter ??

the reader can find a discussion of the Euclidean algorithm for polynomials. It is
relatively easy to see that the polynomials fk(x), F (x), and G(x) in (4.1) can, in
fact, be computed using O(n2) field operations. The cost of the asymptotically best

method is Õ(n).
The derivative of a polynomial is often useful when investigating multiple factors.

The derivative of the polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ F[x]

is the polynomial

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 .

It follows immediately from the definition that the map f(x) 7→ f ′(x) is an F-linear
mapping F[x] → F[x]. Further, for f(x), g(x) ∈ F[x] and a ∈ F, the equations
(f(x) + g(x))′ = f ′(x) + g′(x) and (af(x))′ = af ′(x) hold. The derivative of a
product can be computed using the Leibniz rule: for all f(x), g (x) ∈ F[x] we
have (f(x)g(x))′ = f ′(x)g(x) +f(x)g′(x). As the derivation is a linear map, in order
to show that the Leibniz rule is valid, it is enough to verify it for polynomials of
the form f(x) = xi and g(x) = xj . It is easy to see that, for such polynomials, the
Leibniz rule is valid.

The derivative f ′(x) is sensitive to multiple factors in the irreducible factorisation
of f(x).

Lemma 4.13 Let F be an arbitrary field, and assume that f(x) ∈ F[x] and f(x) =
uk(x)v(x) where u(x), v(x) ∈ F[x]. Then uk−1(x) divides the derivative f ′(x) of the
polynomial f(x).

Proof Using induction on k and the Leibniz rule, we find (uk(x))′ = kuk−1(x)u′(x).
Thus, applying the Leibniz rule again, f ′(x) = uk−1(x)(ku′(x)v(x) + uk(x)v′(x)).
Hence uk−1(x) | f ′(x).

In many cases the converse of the last lemma also holds.

Lemma 4.14 Let F be an arbitrary field, and assume that f(x) ∈ F[x] and f(x) =
u(x)v(x) where the polynomials u(x) and v(x) are relatively prime. Suppose further
that u′(x) 6= 0 (for instance F has characteristic 0 and u(x) is non-constant). Then
the derivative f ′(x) is not divisible by u(x).

Proof By the Leibniz rule, f ′(x) = u(x)v′(x) + u′(x)v(x) ≡ u′(x)v(x) (mod u(x)).
Since deg u′(x) is smaller than deg u(x), we obtain that u′(x) is not divisible by u(x),
and neither is the product u′(x)v(x), as u(x) and v(x) are relatively prime.
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The Chinese remainder theorem for polynomials. Using the following
theorem, the ring F[x]/(f) can be assembled from rings of the form F[x]/(g) where
g | f .

Theorem 4.15 (Chinese remainder theorem for polynomials) Let f1, . . . , fk ∈ F[x]
pairwise relatively prime polynomials with positive degree and set f = f1 · · · fk. Then
the rings F[x]/(f) and F[x]/(f1) ⊕ · · · ⊕ F[x]/(fk) are isomorphic. The mapping
realizing the isomorphism is

φ : [g]f 7→ ([g]f1
, . . . , [g]fk

), g ∈ F[x] .

Proof First we note that the map φ is well-defined. If h ∈ [g]f , then h = g + f∗f ,
which implies that h and g give the same remainder after division by the polynomial
fi, that is, [h]fi

= [g]fi
.

The mapping φ is clearly a ring homomorphism, and it is also a linear mapping
between two vector spaces over F. The mapping φ is one-to-one; for, if φ([g]) = φ([h]),
then φ([g − h]) = (0, . . . , 0), that is, fi | g − h (1 ≤ i ≤ k), which gives f | g − h and
[g] = [h].

The dimensions of the vector spaces F[x]/(f) and F[x]/(f1) ⊕ · · · ⊕ F[x]/(fk)
coincide: indeed, both spaces have dimension deg f . Lemma 4.1 implies that φ is an
isomorphism between vector spaces. It only remains to show that φ−1 preserves the
multiplication; this, however, is left to the reader.

Exercises
4.1-1 Let f ∈ F[x] be polynomial. Show that the residue class ring F[x]/(f) has no
zero divisors if and only if f is irreducible.
4.1-2 Let R be a commutative ring with an identity. A subset I ⊆ R is said to be
an ideal, if I is an additive subgroup, and a ∈ I, b ∈ R imply ab ∈ I. Show that R
is a field if and only if its ideals are exactly {0} and R.
4.1-3 Let a1, . . . , ak ∈ R. Let (a1, . . . , ak) denote the smallest ideal in R that
contains the elements ai. Show that (a1, . . . , ak) always exists, and it consists of the
elements of the form b1a1 + b2a2 + · · ·+ bkak where b1, . . . , bk ∈ R.
4.1-4 A commutative ring R with an identity and without zero divisors is said to
be a principal ideal domain if, for each ideal I of R, there is an element a ∈ I
such that (using the notation of the previous exercise) I = (a). Show that Z and
F[x] where F is a field, are principal ideal domains.
4.1-5 Suppose that S is a commutative ring with an identity, that I an ideal in S,
and that a, b ∈ S. Define a relation on S as follows: a ≡ b (mod I) if and only if
a− b ∈ I. Verify the following:
a.) The relation ≡ is an equivalence relation on S.
b.) Let [a]I denote the equivalence class containing an element a, and let S/I denote
the set of equivalence classes. Set [a]I + [b]I := [a + b]I , and [a]I [b]I := [ab]I . Show
that, with respect to these operations, S/I is a commutative ring with an identity.
Hint. Follow the argument in the proof of Theorem 4.7.
4.1-6 Let F be a field and let f(x), g(x) ∈ F[x] such that gcd(f(x), g(x)) = 1. Show
that there exists a polynomial h(x) ∈ F[x] such that h(x)g(x) ≡ 1 (mod f(x)). Hint.
Use the Euclidean algorithm.
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4.2. Finite fields

Finite fields, that is, fields with a finite number of elements, play an important rôle in
mathematics and in several of its application areas, for instance, in computing. They
are also fundamental in many important constructions. In this section we summarise
the most important results in the theory of finite fields, putting an emphasis on the
problem of their construction.

In this section p denotes a prime number, and q denotes a power of p with a
positive integer exponent.

Theorem 4.16 Suppose that F is a finite field. Then there is a prime number p
such that the prime field of F is isomorphic to Fp (the field of residue classes modulo
p). Further, the field F is a finite dimensional vector space over Fp, and the number
of its elements is a power of p. In fact, if dimFp

F = d, then |F| = pd.

Proof The characteristic of F must be a prime, say p, as a field with characteristic
zero must have infinitely many elements. Thus the prime field P of F is isomorphic
to Fp. Since P is a subfield, the field F is a vector space over P . Let α1, . . . , αd be a

basis of F over P . Then each α ∈ F can be written uniquely in the form
∑d

j=1 aiαi

where ai ∈ P . Hence |F| = pd.

In a field F, the set of non-zero elements (the multiplicative group of F) is denoted
by F∗. From Theorem 4.2 we immediately obtain the following result.

Theorem 4.17 If F is a finite field, then its multiplicative group F∗ is cyclic.

A generator of the group F∗ is said to be a primitive element. If |F| = q and
α is a primitive element of F, then the elements of F are 0, α, α2, . . . , αq−1 = 1.

Corollary 4.18 Suppose that F is a finite field with order pd and let α be a prim-
itive element of F. Let g ∈ Fp[x] be a minimal polynomial of α over Fp. Then g is
irreducible in Fp[x], the degree of g is d, and F is isomorphic to the field Fp[x]/(g).

Proof Since the element α is primitive in F, we have F = Fp(α). The rest of the
lemma follows from Lemma 4.8 and from Theorem 4.11.

Theorem 4.19 Let F be a finite field with order q. Then
(i) (Fermat’s little theorem) If β ∈ F∗, then βq−1 = 1.
(ii) If β ∈ F, then βq = β.

Proof (i) Suppose that α ∈ F∗ is a primitive element. Then we may choose an
integer i such that β = αi. Therefore

βq−1 = (αi)q−1 = (αq−1)i = 1i = 1 .

(ii) Clearly, if β = 0 then this claim is true, while, for β 6= 0, the claim follows
from part (i).
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Theorem 4.20 Let F be a field with q elements. Then

xq − x =
∏

α∈F

(x− α) .

Proof By Theorem 4.19 and Lemma 4.5, the product on the right-hand side is a
divisor of the polynomial xq − x ∈ F[x]. Now the assertion follows, as the degrees
and the leading coefficients of the two polynomials in the equation coincide.

Corollary 4.21 Arbitrary two finite fields with the same number of elements are
isomorphic.

Proof Suppose that q = pd, and that both K and L are fields with q elements.
Let β be a primitive element in L. Then Corollary 4.18 implies that a minimal
polynomial g(x) ∈ Fp[x] of β over Fp is irreducible (in Fp[x]) with degree d. Further,
L ∼= Fp[x]/(g(x)). By Lemma 4.8 and Theorem 4.19, the minimal polynomial g is
a divisor of the polynomial xq − x. Applying Theorem 4.20 to K, we find that the
polynomial xq − x, and also its divisor g(x), can be factored as a product of linear
terms in K[x], and so g(x) has at least one root α in K. As g(x) is irreducible in
Fp[x], it must be a minimal polynomial of α (see Corollary 4.10), and so Fp(α) is
isomorphic to the field Fp[x]/(g(x)). Comparing the number of elements in Fp(α)
and in K, we find that Fp(α) = K, and further, that K and L are isomorphic.

In the sequel, we let Fq denote the field with q elements, provided it exists. In
order to prove the existence of such a field for each prime-power q, the following two
facts will be useful.

Lemma 4.22 If p is a prime number and j is an integer such that 0 < j < p, then
p |
(

p
j

)
.

Proof On the one hand, the number
(

p
j

)
is an integer. On the other hand,

(
p
j

)
=

p(p − 1) · · · (p − j + 1)/j! is a fraction such that, for 0 < j < p, its numerator is
divisible by p, but its denominator is not.

Lemma 4.23 Let R be a commutative ring and let p be a prime such that pr = 0
for all r ∈ R. Then the map Φp : R→ R mapping r 7→ rp is a ring homomorphism.

Proof Suppose that r, s ∈ R. Clearly,

Φp(rs) = (rs)p = rpsp = Φp(r)Φp(s) .

By the previous lemma,

Φp(r + s) = (r + s)p =

p∑

j=0

(
p

j

)
rp−jsj = rp + sp = Φp(r) + Φp(s) .
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We obtain in the same way that Φp(r − s) = Φp(r)− Φp(s).

The homomorphism Φp in the previous lemma is called the Frobenius endo-
morphism.

Theorem 4.24 Assume that the polynomial g(x) ∈ Fq[x] is irreducible, and, for a

positive integer d, it is a divisor of the polynomial xqd − x. Then the degree of g(x)
divides d.

Proof Let n be the degree of g(x), and suppose, by contradiction, that d = tn +

s where 0 < s < n. The assumption that g(x) | xqd − x can be rephrased as

xqd ≡ x (mod g(x)). However, this means that, for an arbitrary polynomial u(x) =
∑N

i=0 uix
i ∈ Fq[x], we have

u(x)qd

=

N∑

i=0

uqd

i x
iqd

=

N∑

i=0

ui(x
qd

)i ≡
N∑

i=0

uix
i = u(x) (mod g(x)) .

Note that we applied Lemma 4.23 to the ring R = Fq[x]/(g(x)), and Theorem 4.19
to Fq. The residue class ring Fq[x]/(g(x)) is isomorphic to the field Fqn , which
has qn elements. Let u(x) ∈ Fq[x] be a polynomial for which u(x) (mod g(x))
is a primitive element in the field Fqn . That is, u(x)qn−1 ≡ 1 (mod g(x)), but
u(x)j 6≡ 1 (mod g(x)) for j = 1, . . . , qn − 2. Therefore,

u(x) ≡ u(x)qd

= u(x)qtn+s

= (u(x)qnt

)qs ≡ u(x)qs

(mod g(x)) ,

and so u(x)(u(x)qs−1 − 1) ≡ 0 (mod g(x)). Since the residue class ring Fq[x]/(g(x))
is a field, u(x) 6≡ 0 (mod g(x)), but we must have u(x)qs−1 ≡ 1 (mod g(x)). As
0 ≤ qs − 1 < qn − 1, this contradicts to the primitivity of u(x) (mod g(x)).

Theorem 4.25 For an arbitrary prime p and positive integer d, there exists a field
with pd elements.

Proof We use induction on d. The claim clearly holds if d = 1. Now let d > 1 and let
r be a prime divisor of d. By the induction hypothesis, there is a field with q = p(d/r)

elements. By Theorem 4.24, each of the irreducible factors, in Fq[x], of the the
polynomial f(x) = xqr−x has degree either 1 or r. Further, f ′(x) = (xqr−x)′ = −1,
and so, by Lemma 4.13, f(x) is square-free. Over Fq, the number of linear factors of
f(x) is at most q, and so is the degree of their product. Hence there exist at least
(qr − q)/r ≥ 1 polynomials with degree r that are irreducible in Fq[x]. Let g(x) be
such a polynomial. Then the field Fq[x]/(g(x)) is isomorphic to the field with qr = pd

elements.

Corollary 4.26 For each positive integer d, there is an irreducible polynomial
f ∈ Fp[x] with degree d.
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Proof Take a minimal polynomial over Fp of a primitive element in Fpd .

A little bit later, in Theorem 4.31, we will prove a stronger statement: a random
polynomial in Fp[x] with degree d is irreducible with high probability.

Subfields of finite fields. The following theorem describes all subfields of a
finite field.

Theorem 4.27 The field F = Fpn contains a subfield isomorphic to Fpk , if and
only if k | n. In this case, there is exactly one subfield in F that is isomorphic to Fpk .

Proof The condition that k | n is necessary, since the larger field is a vector space
over the smaller field, and so pn = (pk)l must hold with a suitable integer l.

Conversely, suppose that k | n, and let f ∈ Fp[x] be an irreducible polynomial
with degree k. Such a polynomial exists by Corollary 4.26. Let q = pk. Applying
Theorem 4.19, we obtain, in Fp[x]/(f), that xq ≡ x (mod f), which yields xpn

=

xql ≡ x (mod f). Thus f must be a divisor of the polynomial xpn − x. Using
Theorem 4.20, we find that f has a root α in F. Now we may prove in the usual way
that the subfield Fp(α) is isomorphic to Fpk .

The last assertion is valid, as the elements of Fq are exactly the roots of xq − x
(Theorem 4.20), and this polynomial can have, in an arbitrary field, at most q roots.

The structure of irreducible polynomials. Next we prove an important
property of the irreducible polynomials over finite fields.

Theorem 4.28 Assume that Fq ⊆ F are finite fields, and let α ∈ F. Let f ∈ Fq[x]
be the minimal polynomial of α over Fq with leading coefficient 1, and suppose that
deg f = d. Then

f(x) = (x− α)(x− αq) · · · (x− αqd−1

) .

Moreover, the elements α, αq, . . . , αqd−1

are pairwise distinct.

Proof Let f(x) = a0+a1x+· · ·+xd. If β ∈ F with f(β) = 0, then, using Lemma 4.23
and Theorem 4.19, we obtain

0 = f(β)q = (a0+a1β+· · ·+βd)q = aq
0+aq

1β
q+· · ·+βdq = a0+a1β

q+· · ·+βqd = f(βq) .

Thus βq is also a root of f .
As α is a root of f , the argument in the previous paragraph shows that so are the

elements α, αq, . . . , αqd−1

. Hence it suffices to show, that they are pairwise distinct.
Suppose, by contradiction, that αqi

= αqj

and that 0 ≤ i < j < d. Let β = αqi

and

let l = j−i. By assumption, β = βql

, which, by Lemma 4.8, means that f(x) | xql−x.
From Theorem 4.24, we obtain, in this case, that d | l, which is a contradiction, as
l < d.
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This theorem shows that a polynomial f which is irreducible over a finite field
cannot have multiple roots. Further, all the roots of f can be obtained from a single
root taking q-th powers repeatedly.

Automorphisms. In this section we characterise certain automorphisms of finite
fields.

Definition 4.29 Suppose that Fq ⊆ F are finite fields. The map Ψ : F → F is
an Fq-automorphism of the field F, if it is an isomorphism between rings, and
Ψ(a) = a holds for all a ∈ Fq.

Recall that the map Φ = Φq : F → F is defined as follows: Φ(α) = αq where
α ∈ F.

Theorem 4.30 The set of Fq-automorphisms of the field F = Fqd is formed by the
maps Φ,Φ2, . . . ,Φd = id.

Proof By Lemma 4.23, the map Φ : F → F is a ring homomorphism. The map
Φ is obviously one-to-one, and hence it is also an isomorphism. It follows from
Theorem 4.19, that Φ leaves the elements Fq fixed. Thus the maps Φj are Fq-
automorphisms of F.

Suppose that f(x) = a0 + a1x+ · · ·+ xd ∈ Fq[x], and β ∈ F with f(β) = 0, and
that Ψ is an Fq-automorphism of F. We claim that Ψ(β) is a root of f . Indeed,

0 = Ψ(f(β)) = Ψ(a0) + Ψ(a1)Ψ(β) + · · ·+ Ψ(β)d = f(Ψ(β)) .

Let β be a primitive element of F and assume now that f ∈ Fq[x] is a minimal

polynomial of β. By the observation above and by Theorem 4.28, Ψ(β) = βqj

, with
some 0 ≤ j < d, that is, Ψ(β) = Φj(β). Hence the images of a generating element of
F under the automorphisms Ψ and Φj coincide, which gives Ψ = Φj .

The construction of finite fields. Let q = pn. By Theorem 4.7 and Corol-
lary 4.26, the field Fq can be written in the form F[x]/(f), where f ∈ F[x] is an
irreducible polynomial with degree n. In practical applications of field theory, for
example in computer science, this is the most common method of constructing a
finite field. Using, for instance, the polynomial f(x) = x3 + x + 1 in Example 4.2,
we may construct the field F8. The following theorem shows that we have a good
chance of obtaining an irreducible polynomial by a random selection.

Theorem 4.31 Let f(x) ∈ Fq[x] be a uniformly distributed random polynomial
with degree k > 1 and leading coefficient 1. (Being uniformly distributed means that
the probability of choosing f is 1/qk.) Then f is irreducible over Fq with probability
at least 1/k − 1/qk/2.

Proof First we estimate the number of elements α ∈ Fqk for which Fq(α) = Fqk .
We claim that the number of such elements is at least

|Fqk | −
∑

r|k
|Fqk/r | ,
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where the summation runs for the distinct prime divisors r of k. Indeed, if α does
not generate, over Fq, the field Fqk , then it is contained in a maximal subfield of
Fqk , and these maximal subfields are, by Theorem 4.27, exactly the fields of the form
Fqk/r . The number of distinct prime divisors of k are at most lg k, and so the number

of such elements α is at least qk − (lg k)qk/2. The minimal polynomials with leading
coefficients 1 over Fq of such elements α have degree k and they are irreducible.
Such a polynomial is a minimal polynomial of exactly k elements α (Theorem 4.28).
Hence the number of distinct irreducible polynomials with degree k and leading
coefficient 1 in Fq[x] is at least

qk

k
− (lg k)qk/2

k
≥ qk

k
− qk/2 ,

from which the claim follows.

If, having Fq, we would like to construct one of its extensions Fqk , then it is
worth selecting a random polynomial

f(x) = a0 + a1x+ · · ·+ ak−1x
k−1 + xk ∈ Fq[x] .

In other words, we select uniformly distributed random coefficients a0, . . . , ak−1 ∈ Fq

independently. The polynomial so obtained is irreducible with a high probability (in
fact, with probability at least 1/k − ε if qk is large). Further, in this case, we also
have Fq[x]/(f) ∼= Fqk . We expect that we will have to select about k polynomials
before we find an irreducible one.

We have seen in Theorem 4.2 that field extensions can be obtained using irre-
ducible polynomials. It is often useful if these polynomials have some further nice
properties. The following lemma claims the existence of such polynomials.

Lemma 4.32 Let r be a prime. In a finite field Fq there exists an element which
is not an r-th power if and only if q ≡ 1 (mod r). If b ∈ Fq is such an element, then
the polynomial xr − b is irreducible in Fq[x], and so Fq[x]/(xr − b) is a field with qr

elements.

Proof Suppose first that r - q − 1 and let s be a positive integer such that sr ≡
1 (mod q − 1). If b ∈ Fq such that b 6= 0, then (bs)r = bsr = bbsr−1 = b, while if
b = 0, then b = 0r. Hence, in this case, each of the elements of Fq is an r-th power.

Next we assume that r | q − 1, and we let a be a primitive element in Fq.
Then, in Fq, the r-th powers are exactly the following 1 + (q − 1)/r elements:
0, (ar)0, (ar)1, . . . , (ar)(q−1)/r−1. Suppose now that rs | q − 1, but rs+1 - q − 1.
Then the order of an element b ∈ Fq \ {0} is divisible by rs if and only if b is not an
r-th power. Let b be such an element, and let g(x) ∈ Fq[x] be an irreducible factor
of the polynomial xr − b. Suppose that the degree of g(x) is d; clearly, d ≤ r. Then
K = Fq[x]/(g(x)) is a field with qd elements and, in K, the equation [x]r = b holds.
Therefore the order of [x] is divisible by rs+1. Consequently, rs+1 | qd − 1. As q − 1
is not divisible by rs+1, we have r | (qd − 1)/(q − 1) = 1 + q + · · · + qd−1. In other
words 1 + q+ . . .+ qd−1 ≡ 0 (mod r). On the other hand, as q ≡ 1 (mod r), we find
1 + q + · · · + qd−1 ≡ d (mod r), and hence d ≡ 0 (mod r), which, since 0 < d ≤ r,
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can only happen if d = r.

In certain cases, we can use the previous lemma to boost the probability of
finding an irreducible polynomial.

Claim 4.33 Let r be a prime such that r | q − 1. Then, for a random element
b ∈ F∗

q , the polynomial xr − b is irreducible in Fq[x] with probability at least 1− 1/r.

Proof Under the conditions, the r-th powers in F∗
q constitute the cyclic subgroup

with order (q−1)/r. Thus a random element b ∈ F∗
q is an r-th power with probability

1/r, and hence the assertion follows from Lemma 4.32.

Remark. Assume that r | (q− 1), and, if r = 2, then assume also that 4 | (q− 1).
In this case there is an element b in Fq that is not an r-th power. We claim that
that the residue class [x] is not an r-th power in Fq[x]/(xr − b) ∼= Fr

q. Indeed, by the
argument in the proof of Lemma 4.32, it suffices to show that r2 - (qr − 1)/(q − 1).
By our assumptions, this is clear if r = 2. Now assume that r > 2, and write
q ≡ 1 + rt (mod r2). Then, for all integers i ≥ 0, we have qi ≡ 1 + irt (mod r2),
and so, by the assumptions,

qr − 1

q − 1
= 1 + q + · · ·+ qr−1 ≡ r +

r(r − 1)

2
rt ≡ r (mod r2) .

Exercises
4.2-1 Show that the polynomial xq+1 − 1 can be factored as a product of linear
factors over the field Fq2 .
4.2-2 Show that the polynomial f(x) = x4 + x + 1 is irreducible over F2, that is,
F2[x]/(f) ∼= F16. What is the order of the element [x]f in the residue class ring? Is
it true that the element [x]f is primitive in F16?
4.2-3 Determine the irreducible factors of x31 − 1 over the field F2.
4.2-4 Determine the subfields of F36 .
4.2-5 Let a and b be positive integers. Show that there exists a finite field K con-
taining Fq such that Fqa ⊆ K and Fqb ⊆ K. What can we say about the number of
elements in K?
4.2-6 Show that the number of irreducible polynomials with degree k and leading
coefficient 1 over Fq is at most qk/k.
4.2-7 (a) Let F be a field, let V be an n-dimensional vector space over F, and let
A : V → V be a linear transformation whose minimal polynomial coincides with
its characteristic polynomial. Show that there exists a vector v ∈ V such that the
images v,Av, . . . , An−1v are linearly independent.

(b) A set S = {α, αq, . . . , αqd−1} is said to be a normal basis of Fqd over Fq, if
α ∈ Fqd and S is a linearly independent set over Fq. Show that Fqd has a normal basis
over Fq. Hint. Show that a minimal polynomial of the Fq-linear map Φ : Fqd → Fqd

is xd − 1, and use part (a).
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4.3. Factoring polynomials over finite fields

One of the problems that we often have to solve when performing symbolic com-
putation is the factorisation problem. Factoring an algebraic expression means
writing it as a product of simpler expressions. Experience shows that this can be
very helpful in the solution of a large variety of algebraic problems. In this section,
we consider a class of factorisation algorithms that can be used to factor polynomials
in one variable over finite fields.

The input of the polynomial factorisation problem is a polynomial f(x) ∈
Fq[x]. Our aim is to compute a factorisation

f = fe1
1 fe2

2 · · · fes
s (4.3)

of f where the polynomials f1, . . . , fs are pairwise relatively prime and irreducible
over Fq, and the exponents ei are positive integers. By Theorem 4.4, f determines
the polynomials fi and the exponents ei essentially uniquely.

Example 4.3 Let p = 23 and let

f(x) = x6 − 3x5 + 8x4 − 11x3 + 8x2 − 3x + 1 .

Then it is easy to compute modulo 23 that

f(x) = (x2 − x + 10)(x2 + 5x + 1)(x2 − 7x + 7) .

None of the factors x2 − x + 10, x2 + 5x + 1, x2 − 7x + 7 has a root in F23, and so they are
necessarily irreducible in F23[x].

The factorisation algorithms are important computational tools, and so they
are implemented in most of the computer algebra systems (Mathematica, Maple,
etc). These algorithms are often used in the area of error-correcting codes and in
cryptography.

Our aim in this section is to present some of the basic ideas and building blocks
that can be used to factor polynomials over finite fields. We will place an emphasis
on the existence of polynomial time algorithms. The discussion of the currently best
known methods is, however, outside the scope of this book.

4.3.1. Square-free factorisation

The factorisation problem in the previous section can efficiently be reduced to the
special case when the polynomial f to be factored is square-free; that is, in (4.3),
ei = 1 for all i. The basis of this reduction is Lemma 4.13 and the following simple
result. Recall that the derivative of a polynomial f(x) is denoted by f ′(x).

Lemma 4.34 Let f(x) ∈ Fq[x] be a polynomial. If f ′(x) = 0, then there exists a
polynomial g(x) ∈ Fq[x] such that f(x) = g(x)p.

Proof Suppose that f(x) =
∑n

i=0 aix
i. Then f ′(x) =

∑n
i=1 aiix

i−1. If the coefficient
aii is zero in Fq then either ai = 0 or p | i. Hence, if f ′(x) = 0 then f(x) can be
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written as f(x) =
∑k

j=0 bjx
pj . Let q = pd; then choosing cj = bpd−1

j , we have

cp
j = bpd

j = bj , and so f(x) = (
∑k

j=0 cjx
j)p.

If f ′(x) = 0, then, using the previous lemma, a factorisation of f(x) into
square-free factors can be obtained from that of the polynomial g(x), which has
smaller degree. On the other hand, if f ′(x) 6= 0, then, by Lemma 4.13, the poly-
nomial f(x)/gcd(f(x), f ′(x)) is already square-free and we only have to factor
gcd(f(x), f ′(x)) into square-free factors. The division of polynomials and computing
the greatest common divisor can be performed in polynomial time, by Theorem 4.12.
In order to compute the polynomial g(x), we need the solutions, in Fq, of equations

of the form yp = a with a ∈ Fq. If q = ps, then y = aps−1

is a solution of such an
equation, which, using fast exponentiation (repeated squaring, see 33.6.1), can be
obtained in polynomial time.

One of the two reduction steps can always be performed if f is divisible by a
square of a polynomial with positive degree.

Usually a polynomial can be written as a product of square-free factors in many
different ways. For the sake of uniqueness, we define the square-free factorisation
of a polynomial f ∈ F[x] as the factorisation

f = fe1
1 · · · fes

s ,

where e1 < · · · < es are integers, and the polynomials fi are relatively prime and
square-free. Hence we collect together the irreducible factors of f with the same
multiplicity. The following algorithm computes a square-free factorisation of f . Be-
sides the observations we made in this section, we also use Lemma 4.14. This lemma,
combined with Lemma 4.13, guarantees that the product of the irreducible factors
with multiplicity one of a polynomial f over a finite field is f/gcd(f, f ′).

Square-Free-Factorisation(f)

1 g ← f
2 S ← ∅
3 m← 1
4 i← 1
5 while deg g 6= 0
6 do if g′ = 0
7 then g ← p

√
g

8 i← i · p
9 else h← g/gcd(g, g′)

10 g ← g/h
11 if deg h 6= 0
12 then S ← S ∪ (h,m)
13 m← m+ i
14 return S

The degree of the polynomial g decreases after each execution of the main loop,
and the subroutines used in this algorithm run in polynomial time. Thus the method
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above can be performed in polynomial time.

4.3.2. Distinct degree factorisation

Suppose that f is a square-free polynomial. Now we factor f as

f(x) = h1(x)h2(x) · · ·ht(x) , (4.4)

where, for i = 1, . . . , t, the polynomial hi(x) ∈ Fq[x] is a product of irreducible
polynomials with degree i. Though this step is not actually necessary for the solution
of the factorisation problem, it is worth considering, as several of the known methods
can efficiently exploit the structure of the polynomials hi. The following fact serves
as the starting point of the distinct degree factorisation.

Theorem 4.35 The polynomial xqd − x is the product of all the irreducible poly-
nomials f ∈ Fq[x], each of which is taken with multiplicity 1, that have leading
coefficient 1 and whose degree divides d.

Proof As (xqd − x)′ = −1, all the irreducible factors of this polynomial occur with

multiplicity one. If f ∈ Fq[x] is irreducible and divides xqd−x, then, by Theorem 4.24,
the degree of f divides d.

Conversely, let f ∈ Fq[x] be an irreducible polynomial with degree k such that

k | d. Then, by Theorem 4.27, f has a root in Fqd , which implies f | xqd − x.

The theorem offers an efficient method for computing the polynomials hi(x).
First we separate h1 from f , and then, step by step, we separate the product of the
factors with higher degrees.

Distinct-Degree-Factorisation(f)

1 F ← f
2 for i← 1 to deg f

3 do hi ← gcd(F, xqi − x)
4 F ← F/hi

5 return h1, . . . , hdeg f

If, in this algorithm, the polynomial F (x) is constant, then we may stop, as the

further steps will not give new factors. As the polynomial xqi − x may have large
degree, computing gcd(F (x), xqi − x) must be performed with particular care. The

important idea here is that the residue xqi

(mod F (x)) can be computed using fast
exponentiation.

The algorithm outlined above is suitable for testing whether a polynomial is
irreducible, which is one of the important problems that we encounter when con-
structing finite fields. The algorithm presented here for distinct degree factorisation
can solve this problem efficiently. For, it is obvious that a polynomial f with degree
k is irreducible, if, in the factorisation (4.4), we have hk(x) = f(x).
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The following algorithm for testing whether a polynomial is irreducible is some-
what more efficient than the one sketched in the previous paragraph and handles
correctly also the inputs that are not square-free.

Irreducibility-Test(f)

1 n← deg f
2 if xpn 6≡ x (mod f)
3 then return "no"
4 for the prime divisors r of n

5 do if xpn/r ≡ x (mod f)
6 then return "no"
7 return "yes"

In lines 2 and 5, we check whether n is the smallest among the positive integers k

for which f divides xqk −x. By Theorem 4.35, this is equivalent to the irreducibility
of f . If f survives the test in line 2, then, by Theorem 4.35, we know that f is
square-free and k must divide n. Using at most lg n+ 1 fast exponentiations modulo
f , we can thus decide if f is irreducible.

Theorem 4.36 If the field Fq is given and k > 1 is an integer, then the field
Fqk can be constructed using a randomised Las Vegas algorithm which runs in time
polynomial in lg q and k.

Proof The algorithm is the following.

Finite-Field-Construction(qk)

1 for i← 0 to k − 1
2 do ai ← a random element (uniformly distributed) of Fq

3 f ← xk +
∑k−1

i=0 aix
i

4 if Irreducibility-Test(f) = "yes"
5 then return Fq[x]/(f)
6 else return "fail"

In lines 1–3, we choose a uniformly distributed random polynomial with leading
coefficient 1 and degree k. Then, in line 4, we efficiently check if f(x) is irreducible.
By Theorem 4.31, the polynomial f is irreducible with a reasonably high probability.

4.3.3. The Cantor-Zassenhaus algorithm

In this section we consider the special case of the factorisation problem in which q
is odd and the polynomial f(x) ∈ Fq[x] is of the form

f = f1f2 · · · fs , (4.5)

where the fi are pairwise relatively prime irreducible polynomials in Fq[x] with the
same degree d, and we also assume that s ≥ 2. Our motivation for investigating this
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special case is that a square-free distinct degree factorisation reduces the general fac-
torisation problem to such a simpler problem. If q is even, then Berlekamp’s method,
presented in Subsection 4.3.4, gives a deterministic polynomial time solution. There
is a variation of the method discussed in the present section that works also for even
q; see Problem 4-2

Lemma 4.37 Suppose that q is odd. Then there are (q2 − 1)/2 pairs (c1, c2) ∈
Fq × Fq such that exactly one of c

(q−1)/2
1 and c

(q−1)/2
2 is equal to 1.

Proof Suppose that a is a primitive element in Fq; that is, aq−1 = 1, but ak 6= 1 for

0 < k < q−1. Then Fq \{0} = {as|s = 0, . . . , q−2}, and further, as
(
a(q−1)/2

)2
= 1,

but a(q−1)/2 6= 1, we obtain that a(q−1)/2 = −1. Therefore as(q−1)/2 = (−1)s, and
so half of the element c ∈ Fq \ {0} give c(q−1)/2 = 1, while the other half give
c(q−1)/2 = −1. If c = 0 then clearly c(q−1)/2 = 0. Thus there are ((q−1)/2)((q+1)/2)

pairs (c1, c2) such that c
(q−1)/2
1 = 1, but c

(q−1)/2
2 6= 1, and, obviously, we have the

same number of pairs for which the converse is valid. Thus the number of pairs that
satisfy the condition is (q − 1)(q + 1)/2 = (q2 − 1)/2.

Theorem 4.38 Suppose that q is odd and the polynomial f(x) ∈ Fq[x] is of
the form (4.5) and has degree n. Choose a uniformly distributed random poly-
nomial u(x) ∈ Fq[x] with degree less than n. (That is, choose pairwise inde-
pendent, uniformly distributed scalars u0, . . . , un−1, and consider the polynomial
u(x) =

∑n−1
i=0 uix

i.) Then, with probability at least (q2d − 1)/(2q2d) ≥ 4/9, the
greatest common divisor

gcd(u(x)
qd

−1
2 − 1, f(x))

is a proper divisor of f(x).

Proof The element u(x) (mod fi(x)) corresponds to an element of the residue
class field F[x]/(fi(x)) ∼= Fqd . By the Chinese remainder theorem (Theorem 4.15),
choosing the polynomial u(x) uniformly implies that the residues of u(x) modulo
the factors fi(x) are independent and uniformly distributed random polynomials.
By Lemma 4.37, the probability that exactly one of the residues of the polynomial

u(x)(qd−1)/2 − 1 modulo f1(x) and f2(x) is zero is precisely (q2d − 1)/(2q2d). In this
case the greatest common divisor in the theorem is indeed a divisor of f . For, if

u(x)(qd−1)/2 − 1 ≡ 0 (mod f1(x)), but this congruence is not valid modulo f2(x),

then the polynomial u(x)(qd−1)/2−1 is divisible by the factor f1(x), but not divisible
by f2(x), and so its greatest common divisor with f(x) is a proper divisor of f(x).
The function

q2d − 1

2q2d
=

1

2
− 1

2q2d

is strictly increasing in qd, and it takes its smallest possible value if qd is the smallest
odd prime-power, namely 3. The minimum is, thus, 1/2− 1/18 = 4/9.
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The previous theorem suggests the following randomised Las Vegas polynomial
time algorithm for factoring a polynomial of the form (4.5) to a product of two
factors.

Cantor-Zassenhaus-Odd(f, d)

1 n← deg f
2 for i← 0 to n− 1
3 do ui ← a random element (uniformly distributed) of Fq

4 u←∑n−1
i=0 uix

i

5 g ← gcd(u(qd−1)/2 − 1, f)
6 if 0 < deg g < deg f
7 then return(g, f/g)
8 else return "fail"

If one of the polynomials in the output is not irreducible, then, as it is of the
form (4.5), it can be fed, as input, back into the algorithm. This way we obtain a
polynomial time randomised algorithm for factoring f .

In the computation of the greatest common divisor, the residue

u(x)(qd−1)/2 (mod f(x)) should be computed using fast exponentiation.
Now we can conclude that the general factorisation problem (4.3) over a field

with odd order can be solved using a randomised polynomial time algorithm.

4.3.4. Berlekamp’s algorithm

Here we will describe an algorithm that reduces the problem of factoring polynomials
to the problem of searching through the underlying field or its prime field. We assume
that

f(x) = fe1
1 (x) · · · fes

s (x) ,

where the fi(x) are pairwise non-associate, irreducible polynomials in Fq[x], and
also that deg f(x) = n. The Chinese remainder theorem (Theorem 4.15) gives an
isomorphism between the rings Fq[x]/(f) and

Fq[x]/(fe1
1 )⊕ · · · ⊕ Fq[x]/(fes

s ) .

The isomorphism is given by the following map:

[u(x)]f ↔ ([u(x)]fe1
1
, . . . , [u(x)]fes

s
) ,

where u(x) ∈ Fq[x].
The most important technical tools in Berlekamp’s algorithm are the p-th and

q-th power maps in the residue class ring Fq[x]/(f(x)). Taking p-th and q-th powers
on both sides of the isomorphism above given by the Chinese remainder theorem,
we obtain the following maps:

[u(x)]p ↔ ([u(x)p]fe1
1
, . . . , [u(x)p]fes

s
) , (4.6)

[u(x)]q ↔ ([u(x)q]fe1
1
, . . . , [u(x)q]fes

s
) . (4.7)
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The Berlekamp subalgebra Bf of the polynomial f = f(x) is the subring of
the residue class ring Fq[x]/(f) consisting of the fixed points of the q-th power map.
Further, the absolute Berlekamp subalgebra Af of f consists of the fixed points
of the p-th power map. In symbols,

Bf = {[u(x)]f ∈ Fq[x]/(f) : [u(x)q]f = [u(x)]f} ,

Af = {[u(x)]f ∈ Fq[x]/(f) : [u(x)p]f = [u(x)]f} .

It is easy to see that Af ⊆ Bf . The term subalgebra is used here, because both
types of Berlekamp subalgebras are subrings in the residue class ring Fq[x]/(f(x))
(that is they are closed under addition and multiplication modulo f(x)), and, in
addition, Bf is also linear subspace over Fq, that is, it is closed under multiplication
by the elements of Fq. The absolute Berlekamp subalgebra Af is only closed under
multiplication by the elements of the prime field Fp.

The Berlekamp subalgebra Bf is a subspace, as the map u 7→ uq−u (mod f(x))
is an Fq-linear map of Fq[x]/g(x) into itself, by Lemma 4.23 and Theorem 4.19.
Hence a basis of Bf can be computed as a solution of a homogeneous system of
linear equations over Fq, as follows.

For all i ∈ {0, . . . , n−1}, compute the polynomial hi(x) with degree at most n−1
that satisfies xiq − xi ≡ hi(x) (mod f(x)). For each i, such a polynomial hi can be
determined by fast exponentiation using O(lg q) multiplications of polynomials and
divisions with remainder. Set hi(x) =

∑n
j=0 hijx

j . The class [u]f of a polynomial

u(x) =
∑n−1

i=0 uix
i with degree less than n lies in the Berlekamp subalgebra if and

only if
n−1∑

i=0

uihi(x) = 0 ,

which, considering the coefficient of xj for j = 0, . . . , n − 1, leads to the following
system of n homogeneous linear equations in n variables:

n−1∑

i=0

hijui = 0, (j = 0, . . . , n− 1) .

Similarly, computing a basis of the absolute Berlekamp subalgebra over Fp can be
carried out by solving a system of nd homogeneous linear equations in nd variables
over the prime field Fp, as follows. We represent the elements of Fq in the usual
way, namely using polynomials with degree less than d in Fp[y]. We perform the
operations modulo g(y), where g(y) ∈ Fp[y] is an irreducible polynomial with degree
d over the prime field Fp. Then the polynomial u[x] ∈ Fq[x] of degree less than n
can be written in the form

n−1∑

i=0

d−1∑

j=0

uijy
jxi ,

where uij ∈ Fp. Let, for all i ∈ {0, . . . , n− 1} and for all j ∈ {0, . . . , d− 1}, hij(x) ∈
Fq[x] be the unique polynomial with degree at most (n − 1) for which hij(x) ≡
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(yjxi)p−yjxi (mod f(x)). The polynomial hij(x) is of the form
∑n−1

k=0

∑d−1
l=0 h

kl
ijy

lxk.
The criterion for being a member of the absolute Berlekamp subalgebra of [u] with

u[x] =
∑n−1

i=0

∑d−1
j=0 uijy

jxi is

n−1∑

i=0

d−1∑

j=0

uijhij(x) = 0 ,

which, considering the coefficients of the monomials ylxk, is equivalent to the fol-
lowing system of equations:

n−1∑

i=0

d−1∑

j=0

hkl
ijuij = 0 (k = 0, . . . , n− 1, l = 0, . . . , d− 1) .

This is indeed a homogeneous system of linear equations in the variables uij . Systems
of linear equations over fields can be solved in polynomial time (see Section 31.4),
the operations in the ring Fq[x]/(f(x)) can be performed in polynomial time, and
the fast exponentiation also runs in polynomial time. Thus the following theorem is
valid.

Theorem 4.39 Let f ∈ Fq[x]. Then it is possible to compute the Berlekamp subal-
gebras Bf ≤ Fq[x]/(f(x)) and Af ≤ Fq[x]/(f(x)), in the sense that an Fq-basis of Bf

and Fp-basis of Af can be obtained, using polynomial time deterministic algorithms.

By (4.6) and (4.7),

Bf = {[u(x)]f ∈ Fq[x]/(f) : [uq(x)]fei
i

= [u(x)]fei
i

(i = 1, . . . , s)} (4.8)

and

Af = {[u(x)]f ∈ Fq[x]/(f) : [up(x)]fei
i

= [u(x)]fei
i

(i = 1, . . . , s)} . (4.9)

The following theorem shows that the elements of the Berlekamp subalgebra can
be characterised by their Chinese remainders.

Theorem 4.40

Bf = {[u(x)]f ∈ Fq[x]/(f) : ∃ci ∈ Fq such that [u(x)]fei
i

= [ci]fei
i

(i = 1, . . . , s)}

and

Af = {[u(x)]f ∈ Fq[x]/(f) : ∃ci ∈ Fp such that [u(x)]fei
i

= [ci]fei
i

(i = 1, . . . , s)} .

Proof Using the Chinese remainder theorem, and equations (4.8), (4.9), we are only
required to prove that

uq(x) ≡ u(x) (mod ge(x))⇐⇒ ∃c ∈ Fq such that u(x) ≡ c (mod ge(x)) ,
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and

up(x) ≡ u(x) (mod ge(x))⇐⇒ ∃c ∈ Fp such that u(x) ≡ c (mod ge(x))

where g(x) ∈ Fq[x] is an irreducible polynomial, u(x) ∈ Fq[x] is an arbitrary poly-
nomial and e is a positive integer. In both of the cases, the direction ⇐ is a simple
consequence of Theorem 4.19. As Fp = {a ∈ Fq | ap = a}, the implication⇒ concern-
ing the absolute Berlekamp subalgebra follows from that concerning the Berlekamp
subalgebra, and so it suffices to consider the latter.

The residue class ring Fq[x]/(g(x)) is a field, and so the polynomial xq − x has
at most q roots in Fq[x]/(g(x)). However, we already obtain q distinct roots from
Theorem 4.19, namely the elements of Fq (the constant polynomials modulo g(x)).
Thus

uq(x) ≡ u(x) (mod g(x))⇐⇒ ∃c ∈ Fq such that u(x) ≡ c (mod g(x)) .

Hence, if uq(x) ≡ u(x) (mod ge(x)), then u(x) is of the form u(x) = c + h(x)g(x)
where h(x) ∈ Fq[x]. Let N be an arbitrary positive integer. Then

u(x) ≡ uq(x) ≡ uqN

(x) ≡ (c+ h(x)g(x))qN ≡ c+ h(x)qN

g(x)qN ≡ c (mod gqN

(x)) .

If we choose N large enough so that qN ≥ e holds, then, by the congruence above,
u(x) ≡ c (mod ge(x)) also holds.

An element [u(x)]f of Bf or Af is said to be non-trivial if there is no element
c ∈ Fq such that u(x) ≡ c (mod f(x)). By the previous theorem and the Chinese
remainder theorem, this holds if and only if there are i, j such that ci 6= cj . Clearly
a necessary condition is that s > 1, that is, f(x) must have at least two irreducible
factors.

Lemma 4.41 Let [u(x)]f be a non-trivial element of the Berlekamp subalgebra Bf .
Then there is an element c ∈ Fq such that the polynomial gcd(u(x) − c, f(x)) is a
proper divisor of f(x). If [u(x)]f ∈ Af , then there exists such an element c in the
prime field Fp.

Proof Let i and j be integers such that ci 6= cj ∈ Fq, u(x) ≡ ci (mod fei
i (x)),

and u(x) ≡ cj (mod f
ej

j (x)). Then, choosing c = ci, the polynomial u(x) − c is

divisible by fei
i (x), but not divisible by f

ej

j (x). If, in addition, u(x) ∈ Af , then also
c = ci ∈ Fp.

Assume that we have a basis of Af at hand. At most one of the basis elements
can be trivial, as a trivial element is a scalar multiple of 1. If f(x) is not a power of an
irreducible polynomial, then there will surely be a non-trivial basis element [u(x)]f ,
and so, using the idea in the previous lemma, f(x) can be factored two factors.

Theorem 4.42 A polynomial f(x) ∈ Fq[x] can be factored with a deterministic
algorithm whose running time is polynomial in p, deg f , and lg q.
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Proof It suffices to show that f can be factored to two factors within the given time
bound. The method can then be repeated.

Berlekamp-Deterministic(f)

1 S ← a basis of Af

2 if |S| > 1
3 then u← a non-trivial element of S
4 for c ∈ Fp

5 do g ← gcd(u− c, f)
6 if 0 < deg g < deg f
7 then return (g, f/g)
8 else return "a power of an irreducible"

In the first stage, in line 1, we determine a basis of the absolute Berlekamp
subalgebra. The cost of this is polynomial in deg f and lg q. In the second stage
(lines 2–8), after taking a non-trivial basis element [u(x)]f , we compute the greatest
common divisors gcd(u(x)− c, f(x)) for all c ∈ Fp. The cost of this is polynomial in
p and deg f .

If there is no non-trivial basis-element, then Af is 1-dimensional and f is the
e1-th power of the irreducible polynomial f1 where f1 and e1 can, for instance, be
determined using the ideas presented in Section 4.3.1.

The time bound in the previous theorem is not polynomial in the input size, as
it contains p instead of lg p. However, if p is small compared to the other parameters
(for instance in coding theory we often have p = 2), then the running time of the
algorithm will be polynomial in the input size.

Corollary 4.43 Suppose that p can be bounded by a polynomial function of deg f
and lg q. Then the irreducible factorisation of f can be obtained in polynomial time.

The previous two results are due to E. R. Berlekamp. The most important open
problem in the area discussed here is the existence of a deterministic polynomial
time method for factoring polynomials. The question is mostly of theoretical interest,
since the randomised polynomial time methods, such as the a Cantor -Zassenhaus
algorithm, are very efficient in practice.

Berlekamp’s randomised algorithm We can obtain a good randomised algo-
rithm using Berlekamp subalgebras. Suppose that q is odd, and, as before, f ∈ Fq[x]
is the polynomial to be factored.

Let [u(x)]f be a random element in the Berlekamp subalgebra Bf . An argu-
ment, similar to the one in the analysis of the Cantor-Zassenhaus algorithm shows
that, provided f(x) has at least two irreducible factors, the greatest common divisor
gcd(u(x)(q−1)/2 − 1, f(x)) is a proper divisor of f(x) with probability at least 4/9.
Now we present a variation of this idea that uses less random bits: instead of choosing
a random element from Bf , we only choose a random element from Fq.

Lemma 4.44 Suppose that q is odd and let a1 and a2 be two distinct elements of
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Fq. Then there are at least (q − 1)/2 elements b ∈ Fq such that exactly one of the
elements (a1 + b)(q−1)/2 and (a2 + b)(q−1)/2 is 1.

Proof Using the argument at the beginning of the proof of Lemma 4.37, one can
easily see that there are (q − 1)/2 elements in the set Fq \ {1} whose (q − 1)/2-th
power is −1. It is also quite easy to check, for a given element c ∈ Fq \ {1}, that
there is a unique b 6= −a2 such that c = (a1 + b)/(a2 + b). Indeed, the required b is
the solution of a linear equation.

By the above, there are (q − 1)/2 elements b ∈ Fq \ {−a2} such that

(
a1 + b

a2 + b

)(q−1)/2

= −1 .

For such a b, one of the elements (a1 + b)(q−1)/2 and (a2 + b)(q−1)/2 is equal to 1 and
the other is equal to −1.

Theorem 4.45 Suppose that q is odd and the polynomial f(x) ∈ Fq[x] has at least
two irreducible factors in Fq[x]. Let u(x) be a non-trivial element in the Berlekamp
subalgebra Bf . If we choose a uniformly distributed random element b ∈ Fq, then,
with probability at least (q−1)/(2q) ≥ 1/3, the greatest common divisor gcd((u(x) +
b)(q−1)/2 − 1, f(x)) is a proper divisor of the polynomial f(x).

Proof Let f(x) =
∏s

i=1 f
ei
i (x), where the factors fi(x) are pairwise distinct irre-

ducible polynomials. The element [u(x)]f is a non-trivial element of the Berlekamp
subalgebra, and so there are indices 0 < i, j ≤ s and elements ci 6= cj ∈ Fq such
that u(x) ≡ ci (mod fei

i (x)) and u(x) ≡ cj (mod f
ej

j (x)). Using Lemma 4.44 with
a1 = ci and a2 = cj , we find, for a random element b ∈ Fq, that the probability that
exactly one of the elements (ci +b)(q−1)/2−1 and (cj +b)(q−1)/2−1 is zero is at least
(q− 1)/(2q). If, for instance, (ci + b)(q−1)/2− 1 = 0, but (cj + b)(q−1)/2− 1 6= 0, then
(u(x) + b)(q−1)/2 − 1 ≡ 0 (mod fei

i (x)) but (u(x) + b)(q−1)/2 − 1 6= 0 (mod f
ej

j (x)),

that is, the polynomial (u(x) + b)(q−1)/2 − 1 is divisible by fei
i (x), but not divisible

by f
ej

j (x). Thus the greatest common divisor gcd(f(x), (u(x) + b)(q−1)/2 − 1) is a
proper divisor of f .

The quantity (q − 1)/(2q) = 1/2 − 1/(2q) is a strictly increasing function in q,
and so it takes its smallest value for the smallest odd prime-power, namely 3. The
minimum is 1/3.

The previous theorem gives the following algorithm for factoring a polynomial
to two factors.
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Berlekamp-Randomised(f)

1 S ← a basis of Bf

2 if |S| > 1
3 then u← a non-trivial elements of S
4 c← a random element (uniformly distributed) of Fq

5 g ← gcd((u− c)(q−1)/2 − 1, f)
6 if 0 < deg g < deg f
7 then return (g, f/g)
8 else return "fail"
9 else return "a power of an irreducible"

Exercises
4.3-1 Let f(x) ∈ Fp[x] be an irreducible polynomial, and let α be an element of the
field Fp[x]/(f(x)). Give a polynomial time algorithm for computing α−1. Hint. Use
the result of Exercise 4.1-6
4.3-2 Let f(x) = x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 ∈ F2[x]. Using the Distinct-
Degree-Factorisation algorithm, determine the factorisation (4.4) of f .
4.3-3 Follow the steps of the Cantor-Zassenhaus algorithm to factor the polynomial
x2 + 2x+ 9 ∈ F11[x].
4.3-4 Let f(x) = x2 − 3x + 2 ∈ F5[x]. Show that F5[x]/(f(x)) coincides with the
absolute Berlekamp subalgebra of f , that is, Af = F5[x]/(f(x)).
4.3-5 Let f(x) = x3−x2+x−1 ∈ F7[x]. Using Berlekamp’s algorithm, determine the
irreducible factors of f : first find a non-trivial element in the Berlekamp subalgebra
Af , then use it to factor f .

4.4. Lattice reduction

Our aim in the rest of this chapter is to present the Lenstra-Lenstra-Lovász algo-
rithm for factoring polynomials with rational coefficients. First we study a geometric
problem, which is interesting also in its own right, namely finding short lattice vec-
tors. Finding a shortest non-zero lattice vector is hard: by a result of Ajtai, if this
problem could be solved in polynomial time with a randomised algorithm, then so
could all the problems in the complexity class NP . For a lattice with dimension
n, the lattice reduction method presented in this chapter outputs, in polynomial
time, a lattice vector whose length is not greater than 2(n−1)/4 times the length of
a shortest non-zero lattice vector.
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4.4.1. Lattices

First, we recall a couple of concepts related to real vector spaces. Let Rn denote
the collection of real vectors of length n. It is routine to check that Rn is a vector
space over the field R. The scalar product of two vectors u = (u1, . . . , un) and
v = (v1, . . . , vn) in Rn is defined as the number (u, v) = u1v1 + u2v2 + · · · + unvn.
The quantity |u| =

√
(u, u) is called the length of the vector u. The vectors u and

v are said to be orthogonal if (u, v) = 0. A basis b1, . . . , bn of the space Rn is said
to be orthonormal, if, for all i, (bi, bi) = 1 and, for all i and j such that i 6= j, we
have (bi, bj) = 0.

The rank and the determinant of a real matrix, and definite matrices are dis-
cussed in Section 31.1.

Definition 4.46 A set L ⊆ Rn is said to be a lattice, if L is a subgroup with
respect to addition, and L is discrete, in the sense that each bounded region of Rn

contains only finitely many points of L. The rank of the lattice L is the dimension
of the subspace generated by L. Clearly, the rank of L coincides with the cardinality
of a maximal linearly independent subset of L. If L has rank n, then L is said to be
a full lattice. The elements of L are called lattice vectors or lattice points.

Definition 4.47 Let b1, . . . , br be linearly independent elements of a lattice L ⊆
Rn. If all the elements of L can be written as linear combinations of the elements
b1, . . . , br with integer coefficients, then the collection b1, . . . , br is said to be a basis
of L.

In this case, as the vectors b1, . . . , br are linearly independent, all vectors of Rn can
uniquely be written as real linear combinations of b1, . . . , br.

By the following theorem, the lattices are precisely those additive subgroups of
Rn that have bases.

Theorem 4.48 Let b1, . . . , br be linearly independent vectors in Rn and let L be
the set of integer linear combinations of b1, . . . , br. Then L is a lattice and the vectors
b1, . . . , br form a basis of L. Conversely, if L is a lattice in Rn, then it has a basis.

Proof Obviously, L is a subgroup, that is, it is closed under addition and subtraction.
In order to show that it is discrete, let us assume that n = r. This assumption means
no loss of generality, as the subspace spanned by b1, . . . , br is isomorphic to Rr. In
this case, φ : (α1, . . . , αn) 7→ α1b1 + . . .+αnbn is an invertible linear map of Rn onto
itself. Consequently, both φ and φ−1 are continuous. Hence the image of a discrete
set under φ is also discrete. As L = φ(Zn), it suffices to show that Zn is discrete in
Rn. This, however, is obvious: if K is a bounded region in Rn, then there is a positive
integer ρ, such that the absolute value of each of the coordinates of the elements of
K is at most ρ. Thus Zn has at most (2bρc+ 1)n elements in K.

The second assertion is proved by induction on n. If L = {0}, then we have
nothing to prove. Otherwise, by discreteness, there is a shortest non-zero vector, b1

say, in L. We claim that the vectors of L that lie on the line {λb1 | λ ∈ R} are
exactly the integer multiples of b1. Indeed, suppose that λ is a real number and
consider the vector λb1 ∈ L. As usual, {λ} denotes the fractional part of λ. Then
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0 6= |{λ}b1| < |b1|, yet {λ}b1 = λb1 − [λ]b1, that is {λ}b1 is the difference of two
vectors of L, and so is itself in L. This, however, contradicts to the fact that b1 was
a shortest non-zero vector in L. Thus our claim holds.

The claim verified in the previous paragraph shows that the theorem is valid
when n = 1. Let us, hence, assume that n > 1. We may write an element of Rn as
the sum of two vectors, one of them is parallel to b1 and the other one is orthogonal
to b1:

v = v∗ +
(v, b1)

(b1, b1)
b1 .

Simple computation shows that (v∗, b1) = 0, and the map v 7→ v∗ is linear. Let
L∗ = {v∗|v ∈ L}. We show that L∗ is a lattice in the subspace, or hyperplane,
H ∼= Rn−1 formed by the vectors orthogonal to b1. The map v 7→ v∗ is linear, and
so L∗ is closed under addition and subtraction. In order to show that it is discrete,
let K be a bounded region in H. We are required to show that only finitely many
points of L∗ are in K. Let v ∈ L be a vector such that v∗ ∈ K. Let λ be the integer
that is closest to the number (v, b1)/(b1, b1) and let v′ = v−λb1. Clearly, v′ ∈ L and
v′∗ = v∗. Further, we also have that |(v′, b1)/(b1, b1)| = |(v−λb1, b1)/(b1, b1)| ≤ 1/2,
and so the vector v′ lies in the bounded region K × {µb1 : − 1/2 ≤ µ ≤ 1/2}.
However, there are only finitely many vectors v′ ∈ L in this latter region, and so K
also has only finitely many lattice vectors v∗ = v′∗ ∈ L∗.

We have, thus, shown that L∗ is a lattice in H, and, by the induction hypothesis,
it has a basis. Let b2, . . . , br ∈ L be lattice vectors such that the vectors b∗

2, . . . , b
∗
r

form a basis of the lattice L∗. Then, for an arbitrary lattice vector v ∈ L, the vector
v∗ can be written in the form

∑r
i=2 λib

∗
i where the coefficients λi are integers. Then

v′ = v −∑r
i=2 λibi ∈ L and, as the map v 7→ v∗ is linear, we have v′∗ = 0. This,

however, implies that v′ is a lattice vector on the line λb1, and so v′ = λ1b1 with
some integer λ1. Therefore v =

∑r
i=1 λibi, that is, v is an integer linear combination

of the vectors b1, . . . , br. Thus the vectors b1, . . . , br form a basis of L.

A lattice L is always full in the linear subspace spanned by L. Thus, without
loss of generality, we will consider only full lattices, and, in the sequel, by a lattice
we will always mean a full lattice .

Example 4.4 Two familiar lattices in R2:
1. The square lattice is the lattice in R2 with basis b1 = (1, 0), b2 = (0, 1).
2. The triangular lattice is the lattice with basis b1 = (1, 0), b2 = (1/2, (

√
3)/2).

The following simple fact will often be used.

Lemma 4.49 Let L be a lattice in Rn, and let b1, . . . , bn be a basis of L. If we
reorder the basis vectors b1, . . . , bn, or if we add to a basis vector an integer linear
combination of the other basis vectors, then the collection so obtained will also form
a basis of L.

Proof Straightforward.
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Let b1, . . . , bn be a basis in L. The Gram matrix of b1, . . . , bn is the matrix
B = (Bij) with entries Bij = (bi, bj). The matrix B is positive definite, since it is
of the form ATA where A is a full-rank matrix (see Theorem 31.6). Consequently,
detB is a positive real number.

Lemma 4.50 Let b1, . . . , bn and w1, . . . , wn be bases of a lattice L and let B and
W be the matrices Bij = (bi, bj) and Wij = (wi, wj). Then the determinants of B
and W coincide.

Proof For all i = 1, . . . , n, the vector wi is of the form wi =
∑n

j=1 αijbj where the
αij are integers. Let A be the matrix with entries Aij = αij . Then, as

(wi, wj) = (

n∑

k=1

αikbk,

n∑

l=1

αjlbl) =

n∑

k=1

αik

n∑

l=1

(bk, bl)αjl ,

we have W = ABAT , and so detW = detB(detA)2. The number detW/detB =
(detA)2 is a non-negative integer, since the entries of A are integers. Swapping the
two bases, the same argument shows that detB/detW is also a non-negative integer.
This can only happen if detB = detW .

Definition 4.51 (The determinant of a lattice). The determinant of a lattice L is
detL =

√
detB where B is the Gram matrix of a basis of L.

By the previous lemma, detL is independent of the choice of the basis. The
quantity detL has a geometric meaning, as detL is the volume of the solid body,
the so-called parallelepiped, formed by the vectors {∑n

i=1 αibi : 0 ≤ α1, . . . , αn ≤ 1}.

Remark 4.52 Assume that the coordinates of the vectors bi in an orthonormal
basis of Rn are αi1, . . . , αin (i = 1, . . . , n). Then the Gram matrix B of the vectors
b1, . . . , bn is B = AAT where A is the matrix Aij = αij. Consequently, if b1, . . . , bn

is a basis of a lattice L, then detL = |detA|.

Proof The assertion follows from the equations (bi, bj) =
∑n

k=1 αikαjk.

4.4.2. Short lattice vectors

We will need a fundamental result in convex geometry. In order to prepare for this,
we introduce some simple notation. Let H ⊆ Rn. The set H is said to be centrally
symmetric, if v ∈ H implies −v ∈ H. The set H is convex, if u, v ∈ H implies
λu+ (1− λ)v ∈ H for all 0 ≤ λ ≤ 1.

Theorem 4.53 (Minkowski’s Convex Body Theorem). Let L be a lattice in Rn

and let K ⊆ Rn be a centrally symmetric, bounded, closed, convex set. Suppose that
the volume of K is at least 2n detL. Then K ∩ L 6= {0}.



4.4. Lattice reduction 207

Proof By the conditions, the volume of the set (1/2)K := {(1/2)v : v ∈ K} is at
least detL. Let b1, . . . , bn be a basis of the lattice L and let P = {∑n

i=1 αibi : 0 ≤
α1, . . . , αn < 1} be the corresponding half-open parallelepiped. Then each of the
vectors in Rn can be written uniquely in the form x+ z where x ∈ L and z ∈ P . For
an arbitrary lattice vector x ∈ L, we let

Kx = (1/2)K ∩ (x+ P ) = (1/2)K ∩ {x+ z : z ∈ P} .

As the sets (1/2)K and P are bounded, so is the set

(1/2)K − P = {u− v : u ∈ (1/2) ·K, v ∈ P} .

As L is discrete, L only has finitely many points in (1/2)K − P ; that is, Kx = ∅,
except for finitely many x ∈ L. Hence S = {x ∈ L : Kx 6= ∅} is a finite set, and,
moreover, the set (1/2)K is the disjoint union of the sets Kx (x ∈ S). Therefore, the
total volume of these sets is at least detL. For a given x ∈ S, we set Px = Kx−x =
{z ∈ P : x + z ∈ (1/2)K}. Consider the closure P and Px of the sets P and Px,
respectively:

P =

{
n∑

i=1

αibi : 0 ≤ α1, . . . , αn ≤ 1

}

and Px =
{
z ∈ P : x+ z ∈ (1/2)K

}
. The total volume of the closed sets Px ⊆ P

is at least as large as the volume of the set P , and so these sets cannot be disjoint:
there are x 6= y ∈ S and z ∈ P such that z ∈ Px ∩ Py, that is, x+ z ∈ (1/2)K and
y+ z ∈ (1/2)K. As (1/2) ·K is centrally symmetric, we find that −y− z ∈ (1/2) ·K.
As (1/2)K is convex, we also have (x − y)/2 = ((x + z) + (−y − z))/2 ∈ (1/2)K.
Hence x− y ∈ K. On the other hand, the difference x− y of two lattice points lies
in L \ {0}.

Minkowski’s theorem is sharp. For, let ε > 0 be an arbitrary positive number,
and let L = Zn be the lattice of points with integer coordinates in Rn. Let K be
the set of vectors (v1, . . . , vn) ∈ Rn for which −1 + ε ≤ vi ≤ 1 − ε (i = 1, . . . , n).
Then K is bounded, closed, convex, centrally symmetric with respect to the origin,
its volume is (1− ε)n2n detL, yet L ∩K = {0}.

Corollary 4.54 Let L be a lattice in Rn. Then L has a lattice vector v 6= 0 whose
length is at most

√
n n
√

detL.

Proof Let K be the following centrally symmetric cube with side length s =
2 n
√

detL:

K = {(v1, . . . , vn) ∈ Rn : − s/2 ≤ vi ≤ s/2, i = 1, . . . , n} .

The volume of the cube K is exactly 2n detL, and so it contains a non-zero lattice
vector. However, the vectors in K have length at most

√
n n
√

detL.

We remark that, for n > 1, we can find an even shorter lattice vector, if we
replace the cube in the proof of the previous assertion by a suitable ball.
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4.4.3. Gauss’ algorithm for two-dimensional lattices

Our goal is to design an algorithm that finds a non-zero short vector in a given
lattice. In this section we consider this problem for two-dimensional lattices, which
is the simplest non-trivial case. Then there is an elegant, instructive, and efficient
algorithm that finds short lattice vectors. This algorithm also serves as a basis for
the higher-dimensional cases. Let L be a lattice with basis b1, b2 in R2.

Gauss(b1, b2)

1 (a, b)← (b1, b2)
2 forever

3 do b← the shortest lattice vector on the line b− λa
4 if |b| < |a|
5 then b↔ a
6 else return (a, b)

In order to analyse the procedure, the following facts will be useful.

Lemma 4.55 Suppose that a and b are two linearly independent vectors in the
plane R2, and let L be the lattice generated by them. The vector b is a shortest
non-zero vector of L on the line b− λa if and only if

|(b, a)/(a, a)| ≤ 1/2 . (4.10)

Proof We write b as the sum of a vector parallel to a and a vector orthogonal to a:

b = (b, a)/(a, a)a+ b∗ . (4.11)

Then, as the vectors a and b∗ are orthogonal,

|b− λa|2 =

∣∣∣∣
(

(b, a)

(a, a)
− λ
)
a+ b∗

∣∣∣∣
2

=

(
(b, a)

(a, a)
− λ
)2

|a|2 + |b∗|2 .

This quantity takes its smallest value for the integer λ that is the closest to the
number (b, a)/(a, a). Hence λ = 0 gives the minimal value if and only if (4.10) holds.

Lemma 4.56 Suppose that the linearly independent vectors a and b form a basis
for a lattice L ⊆ R2 and that inequality (4.10) holds. Assume, further, that

|b|2 ≥ (3/4)|a|2 . (4.12)

Write b, as in (4.11), as the sum of the vector ((b, a)/(a, a))a, which is parallel to a,
and the vector b∗ = b− ((b, a)/(a, a))a, which is orthogonal to a. Then

|b∗|2 ≥ (1/2)|a|2 . (4.13)

Further, either b or a is a shortest non-zero vector in L.
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Proof By the assumptions,

|a|2 ≤ 4

3
|b|2 =

4

3
|b∗|2 +

4

3
((b, a)/(a, a))

2 |a|2 ≤ 4

3
|b∗|2 + (1/3)|a|2 .

Rearranging the last displayed line, we obtain |b∗|2 ≥ (1/2)|a|2.
The length of a vector 0 6= v = αa+ βb ∈ L can be computed as

|αa+ βb|2 = |βb∗|2 + (α+ β(b, a)/(a, a))
2 |a|2 ≥ β2|b∗|2 ≥ (1/2)β2|a|2,

which implies |v| > |a| whenever |β| ≥ 2. If β = 0 and α 6= 0, then |v| = |α| · |a| ≥ |a|.
Similarly, α = 0 and β 6= 0 gives |v| = |β| · |b| ≥ |b|. It remains to consider the case
when α 6= 0 and β = ±1. As | − v| = |v|, we may assume that β = 1. In this case,
however, v is of the form v = b− λa (λ = −α), and, by Lemma 4.55, the vector b is
a shortest lattice vector on this line.

Theorem 4.57 Let v be a shortest non-zero lattice vector in L. Then Gauss’ algo-
rithm terminates after O(1 + lg(|b1|/|v|)) iterations, and the resulting vector a is a
shortest non-zero vector in L.

Proof First we verify that, during the course of the algorithm, the vectors a and b
will always form a basis for the lattice L. If, in line 3, we replace b by a vector of
the form b′ = b− λa, then, as b = b′ + λa, the pair a, b′ remains a basis of L. The
swap in line 5 only concerns the order of the basis vectors. Thus a and b is always a
basis of L, as we claimed.

By Lemma 4.55, inequality (4.10) holds after the first step (line 3) in the loop,
and so we may apply Lemma 4.56 to the scenario before lines 4–5. This shows that
if none of a and b is shortest, then |b|2 ≤ (3/4)|a|2. Thus, except perhaps for the last
execution of the loop, after each swap in line 5, the length of a is decreased by a
factor of at least

√
3/4. Thus we obtain the bound for the number of executions of

the loop. Lemma 4.56 implies also that the vector a at the end is a shortest non-zero
vector in L.

Gauss’ algorithm gives an efficient polynomial time method for computing a
shortest vector in the lattice L ⊆ R2. The analysis of the algorithm gives the following
interesting theoretical consequence.

Corollary 4.58 Let L be a lattice in R2, and let a be a shortest non-zero lattice
vector in L. Then |a|2 ≤ (2/

√
3) detL.

Proof Let b be a vector in L such that b is linearly independent of a and (4.10)
holds. Then

|a|2 ≤ |b|2 = |b∗|2 +

(
(b, a)

(a, a)

)2

|a|2 ≤ |b∗|2 +
1

4
|a|2 ,

which yields (3/4)|a|2 ≤ |b∗|2. The area of the fundamental parallelogram can be
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computed using the well-known formula

area = base · height ,

and so detL = |a||b∗|. The number |b∗| can now be bounded by the previous in-
equality.

4.4.4. A Gram-Schmidt orthogonalisation and weak reduction

Let b1, . . . , bn be a linearly independent collection of vectors in Rn. For an index i
with i ∈ {1, . . . , n}, we let b∗

i denote the component of bi that is orthogonal to the
subspace spanned by b1, . . . , bi−1. That is,

bi = b∗
i +

i−1∑

j=1

λijbj ,

where
(b∗

i , bj) = 0 for j = 1, . . . , i− 1 .

Clearly b∗
1 = b1. The vectors b∗

1, . . . , b
∗
i−1 span the same subspace as the vectors

b1, . . . , bi−1, and so, with suitable coefficients µij , we may write

bi = b∗
i +

i−1∑

j=1

µijb
∗
j , (4.14)

and
(b∗

i , b
∗
j ) = 0, if j 6= i .

By the latter equations, the vectors b∗
1, . . . , b

∗
i−1, b

∗
i form an orthogonal system, and

so

µij =
(bi, b

∗
j )

(b∗
j , b

∗
j )

(j = 1, . . . , i− 1) . (4.15)

The set of the vectors b∗
1, . . . , b

∗
n is said to be the Gram-Schmidt orthogonal-

isation of the vectors b1, . . . , bn.

Lemma 4.59 Let L ⊆ Rn be a lattice with basis b1, . . . , bn. Then

detL =

n∏

i=1

|b∗
i | .

Proof Set µii = 1 and µij = 0, if j > i. Then b∗
i =

∑n
k=1 µikbk, and so

(b∗
i , b

∗
j ) =

n∑

k=1

µik

n∑

l=1

(bk, bl)µjl ,

that is, B∗ = MBMT where B and B∗ are the Gram matrices of the collections
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b1, . . . , bn and b∗
1, . . . , b

∗
n, respectively, and M is the matrix with entries µij . The

matrix M is a lower triangular matrix with ones in the main diagonal, and so
detM = detMT = 1. As B∗ is a diagonal matrix, we obtain

∏n
i=1 |b∗

i |2 = detB∗ =
(detM)(detB)(detMT ) = detB.

Corollary 4.60 (Hadamard inequality).
∏n

i=1 |bi| ≥ detL.

Proof The vector bi can be written as the sum of the vector b∗
i and a vector orthog-

onal to b∗
i , and hence |b∗

i | ≤ |bi|.

The vector b∗
i is the component of bi orthogonal to the subspace spanned by the

vectors b1, . . . , bi−1. Thus b∗
i does not change if we subtract a linear combination of

the vectors b1, . . . , bi−1 from bi. If, in this linear combination, the coefficients are
integers, then the new sequence b1, . . . , bn will be a basis of the same lattice as the
original. Similarly to the first step of the loop in Gauss’ algorithm, we can make the
numbers µij in (4.15) small. The input of the following procedure is a basis b1, . . . , bn

of a lattice L.

Weak-Reduction(b1, . . . , bn)

1 forj ← n− 1 downto 1
2 do for i← j + 1 to n
3 bi ← bi − λbj , where λ is the integer nearest the number (bi, b

∗
j )/(b∗

j , b
∗
j )

4 return (b1, . . . , bn)

Definition 4.61 (Weakly reduced basis). A basis b1, . . . , bn of a lattice is said to
be weakly reduced if the coefficients µij in (4.15) satisfy

|µij | ≤
1

2
for 1 ≤ j < i ≤ n .

Lemma 4.62 The basis given by the procedure Weak-Reduction is weakly re-
duced.

Proof By the remark preceding the algorithm, we obtain that the vectors b∗
1, . . . , b

∗
n

never change. Indeed, we only subtract linear combinations of vectors with index less
than i from bi. Hence the inner instruction does not change the value of (bk, b

∗
l ) with

k 6= i. The values of the (bi, b
∗
l ) do not change for l > j either. On the other hand,

the instruction achieves, with the new bi, that the inequality |µij | ≤ 1/2 holds:

|(bi − λb∗
j , b

∗
j )| = |(bi, b

∗
j )− λ(b∗

j , b
∗
j )| = |(bi, b

∗
j )− λ(b∗

j , b
∗
j )| ≤ 1

2
(b∗

j , b
∗
j ) .

By the observations above, this inequality remains valid during the execution of the
procedure.
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4.4.5. Lovász-reduction

First we define, in an arbitrary dimension, a property of the bases that usually
turns out to be useful. The definition will be of a technical nature. Later we will see
that these bases are interesting, in the sense that they consist of short vectors. This
property will make them widely applicable.

Definition 4.63 A basis b1, . . . , bn of a lattice L is said to be (Lovász-)reduced
if

• it is weakly reduced,

and, using the notation introduced for the Gram-Schmidt orthogonalisation,

• |b∗
i |2 ≤ (/3)|b∗

i+1 + µi+1,ib
∗
i |2 for all 1 ≤ i < n.

Let us observe the analogy of the conditions above to the inequalities that we
have seen when investigating Gauss’ algorithm. For i = 1, a = b1 and b = b2, being
weakly reduced ensures that b is a shortest vector on the line b − λa. The second
condition is equivalent to the inequality |b|2 ≥ (3/4)|a|2, but here it is expressed in
terms of the Gram-Schmidt basis. For a general index i, the same is true, if a plays
the rôle of the vector bi, and b plays the rôle of the component of the vector bi+1

that is orthogonal to the subspace spanned by b1, . . . , bi−1.

Lovász-Reduction(b1, . . . , bn)

1 forever

2 do (b1, . . . , bn)←Weak-Reduction(b1, . . . , bn)
3 find an index i for which the second condition of being reduced is violated
4 if there is such an i
5 then bi ↔ bi+1

6 else return (b1, . . . , bn)

Theorem 4.64 Suppose that in the lattice L ⊆ Rn each of the pairs of the lattice
vectors has an integer scalar product. Then the swap in the 5th line of the Lovász-
Reduction occurs at most lg4/3(B1 · · ·Bn−1) times where Bi is the upper left (i×i)-
subdeterminant of the Gram matrix of the initial basis b1, . . . , bn.

Proof The determinant Bi is the determinant of the Gram matrix of b1, . . . , bi, and,
by the observations we made at the discussion of the Gram-Schmidt orthogonalisa-
tion, Bi =

∏i
j=1 |b∗

j |2. This, of course, implies that Bi = Bi−1|b∗
i |2 for i > 1. By

the above, the procedure Weak-Reduction cannot change the vectors b∗
i , and so

it does not change the product
∏n−1

j=1 Bj either. Assume, in line 5 of the procedure,
that a swap bi ↔ bi+1 takes place. Observe that, unless j = i, the sets {b1, . . . , bj}
do not change, and neither do the determinants Bj . The rôle of the vector b∗

i is
taken over by the vector b∗

i+1 + µi,i+1bi, whose length, because of the conditions of

the swap, is at most
√

3/4 times the length of b∗
i . That is, the new Bi is at most 3/4

times the old. By the observation above, the new value of B =
∏n−1

j=1 Bj will also
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be at most 3/4 times the old one. Then the assertion follows from the fact that the
quantity B remains a positive integer.

Corollary 4.65 Under the conditions of the previous theorem, the cost of the
procedure Lovász-Reduction is at most O(n5 lgnC) arithmetic operations with
rational numbers where C is the maximum of 2 and the quantities |(bi, bj)| with
i, j = 1, . . . , n.

Proof It follows from the Hadamard inequality that

Bi ≤
i∏

j=1

√
(b1, bj)2 + . . .+ (bi, bj)2 ≤ (

√
iC)i ≤ (

√
nC)n .

Hence B1 · · ·Bn−1 ≤ (
√
nC)n(n−1) and lg4/3(B1 . . . Bn−1) = O(n2 lg nC). By the

previous theorem, this is the number of iterations in the algorithm. The cost of the
Gram-Schmidt orthogonalisation is O(n3) operations, and the cost of weak reduc-
tion is O(n2) scalar product computations, each of which can be performed using
O(n) operations (provided the vectors are represented by their coordinates in an
orthogonal basis).

One can show that the length of the integers that occur during the run of the
algorithm (including the numerators and the denominators of the fractions in the
Gram-Schmidt orthogonalisation) will be below a polynomial bound.

4.4.6. Properties of reduced bases

Theorem 4.67 of this section gives a summary of the properties of reduced bases
that turn out to be useful in their applications. We will find that a reduced basis
consists of relatively short vectors. More precisely, |b1| will approximate, within a
constant factor depending only on the dimension, the length of a shortest non-zero
lattice vector.

Lemma 4.66 Let us assume that the vectors b1, . . . , bn form a reduced basis of a
lattice L. Then, for 1 ≤ j ≤ i ≤ n,

(b∗
i , b

∗
i ) ≥ 2j−i(b∗

j , b
∗
j ) . (4.16)

In particular,

(b∗
i , b

∗
i ) ≥ 21−i(b∗

1, b
∗
1) . (4.17)

Proof Substituting a = b∗
i , b = b∗

i+1 + ((bi+1, b
∗
i ))/((b∗

i , b
∗
i )b∗

i ), Lemma 4.56 gives,
for all 1 ≤ i < n, that

(b∗
i+1, b

∗
i+1) ≥ (1/2)(b∗

i , b
∗
i ) .

Thus, inequality (4.16) follows by induction.

Now we can formulate the fundamental theorem of reduced bases.
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Theorem 4.67 Assume that the vectors b1, . . . , bn form a reduced basis of a lattice
L. Then
(i) |b1| ≤ 2(n−1)/4(detL)(1/n).
(ii) |b1| ≤ 2(n−1)/2|b| for all lattice vectors 0 6= b ∈ L. In particular, the length of b1

is not greater than 2(n−1)/2 times the length of a shortest non-zero lattice vector.
(iii) |b1| · · · |bn| ≤ 2(n(n−1))/4 detL.

Proof (i) Using inequality (4.17),

(detL)2 =

n∏

i=1

(b∗
i , b

∗
i ) ≥

n∏

i=1

(21−i(b1, b1)) = 2
−n(n−1)

2 (b1, b1)n ,

and so assertion (i) holds.
(ii) Let b =

∑n
i=1 zibi ∈ L with zi ∈ Z be a lattice vector. Assume that zj is the

last non-zero coefficient and write bj = b∗
j + v where v is a linear combination of the

vectors b1, . . . , bj−1. Hence b = zjb
∗
j + w where w lies in the subspace spanned by

b1, . . . , bj−1. As b∗
j is orthogonal to this subspace,

(b, b) = z2
j (b∗

j , b
∗
j ) + (w,w) ≥ (b∗

j , b
∗
j ) ≥ 21−j(b1, b1) ≥ 21−n(b1, b1) ,

and so assertion (ii) is valid.
(iii) First we show that (bi, bi) ≤ 2i−1(b∗

i , b
∗
i ). This inequality is obvious if i = 1,

and so we assume that i > 1. Using the decomposition (4.14) of the vector bi and
the fact that the basis is weakly reduced, we obtain that

(bi, bi) =

i∑

j=1

(
(bi, b

∗
j )

(b∗
j , b

∗
j )

)2

(b∗
j , b

∗
j )

≤ (b∗
i , b

∗
i ) +

1

4

i−1∑

j=1

(b∗
j , b

∗
j ) ≤ (b∗

i , b
∗
i ) +

1

4

i−1∑

j=1

2i−j(b∗
i , b

∗
i )

≤ (2i−2 + 1)(b∗
i , b

∗
i ) ≤ 2i−1(b∗

i , b
∗
i ) .

Multiplying these inequalities for i = 1, . . . , n,

n∏

i=1

(bi, bi) ≤
n∏

i=1

2i−1(b∗
i , b

∗
i ) = 2

n(n−1)
2

n∏

i=1

(b∗
i , b

∗
i ) = 2

n(n−1)
2 (detL)2 ,

which is precisely the inequality in (iii).

It is interesting to compare assertion (i) in the previous theorem and Corol-
lary 4.54 after Minkowski’s theorem. Here we obtain a weaker bound for the length
of b1, but this vector can be obtained by an efficient algorithm. Essentially, the ex-
istence of the basis that satisfies assertion (iii) was first shown by Hermite using the
tools in the proofs of Theorems 4.48 and 4.67. Using a Lovász-reduced basis, the
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cost of finding a shortest vector in a lattice with dimension n is at most polynomial
in the input size and in 3n2

; see Exercise 4.4-4.

Exercises
4.4-1 The triangular lattice is optimal. Show that the bound in Corollary 4.58 is
sharp. More precisely, let L ⊆ R2 be a full lattice and let 0 6= a ∈ L be a shortest
vector in L. Verify that the inequality |a|2 = (2/

√
3) detL holds if and only if L is

similar to the triangular lattice.
4.4-2 The denominators of the Gram-Schmidt numbers. Let us assume that the
Gram matrix of a basis b1, . . . , bn has only integer entries. Show that the numbers
µij in (4.15) can be written in the form µij = ζij/

∏j−1
k=1 Bk where the ζij are integers

and Bk is the determinant of the Gram matrix of the vectors b1, . . . , bk.
4.4-3 The length of the vectors in a reduced basis. Let b1, . . . , bn be a reduced basis
of a lattice L and let us assume that the numbers (bi, bi) are integers. Give an upper
bound depending only on n and detL for the length of the vectors bi. More precisely,
prove that

|bi| ≤ 2
n(n−1)

4 detL .

4.4-4 The coordinates of a shortest lattice vector. Let b1, . . . , bn be a reduced basis
of a lattice L. Show that each of the shortest vectors in L is of the form

∑
zibi

where zi ∈ Z and |zi| ≤ 3n. Consequently, for a bounded n, one can find a shortest
non-zero lattice vector in polynomial time.

Hint. Assume, for some lattice vector v =
∑
zibi, that |v| ≤ |b1|. Let us write v

in the basis b∗
1, . . . , b

∗
n:

v =

n∑

j=1

(zj +

n∑

i=j+1

µijzi)b
∗
j .

It follows from the assumption that each of the components of v (in the orthogonal
basis) is at most as long as b1 = b∗

1:
∣∣∣∣∣∣
zj +

n∑

i=j+1

µijzi

∣∣∣∣∣∣
≤ |b

∗
1|
|b∗

j |
.

Use then the inequalities |µij | ≤ 1/2 and (4.17).

4.5. Factoring polynomials in Q[x]

In this section we study the problem of factoring polynomials with rational coeffi-
cients. The input of the factorisation problem is a polynomial f(x) ∈ Q[x]. Our
goal is to compute a factorisation

f = fe1
1 fe2

2 · · · fes
s , (4.18)

where the polynomials f1, . . . , fs are pairwise relatively prime, and irreducible over
Q, and the numbers ei are positive integers. By Theorem 4.4, f determines, essen-
tially uniquely, the polynomials fi and the exponents ei.
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4.5.1. Preparations

First we reduce the problem (4.18) to another problem that can be handled more
easily.

Lemma 4.68 We may assume that the polynomial f(x) has integer coefficients
and it has leading coefficient 1.

Proof Multiplying by the common denominator of the coefficients, we may assume
that f(x) = a0 + a1x+ · · ·+ anx

n ∈ Z[x]. Performing the substitution y = anx, we
obtain the polynomial

g(y) = an
n−1f

(
y

an

)
= yn +

n−1∑

i=0

an−i−1
n aiy

i ,

which has integer coefficients and its leading coefficient is 1. Using a factorisation of
g(y), a factorisation of f(x) can be obtained efficiently.

Primitive polynomials, Gauss’ lemma.

Definition 4.69 A polynomial f(x) ∈ Z[x] is said to be primitive, if the greatest
common divisor of its coefficients is 1.

A polynomial f(x) ∈ Z[x] \ {0} can be written in a unique way as the product
of an integer and a primitive polynomial in Z[x]. Indeed, if a is the greatest common
divisor of the coefficients, then f(x) = a(1/a)f(x). Clearly, (1/a)f(x) is a primitive
polynomial with integer coefficients.

Lemma 4.70 (Gauss’ Lemma). If u(x), v(x) ∈ Z[x] are primitive polynomials,
then so is the product u(x)v(x).

Proof We argue by contradiction and assume that p is a prime number that divides
all the coefficients of uv. Set u(x) =

∑n
i=0 uix

i, v(x) =
∑m

j=0 vjx
j and let i0 and j0

be the smallest indices such that p - ui0
and p - vj0

. Let k0 = i0 + j0 and consider
the coefficient of xk0 in the product u(x)v(x). This coefficient is

∑

i+j=k0

uivj = ui0
vj0

+

i0−1∑

i=0

uivk0−i +

j0−1∑

j=0

uk0−jvj .

Both of the sums on the right-hand side of this equation are divisible by p, while
ui0
vj0

is not, and hence the coefficient of xk0 in u(x)v(x) cannot be divisible by p
after all. This, however, is a contradiction.

Claim 4.71 Let us assume that g(x), h(x) ∈ Q[x] are polynomials with ratio-
nal coefficients and leading coefficient 1 such that the product g(x)h(x) has integer
coefficients. Then the polynomials g(x) and h(x) have integer coefficients.
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Proof Let us multiply g(x) and h(x) by the least common multiple cg and ch,
respectively, of the denominators of their coefficients. Then the polynomials cgg(x)
and chh(x) are primitive polynomials with integer coefficients. Hence, by Gauss’
Lemma, so is the product cgchg(x)h(x) = (cgg(x))(chh(x)). As the coefficients of
g(x)h(x) are integers, each of its coefficients is divisible by the integer cgch. Hence
cgch = 1, and so cg = ch = 1. Therefore g(x) and h(x) are indeed polynomials with
integer coefficients.

One can show similarly, for a polynomial f(x) ∈ Z[x], that factoring f(x) in Z[x]
is equivalent to factoring the primitive part of f(x) in Q[x] and factoring an integer,
namely the greatest common divisor of the coefficients

Mignotte’s bound. As we work over an infinite field, we have to pay attention
to the size of the results in our computations.

Definition 4.72 The norm of a polynomial f(x) =
∑n

i=0 aix
i ∈ C[x] with complex

coefficients is the real number ‖f(x)‖ =
√∑n

i=0 |ai|2.

The inequality maxn
i=0 |ai| ≤ ‖f(x)‖ implies that a polynomial f(x) with integer

coefficients can be described using O(n lg ‖f(x)‖) bits.

Lemma 4.73 Let f(x) ∈ C[x] be a polynomial with complex coefficients. Then,
for all c ∈ C, we have

‖(x− c)f(x)‖ = ‖(cx− 1)f(x)‖ ,

where c is the usual conjugate of the complex number c.

Proof Let us assume that f(x) =
∑n

i=0 aix
i and set an+1 = a−1 = 0. Then

(x− c)f(x) =

n+1∑

i=0

(ai−1 − cai)x
i ,

and hence

‖(x− c)f(x)‖2 =

n+1∑

i=0

|ai−1 − cai|2 =

n+1∑

i=0

(|ai−1|2 + |cai|2 − ai−1cai − ai−1cai)

= ‖f(x)‖2 + |c|2‖f(x)‖2 −
n+1∑

i=0

(ai−1cai + ai−1cai) .

Performing similar computations with the right-hand side of the equation in the
lemma, we obtain that

(cx− 1)f(x) =

n+1∑

i=0

(cai−1 − ai)x
i ,
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and so

‖(cx− 1)f(x)‖2 =

n+1∑

i=0

|cai−1 − ai|2 =

n+1∑

i=0

(|cai−1|2 + |ai|2 − cai−1ai − cai−1ai)

= ‖f(x)‖2 + |c|2‖f(x)‖2 −
n+1∑

i=0

(ai−1cai + ai−1cai) .

The proof of the lemma is now complete.

Theorem 4.74 (Mignotte). Let us assume that the polynomials f(x), g(x) ∈ C[x]
have complex coefficients and leading coefficient 1 and that g(x)|f(x). If deg(g(x)) =
m, then ‖g(x)‖ ≤ 2m‖f(x)‖.

Proof By the fundamental theorem of algebra, f(x) =
∏n

i=1(x − αi) where
α1, . . . , αn are the complex roots of the polynomial f(x) (with multiplicity). Then
there is a subset I ⊆ {1, . . . , n} such that g(x) =

∏
i∈I(x − αi). First we claim, for

an arbitrary set J ⊆ {1, . . . , n}, that

∏

i∈J

|αi| ≤ ‖f(x)‖ . (4.19)

If J contains an integer i with αi = 0, then this inequality will trivially hold. Let
us hence assume that αi 6= 0 for every i ∈ J . Set J = {1, . . . , n} \ J and h(x) =∏

i∈J(x− αi). Applying Lemma 4.73 several times, we obtain that

‖f(x)‖ = ‖
∏

i∈J

(x− αi)h(x)‖ = ‖
∏

i∈J

(αix− 1)h(x)‖ = |
∏

i∈J

αi| · ‖u(x)‖ ,

where u(x) =
∏

i∈J(x−1/αi)h(x). As the leading coefficient of u(x) is 1, ‖u(x)‖ ≥ 1,
and so

|
∏

i∈J

αi| = |
∏

i∈J

αi| = ‖f(x)‖/‖u(x)‖ ≤ ‖f(x)‖ .

Let us express the coefficients of g(x) using its roots:

g(x) =
∏

i∈I

(x− αi) =
∑

J⊆I


(−1)|J|

∏

j∈J

αjx
m−|J|




=

m∑

i=0

(−1)m−i




∑

J⊆I,|J|=m−i

∏

j∈J

αj


xi .
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For an arbitrary polynomial t(x) = t0 + · · · + tkx
k, the inequality ‖t(x)‖ ≤ |t0| +

· · ·+ |tk| is valid. Therefore, using inequality (4.19), we find that

‖g(x)‖ ≤
m∑

i=0

∣∣∣∣∣∣

∑

J⊆I,|J|=m−i

∏

j∈J

αj

∣∣∣∣∣∣

≤
∑

J⊆I

∣∣∣∣∣∣

∏

j∈J

αj

∣∣∣∣∣∣
≤ 2m‖f(x)‖ .

The proof is now complete.

Corollary 4.75 The bit size of the irreducible factors in Q[x] of an f(x) ∈ Z[x]
with leading coefficient 1 is polynomial in the bit size of f(x).

Resultant and good reduction. Let F be an arbitrary field, and let
f(x), g(x) ∈ F[x] be polynomials with degree n and m, respectively: f = a0 +
a1x+ . . .+ anx

n, g = b0 + b1x+ . . .+ bmx
m where an 6= 0 6= bm. We recall the con-

cept of the resultant from Chapter 3. The resultant of f and g is the determinant
of the ((m+ n)× (m+ n))-matrix

M =




a0 a1 a2 a3 · · · an

a0 a1 a2 · · · an−1 an

. . .
. . .

. . .
. . .

. . .
. . .

a0 a1 · · · an−2 an−1 an

b0 b1 · · · bm−1 bm

b0 b1 · · · bm−1 bm

b0 b1 · · · bm−1 bm

. . .
. . .

. . .
. . .

. . .

b0 b1 · · · bm−1 bm.




. (4.20)

The matrix above is usually referred to as the Sylvester matrix. The blank spaces
in the Sylvester matrix represent zero entries.

The resultant provides information about the common factors of f and g. One
can use it to express, particularly elegantly, the fact that two polynomials are rela-
tively prime:

gcd(f(x), g(x)) = 1⇔ Res(f, g) 6= 0 . (4.21)

Corollary 4.76 Let f(x) = a0 +a1x+ · · ·+anx
n ∈ Z[x] be a square-free (in Q[x]),

non-constant polynomial. Then Res(f(x), f ′(x)) is an integer. Further, assume that
p is a prime not dividing nan. Then the polynomial f(x) (mod p) is square-free in
Fp[x] if and only if p does not divide Res(f(x), f ′(x)).

Proof The entries of the Sylvester matrix corresponding to f(x) and f ′(x) are
integers, and so is its determinant. The polynomial f has no multiple roots over
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Q, and so, by Exercise 4.5-1, gcd(f(x), f ′(x)) = 1, which gives, using (4.21), that
Res(f(x), f ′(x)) 6= 0. Let F (x) denote the polynomial f reduced modulo p. Then
it follows from our assumptions that Res(F (x), F ′(x)) is precisely the residue of
Res(f(x), f ′(x)) modulo p. By Exercise 4.5-1, the polynomial F (x) is square-free
precisely when gcd(F (x), F ′(x)) = 1, which is equivalent to Res(F (x), F ′(x)) 6= 0.
This amounts to saying that p does not divide the integer Res(f(x), f ′(x)).

Corollary 4.77 If f(x) ∈ Z[x] is a square-free polynomial with degree n, then there
is a prime p = O((n lg n+ 2n lg ‖f‖)2) (that is, the absolute value of p is polynomial
in the bit size of f) such that the polynomial f(x) (mod p) is square-free in Fp[x].

Proof By the Prime Number Theorem (Theorem 33.37), for large enough K, the
product of the primes in the interval [1,K] is at least 2(0.9K/ ln K).

Set K = ((n+ 1) lg n+ 2n lg ‖f‖)2
. If K is large enough, then

p1 · · · pl ≥ 2(0.9K/ ln K) > 2
√

K ≥ nn+1‖f‖2n ≥ nn+1‖f‖2n−1|an| (4.22)

where p1, . . . , pl are primes not larger than K, and an is the leading coefficient of f .
Let us suppose, for the primes p1, . . . , pl, that f(x) (mod pi) is not square-free

in Fpi
[x]. Then the product p1 · · · pl divides Res(f(x), f ′(x)) · nan, and so

p1 · · · pl ≤ |Res(f, f ′)| · |nan| ≤ ‖f‖n−1 · ‖f ′‖n · |nan| ≤ nn+1‖f‖2n−1|an| .

(In the last two inequalities, we used the Hadamard inequality, and the fact that
‖f ′(x)‖ ≤ n‖f(x)‖.) This contradicts to inequality (4.22), which must be valid be-
cause of the choice of K.

We note that using the Prime Number Theorem more carefully, one can obtain
a stronger bound for p.

Hensel lifting. We present a general procedure that can be used to obtain, given
a factorisation modulo a prime p, a factorisation modulo pN of a polynomial with
integer coefficients.

Theorem 4.78 (Hensel’s lemma). Suppose that f(x), g(x), h(x) ∈ Z[x] are poly-
nomials with leading coefficient 1 such that f(x) ≡ g(x)h(x) (mod p), and, in ad-
dition, g(x) (mod p) and h(x) (mod p) are relatively prime in Fp[x]. Then, for an
arbitrary positive integer t, there are polynomials gt(x), ht(x) ∈ Z[x] such that

• both of the leading coefficients of gt(x) and ht(x) are equal to 1,

• gt(x) ≡ g(x) (mod p) and ht(x) ≡ h(x) (mod p),

• f(x) ≡ gt(x)ht(x) (mod pt).

Moreover, the polynomials gt(x) and ht(x) satisfying the conditions above are unique
modulo pt.

Proof From the conditions concerning the leading coefficients, we obtain that
deg f(x) = deg g(x) + deg h(x), and, further, that deg gt(x) = deg g(x) and
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deg ht(x) = deg h(x), provided the suitable polynomials gt(x) and ht(x) indeed
exist. The existence is proved by induction on t. In the initial step, t = 1 and the
choice g1(x) = g(x) and h1(x) = h(x) is as required.

The induction step t→ t+1: let us assume that there exist polynomials gt(x) and
ht(x) that are well-defined modulo pt and satisfy the conditions. If the polynomials
gt+1(x) and ht+1(x) exist, then they must satisfy the conditions imposed on gt(x)
and ht(x). As gt(x) and ht(x) are unique modulo pt, we may write gt+1(x) = gt(x)+
ptδg(x) and ht+1(x) = ht(x) + ptδh(x) where δg(x) and δh(x) are polynomials with
integer coefficients. The condition concerning the leading coefficients guarantees that
deg δg(x) < deg g(x) and that deg δh(x) < deg h(x).

By the induction hypothesis, f(x) = gt(x)ht(x)+ptλ(x) where λ(x) ∈ Z[x]. The
observations about the degrees of the polynomials gt(x) and ht(x) imply that the
degree of λ(x) is smaller than deg f(x). Now we may compute that

gt+1(x)ht+1(x)− f(x) = gt(x)ht(x)− f(x) + ptht(x)δg(x) +

+ ptgt(x)δh(x) + p2tδg(x)δh(x)

≡ −ptλ(x) + ptht(x)δg(x) + ptgt(x)δh(x) (mod p2t) .

As 2t > t + 1, the congruence above holds modulo pt+1. Thus gt+1(x) and ht+1(x)
satisfy the conditions if and only if

ptht(x)δg(x) + ptgt(x)δh(x) ≡ ptλ(x) (mod pt+1) .

This, however, amounts to saying, after cancelling pt from both sides, that

ht(x)δg(x) + gt(x)δh(x) ≡ λ(x) (mod p) .

Using the congruences gt(x) ≡ g(x) (mod p) and ht(x) ≡ h(x) (mod p) we obtain
that this is equivalent to the congruence

h(x)δg(x) + g(x)δh(x) ≡ λ(x) (mod p) . (4.23)

Considering the inequalities deg δg(x) < deg gt(x) and deg δh(x) < deg ht(x) and
the fact that in Fp[x] the polynomials g(x) (mod p) and h(x) (mod p) are relatively
prime, we find that equation (4.23) can be solved uniquely in Fp[x]. For, if u(x) and
v(x) form a solution to u(x)g(x) + v(x)h(x) ≡ 1 (mod p), then, by Theorem 4.12,
the polynomials

δg(x) = v(x)λ(x) (mod g(x)) ,

and

δh(x) = u(x)λ(x) (mod h(x))

form a solution of (4.23). The uniqueness of the solution follows from the bounds
on the degrees, and from the fact that g(x) (mod p) and h(x) (mod p) relatively
prime. The details of this are left to the reader.
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Corollary 4.79 Assume that p, and the polynomials f(x), g(x), h(x) ∈ Z[x] sat-
isfy the conditions of Hensel’s lemma. Set deg f = n and let N be a positive integer.
Then the polynomials gN (x) and hN (x) can be obtained using O(Nn2) arithmetic
operations modulo pN .

Proof The proof of Theorem 4.78 suggests the following algorithm.

Hensel-Lifting(f, g, h, p,N)

1 (u(x), v(x))← is a solution, in Fp[x], of u(x)g(x) + v(x)h(x) ≡ 1 (mod p)
2 (G(x),H(x))← (g(x), h(x))
3 for t← 1 to N − 1
4 do λ(x)← (f(x)−G(x) ·H(x))/pt

5 δg(x)← v(x)λ(x) reduced modulo g(x) (in Fp[x])
6 δh(x)← u(x)λ(x) reduced modulo h(x) (in Fp[x])
7 (G(x),H(x))← (G(x) + ptδg(x),H(x) + ptδh(x)) (in (Z/(pt+1))[x])
8 return (G(x),H(x))

The polynomials u and v can be obtained using O(n2) operations in Fp (see
Theorem 4.12 and the remark following it). An iteration t → t + 1 consists of a
constant number of operations with polynomials, and the cost of one run of the
main loop is O(n2) operations (modulo p and pt+1). The total cost of reaching
t = N is O(Nn2) operations.

4.5.2. The Berlekamp-Zassenhaus algorithm

The factorisation problem (4.18) was efficiently reduced to the case in which the poly-
nomial f has integer coefficients and leading coefficient 1. We may also assume that
f(x) has no multiple factors in Q[x]. Indeed, in our case f ′(x) 6= 0, and so the possible
multiple factors of f can be separated using the idea that we already used over finite
fields as follows. By Lemma 4.13, the polynomial g(x) = f(x)/(f(x), f ′(x)) is already
square-free, and, using Lemma 4.14, it suffices to find its factors with multiplicity
one. From Proposition 4.71, we can see that g(x) has integer coefficients and leading
coefficient 1. Computing the greatest common divisor and dividing polynomials can
be performed efficiently, and so the reduction can be carried out in polynomial time.
(In the computation of the greatest common divisor, the intermediate expression
swell can be avoided using the techniques used in number theory.)

In the sequel we assume that the polynomial

f(x) = xn +
n−1∑

i=0

aix
i ∈ Z[x]

we want to factor is square-free, its coefficients are integers, and its leading coefficient
is 1.

The fundamental idea of the Berlekamp-Zassenhaus algorithm is that we com-
pute the irreducible factors of f(x) modulo pN where p is a suitably chosen prime
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and N is large enough. If, for instance, pN > 2 · 2n−1‖f‖, and we have already com-
puted the coefficients of a factor modulo pN , then, by Mignotte’s theorem, we can
obtain the coefficients of a factor in Q[x].

From now on, we will also assume that p is a prime such that the polynomial
f(x) (mod p) is square-free in Fp[x]. Using linear search such a prime p can be found
in polynomial time (Corollary 4.77). One can even assume that p is polynomial in
the bit size of f(x).

The irreducible factors in Fp[x] of the polynomial f(x) (mod p) can be found
using Berlekamp’s deterministic method (Theorem 4.42). Let g1(x), . . . , gr(x) ∈ Z[x]
be polynomials, all with leading coefficient 1, such that the gi(x) (mod p) are the
irreducible factors of the polynomial f(x) (mod p) in Fp[x].

Using the technique of Hensel’s lemma (Theorem 4.78) and Corollary 4.79, the
system g1(x), . . . , gr(x) can be lifted modulo pN . To simplify the notation, we assume
now that g1(x), . . . , gr(x) ∈ Z[x] are polynomials with leading coefficients 1 such that

f(x) ≡ g1(x) · · · gr(x) (mod pN )

and the gi(x) (mod p) are the irreducible factors of the polynomial f(x) (mod p) in
Fp[x].

Let h(x) ∈ Z[x] be an irreducible factor with leading coefficient 1 of the poly-
nomial f(x) in Q[x]. Then there is a uniquely determined set I ⊆ {1, . . . , r} for
which

h(x) ≡
∏

i∈I

gi(x) (mod pN ) .

Let N be the smallest integer such that pN ≥ 2·2n−1‖f(x)‖. Mignotte’s bound shows
that the polynomial

∏
i∈I gi(x) (mod pN ) on the right-hand side, if its coefficients

are represented by the residues with the smallest absolute values, coincides with h.
We found that determining the irreducible factors of f(x) is equivalent to finding

minimal subsets I ⊆ {1, . . . , r} for which there is a polynomial h(x) ∈ Z[x] with
leading coefficient 1 such that h(x) ≡ ∏i∈I gi(x) (mod pN ), the absolute values of
the coefficients of h(x) are at most 2n−1‖f(x)‖, and, moreover, h(x) divides f(x).
This can be checked by examining at most 2r−1 sets I. The cost of examining a
single I is polynomial in the size of f .

To summarise, we obtained the following method to factor, in Q[x], a square-free
polynomial f(x) with integer coefficients and leading coefficient 1.

Berlekamp-Zassenhaus(f)

1 p← a prime p such that f(x) (mod p) is square-free in Fp[x]
and p = O((n lg n+ 2n lg ‖f‖)2)

2 {g1, . . . , gr} ← the irreducible factors of f(x) (mod p) in Fp[x]
(using Berlekamp’s deterministic method)

3 N ← blogp(2deg f · ‖f‖)c+ 1
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4 {g1, . . . , gr} ← the Hensel lifting of the system {g1, . . . , gr} modulo pN

5 I ← the collection of minimal subsets I 6= ∅ of {1, . . . r} such that
gI ←

∏
i∈I gi reduced modulo pN divides f

6 return {∏i∈I gi : I ∈ I}

Theorem 4.80 Let f(x) = xn +
∑n−1

i=0 aix
i ∈ Z[x] be a square-free polynomial with

integer coefficients and leading coefficient 1, and let p be a prime number such that
the polynomial f(x) (mod p) is square-free in Fp[x] and p = O((n lg n+2n lg ‖f‖)2).
Then the irreducible factors of the polynomial f in Q[x] can be obtained by the
Berlekamp-Zassenhaus algorithm. The cost of this algorithm is polynomial in n,
lg ‖f(x)‖ and 2r where r is the number of irreducible factors of the polynomial
f(x) (mod p) in Fp[x].

Example 4.5(Swinnerton-Dyer polynomials) Let

f(x) =
∏

(x ±
√

2 ±
√

3 ± · · · ± √
pl) ∈ Z[x] ,

where 2, 3, . . . , pl are the first l prime numbers, and the product is taken over all possible
2l combinations of the signs + and −. The degree of f(x) is n = 2l, and one can show that
it is irreducible in Q[x]. On the other hand, for all primes p, the polynomial f(x) (mod p)
is the product of factors with degree at most 2. Therefore these polynomials represent hard
cases for the Berlekamp-Zassenhaus algorithm, as we need to examine about 2n/2−1 sets I
to find out that f is irreducible.

4.5.3. The LLL algorithm

Our goal in this section is to present the Lenstra-Lenstra-Lovász algorithm (LLL
algorithm) for factoring polynomials f(x) ∈ Q[x]. This was the first polynomial
time method for solving the polynomial factorisation problem over Q. Similarly to
the Berlekamp-Zassenhaus method, the LLL algorithm starts with a factorisation of
f modulo p and then uses Hensel lifting. In the final stages of the work, it uses lattice
reduction to find a proper divisor of f , provided one exists. The powerful idea of the
LLL algorithm is that it replaced the search, which may have exponential complexity,
in the Berlekamp-Zassenhaus algorithm by an efficient lattice reduction.

Let f(x) ∈ Z[x] be a square-free polynomial with leading coefficient 1 such that
deg f = n > 1, and let p be a prime such that the polynomial f(x) (mod p) is square
free in Fp[x] and p = O((lg n+ 2n lg ‖f‖)2).

Lemma 4.81 Suppose that f(x) ≡ g0(x)v(x) (mod pN ) where g0(x) and v(x) are
polynomials with integer coefficients and leading coefficient 1. Let g(x) ∈ Z[x] with
deg g(x) = m < n and assume that g(x) ≡ g0(x)u(x) (mod pN ) for some polynomial
u(x) such that u(x) has integer coefficients and deg u(x) = deg g(x)− deg g0(x). Let
us further assume that ‖g(x)‖n‖f(x)‖m < pN . Then gcd(f(x), g(x)) 6= 1 in Q[x].

Proof Let d = deg v(x). By the assumptions,

f(x)u(x) ≡ g0(x)u(x)v(x) ≡ g(x)v(x) (mod pN ) .
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Suppose that u(x) = α0+α1x+. . .+αm−1x
m−1 and v(x) = β0+β1x+. . .+βn−1x

n−1.
(We know that βd = 1. If i > d, then βi = 0, and similarly, if j > deg u(x), then
αj = 0.) Rewriting the congruence, we obtain

xdg(x) +
∑

j 6=d

βjx
jg(x)−

∑

i

αix
if(x) ≡ 0 (mod pN ) .

Considering the coefficient vectors of the polynomials xjg(x) and xif(x), this con-
gruence amounts to saying that adding to the (m+d)-th row of the Sylvester matrix
(4.20) a suitable linear combination of the other rows results in a row in which all the
elements are divisible by pN . Consequently, detM ≡ 0 (mod pN ). The Hadamard
inequality (Corollary 4.60) yields that |detM | ≤ ‖f‖m‖g‖n < pN , but this can
only happen if detM = 0. However, detM = Res(f(x), g(x)), and so, by (4.21),
gcd(f(x), g(x)) 6= 1.

The application of lattice reduction. Set

N = dlogp(22n2‖f(x)‖2n)e = O(n2 + n lg ‖f(x)‖) .

Further, we let g0(x) ∈ Z[x] be a polynomial with leading coefficient 1 such that
g0(x) (mod pN ) is an irreducible factor of f(x) (mod pN ). Set d = deg g0(x) < n.
Define the set L as follows:

L = {g(x) ∈ Z[x] : deg g(x) ≤ n− 1, ∃h(x) ∈ Z[x], with g ≡ hg0 (mod pN )} .
(4.24)

Clearly, L is closed under addition of polynomials. We identify a polynomial with
degree less than n with its coefficient vector of length n. Under this identification,
L becomes a lattice in Rn. Indeed, it is not too hard to show (Exercise 4.5-2) that
the polynomials

pN 1, pNx, . . . , pNxd−1, g0(x), xg0(x), . . . , xn−d−1g0(x) ,

or, more precisely, their coefficient vectors, form a basis of L.

Theorem 4.82 Let g1(x) ∈ Z[x] be a polynomial with degree less than n such that
the coefficient vector of g1(x) is the first element in a Lovász-reduced basis of L.
Then f(x) is irreducible in Q[x] if and only if gcd(f(x), g1(x)) = 1.

Proof As g1(x) 6= 0, it is clear that gcd(f(x), g1(x)) = 1 whenever f(x) is irre-
ducible. In order to show the implication in the other direction, let us assume that
f(x) is reducible and let g(x) be a proper divisor of f(x) such that g(x) (mod p)
is divisible by g0(x) (mod p) in Fp[x]. Using Hensel’s lemma (Theorem 4.78), we
conclude that g(x) (mod pN ) is divisible by g0(x) (mod pN ), that is, g(x) ∈ L.
Mignotte’s theorem (Theorem 4.74) shows that

‖g(x)‖ ≤ 2n−1‖f(x)‖ .
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Now, if we use the properties of reduced bases (second assertion of Theorem 4.67),
then we obtain

‖g1(x)‖ ≤ 2(n−1)/2‖g(x)‖ < 2n‖g(x)‖ ≤ 22n‖f(x)‖ ,

and so

‖g1(x)‖n‖f(x)‖deg g1 ≤ ‖g1(x)‖n‖f(x)‖n < 22n2‖f(x)‖2n ≤ pN .

We can hence apply Lemma 4.81, which gives gcd(g1(x), f(x)) 6= 1.

Based on the previous theorem, the LLL algorithm can be outlined as follows
(we only give a version for factoring to two factors). The input is a square-free
polynomial f(x) ∈ Z[x] with integer coefficients and leading coefficient 1 such that
deg f = n > 1.

LLL-Polynomial-Factorisation(f)

1 p← a prime p such that f(x) (mod p) is square-free in Fp[x]
and p = O((n lg n+ 2n lg ‖f‖)2)

2 w(x)← an irreducible factor f(x) (mod p) in Fp[x]
(using Berlekamp’s deterministic method)

3 if degw = n
4 then return "irreducible"

5 else N ← dlogp((22n2‖f(x)‖2n)e = O(n2 + n lg(‖f(x)‖)
6 (g0, h0)← Hensel-Lifting(f, w, f/w (mod p), p,N)
7 (b1, . . . , bn)← a basis of the lattice L ⊆ Rn in (4.24)
8 (g1, . . . , gn)← Lovász-Reduction(b1, . . . , bn)
9 f∗ ← gcd(f, g1)

10 if deg f∗ > 0
11 then return (f∗, f/f∗)
12 else return "irreducible"

Theorem 4.83 Using the LLL algorithm, the irreducible factors in Q[x] of a poly-
nomial f ∈ Q[x] can be obtained deterministically in polynomial time.

Proof The general factorisation problem, using the method introduced at the dis-
cussion of the Berlekamp-Zassenhaus procedure, can be reduced to the case in which
the polynomial f(x) ∈ Z[x] is square-free and has leading coefficient 1. By the obser-
vations made there, the steps in lines 1–7 can be performed in polynomial time. In
line 8, the Lovász reduction can be carried out efficiently (Corollary 4.65). In line 9,
we may use a modular version of the Euclidean algorithm to avoid intermediate
expression swell (see Chapter ??).

The correctness of the method is asserted by Theorem 4.82. The LLL algorithm
can be applied repeatedly to factor the polynomials in the output, in case they are
not already irreducible.
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One can show that the Hensel lifting costs O(Nn2) = O(n4 + n3 lg ‖f‖) op-
erations with moderately sized integers. The total cost of the version of the LLL
algorithm above is O(n5 lg(pN )) = O(n7 + n6 lg ‖f‖).

Exercises
4.5-1 Let F be a field and let 0 6= f(x) ∈ F[x]. The polynomial f(x) has no
irreducible factors with multiplicity greater than one if and only if gcd(f(x), f ′(x)) =
1. Hint. In one direction, one can use Lemma 4.13, and use Lemma 4.14 in the other.

4.5-2 Show that the polynomials

pN 1, pNx, . . . , pNxd−1, g0(x), xg0(x), . . . , xn−d−1g0(x)

form a basis of the lattice in (4.24). Hint. It suffices to show that the polynomials
pNxj (d ≤ j < n) can be expressed with the given polynomials. To show this, divide
pNxj by g0(x) and compute the remainder.

Problems

4-1 The trace in finite fields
Let Fqk ⊇ Fq be finite fields. The definition of the trace map tr = trk,q on Fqk is as
follows: if α ∈ Fqk then

tr(α) = α+ αq + · · ·+ αqk−1

.

a. Show that the map tr is Fq-linear and its image is precisely Fq. Hint. Use the
fact that tr is defined using a polynomial with degree qk−1 to show that tr is
not identically zero.

b. Let (α, β) be a uniformly distributed random pair of elements from Fqk × Fqk .
Then the probability that tr(α) 6= tr(β) is 1− 1/q.

4-2 The Cantor-Zassenhaus algorithm for fields of characteristic 2
Let F = F2m and let f(x) ∈ F[x] be a polynomial of the form

f = f1f2 · · · fs, (4.25)

where the fi are pairwise relatively prime and irreducible polynomials with degree
d in F[x]. Also assume that s ≥ 2.

a. Let u(x) ∈ F[x] be a uniformly distributed random polynomial with degree less
than deg f . Then the greatest common divisor

gcd(u(x) + u2(x) + · · ·+ u2md−1

(x), f(x))

is a proper divisor of f(x) with probability at least 1/2.

Hint. Apply the previous exercise taking q = 2 and k = md, and follow the
argument in Theorem 4.38.
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b. Using part (a), give a randomised polynomial time method for factoring a poly-
nomial of the form (4.25) over F.

4-3 Divisors and zero divisors
Let F be a field. The ring R is said to be an F-algebra (in case F is clear from
the context, R is simply called an algebra), if R is a vector space over F, and
(ar)s = a(rs) = r(as) holds for all r, s ∈ S and a ∈ F. It is easy to see that the rings
F[x] and F[x]/(f) are F-algebras.

Let R be a finite-dimensional F-algebra. For an arbitrary r ∈ R, we may consider
the map Lr : R → R defined as Lr(s) = rs for s ∈ R. The map Lr is F-linear, and
so we may speak about its minimal polynomial mr(x) ∈ F[x], its characteristic
polynomial kr(x) ∈ F[x], and its trace Tr(r) = Tr(Lr). In fact, if U is an ideal in
R, then U is an invariant subspace of Lr, and so we can restrict Lr to U , and we
may consider the minimal polynomial, the characteristic polynomial, and the trace
of the restriction.

a. Let f(x), g(x) ∈ F[x] with deg f > 0. Show that the residue class [g(x)]
is a zero divisor in the ring F[x]/(f) if and only if f does not divide g and
gcd(f(x), g(x)) 6= 1.

b. Let R be an algebra over F, and let r ∈ R be an element with minimal polynomial
f(x). Show that if f is not irreducible over F, then R contains a zero divisor.
To be precise, if f(x) = g(x)h(x) is a non-trivial factorisation (g, h ∈ F[x]), then
g(r) and h(r) form a pair of zero divisors, that is, both of them are non-zero,
but their product is zero.

4-4 Factoring polynomials over algebraic number fields

a. Let F be a field with characteristic zero and let R be a finite-dimensional F-
algebra with an identity element. Let us assume that R = S1 ⊕ S2 where S1

and S2 are non-zero F-algebras. Let r1, . . . , rk be a basis of R over F. Show that
there is a j such that mrj

(x) is not irreducible in F[x].

Hint. This exercise is for readers who are familiar with the elements of linear
algebra. Let us assume that the minimal polynomial of rj is the irreducible poly-
nomial m(x) = xd−a1x

d−1 + · · ·+ad. Let ki(x) be the characteristic polynomial
of Lrj

on the invariant subspace Ui (for i ∈ {1, 2}). Here U1 and U2 are the sets
of elements of the form (s1, 0) and (0, s2), respectively where si ∈ Si. Because of
our conditions, we can find suitable exponents di such that ki(x) = m(x)di . This
implies that the trace Ti(rj) of the map Lrj

on the subspace Ui is Ti(rj) = dia1.
Set ei = dimF Ui. Obviously, ei = did, which gives T1(rj)/e1 = T2(rj)/e2. If the
assertion of the exercise is false, then the latter equation holds for all j, and so,
as the trace is linear, it holds for all r ∈ R. This, however, leads to a contradic-
tion: if r = (1, 0) ∈ S1 ⊕ S2 (1 denotes the unity in S1), then clearly T1(r) = e1

and T2(r) = 0.
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b. Let F be an algebraic number field, that is, a field of the form Q(α) where
α ∈ C, and there is an irreducible polynomial g(x) ∈ Z[x] such that g(α) = 0. Let
f(x) ∈ F[x] be a square-free polynomial and set R = F[x]/(f). Show that R is
a finite-dimensional algebra over Q. More precisely, if deg g = m and deg f = n,
then the elements of the form αi[x]j (0 ≤ i < m, 0 ≤ j < n) form a basis over
Q.

c. Show that if f is reducible over F, then there are Q-algebras S1, S2 such that
R ∼= S1 ⊕ S2.

Hint. Use the Chinese remainder theorem .

d. Consider the polynomial g above and suppose that a field F and a polynomial
f ∈ F[x] are given. Assume, further, that f is square-free and is not irreducible
over F. The polynomial f can be factored to the product of two non-constant
polynomials in polynomial time.

Hint. By the previous remarks, the minimal polynomial m(y) over Q of at least
one of the elements αi[x]j (0 ≤ i ≤ m, 0 ≤ j ≤ n) is not irreducible in Q[y]. Using
the LLL algorithm, m(y) can be factored efficiently in Q[y]. From a factorisation
of m(y), a zero divisor of R can be obtained, and this can be used to find a
proper divisor of f in F[x].

Chapter Notes

The abstract algebraic concepts discussed in this chapter can be found in many
textbooks; see, for instance, Hungerford’s book [4].

The theory of finite fields and the related algorithms are the theme of the excel-
lent books by Lidl and Niederreiter [6] and Shparlinski [7].

Our main algorithmic topics, namely the factorisation of polynomials and lattice
reduction are thoroughly treated in the book by von zur Gathen and Gerhard [3]. We
recommend the same book to the readers who are interested in the efficient meth-
ods to solve the basic problems concerning polynomials. Theorem 8.23 of that book
estimates the cost of multiplying polynomials by the Schönhage-Strassen method,
while Corollary 11.6 is concerned with the cost of the asymptotically fast implemen-
tation of the Euclidean algorithm. Ajtai’s result about shortest lattice vectors was
published in [1].

The method by Kaltofen and Shoup is a randomised algorithm for factoring
polynomials over finite fields, and currently it has one of the best time bounds among
the known algorithms. The expected number of Fq-operations in this algorithm is
O(n1.815 lg q) where n = deg f . Further competitive methods were suggested by von
zur Gathen and Shoup, and also by Huang and Pan. The number of operations
required by the latter is O(n1.80535 lg q), if lg q < n0.00173. Among the deterministic
methods, the one by von zur Gathen and Shoup is the current champion. Its cost is
Õ(n2 + n3/2s + n3/2s1/2p1/2) operations in Fq where q = ps. An important related
problem is constructing the field Fqn . The fastest randomised method is by Shoup. Its
cost is O∼(n2 +n lg q). For finding a square-free factorisation, Yun gave an algorithm
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that requires Õ(n) +O(n lg(q/p)) field operations in Fq.
The best methods to solve the problem of lattice reduction and that of factoring

polynomials over the rationals use modular and numerical techniques. After slightly
modifying the definition of reduced bases, an algorithm using Õ(n3.381 lg2 C) bit
operations for the former problem was presented by Storjohann. (We use the orig-
inal definition introduced in the paper by Lenstra, Lenstra and Lovász [5].) We

also mention Schönhage’s method using Õ(n6 + n4 lg2 l) bit operations for factoring
polynomials with integer coefficients (l is the length of the coefficients).

Besides factoring polynomials with rational coefficients, lattice reduction can
also be used to solve lots of other problems: to break knapsack cryptosystems and
random number generators based on linear congruences, simultaneous Diophantine
approximation, to find integer linear dependencies among real numbers (this problem
plays an important rôle in experiments that attempt to find mathematical identities).
These and other related problems are discussed in the book [3].

A further exciting application area is the numerical solution of Diophantine
equations. One can read about these developments in in the books by Smart [8] and
Gaál [2]. The difficulty of finding a shortest lattice vector was verified in Ajtai’s
paper [1].

Finally we remark that the practical implementations of the polynomial meth-
ods involving lattice reduction are not competitive with the implementations of the
Berlekamp-Zassenhaus algorithm, which, in the worst case, has exponential com-
plexity. Nevertheless, the basis reduction performs very well in practice: in fact it is
usually much faster than its theoretically proven speed. For some of the problems in
the application areas listed above, we do not have another useful method.

The work of the authors was supported in part by grants NK72845 and T77476
of the Hungarian Scientific Research Fund.
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unit, 177
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zero divisor, 228
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