
Contents

4. Reliable Computation . 170

4.1. Probability theory . 171
4.1.1. Terminology . 171
4.1.2. The law of large numbers (with “large deviations”) 173

4.2. Logic circuits . 175
4.2.1. Boolean functions and expressions 175
4.2.2. Circuits . 177
4.2.3. Fast addition by a Boolean circuit 179

4.3. Expensive fault-tolerance in Boolean circuits 181
4.4. Safeguarding intermediate results 185

4.4.1. Cables . 185
4.4.2. Compressors . 187
4.4.3. Propagating safety . 189
4.4.4. Endgame . 190
4.4.5. The construction of compressors 192

4.5. The reliable storage problem . 195
4.5.1. Clocked circuits . 195
4.5.2. Storage . 198
4.5.3. Error-correcting codes . 199
4.5.4. Refreshers . 203

Bibliography . 216

Index . 218

Name Index . 219

4. Reliable Computation

Any planned computation will be subject to different kinds of unpredictable influ-
ences during execution. Here are some examples:

(1) Loss or change of stored data during execution.

(2) Random, physical errors in the computer.

(3) Unexpected interactions between different parts of the system working simulta-
neously, or loss of connections in a network.

(4) Bugs in the program.

(5) Malicious attacks.

Up to now, it does not seem that the problem of bugs can be solved just with
the help of appropriate algorithms. The discipline of software engineering addresses
this problem by studying and improving the structure of programs and the process
of their creation.

Malicious attacks are addressed by the discipline of computer security. A large
part of the recommended solutions involves cryptography.

Problems of kind (4) are very important and a whole discipline, distributed
computing has been created to deal with them.

The problem of storage errors is similar to the problems of reliable communi-
cation, studied in information theory: it can be viewed as communication from the
present to the future. In both cases, we can protect against noise with the help of
error-correcting codes (you will see some examples below).

In this chapter, we will discuss some sample problems, mainly from category (4).
In this category, distinction should also be made between permanent and transient
errors. An error is permanent when a part of the computing device is damaged
physically and remains faulty for a long time, until some outside intervention by
repairmen to it. It is transient if it happens only in a single step: the part of the
device in which it happened is not damaged, in the next step it operates correctly
again. For example, if a position in memory turns from 0 to 1 by accident, but a
subsequent write operation can write a 0 again then a transient error happened. If
the bit turned to 1 and the computer cannot change it to 0 again, this is a permanent
error.

Some of these problems, especially the ones for transient errors, are as old as
computing. The details of any physical errors depend on the kind of computer it is

4.1. Probability theory 171

implemented on (and, of course, on the kind of computation we want to carry out).
But after abstracting away from a lot of distracting details, we are left with some
clean but challenging theoretical formulations, and some rather pleasing solutions.
There are also interesting connections to other disciplines, like statistical physics
and biology.

The computer industry has been amazingly successful over the last five decades in
making the computer components smaller, faster, and at the same time more reliable.
Among the daily computer horror stories seen in the press, the one conspicuously
missing is where the processor wrote a 1 in place of a 0, just out of caprice. (It
undisputably happens, but too rarely to become the identifiable source of some
visible malfunction.) On the other hand, the generality of some of the results on
the correction of transient errors makes them applicable in several settings. Though
individual physical processors are very reliable (error rate is maybe once in every
1020 executions), when considering a whole network as performing a computation,
the problems caused by unreliable network connections or possibly malicious network
participants is not unlike the problems caused by unreliable processors.

The key idea for making a computation reliable is redundancy, which might be
formulated as the following two procedures:

(i) Store information in such a form that losing any small part of it is not fatal:
it can be restored using the rest of the data. For example, store it in multiple
copies.

(ii) Perform the needed computations repeatedly, to make sure that the faulty results
can be outvoted.

Our chapter will only use these methods, but there are other remarkable ideas which
we cannot follow up here. For example, method (4) seems especially costly; it is
desireable to avoid a lot of repeated computation. The following ideas target this
dilemma.

(A) Perform the computation directly on the information in its redundant form: then
maybe recomputations can be avoided.

(B) Arrange the computation into “segments” such a way that those partial results
that are to be used later, can be cheaply checked at each “milestone” between
segments. If the checking finds error, repeat the last segment.

4.1. Probability theory

The present chapter does not require great sophistication in probability theory but
there are some facts coming up repeatedly which I will review here. If you need
additional information, you will find it in any graduate probability theory text.

4.1.1. Terminology

A probability space is a triple (Ω, A, P) where Ω is the set of elementary events,
A is a set of subsets of Ω called the set of events and P : A → [0, 1] is a function.

172 4. Reliable Computation

For E ∈ A, the value P(E) is called the probability of event E. It is required that
Ω ∈ A and that E ∈ A implies Ω r E ∈ A. Further, if a (possibly infinite) sequence
of sets is in A then so is their union. Also, it is assumed that P(Ω) = 1 and that if
E1, E2, . . . ∈ A are disjoint then

P
(

⋃

i

Ei

)

=
∑

i

P(Ei) .

For P(F) > 0, the conditional probability of E given F is defined as

P(E | F) = P(E ∩ F)/P(F) .

Events E1, . . . , En are independent if for any sequence 1 ≤ i1 < · · · < ik ≤ n we
have

P(Ei1
∩ · · · ∩ Eik

) = P(Ei1
) · · · P(Eik

) .

Example 4.1 Let Ω = {1, . . . , n} where A is the set of all subsets of Ω and P(E) = |E|/n .
This is an example of a discrete probability space: one that has a countable number of
elements.

More generally, a discrete probability space is given by a countable set Ω =
{ω1, ω2, . . . }, and a sequence p1, p2, . . . with pi ≥ 0,

∑

i
pi = 1. The set A of events is

the set of all subsets of Ω, and for an event E ⊂ Ω we define P(E) =
∑

ωi∈E
pi.

A random variable over a probability space Ω is a function f from Ω to the
real numbers, with the property that every set of the form { ω : f(ω) < c } is
an event: it is in A. Frequently, random variables are denoted by capital letters
X, Y, Z, possibly with indices, and the argument ω is omitted from X(ω). The event
{ ω : X(ω) < c } is then also written as [X < c]. This notation is freely and
informally extended to more complicated events. The distribution of a random
variable X is the function F (c) = P[X < c]. We will frequently only specify the
distribution of our variables, and not mention the underlying probability space, when
it is clear from the context that it can be specified in one way or another. We can
speak about the joint distribution of two or more random variables, but only if
it is assumed that they can be defined as functions on a common probability space.
Random variables X1, . . . , Xn with a joint distribution are independent if every
n-tuple of events of the form [X1 < c1], . . . , [Xn < cn] is independent.

The expected value of a random variable X taking values x1, x2, . . . with prob-
abilities p1, p2, . . . is defined as

EX = p1x1 + p2x2 + · · · .

It is easy to see that the expected value is a linear function of the random variable:

E(αX + βY) = αEX + βEY ,

even if X, Y are not independent. On the other hand, if variables X, Y are indepen-
dent then the expected values can also be multiplied:

EXY = EX · EY . (4.1)

4.1. Probability theory 173

There is an important simple inequality called the Markov inequality, which says
that for an arbitrary nonnegative random variable X and any value λ > 0 we have

P[X ≥ λ] ≤ EX/λ . (4.2)

4.1.2. The law of large numbers (with “large deviations”)

In what follows the bounds

x

1 + x
≤ ln(1 + x) ≤ x for x > −1 (4.3)

will be useful. Of these, the well-known upper bound ln(1 + x) ≤ x holds since the
graph of the function ln(1 + x) is below its tangent line drawn at the point x = 0.
The lower bound is obtained from the identity 1

1+x = 1 − x
1+x and

− ln(1 + x) = ln
1

1 + x
= ln

(

1 − x

1 + x

)

≤ − x

1 + x
.

Consider n independent random variables X1, . . . , Xn that are identically dis-
tributed, with

P[Xi = 1] = p, P[Xi = 0] = 1 − p .

Let
Sn = X1 + · · · + Xn .

We want to estimate the probability P[Sn ≥ fn] for any constant 0 < f < 1. The
“law of large numbers” says that if f > p then this probability converges fast to 0
as n → ∞ while if f < p then it converges fast to 1. Let

D(f, p) = f ln
f

p
+ (1 − f) ln

1 − f

1 − p
(4.4)

> f ln
f

p
− f = f ln

f

ep
, (4.5)

where the inequality (useful for small f and ep < f) comes via 1 > 1 − p > 1 − f
and ln(1 − f) ≥ − f

1−f from (4.3). Using the concavity of logarithm, it can be shown

that D(f, p) is always nonnegative, and is 0 only if f = p (see Exercise 4.1-1).

Theorem 4.1 (Large deviations for coin-toss). If f > p then

P[Sn ≥ fn] ≤ e−nD(f,p) .

This theorem shows that if f > p then P[Sn > fn] converges to 0 exponentially
fast. Inequality (4.5) will allow the following simplification:

P[Sn ≥ fn] ≤ e−nf ln f
ep =

(

ep

f

)nf

, (4.6)

useful for small f and ep < f .

174 4. Reliable Computation

Proof For a certain real number α > 1 (to be chosen later), let Yn be the random
variable that is α if Xn = 1 and 1 if Xn = 0, and let Pn = Y1 · · · Yn = αSn : then

P[Sn ≥ fn] = P[Pn ≥ αfn] .

Applying the Markov inequality (4.2) and (4.1), we get

P[Pn ≥ αfn] ≤ EPn/αfn = (EY1/αf)n,

where EY1 = pα + (1 − p). Let us choose α = f(1−p)
p(1−f) , this is > 1 if p < f . Then we

get EY1 = 1−p
1−f , and hence

EY1/αf =
pf (1 − p)1−f

ff (1 − f)1−f
= e−D(f,p) .

This theorem also yields some convenient estimates for binomial coefficients. Let

h(f) = −f ln f − (1 − f) ln(1 − f) .

This is sometimes called the entropy of the probability distribution (f, 1−f) (mea-
sured in logarithms over base e instead of base 2). From inequality (4.3) we obtain
the estimate

− f ln f ≤ h(f) ≤ f ln
e

f
(4.7)

which is useful for small f .

Corollary 4.2 We have, for f ≤ 1/2:

n
∑

i≤fn

(

n

i

)

≤ enh(f) ≤
(

e

f

)fn

. (4.8)

In particular, taking f = k/n with k ≤ n/2 gives

(

n

k

)

=

(

n

fn

)

≤
(

e

f

)fn

=
(ne

k

)k

. (4.9)

Proof Theorem 4.1 says for the case f > p = 1/2:

2−n
n
∑

i≥fn

(

n

i

)

= P[Sn ≥ fn] ≤ e−nD(f,p) = 2−nenh(f),

n
∑

i≥fn

(

n

i

)

≤ enh(f) .

Substituting g = 1 − f , and noting the symmetries
(

n
f

)

=
(

n
g

)

, h(f) = h(g) and (4.7)

gives (4.8).

4.2. Logic circuits 175

Remark 4.3 Inequality (4.6) also follows from the trivial estimate P[Sn ≥ fn] ≤
(

n
fn

)

pfn combined with (4.9).

Exercises
4.1-1 Prove that the statement made in the main text that D(f, p) is always non-
negative, and is 0 only if f = p.
4.1-2 For f = p + δ, derive from Theorem 4.1 the useful bound

P[Sn ≥ fn] ≤ e−2δ2n .

Hint. Let F (x) = D(x, p), and use the Taylor formula: F (p + δ) = F (p) + F ′(p)δ +
F ′′(p + δ′)δ2/2, where 0 ≤ δ′ ≤ δ.
4.1-3 Prove that in Theorem 4.1, the assumption that Xi are independent and
identically distributed can be weakened: replaced by the single inequality

P[Xi = 1 | X1, . . . , Xi−1] ≤ p .

4.2. Logic circuits

In a model of computation taking errors into account, the natural assumption is
that errors occur everywhere. The most familiar kind of computer, which is sepa-
rated into a single processor and memory, seems extremely vulnerable under such
conditions: while the processor is not “looking”, noise may cause irreparable dam-
age in the memory. Let us therefore rather consider computation models that are
parallel: information is being processed everywhere in the system, not only in some
distinguished places. Then error correction can be built into the work of every part
of the system. We will concentrate on the best known parallel computation model:
Boolean circuits.

4.2.1. Boolean functions and expressions

Let us look inside a computer, (actually inside an integrated circuit, with a mi-
croscope). Discouraged by a lot of physical detail irrelevant to abstract notions of
computation, we will decide to look at the blueprints of the circuit designer, at
the stage when it shows the smallest elements of the circuit still according to their
computational functions. We will see a network of lines that can be in two states
(of electric potential), “high” or “low”, or in other words “true” or “false”, or, as
we will write, 1 or 0. The points connected by these lines are the familiar logic

components: at the lowest level of computation, a typical computer processes bits.
Integers, floating-point numbers, characters are all represented as strings of bits, and
the usual arithmetical operations can be composed of bit operations.

Definition 4.4 A Boolean vector function is a mapping f : {0, 1}n → {0, 1}m.
Most of the time, we will take m = 1 and speak of a Boolean function.

176 4. Reliable Computation

∧ ∨ ¬

Figure 4.1 AND, OR and NOT gate.

The variables in f(x1, . . . , xn) are sometimes called Boolean variables,
Boolean variables or bits.

Example 4.2 Given an undirected graph G with N nodes, suppose we want to study the
question whether it has a Hamiltonian cycle (a sequence (u1, . . . , un) listing all vertices of
G such that (ui, ui+1) is an edge for each i < n and also (un, u1) is an edge). This question
is described by a Boolean function f as follows. The graph can be described with

(

N

2

)

Boolean variables xij (1 ≤ i < j ≤ N): xij is 1 if and only if there is an edge between nodes
i and j. We define f(x12, x13, . . . , xN−1,N) = 1 if there is a Hamiltonian cycle in G and 0
otherwise.

Example 4.3[Boolean vector function] Let n = m = 2k, let the input be two integers
u, v, written as k-bit strings: x = (u1, . . . , uk, v1, . . . , vk). The output of the function is
their product y = u · v (written in binary): if u = 5 = (101)2, v = 6 = (110)2 then
y = u · v = 30 = (11110)2.

There are only four one-variable Boolean functions: the identically 0, identically
1, the identity and the negation: x → ¬x = 1 − x. We mention only the following
two-variable Boolean functions: the operation of conjunction (logical AND):

x ∧ y =

{

1 if x = y = 1 ,

0 otherwise ,

this is the same as multiplication. The operation of disjunction, or logical OR:

x ∨ y =

{

0 if x = y = 0 ,

1 otherwise .

It is easy to see that x ∨ y = ¬(¬x ∧ ¬y): in other words, disjunction x ∨ y can be
expressed using the functions ¬, ∧ and the operation of composition. The following
two-argument Boolean functions are also frequently used:

x → y = ¬x ∨ y (implication) ,

x ↔ y = (x → y) ∧ (y → x) (equivalence) ,

x ⊕ y = x + y mod 2 = ¬(x ↔ y) (binary addition) .

4.2. Logic circuits 177

A finite number of Boolean functions is sufficent to express all others: thus, arbi-
trarily complex Boolean functions can be “computed” by “elementary” operations.
In some sense, this is what happens inside computers.

Definition 4.5 A set of Boolean functions is a complete basis if every other
Boolean function can be obtained by repeated composition from its elements.

Claim 4.6 The set {∧, ∨, ¬} forms a complete basis; in other words, every Boolean
function can be represented by a Boolean expression using only these connectives.

The proof can be found in all elementary introductions to propositional logic.
Note that since ∨ can be expressed using {∧, ¬}, this latter set is also a complete
basis (and so is {∨, ¬}).

From now on, under a Boolean expression (formula), we mean an expression
built up from elements of some given complete basis. If we do not mention the basis
then the complete basis {∧, ¬} will be meant.

In general, one and the same Boolean function can be expressed in many ways
as a Boolean expression. Given such an expression, it is easy to compute the value
of the function. However, most Boolean functions can still be expressed only by very
large Boolean expression (see Exercise 4.2-4).

4.2.2. Circuits

A Boolean expression is sometimes large since when writing it, there is no possibility
for reusing partial results. (For example, in the expression

((x ∨ y ∨ z) ∧ u) ∨ (¬(x ∨ y ∨ z) ∧ v) ,

the part x ∨ y ∨ z occurs twice.) This deficiency is corrected by the following more
general formalism.

A Boolean circuit is essentially an acyclic directed graph, each of whose nodes
computes a Boolean function (from some complete basis) of the bits coming into it
on its input edges, and sends out the result on its output edges (see Figure 4.2). Let
us give a formal definition.

Definition 4.7 Let Q be a complete basis of Boolean functions. For an integer N
let V = {1, . . . , N} be a set of nodes. A Boolean circuit over Q is given by the
following tuple:

N = (V, { kv : v ∈ V }, { argj(v) : v ∈ V ; j = 1, . . . , kv }, { bv : v ∈ V }) . (4.10)

For every node v there is a natural number kv showing its number of inputs. The
sources, nodes v with kv = 0, are called input nodes: we will denote them, in
increasing order, as

inpi (i = 1, . . . , n) .

To each non-input node v a Boolean function

bv(y1, . . . , ykv
)

178 4. Reliable Computation

0 1 1

∨ ¬

∧

¬

∧

1 1

1 0

0

1

1

Figure 4.2 The assignment (values on nodes, configuration) gets propagated through all the gates.
This is the “computation”.

from the complete basis Q is assigned: it is called the gate of node v. It has as many
arguments as the number of entering edges. The sinks of the graph, nodes without
outgoing edges, will be called output nodes: they can be denoted by

outi (i = 1, . . . , m) .

(Our Boolean circuits will mostly have just a single output node.) To every non-input
node v and every j = 1, . . . , kv belongs a node argj(v) ∈ V (the node sending the
value of input variable yj of the gate of v). The circuit defines a graph G = (V, E)
whose set of edges is

E = { (argj(v), v) : v ∈ V, j = 1, . . . , kv } .

We require argj(v) < v for each j, v (we identified the with the natural numbers
1, . . . , N): this implies that the graph G is acyclic. The size

|N |

of the circuit N is the number of nodes. The depth of a node v is the maximal
length of directed paths leading from an input node to v. The depth of a circuit is
the maximum depth of its output nodes.

Definition 4.8 An input assignment, or input configuration to our circuit N
is a vector x = (x1, . . . , xn) with xi ∈ {0, 1} giving value xi to node inpi:

valx(v) = yv(x) = xi

for v = inpi, i = 1, . . . , n. The function yv(x) can be extended to a unique con-

figuration v 7→ yv(x) on all other nodes of the circuit as follows. If gate bv has k

4.2. Logic circuits 179

x1 x2 x3 x4 x5 x6 x7 x8

y1,1 y1,2 y1,3 y1,4

y2,1 y2,2

y3,1

Figure 4.3 Naive parallel addition.

arguments then
yv = bv(yarg1(v), . . . , yargk(v)) . (4.11)

For example, if bv(x, y) = x ∧ y, and uj = argj(v) (j = 1, 2) are the input nodes
to v then yv = yu1

∧ yu2
. The process of extending the configuration by the above

equation is also called the computation of the circuit. The vector of the values
youti

(x) for i = 1, . . . , m is the result of the computation. We say that the Boolean
circuit computes the vector function

x 7→ (yout1
(x), . . . , youtm

(x)) .

The assignment procedure can be performed in stages: in stage t, all nodes of depth
t receive their values.

We assign values to the edges as well: the value assigned to an edge is the one
assigned to its start node.

4.2.3. Fast addition by a Boolean circuit

The depth of a Boolean circuit can be viewed as the shortest time it takes to compute
the output vector from the input vector by this circuit. Az an example application
of Boolean circuits, let us develop a circuit that computes the sum of its input bits
very fast. We will need this result later in the present chapter for error-correcting
purposes.

Definition 4.9 We will say that a Boolean circuit computes a near-majority if
it outputs a bit y with the following property: if 3/4 of all input bits is equal to b
then y = b.

The depth of our circuit is clearly Ω(log n), since the output must have a path
to the majority of inputs. In order to compute the majority, we will also solve the
task of summing the input bits.

180 4. Reliable Computation

Theorem 4.10

(a) Over the complete basis consisting of the set of all 3-argument Boolean functions,
for each n there is a Boolean circuit of input size n and depth ≤ 3 log(n + 1)
whose output vector represents the sum of the input bits as a binary number.

b Over this same complete basis, for each n there is a Boolean circuit of input size
n and depth ≤ 2 log(n + 1) computing a near-majority.

Proof. First we prove (4.10). For simplicity, assume n = 2k − 1: if n is not of
this form, we may add some fake inputs. The naive approach would be proceed
according to Figure 4.3: to first compute y1,1 = x1 +x2, y1,2 = x3 +x4, . . . , y1,2k−1 =
x2k−1 + x2k . Then, to compute y2,1 = y1,1 + y1,2, y2,2 = y1,3 + y1,4, and so on. Then
yk,1 = x1 + · · · + x2k will indeed be computed in k stages.

It is somewhat troublesome that yi,j here is a number, not a bit, and therefore
must be represented by a bit vector, that is by group of nodes in the circuit, not just
by a single node. However, the general addition operation

yi+1,j = yi,2j−1 + yi,2j ,

when performed in the naive way, will typically take more than a constant number
of steps: the numbers yi,j have length up to i + 1 and therefore the addition may
add i to the depth, bringing the total depth to 1 + 2 + · · · + k = Ω(k2).

The following observation helps to decrease the depth. Let a, b, c be three num-
bers in binary notation: for example, a =

∑k
i=0 ai2

i. There are simple parallel for-
mulas to represent the sum of these three numbers as the sum of two others, that is
to compute a + b + c = d + e where d, e are numbers also in binary notation:

di = ai + bi + ci mod 2 ,

ei+1 = b(ai + bi + ci)/2c .
(4.12)

Since both formulas are computed by a single 3-argument gate, 3 numbers can be
reduced to 2 (while preserving the sum) in a single parallel computation step. Two
such steps reduce 4 numbers to 2. In 2(k −1) steps therefore they reduce a sum of 2k

terms to a sum of 2 numbers of length ≤ k. Adding these two numbers in the regular
way increases the depth by k: we found that 2k bits can be be added in 3k − 2 steps.

To prove (4.10), construct the circuit as in the proof of (4.10), but without the
last addition: the output is two k-bit numbers whose sum we are interested in. The
highest-order nonzero bit of these numbers is at some position < k. If the sum is
more than 2k−1 then one these numbers has a nonzero bit at position (k − 1) or
(k − 2). We can determine this in two applications of 3-input gates.

Exercises
4.2-1 Show that {1, ⊕, ∧} is a complete basis.
4.2-2 Show that the function x NOR y = ¬(x ∨ y) forms a complete basis by itself.

4.3. Expensive fault-tolerance in Boolean circuits 181

∧

0 1

1

Figure 4.4 Failure at a gate.

4.2-3 Let us fix the complete basis {∧, ¬}. Prove Proposition 4.6 (or look up its
proof in a textbook). Use it to give an upper bound for an arbitrary Boolean function
f of n variables, on:

(a) the smallest size of a Boolean expression for f ;

(b) the smallest size of a Boolean circuit for f ;

(c) the smallest depth of a Boolean circuit for f ;

4.2-4 Show that for every n there is a Boolean function f of n variables such that
every Boolean circuit in the complete basis {∧, ¬} computing f contains Ω(2n/n)
nodes. Hint. For a constant c > 0, upperbound the number of Boolean circuits with
at most c2n/n nodes and compare it with the number of Boolean functions over n
variables.]
4.2-5 Consider a circuit Mr

3 with 3r inputs, whose single output bit is computed
from the inputs by r levels of 3-input majority gates. Show that there is an input
vector x which is 1 in only n1/ log 3 positions but with which Mr

3 outputs 1. Thus
a small minority of the inputs, when cleverly arranged, can command the result of
this circuit.

4.3. Expensive fault-tolerance in Boolean circuits

Let N be a Boolean circuit as given in Definition 4.7. When noise is allowed then
the values

yv = valx(v)

will not be determined by the formula (4.11) anymore. Instead, they will be ran-
dom variables Yv. The random assignment (Yv : v ∈ V) will be called a random

configuration.

Definition 4.11 At vertex v, let

Zv = bv(Yarg1(v), . . . , Yargk(v)) ⊕ Yv . (4.13)

In other words, Zv = 1 if gate Yv is not equal to the value computed by the noise-
free gate bv from its inputs Yargj(v). (See Figure 4.4.) The set of vertices where Zv

is non-zero is the set of faults.
Let us call the difference valx(v) ⊕ Yv the deviation at node v.

182 4. Reliable Computation

Let us impose conditions on the kind of noise that will be allowed. Each fault
should occur only with probability at most ε, two specific faults should only occur
with probability at most ε2, and so on.

Definition 4.12 For an ε > 0, let us say that the random configuration (Yv : v ∈
V) is ε-admissible if

(a) Yinp(i) = xi for i = 1, . . . , n.

(b) For every set C of non-input nodes, we have

P[Zv = 1 for all v ∈ C] ≤ ε|C| . (4.14)

In other words, in an ε-admissible random configuration, the probability of hav-
ing faults at k different specific gates is at most εk. This is how we require that not
only is the fault probability low but also, faults do not “conspire”. The admissibility
condition is satisfied if faults occur independently with probability ≤ ε.

Our goal is to build a circuit that will work correctly, with high probability,
despite the ever-present noise: in other words, in which errors do not accumulate.
This concept is formalized below.

Definition 4.13 We say that the circuit N with output node w is (ε, δ)-resilient

if for all inputs x, all ε-admissible configurations Y, we have P[Yw 6= valx(w)] ≤ δ.

Let us explore this concept. There is no (ε, δ)-resilient circuit with δ < ε, since
even the last gate can fail with probability ε. So, let us, a little more generously,
allow δ > 2ε. Clearly, for each circuit N and for each δ > 0 we can choose ε small
enough so that N is (ε, δ)-resilient. But this is not what we are after: hopefully, one
does not need more reliable gates every time one builds a larger circuit. So, we hope
to find a function

F (N, δ)

and an ε0 > 0 with the property that for all ε < ε0, δ ≥ 2ε, every Boolean circuit N
of size N there is some (ε, δ)-resilient circuit N ′ of size F (N, δ) computing the same
function as N . If we achieve this then we can say that we prevented the accumulation
of errors. Of course, we want to make F (N, δ) relatively small, and ε0 large (allowing
more noise). The function F (N, δ)/N can be called the redundancy: the factor by
which we need to increase the size of the circuit to make it resilient. Note that the
problem is nontrivial even with, say, δ = 1/3. Unless the accumulation of errors is
prevented we will lose gradually all information about the desired output, and no
δ < 1/2 could be guaranteed.

How can we correct errors? A simple idea is this: do “everything” 3 times and
then continue with the result obtained by majority vote.

Definition 4.14 For odd natural number d, a d-input majority gate is a Boolean
function that outputs the value equal to the majority of its inputs.

4.3. Expensive fault-tolerance in Boolean circuits 183

Note that a d-input majority can be computed using O(d) gates of type AND
and NOT.

Why should majority voting help? The following informal discussion helps un-
derstanding the benefits and pitfalls. Suppose for a moment that the output is a
single bit. If the probability of each of the three independently computed results
failing is δ then the probability that at least 2 of them fails is bounded by 3δ2.
Since the majority vote itself can fail with some probability ε the total probability
of failure is bounded by 3δ2 + ε. We decrease the probability δ of failure, provided
the condition 3δ2 + ε < δ holds.

We found that if δ is small, then repetition and majority vote can “make it”
smaller. Of course, in order to keep the error probability from accumulating, we
would have to perform this majority operation repeatedly. Suppose, for example,
that our computation has t stages. Our bound on the probability of faulty output
after stage i is δi. We plan to perform the majority operation after each stage i. Let
us perform stage i three times. The probability of failure is now bounded by

δi+1 = δi + 3δ2 + ε . (4.15)

Here, the error probabilities of the different stages accumulate, and even if 3δ2+ε < δ
we only get a bound δt < (t−1)δ. So, this strategy will not work for arbitrarily large
computations.

Here is a somewhat mad idea to avoid accumulation: repeat everything before
the end of stage i three times, not only stage i itself. In this case, the growing
bound (4.15) would be replaced with

δi+1 = 3(δi + δ)2 + ε .

Now if δi < δ and 12δ2 + ε < δ then also δi+1 < δ, so errors do not accumulate. But
we paid an enormous price: the fault-tolerant version of the computation reaching
stage (i + 1) is 3 times larger than the one reaching stage i. To make t stages fault-
tolerant this way will cost a factor of 3t in size. This way, the function F (N, δ)
introduced above may become exponential in N .

The theorem below formalizes the above discussion.

Theorem 4.15 Let R be a finite and complete basis for Boolean functions. If
2ε ≤ δ ≤ 0.01 then every function can be computed by an (ε, δ)-resilient circuit over
R.

Proof. For simplicity, we will prove the result for a complete basis that contains the
three-argument majority function and contains not functions with more than three
arguments. We also assume that faults occur independently.

Let N be a noise-free circuit of depth t computing function f . We will prove
that there is an (ε, δ)-resilient circuit N ′ of depth 2t computing f . The proof is by
induction on t. The sufficient conditions on ε and δ will emerge from the proof.

The statement is certainly true for t = 1, so suppose t > 1. Let g be the
output gate of the circuit N , then f(x) = g(f1(x), f2(x), f3(x)). The subcircuits
Ni computing the functions fi have depth ≤ t − 1. By the inductive assumption,
there exist (ε, δ)-resilient circuits N ′

i of depth ≤ 2t − 2 that compute fi. Let M be a

184 4. Reliable Computation

new circuit containing copies of the circuits N ′
i (with the corresponding input nodes

merged), with a new node in which f(x) is computed as g is applied to the outputs
of N ′

i . Then the probability of error of M is at most 3δ + ε < 4δ if ε < δ since
each circuit N ′

i can err with probability δ and the node with gate g can fail with
probability ε.

Let us now form N ′ by taking three copies of M (with the inputs merged) and
adding a new node computing the majority of the outputs of these three copies. The
error probability of N ′ is at most 3(4δ)2 + ε = 48δ2 + ε. Indeed, error will be due to
either a fault at the majority gate or an error in at least two of the three independent
copies of M. So under condition

48δ2 + ε ≤ δ , (4.16)

the circuit N ′ is (ε, δ)-resilient. This condition will be satisfied by 2ε ≤ δ ≤ 0.01.

The circuit N ′ constructed in the proof above is at least 3t times larger than N .
So, the redundancy is enormous. Fortunately, we will see a much more economical
solution. But there are interesting circuits with small depth, for which the 3t factor
is not extravagant.

Theorem 4.16 Over the complete basis consisting of all 3-argument Boolean func-
tions, for all sufficiently small ε > 0, if 2ε ≤ δ ≤ 0.01 then for each n there is an
(ε, δ)-resilient Boolean circuit of input size n, depth ≤ 4 log(n + 1) and size (n + 1)7

outputting a near-majority (as given in Definition 4.9).

Proof. Apply Theorem 4.15 to the circuit from part (4.10) of Theorem 4.10: it gives
a new, 4 log(n + 1)-deep (ε, δ)-resilient circuit computing a near-majority. The size
of any such circuit with 3-input gates is at most 34 log(n+1) = (n+1)4 log 3 < (n+1)7.

Exercises
4.3-1 Exercise 4.2-5 suggests that the iterated majority vote Mr

3 is not safe against
manipulation. However, it works very well under some circumstances. Let the input
to Mr

3 be a vector X = (X1, . . . , Xn) of independent Boolean random variables
with P[Xi = 1] = p < 1/6. Denote the (random) output bit of the circuit by Z.
Assuming that our majority gates can fail with probability ≤ ε ≤ p/2 independently,
prove

P[Z = 1] ≤ max{10ε, 0.3(p/0.3)2k } .

Hint. Define g(p) = ε + 3p2, g0(p) = p, gi+1(p) = g(gi(p)), and prove P[Z = 1] ≤
gr(p).]
4.3-2 We say that a circuit N computes the function f(x1, . . . , xn) in an (ε, δ)-
input-robust way, if the following holds: For any input vector x = (x1, . . . , xn), for
any vector X = (X1, . . . , Xn) of independent Boolean random variables “perturbing
it” in the sense P[Xi 6= xi] ≤ ε, for the output Y of circuit N on input X we have
P[Y = f(x)] ≥ 1 − δ. Show that if the function x1 ⊕ · · · ⊕ xn is computable on an
(ε, 1/4)-input-robust circuit then ε ≤ 1/n.

4.4. Safeguarding intermediate results 185

4.4. Safeguarding intermediate results

In this section, we will see ways to introduce fault-tolerance that scale up better.
Namely, we will show:

Theorem 4.17 There are constants R0, ε0 such that for

F (n, δ) = N log(n/δ) ,

for all ε < ε0, δ ≥ 3ε, for every deterministic computation of size N there is an
(ε, δ)-resilient computation of size R0F (N, δ) with the same result.

Let us introduce a concept that will simplify the error analysis of our circuits,
making it independent of the input vector x.

Definition 4.18 In a Boolean circuit N , let us call a majority gate at a node v
a correcting majority gate if for every input vector x of N , all input wires of
node v have the same value. Consider a computation of such a circuit N . This
computation will make some nodes and wires of N tainted. We define taintedness
by the following rules:

– The input nodes are untainted.

– If a node is tainted then all of its output wires are tainted.

– A correcting majority gate is tainted if either it fails or a majority of its inputs
are tainted.

– Any other gate is tainted if either it fails or one of its inputs is tainted.

Clearly, if for all ε-admissible random configurations the output is tainted with
probability ≤ δ then the circuit is (ε, δ)-resilient.

4.4.1. Cables

So far, we have only made use of redundancy idea (4) of the introduction to the
present chapter: repeating computation steps. Let us now try to use idea (4) (keeping
information in redundant form) in Boolean circuits. To protect information traveling
from gate to gate, we replace each wire of the noiseless circuit by a “cable” of k wires
(where k will be chosen appropriately). Each wire within the cable is supposed to
carry the same bit of information, and we hope that a majority will carry this bit
even if some of the wires fail.

Definition 4.19 In a Boolean circuit N ′, a certain set of edges is allowed to be
called a cable if in a noise-free computation of this circuit, each edge carries the
same Boolean value. The width of the cable is its number of elements. Let us fix
an appropriate constant threshold ϑ. Consider any possible computation of the noisy
version of the circuit N ′, and a cable of width k in N ′. This cable will be called
ϑ-safe if at most ϑk of its wires are tainted.

186 4. Reliable Computation

1 0 0 0 0 0 0 1 0 0

∨ ∨ ∨ ∨ ∨

1 0 1 0 0

Figure 4.5 An executive organ.

minority

restoring organ

smaller minority

Figure 4.6 A restoring organ.

Let us take a Boolean circuit N that we want to make resilient. As we replace
wires of N with cables of N ′ containing k wires each, we will replace each noiseless
2-argument gate at a node v by a module called the executive organ of k gates,
which for each i = 1, . . . , k, passes the ith wire both incoming cables into the ith
node of the organ. Each of these nodes contains a gate of one and the same type bv.
The wires emerging from these nodes form the output cable of the executive organ.

The number of tainted wires in this output cable may become too high: indeed,
if there were ϑk tainted wires in the x cable and also in the y cable then there could
be as many as 2ϑk such wires in the g(x, y) cable (not even counting the possible new
taints added by faults in the executive organ). The crucial part of the construction
is to attach to the executive organ a so-called restoring organ: a module intended
to decrease the taint in a cable.

4.4. Safeguarding intermediate results 187

4.4.2. Compressors

How to build a restoring organ? Keeping in mind that this organ itself must also
work in noise, one solution is to build (for an approriate δ′) a special (ε, δ′)-resilient
circuit that computes the near-majority of its k inputs in k independent copies.
Theorem 4.16 provides a circuit of size k(k + 1)7 to do this.

It turns out that, at least asymptotically, there is a better solution. We will look
for a very simple restoring organ: one whose own noise we can analyse easily. What
could be simpler than a circuit having only one level of gates? We fix an odd positive
integer constant d (for example, d = 3). Each gate of our organ will be a d-input
majority gate.

Definition 4.20 A multigraph is a graph in which between any two vertices there
may be several edges, not just 0 or 1. Let us call a bipartite multigraph with k inputs
and k outputs, d-half-regular. if each output node has degree d. Such a graph is a
(d, α, γ, k)-compressor if it has the following property: for every set E of at most
≤ αk inputs, the number of those output points connected to at least d/2 elements
of E (with multiplicity) is at most γαk.

The compressor property is interesting generally when γ < 1. For example, in
an (5, 0.1, 0.5, k)-compressor the outputs have degree 5, and the majority operation
in these nodes decreases every error set confined to 10% of all input to just 5% of all
outputs. A compressor with the right parameters could serve as our restoring organ:
it decreases a minority to a smaller minority and may in this way restore the safety
of a cable. But, are there compressors?

Theorem 4.21 For all γ < 1, all integers d with

1 < γ(d − 1)/2 , (4.17)

there is an α such that for all integer k > 0 there is a (d, α, γ, k)-compressor.

Note that for d = 3, the theorem does not guarantee a compressor with γ < 1.
Proof We will not give an explicit construction for the multigraph, we will just show
that it exists. We will select a d-half-regular multigraph randomly (each such multi-
graph with the same probability), and show that it will be a (d, α, γ, k)-compressor
with positive probability. This proof method is called the probabilistic method.
Let

s = bd/2c .

Our construction will be somewhat more general, allowing k′ 6= k outputs. Let us
generate a random bipartite d-half-regular multigraph with k inputs and k′ outputs
in the following way. To each output, we draw edges from d random input nodes
chosen independently and with uniform distribution over all inputs. Let A be an
input set of size αk, let v be an output node and let Ev be the event that v has s+1
or more edges from A. Then we have

P(Ev) ≤
(

d

s + 1

)

αs+1 =

(

d

s

)

αs+1 =: p .

188 4. Reliable Computation

On the average (in expected value), the event Ev will occur for pk′ different output
nodes v. For an input set A, let FA be the event that the set of nodes v for which
Ev holds has size > γαk′. By inequality (4.6) we have

P(FA) ≤
(

ep

γα

)k′γα

.

The number M of sets A of inputs with ≤ αk elements is, using inequality (4.7),

M ≤
∑

i≤αk

(

k

i

)

≤
(e

α

)αk

.

The probability that our random graph is not a compressor is at most as large as
the probability that there is at least one input set A for which event FA holds. This
can be bounded by

M · P(FA) ≤ e−αDk′

where

D = −(γs − k/k′) ln α − γ
(

ln (d
s) − ln γ + 1

)

− k/k′ .

As we decrease α the first term of this expression dominates. Its coefficient is positive
according to the assumption (4.17). We will have D > 0 if

α < exp

(

−γ
(

ln (d
s) − ln γ + 1

)

+ k/k′

γs − k/k′

)

.

Example 4.4 Choosing γ = 0.4, d = 7, the value α = 10−7 will work.

We turn a (d, α, γ, k)-compressor into a restoring organ R, by placing d-input
majority gates into its outputs. If the majority elements sometimes fail then the
output of R is random. Assume that at most αk inputs of R are tainted. Then
(γ + ρ)αk outputs can only be tainted if αρk majority gates fail. Let

pR

be the probability of this event. Assuming that the gates of R fail independently
with probability ≤ ε, inequality (4.6) gives

pR ≤
(

eε

αρ

)αρk

. (4.18)

Example 4.5 Choose γ = 0.4, d = 7, α = 10−7 as in Example 4.4, further ρ = 0.14 (this

4.4. Safeguarding intermediate results 189

ϑm ϑm

∨ ∨ ∨ ∨ ∨

2ϑm + 0.14ϑm = 2.14ϑm

restoring organ

0.4(2.14ϑm) + 0.14ϑm < ϑm (counting failures)

Figure 4.7 An executive organ followed by a restoring organ.

will satisfy the inequality (4.19) needed later). With ε = 10−9, we get pR ≤ e−10
−8k.

The attractively small degree d = 7 led to an extremely unattractive probability bound
on the failure of the whole compressor. This bound does decrease exponentially with cable
width k, but only an extremely large k would make it small.

Example 4.6 Choosing again γ = 0.4, but d = 41 (voting in each gate of the compressor
over 41 wires instead of 7), leads to somewhat more realistic results. This choice allows
α = 0.15. With ρ = 0.14, ε = 10−9 again, we get pR ≤ e−0.32k.

These numbers look less frightening, but we will still need many scores of wires in the
cable to drive down the probability of compression failure. And although in practice our
computing components fail with frequency much less than 10−9, we may want to look at
the largest ε that still can be tolerated.

4.4.3. Propagating safety

Compressors allow us to construct a reliable Boolean circuit all of whose cables are
safe.

Definition 4.22 Given a Boolean circuit N with a single bit of output (for sim-
plicity), a cable width k and a Boolean circuit R with k inputs and k outputs, let

N ′ = Cab(N , R)

be the Boolean circuit that we obtain as follows. The input nodes of N ′ are the same
as those of N . We replace each wire of N with a cable of width k, and each gate of

190 4. Reliable Computation

N with an executive organ followed by a restoring organ that is a copy of the circuit
R. The new circuit has k outputs: the outputs of the restoring organ of N ′ belonging
to the last gate of N .

In noise-free computations, on every input, the output of N ′ is the same as the
output of N , but in k identical copies.

Lemma 4.23 There are constants d, ε0, ϑ, ρ > 0 and for every cable width k a
circuit R of size 2k and gate size ≤ d with the following property. For every Boolean
circuit N of gate size ≤ 2 and number of nodes N , for every ε < ε0, for every ε-
admissible configuration of N ′ = Cab(N , R), the probability that not every cable of
N ′ is ϑ-safe is < 2N(eε

ϑρ)ϑρk.

Proof We know that there are d, α and γ < 1/2 with the property that for all k a
(d, α, γ, k)-compressor exists. Let ρ be chosen to satisfy

γ(2 + ρ) + ρ ≤ 1 , (4.19)

and define
ϑ = α/(2 + ρ) . (4.20)

Let R be a restoring organ built from a (d, α, γ, k)-compressor. Consider a gate v
of circuit N , and the corresponding executive organ and restoring organ in N ′. Let
us estimate the probability of the event Ev that the input cables of this combined
organ are ϑ-safe but its output cable is not. Assume that the two incoming cables
are safe: then at most 2ϑk of the outputs of the executive organ are tainted due
to the incoming cables: new taint can still occur due to failures. Let Ev1 be the
event that the executive organ taints at least ρϑk more of these outputs. Then
P(Ev1) ≤ (eε

ρϑ)ρϑk, using the estimate (4.18). The outputs of the executive organ

are the inputs of the restoring organ. If no more than (2 + ρ)ϑk = αk of these are
tainted then, in case the organ operates perfectly, it would decrease the number of
tainted wires to γ(2 + ρ)ϑk. Let Ev2 be the event that the restoring organ taints
an additional ρϑk of these wires. Then again, P(Ev2) ≤ (eε

ρϑ)ρϑk. If neither Ev1 nor

Ev2 occur then at most γ(2 + ρ)ϑk + ρϑk ≤ ϑk (see (4.19)) tainted wires emerge
from the restoring organ, so the outgoing cable is safe. Therefore Ev ⊂ Ev1 ∪ Ev2

and hence P(Ev) ≤ 2(eε
ρϑ)ρϑk.

Let V = {1, . . . , N} be the nodes of the circuit N . Since the incoming cables of
the whole circuit N ′ are safe, the event that there is some cable that is not safe is
contained in E1 ∪ E2 ∪ · · · ∪ EN ; hence the probability is bounded by 2N(eε

ρϑ)ρϑk.

4.4.4. Endgame

ProofProof of Theorem 4.17 We will prove the theorem only for the case when
our computation is a Boolean circuit with a single bit of output. The generalization
with more bits of output is straightforward. The proof of Lemma 4.23 gives us a
circuit N ′ whose output cable is safe except for an event of probability < 2N(eε

ρϑ)ρϑk.

4.4. Safeguarding intermediate results 191

size N
noiseless

N log(N/δ)

each gate fails

with prob. ε

result fails with prob. δ

Figure 4.8 Reliable circuit from a fault-free circuit.

Let us choose k in such a way that this becomes ≤ δ/3:

k ≥ log(6N/δ)

ρϑ log ρϑ
eε0

. (4.21)

It remains to add a little circuit to this output cable to extract from it the majority
reliably. This can be done using Theorem 4.16, adding a small extra circuit of size
(k + 1)7 that can be called the coda to N ′. Let us call the resulting circuit N ′′.

The probability that the output cable is unsafe is < δ/3. The probability that the
output cable is safe but the “coda” circuit fails is bounded by 2ε. So, the probability
that N ′′ fails is ≤ 2ε + δ/3 ≤ δ, by the assumption δ ≥ 3ε.

Let us estimate the size of N ′′. By (4.21), we can choose cable width k =
O(log(N/δ)). We have |N ′| ≤ 2kN , hence

|N ′′| ≤ 2kN + (k + 1)7 = O(N log(N/δ)).

Example 4.7 Take the constants of Example 4.6, with ϑ defined in equation (4.20): then
ε0 = 10−9, d = 41, γ = 0.4, ρ = 0.14, α = 0.15, ϑ = 0.07, giving

1

ρϑ ln ρϑ

eε0

≈ 6.75 ,

192 4. Reliable Computation

so making k as small as possible (ignoring that it must be integer), we get k ≈ 6.75 ln(N/δ).
With δ = 10−8, N = 1012 this allows k = 323. In addition to this truly unpleasant cable
size, the size of the “coda” circuit is (k + 1)7 ≈ 4 · 1017, which dominates the size of the
rest of N ′′ (though as N → ∞ it becomes asymptotically negligible).

As Example 4.7 shows, the actual price in redundancy computable from the
proof is unacceptable in practice. The redundancy O(lg(N/δ)) sounds good, since it
is only logarithmic in the size of the computation, and by choosing a rather large
majority gate (41 inputs), the factor 6.75 in the O(·) here also does not look bad;
still, we do not expect the final price of reliability to be this high. How much can
this redundancy improved by optimization or other methods? Problem 4-6 shows
that in a slightly more restricted error model (all faults are independent and have
the same probability), with more randomization, better constants can be achieved.
Exercises 4.4-1, 4.4-2 and 4.4-5 are concerned with an improved construction for the
“coda” circuit. Exercise 4.5-2 shows that the coda circuit can be omitted completely.
But none of these improvements bring redundancy to acceptable level. Even aside
from the discomfort caused by their random choice (this can be helped), concentra-
tors themselves are rather large and unwieldy. The problem is probably with using
circuits as a model for computation. There is no natural way to break up a general
circuit into subunits of non-constant size in order to deal with the reliability problem
in modular style.

4.4.5. The construction of compressors

This subsection is sketchier than the preceding ones, and assumes some knowledge
of linear algebra.

We have shown that compressors exist. How expensive is it to find a (d, α, γ, k)-
compressor, say, with d = 41, α = 0.15, γ = 0.4, as in Example 4.6? In a deterministic
algorithm, we could search through all the approximately dk d-half-regular bipartite
graphs. For each of these, we could check all possible input sets of size ≤ αk: as we
know, their number is ≤ (e/α)αk < 2k. The cost of checking each subset is O(k),
so the total number of operations is O(k(2d)k). Though this number is exponential
in k, recall that in our error-correcting construction, k = O(log(N/δ)) for the size
N of the noiseless circuit: therefore the total number of operations needed to find a
compressor is polynomial in N .

The proof of Theorem 4.21 shows that a randomly chosen d-half-regular bipartite
graph is a compressor with large probability. Therefore there is a faster, randomized
algorithm for finding a compressor. Pick a random d-half-regular bipartite graph,
check if it is a compressor: if it is not, repeat. We will be done in a constant expected
number of repetititons. This is a faster algorithm, but is still exponential in k, since
each checking takes Ω(k(e/α)αk) operations.

Is it possible to construct a compressor explicitly, avoiding any search that takes
exponential time in k? The answer is yes. We will show here only, however, that
the compressor property is implied by a certain property involving linear algebra,
which can be checked in polynomial time. Certain explicitly constructed graphs are
known that possess this property. These are generally sought after not so much for

4.4. Safeguarding intermediate results 193

their compressor property as for their expander property (see the section on reliable
storage).

For vectors v, w, let (v, w) denote their inner product. A d-half-regular bipartite
multigraph with 2k nodes can be defined by an incidence matrix M = (mij),
where mij is the number of edges connecting input j to output i. Let e be the vector
(1, 1, . . . , 1)T . Then Me = de, so e is an eigenvector of M with eigenvalue d.
Moreover, d is the largest eigenvalue of M . Indeed, denoting by |x|1 =

∑

i |xi| for
any row vector x = (x1, . . . , xk), we have |xM |1 ≤ |x|1.

Theorem 4.24 Let G be a multigraph defined by the matrix M . For all γ > 0, and

µ < d
√

γ/2, (4.22)

there is an α > 0 such that if the second largest eigenvalue of the matrix MT M is
µ2 then G is a (d, α, γ, k)-compressor.

Proof The matrix MT M has largest eigenvalue d2. Since it is symmetric, it has
a basis of orthogonal eigenvectors e1, . . . , ek of unit length with corresponding non-
negative eigenvalues

λ2
1 ≥ · · · ≥ λ2

k

where λ1 = d and e1 = e/
√

k. Recall that in the orthonormal basis {ei}, any vector
f can be written as f =

∑

i(f , ei)ei. For an arbitrary vector f , we can estimate
|Mf |2 as follows.

|Mf |2 = (Mf , Mf) = (f , MT Mf) =
∑

i

λ2
i (f , ei)

2

≤ d2(f , e1)2 + µ2
∑

i>1

(f , ei)
2 ≤ d2(f , e1)2 + µ2(f , f)

= d2(f , e)2/k + µ2(f , f) .

Let now A ⊂ {1, . . . , k} be a set of size αk and f = (f1, . . . , fk)T where fj = 1 for
j ∈ A and 0 otherwise. Then, coordinate i of Mf counts the number di of edges
coming from the set A to the node i. Also, (f , e) = (f , f) = |A|, the number of
elements of A. We get

∑

i

d2
i = |Mf |2 ≤ d2(f , e)2/k + µ2(f , f) = d2α2k + µ2αk,

k−1
∑

i

(di/d)2 ≤ α2 + (µ/d)2α .

Suppose that there are cαk nodes i with di > d/2, then this says

cα ≤ 4(µ/d)2α + 4α2 .

Since (4.22) implies 4(µ/d)2 < γ, it follows that M is a (d, α, γ, k, k)-compressor for
small enough α.

194 4. Reliable Computation

It is actually sufficient to look for graphs with large k and µ/d < c < 1 where
d, c are constants. To see this, let us define the product of two bipartite multigraphs
with 2k vertices by the multigraph belonging to the product of the corresponding
matrices.

Suppose that M is symmetric: then its second largest eigenvalue is µ and the
ratio of the two largest eigenvalues of M r is (µ/d)r. Therefore using M r for a
sufficiently large r as our matrix, the condition (4.22) can be satisfied. Unfortunately,
taking the power will increase the degree d, taking us probably even farther away
from practical realizability.

We found that there is a construction of a compressor with the desired param-
eters as soon as we find multigraphs with arbitrarily large sizes 2k, with symmetric
matrices Mk and with a ratio of the two largest eigenvalues of Mk bounded by
a constant c < 1 independent of k. There are various constructions of such multi-
graphs (see the references in the historical overview). The estimation of the desired
eigenvalue quotient is never very simple.

Exercises
4.4-1 The proof of Theorem 4.17 uses a “coda” circuit of size (k + 1)7. Once we
proved this theorem we could, of course, apply it to the computation of the final
majority itself: this would reduce the size of the coda circuit to O(k log k). Try out
this approach on the numerical examples considered above to see whether it results
in a significant improvement.
4.4-2 The proof of Theorem 4.21 provided also bipartite graphs with the compres-
sor property, with k inputs and k′ < 0.8k outputs. An idea to build a smaller “coda”
circuit in the proof of Theorem 4.17 is to concatenate several such compressors,
decreasing the number of cables in a geometric series. Explore this idea, keeping
in mind, however, that as k decreases, the “exponential” error estimate in inequal-
ity (4.18) becomes weaker.
4.4-3 In a noisy Boolean circuit, let Fv = 1 if the gate at vertex v fails and 0
otherwise. Further, let Tv = 1 if v is tainted, and 0 otherwise. Suppose that the dis-
tribution of the random variables Fv does not depend on the Boolean input vector.
Show that then the joint distribution of the random variables Tv is also independent
of the input vector.
4.4-4 This exercise extends the result of Exercise 4.3-1 to random input vectors:
it shows that if a random input vector has only a small number of errors, then the
iterated majority vote Mr

3 of Exercise 4.2-5 may still work for it, if we rearrange the
input wires randomly. Let k = 3r, and let j = (j1, . . . , jk) be a vector of integers
ji ∈ {1, . . . , k}. We define a Boolean circuit C(j) as follows. This circuit takes input
vector x = (x1, . . . , xk), computes the vector y = (y1, . . . , yk) where yi = xji

(in
other words, just leads a wire from input node ji to an “intermediate node” i) and
then inputs y into the circuit Mr

3.
Denote the (possibly random) output bit of C(j) by Z. For any fixed input

vector x, assuming that our majority gates can fail with probability ≤ ε ≤ α/2
independently, denote q(j, x) := P[Z = 1]. Assume that the input is a vector
X = (X1, . . . , Xk) of (not necessarily independent) Boolean random variables, with

4.5. The reliable storage problem 195

p(x) := P[X = x]. Denoting |X| =
∑

i Xi, assume P[|X| > αk] ≤ ρ < 1. Prove
that there is a choice of the vector j for which

∑

x

p(x)q(j, x) ≤ ρ + max{10ε, 0.3(α/0.3)2k } .

The choice may depend on the distribution of the random vector X. Hint. Choose the
vector j (and hence the circuit C(j)) randomly, as a random vector J = (J1, . . . , Jk)
where the variables Ji are independent and uniformly distributed over {1, . . . , k},
and denote s(j) := P[J = j]. Then prove

∑

j

s(j)
∑

x

p(x)q(j, x) ≤ ρ + max{10ε, 0.3(α/0.3)2k }.

For this, interchange the averaging over x and j. Then note that
∑

j s(j)q(j, x)
is the probability of Z = 1 when the “wires” Ji are chosen randomly “on the fly”
during the computation of the circuit.]
4.4-5 Taking the notation of Exercise 4.4-3 suppose, like there, that the random
variables Fv are independent of each other, and their distribution does not depend
on the Boolean input vector. Take the Boolean circuit Cab(N , R) introduced in
Definition 4.22, and define the random Boolean vector T = (T1, . . . , Tk) where Ti = 1
if and only if the ith output node is tainted. Apply Exercise 4.4-4 to show that there
is a circuit C(j) that can be attached to the output nodes to play the role of the
“coda” circuit in the proof of Theorem 4.17. The size of C(j) is only linear in k, not
(k + 1)7 as for the coda circuit in the proof there. But, we assumed a little more
about the fault distribution, and also the choice of the “wiring” j depends on the
circuit Cab(N , R).

4.5. The reliable storage problem

There is hardly any simpler computation than not doing anything, just keeping the
input unchanged. This task does not fit well, however, into the simple model of
Boolean circuits as introduced above.

4.5.1. Clocked circuits

An obvious element of ordinary computations is missing from the above described
Boolean circuit model: repetition. If we want to repeat some computation steps, then
we need to introduce timing into the work of computing elements and to store the
partial results between consecutive steps. Let us look at the drawings of the circuit
designer again. We will see components like in Figure 4.9, with one ingoing edge
and no operation associated with them; these will be called shift registers. The
shift registers are controlled by one central clock (invisible on the drawing). At each
clock pulse, the assignment value on the incoming edge jumps onto the outgoing
edges and “stays in” the register. Figure 4.10 shows how shift registers may be used
inside a circuit.

196 4. Reliable Computation

trigger s

t

s

Figure 4.9 A shift register.

Definition 4.25 A clocked circuit over a complete basis Q is given by a tuple
just like a Boolean circuit in (4.10). Also, the circuit defines a graph G = (V, E)
similarly. Recall that we identified nodes with the natural numbers 1, . . . , N . To each
non-input node v either a gate bv is assigned as before, or a shift register: in this
case kv = 1 (there is only one argument). We do not require the graph to be acyclic,
but we do require every directed cycle (if there is any) to pass through at least one
shift register.

- carry

x t
y t

-t QQs

@
@R

"!

Maj

-

��3

QQs

"!

XOR -

Figure 4.10 Part of a circuit which computes the sum of two binary numbers x, y. We feed the
digits of x and y beginning with the lowest-order ones, at the input nodes. The digits of the sum
come out on the output edge. A shift register holds the carry.

The circuit works in a sequence t = 0, 1, 2, . . . of clock cycles. Let us denote
the input vector at clock cycle t by xt = (xt

1, . . . , xt
n), the shift register states by

st = (st
1, . . . , st

k), and the output vector by yt = (yt
1, . . . , yt

m). The part of the circuit

4.5. The reliable storage problem 197

logic circuit

clock

Figure 4.11 A “computer” consists of some memory (shift registers) and a Boolean circuit oper-
ating on it. We can define the size of computation as the size of the computer times the number
of steps.

going from the inputs and the shift registers to the outputs and the shift registers
defines two Boolean vector functions λ : {0, 1}k ×{0, 1}n → {0, 1}m and τ : {0, 1}k ×
{0, 1}n → {0, 1}k. The operation of the clocked circuit is described by the following
equations (see Figure 4.11, which does not show any inputs and outputs).

yt = λ(st, xt), st+1 = τ(st, xt) . (4.23)

Frequently, we have no inputs or outputs during the work of the circuit, so the
equations (4.23) can be simplified to

st+1 = τ(st) . (4.24)

How to use a clocked circuit described by this equation for computation? We write
some initial values into the shift registers, and propagate the assignment using the
gates, for the given clock cycle. Now we send a clock pulse to the register, causing
it to write new values to their output edges (which are identical to the input edges
of the circuit). After this, the new assignment is computed, and so on.

How to compute a function f(x) with the help of such a circuit? Here is a possible
convention. We enter the input x (only in the first step), and then run the circuit,
until it signals at an extra output edge when desired result f(x) can be received
from the other output nodes.

Example 4.8 This example uses a convention different from the above described one: new
input bits are supplied in every step, and the output is also delivered continuously. For the

198 4. Reliable Computation

binary adder of Figure 4.10, let ut and vt be the two input bits in cycle t, let ct be the
content of the carry, and wt be the output in the same cycle. Then the equations (4.23)
now have the form

wt = ut ⊕ vt ⊕ ct, ct+1 = Maj(ut, vt, ct) ,

where Maj is the majority operation.

4.5.2. Storage

A clocked circuit is an interesting parallel computer but let us pose now a task for it
that is trivial in the absence of failures: information storage. We would like to store
a certain amount of information in such a way that it can be recovered after some
time, despite failures in the circuit. For this, the transition function τ introduced
in (4.24) cannot be just the identity: it will have to perform some error-correcting
operations. The restoring organs discussed earlier are natural candidates. Indeed,
suppose that we use k memory cells to store a bit of information. We can call the
content of this k-tuple safe when the number of memory cells that dissent from the
correct value is under some treshold ϑk. Let the rest of the circuit be a restoring
organ built on a (d, α, γ, k)-compressor with α = 0.9ϑ. Suppose that the input cable
is safe. Then the probability that after the transition, the new output cable (and
therefore the new state) is not safe is O(e−ck) for some constant c. Suppose we keep
the circuit running for t steps. Then the probability that the state is not safe in
some of these steps is O(te−ck) which is small as long as t is significantly smaller
than eck. When storing m bits of information, the probability that any of the bits
loses its safety in some step is O(mte−cm).

To make this discussion rigorous, an error model must be introduced for clocked
circuits. Since we will only consider simple transition functions τ like the majority
vote above, with a single computation step between times t and t + 1, we will make
the model also very simple.

Definition 4.26 Consider a clocked circuit described by equation (4.24), where at
each time instant t = 0, 1, 2, . . . , the configuration is described by the bit vector
st = (st

1, . . . , st
n). Consider a sequence of random bit vectors Y t = (Y t

1 , . . . , Y t
n) for

t = 0, 1, 2, Similarly to (4.13) we define

Zi,t = τ(Y t−1) ⊕ Y t
i . (4.25)

Thus, Zi,t = 1 says that a failure occurs at the space-time point (i, t). The sequence
{Y t} will be called ε-admissible if (4.14) holds for every set C of space-time points
with t > 0.

By the just described construction, it is possible to keep m bits of information
for T steps in

O(m lg(mT)) (4.26)

memory cells. More precisely, the cable Y T will be safe with large probability in any
admissible evolution Y t (t = 0, . . . , T).

Cannot we do better? The reliable information storage problem is related to the

4.5. The reliable storage problem 199

problem of information transmission: given a message x, a sender wants to
transmit it to a receiver throught a noisy channel. Only now sender and receiver
are the same person, and the noisy channel is just the passing of time. Below,
we develop some basic concepts of reliable information transmission, and then we
will apply them to the construction of a reliable data storage scheme that is more
economical than the above seen naive, repetition-based solution.

4.5.3. Error-correcting codes

Error detection To protect information, we can use redundancy in a way more
efficient than repetition. We might even add only a single redundant bit to our
message. Let x = (x1, . . . , x6), (xi ∈ {0, 1}) be the word we want to protect. Let us
create the error check bit

x7 = x1 ⊕ · · · ⊕ x6 .

For example, x = 110010, x′ = 1100101. Our codeword x′ = (x1, . . . , x7) will be
subject to noise and it turns into a new word, y. If y differs from x′ in a single
changed (not deleted or added) bit then we will detect this, since then y violates
the error check relation

y1 ⊕ · · · ⊕ y7 = 0 .

We will not be able to correct the error, since we do not know which bit was cor-
rupted.

Correcting a single error. To also correct corrupted bits, we need to add
more error check bits. We may try to add two more bits:

x8 = x1 ⊕ x3 ⊕ x5 ,

x9 = x1 ⊕ x2 ⊕ x5 ⊕ x6 .

Then an uncorrupted word y must satisfy the error check relations

y1 ⊕ · · · ⊕ y7 = 0 ,

y1 ⊕ y3 ⊕ y5 ⊕ y8 = 0 ,

y1 ⊕ y2 ⊕ y5 ⊕ y6 ⊕ y9 = 0 ,

or, in matrix notation Hy mod 2 = 0, where

H =





1 1 1 1 1 1 1 0 0
1 0 1 0 1 0 0 1 0
1 1 0 0 1 1 0 0 1



 = (h1, . . . , h9) .

Note h1 = h5. The matrix H is called the error check matrix, or parity check

matrix.
Another way to write the error check relations is

y1h1 ⊕ · · · ⊕ y5h5 ⊕ · · · ⊕ y9h9 = 0.

200 4. Reliable Computation

encoding noise (channel) decoding

Figure 4.12 Transmission through a noisy channel.

Now if y is corrupted, even if only in a single position, unfortunately we still cannot
correct it: since h1 = h5, the error could be in position 1 or 5 and we could not
tell the difference. If we choose our error-check matrix H in such a way that the
colum vectors h1, h2, . . . are all different (of course also from 0), then we can always
correct an error, provided there is only one. Indeed, if the error was in position 3
then

Hy mod 2 = h3.

Since all vectors h1, h2, . . . are different, if we see the vector h3 we can imply that
the bit y3 is corrupted. This code is called the Hamming code. For example, the
following error check matrix defines the Hamming code of size 7:

H =





1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1



 = (h1, . . . , h7) . (4.27)

In general, if we have s error check bits then our code can have size 2s −1, hence the
number of bits left to store information, the information bits is k = 2s − s − 1.
So, to protect m bits of information from a single error, the Hamming code adds
≈ log m error check bits. This is much better than repeating every bit 3 times.

Codes. Let us summarize the error-correction scenario in general terms. In order
to fight noise, the sender encodes the message x by an encoding function φ∗

into a longer string φ∗(x) which, for simplicity, we also assume to be binary. This
codeword will be changed by noise into a string y. The receiver gets y and applies
to it a decoding function φ∗.

Definition 4.27 The pair of functions φ∗ : {0, 1}m → {0, 1}n and φ∗ : {0, 1}n →
{0, 1}m is called a code if φ∗(φ∗(x)) = x holds for all x ∈ {0, 1}m. The strings
x ∈ {0, 1}m are called messages, words of the form y = φ∗(x) ∈ {0, 1}n are called
codewords. (Sometimes the set of all codewords by itself is also called a code.) For
every message x, the set of words Cx = { y : φ∗(y) = x } is called the decoding set

of x. (Of course, different decoding sets are disjoint.) The number

R = m/n

is called the rate of the code.
We say that our code that corrects t errors if for all possible messages x ∈

{0, 1}m, if the received word y ∈ {0, 1}n differs from the codeword φ∗(x) in at most
t positions, then φ∗(y) = x.

4.5. The reliable storage problem 201

If the rate is R then the n-bit codewords carry Rn bits of useful information. In
terms of decoding sets, a code corrects t errors if each decoding set Cx contains all
words that differ from φ∗(x) in at most t symbols (the set of these words is a kind
of “ball” of radius t).

The Hamming code corrects a single error, and its rate is close to 1. One of the
important questions connected with error-correcting codes is how much do we have
to lower the rate in order to correct more errors.

Having a notion of codes, we can formulate the main result of this section about
information storage.

Theorem 4.28 (Network information storage). There are constants ε, c1, c2, R >
0 with the following property. For all sufficiently large m, there is a code (φ∗, φ∗)
with message length m and codeword length n ≤ m/R, and a Boolean clocked circuit
N of size O(n) with n inputs and n outputs, such that the following holds. Suppose
that at time 0, the memory cells of the circuit contain string Y 0 = φ∗(x). Suppose
further that the evolution Y 1, Y 2, . . . , Y t of the circuit has ε-admissible failures.
Then we have

P[φ∗(Y t) 6= x] < t(c1ε)−c2n .

This theorem shows that it is possible to store m bits information for time t, in
a clocked circuit of size

O(max(log t, m)) .

As long as the storage time t is below the exponential bound ecm for a certain
constant c, this circuit size is only a constant times larger than the amount m of
information it stores. (In contrast, in (4.26) we needed an extra factor log m when
we used a separate restoring organ for each bit.)

The theorem says nothing about how difficult it is to compute the codeword
φ∗(x) at the beginning and how difficult it is to carry out the decoding φ∗(Y t) at
the end. Moreover, it is desireable to perform these two operations also in a noise-
tolerant fashion. We will return to the problem of decoding later.

Linear algebra. Since we will be dealing more with bit matrices, it is convenient
to introduce the algebraic structure

F2 = ({0, 1}, +, ·) ,

which is a two-element field. Addition and multiplication in F2 are defined modulo
2 (of course, for multiplication this is no change). It is also convenient to vest the set
{0, 1}n of binary strings with the structure F

n
2 of an n-dimensional vector space over

the field F2. Most theorems and algorithms of basic linear algebra apply to arbitrary
fields: in particular, one can define the row rank of a matrix as the maximum number
of linearly independent rows, and similarly the column rank. Then it is a theorem
that the row rank is equal to the colum rank. From now on, in algebraic operations
over bits or bit vectors, we will write + in place of ⊕ unless this leads to confusion.

202 4. Reliable Computation

To save space, we will frequently write column vectors horizontally: we write







x1

...
xn






= (x1, . . . , xn)T ,

where AT denotes the transpose of matrix A. We will write

Ir

for the identity matrix over the vector space F
r
2.

Linear codes. Let us generalize the idea of the Hamming code.

Definition 4.29 A code (φ∗, φ∗) with message length m and codeword length n is
linear if, when viewing the message and code vectors as vectors over the field F2,
the encoding function can be computed according to the formula

φ∗(x) = Gx ,

with an m × n matrix G called the generator matrix of the code. The number m
is called the the number of information bits in the code, the number

k = n − m

the number of error-check bits.

Example 4.9 The matrix H in (4.27) can be written as H = (K, I3), with

K =

(

1 1 1 0
1 0 1 1
1 1 0 1

)

.

Then the error check relation can be written as

y =

(

I4

−K

)







y1

...
y4 .






.

This shows that the bits y1, . . . , y4 can be taken to be the message bits, or “information
bits”, of the code, making the Hamming code a linear code with the generator matrix
(I4, −K)T . (Of course, −K = K over the field F2.)

The following statement is proved using standard linear algebra, and it gener-
alizes the relation between error check matrix and generator matrix seen in Exam-
ple 4.9.

Claim 4.30 Let k, m > 0 be given with n = m + k.

4.5. The reliable storage problem 203

(a) For every n × m matrix G of rank m over F2 there is a k × n matrix H of rank
k with the property

{ Gx : x ∈ F
m
2 } = { y ∈ F

n
2 : Hy = 0 }. (4.28)

(b) For every k × n matrix H of rank k over F2 there is an n × m matrix G of rank
m with property (4.28).

Definition 4.31 For a vector x, let |x| denote the number of its nonzero elements:
we will also call it the weight of x.

In what follows it will be convenient to define a code starting from an error-check
matrix H. If the matrix has rank k then the code has rate

R = 1 − k/n.

We can fix any subset S of k linearly independent columns, and call the indices i ∈ S
error check bits and the indices i 6∈ S the information bits. (In Example 4.9,
we chose S = {5, 6, 7}.) Important operations can performed over a code, however,
without fixing any separation into error-check bits and information bits.

4.5.4. Refreshers

Correcting a single error was not too difficult; finding a similar scheme to correct 2
errors is much harder. However, in storing n bits, typically εn (much more than 2)
of those bits will be corrupted in every step. There are ingenious and quite efficient
codes of positive rate (independent of n) correcting even this many errors. When
applied to information storage, however, the error-correction mechanism itself must
also work in noise, so we are looking for a particularly simple one. It works in our
favor, however, that not all errors need to be corrected: it is sufficient to cut down
their number, similarly to the restoring organ in reliable Boolean circuits above.

For simplicity, as gates of our circuit we will allow certain Boolean functions with
a large, but constant, number of arguments. On the other hand, our Boolean circuit
will have just depth 1, similarly to a restoring organ of Section 4.4. The output of
each gate is the input of a memory cell (shift register). For simplicity, we identify
the gate and the memory cell and call it a cell. At each clock tick, a cell reads its
inputs from other cells, computes a Boolean function on them, and stores the result
(till the next clock tick). But now, instead of majority vote among the input values
cells, the Boolean function computed by each cell will be slightly more complicated.

Our particular restoring operations will be defined, with the help of a certain
k × n parity check matrix H = (hij). Let x = (x1, . . . , xn)T be a vector of bits. For
some j = 1, . . . , n, let Vj (from “vertical”) be the set of those indices i with hij = 1.
For integer i = 1, . . . , k, let Hi (from “horizontal”) be the set of those indices j with
hij = 1. Then the condition Hx = 0 can also be expressed by saying that for all
i, we have

∑

j∈Hi
xj ≡ 0 (mod 2). The sets Hi are called the parity check sets

belonging to the matrix H. From now on, the indices i will be called checks, and
the indices j locations.

204 4. Reliable Computation

Definition 4.32 A linear code H is a low-density parity-check code with
bounds K, N > 0 if the following conditions are satisfied:

(a) For each j we have |Vj | ≤ K;

(b) For each i we have |Hi| ≤ N .

In other words, the weight of each row is at most N and the weight of each column
is at most K.

In our constructions, we will keep the bounds K, N constant while the length n
of codewords grows. Consider a situation when x is a codeword corrupted by some
errors. To check whether bit xj is incorrect we may check all the sums

si =
∑

j∈Hi

xj

for all i ∈ Vj . If all these sums are 0 then we would not suspect xj to be in error. If
only one of these is nonzero, we will know that x has some errors but we may still
think that the error is not in bit xj . But if a significant number of these sums is
nonzero then we may suspect that xj is a culprit and may want to change it. This
idea suggests the following definition.

Definition 4.33 For a low-density parity-check code H with bounds K, N , the re-

freshing operation associated with the code is the following, to be performed si-
multaneously for all locations j:

Find out whether more than bK/2c of the sums si are nonzero among
the ones for i ∈ Vj. If this is the case, flip xj.

Let xH denote the vector obtained from x by this operation. For parameters 0 <
ϑ, γ < 1, let us call H a (ϑ, γ, K, N, k, n)-refresher if for each vector x of length n
with weight |x| ≤ ϑn the weight of the resulting vector decreases thus: |xH | ≤ γϑn.

Notice the similarity of refreshers to compressors. The following lemma shows
the use of refreshers, and is an example of the advantages of linear codes.

Lemma 4.34 For an (ϑ, γ, K, N, k, n)-refresher H, let x be an n-vector and y a
codeword of length n with |x − y| ≤ ϑn. Then |xH − y| ≤ γϑn.

Proof Since y is a codeword, Hy = 0, implying H(x − y) = Hx. Therefore the
error correction flips the same bits in x − y as in x: (x − y)H − (x − y) = xH − x,
giving xH − y = (x − y)H . So, if |x − y| ≤ ϑn, then |xH − y| = |(x − y)H | ≤ γϑn.

Theorem 4.35 There is a parameter ϑ > 0 and integers K > N > 0 such that
for all sufficiently large codelength n and k = Nn/K there is a (ϑ, 1/2, K, N, k, n)-
refresher with at least n − k = 1 − N/K information bits.

In particular, we can choose N = 100, K = 120, ϑ = 1.31 · 10−4.

4.5. The reliable storage problem 205

ϑn corrupted symbols

KN -input gate

γϑn + ρϑn ≤ ϑn

clock

Figure 4.13 Using a refresher.

We postpone the proof of this theorem, and apply it first.
ProofProof of Theorem 4.28 Theorem 4.35 provides us with a device for infor-
mation storage. Indeed, we can implement the operation x → xH using a single
gate gj of at most KN inputs for each bit j of x. Now as long as the inequality
|x−y| ≤ ϑn holds for some codeword y, the inequality |xH −y| ≤ γϑn follows with
γ = 1/2. Of course, some gates will fail and introduce new deviations resulting in
some x′ rather than xH . Let eε < ϑ/2 and ρ = 1−γ(= 1/2). Then just as earlier, the
probability that there are more than ρϑn failures is bounded by the exponentially
decreasing expression (eε/ρϑ)ρϑn. With fewer than ρϑn new deviations, we will still
have |x′ − y| < (γ + ρ)ϑn < ϑn. The probability that at any time ≤ t the number
of failures is more than ρϑn is bounded by

t(eε/ρϑ)ρϑn < t(6ε/ϑ)(1/2)ϑn .

Example 4.10 Let ε = 10−9. Using the sample values in Theorem 4.35 we can take
N = 100, K = 120, so the information rate is 1 − N/K = 1/6. With the corresponding
values of ϑ, and γ = ρ = 1/2, we have ρϑ = 6.57 · 10−5. The probability that there are
more than ρϑn failures is bounded by

(eε/ρϑ)ρϑn = (10−4e/6.57)6.57·10
−5n ≈ e−6.63·10

−4n.

This is exponentially decreasing with n, albeit initially very slowly: it is not really small

206 4. Reliable Computation

until n = 104. Still, for n = 106, it gives e−663 ≈ 1.16 · 10−288.

Decoding? In order to use a refresher for information storage, first we need
to enter the encoded information into it, and at the end, we need to decode the
information from it. How can this be done in a noisy environment? We have nothing
particularly smart to say here about encoding besides the reference to the general
reliable computation scheme discussed earlier. On the other hand, it turns out that
if ε is sufficiently small then decoding can be avoided altogether.

Recall that in our codes, it is possible to designate certain symbols as information
symbols. So, in principle it is sufficient to read out these symbols. The question is
only how likely it is that any one of these symbols will be corrupted. The following
theorem upperbounds the probability for any symbol to be corrupted, at any time.

Theorem 4.36 For parameters ϑ, γ > 0, integers K > N > 0, codelength n,
with k = Nn/K, consider a (ϑ, 1/2, K, N, k, n)-refresher. Build a Boolean clocked
circuit N of size O(n) with n inputs and n outputs based on this refresher, just as in
the proof of Theorem 4.28. Suppose that at time 0, the memory cells of the circuit
contain string Y 0 = φ∗(x). Suppose further that the evolution Y 1, Y 2, . . . , Y t of
the circuit has ε-admissible failures. Let Y t = (Yt(1), . . . , Yt(n)) be the bits stored at
time t. Then ε < (2.1KN)−10 implies

P[Yt(j) 6= Y0(j)] ≤ cε + t(6ε/ϑ)(1/2)ϑn

for some c depending on N, K.

Remark 4.37 What we are bounding is only the probability of a corrupt symbol in
the particular position j. Some of the symbols will certainly be corrupt, but any one
symbol one points to will be corrupt only with probability ≤ cε.

The upper bound on ε required in the condition of the theorem is very severe,
underscoring the theoretical character of this result.

Proof As usual, it is sufficient to assume Y 0 = 0. Let Dt = { j : Yt(j) = 1 }, and let
Et be the set of circuit elements j which fail at time t. Let us define the following
sequence of integers:

b0 = 1, bu+1 = d(4/3)bue, cu = d(1/3)bue .

It is easy to see by induction

b0 + · · · + bu−1 ≤ 3bu ≤ 9cu . (4.29)

The first members of the sequence bu are 1,2,3,4,6,8,11,15,18,24,32, and for cu they
are 1,1,1,2,2,3,4,5,6,8,11.

Lemma 4.38 Suppose that Yt(j0) 6= 0. Then either there is a time t′ < t at which
≥ (1/2)ϑn circuit elements failed, or there is a sequence of sets Bu ⊆ Dt−u for
0 ≤ u < v and C ⊆ Et−v with the following properties.

4.5. The reliable storage problem 207

(a) For u > 0, every element of Bu shares some error-check with some element of
Bu−1. Also every element of C shares some error-check with some element of
Bv−1.

(b) We have |Et−u ∩ Bu| < |Bu|/3 for u < v, on the other hand C ⊆ Et−v.

(c) We have B0 = {j0}, |Bu| = bu, for all u < v, and |C| = cv.

Proof We will define the sequence Bu recursively, and will say when to stop. If
j0 ∈ Et then we set v = 0, C = {0}, and stop. Suppose that Bu is already defined.
Let us define Bu+1 (or C if v = u + 1). Let B′

u+1 be the set of those j which
share some error-check with an element of Bu, and let B′′

u+1 = B′
u+1 ∩ Dt−u−1. The

refresher property implies that either |B′′
u+1| > ϑn or

|Bu r Et−u| ≤ (1/2)|B′′
u+1| .

In the former case, there must have been some time t′ < t − u with |Et′ | > (1/2)ϑn,
otherwise Dt−u−1 could never become larger than ϑn. In the latter case, the property
|Et−u ∩ Bu| < (1/3)|Bu| implies

(2/3)|Bu| < |Bu r Et−u| ≤ (1/2)|B′′
u+1| ,

(4/3)bu < |B′′
u+1| .

Now if |Et−u−1 ∩ B′′
u+1| < (1/3)|B′′

u+1| then let Bu+1 be any subset of B′′
u+1 with

size bu+1 (there is one), else let v = u + 1 and C ⊆ Et−u−1 ∩ B′′
u+1 a set of size cv

(there is one). This construction has the required properties.

For a given Bu, the number of different choices for Bu+1 is bounded by

(|B′
u+1|

bu+1

)

≤
(

KNbu

bu+1

)

≤
(

eKNbu

bu+1

)bu+1

≤ ((3/4)eKN)
bu+1 ≤ (2.1KN)

bu+1 ,

where we used (4.9). Similarly, the number of different choices for C is bounded by

(

KNbv−1

cv

)

≤ µcv with µ = 2.1KN .

It follows that the number of choices for the whole sequence B1, . . . , Bv−1, C is
bounded by

µb1+···+bv−1+cv .

On the other hand, the probability for a fixed C to have C ⊆ Ev is ≤ εcv . This way,
we can bound the probability that the sequence ends exactly at v by

pv ≤ εcv µb1+···+bv−1+cv ≤ εcv µ10cv ,

where we used (4.29). For small v this gives

p0 ≤ ε, p1 ≤ εµ, p2 ≤ εµ3, p3 ≤ ε2µ6, p4 ≤ ε2µ10, p5 ≤ ε3µ16 .

208 4. Reliable Computation

L

E

degree N

R

E′

degree K

Figure 4.14 A regular expander.

Therefore

∞
∑

v=0

pv ≤
5
∑

v=0

pv +

∞
∑

v=6

(µ10ε)cv ≤ ε(1 + µ + µ3) + ε2(µ6 + µ10) +
ε3µ16

1 − εµ10
,

where we used εµ10 < 1 and the property cv+1 > cv for v ≥ 5. We can bound the
last expression by cε with an appropriate constantb c.

We found that the event Yt(j) 6= Y0(j) happens either if there is a time t′ < t at
which ≥ (1/2)ϑn circuit elements failed (this has probability bound t(2eε/ϑ)(1/2)ϑn)
or an event of probability ≤ cε occurs.

Expanders. We will construct our refreshers from bipartite multigraphs with a
property similar to compressors: expanders.

Definition 4.39 Here, we will distinguish the two parts of the bipartite (multi)
graphs not as inputs and outputs but as left nodes and right nodes. A bipartite
multigraph B is (N, K)-regular if the points of the left set have degree N and the
points in the right set have degree K. Consider such a graph, with the left set having
n nodes (then the right set has nN/K nodes). For a subset E of the left set of B, let
Nb(E) consist of the points connected by some edge to some element of E. We say
that the graph B expands E by a factor λ if we have |Nb(E)| ≥ λ|E|. For α, λ > 0,
our graph B is an (N, K, α, λ, n)-expander if B expands every subset E of size ≤ αn
of the left set by a factor λ.

4.5. The reliable storage problem 209

Definition 4.40 Given an (N, K)-regular bipartite multigraph B, with left set
{u1, . . . , un} and right set {v1, . . . , vk}, we assign to it a parity-check code H(B)
as follows: hij = 1 if vi is connected to uj, and 0 otherwise.

Now for every possible error set E, the set Nb(E) describes the set of parity
checks that the elements of E participate in. Under some conditions, the lower
bound on the size of Nb(E) guarantees that a sufficient number of errors will be
corrected.

Theorem 4.41 Let B be an (N, K, α, (7/8)N, n)-expander with integer αn. Let
k = Nn/K. Then H(B) is a ((3/4)α, 1/2, K, N, k, n)-refresher.

Proof More generally, for any ε > 0, let B be an (N, K, α, (3/4 + ε)N, n)-expander
with integer αn. We will prove that H(B) is a (α(1 + 4ε)/2, (1 − 4ε), K, N, k, n)-
refresher. For an n-dimensional bit vector x with A = { j : xj = 1 }, a = |A| = |x|,
assume

a ≤ nα(1 + 4ε)/2 . (4.30)

Our goal is to show |xH | ≤ a(1 − 4ε): in other words, that in the corrected vector
the number of errors decreases at least by a factor of (1 − 4ε).

Let F be the set of bits in A that the error correction operation fails to flip,
with f = |F |, and G the set of of bits that were 0 but the operation turns them
to 1, with g = |G|. Our goal is to bound |F ∪ G| = f + g. The key observation is
that each element of G shares at least half of its neighbors with elements of A, and
similarly, each element of F shares at least half of its neighbors with other elements
of A. Therefore both F and G contribute relatively weakly to the expansion of A∪G.
Since this expansion is assumed strong, the size of |F ∪ G| must be limited.

Let

δ = |Nb(A)|/(Na) .

By expansion, δ ≥ 3/4 + ε .
First we show |A∪G| ≤ αn. Assume namely that, on the contrary, |A∪G| > αn,

and let G′ be a subset of G such that |A ∪ G′| = αn =: p (an integer, according to
the assumptions of the theorem). By expansion,

(3/4 + ε)Np ≤ Nb(A ∪ G′) .

Each bit in G has at most N/2 neighbors that are not neighbors of A; so,

|Nb(A ∪ G′)| ≤ δNa + N(p − a)/2 .

Combining these:

δa + (p − a)/2 ≥ (3/4 + ε)p,

a ≥ p(1 + 4ε)/(4δ − 2) ≥ αn(1 + 4ε)/2,

since δ ≤ 1. This contradiction with (4.30) shows |A ∪ G| ≤ αn.

210 4. Reliable Computation

Now |A ∪ G| ≤ αn implies (recalling that each element of G contributes at most
N/2 new neighbors):

(3/4 + ε)N(a + g) ≤ |Nb(A ∪ G)| ≤ δNa + (N/2)g,

(3/4 + ε)(a + g) ≤ δa + g/2 ,

(3/4 + ε)a + (1/4 + ε)g ≤ δa . (4.31)

Each j ∈ F must share at least half of its neighbors with others in A. Therefore j
contributes at most N/2 neighbors on its own; the contribution of the other N/2
must be divided by 2, so the the total contribution of j to the neighbors of A is at
most (3/4)N :

δNa = Nb(A) ≤ N(a − f) + (3/4)Nf = N(a − f/4) ,

δa ≤ a − f/4 .

Combining with (4.31):

(3/4 + ε)a + (1/4 + ε)g ≤ a − f/4 ,

(1 − 4ε)a ≥ f + (1 + 4ε)g ≥ f + g .

Random expanders. Are there expanders good enough for Theorem 4.41?
The maximum expansion factor is the degree N and we require a factor of (7/8)N.
It turns out that random choice works here, too, similarly to the one used in the
“construction” of compressors.

The choice has to be done in a way that the result is an (N, K)-regular bipartite
multigraph of left size n. We will start with Nn left nodes u1, . . . , uNn and Nn
right nodes v1, . . . , vNn. Now we choose a random matching, that is a set of Nn
edges with the property that every left node is connected by an edge to exactly
one right node. Let us call the resulting graph M . We obtain B now as follows: we
collapse each group of N left nodes into a single node: u1, . . . , uN into one node,
uN+1, . . . , u2N into another node, and so on. Similarly, we collapse each group of K
right nodes into a single node: v1, . . . , vK into one node, vK+1, . . . , v2K into another
node, and so on. The edges between any pair of nodes in B are inherited from the
ancestors of these nodes in M . This results in a graph B with n left nodes of degree
N and nN/K right nodes of degree K. The process may give multiple edges between
nodes of B, this is why B is a multigraph. Two nodes of M will be called cluster

neighbors if they are collapsed to the same node of B.

Theorem 4.42 Suppose

0 < α ≤ e
−1

N/8−1 · (22K)
−1

1−8/N .

Then the above random choice gives an (N, K, α, (7/8)N, n)-expander with positive
probability.

4.5. The reliable storage problem 211

Example 4.11 If N = 48, K = 60 then the inequality in the condition of the theorem
becomes

α ≤ 1/6785 .

Proof Let E be a set of size αn in the left set of B. We will estimate the probability
that E has too few neighbors. In the above choice of the graph B we might as well
start with assigning edges to the nodes of E, in some fixed order of the N |E| nodes
of the preimage of E in M . There are N |E| edges to assign. Let us call a node of the
right set of M occupied if it has a cluster neighbor already reached by an earlier
edge. Let Xi be a random variable that is 1 if the ith edge goes to an occupied node
and 0 otherwise. There are

Nn − i + 1 ≥ Nn − Nαn = Nn(1 − α)

choices for the ith edge and at most KN |E| of these are occupied. Therefore

P[Xi = 1 | X1, . . . , Xi−1] ≤ KN |E|
Nn(1 − α)

=
Kα

1 − α
=: p .

Using the large deviations theorem in the generalization given in Exercise 4.1-3, we
have, for f > 0:

P[

Nαn
∑

i=1

Xi ≥ fNαn] ≤ e−NαnD(f,p) ≤
(

ep

f

)fNαn

.

Now, the number of different neighbors of E is Nαn −∑i Xi, hence

P[N(E) ≤ Nαn(1 − f)] ≤
(

ep

f

)fNαn

=

(

eKα

f(1 − α)

)fNαn

.

Let us now multiply this with the number

∑

i≤αn

(

n

αn

)

≤ (e/α)αn

of sets E of size ≤ αn:

(e

α

)αn
(

eKα

f(1 − α)

)fNαn

=

(

αfN−1e

(

eK

f(1 − α)

)fN
)αn

≤
(

αfN−1e

(

eK

0.99f

)fN
)αn

,

where in the last step we assumed α ≤ 0.01. This is < 1 if

α ≤ e
−1

fN−1

(

eK

0.99f

)
−1

1−1/(fN)

.

Substituting f = 1/8 gives the formula of the theorem.

212 4. Reliable Computation

ProofProof of Theorem 4.35 Theorem 4.41 shows how to get a refresher from an
expander, and Theorem 4.42 shows the existence of expanders for certain parameters.
Example 4.11 shows that the parameters can be chosen as needed for the refreshers.

Exercises
4.5-1 Prove Proposition 4.30.
4.5-2 Apply the ideas of the proof of Theorem 4.36 to the proof of Theorem 4.17,
showing that the “coda” circuit is not needed: each wire of the output cable carries
the correct value with high probability.

Problems

4-1 Critical value

Consider a circuit Mk like in Exercise 4.2-5, assuming that each gate fails with
probability ≤ ε independently of all the others and of the input. Assume that the
input vector is all 0, and let pk(ε) be the probability that the circuit outputs a 1.
Show that there is a value ε0 < 1/2 with the property that for all ε < ε0 we have
limk→∞ pk(ε) = 0, and for ε0 < ε ≤ 1/2, we have have limk→∞ pk(ε) = 1/2. Estimate
also the speed of convergence in both cases.
4-2 Regular compressor

We defined a compressor as a d-halfregular bipartite multigraph. Let us call a com-
pressor regular if it is a d-regular multigraph (the input nodes also have degree d).
Prove a theorem similar to Theorem 4.21: for each γ < 1 there is an integer d > 1
and an α > 0 such that for all integer k > 0 there is a regular (,.α, γ, k)-compressor.
Hint. Choose a random d-regular bipartite multigraph by the following process: (1.
Replace each vertex by a group of d vertices. 2. Choose a random complete match-
ing betwen the new input and output vertices. 3. Merge each group of d vertices
into one vertex again.) Prove that the probability, over this choice, that a d-regular
multigraph is a not a compressor is small. For this, express the probability with the
help of factorials and estimate the factorials using Stirling’s formula.
4-3 Two-way expander

Recall the definition of expanders. Call a (d, α, lg, k)-expander regular if it is a d-
regular multigraph (the input nodes also have degree d). We will call this multigraph
a two-way expander if it is an expander in both directions: from A to B and from
B to A. Prove a theorem similar to the one in Problem 4-2: for all lg < d there is
an α > 0 such that for all integers k > 0 there is a two-way regular (d, α, lg, k)-
expander.
4-4 Restoring organ from 3-way voting

The proof of Theorem 4.21 did not guarantee a (,.α, γ, k)-compressor with any
γ < 1/2, <. 7. If we only want to use 3-way majority gates, consider the following
construction. First create a 3-halfregular bipartite graph G with inputs u1, . . . , uk

and outputs v1, . . . , v3k, with a 3-input majority gate in each vi. Then create new

Notes for Chapter 4 213

nodes w1, . . . , wk, with a 3-input majority gate in each wj . The gate of w1 computes
the majority of v1, v2, v3, the gate of w2 computes the majority of v4, v5, v6, and so
on. Calculate whether a random choice of the graph G will turn the circuit with
inputs (u1, . . . , uk) and outputs (w1, . . . , wk) into a restoring organ. Then consider
three stages instead of two, where G has 9k outputs and see what is gained.
4-5 Restoring organ from NOR gates

The majority gate is not the only gate capable of strengthening the majority. Re-
call the NOR gate introduced in Exercise 4.2-2, and form NOR2(x1, x2, x3, x4) =
(x1NORx2)NOR(x3NORx4). Show that a construction similar to Problem 4-4 can
be carried out with NOR2 used in place of 3-way majority gates.
4-6 More randomness, smaller restoring organs

Taking the notation of Exercise 4.4-3, suppose like there, that the random variables
Fv are independent of each other, and their distribution does not depend on the
Boolean input vector. Apply the idea of Exercise 4.4-5 to the construction of each
restoring organ. Namely, construct a different restoring organ for each position: the
choice depends on the circuit preceding this position. Show that in this case, our
error estimates can be significantly improved. The improvement comes, just as in
Exercise 4.4-5, since now we do not have to multiply the error probability by the
number of all possible sets of size ≤ αk of tainted wires. Since we know the distri-
bution of this set, we can average over it.
4-7 Near-sorting with expanders

In this problem, we show that expanders can be used for “near-sorting”. Let G be a
regular two-way (d, α, lg, k)-expander, whose two parts of size k are A and B. Ac-
cording to a theorem of Kőnig, (the edge-set of) every d-regular bipartite multigraph
is the disjoint union of (the edge-sets of) d complete matchings M1, . . . , Md. To such
an expander, we assign a Boolean circuit of depth d as follows. The circuit’s nodes
are subdivide into levels i = 0, 1, . . . , d. On level i we have two disjoint sets Ai, Bi of
size k of nodes aij , bij (j = 1, . . . , k). The Boolean value on aij , bij will be xij and
yij respectively. Denote the vector of 2k values at stage i by zi = (xi1, . . . , yik). If
(p, q) is an edge in the matching Mi, then we put an ∧ gate into aip, and a ∨ gate
into biq:

xip = x(i−1)p ∧ y(i−1)q, yiq = x(i−1)p ∨ y(i−1)q .

This network is trying to “sort” the 0’s to Ai and the 1’s to Bi in d stages. More
generally, the values in the vectors zi could be arbitrary numbers. Then if x ∧ y still
means min(x, y) and x ∨ y means max(x, y) then each vector zi is a permutation of
the vector z0. Let G = (1 + λ)α. Prove that zd is G-sorted in the sense that for
all m, at least Gm among the m smallest values of zd is in its left half and at least
Gm among the m largest values are in its right half.
4-8 Restoring organ from near-sorters

Develop a new restoring organ using expanders, as follows. First, split each wire
of the input cable A, to get two sets A′

0, B′
0. Attach the G-sorter of Problem 4-7,

getting outputs A′
d, B′

d. Now split the wires of B′
d into two sets A′′

0 , B′′
0 . Attach the

G-sorter again, getting outputs A′′
d , B′′

d . Keep only B = A′′
d for the output cable.

Show that the Boolean vector circuit leading from A to B can be used as a restoring
organ.

214 4. Reliable Computation

Chapter Notes

The large deviation theorem (Theorem 4.1), or theorems similar to it, are sometimes
attributed to Chernoff or Bernstein. One of its frequently used variants is given in
Exercise 4.1-2.

The problem of reliable computation with unreliable components was addressed
by John von Neumann in [14] on the model of logic circuits. A complete proof of
the result of that paper (with a different restoring organ) appeare first in the paper
[5] of R. L. Dobrushin and S. I. Ortyukov. Our presentation relied on parts of the
paper [18] of N. Pippenger.

The lower-bound result of Dobrushin and Ortyukov in the paper [4] (corrected
in [16], [19] and [8]), shows that reduncancy of log n is unavoidable for a general
reliable computation whose complexity is n. However, this lower bound only shows
the necessity of putting the input into a redundantly encoded form (otherwise critical
information may be lost in the first step). As shown in [18], for many important
function classes, linear redundancy is achievable.

It seems natural to separate the cost of the initial encoding: it might be possible
to perform the rest of the computation with much less redundancy. An important
step in this direction has been made by D. Spielman in the paper [23] in (essentially)
the clocked-circuit model. Spielman takes a parallel computation with time t run-
ning on w elementary components and makes it reliable using only (log w)c times
more processors and running it (log w)c times longer. The failure probability will be
texp(−w1/4). This is small as long as t is not much larger than exp(w1/4). So, the
redundancy is bounded by some power of the logarithm of the space requirement; the
time requirement does not enter explictly. In Boolean circuits no time- and space-
complexity is defined separately. The size of the circuit is analogous to the quantity
obtained in other models by taking the product of space and time complexity.

Questions more complex than Problem 4-1 have been studied in [17]. The method
of Problem 4-2, for generating random d-regular multigraphs is analyzed for exam-
ple in [2]. It is much harder to generate simple regular graphs (not multigraphs)
uniformly. See for example [10].

The result of Exercise 4.2-4 is due to C. Shannon, see [20]. The asymptotically
best circuit size for the worst functions was found by Lupanov in [12]. Exercise 4.3-1
is based on [5], and Exercise 4.3-2 is based on [4] (and its corrections).

Problem 4-7 is based on the starting idea of the lg n depth sorting networks
in [1].

For storage in Boolean circuits we partly relied on A. V. Kuznietsov’s paper [11]
(the main theorem, on the existence of refreshers is from M. Pinsker). Low density
parity check codes were introduced by R. G. Gallager in the book [6], and their
use in reliable storage was first suggested by M. G. Taylor in the paper [24]. New,
constructive versions of these codes were developed by M. Sipser and D. Spielman
in the paper [22], with superfast coding and decoding.

Expanders, invented by Pinsker in [15] have been used extensively in theoretical
computer science: see for example [13] for some more detail. This book also gives
references on the construction of graphs with large eigenvalue-gap. Exercise 4.4-4
and Problem 4-6 are based on [5].

Notes for Chapter 4 215

The use of expanders in the role of refreshers was suggested by Pippenger (pri-
vate communication): our exposition follows Sipser and Spielman in [21]. Random
expanders were found for example by Pinsker. The needed expansion rate (> 3/4
times the left degree) is larger than what can be implied from the size of the eigen-
value gap. As shown in [15] (see the proof in Theorem 4.42) random expanders have
the needed expansion rate. Lately, constructive expanders with nearly maximal ex-
pansion rate were announced by Capalbo, Reingold, Vadhan and Wigderson in [3].

Reliable computation is also possible in a model of parallel computation that
is much more regular than logic circuits: in cellular automata. We cannot present
those results here: see for example the papers [7, 9].

Bibliography

[1] M. Ajtai, J. Komlós, E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, 3(1):1–19,
1983. 214

[2] E. Bender, R. Canfield. The asymptotic number of labeled graphs with given degree sequences.
Combinatorial Theory Series A, 24:296–307, 1978. 214

[3] M. Capalbo, O. Reingold, S. Vadhan, A. Widgerson. Randomness conductors and constant-
degree lossless expanders. In Proceedings of the 34th ACM Symposium on Theory of Com-
puting, pages 443–452, 2001. IEEE Computer Society. 215

[4] R. Dobrushin, S. Ortyukov. Lower bound for the redundancy of self-correcting arrangements
of unreliable functional elements. Problems of Information Transmission (translated from

Russian), 13(1):59–65, 1977. 214

[5] R. Dobrushin, S. Ortyukov. Upper bound for the redundancy of self-correcting arrangements
of unreliable elements. Problems of Information Transmission (translated from Russian),

13(3):201–208, 1977. 214

[6] R. Gallager. Low-density Parity-check Codes. The MIT Press, 1963. 214

[7] P. Gács. Reliable cellular automata with self-organization. Journal of Statistical Physics,
103(1–2):45–267, 2001. See also www.arXiv.org/abs/math.PR/0003117 and The Proceedings
of the 1997 Symposium on the Theory of Computing. 215

[8] P. Gács, A. Gál. Lower bounds for the complexity of reliable Boolean circuits with noisy gates.
IEEE Transactions on Information Theory, 40(2):579–583, 1994. 214

[9] P. Gács, J. Reif. A simple three-dimensional real-time reliable cellular array. Journal of Com-
puter and System Sciences, 36(2):125–147, 1988. 215

[10] J. Kim, V. Vu. Generating random regular graphs. In Proceedings of the Thirty Fifth ACM
Symposium on Theory of Computing, pages 213–222, 2003. 214

[11] A. V. Kuznetsov. Information storage in a memory assembled from unreliablecomponents.
Problems of Information Transmission (translated from Russian), 9(3):254–264, 1973. 214

[12] O. B. Lupanov. On a method of circuit synthesis. Izvestia VUZ (Radiofizika), pages 120–140,
1958. 214

[13] R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995. 214

[14] J. Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable com-
ponents. In C. Shannon and P. J. McCarthy Eds. Automata Studies. Princeton University
Press, 1956, pages 43–98. 214

[15] M. Pinsker. On the complexity of a concentrator. International Teletraffic Congr., 7:318/1–
318/4, 1973. 214, 215

[16] N. Pippenger, G. Staomulis, J. N. Tsitsiklis. On a lower bound for the redundancy of reliable
networks with noisy gates. IEEE Transactions on Information Theory, 37(3):639–643, 1991.
214

[17] N. Pippenger. Analysis of error correction by majority voting. In S. Micali (Ed.) Randomness

in Computation. JAI Press, 1989, 171–198. 214

[18] N. Pippenger. On networks of noisy gates. In Proceeding of the 26th IEE FOCS Symposium,
pages 30–38, 1985. 214

http://www.almaden.ibm.com/cs/people/ajtai/
http://www.math.rutgers.edu/cgi-bin/nohtml?komlos
http://www.renyi.hu/~szemered/
http://www.sciencedirect.com/science/journal/00973165
http://www.kluweronline.com/issn/0032-9460/contents
http://www.kluweronline.com/issn/0032-9460/contents
http://web.mit.edu/gallager/www/
http://www.cs.bu.edu/fac/gacs/
http://www.kluweronline.com/issn/0022-4715
http://www.cs.bu.edu/fac/gacs/
http://www.cs.utexas.edu/users/panni/
http://www.cs.bu.edu/fac/gacs/
http://www.kluweronline.com/issn/0032-9460/contents
http://mech.math.msu.su/English/biography/admin/lupanov.htm
http://theory.stanford.edu/~rajeev/
http://uk.cambridge.org/
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Shannon.html
http://pup.princeton.edu/
http://mm.aueb.gr/people/cv_stamoulis.html
http://web.mit.edu/jnt/www/home.html
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl
http://www.cs.ubc.ca/cgi-bin/userinfo/user/nicholas
http://www.lcs.mit.edu/people/bioprint.php3?PeopleID=297
file:isbndb.com/d/publisher/jai_press.html
http://www.cs.ubc.ca/cgi-bin/userinfo/user/nicholas

Bibliography 217

[19] R. Reischuk, B. Schmelz, B.. Reliable computation with noisy circuits and decision trees—
a general n log n lower bound. In Proceedings of the 32-nd IEEE FOCS Symposium, pages
602–611, 1991. 214

[20] C. Shannon. The synthesis of two-terminal switching circuits. The Bell Systems Technical
Journal, 28:59–98, 1949. 214

[21] M. Sipser, D. A. Spielman. Expander codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996. 215

[22] D. Spielman. Linear-time encodable and decodable error-correcting codes. In Proceedings of

the 27th ACM STOC Symposium, 1995, 387–397 (further IEEE Transactions on Information

Theory 42(6):1723–1732). 214

[23] D. Spielman. Highly fault-tolerant parallel computation. In Proceedings of the 37th IEEE

Foundations of Computer Science Symposium, pages 154–163, 1996. 214

[24] M. G. Taylor. Reliable information storage in memories designed from unreliable components.
The Bell Systems Technical Journal, 47(10):2299–2337, 1968. 214

This bibliography is made by HBibTEX. First key of the sorting is the name of the
authors (first author, second author etc.), second key is the year of publication, third
key is the title of the document.

Underlying shows that the electronic version of the bibliography on the homepage
of the book contains a link to the corresponding address.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Shannon.html
http://www.lucent.com/minds/techjournal/
http://www-math.mit.edu/~spielman/
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl
http://www-math.mit.edu/~spielman/
http://www.lucent.com/minds/techjournal/

Index

This index uses the following conventions. Numbers are alphabetised as if spelled out; for
example, “2-3-4-tree" is indexed as if were “two-three-four-tree". When an entry refers to a place
other than the main text, the page number is followed by a tag: ex for exercise, exa for example,
fig for figure, pr for problem and fn for footnote.

The numbers of pages containing a definition are printed in italic font, e.g.

time complexity, 583 .

C
compressor, 212pr

E
expander, 208, 212exe
expander property, 193

N
(N, k)-regular multigraph, 208

R
redundancy, 171
regular multigraph, 208
reliable, 170–215

S
Stirling’s formula, 212pr
storage error, 170

Name Index

This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A
Ajtai, Miklós, 216

B
Bender, E., 214, 216

C
Canfield, R., 214, 216
Capalbo, Michael, 216

D
Dobrushin, Roland Lvovitsch (1929–1995),

214, 216

G
Gács, Péter, 215, 216
Gál, Anna, 216
Gallager, Robert G., 214, 216

K
Kim, J. H., 214, 216
Komlós, János, 216
Kuznetsov, A. V., 216

L
Lupanov, Oleg Borisovitsch, 214, 216

M
McCarthy, Paul J., 216
Micali, Silvio, 216
Motwani, Rajeev, 214, 216

N
Neumann, John, von (1903–1957), 216

O
Ortyukov, S. I., 214, 216

P
Pinsker, Mark S. (1925–2003), 216
Pippenger, Nicholas, 216

R
Raghavan, P., 214, 216
Reif, John, 216
Reingold, Omer, 216
Reischuk, Rüdiger, 217

S
Schmelz, B., 217
Shannon, Claude Elwood (1916–2001), 214,

216, 217
Sipser, Michael, 214, 217
Spielman, Daniel A., 214, 217
Stamoulis, George D., 216

SZ
Szemerédi, Endre, 216

T
Taylor, M. G., 214, 217
Tsitsiklis, John N., 216

V
Vadhan, Salil, 216
von Neumann, John (1903–1957), 216
Vu, V. H., 214, 216

W
Wigderson, Avi, 215, 216

	4. Reliable Computation
	 4.1. Probability theory
	 4.1.1. Terminology
	 4.1.2. The law of large numbers (with ``large deviations'')

	 4.2. Logic circuits
	 4.2.1. Boolean functions and expressions
	 4.2.2. Circuits
	 4.2.3. Fast addition by a Boolean circuit

	 4.3. Expensive fault-tolerance in Boolean circuits
	 4.4. Safeguarding intermediate results
	 4.4.1. Cables
	 4.4.2. Compressors
	 4.4.3. Propagating safety
	 4.4.4. Endgame
	 4.4.5. The construction of compressors

	 4.5. The reliable storage problem
	 4.5.1. Clocked circuits
	 4.5.2. Storage
	 4.5.3. Error-correcting codes
	 4.5.4. Refreshers

	Bibliography
	Index
	Name Index

