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3. Compression and Decompression

Algorithms for data compression usually proceed as follows. They encode a text over
some finite alphabet into a sequence of bits, hereby exploiting the fact that the letters
of this alphabet occur with different frequencies. For instance, an “e” occurs more
frequently than a “q” and will therefore be assigned a shorter codeword. The quality
of the compression procedure is then measured in terms of the average codeword
length.
So the underlying model is probabilistic, namely we consider a finite alphabet and a
probability distribution on this alphabet, where the probability distribution reflects
the (relative) frequencies of the letters. Such a pair—an alphabet with a probability
distribution—is called a source. We shall first introduce some basic facts from Infor-
mation Theory. Most important is the notion of entropy, since the source entropy
characterises the achievable lower bounds for compressibility.

The source model to be best understood, is the discrete memoryless source. Here
the letters occur independently of each other in the text. The use of prefix codes,
in which no codeword is the beginning of another one, allows to compress the text
down to the entropy of the source. We shall study this in detail. The lower bound
is obtained via Kraft’s inequality, the achievability is demonstrated by the use of
Huffman codes, which can be shown to be optimal.

There are some assumptions on the discrete memoryless source, which are not
fulfilled in most practical situations. Firstly, usually this source model is not realistic,
since the letters do not occur independently in the text. Secondly, the probability
distribution is not known in advance. So the coding algorithms should be universal
for a whole class of probability distributions on the alphabet. The analysis of such
universal coding techniques is much more involved than the analysis of the discrete
memoryless source, such that we shall only present the algorithms and do not prove
the quality of their performance. Universal coding techniques mainly fall into two
classes.

Statistical coding techniques estimate the probability of the next letters as ac-
curately as possible. This process is called modelling of the source. Having enough
information about the probabilities, the text is encoded, where usually arithmetic
coding is applied. Here the probability is represented by an interval and this interval
will be encoded.
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Dictionary-based algorithms store patterns, which occurred before in the text, in
a dictionary and at the next occurrence of a pattern this is encoded via its position in
the dictionary. The most prominent procedure of this kind is due to Ziv and Lempel.

We shall also present a third universal coding technique which falls in neither
of these two classes. The algorithm due to Burrows and Wheeler has become quite
prominent in recent years, since implementations based on it perform very well in
practice.

All algorithms mentioned so far are lossless, i. e., there is no information lost
after decoding. So the original text will be recovered without any errors. In contrast,
there are lossy data compression techniques, where the text obtained after decoding
does not completely coincide with the original text. Lossy compression algorithms
are used in applications like image, sound, video, or speech compression. The loss
should, of course, only marginally effect the quality. For instance, frequencies not
realizable by the human eye or ear can be dropped. However, the understanding of
such techniques requires a solid background in image, sound or speech processing,
which would be far beyond the scope of this paper, such that we shall illustrate only
the basic concepts behind image compression algorithms such as JPEG.

We emphasise here the recent developments such as the Burrows-Wheeler trans-
form and the context–tree weighting method. Rigorous proofs will only be presented
for the results on the discrete memoryless source which is best understood but not
a very realistic source model in practice. However, it is also the basis for more com-
plicated source models, where the calculations involve conditional probabilities. The
asymptotic computational complexity of compression algorithms is often linear in
the text length, since the algorithms simply parse through the text. However, the
running time relevant for practical implementations is mostly determined by the
constants as dictionary size in Ziv-Lempel coding or depth of the context tree, when
arithmetic coding is applied. Further, an exact analysis or comparison of compres-
sion algorithms often heavily depends on the structure of the source or the type of
file to be compressed, such that usually the performance of compression algorithms
is tested on benchmark files. The most well-known collections of benchmark files are
the Calgary Corpus and the Canterbury Corpus.

3.1. Facts from information theory

3.1.1. The Discrete Memoryless Source

The source model discussed throughout this chapter is the Discrete Memoryless

Source (DMS). Such a source is a pair (X , P ), where X = {1, . . . , m}, is a finite
alphabet and P = (P (1), . . . , P (m)) is a probability distribution on X . A discrete
memoryless source can also be described by a random variable X, where Prob(X =
x) = P (x) for all x ∈ X . A word xn = (x1x2 . . . xn) ∈ Xn is the realization of the
random variable (X1 . . . Xn), where the Xi’s are identically distributed and indepen-
dent of each other. So the probability P n(x1x2 . . . xn) = P (x1) · P (x2) · · · · · P (xn)
is the product of the probabilities of the single letters.
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A 64 H 42 N 56 U 31

B 14 I 63 O 56 V 10

C 27 J 3 P 17 W 10

D 35 K 6 Q 4 X 3

E 100 L 35 R 49 Y 18

F 20 M 20 S 56 Z 2

G 14 T 71

Space/Punctuation mark 166

Figure 3.1 Frequency of letters in 1000 characters of English.

Estimations for the letter probabilities in natural languages are obtained by
statistical methods. If we consider the English language and choose for X the latin
alphabet with an additional symbol for Space and punctuation marks, the probability
distribution can be derived from the frequency table in 3.1, which is obtained from
the copy–fitting tables used by professional printers. So P (A) = 0.064, P (B) = 0.014,
etc.

Observe that this source model is often not realistic. For instance, in English
texts e.g. the combination ‘th’ occurs more often than ‘ht’. This could not be the
case, if an English text was produced by a discrete memoryless source, since then
P (th) = P (t) · P (h) = P (ht).

In the discussion of the communication model it was pointed out that the encoder
wants to compress the original data into a short sequence of binary digits, hereby

using a binary code, i. e., a function c : X −→ {0, 1}∗ =
∞⋃

n=0
{0, 1}n. To each element

x ∈ X a codeword c(x) is assigned. The aim of the encoder is to minimise the average
length of the codewords. It turns out that the best possible data compression can
be described in terms of the entropy H(P ) of the probability distribution P . The
entropy is given by the formula

H(P ) = −
∑

x∈X
P (x) · lg P (x) ,

where the logarithm is to the base 2. We shall also use the notation H(X)
according to the interpretation of the source as a random variable.

3.1.2. Prefix codes

A code (of variable length) is a function c : X −→ {0, 1}∗, X = {1, . . . , m}. Here
{c(1), c(2), . . . , c(m)} is the set of codewords, where for x = 1, . . . , m the codeword
is c(x) =

(
c1(x), c2(x), . . . , cL(x)(x)

)
where L(x) denotes the length of c(x), i. e.,

the number of bits used to presentc(x).
A code c is uniquely decipherable (UDC) , if every word in {0, 1}∗ is repre-

sentable by at most one sequence of codewords.
A code c is a prefix code, if no codeword is prefix of another one, i.

e., for any two codewords c(x) and c(y), x 6= y, with L(x) ≤ L(y) holds
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(
c1(x), c2(x), . . . , cL(x)(x)

)
6=
(
c1(y), c2(y), . . . , cL(x)(y)

)
. So in at least one of the

first L(x) components c(x) and c(y) differ.
Messages encoded using a prefix code are uniquely decipherable. The decoder

proceeds by reading the next letter until a codeword c(x) is formed. Since c(x) cannot
be the beginning of another codeword, it must correspond to the letter x ∈ X .
Now the decoder continues until another codeword is formed. The process may be
repeated until the end of the message. So after having found the codeword c(x) the
decoder instantaneously knows that x ∈ X is the next letter of the message. Because
of this property a prefix code is also denoted as instantaneous code.

The criterion for data compression is to minimise the average length of the
codewords. So if we are given a source (X , P ), where X = {1, . . . , m} and P =
(
P (1), P (2), . . . , P (m)

)
is a probability distribution on X , the average length L(c)

is defined by

L(c) =
∑

x∈X
P (x) · L(x) .

The following prefix code c for English texts has average length L(c) = 3·0.266+
4 · 0.415 + 5 · 0.190 + 6 · 0.101 + 7 · 0.016 + 8 · 0.012 = 4.222.

A −→ 0110, B −→ 010111, C −→ 10001, D −→ 01001,

E −→ 110, F −→ 11111, G −→ 111110, H −→ 00100,

I −→ 0111, J −→ 11110110, K −→ 1111010, L −→ 01010,

M −→ 001010, N −→ 1010, O −→ 1001, P −→ 010011,

Q −→ 01011010, R −→ 1110, S −→ 1011, T −→ 0011,

U −→ 10000, V −→ 0101100, W −→ 001011, X −→ 01011011,

Y −→ 010010, Z −→ 11110111, SP −→ 000.

We can still do better, if we do not encode single letters, but blocks of n letters
for some n ∈ N . In this case we replace the source (X , P ) by (Xn, P n) for some
n ∈ N . Remember that P n(x1x2 . . . xn) = P (x1) · P (x2) · · · · · P (xn) for a word
(x1x2 . . . xn) ∈ Xn, since the source is memoryless. If e.g. we are given an alphabet
with two letters, X = {a, b} and P (a) = 0.9, P (b) = 0.1, then the code c defined
by c(a) = 0, c(b) = 1 has average length L(c) = 0.9 · 1 + 0.1 · 1 = 1. Obviously we
cannot find a better code. The combinations of two letters now have the following
probabilities:

P 2(aa) = 0.81, P 2(ab) = 0.09, P 2(ba) = 0.09, P 2(bb) = 0.01 .

The prefix code c2 defined by

c2(aa) = 0, c2(ab) = 10, c2(ba) = 110, c2(bb) = 111

has average length L(c2) = 1·0.81+2·0.09+3·0.09+3·0.01 = 1.29. So 1
2 L(c2) = 0.645

could be interpreted as the average length the code c2 requires per letter of the
alphabet X . When we encode blocks of n letters we are interested in the behaviour
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Figure 3.2 Example of a code tree.

of

L(n, P ) = min
cUDC

1

n

∑

(x1...xn)∈X n

P n(x1 . . . xn)L(x1 . . . xn) .

It follows from the Noiseless Coding Theorem, which is stated in the next section,
that limn−→∞ L(n, P ) = H(P ) the entropy of the source (X , P ).

In our example for the English language we have H(P ) ≈ 4.19. So the code
presented above, where only single letters are encoded, is already nearly optimal in
respect of L(n, P ). Further compression is possible, if we consider the dependencies
between the letters.

3.1.3. Kraft’s inequality and noiseless coding theorem

We shall now introduce a necessary and sufficient condition for the existence of a
prefix code with prescribed word lengths L(1), . . . , L(m).

Theorem 3.1 (Kraft’s inequality). Let X = {1, . . . , m}. A uniquely decipherable

code c : X −→ {0, 1}∗ with word lengths L(1), . . . , L(m) exists, if and only if

∑

x∈X
2−L(x) ≤ 1 .

Proof The central idea is to interpret the codewords as nodes of a rooted binary
tree with depth T = maxx∈X {L(x)}. The tree is required to be complete (every path
from the root to a leaf has length T ) and regular (every inner node has outdegree
2). The example in Figure 3.2 for T = 3 may serve as an illustration.

So the nodes with distance n from the root are labeled with the words xn ∈
{0, 1}n. The upper successor of x1x2 . . . xn is labeled x1x2 . . . xn0, its lower successor
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is labeled x1x2 . . . xn1.
The shadow of a node labeled by x1x2 . . . xn is the set of all the leaves which

are labeled by a word (of length T ) beginning with x1x2 . . . xn. In other words, the
shadow of x1 . . . xn consists of the leaves labeled by a sequence with prefix x1 . . . xn.
In our example {000, 001, 010, 011} is the shadow of the node labeled by 0.

Now suppose we are given positive integers L(1), . . . , L(m). We further assume
that L(1) ≤ L(2) ≤ · · · ≤ L(m). As first codeword c(1) = 00 . . . 0

︸ ︷︷ ︸

L(1)

is chosen. Since

∑

x∈X
2T −L(x) ≤ 2T , we have 2T −L(1) < 2T (otherwise only one letter has to be

encoded). Hence there are left some nodes on the T -th level, which are not in the
shadow of c(1). We pick the first of these remaining nodes and go back T−L(2) steps
in direction to the root. Since L(2) ≥ L(1) we shall find a node labeled by a sequence
of L(2) bits, which is not a prefix of c(1). So we can choose this sequence as c(2). Now
again, either m = 2, and we are ready, or by the hypothesis 2T −L(1) + 2T −L(2) < 2T

and we can find a node on the T -th level, which is not contained in the shadows
of c(1) and c(2). We find the next codeword as shown above. The process can be
continued until all codewords are assigned.

Conversely, observe that
∑

x∈X
2−L(x) =

T∑

j=1

wj 2−j , where wj is the number of

codewords with length j in the uniquely decipherable prefix code and T again denotes
the maximal word length.

The s-th power of this term can be expanded as





T∑

j=1

wj 2−j





s

=

T ·s∑

k=s

Nk 2−k .

Here Nk =
∑

i1+···+is=k

wi1
. . . wis

is the total number of messages whose coded

representation is of length k.
Since the code is uniquely decipherable, to every sequence of k letters corresponds

at most one possible message. Hence Nk ≤ 2k and
T ·s∑

k=s

Nk 2−k ≤
T ·s∑

k=s

1 = T ·s−s+1 ≤

T · s. Taking s–th root this yields
T∑

j=1

wj 2−j ≤ (T · s)
1
s .

Since this inequality holds for any s and lim
s−→∞

(T · s)
1
s = 1, we have the desired

result

T∑

j=1

wj 2−j =
∑

x∈X
2−L(x) ≤ 1 .
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Theorem 3.2 (Noiseless Coding Theorem). For a source (X , P ), X = {1, . . . , m}
it is always possible to find a uniquely decipherable code c : X −→ {0, 1}∗ with

average length

H(P ) ≤ L(c) < H(P ) + 1 .

Proof Let L(1), . . . , L(m) denote the codeword lengths of an optimal uniquely de-

cipherable code. Now we define a probability distribution Q by Q(x) = 2−L(x)

r for

x = 1, . . . , m, where r =
m∑

x=1
2−L(x). By Kraft’s inequality r ≤ 1.

For two probability distributions P and Q on X the I-divergence D(P ||Q) is
defined by

D(P ||Q) =
∑

x∈X
P (x) lg

P (x)

Q(x)
.

I-divergence is a good measure for the distance of two probability distributions.
Especially, always the I-divergence D(P ||Q) ≥ 0. So for any probability distribution
P

D(P ||Q) = −H(P )−
∑

x∈X
P (x) · lg

(
2−L(x) · r−1

)
≥ 0 .

From this it follows that
H(P ) ≤ −

∑

x∈X

P (x) · lg
(

2−L(x) · r−1
)

=
∑

x∈X

P (x) · L(x) −
∑

x∈X

P (x) · lg r−1 = Lmin(P ) + lg r.

Since r ≤ 1, lg r ≤ 0 and hence Lmin(P ) ≥ H(P ).
In order to prove the right-hand side of the Noiseless Coding Theorem for x =

1, . . . , m we define L(x) = d− lg P (x)e. Observe that − lg P (x) ≤ L(x) < − lg P (x)+
1 and hence P (x) ≥ 2−L(x).

So 1 =
∑

x∈X
P (x) ≥ ∑

x∈X
2−L(x) and from Kraft’s Inequality we know that there

exists a uniquely decipherable code with word lengths L(1), . . . , L(m). This code has
average length

∑

x∈X
P (x) · L′(x) <

∑

x∈X
P (x)(− lg P (x) + 1) = H(P ) + 1 .

3.1.4. Shannon-Fano-Elias-codes

In the proof of the Noiseless Coding Theorem it was explicitly shown how to con-
struct a prefix code c to a given probability distribution P = (P (1), . . . , P (a)). The
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x P (x) Q(x) Q(x) dlg 1
P (x)

e cS(x) cSF E(x)

1 0.25 0 0.125 2 00 001

2 0.2 0.25 0.35 3 010 0101

3 0.11 0.45 0.505 4 0111 10001

4 0.11 0.56 0.615 4 1000 10100

5 0.11 0.67 0.725 4 1010 10111

6 0.11 0.78 0.835 4 1100 11010

7 0.11 0.89 0.945 4 1110 11110

L 3.3 4.3

Figure 3.3 Example of Shannon code and Shannon-Fano-Elias-code.

x P (x) c(x) L(x)

1 0.25 00 2

2 0.2 01 2

3 0.11 100 3

4 0.11 101 3

5 0.11 110 3

6 0.11 1110 4

7 0.11 1111 4

L(c) 2.77

Figure 3.4 Example of the Shannon-Fano-algorithm.

idea was to assign to each x a codeword of length L(x) by choosing an appropri-
ate vertex in the tree introduced. However, this procedure does not always yield an
optimal code. If e.g. we are given the probability distribution (1

3 , 1
3 , 1

3 ), we would
encode 1 −→ 00, 2 −→ 01, 3 −→ 10 and thus achieve an average codeword length
2. But the code with 1 −→ 00, 2 −→ 01, 3 −→ 1 has only average length 5

3 .
Shannon gave an explicit procedure for obtaining codes with codeword lengths

dlg 1
P (x)e using the binary representation of cumulative probabilities (Shannon re-

marked this procedure was originally due to Fano ). The elements of the source are
ordered according to increasing probabilities P (1) ≥ P (2) ≥ · · · ≥ P (m). Then the
codeword cS(x) consists of the first dlg 1

P (x)e bits of the binary expansion of the sum

Q(x) =
∑

j<x P (j).
This procedure was further developed by Elias. The elements of the source now

may occur in any order. The Shannon-Fano-Elias-code has as codewords cSF E(x)
the first dlg 1

P (x)e+ 1 bits of the binary expansion of the sum Q(x) =
∑

j<x P (j) +
1
2 P (x).

We shall illustrate these procedures with the example in Figure 3.3.

A more efficient procedure is also due to Shannon and Fano. The Shannon-

Fano-algorithm will be illustrated by the same example in Figure 3.4.
The messages are first written in order of nonincreasing probabilities. Then the

message set is partitioned into two most equiprobable subsets X0 and X1. A 0 is
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p1 0.25 p1 0.25 p1 0.25 P23 0.31 p4567 0.44 p123 0.56
p2 0.2 p67 0.22 p67 0.22 p1 0.25 p23 0.31 p4567 0.44
p3 0.11 p2 0.2 p45 0.22 p67 0.22 p1 0.25
p4 0.11 p3 0.11 p2 0.2 p45 0.22
p5 0.11 p4 0.11 p3 0.11
P6 0.11 p5 0.11
p7 0.11

C123 0 c4567 1 c23 00 c1 01 c1 01 c1 01
c4567 1 c23 00 c1 01 c67 10 c67 10 c2 000

c1 01 c67 10 c45 11 c2 000 c3 001
c45 11 c2 000 c3 001 c4 110

c3 001 c4 110 c5 111
c5 111 c6 100

c7 101

Figure 3.5 Example of a Huffman code.

assigned to each message contained in one subset and a 1 to each of the remaining
messages. The same procedure is repeated for subsets of X0 and X1; that is, X0 will
be partitioned into two subsets X00 and X01. Now the code word corresponding to a
message contained in X00 will start with 00 and that corresponding to a message in
X01 will begin with 01. This procedure is continued until each subset contains only
one message.

However, this algorithm neither yields an optimal code in general, since the prefix
code 1 −→ 01, 2 −→ 000, 3 −→ 001, 4 −→ 110, 5 −→ 111, 6 −→ 100, 7 −→ 101 has
average length 2.75.

3.1.5. The Huffman coding algorithm

The Huffman coding algorithm is a recursive procedure, which we shall illustrate
with the same example as for the Shannon-Fano-algorithm in Figure 3.5 with px =
P (x) and cx = c(x). The source is successively reduced by one element. In each
reduction step we add up the two smallest probabilities and insert their sum P (m)+
P (m−1) in the increasingly ordered sequence P (1) ≥ · · · ≥ P (m−2), thus obtaining
a new probability distribution P ′ with P ′(1) ≥ · · · ≥ P ′(m − 1). Finally we arrive
at a source with two elements ordered according to their probabilities. The first
element is assigned a 0, the second element a 1. Now we again “blow up” the source
until the original source is restored. In each step c(m− 1) and c(m) are obtained by
appending 0 or 1, respectively, to the codeword corresponding to P (m) + P (m− 1).

Correctness. The following theorem demonstrates that the Huffman coding
algorithm always yields a prefix code optimal with respect to the average codeword
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length.

Theorem 3.3 We are given a source (X , P ), where X = {1, . . . , m} and the prob-

abilities are ordered non–increasingly P (1) ≥ P (2) ≥ · · · ≥ P (m). A new probability

distribution is defined by

P ′ =
(
P (1), . . . , P (m− 2), P (m− 1) + P (m)

)
.

Let c′ =
(
c′(1), c′(2), . . . , c′(m − 1)

)
be an optimal prefix code for P ′. Now we

define a code c for the distribution P by

c(x) = c′(x) for x = 1, . . . , m − 2 ,

c(m − 1) = c′(m − 1)0 ,

c(m) = c′(m − 1)1 .

Then c is an optimal prefix code for P and Lopt(P ) − Lopt(P ′) = p(m − 1) +

p(m), where Lopt(P ) denotes the length of an optimal prefix code for probability
distribution P

Proof For a probability distribution P on X = {1, . . . , m} with P (1) ≥ P (2) ≥
· · · ≥ P (m) there exists an optimal prefix code c with

i) L(1) ≤ L(2) ≤ · · · ≤ L(m)

ii) L(m− 1) = L(m)

iii) c(m− 1) and c(m) differ exactly in the last position.

This holds, since:

i) Assume that there are x, y ∈ X with P (x) ≥ P (y) and L(x) > L(y). Then the
code d obtained by interchanging the codewords c(x) and c(y) has average length
L(d) ≤ L(c), since

L(d) − L(c) = P (x) · L(y) + P (y) · L(x) − P (x) · L(x) − P (y) · L(y)

= (P (x) − P (y)) · (L(y) − L(x)) ≤ 0

ii) Assume we are given a code with L(1) ≤ · · · ≤ L(m − 1) < L(m). Because of
the prefix property we may drop the last L(m)−L(m− 1) bits and thus obtain
a new code with L(m) = L(m− 1).

iii) If no two codewords of maximal length agree in all places but the last, then we
may drop the last digit of all such codewords to obtain a better code.

Now we are ready to prove the statement from the theorem. From the definition
of c and c′ we have

Lopt(P ) ≤ L(c) = L(c′) + p(m− 1) + p(m) .

Now let d be an optimal prefix code with the properties ii) and iii) from the
preceding lemma. We define a prefix code d′ for
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P ′ = (P (1), . . . , P (m− 2), P (m− 1) + P (m))

by d′(x) = d(x) for x = 1, . . . , m− 2 and d′(m− 1) is obtained by dropping the last
bit of d(m− 1) or d(m).

Now

Lopt(P ) = L(d) = L(d′) + P (m − 1) + P (m)

≥ Lopt(P ′) + P (m − 1) + P (m)

and hence Lopt(P )− Lopt(P ′) = P (m− 1) + P (m), since L(c′) = Lopt(P ′).

Analysis. If m denotes the size of the source alphabet, the Huffman coding
algorithm needs m− 1 additions and m− 1 code modifications (appending 0 or 1).
Further we need m−1 insertions, such that the total complexity can be roughly esti-
mated to be O(m lg m). However, observe that with the Noiseless Coding Theorem,
the quality of the compression rate can only be improved by jointly encoding blocks
of, say, k letters, which would result in a Huffman code for the source X k of size
mk. So, the price for better compression is a rather drastic increase in complexity.
Further, the codewords for all mk letters have to be stored. Encoding a sequence of
n letters can since be done in O( n

k · (mk lg mk)) steps.

Exercises
3.1-1 Show that the code c : {a, b} −→ {0, 1}∗ with c(a) = 0 and c(b) = 0 . . . 01

︸ ︷︷ ︸

n

is

uniquely decipherable but not instantaneous for any n > 0.
3.1-2 Compute the entropy of the source (X , P ), with X = {1, 2} and P =
(0.8, 0, 2).
3.1-3 Find the Huffman-codes and the Shannon-Fano-codes for the sources
(Xn, P n) with (X , P ) as in the previous exercise for n = 1, 2, 3 and calculate their
average codeword lengths.
3.1-4 Show that always 0 ≤ H(P ) ≤ lg |X |.
3.1-5 Show that the redundancy ρ(c) = L(c)−H(P ) of a prefix code c for a source
with probability distribution P can be expressed as a special I–divergence.
3.1-6 Show that the I-divergence D(P ||Q) ≥ 0 for all probability distributions P
and Q over some alphabet X with equality exactly if P = Q but that the I-divergence
is not a metric.

3.2. Arithmetic coding and modelling

In statistical coding techniques as Shannon-Fano- or Huffman-coding the probability
distribution of the source is modelled as accurately as possible and then the words
are encoded such that a higher probability results in a shorter codeword length.

We know that Huffman-codes are optimal with respect to the average codeword
length. However, the entropy is approached by increasing the block length. On the
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other hand, for long blocks of source symbols, Huffman-coding is a rather complex
procedure, since it requires the calculation of the probabilities of all sequences of the
given block length and the construction of the corresponding complete code.

For compression techniques based on statistical methods often arithmetic cod-

ing is preferred. Arithmetic coding is a straightforward extension of the Shannon-
Fano-Elias-code. The idea is to represent a probability by an interval. In order to do
so, the probabilities have to be calculated very accurately. This process is denoted as
modelling of the source . So statistical compression techniques consist of two stages:
modelling and coding. As just mentioned, coding is usually done by arithmetic cod-
ing. The different algorithms like, for instance, DCM (Discrete Markov Coding) and
PPM (Prediction by Partial Matching) vary in the way of modelling the source. We
are going to present the context-tree weighting method, a transparent algorithm for
the estimation of block probabilities due to Willems, Shtarkov, and Tjalkens, which
also allows a straightforward analysis of the efficiency.

3.2.1. Arithmetic coding

The idea behind arithmetic coding is to represent a message xn = (x1 . . . xn) by
interval I(xn) = [Qn(xn), Qn(xn)+P n(xn)), where Qn(xn) =

∑

yn<xn P n(yn) is the
sum of the probabilities of those sequences which are smaller than xn in lexicographic
order.

A codeword c(xn) assigned to message xn also corresponds to an interval.
Namely, we identify codeword c = c(xn) of length L = L(xn) with interval
J(c) = [bin(c), bin(c) + 2−L), where bin(c) is the binary expansion of the nomi-
nator in the fraction c

2L . The special choice of codeword c(xn) will be obtained from
P n(xn) and Qn(xn) as follows:

L(xn) = dlg 1

P n(xn)
e+ 1, bin(c) = dQn(xn) · 2L(xn)e .

So message xn is encoded by a codeword c(xn), whose interval J(xn) is inside
interval I(xn).

Let us illustrate arithmetic coding by the following example of a discrete mem-
oryless source with P (1) = 0.1 and n = 2.

xn P n(xn) Qn(xn) L(xn) c(xn)
00 0.81 0.00 2 00
01 0.09 0.81 5 11010
10 0.09 0.90 5 11101
11 0.01 0.99 8 11111110 .

At first glance it may seem that this code is much worse than the Huffman
code for the same source with codeword lengths (1, 2, 3, 3) we found previously. On
the other hand, it can be shown that arithmetic coding always achieves an average
codeword length L(c) < H(P n) + 2, which is only two bits apart from the lower
bound in the noiseless coding theorem. Huffman coding would usually yield an even
better code. However, this “negligible” loss in compression rate is compensated by
several advantages. The codeword is directly computed from the source sequence,
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which means that we do not have to store the code as in the case of Huffman coding.
Further, the relevant source models allow to easily compute P n(x1x2 . . . xn−1xn) and
Qn(x1x2 . . . xn−1xn) from P n−1(x1x2 . . . xn−1), usually by multiplication by P (xn).
This means that the sequence to be encoded can be parsed sequentially bit by bit,
unlike in Huffman coding, where we would have to encode blockwise.

Encoding. The basic algorithm for encoding a sequence (x1 . . . xn) by arithmetic
coding works as follows. We assume that P n(x1 . . . xn) = P1(x1) ·P2(x2) · · ·Pn(xn),
(in the case Pi = P for all i the discrete memoryless source arises, but in the
section on modelling more complicated formulae come into play) and hence Qi(xi) =
∑

y<xi
Pi(xi)

Starting with B0 = 0 and A0 = 1 the first i letters of the text to be com-
pressed determine the current interval [Bi, Bi + Ai). These current intervals are
successively refined via the recursions

Bi+1 = Bi + Ai ·Qi(xi), Ai+1 = Ai · Pi(xi) .

Ai · Pi(x) is usually denoted as augend. The final interval [Bn, Bn + An) =
[Qn(xn), Qn(xn) + P n(xn)) will then be encoded by interval J(xn) as described
above. So the algorithm looks as follows.

Arithmetic-Encoder(x)

1 B ← 0
2 A← 1
3 for i← 1 to n
4 do B ← B + A ·Qi(x[i])
5 A← A · Pi(x[i])
6 L← dlg 1

Ae+ 1
7 c← dB · 2Le
8 return c

We shall illustrate the encoding procedure by the following example from the
literature. Let the discrete, memoryless source (X , P ) be given with ternary alphabet
X = {1, 2, 3} and P (1) = 0.4, P (2) = 0.5, P (3) = 0.1. The sequence x4 = (2, 2, 2, 3)
has to be encoded. Observe that Pi = P and Qi = Q for all i = 1, 2, 3, 4. Further
Q(1) = 0, Q(2) = P (1) = 0.4, and Q(3) = P (1) + P (2) = 0.9.

The above algorithm yields

i Bi Ai

0 0 1
1 B0 + A0 ·Q(2) = 0.4 A0 · P (2) = 0.5
2 B1 + A1 ·Q(2) = 0.6 A1 · P (2) = 0.25
3 B2 + A2 ·Q(2) = 0.7 A2 · P (2) = 0.125
4 B3 + A3 ·Q(3) = 0.8125 A3 · P (3) = 0.0125 .

Hence Q(2, 2, 2, 3) = B4 = 0.8125 and P (2, 2, 2, 3) = A4 = 0.0125. From this can
be calculated that L = dlg 1

Ae + 1 = 8 and finally dB · 2Le = d0.8125 · 256e = 208
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whose binary representation is codeword c(2, 2, 2, 3) = 11010000.

Decoding. Decoding is very similar to encoding. The decoder recursively "un-
does" the encoder’s recursion. We divide the interval [0, 1) into subintervals with
bounds defined by Qi. Then we find the interval in which codeword c can be found.
This interval determines the next symbol. Then we subtract Qi(xi) and rescale by
multiplication by 1

Pi(xi) .

Arithmetic-Decoder(c)

1 for i← 1 to n
2 do j ← 1
3 while (c < Qi(j))
4 do j ← j + 1
5 x[i]← j − 1
6 c← (c−Qi(x[i]))/Pi(x[i])
7 return x

Observe that when the decoder only receives codeword c he does not know when
the decoding procedure terminates. For instance c = 0 can be the codeword for
x1 = (1), x2 = (1, 1), x3 = (1, 1, 1), etc. In the above pseudocode it is implicit that
the number n of symbols has also been transmitted to the decoder, in which case
it is clear what the last letter to be encoded was. Another possibility would be to
provide a special end-of-file (EOF)-symbol with a small probability, which is known
to both the encoder and the decoder. When the decoder sees this symbol, he stops
decoding. In this case line 1 would be replaced by

1 while (x[i] 6= EOF)

(and i would have to be increased). In our above example, the decoder would
receive the codeword 11010000, the binary expansion of 0.8125 up to L = 8 bits.
This number falls in the interval [0.4, 0.9) which belongs to the letter 2, hence the
first letter x1 = 2. Then he calculates (0.8075−Q(2)) 1

P (2) = (0.815− 0.4) · 2 = 0.83.

Again this number is in the interval [0.4, 0.9) and the second letter is x2 = 2. In order
to determine x3 the calculation (0.83−Q(2)) 1

P (2) = (0.83− 0.4) · 2 = 0.86 must be

performed. Again 0.86 ∈ [0.4, 0.9) such that also x3 = 2. Finally (0.86−Q(2)) 1
P (2) =

(0.86 − 0.4) · 2 = 0.92. Since 0.92 ∈ [0.9, 1), the last letter of the sequence must be
x4 = 3.

Correctness. Recall that message xn is encoded by a codeword c(xn), whose
interval J(xn) is inside interval I(xn). This follows from dQn(xn) · 2L(xn)e2−L(xn) +

2−L(xn) < Qn(xn) + 21−L(xn) = Qn(xn) + 2−dlg 1
P n(xn)

e ≤ Qn(xn) + P n(xn).
Obviously a prefix code is obtained, since a codeword can only be a prefix of

another one, if their corresponding intervals overlap – and the intervals J(xn) ⊂
I(xn) are obviously disjoint for different n-s.

Further, we mentioned already that arithmetic coding compresses down to the
entropy up to two bits. This is because for every sequence xn it is L(xn) < lg 1

P n(xn) +
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2. It can also be shown that the additional transmission of block length n or the
introduction of the EOF symbol only results in a negligible loss of compression.

However, the basic algorithms we presented are not useful in order to compress
longer files, since with increasing block length n the intervals are getting smaller and
smaller, such that rounding errors will be unavoidable. We shall present a technique
to overcome this problem in the following.

Analysis. The basic algorithm for arithmetic coding is linear in the length n
of the sequence to be encoded. Usually, arithmetic coding is compared to Huffman
coding. In contrast to Huffman coding, we do not have to store the whole code, but
can obtain the codeword directly from the corresponding interval. However, for a
discrete memoryless source, where the probability distribution Pi = P is the same
for all letters, this is not such a big advantage, since the Huffman code will be the
same for all letters (or blocks of k letters) and hence has to be computed only once.
Huffman coding, on the other hand, does not use any multiplications which slow
down arithmetic coding.

For the adaptive case, in which the Pi’s may change for different letters xi to be
encoded, a new Huffman code would have to be calculated for each new letter. In
this case, usually arithmetic coding is preferred. We shall investigate such situations
in the section on modelling.

For implementations in practice floating point arithmetic is avoided. Instead, the
subdivision of the interval [0, 1) is represented by a subdivision of the integer range
0, . . . , M , say, with proportions according to the source probabilities. Now integer
arithmetic can be applied, which is faster and more precise.

Precision problem. In the basic algorithms for arithmetic encoding and de-
coding the shrinking of the current interval would require the use of high precision
arithmetic for longer sequences. Further, no bit of the codeword is produced until
the complete sequence xn has been read in. This can be overcome by coding each bit
as soon as it is known and then double the length of the current interval [LO, HI),
say, so that this expansion represents only the unknown part of the interval. This is
the case when the leading bits of the lower and upper bound are the same, i. e. the
interval is completely contained either in [0, 1

2 ) or in [ 1
2 , 1). The following expansion

rules guarantee that the current interval does not become too small.

Case 1 ([LO, HI) ∈ [0, 1
2 )): LO ← 2 · Lo, HI ← 2 ·HI .

Case 2 ([LO, HI) ∈ [ 1
2 , 1)): LO ← 2 · LO − 1, HI ← 2 ·HI − 1 .

Case 3 ( 1
4 ≤ LO < 1

2 ≤ HI < 3
4 ): LO ← 2 · LO − 1

2 , HI ← 2 ·HI − 1
2 .

The last case called underflow (or follow) prevents the interval from shrinking
too much when the bounds are close to 1

2 . Observe that if the current interval is
contained in [ 1

4 , 3
4 ) with LO < 1

2 ≤ HI, we do not know the next output bit, but we
do know that whatever it is, the following bit will have the opposite value. However,
in contrast to the other cases we cannot continue encoding here, but have to wait
(remain in the underflow state and adjust a counter underflowcount to the number
of subsequent underflows, i. e. underflowcount ← underflowcount + 1) until the
current interval falls into either [0, 1

2 ) or [ 1
2 , 1). In this case we encode the leading
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bit of this interval – 0 for [0, 1
2 ) and 1 for [ 1

2 , 1) – followed by underflowcount many
inverse bits and then set underflowcount = 0. The procedure stops, when all letters
are read in and the current interval does not allow any further expansion.

Arithmetic-Precision-Encoder(x)

1 LO ← 0
2 HI ← 1
3 A← 1
4 underflowcount ← 0
5 for i← 1 to n
6 do LO ← LO + Qi(x[i]) ·A
7 A← Pi(x[i])
8 HI ← LO + A
9 while HI − LO < 1

2 AND NOT (LO < 1
4 AND HI ≥ 1

2 )
10 do if HI < 1

2
11 then c← c||0, underflowcount many 1s
12 underflowcount ← 0
13 LO ← 2· LO

14 HI ← 2· HI

15 else if LO ≥ 1
2

16 then c← c||1, underflowcount many 0s
17 underflowcount ← 0
18 LO ← 2 · LO − 1
19 HI ← 2 ·HI − 1
20 else if LO ≥ 1

4 AND HI < 3
4

21 then underflowcount ← underflowcount +1
22 LO ← 2 · LO − 1

2
23 HI ← 2 ·HI − 1

2
24 if underflowcount > 0
25 then c← c||0, underflowcount many 1s)
26 return c

We shall illustrate the encoding algorithm in Figure 3.6 by our example – the
encoding of the message (2, 2, 2, 3) with alphabet X = {1, 2, 3} and probability
distribution P = (0.4, 0.5, 0.1). An underflow occurs in the sixth row: we keep track
of the underflow state and later encode the inverse of the next bit, here this inverse
bit is the 0 in the ninth row. The encoded string is 1101000.

Precision-decoding involves the consideration of a third variable besides the in-
terval bounds LO and HI.

3.2.2. Modelling

Modelling of memoryless sources. In this section we shall only consider
binary sequences xn ∈ {0, 1}n to be compressed by an arithmetic coder. Further,
we shortly write P (xn) instead of P n(xn) in order to allow further subscripts and
superscripts for the description of the special situation. Pe will denote estimated
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Current Subintervals

Interval Action 1 2 3 Input

[0.00, 1.00) subdivide [0.00, 0.40) [0.40, 0.90) [0.90, 1.00) 2

[0.40, 0.90) subdivide [0.40, 0.60) [0.60, 0.85) [0.85, 0.90) 2

[0.60, 0.85) encode 1

expand [ 1
2

, 1)

[0.20, 0.70) subdivide [0.20, 0.40) [0.40, 0.65) [0.65, 0.70) 2

[0.40, 0.65) underflow

expand [ 1
4

, 3
4

)

[0.30, 0.80) subdivide [0.30, 0.50) [0.50, 0.75) [0.75, 0.80) 3

[0.75, 0.80) encode 10

expand [ 1
2

, 1)

[0.50, 0.60) encode 1

expand [ 1
2

, 1)

[0.00, 0.20) encode 0

expand [0, 1
2

)

[0.00, 0.40) encode 0

expand [0, 1
2

)

[0.00, 0.80) encode 0

Figure 3.6 Example of arithmetic encoding with interval expansion.

probabilities, Pw weighted probabilities, and P s probabilities assigned to a special
context s.

The application of arithmetic coding is quite appropriate if the probability dis-
tribution of the source is such that P (x1x2 . . . xn−1xn) can easily be calculated from
P (x1x2 . . . xn−1). Obviously this is the case, when the source is discrete and memo-
ryless, since then P (x1x2 . . . xn−1xn) = P (x1x2 . . . xn−1) · P (xn).

Even when the underlying parameter θ = P (1) of a binary, discrete memoryless
source is not known, there is an efficient way due to Krichevsky and Trofimov to
estimate the probabilities via

P (Xn = 1|xn−1) =
b + 1

2

a + b + 1
,

where a and b denote the number of 0s and 1s, respectively, in the sequence
xn−1 = (x1x2 . . . xn−1). So given the sequence xn−1 with a many 0s and b many

1s, the probability that the next letter xn will be a 1 is estimated as
b+ 1

2

a+b+1 . The
estimated block probability of a sequence containing a zeros and b ones then is

Pe(a, b) =
1
2 · · · (a− 1

2 ) 1
2 · · · (b− 1

2 )

1 · 2 · · · (a + b)

with initial values a = 0 and b = 0 as in Figure 3.7, where the values of the
Krichevsky-Trofimov-estimator Pe(a, b) for small (a, b) are listed.

Note that the summand 1
2 in the nominator guarantees that the probability for
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a b 0 1 2 3 4 5

0 1 1/2 3/8 5/16 35/128 63/256

1 1/2 1/8 1/16 5/128 7/256 21/1024

2 3/8 1/16 3/128 3/256 7/1024 9/2048

3 5/16 5/128 3/256 5/1024 5/2048 45/32768

Figure 3.7 Table of the first values for the Krichevsky-Trofimov-estimator.

???????

θ1

θ10

θ00

0 11100100 1

Figure 3.8 An example for a tree source.

the next letter to be a 1 is positive even when the symbol 1 did not occur in the
sequence so far. In order to avoid infinite codeword length, this phenomenon has to
be carefully taken into account when estimating the probability of the next letter in
all approaches to estimate the parameters, when arithmetic coding is applied.

Modells with known context tree. In most situations the source is not
memoryless, i. e., the dependencies between the letters have to be considered. A
suitable way to represent such dependencies is the use of a suffix tree, which we
denote as context tree. The context of symbol xt is suffix s preceding xt. To each
context (or leaf in the suffix tree) s there corresponds a parameter θs = P (Xt = 1|s),
which is the probability of the occurrence of a 1 when the last sequence of past source
symbols is equal to context s (and hence 1−θs is the probability for a 0 in this case).
We are distinguishing here between the model (the suffix tree) and the parameters
(θs).

Example 3.1 Let S = {00, 10, 1} and θ00 = 1
2
, θ10 = 1

3
, and θ1 = 1

5
. The corresponding

suffix tree jointly with the parsing process for a special sequence can be seen in Figure 3.8.

The actual probability of the sequence ’0100111’ given the past ’. . . 010’ is
P s(0100111| . . . 010) = (1−θ10)θ00(1−θ1)(1−θ10)θ00θ1θ1 = 2

3 · 12 · 45 · 23 · 12 · 15 · 15 = 4
1075 ,

since the first letter 0 is preceded by suffix 10, the second letter 1 is preceded by
suffix 00, etc.

Suppose the model S is known, but not the parameters θs. The problem now is
to find a good coding distribution for this case. The tree structure allows to easily
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determine which context precedes a particular symbol. All symbols having the same
context (or suffix) s ∈ S form a memoryless source subsequence whose probability
is determined by the unknown parameter θs. In our example these subsequences are
’11’ for θ00, ’00’ for θ10 and ’011’ for θ1. One uses the Krichevsky-Trofimov-estimator
for this case. To each node s in the suffix tree, we count the numbers as of zeros and
bs of ones preceded by suffix s. For the children 0s and 1s of parent node s obviously
a0s + a1s = as and b0s + b1s = bs must be satisfied.

In our example (aλ, bλ) = (3, 4) for the root λ, (a1, b1) = (1, 2), (a0, b0) =
(2, 2) and (a10, b10) = (2, 0), (a00, b00) = (0, 2). Further (a11, b11) = (0, 1),
(a01, b01) = (1, 1), (a111, b111) = (0, 0), (a011, b011) = (0, 1), (a101, b101) =
(0, 0),(a001, b001) = (1, 1), (a110, b110) = (0, 0), (a010, b010) = (2, 0), (a100, b100) =
(0, 2), and (a000, b000) = (0, 0). These last numbers are not relevant for our special
source S but will be important later on, when the source model or the corresponding
suffix tree, respectively, is not known in advance.

Example 3.2 Let S = {00, 10, 1} as in the previous example. Encoding a subsequence is
done by successively updating the corresponding counters for as and bs. For example, when
we encode the sequence ’0100111’ given the past ’. . . 010’ using the above suffix tree and
Krichevsky-Trofimov–estimator we obtain

P
s

e (0100111| . . . 010) =
1

2
·

1

2
·

1

2
·

3

4
·

3

4
·

1

4
·

1

2
=

3

8
·

3

8
·

1

16
=

9

1024
,

where 3
8
, 3

8
and 1

16
are the probabilities of the subsequences ’11’, ’00’ and ’011’ in the

context of the leaves. These subsequences are assumed to be memoryless.

The context-tree weighting method. Suppose we have a good coding distri-
bution P1 for source 1 and another one, P2, for source 2. We are looking for a good
coding distribution for both sources. One possibility is to compute P1 and P2 and
then 1 bit is needed to identify the best model which then will be used to compress
the sequence. This method is called selecting. Another possibility is to employ the
weighted distribution, which is

Pw(xn) =
P1(xn) + P2(xn)

2
.

We shall present now the context-tree weighting algorithm. Under the as-
sumption that a context tree is a full tree of depth D, only as and bs, i. e. the number
of zeros and ones in the subsequence of bits preceded by context s, are stored in each
node s of the context tree.

Further, to each node s is assigned a weighted probability P s
w which is recursively

defined as

P s
w =

{
Pe(as,bs)+P 0s

w P 1s
w

2 for 0 ≤ L(s) < D ,
Pe(as, bs) for L(s) = D ,

where L(s) describes the length of the (binary) string s and Pe(as, bs) is the estimated
probability using the Krichevsky-Trofimov-estimator.

Example 3.3 After encoding the sequence ’0100111’ given the past ’. . . 010’ we obtain the
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6

?

(0,0)

(0,1)

(0,0)

(1,1)

(0,0)

(2,0)

(0,2)

(0,0)

P 010
w = 3/8

P 11
w = 1/2

P 011
w = 1/2

P 001
w = 1/8

P 100
w = 3/8

P 01
w = 1/8

P 10
w = 3/8

P 00
w = 3/8

P 1
w = 1/16

P λ
w = 35/4096

P 0
w = 21/256

1

0(2,2)

(2,0)

(0,2)

(1,1)

(0,1)

(1,2)

(3,4)

Figure 3.9 Weighted context tree for source sequence ’0100111’ with past . . . 010. The pair (as, bs)
denotes as zeros and bs ones preceded by the corresponding context s. For the contexts s =
111, 101, 110, 000 it is P s

w = Pe(0, 0) = 1.

context tree of depth 3 in Figure 3.9. The weighted probability Pwλ = 35
4096

of the root
node λ finally yields the coding probability corresponding to the parsed sequence.

Recall that for the application in arithmetic coding it is important that prob-
abilities P (x1 . . . xn−10) and P (x1 . . . xn−11) can be efficiently calculated from
P (x1 . . . xn). This is possible with the context-tree weighting method, since the
weighted probabilities P s

w only have to be updated, when s is changing. This just
occurs for the contexts along the path from the root to the leaf in the context
tree preceding the new symbol xn—namely the D + 1 contexts xn−1, . . . , xn−i for
i = 1, . . . , D − 1 and the root λ. Along this path, as = as + 1 has to be performed,
when xn = 0, and bs = bs + 1 has to be performed, when xn = 1, and the corre-
sponding probabilities Pe(as, bs) and P s

w have to be updated.
This suggests the following algorithm for updating the context tree

CT (x1, . . . , xn−1|x−D+1, . . . x0) when reading the next letter xn. Recall that to each
node of the tree we store the parameters (as, bs), Pe(as, bs) and P s

w. These parame-
ters have to be updated in order to obtain CT (x1, . . . , xn|x−D+1, . . . x0). We assume
the convention that the ordered pair (xn−1, xn) denotes the root λ.
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Update-Context-Tree(xn, CT (x1 . . . xn−1|x−D+1 . . . x0))

1 s← (xn−1 . . . xn−D)
2 if xn = 0

3 then P s
w ← P s

w · as+1/2
as+bs+1

4 as ← as + 1

5 else P s
w ← P s

w · bs+1/2
as+bs+1

6 bs ← bs + 1
7 for i← 1 to D
8 do s← (xn−1, . . . , xn−D+i)
9 if xn = 0

10 then Pe(as, bs)← Pe(as, bs) · as+1/2
as+bs+1

11 as ← as + 1

12 else Pe(as, bs)← Pe(as, bs) · as+1/2
as+bs+1

13 bs ← bs + 1
14 P s

w ← 1
2 · (Pe(as, bs) + P 0s

w · P 1s
w )

15 return P s
w

The probability P λ
w assigned to the root in the context tree will be used for

the successive subdivisions in arithmetic coding. Initially, before reading x1, the
parameters in the context tree are (as, bs) = (0, 0), Pe(as, bs) = 1, and P s

w = 1 for
all contexts s in the tree. In our example the updates given the past (x−2, x−1, x0) =
(0, 1, 0) would yield the successive probabilities P λ

w : 1
2 for x1 = 0, 9

32 for (x1x2) =
(01), 5

64 for (x1x2x3) = (010), 13
256 for (x1x2x3x4) = (0100), 27

1024 for (x1x2x3x4) =
(01001), 13

1024 for (x1x2x3x4x5) = (010011), 13
1024 for (x1x2x3x4x5x6) = (010011),

and finally 35
4096 for (x1x2x3x4x5x6x7) = (0100111).

Correctness Recall that the quality of a code concerning its compression capabil-
ity is measured with respect to the average codeword length. The average codeword
length of the best code comes as close as possible to the entropy of the source. The
difference between the average codeword length and the entropy is denoted as the
redundancy ρ(c) of code c, hence

ρ(c) = L(c)−H(P ) ,

which obviously is the weighted (by P (xn)) sum of the individual redundancies

ρ(xn) = L(xn)− lg
1

P (xn)
.

The individual redundancy ρ(xn|S) of sequences xn given the (known) source S
for all θs ∈ [0, 1] for s ∈ S, |S| ≤ n is bounded by

ρ(xn|S) ≤ |S|
2

lg
n

|S| + |S|+ 2 .

The individual redundancy ρ(xn|S) of sequences xn using the context-tree
weighting algorithm (and hence a complete tree of all possible contexts as model
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S) is bounded by

ρ(xn|S) < 2|S| − 1 +
|S|
2

lg
n

|S| + |S|+ 2 .

Comparing these two formulae, we see that the difference of the individual re-
dundancies is 2|S| − 1 bits. This can be considered as the cost of not knowing the
model, i.e. the model redundancy. So, the redundancy splits into the parameter re-
dundancy, i. e. the cost of not knowing the parameter, and the model redundancy. It
can be shown that the expected redundancy behaviour of the context-tree weighting
method achieves the asymptotic lower bound due to Rissanen who could demonstrate
that about 1

2 lg n bits per parameter is the minimum possible expected redundancy
for n −→∞.

Analysis. The computational complexity is proportional to the number of nodes
that are visited when updating the tree, which is about n(D + 1). Therefore, the
number of operations necessary for processing n symbols is linear in n. However,
these operations are mainly multiplications with factors requiring high precision.

As for most modelling algorithms, the backlog of implementations in practice
is the huge amount of memory. A complete tree of depth D has to be stored and
updated. Only with increasing D the estimations of the probabilities are becoming
more accurate and hence the average codeword length of an arithmetic code based on
these estimations would become shorter. The size of the memory, however, depends
exponentially on the depth of the tree.

We presented the context–tree weighting method only for binary sequences. Note
that in this case the cumulative probability of a binary sequence (x1 . . . xn) can be
calculated as

Qn(x1x2 . . . xn−1xn) =
∑

j=1,...,n;xj=1

P j(x1x2 . . . xj−10) .

For compression of sources with larger alphabets, for instance ASCII-files, we
refer to the literature.

Exercises
3.2-1 Compute the arithmetic codes for the sources (Xn, P n), n = 1, 2, 3 with
X = {1, 2} and P = (0.8, 0.2) and compare these codes with the corresponding
Huffman-codes derived previously.
3.2-2 For the codes derived in the previous exercise compute the individual redun-
dancies of each codeword and the redundancies of the codes.
3.2-3 Compute the estimated probabilities Pe(a, b) for the sequence 0100110 and
all its subsequences using the Krichevsky-Trofimov-estimator.
3.2-4 Compute all parameters (as, bs) and the estimated probability P s

e for the se-
quence 0100110 given the past 110, when the context tree S = {00, 10, 1} is known.
What will be the codeword of an arithmetic code in this case?
3.2-5 Compute all parameters (as, bs) and the estimated probability Pλ for the
sequence 0100110 given the past 110, when the context tree is not known, using the
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context-tree weighting algorithm.
3.2-6 Based on the computations from the previous exercise, update the estimated
probability for the sequence 01001101 given the past 110.

Show that for the cumulative probability of a binary sequence (x1 . . . xn) it is

Qn(x1x2 . . . xn−1xn) =
∑

j=1,...,n;xj=1

P j(x1x2 . . . xj−10) .

3.3. Ziv-Lempel-coding

In 1976–1978 Jacob Ziv and Abraham Lempel introduced two universal coding algo-
rithms, which in contrast to statistical coding techniques, considered so far, do not
make explicit use of the underlying probability distribution. The basic idea here is to
replace a previously seen string with a pointer into a history buffer (LZ77) or with
the index of a dictionary (LZ78). LZ algorithms are widely used—“zip” and its vari-
ations use the LZ77 algorithm. So, in contrast to the presentation by several authors,
Ziv-Lempel-coding is not a single algorithm. Originally, Lempel and Ziv introduced
a method to measure the complexity of a string—like in Kolmogorov complexity.
This led to two different algorithms, LZ77 and LZ78. Many modifications and vari-
ations have been developed since. However, we shall present the original algorithms
and refer to the literature for further information.

3.3.1. LZ77

The idea of LZ77 is to pass a sliding window over the text to be compressed. One
looks for the longest substring in this window representing the next letters of the
text. The window consists of two parts: a history window of length lh, say, in which
the last lh bits of the text considered so far are stored, and a lookahead window
of length lf containing the next lf bits of the text. In the simplest case lh and lf
are fixed. Usually, lh is much bigger than lf . Then one encodes the triple (offset,
length, letter). Here the offset is the number of letters one has to go back in the
text to find the matching substring, the length is just the length of this matching
substring, and the letter to be stored is the letter following the matching substring.
Let us illustrate this procedure with an example. Assume the text to be compressed
is ...abaabbaabbaaabbbaaaabbabbbabbb..., the window is of size 15 with lh = 10 letters
history and lf = 5 letters lookahead buffer. Assume, the sliding window now arrived
at

...aba||abbaabbaaa|bbbaa|| ,
i. e., the history window contains the 10 letters abbaabbaaa and the lookahead win-
dow contains the five letters bbbaa. The longest substring matching the first letters
of the lookahead window is bb of length 2, which is found nine letters back from the
right end of the history window. So we encode (9, 2, b), since b is the next letter (the
string bb is also found five letters back, in the original LZ77 algorithm one would
select the largest offset). The window then is moved 3 letters forward

...abaabb||aabbaaabbb|aaaab|| .
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The next codeword is (6, 3, a), since the longest matching substring is aaa of
length 3 found 6 letters backwards and a is the letter following this substring in the
lookahead window. We proceed with

...abaabbaabb||aaabbbaaaa|bbabb|| ,

and encode (6, 3, b). Further

...abaabbaabbaaab||bbaaaabbab|babbb|| .

Here we encode (3, 4, b). Observe that the match can extend into the lookahead
window.

There are many subtleties to be taken into account. If a symbol did not appear
yet in the text, offset and length are set to 0. If there are two matching strings of
the same length, one has to choose between the first and the second offset. Both
variations have advantages. Initially one might start with an empty history window
and the first letters of the text to be compressed in the lookahead window - there
are also further variations.

A common modification of the original scheme is to output only the pair (offset,
length) and not the following letter of the text. Using this coding procedure one has
to take into consideration the case in which the next letter does not occur in the
history window. In this case, usually the letter itself is stored, such that the decoder
has to distinguish between pairs of numbers and single letters. Further variations do
not necessarily encode the longest matching substring.

3.3.2. LZ78

LZ78 does not use a sliding window but a dictionary which is represented here as
a table with an index and an entry. LZ78 parses the text to be compressed into a
collection of strings, where each string is the longest matching string α seen so far
plus the symbol s following α in the text to be compressed. The new string αs is
added into the dictionary. The new entry is coded as (i, s), where i is the index of
the existing table entry α and s is the appended symbol.

As an example, consider the string “abaabbaabbaaabbbaaaabba”. It is divided by
LZ78 into strings as shown below. String 0 is here the empty string.

Input a b aa bb aab ba aabb baa aabba
String Index 1 2 3 4 5 6 7 8 9
Output (0, a) (0, b) (1, a) (2, b) (3, b) (2, a) (5, b) (6, a) (7, a) .

Since we are not using a sliding window, there is no limit for how far back strings
can reach. However, in practice the dictionary cannot continue to grow infinitely.
There are several ways to manage this problem. For instance, after having reached
the maximum number of entries in the dictionary, no further entries can be added
to the table and coding becomes static. Another variation would be to replace older
entries. The decoder knows how many bits must be reserved for the index of the
string in the dictionary, and hence decompression is straightforward.
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Correctness Ziv-Lempel coding asymptotically achieves the best possible com-
pression rate which again is the entropy rate of the source. The source model, how-
ever, is much more general than the discrete memoryless source. The stochastic
process generating the next letter, is assumed to be stationary (the probability of a
sequence does not depend on the instant of time, i. e. P (X1 = x1, . . . , Xn = xn) =
P (Xt+1 = x1, . . . , Xt+n = xn) for all t and all sequences (x1 . . . xn)). For stationary
processes the limit limn→∞

1
n H(X1, . . . Xn) exists and is defined to be the entropy

rate.
If s(n) denotes the number of strings in the parsing process of LZ78 for a text

generated by a stationary source, then the number of bits required to encode all

these strings is s(n) · (lg s(n) + 1). It can be shown that s(n)·(lg s(n)+1)
n converges to

the entropy rate of the source. However, this would require that all strings can be
stored in the dictionary.

Analysis. If we fix the size of the sliding window or the dictionary, the running
time of encoding a sequence of n letters will be linear in n. However, as usually
in data compression, there is a tradeoff between compression rate and speed. A
better compression is only possible with larger memory. Increasing the size of the
dictionary or the window will, however, result in a slower performance, since the
most time consuming task is the search for the matching substring or the position
in the dictionary.

Decoding in both LZ77 and LZ78 is straightforward. Observe that with LZ77
decoding is usually much faster than encoding, since the decoder already obtains the
information at which position in the history he can read out the next letters of the
text to be recovered, whereas the encoder has to find the longest matching substring
in the history window. So algorithms based on LZ77 are useful for files which are
compressed once and decompressed more frequently.

Further, the encoded text is not necessarily shorter than the original text. Es-
pecially in the beginning of the encoding the coded version may expand a lot. This
expansion has to be taken into consideration.

For implementation it is not optimal to represent the text as an array. A suitable
data structure will be a circular queue for the lookahead window and a binary search
tree for the history window in LZ77, while for LZ78 a dictionary tree should be used.

Exercises
3.3-1 Apply the algorithms LZ77 and LZ78 to the string “abracadabra”.
3.3-2 Which type of files will be well compressed with LZ77 and LZ78, respectively?
For which type of files are LZ77 and LZ78 not so advantageous?
3.3-3 Discuss the advantages of encoding the first or the last offset, when several
matching substrings are found in LZ77.

3.4. The Burrows-Wheeler-transform

The Burrows-Wheeler-transform will best be demonstrated by an example. As-
sume that our original text is ~X = “WHEELER”. This text will be mapped to a
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second text ~L and an index I according to the following rules.

1) We form a matrix M consisting of all cyclic shifts of the original text ~X. In
our example

M =













W H E E L E R
H E E L E R W
E E L E R W H
E L E R W H E
L E R W H E E
E R W H E E L
R W H E E L E













.

2) From M we obtain a new matrix M ′ by simply ordering the rows in M
lexicographically. Here this yields the matrix

M ′ =













E E L E R W H
E L E R W H E
E R W H E E L
H E E L E R W
L E R W H E E
R W H E E L E
W H E E L E R













.

3) The transformed string ~L then is just the last column of the matrix M ′ and
the index I is the number of the row of M ′, in which the original text is contained.
In our example ~L = “HELWEER” and I = 6 – we start counting the the rows with
row no. 0.

This gives rise to the following pseudocode. We write here X instead of ~X and
L instead of ~L, since the purpose of the vector notation is only to distinguish the
vectors from the letters in the text.
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BWT-Encoder(X)

1 for j ← 0 to n− 1
2 do M [0, j]← X[j]
3 for i← 0 to n− 1
4 do for j ← 0 to n− 1
5 do M [i, j]←M [i− 1, j + 1 mod n]
6 for i← 0 to n− 1
7 do row i of M ′ ← row i of M in lexicographic order
8 for i← 0 to n− 1
9 do L[i]←M ′[i, n− 1]

10 i = 0
11 while (row i of M ′ 6= row i of M)
12 do i← i + 1
13 I ← i
14 return L and I

It can be shown that this transformation is invertible, i. e., it is possible to re-
construct the original text ~X from its transform ~L and the index I. This is because
these two parameters just yield enough information to find out the underlying per-
mutation of the letters. Let us illustrate this reconstruction using the above example
again. From the transformed string ~L we obtain a second string ~E by simply ordering
the letters in ~L in ascending order. Actually, ~E is the first column of the matrix M ′

above. So, in our example

~L = “H E L W E E R′′

~E = “E E E H L R W ′′ .

Now obviously the first letter ~X(0) of our original text ~X is the letter in position

I of the sorted string ~E, so here ~X(0) = ~E(6) = W . Then we look at the position of

the letter just considered in the string ~L – here there is only one W, which is letter
no. 3 in ~L. This position gives us the location of the next letter of the original text,
namely ~X(1) = ~E(3) = H. H is found in position no. 0 in ~L, hence ~X(2) = ~E(0) = E.

Now there are three E–s in the string ~L and we take the first one not used so far, here
the one in position no. 1, and hence ~X(3) = ~E(1) = E. We iterate this procedure

and find ~X(4) = ~E(4) = L, ~X(5) = ~E(2) = E, ~X(6) = ~E(5) = R.
This suggests the following pseudocode.
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BWT-Decoder(L, I)

1 E[0 . . n− 1]← sort L[0 . . n− 1]
2 pi[−1]← I
3 for i← 0 to n− 1
4 do j = 0
5 while (L[j]) 6= E[pi[i− 1]] OR j is a component of pi)
6 do j ← j + 1
7 pi[i]← j
8 X[i]← L[j]
9 return X

This algorithm implies a more formal description. Since the decoder only knows
~L, he has to sort this string to find out ~E. To each letter ~L(j) from the transformed

string ~L record the position π(j) in ~E from which it was jumped to by the process
described above. So the vector pi in our pseudocode yields a permutation π such
that for each j = 0, . . . , n−1 row j it is ~L(j) = ~E(π(j)) in matrix M . In our example
π = (3, 0, 1, 4, 2, 5, 6). This permutation can be used to reconstruct the original text
~X of length n via ~X(n−1−j) = ~L(πj(I)), where π0(x) = x and πj(x) = π(πj−1(x))
for j = 1, . . . , n− 1.

Observe that so far the original data have only been transformed and are not
compressed, since string ~L has exactly the same length as the original string ~L. So
what is the advantage of the Burrows-Wheeler transformation? The idea is that the
transformed string can be much more efficiently encoded than the original string.
The dependencies among the letters have the effect that in the transformed string
~L there appear long blocks consisting of the same letter.

In order to exploit such frequent blocks of the same letter, Burrows and Wheeler
suggested the following move-to-front-code, which we shall illustrate again with
our example above.

We write down a list containing the letters used in our text in alphabetic order
indexed by their position in this list.

E H L R W
0 1 2 3 4

Then we parse through the transformed string ~L letter by letter, note the index
of the next letter and move this letter to the front of the list. So in the first step we
note 1—the index of the H, move H to the front and obtain the list

H E L R W
0 1 2 3 4

Then we note 1 and move E to the front,

E H L R W
0 1 2 3 4

note 2 and move L to the front,
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L E H R W
0 1 2 3 4

note 4 and move W to the front,

W L E H R
0 1 2 3 4

note 2 and move E to the front,

E W L H R
0 1 2 3 4

note 0 and leave E at the front,

E W L H R
0 1 2 3 4

note 4 and move R to the front,

R E W L H
0 1 2 3 4

So we obtain the sequence (1, 1, 2, 4, 2, 0, 4) as our move-to-front-code. The pseu-
docode may look as follows, where Q is a list of the letters occuring in the string
~L.

Move-To-Front(L)

1 Q[0 . . n− 1]← list of m letters occuring in L ordered alphabetically
2 for i← 0 to n− 1
3 do j = 0
4 while (j 6= L[i])
5 j ← j + 1
6 c[i]← j
7 for l← 0 to j
8 do Q[l]← Q[l − 1 mod j + 1]
9 return c

The move-to-front-code c will finally be compressed, for instance by Huffman-
coding.

Correctness. The compression is due to the move-to-front-code obtained from
the transformed string ~L. It can easily be seen that this move-to-front coding proce-
dure is invertible, so one can recover the string ~L from the code obtained as above.

Now it can be observed that in the move-to-front-code small numbers occur more
frequently. Unfortunately, this will become obvious only with much longer texts than
in our example—in long strings it was observed that even about 70 per cent of the
numbers are 0. This irregularity in distribution can be exploited by compressing
the sequence obtained after move-to-front-coding, for instance by Huffman-codes or
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run-length codes.
The algorithm performed very well in practice regarding the compression rate

as well as the speed. The asymptotic optimality of compression has been proven for
a wide class of sources.

Analysis. The most complex part of the Burrows-Wheeler transform is the
sorting of the block yielding the transformed string ~L. Due to fast sorting procedures,
especially suited for the type of data to be compressed, compression algorithms
based on the Burrows-Wheeler transform are usually very fast. On the other hand,
compression is done blockwise. The text to be compressed has to be divided into
blocks of appropriate size such that the matrices M and M ′ still fit into the memory.
So the decoder has to wait until the whole next block is transmitted and cannot work
sequentially bit by bit as in arithmetic coding or Ziv-Lempel coding.

Exercises
3.4-1 Apply the Burrows-Wheeler-transform and the move-to-front code to the text
“abracadabra”.
3.4-2 Verify that the transformed string ~L and the index i of the position in the
sorted text ~E (containing the first letter of the original text to be compressed) indeed
yield enough information to reconstruct the original text.
3.4-3 Show how in our example the decoder would obtain the string
~L =”HELWEER” from the move-to-front code (1, 1, 2, 4, 2, 0, 4) and the letters
E,H,L,W,R occuring in the text. Describe the general procedure for decoding move-
to-front codes.
3.4-4 We followed here the encoding procedure presented by Burrows and Wheeler.
Can the encoder obtain the transformed string ~L even without constructing the two
matrices M and M ′?

3.5. Image compression

The idea of image compression algorithms is similar to the one behind the Burrows-
Wheeler-transform. The text to be compressed is transformed to a format which is
suitable for application of the techniques presented in the previous sections, such
as Huffman coding or arithmetic coding. There are several procedures based on the
type of image (for instance, black/white, greyscale or colour image) or compression
(lossless or lossy). We shall present the basic steps—representation of data, discrete
cosine transform, quantisation, coding—of lossy image compression procedures like
the standard JPEG.

3.5.1. Representation of data

A greyscale image is represented as a two-dimensional array X, where each entry
X(i, j) represents the intensity (or brightness) at position (i, j) of the image. Each
X(i, j) is either a signed or an unsigned k-bit integers, i. e., X(i, j) ∈ {0, . . . , 2k−1}
or X(i, j) ∈ {−2k−1, . . . , 2k−1 − 1}.
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A position in a colour image is usually represented by three greyscale values
R(i, j), G(i, j), and B(i, j) per position corresponding to the intensity of the primary
colours red, green and blue.

In order to compress the image, the three arrays (or channels) R, G, B are
first converted to the luminance/chrominance space by the Y CbCr-transform (per-
formed entry–wise)





Y
Cb

Cr



 =





0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.0813



 ·





R
G
B





Y = 0.299R + 0.587G + 0.114B is the luminance or intensity channel, where
the coefficients weighting the colours have been found empirically and represent the
best possible approximation of the intensity as perceived by the human eye. The
chrominance channels Cb = 0.564(B−Y ) and Cr = 0.713(R−Y ) contain the colour
information on red and blue as the differences from Y . The information on green is
obtained as big part in the luminance Y .

A first compression for colour images commonly is already obtained after ap-
plication of the Y CbCr-transform by removing irrelevant information. Since the
human eye is less sensitive to rapid colour changes than to changes in intensity, the
resolution of the two chrominance channels Cb and Cr is reduced by a factor of 2 in
both vertical and horizontal direction, which results after sub-sampling in arrays of
1
4 of the original size.

The arrays then are subdivided into 8×8 blocks, on which successively the actual
(lossy) data compression procedure is applied.

Let us consider the following example based on a real image, on which the steps
of compression will be illustrated. Assume that the 8 × 8 block of 8-bit unsigned
integers below is obtained as a part of an image.

f =















139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 155
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 161 160 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
161 162 161 161 163 158 158 158















3.5.2. The discrete cosine transform

Each 8 × 8 block (f(i, j))i,j=0,...,7, say, is transformed into a new block
(F (u, v))u,v=0,...,7. There are several possible transforms, usually the discrete co-

sine transform is applied, which here obeys the formula

F (u, v) =
1

4
cucv





7∑

i=0

7∑

j=0

f(i, j) · cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16



 .
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The cosine transform is applied after shifting the unsigned integers to signed
integers by subtraction of 2k−1.

DCT(f)

1 for u← 0 to 7
2 do for v ← 0 to 7
3 do F (u, v)← DCT - coefficient of matrix f
4 return F

The coefficients need not be calculated according to the formula above. They
can also be obtained via a related Fourier transform (see Exercises) such that a Fast
Fourier Transform may be applied. JPEG also supports wavelet transforms, which
may replace the discrete cosine transform here.

The discrete cosine transform can be inverted via

f(i, j) =
1

4

(
7∑

u=0

7∑

v=0

cucvF (u, v) · cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16

)

,

where cu =

{ 1√
2

for u = 0

1 for u 6= 0
and cv =

{ 1√
2

for v = 0

1 for v 6= 0
are normalisation

constants.
In our example, the transformed block F is

F =















235.6 −1.0 −12.1 −5.2 2.1 −1.7 −2.7 1.3
−22.6 −17.5 −6.2 −3.2 −2.9 −0.1 0.4 −1.2
−10.9 −9.3 −1.6 1.5 0.2 −0.9 −0.6 −0.1
−7.1 −1.9 0.2 1.5 0.9 −0.1 0.0 0.3
−0.6 −0.8 1.5 1.6 −0.1 −0.7 0.6 1.3
1.8 −0.2 1.6 −0.3 −0.8 1.5 1.0 −1.0
−1.3 −0.4 −0.3 −1.5 −0.5 1.7 1.1 −0.8
−2.6 1.6 −3.8 −1.8 1.9 1.2 −0.6 −0.4















where the entries are rounded.
The discrete cosine transform is closely related to the discrete Fourier transform

and similarly maps signals to frequencies. Removing higher frequencies results in a
less sharp image, an effect that is tolerated, such that higher frequencies are stored
with less accuracy.

Of special importance is the entry F (0, 0), which can be interpreted as a measure
for the intensity of the whole block.

3.5.3. Quantisation

The discrete cosine transform maps integers to real numbers, which in each case
have to be rounded to be representable. Of course, this rounding already results in
a loss of information. However, the transformed block F will now be much easier to
manipulate. A quantisation takes place, which maps the entries of F to integers
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by division by the corresponding entry in a luminance quantisation matrix Q. In our
example we use

Q =















16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99















.

The quantisation matrix has to be carefully chosen in order to leave the image at
highest possible quality. Quantisation is the lossy part of the compression procedure.
The idea is to remove information which should not be “visually significant”. Of
course, at this point there is a tradeoff between the compression rate and the quality
of the decoded image. So, in JPEG the quantisation table is not included into the
standard but must be specified (and hence be encoded).

Quantisation(F )

1 for i← 0 to 7
2 do for j ← 0 to 7

3 do T (i, j)← {F (i,j)
Q(i,j)}

4 return T

This quantisation transforms block F to a new block T with T (i, j) = {F (i,j)
Q(i,j)},

where {x} is the closest integer to x. This block will finally be encoded. Observe that
in the transformed block F besides the entry F (0, 0) all other entries are relatively
small numbers, which has the effect that T mainly consists of 0s .

T =















15 0 −1 0 0 0 0 0
−2 −1 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















.

Coefficient T (0, 0), in this case 15, deserves special consideration. It is called DC
term (direct current), while the other entries are denoted AC coefficients (alternate
current).

3.5.4. Coding

Matrix T will finally be encoded by a Huffman code. We shall only sketch the
procedure. First the DC term will be encoded by the difference to the DC term of
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the previously encoded block. For instance, if the previous DC term was 12, then
T (0, 0) will be encoded as −3.

After that the AC coefficients are encoded according to the zig-zag order T (0, 1),
T (1, 0), T (2, 0), T (1, 1), T (0, 2), T (0, 3), T (1, 2), etc.. In our example, this yields the
sequence 0,−2,−1,−1,−1, 0, 0,−1 followed by 55 zeros. This zig–zag order exploits
the fact that there are long runs of successive zeros. These runs will be even more
efficiently represented by application of run-length coding, i. e., we encode the
number of zeros before the next nonzero element in the sequence followed by this
element.

Integers are written in such a way that small numbers have shorter representa-
tions. This is achieved by splitting their representation into size (number of bits to
be reserved) and amplitude (the actual value). So, 0 has size 0, 1 and −1 have size
1. −3, −2, 2, and 3 have size 2, etc.

In our example this yields the sequence (2)(3) for the DC term followed by
(1, 2)(−2), (0, 1)(−1), (0, 1)(−1), (0, 1)(−1), (2, 1)(−1), and a final (0, 0) as an end-
of-block symbol indicating that only zeros follow from now on. (1, 2)(−2), for in-
stance, means that there is 1 zero followed by an element of size 2 and amplitude
−2.

These pairs are then assigned codewords from a Huffman code. There are differ-
ent Huffman codes for the pairs (run, size) and for the amplitudes. These Huffman
codes have to be specified and hence be included into the code of the image.

In the following pseudocode for the encoding of a single 8× 8-block T we shall
denote the different Huffman codes by encode-1, encode-2, encode-3.

Run-Length-Code(T )

1 c← encode-1(size(DC − T [0, 0]))
2 c← c|| encode-3(amplitude(DC − T [00]))
3 DC ← T [0, 0]
4 for l← 1 to 14
5 do for i← 0 to l
6 do if l = 1 mod 2
7 then u← i
8 else u← l − i
9 if T [u, l − u] = 0

10 then run ← run + 1
11 else c← c|| encode -2(run, size(T [u, l − u]))
12 c← c|| encode-3(amplitude(T [u, l − u])
13 run← 0
14 if run > 0
15 then encode-2(0,0)
16 return c

At the decoding end matrix T will be reconstructed. Finally, by multiplication
of each entry T (i, j) by the corresponding entry Q(i, j) from the quantisation matrix
Q we obtain an approximation F to the block F, here
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F =















240 0 −10 0 0 0 0 0
−24 −12 0 0 0 0 0 0
−14 −13 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















.

To F the inverse cosine transform is applied. This allows to decode the original
8× 8–block f of the original image – in our example as

f =















144 146 149 152 154 156 156 156
148 150 152 154 156 156 156 156
155 156 157 158 158 157 156 155
160 161 161 162 161 159 157 155
163 163 164 163 162 160 158 156
163 164 164 164 162 160 158 157
160 161 162 162 162 161 159 158
158 159 161 161 162 161 159 158















.

Exercises
3.5-1 Find size and amplitude for the representation of the integers 5, -19, and 32.

3.5-2 Write the entries of the following matrix in zig – zag order.















5 0 −2 0 0 0 0 0
3 1 0 1 0 0 0 0
0 −1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















.

How would this matrix be encoded if the difference of the DC term to the previous
one was −2?
3.5-3 In our example after quantising the sequence (2)(3), (1, 2)(−2), (0, 1)(−1),
(0, 1)(−1), (0, 1)(−1), (2, 1)(−1), (0, 0) has to be encoded. Assume the Huffman
codebooks would yield 011 to encode the difference 2 from the preceding block’s
DC, 0, 01, and 11 for the amplitudes −1, −2, and 3, respectively, and 1010, 00,
11011, and 11100 for the pairs (0, 0), (0, 1), (1, 2), and (2, 1), respectively. What
would be the bitstream to be encoded for the 8×8 block in our example? How many
bits would hence be necessary to compress this block?
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3.5-4 What would be matrices T , F and f , if we had used

Q =















8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39
12 18 28 32 41 52 57 46
25 32 39 44 57 61 60 51
36 46 48 49 56 50 57 50















.

for quantising after the cosine transform in the block of our example?
3.5-5 What would be the zig-zag-code in this case (assuming again that the DC
term would have difference −3 from the previous DC term)?

3.5-6 For any sequence (f(n))n=0,...,m−1 define a new sequence (f̂(n))n=0,...,2m−1

by

f̂(n) =

{
f(n) for n = 0, . . . , m− 1,

f(2m− 1− n) for n = m, . . . , 2m− 1 .

This sequence can be expanded to a Fourier-series via

f̂(n) =
1√
2m

2m−1∑

n=0

ĝ(u)ei 2π
2m

nu with ĝ(u) =
1√
2m

2m−1∑

n=0

f̂(u)e−i 2π
2m

nu, i =
√
−1 .

Show how the coefficients of the discrete cosine transform

F (u) = cu

m−1∑

n=0

f(n) cos(
(2n + 1)πu

2m
, cu =

{
1√
m

for u = 0
2√
m

for u 6= 0

arise from this Fourier series.

Problems

3-1 Adaptive Huffman-codes

Dynamic and adaptive Huffman-coding is based on the following property. A binary
code tree has the sibling property if each node has a sibling and if the nodes can
be listed in order of nonincreasing probabilities with each node being adjacent to its
sibling. Show that a binary prefix code is a Huffman-code exactly if the corresponding
code tree has the sibling property.
3-2 Generalisations of Kraft’s inequality

In the proof of Kraft’s inequality it is essential to order the lengths L(1) ≤ · · · ≤ L(a).
Show that the construction of a prefix code for given lengths 2, 1, 2 is not possible if
we are not allowed to order the lengths. This scenario of unordered lengths occurs
with the Shannon-Fano-Elias-code and in the theory of alphabetic codes, which are
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related to special search problems. Show that in this case a prefix code with lengths
L(1) ≤ · · · ≤ L(a) exists if and only if

∑

x∈X
2−L(x) ≤ 1

2
.

If we additionally require the prefix codes to be also suffix-free i. e., no codeword is
the end of another one, it is an open problem to show that Kraft’s inequality holds
with the 1 on the right–hand side replaced by 3/4, i. e.,

∑

x∈X
2−L(x) ≤ 3

4
.

3-3 Redundancy of Krichevsky-Trofimov-estimator

Show that using the Krichevsky-Trofimov-estimator, when parameter θ of a discrete
memoryless source is unknown, the individual redundancy of sequence xn is at most
1
2 lg n + 3 for all sequences xn and all θ ∈ {0, 1}.
3-4 Alternatives to move-to-front-codes

Find further procedures which like move-to-front-coding prepare the text for com-
pression after application of the Burrows-Wheeler-transform.

Chapter Notes

The frequency table of the letters in English texts is taken from [25]. The Huffman
coding algorithm was introduced by Huffman in [14]. A pseudocode can be found in
[8], where the Huffman coding algorithm is presented as a special Greedy algorithm.
There are also adaptive or dynamic variants of Huffman-coding, which adapt the
Huffman-code if it is no longer optimal for the actual frequency table, for the case
that the probability distribution of the source is not known in advance. The “3/4-
conjecture” on Kraft’s inequality for fix-free-codes is due to Ahlswede, Balkenhol,
and Khachatrian [1].

Arithmetic coding has been introduced by Rissanen [20] and Pasco [19]. For a
discussion of implementation questions see [17, 17, 28]. In the section on modelling
we are following the presentation of Willems, Shtarkov and Tjalkens in [27]. The
exact calculations can be found in their original paper [26] which received the Best
Paper Award of the IEEE Information Theory Society in 1996. The Krichevsky-
Trofimov-estimator had been introduced in [15].

We presented the two original algorithms LZ77 and LZ78 [29, 30] due to Lempel
and Ziv. Many variants, modifications and extensions have been developed since
that – concerning the handling of the dictionary, the pointers, the behaviour after
the dictionary is complete, etc. For a description, see, for instance, [3] or [4]. Most of
the prominent tools for data compression are variations of Ziv-Lempel-coding. For
example “zip” and “gzip” are based on LZ77 and a variant of LZ78 is used by the
program “compress”.

The Burrows-Wheeler transform was introduced in the technical report [5]. It
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became popular in the sequel, especially because of the Unix compression tool “bzip”
based on the Burrows-Wheeler-transform, which outperformed most dictionary—
based tools on several benchmark files. Also it avoids arithmetic coding, for which
patent rights have to be taken into consideration. Further investigations on the
Burrows-Wheeler-transform have been carried out, for instance in [2, 11, 16].

We only sketched the basics behind lossy image compression, especially the
preparation of the data for application of techniques as Huffman coding. For a de-
tailed discussion we refer to [23], where also the new JPEG2000 standard is described.
Our example is taken from [24].

JPEG—short for Joint Photographic Experts Group—is very flexible. For in-
stance, it also supports lossless data compression. All the topics presented in the
section on image compression are not unique. There are models involving more basic
colours and further transforms besides the Y CbCr-transform (for which even differ-
ent scaling factors for the chrominance channels were used, the formula presented
here is from [23]). The cosine transform may be replaced by another operation like
a wavelet transform. Further, there is freedom to choose the quantisation matrix,
responsible for the quality of the compressed image, and the Huffman code. On the
other hand, this has the effect that these parameters have to be explicitly specified
and hence are part of the coded image.

The ideas behind procedures for video and sound compression are rather similar
to those for image compression. In principal, they follow the same steps. The amount
of data in these cases, however, is much bigger. Again information is lost by remov-
ing irrelevant information not realizable by the human eye or ear (for instance by
psychoacoustic models) and by quantising, where the quality should not be reduced
significantly. More refined quantising methods are applied in these cases.

Most information on data compression algorithms can be found in literature
on Information Theory, for instance [9, 12], since the analysis of the achievable
compression rates requires knowledge of source coding theory. Recently, there have
appeared several books on data compression, for instance [4, 13, 18, 21, 22], to
which we refer to further reading. The benchmark files of the Calgary Corpus and
the Canterbury Corpus are available under [6] or [7].

The book of I. Csiszár and J. Körner [10] analyses different aspects of information
theory including the problems of data compression too.
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YCbCr-transform, 162

Z
zig-zag-code, 167exe
Ziv-Lempel-coding, 154
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This index uses the following conventions. If we know the full name of a cited person, then we
print it. If the cited person is not living, and we know the correct data, then we print also the year
of her/his birth and death.

A
Ahlswede, Rudolf, 168, 170
Althöfer, Ingo, 170

B
Balkenhol, Bernhard, 168, 170
Bell, T. C., 170
Burrows, Michael, 133, 170

C
Cai, Ning, 170
Cleary, J. G., 170, 171
Cormen, Thomas H., 168, 170
Cover, Thomas M., 170

CS
Csiszár, Imre, 169, 170

D
Dueck, Gunter, 170

E
Effros, Michelle, 170
Elias, Peter, 139

F
Fano, Robert M., 139

G
Gailly, J. L., 170

H
Han, Te Sun, 170
Hankerson, D., 170
Harris, G. A., 170
Huffman, David A. (1925–1999), 140, 168,

170

J
Johnson, P. D., 170

K
Körner, János, 169, 170
Khachatrian, Levon (1954–2002), 168, 170
Kobayashi, Kingo, 170
Krichevsky, R. E., 148, 170
Kulkarni, S. R., 170
Kurtz, Stefan, 170

L
Langdon, G. G., Jr., 170
Leiserson, Charles E., 168, 170
Lempel, Abraham, 133, 168, 171

M
Marcelin, M. W., 171

N
Neal, R. M., 171
Nelson, Mark, 170

P
Pasco, R., 168, 171
Pinsker, Mark S. (1925–2003), 170

R
Rissanen, J. J., 168, 171
Rivest, Ronald Lewis, 168, 170

S
Salomon, D., 171
Sárközy, András, 170
Sayood, K., 171
Shannon, Claude Elwood (1916–2001), 139
Shtarkov, Yuri M., 143, 168, 171
Stein, Clifford, 170
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T
Taubman, D. S., 171
Thomas, J. A., 170
Tjalkens, Tjalling J., 143, 168, 171
Trofimov, V. K., 148, 170

V
Verdú, Sergio, 170
Visweswariah, K., 170

W
Wallace, G. K., 171
Wegener, Ingo (1950–2008), 170
Welsh, Dominic, 171
Wheeler, David J., 133, 170
Willems, Frans M. J., 143, 168, 171
Witten, I. H., 170, 171

Z
Zhang, Zhen, 170
Ziv, Jacob, 133, 168, 171
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