
Contents

2. Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.1. The structure of compilers . . . . . . . . . . . . . . . . . . . . . . . 81
2.2. Lexical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2.1. The automaton of the scanner . . . . . . . . . . . . . . . . . 85
2.2.2. Special problems . . . . . . . . . . . . . . . . . . . . . . . . 89

2.3. Syntactic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.3.1. LL(1) parser . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.3.2. LR(1) parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Name Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



2. Compilers

When a programmer writes down a solution of her problems, she writes a program
on a special programming language. These programming languages are very different
from the proper languages of computers, from the machine languages. Therefore
we have to produce the executable forms of programs created by the programmer. We
need a software or hardware tool, that translates the source language program –
written on a high level programming language – to the target language program,
a lower level programming language, mostly to a machine code program.

There are two fundamental methods to execute a program written on higher
level language. The first is using an interpreter. In this case, the generated machine
code is not saved but executed immediately. The interpreter is considered as a special
computer, whose machine code is the high level language. Essentially, when we use an
interpreter, then we create a two-level machine; its lower level is the real computer, on
which the higher level, the interpreter, is built. The higher level is usually realized
by a computer program, but, for some programming languages, there are special
hardware interpreter machines.

The second method is using a compiler program. The difference of this method
from the first is that here the result of translation is not executed, but it is saved in
an intermediate file called target program.

The target program may be executed later, and the result of the program is
received only then. In this case, in contrast with interpreters, the times of translation
and execution are distinguishable.

In the respect of translation, the two translational methods are identical, since
the interpreter and the compiler both generate target programs. For this reason
we speak about compilers only. We will deal the these translator programs, called
compilers (Figure 2.1).

translator
source language

program
target language

program−→ −→

Figure 2.1 The translator.
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Our task is to study the algorithms of compilers. This chapter will care for
the translators of high level imperative programming languages; the translational
methods of logical or functional languages will not be investigated.

First the structure of compilers will be given. Then we will deal with scanners,
that is, lexical analysers. In the topic of parsers – syntactic analysers –, the two most
successful methods will be studied: the LL(1) and the LALR(1) parsing methods.
The advanced methods of semantic analysis use O-ATG grammars, and the task of
code generation is also written by this type of grammars. In this book these topics
are not considered, nor we will study such important and interesting problems as
symbol table handling, error repairing or code optimising. The reader can find very
new, modern and efficient methods for these methods in the bibliography.

2.1. The structure of compilers

A compiler translates the source language program (in short, source program) into
a target language program (in short, target program). Moreover, it creates a list by
which the programmer can check her private program. This list contains the detected
errors, too.

Using the notation program (input)(output) the compiler can be written by

compiler (source program)(target program, list) .

In the next, the structure of compilers are studied, and the tasks of program elements
are described, using the previous notation.

The first program of a compiler transforms the source language program into
character stream that is easy to handle. This program is the source handler.

source handler (source program)(character stream).

The form of the source program depends from the operating system. The source
handler reads the file of source program using a system, called operating system,
and omits the characters signed the end of lines, since these characters have no
importance in the next steps of compilation. This modified, “poured” character
stream will be the input data of the next steps.

The list created by the compiler has to contain the original source language
program written by the programmer, instead of this modified character stream.
Hence we define a list handler program,

list handler (source program, errors)(list) ,

which creates the list according to the file form of the operating system, and puts
this list on a secondary memory.

It is practical to join the source handler and the list handler programs, since
they have same input files. This program is the source handler.

source handler (source program, errors)(character stream, list) .

The target program is created by the compiler from the generated target code. It is
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Figure 2.2 The structure of compilers.

located on a secondary memory, too, usually in a transferable binary form. Of course
this form depends on the operating system. This task is done by the code handler
program.

code handler (target code)(target program) .

Using the above programs, the structure of a compiler is the following (Figure
2.2):

source handler (source program, errors) (character string, list),
?compiler? (character stream)(target code, errors),
code handler (target code)(target program) .

This decomposition is not a sequence: the three program elements are executed
not sequentially. The decomposition consists of three independent working units.
Their connections are indicated by their inputs and outputs.

In the next we do not deal with the handlers because of their dependentness
on computers, operating system and peripherals – although the outer form, the
connection with the user and the availability of the compiler are determined mainly
by these programs.

The task of the program ?compiler? is the translation. It consists of two main
subtasks: analysing the input character stream, and to synthetizing the target code.

The first problem of the analysis is to determine the connected characters in
the character stream. These are the symbolic items, e.g., the constants, names of
variables, keywords, operators. This is done by the lexical analyser , in short,
scanner. >From the character stream the scanner makes a series of symbols and
during this task it detects lexical errors.

scanner (character stream)(series of symbols, lexical errors) .

This series of symbols is the input of the syntactic analyser, in short, parser.
Its task is to check the syntactic structure of the program. This process is near
to the checking the verb, the subject, predicates and attributes of a sentence by a
language teacher in a language lesson. The errors detected during this analysis are
the syntactic errors. The result of the syntactic analysis is the syntax tree of the
program, or some similar equivalent structure.

parser (series of symbols)(syntactically analysed program, syntactic errors) .
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Figure 2.3 The programs of the analysis and the synthesis.

The third program of the analysis is the semantic analyser. Its task is to check
the static semantics. For example, when the semantic analyser checks declarations
and the types of variables in the expression a + b, it verifies whether the variables
a and b are declared, do they are of the same type, do they have values? The errors
detected by this program are the semantic errors.

semantic analyser (syntactically analysed program)(analysed program, semantic
errors) .

The output of the semantic analyser is the input of the programs of synthesis.
The first step of the synthesis is the code generation, that is made by the code
generator:

code generator (analysed program)(target code).

The target code usually depends on the computer and the operating system. It is
usually an assembly language program or machine code. The next step of synthesis
is the code optimisation:

code optimiser (target code)(target code).

The code optimiser transforms the target code on such a way that the new code is
better in many respect, for example running time or size.

As it follows from the considerations above, a compiler consists of the next
components (the structure of the ?compiler? program is in the Figure 2.3):

source handler (source program, errors)(character stream, list),
scanner (character stream)(series of symbols, lexical errors),
parser (series of symbols)(syntactically analysed program, syntactic er-

rors),
semantic analyser (syntactically analysed program)(analysed program,
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semantic errors),
code generator (analysed program)(target code),
code optimiser (target code)(target code),
code handler(target code)(target program).

The algorithm of the part of the compiler, that performs analysis and synthesis,
is the next:

?Compiler?

1 determine the symbolic items in the text of source program
2 check the syntactic correctness of the series of symbols
3 check the semantic correctness of the series of symbols
4 generate the target code
5 optimise the target code

The objects written in the first two points will be analysed in the next sections.

Exercises
2.1-1 Using the above notations, give the structure of interpreters.
2.1-2 Take a programming language, and write program details in which there are
lexical, syntactic and semantic errors.gyakindexerror!lexical
2.1-3 Give respects in which the code optimiser can create better target code than
the original.

2.2. Lexical analysis

The source-handler transforms the source program into a character stream. The
main task of lexical analyser (scanner) is recognising the symbolic units in this
character stream. These symbolic units are named symbols.

Unfortunately, in different programming languages the same symbolic units con-
sist of different character streams, and different symbolic units consist of the same
character streams. For example, there is a programming language in which the 1.

and .10 characters mean real numbers. If we concatenate these symbols, then the
result is the 1..10 character stream. The fact, that a sign of an algebraic function
is missing between the two numbers, will be detected by the next analyser, doing
syntactic analysis. However, there are programming languages in which this charac-
ter stream is decomposited into three components: 1 and 10 are the lower and upper
limits of an interval type variable.

The lexical analyser determines not only the characters of a symbol, but the
attributes derived from the surrounded text. Such attributes are, e.g., the type and
value of a symbol.

The scanner assigns codes to the symbols, same codes to the same sort of sym-
bols. For example the code of all integer numbers is the same; another unique code
is assigned to variables.

The lexical analyser transforms the character stream into the series of symbol
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codes and the attributes of a symbols are written in this series, immediately after
the code of the symbol concerned.

The output information of the lexical analyser is not
”̨ “

readable”: it is usually
a series of binary codes. We note that, in the viewpoint of the compiler, from this
step of the compilation it is no matter from which characters were made the symbol,
i.e. the code of the if symbol was made form English if or Hungarian ha or German
wenn characters. Therefore, for a program language using English keywords, it is
easy to construct another program language using keywords of another language. In
the compiler of this new program language the lexical analysis would be modified
only, the other parts of the compiler are unchanged.

2.2.1. The automaton of the scanner

The exact definition of symbolic units would be given by regular grammar, regular
expressions or deterministic finite automaton. The theories of regular grammars,
regular expressions and deterministic finite automata were studied in previous chap-
ters.

Practically the lexical analyser may be a part of the syntactic analysis. The main
reason to distinguish these analysers is that a lexical analyser made from regular
grammar is much more simpler than a lexical analyser made from a context-free
grammar. Context-free grammars are used to create syntactic analysers.

One of the most popular methods to create the lexical analyser is the following:

1. describe symbolic units in the language of regular expressions, and from this
information construct the deterministic finite automaton which is equivalent to
these regular expressions,

2. implement this deterministic finite automaton.

We note that, in writing of symbols regular expressions are used, because they are
more comfortable and readable then regular grammars. There are standard programs
as the lex of UNIX systems, that generate a complete syntactical analyser from
regular expressions. Moreover, there are generator programs that give the automaton
of scanner, too.

A very trivial implementation of the deterministic finite automaton uses mul-
tidirectional case instructions. The conditions of the branches are the characters
of state transitions, and the instructions of a branch represent the new state the
automaton reaches when it carries out the given state transition.

The main principle of the lexical analyser is building a symbol from the longest
series of symbols. For example the string ABC is a three-letters symbol, rather than
three one-letter symbols. This means that the alternative instructions of the case
branch read characters as long as they are parts of a constructed symbol.

Functions can belong to the final states of the automaton. For example, the
function converts constant symbols into an inner binary forms of constants, or the
function writes identifiers to the symbol table.

The input stream of the lexical analyser contains tabulators and space characters,
since the source-handler expunges the carriage return and line feed characters only.



86 2. Compilers
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Figure 2.4 The positive integer and real number.

In most programming languages it is possible to write a lot of spaces or tabulators
between symbols. In the point of view of compilers these symbols have no importance
after their recognition, hence they have the name white spaces.

Expunging white spaces is the task of the lexical analyser. The description of
the white space is the following regular expression:

(space | tab)∗ ,

where space and the tab tabulator are the characters which build the white space
symbols and | is the symbol for the or function. No actions have to make with
this white space symbols, the scanner does not pass these symbols to the syntactic
analyser.

Some examples for regular expression:

Example 2.1 Introduce the following notations: Let D be an arbitrary digit, and let L be
an arbitrary letter,

D ∈ {0, 1, . . . , 9}, and L ∈ {a, b, . . . , z, A, B, . . . , Z} ,

the not-visible characters are denoted by their short names, and let ε be the name of the
empty character stream. Not(a) denotes a character distinct from a. The regular expressions
are:

1. real number: (+ | − | ε)D+.D+(e(+ | − | ε)D+ | ε),

2. positive integer and real number: (D+(ε | .)) | (D∗.D+),

3. identifier: (L | _ )(L | D | _ )∗,

4. comment: - -(Not(eol))∗eol,

5. comment terminated by ## : ##((# | ε)Not(#))∗##,

6. string of characters: ”(Not(”) | ” ”)∗ ”.

Deterministic finite automata constructed from regular expressions 2 and 3 are in
Figures 2.4 and 2.5.

The task of lexical analyser is to determine the text of symbols, but not all the
characters of a regular expression belong to the symbol. As is in the 6th example, the
first and the last " characters do not belong to the symbol. To unravel this problem,
a buffer is created for the scanner. After recognising of a symbol, the characters
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L|_
L|D|_

Figure 2.5 The identifier.

_ _ eol

Not(eol)

Figure 2.6 A comment.

”

T (Not(”))

”T (”)

Figure 2.7 The character string.

of these symbols will be in the buffer. Now the deterministic finite automaton is
supplemented by a T transfer function, where T (a) means that the character a is
inserted into the buffer.

Example 2.2 The 4th and 6th regular expressions of the example 2.1 are supplemented by
the T function, automata for these expressions are in Figures 2.6 and 2.7. The automaton
of the 4th regular expression has none T function, since it recognises comments. The au-
tomaton of the 6th regular expression recognises This is a "string" from the character
string "This is a ""string""".

Now we write the algorithm of the lexical analyser given by deterministic finite
automaton. (The state of the set of one element will be denoted by the only element
of the set).

Let A = (Q, Σ, δ, q0, F ) be the deterministic finite automaton, which is the scan-
ner. We augment the alphabet Σ with a new notion: let others be all the characters
not in Σ. Accordingly, we modify the transition function δ:

δ′(q, a) =

{

δ(q, a), if a 6= others ,
∅, otherwise .

The algorithm of parsing, using the augmented automaton A′, follows:
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Lex-analyse(x#, A′)

1 q ← q0, a← first character of x
2 s′ ← analyzing
3 while a 6= # and s′ = analyzing
4 do if δ′(q, a) 6= ∅
5 then q ← δ′(q, a)
6 a← next character of x
7 else s′ ← error
8 if s′ = analyzing and q ∈ F
9 then s′ ← O.K.

10 else s′ ← ERROR
11 return s′, a

The algorithm has two parameters: the first one is the input character string
terminated by #, the second one is the automaton of the scanner. In the line 1
the state of the scanner is set to q0, to the start state of the automaton, and the
first character of the input string is determined. The variable s′ indicates that the
algorithm is analysing the input string, the text analysing is set in this variable in
the line 2. In the line 5 a state-transition is executed. It can be seen that the above
augmentation is needed to terminate in case of unexpected, invalid character. In line
8–10 the O.K. means that the analysed character string is correct, and the ERROR
signs that a lexical error was detected. In the case of successful termination the
variable a contains the # character, at erroneous termination it contains the invalid
character.

We note that the algorithm Lex-Analyse recognise one symbol only, and then
it is terminated. The program written in a programming language consists of a lot
of symbols, hence after recognising a symbol, the algorithm have to be continued by
detecting the next symbol. The work of the analyser is restarted at the state of the
automaton. We propose the full algorithm of the lexical analyser as an exercise (see
Exercise 2-1).

Example 2.3 The automaton of the identifier in the point 3 of example 2.1 is in Figure
2.5. The start state is 0, and the final state is 1. The transition function of the automaton
follows:

δ L _ D

0 1 1 ∅

1 1 1 1

The augmented transition function of the automaton:

δ′ L _ D others

0 1 1 ∅ ∅

1 1 1 1 ∅
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The algorithm Lex-Analyse gives the series of states 0111111 and sign O.K. to the
input string abc123#, it gives sign ERROR to the input sting 9abc#, and the series 0111
and sign ERROR to the input string abcχ123.

2.2.2. Special problems

In this subsection we investigate the problems emerged during running of lexical
analyser, and supply solutions for these problems.

Keywords, standard words All of programming languages allows identifiers
having special names and predefined meanings. They are the keywords. Keywords
are used only in their original notions. However there are identifiers which also have
predefined meaning but they are alterable in the programs. These words are called
standard words.

The number of keywords and standard words in programming languages are
vary. For example, there is a program language, in which three keywords are used
for the zero value: zero, zeros és zeroes.

Now we investigate how does the lexical analyser recognise keywords and stan-
dard words, and how does it distinguish them from identifiers created by the pro-
grammers.

The usage of a standard word distinctly from its original meaning renders extra
difficulty, not only to the compilation process but also to the readability of the
program, such as in the next example:

if if then else = then;

or if we declare procedures which have names begin and end:

begin

begin; begin end; end; begin end;

end;

Recognition of keywords and standard words is a simple task if they are written
using special type characters (for example bold characters), or they are between
special prefix and postfix characters (for example between apostrophes).

We give two methods to analyse keywords.

1. All keywords is written as a regular expression, and the implementation of the au-
tomaton created to this expression is prepared. The disadvantage of this method
is the size of the analyser program. It will be large even if the description of key-
words, whose first letter are the same, are contracted.

2. Keywords are stored in a special keyword-table. The words can be determined
in the character stream by a general identifier- recogniser. Then, by a simple
search algorithm, we check whether this word is in the keyword- table. If this
word is in the table then it is a keyword. Otherwise it is an identifier defined
by the user. This method is very simple, but the efficiency of search depends on
the structure of keyword-table and on the algorithm of search. A well-selected
mapping function and an adequate keyword-table should be very effective.
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If it is possible to write standard words in the programming language, then the
lexical analyser recognises the standard words using one of the above methods. But
the meaning of this standard word depends of its context. To decide, whether it has
its original meaning or it was overdefined by the programmer, is the task of syntactic
analyser.

Look ahead. Since the lexical analyser creates a symbol from the longest char-
acter stream, the lexical analyser has to look ahead one or more characters for the
allocation of the right-end of a symbol There is a classical example for this problem,
the next two FORTRAN statements:

DO 10 I = 1.1000

DO 10 I = 1,1000

In the FORTRAN programming language space-characters are not important char-
acters, they do not play an important part, hence the character between 1 and 1000

decides that the statement is a DO cycle statement or it is an assignment statement
for the DO10I identifier.

To sign the right end of the symbol, we introduce the symbol / into the descrip-
tion of regular expressions. Its name is lookahead operator. Using this symbol the
description of the above DO keyword is the next:

DO / (letter | digit)∗ = (letter | digit)∗,

This definition means that the lexical analyser says that the first two D and O letters
are the DO keyword, if looking ahead, after the O letter, there are letters or digits,
then there is an equal sign, and after this sign there are letters or digits again,
and finally, there is a

”̨ “
, ” character. The lookahead operator implies that the

lexical analyser has to look ahead after the DO characters. We remark that using this
lookahead method the lexical analyser recognises the DO keyword even if there is an
error in the character stream, such as in the DO2A=3B, character stream, but in a
correct assignment statement it does not detect the DO keyword.

In the next example we concern for positive integers. The definition of integer
numbers is a prefix of the definition of the real numbers, and the definition of real
numbers is a prefix of the definition of real numbers containing explicit power-part.

positive integer : D+

positive real : D+.D+

és D+.D+e(+ | − | ε)D+

The automaton for all of these three expressions is the automaton of the longest
character stream, the real number containing explicit power-part.

The problem of the lookahead symbols is resolved using the following algorithm.
Put the character into a buffer, and put an auxiliary information aside this character.
This information is

”̨ “
it is invalid”. if the character string, using this red character,

is not correct; otherwise we put the type of the symbol into here. If the automaton
is in a final-state, then the automaton recognises a real number with explicit power-
part. If the automaton is in an internal state, and there is no possibility to read a



2.2. Lexical analysis 91

next character, then the longest character stream which has valid information is the
recognised symbol.

Example 2.4 Consider the 12.3e+f# character stream, where the character # is the endsign
of the analysed text. If in this character stream there was a positive integer number in the
place of character f, then this character stream should be a real number. The content of
the puffer of lexical analyser:

1 integer number

12 integer number

12. invalid

12.3 real number

12.3e invalid

12.3e+ invalid

12.3e+f invalid

12.3e+f#

The recognised symbol is the 12.3 real number. The lexical analysing is continued at the
text e+f.

The number of lookahead-characters may be determined from the definition of
the program language. In the modern languages this number is at most two.

The symbol table. There are programming languages, for example C, in which
small letters and capital letters are different. In this case the lexical analyser uses
characters of all symbols without modification. Otherwise the lexical analyser con-
verts all characters to their small letter form or all characters to capital letter form.
It is proposed to execute this transformation in the source handler program.

At the case of simpler programming languages the lexical analyser writes the
characters of the detected symbol into the symbol table, if this symbol is not there.
After writing up, or if this symbol has been in the symbol table already, the lexical
analyser returns the table address of this symbol, and writes this information into
its output. These data will be important at semantic analysis and code generation.

Directives. In programming languages the directives serve to control the com-
piler. The lexical analyser identifies directives and recognises their operands, and
usually there are further tasks with these directives.

If the directive is the if of the conditional compilation, then the lexical analyser
has to detect all of parameters of this condition, and it has to evaluate the value
of the branch. If this value is false, then it has to omit the next lines until the
else or endif directive. It means that the lexical analyser performs syntactic and
semantic checking, and creates code-style information. This task is more complicate
if the programming language gives possibility to write nested conditions.

Other types of directives are the substitution of macros and including files into
the source text. These tasks are far away from the original task of the lexical analyser.

The usual way to solve these problems is the following. The compiler executes
a pre-processing program, and this program performs all of the tasks written by
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directives.

Exercises
2.2-1 Give a regular expression to the comments of a programming language. In
this language the delimiters of comments are /∗ and ∗/, and inside of a comment
may occurs / and ∗ characters, but ∗/ is forbidden.
2.2-2 Modify the result of the previous question if it is supposed that the program-
ming language has possibility to write nested comments.
2.2-3 Give a regular expression for positive integer numbers, if the pre- and post-
zero characters are prohibited. Give a deterministic finite automaton for this regular
expression.
2.2-4 Write a program, which re-creates the original source program from the out-
put of lexical analyser. Pay attention for nice an correct positions of the re-created
character streams.

2.3. Syntactic analysis

The perfect definition of a programming language includes the definition of its syntax
and semantics.

The syntax of the programming languages cannot be written by context free
grammars. It is possible by using context dependent grammars, two-level grammars
or attribute grammars. For these grammars there are not efficient parsing methods,
hence the description of a language consists of two parts. The main part of the
syntax is given using context free grammars, and for the remaining part a context
dependent or an attribute grammar is applied. For example, the description of the
program structure or the description of the statement structure belongs to the first
part, and the type checking, the scope of variables or the correspondence of formal
and actual parameters belong to the second part.

The checking of properties written by context free grammars is called syntactic
analysis or parsing. Properties that cannot be written by context free grammars
are called form the static semantics. These properties are checked by the semantic
analyser.

The conventional semantics has the name run-time semantics or dynamic se-
mantics. The dynamic semantics can be given by verbal methods or some inter-
preter methods, where the operation of the program is given by the series of state-
alterations of the interpreter and its environment.

We deal with context free grammars, and in this section we will use extended
grammars for the syntactic analysis. We investigate on methods of checking of prop-
erties which are written by context free grammars. First we give basic notions of the
syntactic analysis, then the parsing algorithms will be studied.

Definition 2.1 Let G = (N, T, P, S) be a grammar. If S
∗

=⇒ α and α ∈ (N ∪T )∗

then α is a sentential form. If S
∗

=⇒ x and x ∈ T ∗ then x is a sentence of the
language defined by the grammar.

The sentence has an important role in parsing. The program written by a pro-
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grammer is a series of terminal symbols, and this series is a sentence if it is correct,
that is, it has not syntactic errors.

Definition 2.2 Let G = (N, T, P, S) be a grammar and α = α1βα2 is a sentential
form (α, α1, α2, β ∈ (N ∪T )∗). We say that β is a phrase of α, if there is a symbol

A ∈ N , which S
∗

=⇒ α1Aα2 and A
∗

=⇒ β. We say that α is a simple phrase of β,
if A→ β ∈ P .

We note that every sentence is phrase. The leftmost simple phrase has an im-
portant role in parsing; it has its own name.

Definition 2.3 The leftmost simple phase of a sentence is the handle.

The leaves of the syntax tree of a sentence are terminal symbols, other points
of the tree are nonterminal symbols, and the root symbol of the tree is the start
symbol of the grammar.

In an ambiguous grammar there is at least one sentence, which has several syntax
trees. It means that this sentence has more than one analysis, and therefore there are
several target programs for this sentence. This ambiguity raises a lot of problems,
therefore the compilers translate languages generated by unambiguous grammars
only.

We suppose that the grammar G has properties as follows:

1. the grammar is cycle free, that is, it has not series of derivations rules A
+

=⇒ A
(A ∈ N),

2. the grammar is reduced, that is, there are not
”̨ “

unused symbols” in the gram-
mar, all of nonterminals happen in a derivation, and from all nonterminals we
can derive a part of a sentence. This last property means that for all A ∈ N

it is true that S
∗

=⇒ αAβ
∗

=⇒ αyβ
∗

=⇒ xyz, where A
∗

=⇒ y and |y| > 0
(α, β ∈ (N ∪ T )∗, x, y, z ∈ T ∗).

As it has shown, the lexical analyser translates the program written by a pro-
grammer into series of terminal symbols, and this series is the input of syntactic
analyser. The task of syntactic analyser is to decide if this series is a sentence of the
grammar or it is not. To achieve this goal, the parser creates the syntax tree of the
series of symbols. From the known start symbol and the leaves of the syntax tree
the parser creates all vertices and edges of the tree, that is, it creates a derivation
of the program.

If this is possible, then we say that the program is an element of the language.
It means that the program is syntactically correct.

Hence forward we will deal with left to right parsing methods. These methods
read the symbols of the programs left to right. All of the real compilers use this
method.

To create the inner part of the syntax tree there are several methods. One of
these methods builds the syntax tree from its start symbol S. This method is called
top-down method. If the parser goes from the leaves to the symbol S, then it uses
the bottom-up parsing method.

We deal with top-down parsing methods in Subsection 2.3.1. We investigate
bottom-up parsers in Subsection 2.3.2; now these methods are used in real compilers.
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2.3.1. LL(1) parser

If we analyse from top to down then we start with the start symbol. This symbol is
the root of syntax tree; we attempt to construct the syntax tree. Our goal is that
the leaves of tree are the terminal symbols.

First we review the notions that are necessary in the top-down parsing. Then
the LL(1) table methods and the recursive descent method will be analysed.

LL(k) grammars Our methods build the syntax tree top-down and read symbols
of the program left to right. For this end we try to create terminals on the left side
of sentential forms.

Definition 2.4 If A → α ∈ P then the leftmost direct derivation of the sen-
tential form xAβ (x ∈ T ∗, α, β ∈ (N ∪ T )∗) is xαβ, and

xAβ =⇒
leftmost

xαβ .

Definition 2.5 If all of direct derivations in S
∗

=⇒ x (x ∈ T ∗) are leftmost, then
this derivation is said to be leftmost derivation, and

S
∗

=⇒
leftmost

x .

In a leftmost derivation terminal symbols appear at the left side of the sentential
forms. Therefore we use leftmost derivations in all of top-down parsing methods.
Hence if we deal with top-down methods, we do not write the text “leftmost” at the
arrows.

One might as well say that we create all possible syntax trees. Reading leaves
from left to right, we take sentences of the language. Then we compare these sen-
tences with the parseable text and if a sentence is same as the parseable text, then we
can read the steps of parsing from the syntax tree which is belongs to this sentence.
But this method is not practical; generally it is even impossible to apply.

A good idea is the following. We start at the start symbol of the grammar, and
using leftmost derivations we try to create the text of the program. If we use a not
suitable derivation at one of steps of parsing, then we find that, at the next step,
we can not apply a proper derivation. At this case such terminal symbols are at the
left side of the sentential form, that are not same as in our parseable text.

For the leftmost terminal symbols we state the theorem as follows.

Theorem 2.6 If S
∗

=⇒ xα
∗

=⇒ yz (α ∈ (N ∪ T )∗, x, y, z ∈ T ∗) és |x| = |y|, then
x = y .

The proof of this theorem is trivial. It is not possible to change the leftmost ter-
minal symbols x of sentential forms using derivation rules of a context free grammar.

This theorem is used during the building of syntax tree, to check that the leftmost
terminals of the tree are same as the leftmost symbols of the parseable text. If they
are different then we created wrong directions with this syntax tree. At this case we
have to make a backtrack, and we have to apply an other derivation rule. If it is
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impossible (since for example there are no more derivation rules) then we have to
apply a backtrack once again.

General top-down methods are realized by using backtrack algorithms, but these
backtrack steps make the parser very slow. Therefore we will deal only with gram-
mars such that have parsing methods without backtracks.

The main properties of LL(k) grammars are the following. If, by creating the

leftmost derivation S
∗

=⇒ wx (w, x ∈ T ∗), we obtain the sentential form S
∗

=⇒ wAβ
(A ∈ N, β ∈ (N ∪ T )∗) at some step of this derivation, and our goal is to achieve

Aβ
∗

=⇒ x, then the next step of the derivation for nonterminal A is determinable
unambiguously from the first k symbols of x.

To look ahead k symbols we define the function Firstk.

Definition 2.7 Let Firstk(α) (k ≥ 0, α ∈ (N ∪ T )∗) be the set as follows.

Firstk(α) =

{x | α
∗

=⇒ xβ and |x| = k} ∪ and |x| = k} ∪ {x | α
∗

=⇒ x and |x| < k}

(x ∈ T ∗, β ∈ (N ∪ T )∗) .

The set Firstk(x) consists of the first k symbols of x; for |x| < k, it consists the

full x. If α
∗

=⇒ ε, then ε ∈ Firstk(α).

Definition 2.8 The grammar G is a LL(k) grammar (k ≥ 0), if for derivations

S
∗

=⇒ wAβ =⇒ wα1β
∗

=⇒ wx ,

S
∗

=⇒ wAβ =⇒ wα2β
∗

=⇒ wy

(A ∈ N, x, y, w ∈ T ∗, α1, α2, β ∈ (N ∪ T )∗) the equality

Firstk(x) = Firstk(y)

implies
α1 = α2 .

Using this definition, if a grammar is a LL(k) grammar then the k symbol after
the parsed x determine the next derivation rule unambiguously (Figure 2.8).

One can see from this definition that if a grammar is an LL(k0) grammar then
for all k > k0 it is also an LL(k) grammar. If we speak about LL(k) grammar then
we also mean that k is the least number such that the properties of the definition
are true.

Example 2.5 The next grammar is a LL(1) grammar. Let G = ({A, S}, {a, b}, P, S) be a
grammar whose derivation rules are:

S → AS | ε
A → aA | b

We have to use the derivation S → AS for the start symbol S if the next symbol of the
parseable text is a or b. We use the derivation S → ε if the next symbol is the mark #.
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Figure 2.8 LL(k) grammar.

Example 2.6 The next grammar is a LL(2) grammar. Let G = ({A, S}, {a, b}, P, S) be a
grammar whose the derivation rules are:

S → abA | ε
A → Saa | b

One can see that at the last step of derivations

S =⇒ abA =⇒ abSaa
S→abA

=⇒ ababAaa

and
S =⇒ abA =⇒ abSaa

S→ε
=⇒ abaa

if we look ahead one symbol, then in both derivations we obtain the symbol a. The proper
rule for symbol S is determined to look ahead two symbols (ab or aa).

There are context free grammars such that are not LL(k) grammars. For example
the next grammar is not LL(k) grammar for any k.

Example 2.7 Let G = ({A, B, S}, {a, b, c}, P, S) be a grammar whose the derivation rules
are:

S → A | B
A → aAb | ab
B → aBc | ac

L(G) consists of sentences aibi és aici (i ≥ 1). If we analyse the sentence ak+1bk+1, then
at the first step we can not decide by looking ahead k symbols whether we have to use the
derivation S → A or S → B, since for all k Firstk(akbk) = Firstk(akck) = ak.

By the definition of the LL(k) grammar, if we get the sentential form wAβ using
leftmost derivations, then the next k symbol determines the next rule for symbol A.
This is stated in the next theorem.

Theorem 2.9 Grammar G is a LL(k) grammar iff

S
∗

=⇒ wAβ, és A→ γ | δ (γ 6= δ, w ∈ T ∗, A ∈ N, β, γ, δ ∈ (N ∪ T )∗)

implies
Firstk(γβ) ∩ Firstk(δβ) = ∅ .
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If there is a A → ε rule in the grammar, then the set Firstk consists the k
length prefixes of terminal series generated from β. It implies that, for deciding the
property LL(k), we have to check not only the derivation rules, but also the infinite
derivations.

We can give good methods, that are used in the practice, for LL(1) grammars
only. We define the follower-series, which follow a symbol or series of symbols.

Definition 2.10 Followk(β) = {x | S
∗

=⇒ αβγ and x ∈ Firstk(γ)}, and if ε ∈
Followk(β), then Followk(β) = Followk(β)\{ε}∪{#} (α, β, γ ∈ (N ∪T )∗, x ∈ T ∗)
.

The second part of the definition is necessary because if there are no symbols
after the β in the derivation αβγ, that is γ = ε, then the next symbol after β is the
mark # only.

Follow1(A) (A ∈ N) consists of terminal symbols that can be immediately after
the symbol A in the derivation

S
∗

=⇒ αAγ
∗

=⇒ αAw (α, γ ∈ (N ∪ T )∗, w ∈ T ∗).

Theorem 2.11 The grammar G is a LL(1) grammar iff, for all nonterminal A and
for all derivation rules A→ γ | δ,

First1(γFollow1(A)) ∩ First1(δFollow1(A)) = ∅ .

In this theorem the expression First1(γFollow1(A)) means that we have to con-
catenate to γ the elements of set Follow1(A) separately, and for all elements of this
new set we have to apply the function First1.

It is evident that Theorem 2.11 is suitable to decide whether a grammar is LL(1)
or it is not.

Hence forward we deal with LL(1) languages determined by LL(1) grammars,
and we investigate the parsing methods of LL(1) languages. For the sake of simplicity,
we omit indexes from the names of functions First1 és Follow1.

The elements of the set First(α) are determined using the next algorithm.

First(α)

1 if α = ε
2 then F ← {ε}
3 if α = a, where a ∈ T
4 then F ← {a}
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5 if α = A, where A ∈ N
6 then if A→ ε ∈ P
7 then F ← {ε}
8 else F ← ∅
9 for all A→ Y1Y2 . . . Ym ∈ P (m ≥ 1)

10 do F ← F ∪ (First(Y1) \ {ε})
11 for k ← 1 to m− 1

12 do if Y1Y2 . . . Yk
∗

=⇒ ε
13 then F ← F ∪ (First(Yk+1) \ {ε})

14 if Y1Y2 . . . Ym
∗

=⇒ ε
15 then F ← F ∪ {ε}
16 if α = Y1Y2 . . . Ym (m ≥ 2)
17 then F ← (First(Y1) \ {ε})
18 for k ← 1 to m− 1

19 do if Y1Y2 . . . Yk
∗

=⇒ ε
20 then F ← F ∪ (First(Yk+1) \ {ε})

21 if Y1Y2 . . . Ym
∗

=⇒ ε
22 then F ← F ∪ {ε}
23 return F

In lines 1–4 the set is given for ε and a terminal symbol a. In lines 5–15 we
construct the elements of this set for a nonterminal A. If ε is derivated from A then
we put symbol ε into the set in lines 6–7 and 14–15. If the argument is a symbol
stream then the elements of the set are constructed in lines 16–22. We notice that
we can terminate the for cycle in lines 11 and 18 if Yk ∈ T , since in this case it is
not possible to derive symbol ε from Y1Y2 . . . Yk.

In Theorem 2.11 and hereafter, it is necessary to know the elements of the set
Follow(A). The next algorithm constructs this set.

Follow(A)

1 if A = S
2 then F ← {#}
3 else F ← ∅
4 for all rules B → αAβ ∈ P
5 do if |β| > 0
6 then F ← F ∪ (First(β) \ {ε})

7 if β
∗

=⇒ ε
8 then F ← F ∪ Follow(B)
9 else F ← F ∪ Follow(B)

10 return F

The elements of the Follow(A) set get into the set F . In lines 4–9 we check that,
if the argumentum is at the right side of a derivation rule, what symbols may stand
immediately after him. It is obvious that no ε is in this set, and the symbol # is in
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Figure 2.9 The sentential form and the analysed text.

the set only if the argumentum is the rightmost symbol of a sentential form.

Parsing with table Suppose that we analyse a series of terminal symbols xay
and the part x has already been analysed without errors. We analyse the text with a
top-down method, so we use leftmost derivations. Suppose that our sentential form
is xY α, that is, it has form xBα or xbα (Y ∈ (N ∪ T ), B ∈ N, a, b ∈ T, x, y ∈
T ∗, α ∈ (N ∪ T )∗) (Figure 2.9).

In the first case the next step is the substitution of symbol B. We know the next
element of the input series, this is the terminal a, therefore we can determine the
correct substitution of symbol B. This substitution is the rule B → β for which
a ∈ First(βFollow(B)). If there is such a rule then, according to the definition of
LL(1) grammar, there is exactly one. If there is not such a rule, then a syntactic
error was found.

In the second case the next symbol of the sentential form is the terminal symbol
b, thus we look out for the symbol b as the next symbol of the analysed text. If this
comes true, that is, a = b, then the symbol a is a correct symbol and we can go
further. We put the symbol a into the already analysed text. If a 6= b, then here is a
syntactic error. We can see that the position of the error is known, and the erroneous
symbol is the terminal symbol a.

The action of the parser is the following. Let # be the sign of the right end of
the analysed text, that is, the mark # is the last symbol of the text. We use a stack
through the analysing, the bottom of the stack is signed by mark #, too. We give
serial numbers to derivation rules and through the analysing we write the number
of the applied rule into a list. At the end of parsing we can write the syntax tree
from this list (Figure 2.10).

We sign the state of the parser using triples (ay#, Xα#, v). The symbol ay# is
the text not analysed yet. Xα# is the part of the sentential form corresponding to
the not analysed text; this information is in the stack, the symbol X is at the top
of the stack. v is the list of the serial numbers of production rules.

If we analyse the text then we observe the symbol X at the top of the stack,
and the symbol a that is the first symbol of the not analysed text. The name of
the symbol a is actual symbol. There are pointers to the top of the stack and to the
actual symbol.

We use a top down parser, therefore the initial content of the stack is S#. If the
initial analysed text is xay, then the initial state of the parsing process is the triple
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Figure 2.10 The structure of the LL(1) parser.

(xay#, S#, ε), where ε is the sign of the empty list.
We analyse the text, the series of symbols using a parsing table. The rows of

this table sign the symbols at the top of the stack, the columns of the table sign the
next input symbols, and we write mark # to the last row and the last column of
the table. Hence the number of rows of the table is greater by one than the number
of symbols of the grammar, and the number of columns is greater by one than the
number of terminal symbols of the grammar.

The element T [X, a] of the table is as follows.

T [X, a] =































(β, i), if X → β az i-th derivation rule ,
a ∈ First(β) or
(ε ∈ First(β) and a ∈ Follow(X)) ,

pop, if X = a ,
accept, if X = # and a = # ,
error otherwise .

We fill in the parsing table using the following algorithm.

LL(1)-Table-Fill-in(G)

1 for all A ∈ N
2 do if A→ α ∈ P the i-th rule
3 then for all a ∈ First(α)- ra
4 do T [A, a]← (α, i)
5 if ε ∈ First(α)
6 then for all a ∈ Follow(A)
7 do T [A, a]← (α, i)
8 for all a ∈ T
9 do T [a, a]← pop

10 T [#, #]← accept
11 for all X ∈ (N ∪ T ∪ {#}) and all a ∈ (T ∪ {#})
12 do if T [X, a] =

”̨ “
empty”

13 then T [X, a]← error
14 return T

At the line 10 we write the text accept into the right lower corner of the table. At
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the lines 8–9 we write the text pop into the main diagonal of the square labelled by
terminal symbols. The program in lines 1–7 writes a tuple in which the first element
is the right part of a derivation rule and the second element is the serial number of
this rule. In lines 12–13 we write error texts into the empty positions.

The actions of the parser are written by state-transitions. The initial state is
(x#, S#, ε), where the initial text is x, and the parsing process will be finished if
the parser goes into the state (#, #, w), this state is the final state. If the text is ay#
in an intermediate step, and the symbol X is at the top of stack, then the possible
state-transitions are as follows.

(ay#, Xα#, v) →















(ay#, βα#, vi), ha T [X, a] = (β, i) ,
(y#, α#, v), ha T [X, a] = pop ,
O.K., ha T [X, a] = accept ,
ERROR, ha T [X, a] = error .

The letters O.K. mean that the analysed text is syntactically correct; the text ER-
ROR means that a syntactic error is detected.

The actions of this parser are written by the next algorithm.

LL(1)-Parser(xay#, T )

1 s← (xay#, S#, ε), s′ ← analyze
2 repeat
3 if s = (ay#, Aα#, v) és T [A, a] = (β, i)
4 then s← (ay#, βα#, vi)
5 else if s = (ay#, aα#, v)
6 then s← (y#, α#, v) � Then T [a, a] = pop.
7 else if s = (#, #, v)
8 then s′ ← O.K. � Then T [#, #] = accept.
9 else s′ ← ERROR � Then T [A, a] = error.

10 until s′ = O.K. or s′ = ERROR
11 return s′, s

The input parameters of this algorithm are the text xay and the parsing table
T . The variable s′ describes the state of the parser: its value is analyse, during the
analysis, and it is either O.K. or ERROR. at the end. The parser determines his
action by the actual symbol a and by the symbol at the top of the stack, using the
parsing table T . In the line 3–4 the parser builds the syntax tree using the derivation
rule A → β. In lines 5–6 the parser executes a shift action, since there is a symbol
a at the top of the stack. At lines 8–9 the algorithm finishes his work if the stack is
empty and it is at the end of the text, otherwise a syntactic error was detected. At
the end of this work the result is O.K. or ERROR in the variable s′, and, as a result,
there is the triple s at the output of this algorithm. If the text was correct, then we
can create the syntax tree of the analysed text from the third element of the triple.
If there was an error, then the first element of the triple points to the position of
the erroneous symbol.

Example 2.8 Let G be a grammar G = ({E, E′, T, T ′, F }, {+, ∗, (, ), i}, P, E), where the
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set P of derivation rules:
E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → (E) | i
>From these rules we can determine the Follow(A) sets. To fill in the parsing table,

the following sets are required:
First(T E′) = {(, i},
First(+T E′) = {+},
First(F T ′) = {(, i},
First(∗F T ′) = {∗},
First((E)) = {(},
First(i) = {i},
Follow(E′) = {), #},
Follow(T ′) = {+, ), #}.
The parsing table is as follows. The empty positions in the table mean errors

+ * ( ) i #

E (T E′, 1) (T E′, 1)

E′ (+T E′, 2) (ε, 3) (ε, 3)

T (F T ′, 4) (F T ′, 4)

T ′ (ε, 6) (∗F T ′, 5) (ε, 6) (ε, 6)

F ((E), 7) (i, 8)

+ pop

* pop

( pop

) pop

i pop

# accept
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E

T E′

F T ′ + T E′

i ε F T ′ ε

i ∗ F T ′

i ε

Figure 2.11 The syntax tree of the sentence i + i ∗ i.

Example 2.9 Using the parsing table of the previous example, analyse the text i + i ∗ i.

(i + i ∗ i#, S#, ε)
(T E′,1)

−−−−−→ ( i + i ∗ i#, T E′#, 1 )
(F T ′,4)

−−−−−→ ( i + i ∗ i#, F T ′E′#, 14 )
(i,8)

−−−→ ( i + i ∗ i#, iT ′E′#, 148 )
pop

−−→ ( +i ∗ i#, T ′E′#, 148 )
(ε,6)

−−−→ ( +i ∗ i#, E′#, 1486 )
(+T E′,2)

−−−−−−−→ ( +i ∗ i#, +T E′#, 14862 )
pop

−−→ ( i ∗ i#, T E′#, 14862 )
(F T ′,4)

−−−−−→ ( i ∗ i#, F T ′E′#, 148624 )
(i,8)

−−−→ ( i ∗ i#, iT ′E′#, 1486248 )
pop

−−→ ( ∗i#, T ′E′#, 1486248 )
(∗F T ′,5)

−−−−−−→ ( ∗i#, ∗F T ′E′#, 14862485 )
pop

−−→ ( i#, F T ′E′#, 14862485 )
(i,8)

−−−→ ( i#, iT ′E′#, 148624858 )
pop

−−→ ( #, T ′E′#, 148624858 )
(ε,6)

−−−→ ( #, E′#, 1486248586 )
(ε,3)

−−−→ ( #, #, 14862485863 )
accept

−−−−→ O.K.

The syntax tree of the analysed text is the Figure 2.11.
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Recursive-descent parsing method There is another frequently used method
for the backtrackless top-down parsing. Its essence is that we write a real program
for the applied grammar. We create procedures to the symbols of grammar, and
using these procedures the recursive procedure calls realize the stack of the parser
and the stack management. This is a top-down parsing method, and the procedures
call each other recursively; it is the origin of the name of this method, that is,
recursive-descent method.

To check the terminal symbols we create the procedure Check. Let the parameter
of this procedure be the

”̨ “
expected symbol”, that is the leftmost unchecked terminal

symbol of the sentential form, and let the actual symbol be the symbol which is
analysed in that moment.

procedure Check(a);

begin

if actual_symbol = a

then Next_symbol

else Error_report

end;

The procedure Next_symbol reads the next symbol, it is a call for the lexical
analyser. This procedure determines the next symbol and put this symbol into the
actual_symbol variable. The procedure Error_report creates an error report and
then finishes the parsing.

We create procedures to symbols of the grammar as follows. The procedure of
the nonterminal symbol A is the next.

procedure A;

begin

T(A)

end;

where T(A) is determined by symbols of the right part of derivation rule having
symbol A in its left part.

The grammars which are used for syntactic analysis are reduced grammars. It
means that no unnecessary symbols in the grammar, and all of symbols occur at the
left side at least one reduction rule. Therefore, if we consider the symbol A, there is
at least one A→ α production rule.

1. If there is only one production rule for the symbol A,

(a) let the program of the rule A→ a is as follows: Check(a),

(b) for the rule A→ B we give the procedure call B ,

(c) for the rule A→ X1X2 . . . Xn (n ≥ 2) we give the next block:

begin

T(X_1);

T(X_2);

...
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T(X_n)

end;

2. If there are more rules for the symbol A:

(a) If the rules A→ α1 | α2 | . . . | αn are ε-free, that is from αi (1 ≤ i ≤ n) it is
not possible to deduce ε, then T(A)

case actual_symbol of

First(alpha_1) : T(alpha_1);

First(alpha_2) : T(alpha_2);

...

First(alpha_n) : T(alpha_n)

end;

where First(alpha_i) is the sign of the set First(αi).

We note that this is the first point of the method of recursive-descent parser
where we use the fact that the grammar is an LL(1) grammar.

(b) We use the LL(1) grammar to write a programming language, therefore it
is not comfortable to require that the grammar is a ε-free grammar. For the
rules A→ α1 | α2 | . . . | αn−1 | ε we create the next T(A) program:

case actual_symbol of

First(alpha_1) : T(alpha_1);

First(alpha_2) : T(alpha_2);

...

First(alpha_(n-1)) : T(alpha_(n-1));

Follow(A) : skip

end;

where Follow(A) is the set Follow(A).

In particular, if the rules A → α1 | α2 | . . . | αn for some i (1 ≤ i ≤ n)

αi
∗

=⇒ ε, that is ε ∈ First(αi), then the i-th row of the case statement is
Follow(A) : skip

In the program T(A), if it is possible, we use if-then-else or while statement
instead of the statement case.

The start procedure, that is the main program of this parsing program, is the
procedure which is created for the start symbol of the grammar.

We can create the recursive-descent parsing program with the next algorithm.
The input of this algorithm is the grammar G, and the result is parsing program P .
In this algorithm we use a Write-Program procedure, which concatenates the new
program lines to the program P . We will not go into the details of this algorithm.
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Create-Rec-Desc(G)

1 P ← ∅
2 Write-Program(
3 procedure Check(a);

4 begin

5 if actual_symbol = a

6 then Next_symbol

7 else Error_report

8 end;

9 )
10 for all symbol A ∈ N of the grammar G
11 do if A = S
12 then Write-Program(
13 program S;

14 begin

15 Rec-Desc-Stat(S, P )
16 end;

17 )
18 else Write-Program(
19 procedure A;

20 begin

21 Rec-Desc-Stat(A, P )
22 end;

23 )
24 return P

The algorithm creates the Check procedure in lines 2–9/ Then, for all nontermi-
nals of grammar G, it determines their procedures using the algorithm Rec-Desc-
Stat. In the lines 11–17, we can see that for the start symbol S we create the main
program. The output of the algorithm is the parsing program.

Rec-Desc-Stat(A, P )

1 if there is only one rule A→ α
2 then Rec-Desc-Stat1(α, P ) � A→ α.
3 else Rec-Desc-Stat2(A, (α1, . . . , αn), P ) � A→ α1 | · · · | αn.
4 return P

The form of the statements of the parsing program depends on the derivation
rules of the symbol A. Therefore the algorithm Rec-Desc-Stat divides the next
tasks into two parts. The algorithm Rec-Desc-Stat1 deals with the case when
there is only one derivation rule, and the algorithm Rec-Desc-Stat2 creates the
program for the alternatives.
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Rec-Desc-Stat1(α, P )

1 if α = a
2 then Write-Program(
3 Check(a)

4 )
5 if α = B
6 then Write-Program(
7 B

8 )
9 if α = X1X2 . . . Xn (n ≥ 2)

10 then Write-Program(
11 begin

12 Rec-Desc-Stat1(X1, P ) ;

13 Rec-Desc-Stat1(X2, P ) ;

14 . . .
15 Rec-Desc-Stat1(Xn, P )
16 end;

17 return P

Rec-Desc-Stat2(A, (α1, . . . , αn), P )

1 if the rules α1, . . . , αn are ε- free
2 then Write-Program(
3 case actual_symbol of

4 First(alpha_1) : Rec-Desc-Stat1 (α1, P ) ;

5 ...

6 First(alpha_n) : Rec-Desc-Stat1 (αn, P )
7 end;

8 )
9 if there is a ε-rule, αi = ε (1 ≤ i ≤ n)

10 then Write-Program(
11 case actual_symbol of

12 First(alpha_1) : Rec-Desc-Stat1 (α1, P ) ;

13 ...

14 First(alpha_(i-1)) : Rec-Desc-Stat1 (αi−1, P ) ;

15 Follow(A) : skip;

16 First(alpha_(i+1)) : Rec-Desc-Stat1 (αi+1, P ) ;

17 ...

18 First(alpha_n) : Rec-Desc-Stat1 (α1, P )
19 end;

20 )
21 return P

These two algorithms create the program described above.
Checking the end of the parsed text is achieved by the recursive- descent parsing

method with the next modification. We generate a new derivation rule for the end
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mark #. If the start symbol of the grammar is S, then we create the new rule
S′ → S#, where the new symbol S′ is the start symbol of our new grammar. The
mark # is considered as terminal symbol. Then we generate the parsing program
for this new grammar.

Example 2.10 We augment the grammar of the Example 2.8 in the above manner. The
production rules are as follows.

S′ → E#
E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → (E) | i
In the example 2.8 we give the necessary First and Follow sets. We use the next sets:
First(+T E′) = {+},
First(∗F T ′) = {∗},
First((E)) = {(},
First(i) = {i},
Follow(E′) = {), #},
Follow(T ′) = {+, ), #}.
In the comments of the program lines we give the using of these sets. The first characters

of the comment are the character pair --.
The program of the recursive-descent parser is the following.

program S’;

begin

E;

Check(#)

end.

procedure E;

begin

T;

E’

end;

procedure E’;

begin

case actual_symbol of

+ : begin -- First(+TE’)

Check(+);

T;

E’

end;

),# : skip -- Follow(E’)

end

end;

procedure T;

begin

F;

T’

end;
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procedure T’;

begin

case actual_symbol of

* : begin -- First(*FT’)

Check(*);

F;

T’

end;

+,),# : skip -- Follow(T’)

end

end;

procedure F;

begin

case actual_symbol of

( : begin -- First((E))

Check(();

E;

Check())

end;

i : Check(i) -- First(i)

end

end;

We can see that the main program of this parser belongs to the symbol S′.

2.3.2. LR(1) parsing

If we analyse from bottom to up, then we start with the program text. We search
the handle of the sentential form, and we substitute the nonterminal symbol that
belongs to the handle, for this handle. After this first step, we repeat this procedure
several times. Our goal is to achieve the start symbol of the grammar. This symbol
will be the root of the syntax tree, and by this time the terminal symbols of the
program text are the leaves of the tree.

First we review the notions which are necessary in the parsing.
To analyse bottom-up, we have to determine the handle of the sentential form.

The problem is to create a good method which finds the handle, and to find the best
substitution if there are more than one possibilities.

Definition 2.12 If A→ α ∈ P , then the rightmost substitution of the senten-
tial form βAx (x ∈ T ∗, α, β ∈ (N ∪ T )∗) is βαx, that is

βAx =⇒
rightmost

βαx .

Definition 2.13 If the derivation S
∗

=⇒ x (x ∈ T ∗) all of the substitutions were
rightmost substitution, then this derivation is a rightmost derivation,

S
∗

=⇒
rightmost

x .
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In a rightmost derivation, terminal symbols are at the right side of the sentential
form. By the connection of the notion of the handle and the rightmost derivation, if
we apply the steps of a rightmost derivation backwards, then we obtain the steps of a
bottom-up parsing. Hence the bottom-up parsing is equivalent with the

”̨ “
inverse”

of a rightmost derivation. Therefore, if we deal with bottom-up methods, we will not
write the text "rightmost" at the arrows.

General bottom-up parsing methods are realized by using backtrack algorithms.
They are similar to the top-down parsing methods. But the backtrack steps make
the parser very slow. Therefore we only deal with grammars such that have parsing
methods without backtracks.

Hence forward we produce a very efficient algorithm for a large class of context-
free grammars. This class contains the grammars for the programming languages.

The parsing is called LR(k) parsing; the grammar is called LR(k) grammar. LR
means the "Left to Right" method, and k means that if we look ahead k symbols then
we can determine the handles of the sentential forms. The LR(k) parsing method is
a shift-reduce method.

We deal with LR(1) parsing only, since for all LR(k) (k > 1) grammar there is
an equivalent LR(1) grammar. This fact is very important for us since, using this
type of grammars, it is enough to look ahead one symbol in all cases.

Creating LR(k) parsers is not an easy task. However, there are such standard
programs (for example the yacc in UNIX systems), that create the complete parsing
program from the derivation rules of a grammar. Using these programs the task of
writing parsers is not too hard.

After studying the LR(k) grammars we will deal with the LALR(1) parsing
method. This method is used in the compilers of modern programming languages.

LR(k) grammars As we did previously, we write a mark # to the right end of
the text to be analysed. We introduce a new nonterminal symbol S′ and a new rule
S′ → S into the grammar.

Definition 2.14 Let G′ be the augmented grammar belongs to grammar G =
(N, T, P, S), where G′ augmented grammar

G′ = (N ∪ {S′}, T, P ∪ {S′ → S}, S′) .

Assign serial numbers to the derivation rules of grammar, and let S′ → S be the
0th rule. Using this numbering, if we apply the 0th rule, it means that the parsing
process is concluded and the text is correct.

We notice that if the original start symbol S does not happen on the right side
of any rules, then there is no need for this augmentation. However, for the sake of
generality, we deal with augmented grammars only.

Definition 2.15 The augmented grammar G′ is an LR(k) grammar (k ≥ 0), if
for derivations

S′ ∗
=⇒ αAw =⇒ αβw ,

S′ ∗
=⇒ γBx =⇒ γδx = αβy
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S′

α A w

α β w

7−→k

S′

γ B x

γ δ x

α β y

7−→k

Figure 2.12 The LR(k) grammar.

(A, B ∈ N, x, y, w ∈ T ∗, α, β, γ, δ ∈ (N ∪ T )∗) the equality

Firstk(w) = Firstk(y)

implies
α = γ, A = B és x = y .

The feature of LR(k) grammars is that, in the sentential form αβw, looking
ahead k symbol from w unambiguously decides if β is or is not the handle. If the
handle is beta, then we have to reduce the form using the rule A→ β, that results the
new sentential form is αAw. Its reason is the following: suppose that, for sentential
forms αβw and αβy, (their prefixes αβ are same), Firstk(w) = Firstk(y), and we
can reduce αβw to αAw and αβy to γBx. In this case, since the grammar is a LR(k)
grammar, α = γ and A = B hold. Therefore in this case either the handle is β or β
never is the handle.

Example 2.11 Let G′ = ({S′, S}, {a}, P ′, S′) be a grammar and let the derivation rules
be as follows.

S′ → S
S → Sa | a

This grammar is not an LR(0) grammar, since using notations of the definition, in the
derivations

S′ ∗

=⇒ ε S′ ε =⇒ ε S ε,
α A w α β w

S′ ∗

=⇒ ε S′ ε =⇒ ε Sa ε = ε S a,
γ B x γ δ x α β y

it holds that First0(ε) = First0(a) = ε, and γBx 6= αAy.

Example 2.12

The next grammar is a LR(1) grammar. G = ({S′, S}, {a, b}, P ′, S′), the derivation
rules are:

S′ → S
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S → SaSb | ε .

In the next example we show that there is a context-free grammar, such that is
not LR(k) grammar for any k (k ≥ 0).

Example 2.13 Let G′ = ({S′, S}, {a}, P ′, S′) be a grammar and let the derivation rules
be

S′ → S
S → aSa | a

Now for all k (k ≥ 0)

S′ ∗

=⇒ akSak =⇒ akaak = a2k+1 ,

S′ ∗

=⇒ ak+1Sak+1 =⇒ ak+1aak+1 = a2k+3 ,

and
Firstk(ak) = Firstk(aak+1) = ak ,

but
ak+1Sak+1 6= akSak+2 .

It is not sure that, for a LL(k) (k > 1) grammar, we can find an equivalent
LL(1) grammar. However, LR(k) grammars have this nice property.

Theorem 2.16 For all LR(k) (k > 1) grammar there is an equivalent LR(1) gram-
mar.

The great significance of this theorem is that it makes sufficient to study the
LR(1) grammars instead of LR(k) (k > 1) grammars.

LR(1) canonical sets Now we define a very important notion of the LR parsings.

Definition 2.17 If β is the handle of the αβx (α, β ∈ (N ∪T )∗, x ∈ T ∗) sentential
form, then the prefixes of αβ are the viable prefixes of αβx.

Example 2.14 Let G′ = ({E, T, S′}, {i, +, (, )}, P ′, S′) be a grammar and the derivation
rule as follows.

(0) S′ → E
(1) E → T
(2) E → E + T
(3) T → i
(4) T → (E)
E + (i + i) is a sentential form, and the first i is the handle. The viable prefixes of this

sentential form are E, E+, E + (, E + (i.

By the above definition, symbols after the handle are not parts of any viable
prefix. Hence the task of finding the handle is the task of finding the longest viable
prefix.

For a given grammar, the set of viable prefixes is determined, but it is obvious
that the size of this set is not always finite.
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A

α . β a

Figure 2.13 The [A → α.β, a] LR(1) -item.

The significance of viable prefixes are the following. We can assign states of a
deterministic finite automaton to viable prefixes, and we can assign state transitions
to the symbols of the grammar. From the initial state we go to a state along the
symbols of a viable prefix. Using this property, we will give a method to create an
automaton that executes the task of parsing.

Definition 2.18 If A→ αβ is a rule of a G′ grammar, then let

[A→ α.β, a] , (a ∈ T ∪ {#}) ,

be a LR(1)-item, where A → α.β is the core of the LR(1)-item, and a is the
lookahead symbol of the LR(1)-item.

The lookahead symbol is instrumental in reduction, i.e. it has form [A→ α., a].
It means that we can execute reduction only if the symbol a follows the handle
alpha.

Definition 2.19 The LR(1)-item [A→ α.β, a] is valid for the viable prefix γα if

S′ ∗
=⇒ γAx =⇒ γαβx (γ ∈ (N ∪ T )∗, x ∈ T ∗) ,

and a is the first symbol of x or if x = ε then a = #.

Example 2.15 Let G′ = ({S′, S, A}, {a, b}, P ′, S′) a grammar and the derivation rules as
follows.

(0) S′ → S
(1) S → AA
(2) A → aA
(3) A → b

Using these rules, we can derive S′ ∗

=⇒ aaAab =⇒ aaaAab. Here aaa is a viable prefix,

and [A → a.A, a] is valid for this viable prefix. Similarly, S′ ∗

=⇒ AaA =⇒ AaaA, and
LR(1)-item [A → a.A, #] is valid for viable prefix Aaa.

Creating a LR(1) parser, we construct the canonical sets of LR(1)-items. To
achieve this we have to define the closure and read functions.

Definition 2.20 Let the set H be a set of LR(1)-items for a given grammar. The
set closure(H) consists of the next LR(1)-items:

1. every element of the set H is an element of the set closure(H),
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S′

δ A a x

δ α . B β a x

δ α . γ βa x

Figure 2.14 The function closure([A → α.Bβ, a]).

2. if [A→ α.Bβ, a] ∈ closure(H), and B → γ is a derivation rule of the grammar,
then [B → .γ, b] ∈ closure(H) for all b ∈ First(βa),

3. the set closure(H) is needed to expand using the step 2 until no more items can
be added to it.

By definitions, if the LR(1)-item [A→ α.Bβ, a] is valid for the viable prefix δα,
then the LR(1)-item [B → .γ, b] is valid for the same viable prefix in the case of
b ∈ First(βa). (Figure 2.14). It is obvious that the function closure creates all of
LR(1)-items which are valid for viable prefix δα.

We can define the function closure(H), i.e. the closure of set H by the following
algorithm. The result of this algorithm is the set K.

Closure-Set-of-Items(H)

1 K ← ∅
2 for all E ∈ H LR(1)-item
3 do K ← K ∪ Closure-Item(E)
4 return K

Closure-Item(E)

1 KE ← {E}
2 if the LR(1)-item E has form [A→ α.Bβ, a]
3 then I ← ∅
4 J ← KE
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5 repeat
6 for for all LR(1)-items ∈ J which have form [C → γ.Dδ, b]
7 do for for all rules D → η ∈ P
8 do for for all symbols c ∈ First(δb)
9 do I ← I ∪ [D → .η, c]

10 J ← I
11 if I 6= ∅
12 then KE ← KE ∪ I
13 I ← ∅
14 until J 6= ∅
15 return KE

The algorithm Closure-Item creates KE , the closure of item E. If, in the
argument E, the "point" is followed by a terminal symbol, then the result is this
item only (line 1). If in E the "point" is followed by a nonterminal symbol B, then
we can create new items from every rule having the symbol B at their left side (line
9). We have to check this condition for all new items, too, the repeat cycle is in line
5–14. These steps are executed until no more items can be added (line 14). The set
J contains the items to be checked, the set I contains the new items. We can find
the operation J ← I in line 10.

Definition 2.21 Let H be a set of LR(1)-items for the grammar G. Then the set
read(H, X) (X ∈ (N ∪ T )) consists of the following LR(1)-items.

1. if [A→ α.Xβ, a] ∈ H, then all items of the set closure([A→ αX.β, a]) are in
read(H, X),

2. the set read(H, X) is extended using step 1 until no more items can be added to
it.

The function read(H, X) "reads symbol X" in items ofH, and after this operation
the sign "point" in the items gets to the right side of X. If the set H contains the
valid LR(1)-items for the viable prefix γ then the set read(H, X) contains the valid
LR(1)-items for the viable prefix γX.

The algorithm Read-set-of-items executes the function read. The result is the
set K.

Read-Set(H, Y )

1 K ← ∅
2 for all E ∈ H
3 do K ← K ∪ Read-item(E, Y )
4 return K
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Read-Item(E, Y )

1 if E = [A→ α.Xβ, a] and X = Y
2 then KE,Y ← Closure-Item([A→ αX.β, a])
3 else KE,Y ← ∅
4 return KE,Y

Using these algorithms we can create all of items which writes the state after
reading of symbol Y .

Now we introduce the following notation for LR(1)-items, to give shorter de-
scriptions. Let

[A→ α.Xβ, a/b]

be a notation for items

[A→ α.Xβ, a] and [A→ α.Xβ, b] .

Example 2.16 The LR(1)-item [S′ → .S, #] is an item of the grammar in the example
2.15. For this item

closure(
[

S′ → .S, #
]

) = {
[

S′ → .S, #
]

, [S → .AA, #] , [A → .aA, a/b] , [A → .b, a/b]} .

We can create the canonical sets of LR(1)-items or shortly the LR(1)-canonical
sets with the following method.

Definition 2.22 Canonical sets of LR(1)-items H0,H1, . . . ,Hm are the following.

• H0 = closure([S′ → .S, #]),

• Create the set read(H0, X) for a symbol X. If this set is not empty and it is not
equal to canonical set H0 then it is the next canonical set H1.

Repeat this operation for all possible terminal and nonterminal symbol X. If we
get a nonempty set which is not equal to any of previous sets then this set is
a new canonical set, and its index is greater by one as the maximal index of
previously generated canonical sets.

• repeat the above operation for all previously generated canonical sets and for all
symbols of the grammar until no more items can be added to it.

The sets

H0,H1, . . . ,Hm

are the canonical sets of LR(1)-items of the grammar G.

The number of elements of LR(1)-items for a grammar is finite, hence the above
method is terminated in finite time.

The next algorithm creates canonical sets of the grammar G.
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Create-Canonical-Sets(G)

1 i← 0
2 Hi ← Closure-Item([S′ → .S, #])
3 I ← {Hi}, K ← {Hi}
4 repeat
5 L← K
6 for all M ∈ I-re
7 do I ← I \M
8 for all X ∈ T ∪N -re
9 do J ← Closure-Set-of-Items(Read-Set(M, X))

10 if J 6= ∅ and J 6∈ K
11 then i← i + 1
12 Hi ← J
13 K ← K ∪ {Hi}
14 I ← I ∪ {Hi}
15 until K = L
16 return K

The result of the algorithm is K. The first canonical set is the set H0 in the line
2. Further canonical sets are created by functions Closure-Set-of-Items(Read-
Set) in the line 9. The program in the line 10 checks that the new set differs from
previous sets, and if the answer is true then this set will be a new set in lines 11–12.
The for cycle in lines 6–14 guarantees that these operations are executed for all sets
previously generated. In lines 3–14 the repeat cycle generate new canonical sets as
long as it is possible.

Example 2.17 The canonical sets of LR(1)-items for the Example 2.15 are as follows.

H0 = closure([S′ → .S]) = {[S′ → .S, #] , [S → .AA, #] ,
[A → .aA, a/b] , [A → .b, a/b]}

H1 = read(H0, S) = closure([S′ → S., #]) = {[S′ → S., #]}

H2 = read(H0, A) = closure([S′ → A.A, #]) = {[S → A.A, #] , [A → .aA, #] ,
[A → .b, #]}

H3 = read(H0, a) = closure([A → a.A, a/b]) = {[A → a.A, a/b] , [A → .aA, a/b] ,
[A → .b, a/b]}

H4 = read(H0, b) = closure([A → b., a/b]) = {[A → b., a/b]}

H5 = read(H2, A) = closure([S → AA., #]) = {[S → AA., #]}

H6 = read(H2, a) = closure([A → a.A, #]) = {[A → a.A, #] , [A → .aA, #] ,
[A → .b, #]}
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Figure 2.15 The automaton of the Example 2.15.

H7 = read(H2, b) = closure([A → b., #]) = {[A → b., #]}

H8 = read(H3, A) = closure([A → aA., a/b]) = {[A → aA., a/b]}

read(H3, a) = H3

read(H3, b) = H4

H9 = read(H6, A) = closure([A → aA., #]) = {[A → aA., #]}

read(H6, a) = H6

read(H6, b) = H7

The automaton of the parser is in Figure 2.15.

LR(1) parser If the canonical sets of LR(1)-items

H0,H1, . . . ,Hm

were created, then assign the state k of an automaton to the setHk. Relation between
the states of the automaton and the canonical sets of LR(1)-items is stated by the
next theorem. This theorem is the “great” theorem of the LR(1)-parsing.

Theorem 2.23 The set of the LR(1)-items being valid for a viable prefix γ can be
assigned to the automaton-state k such that there is path from the initial state to
state k labeled by gamma.

This theorem states that we can create the automaton of the parser using canon-
ical sets. Now we give a method to create this LR(1) parser from canonical sets of
LR(1)-items.

The deterministic finite automaton can be described with a table, that is called
LR(1) parsing table. The rows of the table are assigned to the states of the automa-
ton.
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The parsing table has two parts. The first is the action table. Since the operations
of parser are determined by the symbols of analysed text, the action table is divided
into columns labeled by the terminal symbols. The action table contains information
about the action performing at the given state and at the given symbol. These actions
can be shifts or reductions. The sign of a shift operation is sj, where j is the next
state. The sign of the reduction is ri, where i is the serial number of the applied rule.
The reduction by the rule having the serial number zero means the termination of
the parsing and that the parsed text is syntactically correct; for this reason we call
this operation accept.

The second part of the parsing table is the goto table. In this table are infor-
mations about shifts caused by nonterminals. (Shifts belong to terminals are in the
action table.)

Let {0, 1, . . . , m} be the set of states of the automata. The i-th row of the table
is filled in from the LR(1)-items of canonical set Hi.

The i-th row of the action table:

• if [A→ α.aβ, b] ∈ Hi and read(Hi, a) = Hj then action[i, a] = sj,

• if [A→ α., a] ∈ Hi and A 6= S′, then action[i, a] = rl, where A → α is the l-th
rule of the grammar,

• if [S′ → S., #] ∈ Hi, then action[i, #] = accept.

The method of filling in the goto table:

• if read(Hi, A) = Hj , then goto[i, A] = j.

• In both table we have to write the text error into the empty positions.

These action and goto tables are called canonical parsing tables.

Theorem 2.24 The augmented grammar G′ is LR(1) grammar iff we can fill in
the parsing tables created for this grammar without conflicts.

We can fill in the parsing tables with the next algorithm.
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Figure 2.16 The structure of the LR(1) parser.

Fill-in-LR(1)-Table(G)

1 for all LR(1) canonical sets Hi

2 do for all LR(1)-items
3 if [A→ α.aβ, b] ∈ Hi and read(Hi, a) = Hj

4 then action[i, a] = sj
5 if [A→ α., a] ∈ Hi and A 6= S′ and A→ α the l-th rule
6 then action[i, a] = rl
7 if [S′ → S., #] ∈ Hi

8 then action[i, #] = accept
9 if read(Hi, A) = Hj

10 then goto[i, A] = j
11 for all a ∈ (T ∪ {#})
12 do if action[i, a] =

”̨ “
empty”

13 then action[i, a]← error
14 for all X ∈ N
15 do if goto[i, X] =

”̨ “
empty”

16 then goto[i, X]← error
17 return action, goto

We fill in the tables its line-by-line. In lines 2–6 of the algorithm we fill in the
action table, in lines 9–10 we fill in the goto table. In lines 11–13 we write the error
into the positions which remained empty.

Now we deal with the steps of the LR(1) parsing. (Figure 2.16).
The state of the parsing is written by configurations. A configuration of the LR(1)

parser consists of two parts, the first is the stack and the second is the unexpended
input text.

The stack of the parsing is a double stack, we write or read two data with the
operations push or pop. The stack consists of pairs of symbols, the first element of
pairs there is a terminal or nonterminal symbol, and the second element is the serial
number of the state of automaton. The content of the start state is #0.

The start configuration is (#0, z#), where z means the unexpected text.
The parsing is successful if the parser moves to final state. In the final state the

content of the stack is #0, and the parser is at the end of the text.
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Suppose that the parser is in the configuration (#0 . . . Ykik, ay#). The next move
of the parser is determined by action[ik, a].

State transitions are the following.

• If action[ik, a] = sl, i.e. the parser executes a shift, then the actual symbol a and
the new state l are written into the stack. That is, the new configuration is

(#0 . . . Ykik, ay#)→ (#0 . . . Ykikail, y#) .

• If action[ik, a] = rl, then we execute a reduction by the i-th rule A→ α. In this
step we delete |α| rows, i.e. we delete 2|α| elements from the stack, and then we
determine the new state using the goto table. If after the deletion there is the
state ik−r at the top of the stack, then the new state is goto[ik−r, A] = il.

(#0 . . . Yk−rik−rYk−r+1ik−r+1 . . . Ykik, y#)→ (#0 . . . Yk−rik−rAil, y#) ,

where |α| = r.

• If action[ik, a] = accept, then the parsing is completed, and the analysed text
was correct.

• If action[ik, a] = error, then the parsing terminates, and a syntactic error was
discovered at the symbol a.

The LR(1) parser is often named canonical LR(1) parser.
Denote the action and goto tables together by T . We can give the following

algorithm for the steps of parser.

LR(1)-Parser(xay#, T )

1 s← (#0, xay#), s′ ← parsing
2 repeat
3 s = (#0 . . . Yk−rik−rYk−r+1ik−r+1 . . . Ykik, ay#)
4 if action[ik, a] = sl
5 then s← (#0 . . . Ykikail, y#)
6 else if action[ik, a] = rl and A→ α is the l-th rule and
7 |α| = r and goto[ik−r, A] = il

8 then s← (#0 . . . Yk−rik−rAil, ay#)
9 else if action[ik, a] = accept

10 then s′ ← O.K.
11 else s′ ← ERROR
12 until s′ = O.K. or s′ = ERROR
13 return s′, s

The input parameters of the algorithm are the text xay and table T . The vari-
able s′ indicates the action of the parser. It has value parsing in the intermediate
states, and its value is O.K. or ERROR at the final states. In line 3 we detail the
configuration of the parser, that is necessary at lines 6–8. Using the action table,
the parser determines its move from the symbol xk at the top of the stack and from
the actual symbol a. In lines 4–5 we execute a shift step, in lines 6–8 a reduction.
The algorithm is completed in lines 9–11. At this moment, if the parser is at the end
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of text and the state 0 is at the top of stack, then the text is correct, otherwise a
syntax error was detected. According to this, the output of the algorithm is O.K. or
ERROR, and the final configuration is at the output, too. In the case of error, the
first symbol of the second element of the configuration is the erroneous symbol.

Example 2.18The action and goto tables of the LR(1) parser for the grammar of Example
2.15 are as follows. The empty positions denote errors.

state action goto

a b # S A

0 s3 s4 1 2
1 accept

2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

Example 2.19 Using the tables of the previous example, analyse the text abb#.

rule

(#0, aab#)
s3
−→ (#0a3, bb#)
s4
−→ (#0a3b4, b#)
r3
−→ (#0a3A8, b#) A → b
r2
−→ (#0A2, b#) A → aA
s7
−→ (#0A2b7, #)
r3
−→ (#0A2A5, #) A → b
r1
−→ (#0S1, #) S → AA
elfogad
−−−−→ O.K.

The syntax tree of the sentence is in Figure 2.17.

LALR(1) parser Our goal is to decrease the number of states of the parser,
since not only the size but the speed of the compiler is dependent on the number of
states. At the same time, we wish not to cut radically the set of LR(1) grammars
and languages, by using our new method.

There are a lot of LR(1)-items in the canonical sets, such that are very similar:
their core are the same, only their lookahead symbols are different. If there are two
or more canonical sets in which there are similar items only, then we merge these
sets.

If the canonical sets Hi és a Hj are mergeable, then let K[i,j] = Hi ∪Hj .
Execute all of possible merging of LR(1) canonical sets. After renumbering the
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S′

S

A A

a A b

b

Figure 2.17 The syntax tree of the sentence aab.

indexes we obtain sets K0,K1, . . . ,Kn; these are the merged LR(1) canonical sets or
LALR(1) canonical sets.

We create the LALR(1) parser from these united canonical sets.

Example 2.20 Using the LR(1) canonical sets of the example 2.17, we can merge the next
canonical sets:

H3 and H6,
H4 and H7,
H8 and H9.
In the Figure 2.15 it can be seen that mergeable sets are in equivalent or similar

positions in the automaton.

There is no difficulty with the function read if we use merged canonical sets. If

K = H1 ∪H2 ∪ . . . ∪Hk ,

read(H1, X) = H
′

1, read(H2, X) = H
′

2, . . . , read(Hk, X) = H
′

k ,

and
K′ = H

′

1 ∪H
′

2 ∪ . . . ∪H
′

k ,

then
read(K, X) = K′ .

We can prove this on the following way. By the definition of function read, the
set read(H, X) depends on the core of LR(1)-items in H only, and it is independent
of the lookahead symbols. Since the cores of LR(1)-items in the sets H1,H2, . . . ,Hk

are the same, the cores of LR(1)-items of

read(H1, X), read(H2, X), . . . , read(Hk, X)

are also the same. It follows that these sets are mergeable into a set K′, thus
read(K, X) = K′.
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However, after merging canonical sets of LR(1)-items, elements of this set can
raise difficulties. Suppose that

K[i,j] = Hi ∪Hj .

• After merging there are not shift-shift conflicts. If

[A→ α.aβ, b] ∈ Hi

and
[B → γ.aδ, c] ∈ Hj

then there is a shift for the symbol a and we saw that the function read does
not cause problem, i.e. the set read(K[i,j], a) is equal to the set read(Hi, a) ∪
read(Hj , a).

• If there is an item
[A→ α.aβ, b]

in the canonical set Hi and there is an item

[B → γ., a]

in the set a Hj , then the merged set is an inadequate set with the symbol a, i.e.
there is a shift-reduce conflict in the merged set.

But this case never happens. Both items are elements of the set Hi and of
the set Hj . These sets are mergeable sets, thus they are different in lookahead
symbols only. It follows that there is an item [A→ α.aβ, c] in the set Hj . Using
the Theorem 2.24 we get that the grammar is not a LR(1) grammar; we get
shift-reduce conflict from the set Hj for the LR(1) parser, too.

• However, after merging reduce-reduce conflict may arise. The properties of LR(1)
grammar do not exclude this case. In the next example we show such a case.

Example 2.21 Let G′ = ({S′, S, A, B}, {a, b, c, d, e}, P ′, S′) be a grammar, and the deriva-
tion rules are as follows.

S′ → S
S → aAd | bBd | aBe | bAe
A → c
B → c

This grammar is a LR(1) grammar. For the viable prefix ac the LR(1)-items

{[A → c., d] , [B → c., e]} ,

for the viable prefix bc the LR(1)-items

{[A → c., e] , [B → c., d]}

create two canonical sets.
After merging these two sets we get a reduce-reduce conflict. If the input symbol is d

or e then the handle is c, but we cannot decide that if we have to use the rule A → c or
the rule B → c for reducing.
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Now we give the method for creating a LALR(1) parsing table. First we give the
canonical sets of LR(1)-items

H1,H2, . . . ,Hm

, then we merge canonical sets in which the sets constructed from the core of the
items are identical ones. Let

K1,K2, . . . ,Kn (n ≤ m)

be the LALR(1) canonical sets.
For the calculation of the size of the action and goto tables and for filling in

these tables we use the sets Ki (1 ≤ i ≤ n). The method is the same as it was in
the LR(1) parsers. The constructed tables are named by LALR(1) parsing tables.

Definition 2.25 If the filling in the LALR(1) parsing tables do not produce con-
flicts then the grammar is said to be an LALR(1) grammar.

The run of LALR(1) parser is the same as it was in LR(1) parser.

Example 2.22 Denote the result of merging canonical sets Hi and Hj by K[i,j]. Let [i, j]
be the state which belonging to this set.

The LR(1) canonical sets of the grammar of Example 2.15 were given in the Example
2.17 and the mergeable sets were seen in the example 2.20. For this grammar we can create
the next LALR(1) parsing tables.

állapot action goto

a b # S A

0 s [3, 6] s [4, 7] 1 2
1 accept
2 s [3, 6] s [4, 7] 5

[3, 6] s [3, 6] s [4, 7] [8, 9]
[4, 7] r3 r3 r3

5 r1
[8, 9] r2 r2 r2

The filling in the LALR(1) tables are conflict free, therefore the grammar is an LALR(1)
grammar. The automaton of this parser is in Figure 2.18.

Example 2.23 Analyse the text abb# using the parsing table of the previous example.
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1 5

0
A

a

b

S

2

A

a

b

3,6

a

A

b

8,9

4,7

Figure 2.18 The automaton of the Example 2.22.

rule

(#0, aab#)
s[3,6]
−−−→ (#0a [3, 6] , bb#)
s[4,7]
−−−→ (#0a [3, 6] b [4, 7] , b#)
r3
−→ (#0a [3, 6] A[8, 9], b#) A → b
r2
−→ (#0A2, b#) A → aA
s[4,7]
−−−→ (#0A2b [4, 7] , #)
r3
−→ (#0A2A5, #) A → b
r1
−→ (#0S1, #) S → AA
elfogad
−−−−→ O.K.

The syntax tree of the parsed text is in the Figure 2.17.

As it can be seen from the previous example, the LALR(1) grammars are LR(1)
grammars. The converse assertion is not true. In Example 2.21 there is a grammar
which is LR(1), but it is not LALR(1) grammar.

Programming languages can be written by LALR(1) grammars. The most fre-
quently used methods in compilers of programming languages is the LALR(1)
method. The advantage of the LALR(1) parser is that the sizes of parsing tables
are smaller than the size of LR(1) parsing tables.

For example, the LALR(1) parsing tables for the Pascal language have a few
hundreds of lines, whilst the LR(1) parsers for this language have a few thousands
of lines.

Exercises
2.3-1 Find the LL(1) grammars among the following grammars (we give their
derivation rules only).

1. S → ABc
A → a | ε
B → b | ε

2. S → Ab
A → a | B | ε
B → b | ε
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3. S → ABBA
A → a | ε
B → b | ε

4. S → aSe | A
A → bAe | B
B → cBe | d

2.3-2 Prove that the next grammars are LL(1) grammars (we give their derivation
rules only).

1. S → Bb | Cd
B → aB | ε
C → cC | ε

2. S → aSA | ε
A → c | bS

3. S → AB
A → a | ε
B → b | ε

2.3-3 Prove that the next grammars are not LL(1) grammars (we give their deriva-
tion rules only).

1. S → aAa | Cd
A → abS | c

2. S → aAaa | bAba
A → b | ε

3. S → abA | ε
A → Saa | b

2.3-4 Show that a LL(0) language has only one sentence.
2.3-5 Prove that the next grammars are LR(0) grammars (we give their derivation
rules only).

1. S′ → S
S → aSa | aSb | c

2. S′ → S
S → aAc
A → Abb | b

2.3-6 Prove that the next grammars are LR(1) grammars. (we give their derivation
rules only).

1. S′ → S
S → aSS | b

2. S′ → S
S → SSa | b
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2.3-7 Prove that the next grammars are not LR(k) grammars for any k (we give
their derivation rules only).

1. S′ → S
S → aSa | bSb | a | b

2. S′ → S
S → aSa | bSa | ab | ba

2.3-8 Prove that the next grammars are LR(1) but are not LALR(1) grammars (we
give their derivation rules only).

1. S′ → S
S → Aa | bAc | Bc | bBa
A → d
B → d

2. S′ → S
S → aAcA | A | B
A → b | Ce
B → dD
C → b
D → CcS | CcD

2.3-9 Create parsing table for the above LL(1) grammars.
2.3-10 Using the recursive descent method, write the parsing program for the above
LL(1) grammars.
2.3-11 Create canonical sets and the parsing tables for the above LR(1) grammars.

2.3-12 Create merged canonical sets and the parsing tables for the above LALR(1)
grammars.

Problems

2-1 Lexical analysis of a program text
The algorithm Lex-Analyse in Section 2.2 gives a scanner for the text that is
described by only one regular expression or deterministic finite automaton, i.e. this
scanner is able to analyse only one symbol. Create an automaton which executes
total lexical analysis of a program language, and give the algorithm Lex-analyse-
language for this automaton. Let the input of the algorithm be the text of a
program, and the output be the series of symbols. It is obvious that if the automaton
goes into a finite state then its new work begins at the initial state, for analysing
the next symbol. The algorithm finishes his work if it is at the end of the text or a
lexical error is detected.
2-2 Series of symbols augmented with data of symbols
Modify the algorithm of the previous task on such way that the output is the series
of symbols augmented with the appropriate attributes. For example, the attribute
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of a variable is the character string of its name, or the attribute of a number is its
value and type. It is practical to write pointers to the symbols in places of data.
2-3 LALR(1) parser from LR(0) canonical sets
If we omit lookahead symbols from the LR(1)-items then we get LR(0)-items.
We can define functions closure and read for LR(0)-items too, doing not care for
lookahead symbols. Using a method similar to the method of LR(1), we can construct
LR(0) canonical sets

I0, I1, . . . , In .

One can observe that the number of merged canonical sets is equal to the number of
LR(0) canonical sets, since the cores of LR(1)-items of the merged canonical sets are
the same as the items of the LR(0) canonical sets. Therefore the number of states
of LALR(1) parser is equal to the number of states of its LR(0) parser.

Using this property, we can construct LALR(1) canonical sets from LR(0) canon-
ical sets, by completing the items of the LR(0) canonical sets with lookahead sym-
bols. The result of this procedure is the set of LALR(1) canonical sets.

It is obvious that the right part of an LR(1)-item begins with symbol point only
if this item was constructed by the function closure. (We notice that there is one
exception, the [S′ → .S] item of the canonical set H0.) Therefore it is no need for
all items of LR(1) canonical sets. Let the kernel of the canonical set H0 be the
LR(1)-item [S′ → .S, #], and let the kernel of any other canonical set be the set of
the LR(1)-items such that there is no point at the first position on the right side
of the item. We give an LR(1) canonical set by its kernel, since all of items can be
construct from the kernel using the function closure.

If we complete the items of the kernel of LR(0) canonical sets then we get the
kernel of the merged LR(1) canonical sets. That is, if the kernel of an LR(0) canonical
set is Ij , then from it with completions we get the kernel of the LR(1) canonical set,
Kj .

If we know Ij then we can construct read(Ij , X) easily. If [B → γ.Cδ] ∈ Ij , C
∗
→

Aη and A→ Xα, then [A→ X.α] ∈ read(Ij , X). For LR(1)-items, if [B → γ.Cδ, b] ∈

Kj , C
∗
→ Aη and A→ Xα then we have to determine also the lookahead symbols,

i.e. the symbols a such that [A→ X.α, a] ∈ read(Kj , X).
If ηδ 6= ε and a ∈ First(ηδb) then it is sure that [A→ X.α, a] ∈ read(Kj , X).

In this case, we say that the lookahead symbol was spontaneously generated for
this item of canonical set read(Kj , X). The symbol b do not play important role in
the construction of the lookahead symbol.

If ηδ = ε then [A→ X.α, b] is an element of the set read(Kj , X), and the looka-
head symbol is b. In this case we say that the lookahead symbol is propagated from
Kj into the item of the set read(Kj , X).

If the kernel Ij of an LR(0) canonical set is given then we construct the propa-
gated and spontaneously generated lookahead symbols for items of read(Kj , X) by
the following algorithm.

For all items [B → γ.δ] ∈ Ij we construct the set Kj = closure([B → γ.δ, @]),
where @ is a dummy symbol,

• if [A→ α.Xβ, a] ∈ Kj and a 6= @ then [A→ αX.β, a] ∈ read(Kj , X) and the
symbol a is spontaneously generated into the item of the set read(Kj , X),
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• if [A→ α.Xβ, @] ∈ Kj then [A→ αX.β, @] ∈ read(Kj , X), and the symbol @ is
propagated from Kj into the item of the set read(Kj , X).

The kernel of the canonical set K0 has only one element. The core of this element
is [S′ → .S]. For this item we can give the lookahead symbol # directly. Since the
core of the kernel of all Kj canonical sets are given, using the above method we can
calculate all of propagated and spontaneously generated symbols.

Give the algorithm which constructs LALR(1) canonical sets from LR(0) canon-
ical sets using the methods of propagation and spontaneously generation.

Chapter Notes

The theory and practice of compilers, computers and program languages are of the
same age. The construction of first compilers date back to the 1950’s. The task of
writing compilers was a very hard task at that time, the first Fortran compiler took
18 man-years to implement [?]. From that time more and more precise definitions
and solutions have been given to the problems of compilation, and better and better
methods and utilities have been used in the construction of translators.

The development of formal languages and automata was a great leap forward,
and we can say that this development was urged by the demand of writing of com-
pilers. In our days this task is a simple routine project. New results, new discoveries
are expected in the field of code optimisation only.

One of the earliest nondeterministic and backtrack algorithms appeared in the
1960’s. The first two dynamic programming algorithms were the CYK (Cocke-
Younger-Kasami) algorithm from 1965–67 and the Earley-algorithm from 1965. The
idea of precedence parsers is from the end of 1970’s and from the beginning of 1980’s.
The LR(k) grammars was defined by Knuth in 1965; the definition of LL(k) gram-
mars is dated from the beginning of 1970’s. LALR(1) grammars were studied by De
Remer in 1971, the elaborating of LALR(1) parsing methods were finished in the
beginning of 1980’s [?, ?, ?].

To the middle of 1980’s it became obvious that the LR parsing methods are the
real efficient methods and since than the LALR(1) methods are used in compilers
[?].

A lot of very excellent books deal with the theory and practice of compiles.
Perhaps the most successful of them was the book of Gries [?]; in this book there
are interesting results for precedence grammars. The first successful book which
wrote about the new LR algorithms was of Aho and Ullman [?], we can find here
also the CYK and the Early algorithms. It was followed by the "dragon book" of
Aho and Ullman[?]; the extended and corrected issue of it was published in 1986 by
authors Aho, Ullman and Sethi [?].

Without completeness we notice the books of Fischer and LeBlanc [?], Tremblay
and Sorenson [?], Waite and Goos [?], Hunter [?], Pittman [?] and Mak [?]. Ad-
vanced achievements are in recently published books, among others in the book of
Muchnick [?], Grune, Bal, Jacobs and Langendoen [?], in the book of Cooper and
Torczon [?] and in a chapter of the book by Louden [?].
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