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I. AUTOMATA



1. Automata and Formal Languages

Automata and formal languages play an important role in projecting and realizing
compilers. In the first section grammars and formal languages are defined. The dif-
ferent grammars and languages are discussed based on Chomsky hierarchy. In the
second section we deal in detail with the finite automata and the languages accepted
by them, while in the third section the pushdown automata and the corresponding
accepted languages are discussed. Finally, references from a rich bibliography are
given.

1.1. Languages and grammars

A finite and nonempty set of symbols is called an alphabet. The elements of an
alphabet are letters, but sometimes are named also symbols.

With the letters of an alphabet words are composed. If a1, a2, . . . , an ∈ Σ, n ≥ 0,
then a1a2 . . . an a Σ is a word over the alphabet Σ (the letters ai are not necessary
distinct). The number of letters of a word, with their multiplicities, constitutes the
length of the word. If w = a1a2 . . . an, then the length of w is |w| = n. If n = 0,
then the word is an empty word, which will be denoted by ε (sometimes λ in other
books). The set of words over the alphabet Σ will be denoted by Σ∗:

Σ∗ =
{

a1a2 . . . an | a1, a2, . . . , an ∈ Σ, n ≥ 0
}

.

For the set of nonempty words over Σ the notation Σ+ = Σ∗ \ {ε} will be used. The
set of words of length n over Σ will be denoted by Σn, and Σ0 = {ε}. Then

Σ∗ = Σ0 ∪ Σ1 ∪ · · · ∪ Σn ∪ · · · and Σ+ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn ∪ · · · .

The words u = a1a2 . . . am and v = b1b2 . . . bn are equal (i.e. u = v), if m = n and
ai = bi, i = 1, 2, . . . , n.

We define in Σ∗ the binary operation called concatenation. The concatenation
(or product) of the words u = a1a2 . . . am and v = b1b2 . . . bn is the word uv =
a1a2 . . . amb1b2 . . . bn. It is clear that |uv| = |u| + |v|. This operation is associative
but not commutative. Its neutral element is ε, because εu = uε = u for all u ∈ Σ∗.
Σ∗ with the concatenation is a monoid.

We introduce the power operation. If u ∈ Σ∗, then u0 = ε, and un = un−1u
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for n ≥ 1. The reversal (or mirror image) of the word u = a1a2 . . . an is
u−1 = anan−1 . . . a1. The reversal of u sometimes is denoted by uR or ũ. It is clear

that
(
u−1

)−1
= u and (uv)−1 = v−1u−1.

Word v is a prefix of the word u if there exists a word z such that u = vz. If
z 6= ε then v is a proper prefix of u. Similarly v is a suffix of u if there exists a word
x such that u = xv. The proper suffix can also be defined. Word v is a subword
of the word u if there are words p and q such that u = pvq. If pq 6= ε then v is a
proper subword.

A subset L of Σ∗ is called a language over the alphabet Σ. Sometimes this
is called a formal language because the words are here considered without any
meanings. Note that ∅ is the empty language while {ε} is a language which contains
the empty word.

1.1.1. Operations on languages

If L, L1, L2 are languages over Σ we define the following operations
• union

L1 ∪ L2 = {u ∈ Σ∗ | u ∈ L1 or u ∈ L2} ,
• intersection

L1 ∩ L2 = {u ∈ Σ∗ | u ∈ L1 and u ∈ L2} ,
• difference

L1 \ L2 = {u ∈ Σ∗ | u ∈ L1 and u 6∈ L2} ,
• complement

L = Σ∗ \ L ,
• multiplication

L1L2 = {uv | u ∈ L1, v ∈ L2} ,
• power

L0 = {ε}, Ln = Ln−1L, if n ≥ 1 ,
• iteration or star operation

L∗ =
∞⋃

i=0

Li = L0 ∪ L ∪ L2 ∪ · · · ∪ Li ∪ · · · ,

• mirror
L−1 = {u−1 | u ∈ L} .

We will use also the notation L+

L+ =

∞⋃

i=1

Li = L ∪ L2 ∪ · · · ∪ Li ∪ · · · .

The union, product and iteration are called regular operations.

1.1.2. Specifying languages

Languages can be specified in several ways. For example a language can be specified
using

1) the enumeration of its words,
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2) a property, such that all words of the language have this property but other
word have not,

3) a grammar.

Specifying languages by listing their elements. For example the following
are languages

L1 = {ε, 0, 1},
L2 = {a, aa, aaa, ab, ba, aba}.

Even if we cannot enumerate the elements of an infinite set infinite languages can
be specified by enumeration if after enumerating the first some elements we can
continue the enumeration using a rule. The following is such a language

L3 = {ε, ab, aabb, aaabbb, aaaabbbb, . . .}.

Specifying languages by properties. The following sets are languages
L4 = {anbn | n = 0, 1, 2, . . .},
L5 = {uu−1 | u ∈ Σ∗},
L6 = {u ∈ {a, b}∗ | na(u) = nb(u)},

where na(u) denotes the number of letters a in word u and nb(u) the number of
letters b.

Specifying languages by grammars. Define the generative grammar or
shortly the grammar .

Definition 1.1 A grammar is an ordered quadruple G = (N, T, P, S), where
• N is the alphabet of variables (or nonterminal symbols),
• T is the alphabet of terminal symbols, where N ∩ T = ∅,
• P ⊆ (N ∪ T )∗N(N ∪ T )∗ × (N ∪ T )∗ is a finite set, that is P is the finite set

of productions of the form (u, v) , where u, v ∈ (N ∪ T )∗ and u contains at least a
nonterminal symbol,
• S ∈ N is the start symbol.

Remarks. Instead of the notation (u, v) sometimes u→ v is used.
In the production u → v or (u, v) word u is called the left-hand side of the

production while v the right-hand side. If for a grammar there are more than one
production with the same left-hand side, then these production

u→ v1, u→ v2, . . . , u→ vr can be written as u→ v1 | v2 | . . . | vr .

We define on the set (N ∪ T )∗ the relation called direct derivation

u =⇒ v, if u = p1pp2, v = p1qp2 and (p, q) ∈ P .

In fact we replace in u an appearance of the subword p by q and we get v. Another
notations for the same relation can be ` or |=.

If we want to emphasize the used grammar G, then the notation =⇒ can be

replaced by =⇒
G

. Relation
∗

=⇒ is the reflexive and transitive closure of =⇒, while

+
=⇒ denotes its transitive closure. Relation

∗
=⇒ is called a derivation.
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From the definition of a reflexive and transitive relation we can deduce the
following: u

∗
=⇒ v, if there exist the words w0, w1, . . . , wn ∈ (N ∪ T )∗, n ≥ 0 and

u = w0, w0 =⇒ w1, w1 =⇒ w2, . . . , wn−1 =⇒ wn, wn = v. This can be written
shortly u = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wn−1 =⇒ wn = v. If n = 0 then u = v.

The same way we can define the relation u
+

=⇒ v except that n ≥ 1 always, so at
least one direct derivation will de used.
Definition 1.2 The language generated by grammar G = (N, T, P, S) is the set

L(G) = {u ∈ T ∗ | S
∗

=⇒ u} .

So L(G) contains all words over the alphabet T which can be derived from the start
symbol S using the productions from P .

Example 1.1 Let G = (N, T, P, S) where
N = {S},
T = {a, b},
P = {S → aSb, S → ab}.

It is easy to see than L(G) = {anbn | n ≥ 1} because

S =⇒
G

aSb =⇒
G

a2Sb2 =⇒
G

· · · =⇒
G

an−1Sbn−1 =⇒
G

anbn ,

where up to the last but one replacement the first production (S → aSb) was used, while

at the last replacement the production S → ab. This derivation can be written S
∗

=⇒
G

anbn.

Therefore anbn can be derived from S for all n and no other words can be derived from S.

Definition 1.3 Two grammars G1 and G2 are equivalent, and this is denoted by
G1
∼= G2 if L(G1) = L(G2).

Example 1.2 The following two grammars are equivalent because both of them generate
the language {anbncn | n ≥ 1}.
G1 = (N1, T, P1, S1), where

N1 = {S1, X, Y }, T = {a, b, c},
P1 = {S1 → abc, S1 → aXbc, Xb → bX, Xc → Y bcc, bY → Y b, aY → aaX, aY →

aa}.
G2 = (N2, T, P2, S2), where

N2 = {S2, A, B, C},
P2 = {S2 → aS2BC, S2 → aBC, CB → BC, aB → ab, bB → bb, bC → bc, cC →

cc}.

First let us prove by mathematical induction that for n ≥ 2 S1

∗

=⇒
G1

an−1Y bncn. If n = 2

then
S1 =⇒

G1

aXbc =⇒
G1

abXc =⇒
G1

abY bcc =⇒
G1

aY b2c2 .

The inductive hypothesis is S1

∗

=⇒
G1

an−2Y bn−1cn−1. We use production aY → aaX, then

(n − 1) times production Xb → bX, and then production Xc → Y bcc, afterwards again
(n − 1) times production bY → Y b. Therefore

S1 =⇒
G1

an−2Y bn−1cn−1 =⇒
G1

an−1Xbn−1cn−1 ∗

=⇒
G1

an−1bn−1Xcn−1 =⇒
G1

an−1bn−1Y bcn ∗

=⇒
G1

an−1Y bncn .
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If now we use production aY → aa we get S1

∗

=⇒
G1

anbncn for n ≥ 2, but S1 =⇒
G1

abc

by the production S1 → abc, so anbncn ∈ L(G1) for any n ≥ 1. We have to prove in
addition that using the productions of the grammar we cannot derive only words of the
form anbncn. It is easy to see that a successful derivation (which ends in a word containing
only terminals) can be obtained only in the presented way.
Similarly for n ≥ 2

S2 =⇒
G2

aS2BC
∗

=⇒
G2

an−1S2(BC)n−1 =⇒
G2

an(BC)n ∗

=⇒
G2

anBnCn

=⇒
G2

anbBn−1Cn ∗

=⇒
G2

anbnCn =⇒
G2

anbncCn−1 ∗

=⇒
G2

anbncn .

Here orderly were used the productions S2 → aS2BC (n−1 times), S2 → aBC, CB → BC
(n − 1 times), aB → ab, bB → bb (n − 1 times), bC → bc, cC → cc (n − 1 times). But

S2 =⇒
G2

aBC =⇒
G2

abC =⇒
G2

abc, So S2

∗

=⇒
G2

anbncn, n ≥ 1. It is also easy to see than other

words cannot be derived using grammar G2.

The grammars
G3 = ({S}, {a, b}, {S → aSb, S → ε}, S) and
G4 = ({S}, {a, b}, {S → aSb, S → ab}, S)

are not equivalent because L(G3) \ {ε} = L(G4).

Theorem 1.4 Not all languages can be generated by grammars.

Proof We encode grammars for the proof as words on the alphabet {0, 1}. For a
given grammar G = (N, T, P, S) let N = {S1, S2, . . . , Sn}, T = {a1, a2, . . . , am} and
S = S1. The encoding is the following:

the code of Si is 10 11 . . . 11
︸ ︷︷ ︸

i times

01, the code of ai is 100 11 . . . 11
︸ ︷︷ ︸

i times

001 .

In the code of the grammar the letters are separated by 000, the code of the arrow
is 0000, and the productions are separated by 00000.

It is enough, of course, to encode the productions only. For example, consider
the grammar

G = ({S}, {a, b}, {S → aSb, S → ab}, S).
The code of S is 10101, the code of a is 1001001, the code of b is 10011001. The code
of the grammar is

10101
︸ ︷︷ ︸

0000 1001001
︸ ︷︷ ︸

000 10101
︸ ︷︷ ︸

000 10011001
︸ ︷︷ ︸

00000 10101
︸ ︷︷ ︸

0000 1001001
︸ ︷︷ ︸

000

10011001
︸ ︷︷ ︸

.

From this encoding results that the grammars with terminal alphabet T can be
enumerated 1 as G1, G2, . . . , Gk, . . . , and the set of these grammars is a denumerable

1 Let us suppose that in the alphabet {0, 1} there is a linear order <, let us say 0 < 1. The words
which are codes of grammars can be enumerated by ordering them first after their lengths, and
inside the equal length words, alphabetically, using the order of their letters. But we can use equally
the lexicographic order, which means that u < v (u is before v) if u is a proper prefix of v or there
exists the decompositions u = xay and v = xby′, where x, y, y′ are subwords, a and b letters with
a < b.
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infinite set.
Consider now the set of all languages over T denoted by LT = {L | L ⊆ T ∗},

that is LT = P(T ∗). The set T ∗ is denumerable because its words can be ordered.
Let this order s0, s1, s2, . . ., where s0 = ε. We associate to each language L ∈ LT an
infinite binary sequence b0, b1, b2, . . . the following way:

bi =

{
1, if si ∈ L
0, if si 6∈ L

i = 0, 1, 2, . . . .

It is easy to see that the set of all such binary sequences is not denumerable, be-
cause each sequence can be considered as a positive number less than 1 using its
binary representation (The decimal point is considered to be before the first digit).
Conversely, to each positive number less than 1 in binary representation a binary
sequence can be associated. So, the cardinality of the set of infinite binary sequences
is equal to cardinality of interval [0, 1], which is of continuum power. Therefore the
set LT is of continuum cardinality. Now to each grammar with terminal alphabet
T associate the corresponding generated language over T . Since the cardinality of
the set of grammars is denumerable, there will exist a language from LT , without
associated grammar, a language which cannot be generated by a grammar.

1.1.3. Chomsky hierarchy of grammars and languages

Putting some restrictions on the form of productions, four type of grammars can be
distinguished.

Definition 1.5 Define for a grammar G = (N, T, P, S) the following four types.
A grammar G is of type 0 (phrase-structure grammar) if there are no re-

strictions on productions.
A grammar G is of type 1 (context-sensitive grammar) if all of its produc-

tions are of the form αAγ → αβγ, where A ∈ N , α, γ ∈ (N ∪ T )∗, β ∈ (N ∪ T )+.
A production of the form S → ε can also be accepted if the start symbol S does not
occur in the right-hand side of any production.

A grammar G is of type 2 (context-free grammar) if all of its productions are
of the form A → β, where A ∈ N , β ∈ (N ∪ T )+. A production of the form S → ε
can also be accepted if the start symbol S does not occur in the right-hand side of
any production.

A grammar G is of type 3 (regular grammar) if its productions are of the
form A → aB or A → a, where a ∈ T and A, B ∈ N . A production of the form
S → ε can also be accepted if the start symbol S does not occur in the right-hand
side of any production.

If a grammar G is of type i then language L(G) is also of type i.

This classification was introduced by Noam Chomsky.
A language L is of type i (i = 0, 1, 2, 3) if there exists a grammar G of type i

which generates the language L, so L = L(G).
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Denote by Li (i = 0, 1, 2, 3) the class of the languages of type i. Can be proved
that

L0 ⊃ L1 ⊃ L2 ⊃ L3 .

By the definition of different type of languages, the inclusions (⊇) are evident, but
the strict inclusions (⊃) must be proved.

Example 1.3 We give an example for each type of context-sensitive, context-free and
regular grammars.
Context-sensitive grammar. G1 = (N1, T1, P1, S1), where N1 = {S1, A, B, C}, T1 =
{a, 0, 1}.

Elements of P1 are:
S1 → ACA,
AC → AACA | ABa | AaB,
B → AB | A,
A → 0 | 1.

Language L(G1) contains words of the form uav with u, v ∈ {0, 1}∗ and |u| 6= |v|.
Context-free grammar. G2 = (N2, T2, P2, S), where N2 = {S, A, B}, T2 = {+, ∗, (, ), a}.

Elements of P2 are:
S → S + A | A,
A → A ∗ B | B,
B → (S) | a.

Language L(G2) contains algebraic expressions which can be correctly built using letter
a, operators + and ∗ and brackets.
Regular grammar. G3 = (N3, T3, P3, S3), where N3 = {S3, A, B}, T3 = {a, b}.

Elements of P3 are:
S3 → aA
A → aB | a
B → aB | bB | a | b.

Language L(G3) contains words over the alphabet {a, b} with at least two letters a at
the beginning.

It is easy to prove that any finite language is regular. The productions will
be done to generate all words of the language. For example, if u = a1a2 . . . an

is in the language, then we introduce the productions: S → a1A1, A1 → a2A2,
. . . An−2 → an−1An−1, An−1 → an, where S is the start symbol of the language and
A1, . . . , An−1 are distinct nonterminals. We define such productions for all words
of the language using different nonterminals for different words, excepting the start
symbol S. If the empty word is also an element of the language, then the production
S → ε is also considered.

The empty set is also a regular language, because the regular grammar G =
({S}, {a}, {S → aS}, S) generates it.

Eliminating unit productions. A production of the form A → B is called
a unit production, where A, B ∈ N . Unit productions can be eliminated from a
grammar in such a way that the new grammar will be of the same type and equivalent
to the first one.

Let G = (N, T, P, S) be a grammar with unit productions. Define an equivalent
grammar G′ = (N, T, P ′, S) without unit productions. The following algorithm will
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construct the equivalent grammar.

Eliminate-Unit-Productions(G)

1 if the unit productions A→ B and B → C are in P put also
the unit production A→ C in P while P can be extended,

2 if the unit production A→ B and the production B → α (α 6∈ N) are in P
put also the production A→ α in P ,

3 let P ′ be the set of productions of P except unit productions
4 return G′

Clearly, G and G′ are equivalent. If G is of type i ∈ {0, 1, 2, 3} then G′ is also of
type i.

Example 1.4 Use the above algorithm in the case of the grammar G =(
{S, A, B, C}, {a, b}, P, S

)
, where P contains

S → A, A → B, B → C, C → B, D → C,
S → B, A → D, C → Aa,

A → aB,
A → b.

Using the first step of the algorithm, we get the following new unit productions:
S → D (because of S → A and A → D),
S → C (because of S → B and B → C),
A → C (because of A → B and B → C),
B → B (because of B → C and C → B),
C → C (because of C → B and B → C),
D → B (because of D → C and C → B).

In the second step of the algorithm will be considered only productions with A or C in the
right-hand side, since productions A → aB, A → b and C → Aa can be used (the other
productions are all unit productions). We get the following new productions:

S → aB (because of S → A and A → aB),
S → b (because of S → A and A → b),
S → Aa (because of S → C and C → Aa),
A → Aa (because of A → C and C → Aa),
B → Aa (because of B → C and C → Aa).

The new grammar G′ =
(
{S, A, B, C}, {a, b}, P ′, S

)
will have the productions:

S → b, A → b, B → Aa, C → Aa,
S → aB, A → aB,
S → Aa A → Aa,

Grammars in normal forms. A grammar is to be said a grammar in normal
form if its productions have no terminal symbols in the left-hand side.

We need the following notions. For alphabets Σ1 and Σ2 a homomorphism is a
function h : Σ∗

1 → Σ∗

2 for which h(u1u2) = h(u1)h(u2), ∀u1, u2 ∈ Σ∗

1. It is easy to
see that for arbitrary u = a1a2 . . . an ∈ Σ∗

1 value h(u) is uniquely determined by the
restriction of h on Σ1, because h(u) = h(a1)h(a2) . . . h(an).

If a homomorphism h is a bijection then h is an isomorphism.
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Theorem 1.6 To any grammar an equivalent grammar in normal form can be
associated.

Proof Grammars of type 2 and 3 have in left-hand side of any productions only a
nonterminal, so they are in normal form. The proof has to be done for grammars of
type 0 and 1 only.

Let G = (N, T, P, S) be the original grammar and we define the grammar in
normal form as G′ = (N ′, T, P ′, S).

Let a1, a2, . . . , ak be those terminal symbols which occur in the left-hand side
of productions. We introduce the new nonterminals A1, A2, . . . , Ak. The following
notation will be used: T1 = {a1, a2, . . . , ak}, T2 = T \T1, N1 = {A1, A2, . . . , Ak} and
N ′ = N ∪N1.

Define the isomorphism h : N ∪ T −→ N ′ ∪ T2, where

h(ai) = Ai, if ai ∈ T1,
h(X) = X, if X ∈ N ∪ T2.

Define the set P ′ of production as

P ′ =
{

h(α)→ h(β)
∣
∣ (α→ β) ∈ P

}

∪
{

Ai −→ ai

∣
∣ i = 1, 2, . . . , k

}

.

In this case α
∗

=⇒
G

β if and only if h(α)
∗

=⇒
G′

h(β). From this the theorem

immediately results because S
∗

=⇒
G

u ⇔ S = h(S)
∗

=⇒
G′

h(u) = u.

Example 1.5 Let G = ({S, D, E}, {a, b, c, d, e}, P, S), where P contains
S → aebc | aDbc
Db → bD
Dc → Ebccd
bE → Eb
aE → aaD | aae.

In the left-hand side of productions the terminals a, b, c occur, therefore consider the
new nonterminals A, B, C, and include in P ′ also the new productions A → a, B → b and
C → c.

Terminals a, b, c will be replaced by nonterminals A, B, C respectively, and we get the
set P ′ as

S → AeBC | ADBC
DB → BD
DC → EBCCd
BE → EB
AE → AAD | AAe
A → a
B → b
C → c.

Let us see what words can be generated by this grammars. It is easy to see that

aebc ∈ L(G′), because S =⇒ AeBC
∗

=⇒ aebc.

S =⇒ ADBC =⇒ ABDC =⇒ ABEBCCd =⇒ AEBBCCd =⇒ AAeBBCCd
∗

=⇒
aaebbccd, so aaebbccd ∈ L(G′).
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We prove, using the mathematical induction, that S
∗

=⇒ An−1EBnC(Cd)n−1 for
n ≥ 2. For n = 2 this is the case, as we have seen before. Continuing the derivation we

get S
∗

=⇒ An−1EBnC(Cd)n−1 =⇒ An−2AADBnC(Cd)n−1 ∗

=⇒ AnBnDC(Cd)n−1 =⇒

AnBnEBCCd(Cd)n−1 ∗

=⇒ AnEBn+1CCd(Cd)n−1 = AnEBn+1C(Cd)n, and this is what
we had to prove.

But S
∗

=⇒ An−1EBnC(Cd)n−1 =⇒ An−2AAeBnC(Cd)n−1 ∗

=⇒ anebnc(cd)n−1. So
anebnc(cd)n−1 ∈ L(G′), n ≥ 1. These words can be generated also in G.

1.1.4. Extended grammars

In this subsection extended grammars of type 1, 2 and 3 will be presented.
Extended grammar of type 1. All productions are of the form α→ β, where

|α| ≤ |β|, excepted possibly the production S → ε.
Extended grammar of type 2. All productions are of the form A→ β, where

A ∈ N, β ∈ (N ∪ T )∗.
Extended grammar of type 3. All productions are of the form A → uB or

A→ u, Where A, B ∈ N, u ∈ T ∗.

Theorem 1.7 To any extended grammar an equivalent grammar of the same type
can be associated.

Proof Denote by Gext the extended grammar and by G the corresponding equivalent
grammar of the same type.

Type 1. Define the productions of grammar G by rewriting the productions
α → β, where |α| ≤ |β| of the extended grammar Gext in the form γ1δγ2 → γ1γγ2

allowed in the case of grammar G by the following way.
Let X1X2 . . . Xm → Y1Y2 . . . Yn (m ≤ n) be a production of Gext, which is not

in the required form. Add to the set of productions of G the following productions,
where A1, A2, . . . , Am are new nonterminals:

X1X2 . . . Xm → A1X2X3 . . . Xm

A1X2 . . . Xm → A1A2X3 . . . Xm

. . .
A1A2 . . . Am−1Xm → A1A2 . . . Am−1Am

A1A2 . . . Am−1Am → Y1A2 . . . Am−1Am

Y1A2 . . . Am−1Am → Y1Y2 . . . Am−1Am

. . .
Y1Y2 . . . Ym−2Am−1Am → Y1Y2 . . . Ym−2Ym−1Am

Y1Y2 . . . Ym−1Am → Y1Y2 . . . Ym−1YmYm+1 . . . Yn.

Furthermore, add to the set of productions of G without any modification the
productions of Gext which are of permitted form, i.e. γ1δγ2 → γ1γγ2.

Inclusion L(Gext) ⊆ L(G) can be proved because each used production of Gext

in a derivation can be simulated by productions G obtained from it. Furthermore,
since the productions of G can be used only in the prescribed order, we could not
obtain other words, so L(G) ⊆ L(Gext) also is true.

Type 2. Let Gext = (N, T, P, S). Productions of form A → ε have to be elimi-
nated, only S → ε can remain, if S doesn’t occur in the right-hand side of produc-
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tions. For this define the following sets:
U0 = {A ∈ N | (A→ ε) ∈ P}
Ui = Ui−1 ∪ {A ∈ N | (A→ w) ∈ P, w ∈ U+

i−1}.
Since for i ≥ 1 we have Ui−1 ⊆ Ui, Ui ⊆ N and N is a finite set, there must

exists such a k for which Uk−1 = Uk. Let us denote this set as U . It is easy to see

that a nonterminal A is in U if and only if A
∗

=⇒ ε. (In addition ε ∈ L(Gext) if and
only if S ∈ U .)

We define the productions of G starting from the productions of Gext in the
following way. For each production A → α with α 6= ε of Gext add to the set of
productions of G this one and all productions which can be obtained from it by
eliminating from α one or more nonterminals which are in U , but only in the case
when the right-hand side does not become ε.

It in not difficult to see that this grammar G generates the same language as
Gext does, except the empty word ε. So, if ε 6∈ L(Gext) then the proof is finished.
But if ε ∈ L(Gext), then there are two cases. If the start symbol S does not occur
in any right-hand side of productions, then by introducing the production S → ε,
grammar G will generate also the empty word. If S occurs in a production in the
right-hand side, then we introduce a new start symbol S′ and the new productions
S′ → S and S′ → ε. Now the empty word ε can also be generated by grammar G.

Type 3. First we use for Gext the procedure defined for grammars of type 2 to
eliminate productions of the form A→ ε. From the obtained grammar we eliminate
the unit productions using the algorithm Eliminate-Unit-Productions (see page
21).

In the obtained grammar for each production A → a1a2 . . . anB, where B ∈
N ∪ {ε}, add to the productions of G also the followings

A → a1A1,
A1 → a2A2,

. . .
An−1 → anB,

where A1, A2, . . . , An−1 are new nonterminals. It is easy to prove that grammar G
built in this way is equivalent to Gext.

Example 1.6 Let Gext = (N, T, P, S) be an extended grammar of type 1, where N =
{S, B, C}, T = {a, b, c} and P contains the following productions:

S → aSBC | aBC CB → BC
aB → ab bB → bb
bC → bc cC → cc .

The only production which is not context-sensitive is CB → BC. Using the method given
in the proof, we introduce the productions:

CB → AB
AB → AD
AD → BD
BD → BC

Now the grammar G = ({S, A, B, C, D}, {a, b, c}, P ′, S) is context-sensitive, where the ele-
ments of P ′ are
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S → aSBC | aBC
CB → AB aB → ab
AB → AD bB → bb
AD → BD bC → bc
BD → BC cC → cc.

It can be proved that L(Gext) = L(G) = {anbncn | n ≥ 1}.

Example 1.7 Let Gext = ({S, B, C}, {a, b, c}, P, S) be an extended grammar of type 2,
where P contains:

S → aSc | B
B → bB | C
C → Cc | ε.

Then U0 = {C}, U1 = {B, C}, U3 = {S, B, C} = U . The productions of the new grammar
are:

S → aSc | ac | B
B → bB | b | C
C → Cc | c.

The original grammar generates also the empty word and because S occurs in the right-
hand side of a production, a new start symbol and two new productions will be defined:
S′ → S, S′ → ε. The context-free grammar equivalent to the original grammar is G =
({S′, S, B, C}, {a, b, c}, P ′, S′) with the productions:

S′ → S | ε
S → aSc | ac | B
B → bB | b | C
C → Cc | c.

Both of these grammars generate language {ambncp | p ≥ m ≥ 0, n ≥ 0}.

Example 1.8 Let Gext = ({S, A, B}, {a, b}, P, S) be the extended grammar of type 3 under
examination, where P :

S → abA
A → bB
B → S | ε.

First, we eliminate production B → ε. Since U0 = U = {B}, the productions will be
S → abA
A → bB | b
B → S.

The latter production (which a unit production) can also be eliminated, by replacing it with
B → abA. Productions S → abA and B → abA have to be transformed. Since, both pro-
ductions have the same right-hand side, it is enough to introduce only one new nonterminal
and to use the productions S → aC and C → bA instead of S → abA. Production B → abA
will be replaced by B → aC. The new grammar is G = ({S, A, B, C}, {a, b}, P ′, S), where
P ′:

S → aC
A → bB | b
B → aC
C → bA.

Can be proved that L(Gext) = L(G) = {(abb)n | n ≥ 1}.
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1.1.5. Closure properties in the Chomsky-classes

We will prove the following theorem, by which the Chomsky-classes of languages are
closed under the regular operations, that is, the union and product of two languages
of type i is also of type i, the iteration of a language of type i is also of type i
(i = 0, 1, 2, 3).

Theorem 1.8 The class Li (i = 0, 1, 2, 3) of languages is closed under the regular
operations.

Proof For the proof we will use extended grammars. Consider the extended gram-
mars G1 = (N1, T1, P1, S1) and G2 = (N2, T2, P2, S2) of type i each. We can suppose
that N1 ∩N2 = ∅.

Union. Let G∪ = (N1 ∪N2 ∪ {S}, T1 ∪ T2, P1 ∪ P2 ∪ {S → S1, S → S2}, S).
We will show that L(G∪) = L(G1)∪L(G2). If i = 0, 2, 3 then from the assumption

that G1 and G2 are of type i follows by definition that G∪ also is of type i. If i = 1
and one of the grammars generates the empty word, then we eliminate from G∪ the
corresponding production (possibly the both) Sk → ε (k = 1, 2) and replace it by
production S → ε.

Product. Let G× = (N1 ∪N2 ∪ {S}, T1 ∪ T2, P1 ∪ P2 ∪ {S → S1S2}, S).
We will show that L(G×) = L(G1)L(G2). By definition, if i = 0, 2 then G× will

be of the same type. If i = 1 and there is production S1 → ε in P1 but there is
no production S2 → ε in P2 then production S1 → ε will be replaced by S → S2.
We will proceed the same way in the symmetrical case. If there is in P1 production
S1 → ε and in P2 production S2 → ε then they will be replaced by S → ε.

In the case of regular grammars (i = 3), because S → S1S2 is not a regular
production, we need to use another grammar G× = (N1 ∪N2, T1 ∪ T2, P ′

1 ∪ P2, S1),
where the difference between P ′

1 and P1 lies in that instead of productions in the
form A→ u, u ∈ T ∗ in P ′

1 will exist production of the form A→ uS2.
Iteration. Let G∗ = (N1 ∪ {S}, T1, P, S).
In the case of grammars of type 2 let P = P1 ∪ {S → S1S, S → ε}. Then G∗

also is of type 2.
In the case of grammars of type 3, as in the case of product, we will change the

productions, that is P = P ′

1 ∪ {S → S1, S → ε}, where the difference between P ′

1

and P1 lies in that for each A → u (u ∈ T ∗) will be replaced by A → uS, and the
others will be not changed. Then G∗ also will be of type 3.

The productions given in the case of type 2 are not valid for i = 0, 1, because

when applying production S → S1S we can get the derivations of type S
∗

=⇒ S1S1,

S1
∗

=⇒ α1β1, S1
∗

=⇒ α2β2, where β1α2 can be a left-hand side of a production. In

this case, replacing β1α2 by its right-hand side in derivation S
∗

=⇒ α1β1α2β2, we
can generate a word which is not in the iterated language. To avoid such situations,
first let us assume that the language is in normal form, i.e. the left-hand side of
productions does not contain terminals (see page 21), second we introduce a new
nonterminal S′, so the set of nonterminals now is N1 ∪ {S, S′}, and the productions
are the following:

P = P1 ∪ {S → ε, S → S1S′} ∪ {aS′ → aS | a ∈ T1} .
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Now we can avoid situations in which the left-hand side of a production can extend
over the limits of words in a derivation because of the iteration. The above derivations
can be used only by beginning with S =⇒ S1S′ and getting derivation S

∗
=⇒ α1β1S′.

Here we can not replace S′ unless the last symbol in β1 is a terminal symbol, and
only after using a production of the form aS′ → aS.

It is easy to show that L(G∗) = L(G1)∗ for each type.type

Exercises
1.1-1 Give a grammar which generates language L =

{
uu−1 | u ∈ {a, b}∗

}
and

determine its type.
1.1-2 Let G = (N, T, P, S) be an extended context-free grammar, where

N = {S, A, C, D}, T = {a, b, c, d, e},
P = {S → abCADe, C → cC, C → ε, D → dD, D → ε, A → ε, A →

dDcCA}.
Give an equivalent context-free grammar.
1.1-3 Show that Σ∗ and Σ+ are regular languages over arbitrary alphabet Σ.
1.1-4 Give a grammar to generate language L =

{
u ∈ {0, 1}∗ | n0(u) = n1(u)

}
,

where n0(u) represents the number of 0’s in word u and n1(u) the number of 1’s.
1.1-5 Give a grammar to generate all natural numbers.
1.1-6 Give a grammar to generate the following languages, respectively:

L1 = {anbmcp | n ≥ 1, m ≥ 1, p ≥ 1},
L2 = {a2n | n ≥ 1},
L3 = {anbm | n ≥ 0, m ≥ 0 },
L4 = {anbm | n ≥ m ≥ 1}.

1.1-7 Let G = (N, T, P, S) be an extended grammar, where N = {S, A, B, C},
T = {a} and P contains the productions:

S → BAB, BA→ BC, CA→ AAC, CB → AAB, A→ a, B → ε .
Determine the type of this grammar. Give an equivalent, not extended grammar
with the same type. What language it generates?

1.2. Finite automata and regular languages

Finite automata are computing models with input tape and a finite set of states
(Fig. 1.1). Among the states some are called initial and some final. At the beginning
the automaton read the first letter of the input word written on the input tape.
Beginning with an initial state, the automaton read the letters of the input word
one after another while change its states, and when after reading the last input letter
the current state is a final one, we say that the automaton accepts the given word.
The set of words accepted by such an automaton is called the language accepted
(recognized) by the automaton.

Definition 1.9 A nondeterministic finite automaton (NFA) is a system A =
(Q, Σ, E, I, F ), where
• Q is a finite, nonempty set of states,
• Σ is the input alphabet,
• E is the set of transitions (or of edges), where E ⊆ Q× Σ×Q,
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a1 a2 a3 . . .

-

control unit

input tape

yes/no

6

an

Figure 1.1 Finite automaton.

• I ⊆ Q is the set of initial states,
• F ⊆ Q is the set of final states.

An NFA is in fact a directed, labelled graph, whose vertices are the states and
there is a (directed) edge labelled with a from vertex p to vertex q if (p, a, q) ∈ E.
Among vertices some are initial and some final states. Initial states are marked by
a small arrow entering the corresponding vertex, while the final states are marked
with double circles. If two vertices are joined by two edges with the same direction
then these can be replaced by only one edge labelled with two letters. This graph
can be called a transition graph.

Example 1.9 Let A = (Q, Σ, E, I, F ), where Q = {q0, q1, q2}, Σ = {0, 1, 2}, E ={
(q0, 0, q0), (q0, 1, q1), (q0, 2, q2),

(q1, 0, q1), (q1, 1, q2), (q1, 2, q0),
(q2, 0, q2), (q2, 1, q0), (q2, 2, q1)

}

I = {q0}, F = {q0}.
The automaton can be seen in Fig. 1.2.

In the case of an edge (p, a, q) vertex p is the start-vertex, q the end-vertex and
a the label. Now define the notion of the walk as in the case of graphs. A sequence

(q0, a1, q1), (q1, a2, q2), . . . , (qn−2, an−1, qn−1), (qn−1, an, qn)

of edges of a NFA is a walk with the label a1a2 . . . an. If n = 0 then q0 = qn and
a1a2 . . . an = ε. Such a walk is called an empty walk. For a walk the notation

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

an−1

−→ qn−1
an−→ qn

will be used, or if w = a1a2 . . . an then we write shortly q0
w
−→ qn. Here q0 is the

start-vertex and qn the end-vertex of the walk. The states in a walk are not necessary
distinct.

A walk is productive if its start-vertex is an initial state and its end-vertex is
a final state. We say that an NFA accepts or recognizes a word if this word is the
label of a productive walk. The empty word ε is accepted by an NFA if there is an
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Figure 1.2 The finite automaton of Example 1.9.
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Figure 1.3 Nondeterministic finite automata.

empty productive walk, i.e. there is an initial state which is also a final state.
The set of words accepted by an NFA will be called the language accepted by

this NFA. The language accepted or recognized by NFA A is

L(A) =
{

w ∈ Σ∗ | ∃p ∈ I, ∃q ∈ F, ∃p
w
−→ q

}

.

The NFA A1 and A2 are equivalent if L(A1) = L(A2).
Sometimes it is useful the following transition function:

δ : Q× Σ→ P (Q), δ(p, a) = {q ∈ Q | (p, a, q) ∈ E} .

This function associate to a state p and input letter a the set of states in which
the automaton can go if its current state is p and the head is on input letter a.
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δ 0 1

q0 {q1} ∅

q1 ∅ {q2}

q2 {q2} {q2}

A

δ 0 1

q0 {q0, q1} {q0}

q1 ∅ {q2}

q2 {q2} {q2}

B

Figure 1.4 Transition tables of the NFA in Fig. 1.3.

Denote by |H| the cardinal (the number of elements) of H.2 An NFA is a de-
terministic finite automaton (DFA) if

|I| = 1 and |δ(q, a)| ≤ 1, ∀q ∈ Q, ∀a ∈ Σ .

In Fig. 1.2 a DFA can be seen.
Condition |δ(q, a)| ≤ 1 can be replaced by

(p, a, q) ∈ E, (p, a, r) ∈ E =⇒ q = r ,∀p, q, r ∈ Q,∀a ∈ Σ .

If for a DFA |δ(q, a)| = 1 for each state q ∈ Q and for each letter a ∈ Σ then it is
called a complete DFA.

Every DFA can be transformed in a complete DFA by introducing a new state,
which can be called a snare state. Let A = (Q, Σ, E, {q0}, F ) be a DFA. An equivalent
and complete DFA will be A′ = (Q ∪ {s}, Σ, E′, {q0}, F ), where s is the new state
and E′ = E ∪

{
(p, a, s) | δ(p, a) = ∅, p ∈ Q, a ∈ Σ

}
∪

{
(s, a, s) | a ∈ Σ

}
. It is easy to

see that L(A) = L(A′).
Using the transition function we can easily define the transition table. The rows

of this table are indexed by the elements of Q, its columns by the elements of Σ. At
the intersection of row q ∈ Q and column a ∈ Σ we put δ(q, a). In the case of Fig.
1.2, the transition table is:

δ 0 1 2

q0 {q0} {q1} {q2}

q1 {q1} {q2} {q0}

q2 {q2} {q0} {q1}

The NFA in Fig. 1.3 are not deterministic: the first (automaton A) has two
initial states, the second (automaton B) has two transitions with 0 from state q0 (to
states q0 and q1). The transition table of these two automata are in Fig. 1.4. L(A)
is set of words over Σ = {0, 1} which do not begin with two zeroes (of course ε is in
language), L(B) is the set of words which contain 01 as a subword.

Eliminating inaccessible states. Let A = (Q, Σ, E, I, F ) be a finite automaton.
A state is accessible if it is on a walk which starts by an initial state. The following

2 The same notation is used for the cardinal of a set and length of a word, but this is no matter of
confusion because for word we use lowercase letters and for set capital letters. The only exception
is δ(q, a), but this could not be confused with a word.
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algorithm determines the inaccessible states building a sequence U0, U1, U2, . . . of
sets, where U0 is the set of initial states, and for any i ≥ 1 Ui is the set of accessible
states, which are at distance at most i from an initial state.

Inaccessible-States(A)

1 U0 ← I
2 i← 0
3 repeat

4 i← i + 1
5 for all q ∈ Ui−1

6 do for all a ∈ Σ
7 do Ui ← Ui−1 ∪ δ(q, a)
8 until Ui = Ui−1

9 U ← Q \ Ui

10 return U

The inaccessible states of the automaton can be eliminated without changing
the accepted language.

If |Q| = n and |Σ| = m then the running time of the algorithm (the number of
steps) in the worst case is O(n2m), because the number of steps in the two embedded
loops is at most nm and in the loop repeat at most n.

Set U has the property that L(A) 6= ∅ if and only if U ∩ F 6= ∅. The above
algorithm can be extended by inserting the U∩F 6= ∅ condition to decide if language
L(A) is or not empty.

Eliminating nonproductive states. Let A = (Q, Σ, E, I, F ) be a finite au-
tomaton. A state is productive if it is on a walk which ends in a terminal state. For
finding the productive states the following algorithm uses the function δ−1:

δ−1 : Q× Σ→ P(Q), δ−1(p, a) = {q | (q, a, p) ∈ E} .

This function for a state p and a letter a gives the set of all states from which using
this letter a the automaton can go into the state p.

Nonproductive-States(A)

1 V0 ← F
2 i← 0
3 repeat

4 i← i + 1
5 for all p ∈ Vi−1

6 do for all a ∈ Σ
7 do Vi ← Vi−1 ∪ δ−1(p, a)
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8 until Vi = Vi−1

9 V ← Q \ Vi

10 return V

The nonproductive states of the automaton can be eliminated without changing
the accepted language.

If n is the number of states, m the number of letters in the alphabet, then
the running time of the algorithm is also O(n2m) as in the case of the algorithm
Inaccessible-States.

The set V given by the algorithm has the property that L(A) 6= ∅ if and only if
V ∩ I 6= ∅. So, by a little modification it can be used to decide if language L(A) is
or not empty.

1.2.1. Transforming nondeterministic finite automata

As follows we will show that any NFA can be transformed in an equivalent DFA.

Theorem 1.10 For any NFA one may construct an equivalent DFA.

Proof Let A = (Q, Σ, E, I, F ) be an NFA. Define a DFA A = (Q, Σ, E, I, F ), where

• Q = P(Q) \ ∅,
• edges of E are those triplets (S, a, R) for which R, S ∈ Q are not empty, a ∈ Σ

and R =
⋃

p∈S

δ(p, a),

• I = {I},
• F = {S ⊆ Q | S ∩ F 6= ∅}.
We prove that L(A) = L(A).
a) First prove that L(A) ⊆ L(A). Let w = a1a2 . . . ak ∈ L(A). Then there exists

a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

ak−1

−→ qk−1
ak−→ qk, q0 ∈ I, qk ∈ F .

Using the transition function δ of NFA A we construct the sets S0 = {q0}, δ(S0, a1) =
S1, . . . δ(Sk−1, ak) = Sk. Then q1 ∈ S1, . . . , qk ∈ Sk and since qk ∈ F we get
Sk ∩ F 6= ∅, so Sk ∈ F . Thus, there exists a walk

S0
a1−→ S1

a2−→ S2
a3−→ · · ·

ak−1

−→ Sk−1
ak−→ Sk, S0 ⊆ I, Sk ∈ F .

There are sets S′

0, . . . , S′

k for which S′

0 = I, and for i = 0, 1, . . . , k we have Si ⊆ S′

i,
and

S′

0
a1−→ S′

1
a2−→ S′

2
a3−→ · · ·

ak−1

−→ S′

k−1
ak−→ S′

k

is a productive walk. Therefore w ∈ L(A). That is L(A) ⊆ L(A).
b) Now we show that L(A) ⊆ L(A). Let w = a1a2 . . . ak ∈ L(A). Then there is a

walk

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

ak−1

−→ qk−1
ak−→ qk, q0 ∈ I, qk ∈ F .
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Figure 1.5 The equivalent DFA with NFA A in Fig. 1.3.

Using the definition of F we have qk∩F 6= ∅, i.e. there exists qk ∈ qk∩F , that is by the
definitions of qk ∈ F and qk there is qk−1 such that (qk−1, ak, qk) ∈ E. Similarly, there
are the states qk−2, . . . , q1, q0 such that (qk−2, ak, qk−1) ∈ E, . . . , (q0, a1, q1) ∈ E,
where q0 ∈ q0 = I, thus, there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

ak−1

−→ qk−1
ak−→ qk, q0 ∈ I, qk ∈ F ,

so L(A) ⊆ L(A).

In constructing DFA we can use the corresponding transition function δ:

δ(q, a) =







⋃

q∈q

δ(q, a)






, ∀q ∈ Q,∀a ∈ Σ .

The empty set was excluded from the states, so we used here ∅ instead of {∅}.

Example 1.10 Apply Theorem 1.10 to transform NFA A in Fig. 1.3. Introduce the fol-
lowing notation for the states of the DFA:

S0 := {q0, q1}, S1 := {q0}, S2 := {q1}, S3 := {q2},
S4 := {q0, q2}, S5 := {q1, q2}, S6 := {q0, q1, q2} ,

where S0 is the initial state. Using the transition function we get the transition table:

δ 0 1

S0 {S2} {S3}

S1 {S2} ∅

S2 ∅ {S3}

S3 {S3} {S3}

S4 {S5} {S3}

S5 {S3} {S3}

S6 {S5} {S3}

This automaton contains many inaccessible states. By algorithm Inaccessible-States we
determine the accessible states of DFA:

U0 = {S0}, U1 = {S0, S2, S3}, U2 = {S0, S2, S3} = U1 = U.

Initial state S0 is also a final state. States S2 and S3 are final states. States S1, S4, S5, S6

are inaccessible and can be removed from the DFA. The transition table of the resulted
DFA is
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δ 0 1

S0 {S2} {S3}

S2 ∅ {S3}

S3 {S3} {S3}

The corresponding transition graph is in Fig. 1.5.

The algorithm given in Theorem 1.10 can be simplified. It is not necessary to
consider all subset of the set of states of NFA. The states of DFA A can be obtained
successively. Begin with the state q0 = I and determine the states δ(q0, a) for all
a ∈ Σ. For the newly obtained states we determine the states accessible from them.
This can be continued until no new states arise.

In our previous example q0 := {q0, q1} is the initial state. From this we get

δ(q0, 0) = {q1}, where q1 := {q1}, δ(q0, 1) = {q2}, where q2 := {q2},
δ(q1, 0) = ∅, δ(q1, 1) = {q2},
δ(q2, 0) = {q2}, δ(q2, 1) = {q2}.

The transition table is

δ 0 1

q0 {q1} {q2}

q1 ∅ {q2}

q2 {q2} {q2}

which is the same (excepted the notation) as before.
The next algorithm will construct for an NFA A = (Q, Σ, E, I, F ) the transition

table M of the equivalent DFA A = (Q, Σ, E, I, F ), but without to determine the
final states (which can easily be included). Value of IsIn(q, Q) in the algorithm is
true if state q is already in Q and is false otherwise. Let a1, a2, . . . , am be an ordered
list of the letters of Σ.

NFA-DFA(A)

1 q0 ← I
2 Q← {q0}
3 i← 0 � i counts the rows.
4 k ← 0 � k counts the states.
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5 repeat

6 for j = 1, 2, . . . , m � j counts the columns.

7 do q ←
⋃

p∈qi

δ(p, aj)

8 if q 6= ∅
9 then if IsIn(q, Q)

10 then M [i, j]← {q}
11 else k ← k + 1
12 qk ← q
13 M [i, j]← {qk}
14 Q← Q ∪ {qk}
15 else M [i, j]← ∅
16 i← i + 1
17 until i = k + 1
18 return transition table M of A

Since loop repeat is executed as many times as the number of states of new
automaton, in worst case the running time can be exponential, because, if the number
of states in NFA is n, then DFA can have even 2n−1 states. (The number of subsets
of a set of n elements is 2n, including the empty set.)

Theorem 1.10 will have it that to any NFA one may construct an equivalent DFA.
Conversely, any DFA is also an NFA by definition. So, the nondeterministic finite
automata accepts the same class of languages as the deterministic finite automata.

1.2.2. Equivalence of deterministic finite automata

In this subsection we will use complete deterministic finite automata only. In this
case δ(q, a) has a single element. In formulae, sometimes, instead of set δ(q, a) we
will use its single element. We introduce for a set A = {a} the function elem(A)
which give us the single element of set A, so elem(A) = a. Using walks which begin
with the initial state and have the same label in two DFA’s we can determine the
equivalence of these DFA’s. If only one of these walks ends in a final state, then they
could not be equivalent.

Consider two DFA’s over the same alphabet A = (Q, Σ, E, {q0}, F ) and A′ =
(Q′, Σ, E′, {q′

0}, F ′). We are interested to determine if they are or not equivalent. We
construct a table with elements of form (q, q′), where q ∈ Q and q′ ∈ Q′. Beginning
with the second column of the table, we associate a column to each letter of the
alphabet Σ. If the first element of the ith row is (q, q′) then at the cross of ith row and

the column associated to letter a will be the pair
(

elem
(
δ(q, a)

)
, elem

(
δ′(q′, a)

))

.

. . . a . . .

. . . . . .

(q, q′)

(

elem
(

δ(q, a)
)

, elem
(

δ′(q′, a)
))

. . . . . .
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In the first column of the first row we put (q0, q′

0) and complete the first row using
the above method. If in the first row in any column there occur a pair of states
from which one is a final state and the other not then the algorithm ends, the two
automata are not equivalent. If there is no such a pair of states, every new pair is
written in the first column. The algorithm continues with the next unfilled row. If
no new pair of states occurs in the table and for each pair both of states are final or
both are not, then the algorithm ends and the two DFA are equivalent.

If |Q| = n, |Q′| = n′ and |Σ| = m then taking into account that in worst
case loop repeat is executed nn′ times, loop for m times, the running time of the
algorithm in worst case will be O(nn′m), or if n = n′ then O(n2m).

Our algorithm was described to determine the equivalence of two complete
DFA’s. If we have to determine the equivalence of two NFA’s, first we transform
them into complete DFA’s and after this we can apply the above algorithm.

DFA-Equivalence(A, A′)

1 write in the first column of the first row the pair (q0, q′

0)
2 i← 0
3 repeat

4 i← i + 1
5 let (q, q′) be the pair in the first column of the ith row
6 for all a ∈ Σ
7 do write in the column associated to a in the ith row

the pair
(

elem
(
δ(q, a)

)
, elem

(
δ′(q′, a)

))

8 if one state in
(

elem
(
δ(q, a)

)
, elem

(
δ′(q′, a)

))

is final

and the other not
9 then return no

10 else write pair
(

elem
(
δ(q, a)

)
, elem

(
δ′(q′, a)

))

in the next empty row of the first column,
if not occurred already in the first column

11 until the first element of (i + 1)th row becomes empty
12 return yes

Example 1.11 Determine if the two DFA’s in Fig. 1.6 are equivalent or not. The algorithm
gives the table

a b

(q0, p0) (q2, p3) (q1, p1)

(q2, p3) (q1, p2) (q2, p3)

(q1, p1) (q2, p3) (q0, p0)

(q1, p2) (q2, p3) (q0, p0)

The two DFA’s are equivalent because all possible pairs of states are considered and
in every pair both states are final or both are not final.
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Example 1.12 The table of the two DFA’s in Fig. 1.7 is:

a b

(q0, p0) (q1, p3) (q2, p1)

(q1, p3) (q2, p2) (q0, p3)

(q2, p1)

(q2, p2)

These two DFA’s are not equivalent, because in the last column of the second row in the
pair (q0, p3) the first state is final and the second not.

1.2.3. Equivalence of finite automata and regular languages.

We have seen that NFA’s accept the same class of languages as DFA’s. The following
theorem states that this class is that of regular languages.

Theorem 1.11 If L is a language accepted by a DFA, then one may construct a
regular grammar which generates language L.

Proof Let A = (Q, Σ, E, {q0}, F ) be the DFA accepting language L, that is L =
L(A). Define the regular grammar G = (Q, Σ, P, q0) with the productions:
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Figure 1.6 Equivalent DFA’s (Example 1.11).
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Figure 1.7 Non equivalent DFA’s (Example 1.12).
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- - -
? ?

a a

b bq0 q1 q2

Figure 1.8 DFA of the Example 1.13.

• If (p, a, q) ∈ E for p, q ∈ Q and a ∈ Σ, then put production p→ aq in P .
• If (p, a, q) ∈ E and q ∈ F , then put also production p→ a in P .
Prove that L(G) = L(A) \ {ε}.
Let u = a1a2 . . . an ∈ L(A) and u 6= ε. Thus, since A accepts word u, there is a

walk
q0

a1−→ q1
a2−→ q2

a3−→ · · ·
an−1

−→ qn−1
an−→ qn, qn ∈ F .

Then there are in P the productions

q0 → a1q1, q1 → a2q2, . . . , qn−2 → an−1qn−1, qn−1 → an

(in the right-hand side of the last production qn does not occur, because qn ∈ F ),
so there is the derivation

q0 =⇒ a1q1 =⇒ a1a2q2 =⇒ . . . =⇒ a1a2 . . . an−1qn−1 =⇒ a1a2 . . . an.

Therefore, u ∈ L(G).
Conversely, let u = a1a2 . . . an ∈ L(G) and u 6= ε. Then there exists a derivation

q0 =⇒ a1q1 =⇒ a1a2q2 =⇒ . . . =⇒ a1a2 . . . an−1qn−1 =⇒ a1a2 . . . an ,

in which productions

q0 → a1q1, q1 → a2q2, . . . , qn−2 → an−1qn−1, qn−1 → an

were used, which by definition means that in DFA A there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

an−1

−→ qn−1
an−→ qn ,

and since qn is a final state, u ∈ L(A) \ {ε} .
If the DFA accepts also the empty word ε, then in the above grammar we

introduce a new start symbol q′

0 instead of q0, consider the new production q′

0 → ε
and for each production q0 → α introduce also q′

0 → α.

Example 1.13 Let A = ({q0, q1, q2}, {a, b}, E, {q0}, {q2}) be a DFA, where E =
{

(q0, a, q0),

(q0, b, q1), (q1, b, q2), (q2, a, q2)
}

. The corresponding transition table is

δ a b

q0 {q0} {q1}

q1 ∅ {q2}

q2 {q2} ∅
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The transition graph of A is in Fig. 1.8. By Theorem 1.11 we define regular grammar
G = ({q0, q1, q2}, {a, b}, P, q0) with the productions in P

q0 → aq0 | bq1, q1 → bq2 | b, q2 → aq2 | a .
One may prove that L(A) = {ambban | m ≥ 0, n ≥ 0}.

The method described in the proof of Theorem 1.11 easily can be given as an
algorithm. The productions of regular grammar G = (Q, Σ, P, q0) obtained from the
DFA A = (Q, Σ, E, {q0}, F ) can be determined by the following algorithm.

Regular-Grammar-from-DFA(A)

1 P ← ∅
2 for all p ∈ Q
3 do for all a ∈ Σ
4 do for all q ∈ Q
5 do if (p, a, q) ∈ E
6 then P ← P ∪ {p→ aq}
7 if q ∈ F
8 then P ← P ∪ {p→ a}
9 if q0 ∈ F

10 then P ← P ∪ {q0 → ε}
11 return G

It is easy to see that the running time of the algorithm is Θ(n2m), if the number
of states is n and the number of letter in alphabet is m. In lines 2–4 we can consider
only one loop, if we use the elements of E. Then the worst case running time is
Θ(p), where p is the number of transitions of DFA. This is also O(n2m), since all
transitions are possible. This algorithm is:

Regular-Grammar-from-Dfa’(A)

1 P ← ∅
2 for all (p, a, q) ∈ E
3 do P ← P ∪ {p→ aq}
4 if q ∈ F
5 then P ← P ∪ {p→ a}
6 if q0 ∈ F
7 then P ← P ∪ {q0 → ε}
8 return G

Theorem 1.12 If L = L(G) is a regular language, then one may construct an
NFA that accepts language L.

Proof Let G = (N, T, P, S) be the grammar which generates language L. Define
NFA A = (Q, T, E, {S}, F ):
• Q = N ∪ {Z}, where Z 6∈ N ∪ T (i.e. Z is a new symbol),
• For every production A→ aB, define transition (A, a, B) in E.
• For every production A→ a, define transition (A, a, Z) in E.
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Figure 1.9 NFA associated to grammar in Example 1.14.

• F =

{
{Z} if production S → ε does not occur in G,
{Z, S} if production S → ε occurs in G.

Prove that L(G) = L(A).
Let u = a1a2 . . . an ∈ L(G), u 6= ε. Then there is in G a derivation of word u:

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an .

This derivation is based on productions

S → a1A1, A1 → a2A2, . . . , An−2 → an−1An−1, An−1 → an .

Then, by the definition of the transitions of NFA A there exists a walk

S
a1−→ A1

a2−→ A2
a3−→ · · ·

an−1

−→ An−1
an−→ Z, Z ∈ F .

Thus, u ∈ L(A). If ε ∈ L(G), there is production S → ε, but in this case the initial
state is also a final one, so ε ∈ L(A). Therefore, L(G) ⊆ L(A).

Let now u = a1a2 . . . an ∈ L(A). Then there exists a walk

S
a1−→ A1

a2−→ A2
a3−→ · · ·

an−1

−→ An−1
an−→ Z, Z ∈ F .

If u is the empty word, then instead of Z we have in the above formula S, which
also is a final state. In other cases only Z can be as last symbol. Thus, in G there
exist the productions

S → a1A1, A1 → a2A2, . . . , An−2 → an−1An−1, An−1 → an ,

and there is the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an ,

thus, u ∈ L(G) and therefore L(A) ⊆ L(G).

Example 1.14 Let G = ({S, A, B}, {a, b}, {S → aS, S → bA, A → bB, A →
b, B → aB, B → a}, S) be a regular grammar. The NFA associated is A =
({S, A, B, Z}, {a, b}, E, {S}, {Z}), where E =

{
(S, a, S), (S, b, A), (A, b, B), (A, b, Z),

(B, a, B), (B, a, Z)
}

. The corresponding transition table is
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δ a b

S {S} {A}

A ∅ {B, Z}

B {B, Z} ∅

E ∅ ∅

The transition graph is in Fig. 1.9. This NFA can be simplified, states B and Z can be
contracted in one final state.

Using the above theorem we define an algorithm which associate an NFA A =
(Q, T, E, {S}, F ) to a regular grammar G = (N, T, P, S).

NFA-from-Regular-Grammar(A)

1 E ← ∅
2 Q← N ∪ {Z}
3 for all A ∈ N
4 do for all a ∈ T
5 do if (A→ a) ∈ P
6 then E ← E ∪ {(A, a, Z)}
7 for all B ∈ N
8 do if (A→ aB) ∈ P
9 then E ← E ∪ {(A, a, B)}

10 if (S → ε) 6∈ P
11 then F ← {Z}
12 else F ← {Z, S}
13 return A

As in the case of algorithm Regular-Grammar-from-DFA, the running time
is Θ(n2m), where n is number of nonterminals and m the number of terminals. Loops
in lines 3, 4 and 7 can be replaced by only one, which uses productions. The running
time in this case is better and is equal to Θ(p), if p is the number of productions.
This algorithm is:

NFA-from-Regular-Grammar’(A)

1 E ← ∅
2 Q← N ∪ {Z}
3 for all (A→ u) ∈ P
4 do if u = a
5 then E ← E ∪ {(A, a, Z)}
6 if u = aB
7 then E ← E ∪ {(A, a, B)}
8 if (S → ε) 6∈ P
9 then F ← {Z}

10 else F ← {Z, S}
11 return A



42 1. Automata and Formal Languages

Regular grammars
Nondeterministic

finite automata

Deterministic

finite automata

-

+

Y

Figure 1.10 Relations between regular grammars and finite automata. To any regular grammar
one may construct an NFA which accepts the language generated by that grammar. Any NFA can
be transformed in an equivalent DFA. To any DFA one may construct a regular grammar which
generates the language accepted by that DFA.

From Theorems 1.10, 1.11 and 1.12 results that the class of regular languages
coincides with the class of languages accepted by NFA’s and also with class of lan-
guages accepted by DFA’s. The result of these three theorems is illustrated in Fig.
1.10 and can be summarised also in the following theorem.

Theorem 1.13 The following three class of languages are the same:
• the class of regular languages,
• the class of languages accepted by DFA’s,
• the class of languages accepted by NFA’s.

Operation on regular languages It is known (see Theorem 1.8) that the set
L3 of regular languages is closed under the regular operations, that is if L1, L2 are
regular languages, then languages L1∪L2, L1L2 and L∗

1 are also regular. For regular
languages are true also the following statements.

The complement of a regular language is also regular. This is easy to prove using
automata. Let L be a regular language and let A = (Q, Σ, E, {q0}, F ) be a DFA
which accepts language L. It is easy to see that the DFA A = (Q, Σ, E, {q0}, Q \ F )
accepts language L. So, L is also regular.

The intersection of two regular languages is also regular. Since L1∩L2 = L1 ∪ L2,
the intersection is also regular.

The difference of two regular languages is also regular. Since L1 \L2 = L1 ∩L2,
the difference is also regular.

1.2.4. Finite automata with special moves

A finite automaton with ε-moves (FA with ε-moves) extends NFA in such way that
it may have transitions on the empty input ε, i.e. it may change a state without
reading any input symbol. In the case of a FA with ε-moves A = (Q, Σ, E, I, F ) for
the set of transitions it is true that E ⊆ Q×

(
Σ ∪ {ε}

)
×Q.

The transition function of a FA with ε-moves is:
δ : Q×

(
Σ ∪ {ε}

)
→ P(Q), δ(p, a) = {q ∈ Q | (p, a, q) ∈ E} .
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Figure 1.11 Finite automata ε-moves.

The FA with ε-moves in Fig. 1.11 accepts words of form uvw, where u ∈
{1}∗, v ∈ {0}∗ and w ∈ {1}∗.

Theorem 1.14 To any FA with ε-moves one may construct an equivalent NFA
(without ε-moves).

Let A = (Q, Σ, E, I, F ) be an FA with ε-moves and we construct an equivalent NFA
A = (Q, Σ, E, I, F ). The following algorithm determines sets F and E.

For a state q denote by Λ(q) the set of states (including even q) in which one
may go from q using ε-moves only. This may be extended also to sets

Λ(S) =
⋃

q∈S

Λ(q), ∀S ⊆ Q .

Clearly, for all q ∈ Q and S ⊆ Q both Λ(q) and Λ(S) may be computed. Suppose in
the sequel that these are given.

The following algorithm determine the transitions using the transition function
δ, which is defined in line 5.

If |Q| = n and |Σ| = m,, then lines 2–6 show that the running time in worst case
is O(n2m).

Eliminate-Epsilon-Moves(A)

1 F ← F ∪ {q ∈ I | Λ(q) ∩ F 6= ∅}
2 for all q ∈ Q
3 do for all a ∈ Σ

4 do ∆←
⋃

p∈Λ(q)

δ(p, a)

5 δ(q, a)← ∆ ∪




⋃

p∈∆

Λ(p)





6 E ←
{

(p, a, q), | p, q ∈ Q, a ∈ Σ, q ∈ δ(p, a)
}

7 return A

Example 1.15 Consider the FA with ε-moves in Fig. 1.11. The corresponding transition
table is:

δ 0 1 ε

q0 ∅ {q0} {q1}

q1 {q1} ∅ {q2}

q2 ∅ {q2} ∅
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Figure 1.12 NFA equivalent to FA with ε-moves given in Fig. 1.11.

Apply algorithm Eliminate-Epsilon-Moves.
Λ(q0) = {q0, q1, q2}, Λ(q1) = {q1, q2}, Λ(q2) = {q2}
Λ(I) = Λ(q0), and its intersection with F is not empty, thus F = F ∪ {q0} = {q0, q2}.
(q0, 0) :

∆ = δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0) = {q1}, {q1} ∪ Λ(q1) = {q1, q2}
δ(q0, 0) = {q1, q2}.

(q0, 1) :
∆ = δ(q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1) = {q0, q2}, {q0, q2} ∪ (Λ(q0) ∪ Λ(q2)) = {q0, q1, q2}
δ(q0, 1) = {q0, q1, q2}

(q1, 0) :
∆ = δ(q1, 0) ∪ δ(q2, 0) = {q1}, {q1} ∪ Λ(q1) = {q1, q2}
δ(q1, 0) = {q1, q2}

(q1, 1) :
∆ = δ(q1, 1) ∪ δ(q2, 1) = {q2}, {q2} ∪ Λ(q2) = {q2}
δ(q1, 1) = {q2}

(q2, 0) : ∆ = δ(q2, 0) = ∅
δ(q2, 0) = ∅

(q2, 1) :
∆ = δ(q2, 1) = {q2}, {q2} ∪ Λ(q2) = {q2}
δ(q2, 1) = {q2}.

The transition table of NFA A is:

δ 0 1

q0 {q1, q2} {q0, q1, q2}

q1 {q1, q2} {q2}

q2 ∅ {q2}

and the transition graph is in Fig. 1.12.

Define regular operations on NFA: union, product and iteration. The result will
be an FA with ε-moves.

Operation will be given also by diagrams. An NFA is given as in Fig. 1.13(a).
Initial states are represented by a circle with an arrow, final states by a double circle.

Let A1 = (Q1, Σ1, E1, I1, F1) and A2 = (Q2, Σ2, E2, I2, F2) be NFA. The result
of any operation is a FA with ε-moves A = (Q, Σ, E, I, F ). Suppose that Q1∩Q2 = ∅
always. If not, we can rename the elements of any set of states.

Union. A = A1 ∪A2, where
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Figure 1.13 (a) Representation of an NFA. Initial states are represented by a circle with an arrow,
final states by a double circle. (b) Union of two NFA’s.

Q = Q1 ∪Q2 ∪ {q0} ,
Σ = Σ1 ∪ Σ2 ,
I = {q0} ,
F = F1 ∪ F2 ,

E = E1 ∪ E2 ∪
⋃

q∈I1∪I2

{
(q0, ε, q)

}
.

For the result of the union see Fig. 1.13(b). The result is the same if instead of
a single initial state we choose as set of initial states the union I1 ∪ I2. In this case
the result automaton will be without ε-moves. By the definition it is easy to see that
L(A1 ∪A2) = L(A1) ∪ L(A2).

Product. A = A1 ·A2, where
Q = Q1 ∪Q2,
Σ = Σ1 ∪ Σ2,
F = F2,
I = I1,

E = E1 ∪ E2 ∪
⋃

p ∈ F1

q ∈ I2

{
(p, ε, q)

}
.

For the result automaton see Fig. 1.14(a). Here also L(A1 ·A2) = L(A1)L(A2).

Iteration. A = A1
∗, where

Q = Q1 ∪ {q0},
Σ = Σ1,
F = F1 ∪ {q0},
I = {q0}
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Figure 1.14 (a) Product of two FA. (b) Iteration of an FA.
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Figure 1.15 Minimization of DFA.

E = E1 ∪
⋃

p∈I1

{
(q0, ε, p)

}
∪

⋃

q ∈ F1

p ∈ I1

{
(q, ε, p)

}
.

The iteration of an FA can be seen in Fig. 1.14(b). For this operation it is also
true that L(A∗

1) =
(
L(A1)

)∗

.
The definition of these tree operations proves again that regular languages are

closed under the regular operations.

1.2.5. Minimization of finite automata

A DFA A = (Q, Σ, E, {q0}, F ) is called minimum state automaton if for any
equivalent complete DFA A′ = (Q′, Σ, E′, {q′

0}, F ′) it is true that |Q| ≤ |Q′|. We
give an algorithm which builds for any complete DFA an equivalent minimum state
automaton.
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States p and q of an DFA A = (Q, Σ, E, {q0}, F ) are equivalent if for arbitrary
word u we reach from both either final or nonfinal states, that is

p ≡ q if for any word u ∈ Σ∗

{
p

u
−→ r, r ∈ F and q

u
−→ s, s ∈ F or

p
u
−→ r, r 6∈ F and q

u
−→ s, s 6∈ F .

If two states are not equivalent, then they are distinguishable. In the following
algorithm the distinguishable states will be marked by a star, and equivalent states
will be merged. The algorithm will associate list of pair of states with some pair
of states expecting a later marking by a star, that is if we mark a pair of states
by a star, then all pairs on the associated list will be also marked by a star. The
algorithm is given for DFA without inaccessible states. The used DFA is complete,
so δ(p, a) contains exact one element, function elem defined on page 35, which gives
the unique element of the set, will be also used here.

Automaton-Minimization(A)

1 mark with a star all pairs of states
{

p, q
}

for which
p ∈ F and q 6∈ F or p 6∈ F and q ∈ F

2 associate an empty list with each unmarked pair
{

p, q
}

3 for all unmarked pair of states
{

p, q
}

and for all symbol a ∈ Σ
examine pairs of states

{
elem

(
δ(p, a)

)
, elem

(
δ(q, a)

)}

if any of these pairs is marked,
then mark also pair

{
p, q

}
with all the elements on the list before

associated with pair
{

p, q
}

else if all the above pairs are unmarked
then put pair {p, q} on each list associated with pairs

{
elem

(
δ(p, a)

)
, elem

(
δ(q, a)

)}
, unless δ(p, a) = δ(q, a)

4 merge all unmarked (equivalent) pairs

After finishing the algorithm, if a cell of the table does not contain a star,
then the states corresponding to its row and column index, are equivalent and may
be merged. Merging states is continued until it is possible. We can say that the
equivalence relation decomposes the set of states in equivalence classes, and the
states in such a class may be all merged.

Remark. The above algorithm can be used also in the case of an DFA which is
not complete, that is there are states for which does not exist transition. Then a
pair

{
∅, {q}

}
may occur, and if q is a final state, consider this pair marked.

Example 1.16 Let be the DFA in Fig. 1.15. We will use a table for marking pairs with
a star. Marking pair {p, q} means putting a star in the cell corresponding to row p and
column q (or row q and column p).

First we mark pairs {q2, q0}, {q2, q1}, {q2, q3}, {q2, q4} and {q2, q5} (because
q2 is the single final state). Then consider all unmarked pairs and examine them
as the algorithm requires. Let us begin with pair {q0, q1}. Associate with it pairs
{elem

(
δ(q0, 0)

)
, elem

(
δ(q1, 0)

)
}, {elem

(
δ(q0, 1)

)
, elem

(
δ(q1, 1)

)
}, that is {q1, q4}, {q4, q2}.

Because pair {q4, q2} is already marked, mark also pair {q0, q1}.
In the case of pair {q0, q3} the new pairs are {q1, q5} and {q4, q4}. With pair {q1, q5}
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Figure 1.16 Minimum automaton equivalent with DFA in Fig. 1.15.

associate pair {q0, q3} on a list, that is

{q1, q5} −→ {q0, q3} .

Now continuing with {q1, q5} one obtain pairs {q4, q4} and {q2, q2}, with which nothing are
associated by algorithm.

Continue with pair {q0, q4}. The associated pairs are {q1, q4} and {q4, q3}. None of
them are marked, so associate with them on a list pair {q0, q4}, that is

{q1, q4} −→ {q0, q4}, {q4, q3} −→ {q0, q4} .

Now continuing with {q1, q4} we get the pairs {q4, q4} and {q2, q3}, and because this latter
is marked we mark pair {q1, q4} and also pair {q0, q4} associated to it on a list. Continuing
we will get the table in Fig. 1.15, that is we get that q0 ≡ q3 and q1 ≡ q5. After merging
them we get an equivalent minimum state automaton (see Fig. 1.16).

1.2.6. Pumping lemma for regular languages

The following theorem, called pumping lemma for historical reasons, may be effi-
ciently used to prove that a language is not regular. It is a sufficient condition for a
regular language.

Theorem 1.15 (pumping lemma). For any regular language L there exists a nat-
ural number n ≥ 1 (depending only on L), such that any word u of L with length at
least n may be written as u = xyz such that

(1) |xy| ≤ n,
(2) |y| ≥ 1,
(3) xyiz ∈ L for all i = 0, 1, 2, . . ..
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Figure 1.17 Sketch of DFA used in the proof of the pumping lemma.

Proof If L is a regular language, then there is such an DFA which accepts L (by
Theorems 1.12 and 1.10). Let A = (Q, Σ, E, {q0}, F ) be this DFA, so L = L(A).
Let n be the number of its states, that is |Q| = n. Let u = a1a2 . . . am ∈ L and
m ≥ n. Then, because the automaton accepts word u, there are states q0, q1, . . . , qm

and walk
q0

a1−→ q1
a2−→ q2

a3−→ · · ·
am−1

−→ qm−1
am−→ qm, qm ∈ F .

Because the number of states is n and m ≥ n, by the pigeonhole principle3 states
q0, q1, . . . , qm can not all be distinct (see Fig. 1.17), there are at least two of them
which are equal. Let qj = qk, where j < k and k is the least such index. Then
j < k ≤ n. Decompose word u as:

x = a1a2 . . . aj

y = aj+1aj+2 . . . ak

z = ak+1ak+2 . . . am .
This decomposition immediately yields to |xy| ≤ n and |y| ≥ 1. We will prove that
xyiz ∈ L for any i.
Because u = xyz ∈ L, there exists an walk

q0
x
−→ qj

y
−→ qk

z
−→ qm, qm ∈ F,

and because of qj = qk, this may be written also as

q0
x
−→ qj

y
−→ qj

z
−→ qm, qm ∈ F .

From this walk qj
y
−→ qj can be omitted or can be inserted many times. So, there

are the following walks:
q0

x
−→ qj

z
−→ qm, qm ∈ F ,

q0
x
−→ qj

y
−→ qj

y
−→ . . .

y
−→ qj

z
−→ qm, qm ∈ F .

3 Pigeonhole principle: If we have to put more than k objects into k boxes, then at least one box
will contain at least two objects.
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Therefore xyiz ∈ L for all i, and this proves the theorem.

Example 1.17 We use the pumping lemma to show that L1 = {akbk | k ≥ 1} is not
regular. Assume that L1 is regular, and let n be the corresponding natural number given
by the pumping lemma. Because the length of the word u = anbn is 2n, this word can be
written as in the lemma. We prove that this leads to a contradiction. Let u = xyz be the
decomposition as in the lemma. Then |xy| ≤ n, so x and y can contain no other letters
than a, and because we must have |y| ≥ 1, word y contains at least one a. Then xyiz for
i 6= 1 will contain a different number of a’s and b’s, therefore xyiz 6∈ L1 for any i 6= 1. This
is a contradiction with the third assertion of the lemma, this is why that assumption that
L1 is regular, is false. Therefore L1 6∈ L3.

Because the context-free grammar G1 = ({S}, {a, b}, {S → ab, S → aSb}, S) generates
language L1, we have L1 ∈ L2. From these two follow that L3 ⊂ L2.

Example 1.18 We show that L2 =
{

u ∈ {0, 1}∗ | n0(u) = n1(u)
}

is not regular. (n0(u) is
the number of 0’s in u, while n1(u) the number of 1’s).

We proceed as in the previous example using here word u = 0n1n, where n is the
natural number associated by lemma to language L2.

Example 1.19 We prove, using the pumping lemma, that L3 =
{

uu | u ∈ {a, b}∗
}

is not
a regular language. Let w = anbanb = xyz be, where n here is also the natural number
associated to L3 by the pumping lemma. From |xy| ≤ n we have that y contains no other
letters than a, but it contains at least one. By lemma we have xz ∈ L3, that is not possible.
Therefore L3 is not regular.

Pumping lemma has several interesting consequences.

Corollary 1.16 Regular language L is not empty if and only if there exists a word
u ∈ L, |u| < n, where n is the natural number associated to L by the pumping lemma.

Proof The assertion in a direction is obvious: if there exists a word shorter than
n in L, then L 6= ∅. Conversely, let L 6= ∅ and let u be the shortest word in L.
We show that |u| < n. If |u| ≥ n, then we apply the pumping lemma, and give
the decomposition u = xyz, |y| > 1 and xz ∈ L. This is a contradiction, because
|xz| < |u| and u is the shortest word in L. Therefore |u| < n.

Corollary 1.17 There exists an algorithm that can decide if a regular language is
or not empty.

Proof Assume that L = L(A), where A = (Q, Σ, E, {q0}, F ) is a DFA. By Conse-
quence 1.16 and Theorem 1.15 language L is not empty if and only if it contains a
word shorter than n, where n is the number of states of automaton A. By this it is
enough to decide that there is a word shorter than n which is accepted by automaton
A. Because the number of words shorter than n is finite, the problem can be decided.
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When we had given an algorithm for inaccessible states of a DFA, we remarked
that the procedure can be used also to decide if the language accepted by that
automaton is or not empty. Because finite automata accept regular languages, we
can consider to have already two procedures to decide if a regular languages is
or not empty. Moreover, we have a third procedure, if we take into account that
the algorithm for finding productive states also can be used to decide on a regular
language when it is empty.

Corollary 1.18 A regular language L is infinite if and only if there exists a word
u ∈ L such that n ≤ |u| < 2n, where n is the natural number associated to language
L, given by the pumping lemma.

Proof If L is infinite, then it contains words longer than 2n, and let u be the shortest
word longer than 2n in L. Because L is regular we can use the pumping lemma, so
u = xyz, where |xy| ≤ n, thus |y| ≤ n is also true. By the lemma u′ = xz ∈ L. But
because |u′| < |u| and the shortest word in L longer than 2n is u, we get |u′| < 2n.
From |y| ≤ n we get also |u′| ≥ n.

Conversely, if there exists a word u ∈ L such that n ≤ |u| < 2n, then using the
pumping lemma, we obtain that u = xyz, |y| ≥ 1 and xyiz ∈ L for any i, therefore
L is infinite.

Now, the question is: how can we apply the pumping lemma for a finite regular
language, since by pumping words we get an infinite number of words? The number
of states of a DFA accepting language L is greater than the length of the longest
word in L. So, in L there is no word with length at least n, when n is the natural
number associated to L by the pumping lemma. Therefore, no word in L can be
decomposed in the form xyz, where |xyz| ≥ n, |xy| ≤ n, |y| ≥ 1, and this is why we
can not obtain an infinite number of words in L.

1.2.7. Regular expressions

In this subsection we introduce for any alphabet Σ the notion of regular expressions
over Σ and the corresponding representing languages. A regular expression is a
formula, and the corresponding language is a language over Σ. For example, if Σ =
{a, b}, then a∗, b∗, a∗ +b∗ are regular expressions over Σ which represent respectively
languages {a}∗, {b}∗, {a}∗ ∪ {b}∗. The exact definition is the following.

Definition 1.19 Define recursively a regular expression over Σ and the language
it represent.
• ∅ is a regular expression representing the empty language.
• ε is a regular expression representing language {ε}.
• If a ∈ Σ, then a is a regular expression representing language {a}.
• If x, y are regular expressions representing languages X and Y respectively,

then (x + y), (xy), (x∗) are regular expressions representing languages X ∪ Y , XY
and X∗ respectively.

Regular expression over Σ can be obtained only by using the above rules a finite
number of times.
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x + y ≡ y + x

(x + y) + z ≡ x + (y + z)

(xy)z ≡ x(yz)

(x + y)z ≡ xz + yz

x(y + z) ≡ xy + xz

(x + y)∗ ≡ (x∗ + y)∗ ≡ (x + y∗)∗ ≡ (x∗ + y∗)∗

(x + y)∗ ≡ (x∗y∗)∗

(x∗)∗ ≡ x∗

x∗x ≡ xx∗

xx∗ + ε ≡ x∗

Figure 1.18 Properties of regular expressions.

Some brackets can be omitted in the regular expressions if taking into account the
priority of operations (iteration, product, union) the corresponding languages are
not affected. For example instead of ((x∗)(x + y)) we can consider x∗(x + y).

Two regular expressions are equivalent if they represent the same language,
that is x ≡ y if X = Y , where X and Y are the languages represented by regular
expressions x and y respectively. Figure 1.18 shows some equivalent expressions.

We show that to any finite language L can be associated a regular expression
x which represent language L. If L = ∅, then x = ∅. If L = {w1, w2, . . . , wn},
then x = x1 + x2 + . . . + xn, where for any i = 1, 2, . . . , n expression xi is a regular
expression representing language {wi}. This latter can be done by the following rule.
If wi = ε, then xi = ε, else if wi = a1a2 . . . am, where m ≥ 1 depends on i, then
xi = a1a2 . . . am, where the brackets are omitted.

We prove the theorem of Kleene which refers to the relationship between regular
languages and regular expression.

Theorem 1.20 (Kleene’s theorem). Language L ⊆ Σ∗ is regular if and only if
there exists a regular expression over Σ representing language L.

Proof First we prove that if x is a regular expression, then language L which
represents x is also regular. The proof will be done by induction on the construction
of expression.

If x = ∅, x = ε, x = a,∀a ∈ Σ, then L = ∅, L = {ε}, L = {a} respectively. Since
L is finite in all three cases, it is also regular.

If x = (x1 + x2), then L = L1 ∪ L2, where L1 and L2 are the languages which
represent the regular expressions x1 and x2 respectively. By the induction hypothesis
languages L1 and L2 are regular, so L is also regular because regular languages are
closed on union. Cases x = (x1x2) and x = (x∗

1) can be proved by similar way.
Conversely, we prove that if L is a regular language, then a regular expression x

can be associated to it, which represent exactly the language L. If L is regular, then
there exists a DFA A = (Q, Σ, E, {q0}, F ) for which L = L(A). Let q0, q1, . . . , qn the
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Figure 1.19 DFA from Example 1.20, to which regular expression is associated by Method 1.

states of the automaton A. Define languages Rk
ij for all −1 ≤ k ≤ n and 0 ≤ i, j ≤ n.

Rk
ij is the set of words, for which automaton A goes from state qi to state qj without

using any state with index greater than k. Using transition graph we can say: a word
is in Rk

ij , if from state qi we arrive to state qj following the edges of the graph, and
concatenating the corresponding labels on edges we get exactly that word, not using
any state qk+1, . . . qn. Sets Rk

ij can be done also formally:

R−1
ij = {a ∈ Σ | (qi, a, qj) ∈ E}, if i 6= j,

R−1
ii = {a ∈ Σ | (qi, a, qi) ∈ E} ∪ {ε},

Rk
ij = Rk−1

ij ∪Rk−1
ik

(
Rk−1

kk

)∗

Rk−1
kj for all i, j, k ∈ {0, 1, . . . , n}.

We can prove by induction that sets Rk
ij can be described by regular expres-

sions. Indeed, if k = −1, then for all i and j languages Rk
ij are finite, so they can

be expressed by regular expressions representing exactly these languages. Moreover,
if for all i and j language Rk−1

ij can be expressed by regular expression, then lan-

guage Rk
ij can be expressed also by regular expression, which can be corresponding

constructed from regular expressions representing languages Rk−1
ij , Rk−1

ik , Rk−1
kk and

Rk−1
kj respectively, using the above formula for Rk

ij .
Finally, if F = {qi1

, qi2
, . . . , qip

} is the set of final states of the DFA A, then
L = L(A) = Rn

0i1
∪Rn

0i2
∪. . .∪Rn

0ip
can be expressed by a regular expression obtained

from expressions representing languages Rn
0i1

, Rn
0i2

, . . . , Rn
0ip

using operation +.

Further on we give some procedures which associate DFA to regular expressions
and conversely regular expression to DFA.

Associating regular expressions to finite automata. We present here three
methods, each of which associate to a DFA the corresponding regular expression.

Method 1. Using the result of the theorem of Kleene, we will construct the sets
Rk

ij , and write a regular expression which represents the language L = Rn
0i1
∪Rn

0i2
∪

. . . ∪Rn
0ip

, where F = {qi1
, qi2

, . . . , qip
} is the set of final states of the automaton.

Example 1.20 Consider the DFA in Fig. 1.19.
L(A) = R1

00 = R0
00 ∪ R0

01

(
R0

11

)
∗

R0
10

R0
00 : 1∗ + ε ≡ 1∗

R0
01 : 1∗0

R0
11 : 11∗0 + ε + 0 ≡ (11∗ + ε)0 + ε ≡ 1∗0 + ε
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q0 q1 q2 q3- - - -
?R

�
1 0 1

1

0
0

Figure 1.20 DFA in Example 1.21 to which a regular expression is associated by Method 1. The
computation are in Figure 1.21.

R0
10 : 11∗

Then the regular expression corresponding to L(A) is 1∗ + 1∗0(1∗0 + ε)∗11∗ ≡ 1∗ +
1∗0(1∗0)∗11∗.

Example 1.21 Find a regular expression associated to DFA in Fig. 1.20. The computations
are in Figure 1.21. The regular expression corresponding to R3

03 is 11 + (0 + 10)0∗1.

Method 2. Now we generalize the notion of finite automaton, considering words
instead of letters as labels of edges. In such an automaton each walk determine a reg-
ular expression, which determine a regular language. The regular language accepted
by a generalized finite automaton is the union of regular languages determined by
the productive walks. It is easy to see that the generalized finite automata accept
regular languages.

The advantage of generalized finite automata is that the number of its edges
can be diminuted by equivalent transformations, which do not change the accepted
language, and leads to a graph with only one edge which label is exactly the accepted
language.

The possible equivalent transformations can be seen in Fig. 1.22. If some of the
vertices 1, 2, 4, 5 on the figure coincide, in the result they are merged, and a loop
will arrive.

First, the automaton is transformed by corresponding ε-moves to have only one
initial and one final state. Then, applying the equivalent transformations until the
graph will have only one edge, we will obtain as the label of this edge the regular
expression associated to the automaton.

Example 1.22 In the case of Fig. 1.19 the result is obtained by steps illustrated in Fig.
1.23. This result is (1 + 00∗1)∗, which represents the same language as obtained by Method
1 (See example 1.20).

Example 1.23 In the case of Fig. 1.20 is not necessary to introduce new initial and
final state. The steps of transformations can be seen in Fig. 1.24. The resulted regular
expression can be written also as (0 + 10)0∗1 + 11, which is the same as obtained by the
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k = −1 k = 0 k = 1 k = 2 k = 3

Rk
00

ε ε ε ε

Rk
01

1 1 1 1

Rk
02

0 0 0 + 10 (0 + 10)0∗

Rk
03

∅ ∅ 11 11 + (0 + 10)0∗1 11 + (0 + 10)0∗1

Rk
11

ε ε ε ε

Rk
12

0 0 0 00∗

Rk
13

1 1 1 1 + 00∗1

Rk
22

0 + ε 0 + ε 0 + ε 0∗

Rk
23

1 1 1 0∗1

Rk
33

ε ε ε ε

Figure 1.21 Determining a regular expression associated to DFA in Figure 1.20 using sets Rk
ij

.

previous method.

Method 3. The third method for writing regular expressions associated to finite
automata uses formal equations. A variable X is associated to each state of the au-
tomaton (to different states different variables). Associate to each state an equation
which left side contains X, its right side contains sum of terms of form Y a or ε,
where Y is a variable associated to a state, and a is its corresponding input symbol.
If there is no incoming edge in the state corresponding to X then the right side of
the equation with left side X contains ε, otherwise is the sum of all terms of the form
Y a for which there is a transition labelled with letter a from state corresponding to
Y to the state corresponding to X. If the state corresponding to X is also an initial
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Figure 1.22 Possible equivalent transformations for finding regular expression associated to an
automaton.
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Figure 1.23 Transformation of the finite automaton in Fig. 1.19.

and a final state, then on right side of the equation with the left side X will be also
a term equal to ε. For example in the case of Fig. 1.20 let these variable X, Y, Z, U
corresponding to the states q0, q1, q2, q3. The corresponding equation are

X = ε
Y = X1
Z = X0 + Y 0 + Z0
U = Y 1 + Z1.
If an equation is of the form X = Xα + β, where α, β are arbitrary words not

containing X, then it is easy to see by a simple substitution that X = βα∗ is a
solution of the equation.

Because these equations are linear, all of them can be written in the form X =
Xα + β or X = Xα, where α do not contain any variable. Substituting this in the



1.2. Finite automata and regular languages 57

q0 q2 q3- -
?R

1

0 0

-10

*

11

q0 q3-

*

11

j

-

00∗1

100∗1

q0 q3- 00∗1 + 100∗1 + 11 -

Figure 1.24 Steps of Example 1.23.

other equations the number of remaining equations will be diminuted by one. In
such a way the system of equation can be solved for each variable.

The solution will be given by variables corresponding to final states summing
the corresponding regular expressions.

In our example from the first equation we get Y = 1. From here Z = 0 + 10 +
Z0, or Z = Z0 + (0 + 10), and solving this we get Z = (0 + 10)0∗. Variable U can
be obtained immediately and we obtain U = 11 + (0 + 10)0∗1.

Using this method in the case of Fig. 1.19, the following equations will be ob-
tained

X = ε + X1 + Y 1
Y = X0 + Y 0

Therefore
X = ε + (X + Y )1
Y = (X + Y )0.

Adding the two equations we will obtain
X + Y = ε + (X + Y )(0 + 1), from where (considering ε as β and (0 + 1) as α)

we get the result
X + Y = (0 + 1)∗.

From here the value of X after the substitution is
X = ε + (0 + 1)∗1,

which is equivalent to the expression obtained using the other methods.



58 1. Automata and Formal Languages
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Figure 1.25 Possible transformations to obtain finite automaton associated to a regular expression.

Associating finite automata to regular expressions. Associate to the reg-
ular expression r a generalized finite automaton:

-- r

After this, use the transformations in Fig. 1.25 step by step, until an automaton
with labels equal to letters from Σ or ε will be obtained.

Example 1.24 Get started from regular expression ε + (0 + 1)∗1. The steps of transfor-
mations are in Fig. 1.26(a)-(e). The last finite automaton (see Fig. 1.26(e)) can be done
in a simpler form as can be seen in Fig. 1.26(f). After eliminating the ε-moves and trans-
forming in a deterministic finite automaton the DFA in Fig. 1.27 will be obtained, which
is equivalent to DFA in Fig. 1.19.

Exercises
1.2-1 Give a DFA which accepts natural numbers divisible by 9.
1.2-2 Give a DFA which accepts the language containing all words formed by

a. an even number of 0’s and an even number of 1’s,
b. an even number of 0’s and an odd number of 1’s,
c. an odd number of 0’s and an even number of 1’s,
d. an odd number of 0’s and an odd number of 1’s.

1.2-3 Give a DFA to accept respectively the following languages:
L1 = {anbm | n ≥ 1, m ≥ 0}, L2 = {anbm | n ≥ 1, m ≥ 1},
L3 = {anbm | n ≥ 0, m ≥ 0}, L4 = {anbm | n ≥ 0, m ≥ 1}.

1.2-4 Give an NFA which accepts words containing at least two 0’s and any number
of 1’s. Give an equivalent DFA.
1.2-5 Minimize the DFA’s in Fig. 1.28.
1.2-6 Show that the DFA in 1.29.(a) is a minimum state automaton.
1.2-7 Transform NFA in Fig. 1.29.(b) in a DFA, and after this minimize it.



1.2. Finite automata and regular languages 59

- -
ε + (0 + 1)∗1

(a)

-
j

*

ε

(0 + 1)∗1

(b)

- - -
R

ε

(0 + 1)∗ 1

(c)

-

ε

6
ε ε 1

0 + 1

- - -
R

(d)

- - - -

6
ε ε 1

0

?
1

R

ε

(e)

- - -

6
ε 1

0

?

1

(f)

Figure 1.26 Associating finite automaton to regular expression ε + (0 + 1)∗1.
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Figure 1.27 Finite automaton associated to regular expression ε + (0 + 1)∗1.
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Figure 1.28 DFA’s to minimize for Exercise 1.2-5
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Figure 1.29 Finite automata for Exercises 1.2-6 and 1.2-7.

1.2-8 Define finite automaton A1 which accepts all words of the form 0(10)n (n ≥ 0),
and finite automaton A2 which accepts all words of the form 1(01)n (n ≥ 0). Define
the union automaton A1 ∪A2, and then eliminate the ε-moves.
1.2-9 Associate to DFA in Fig. 1.30 a regular expression.
1.2-10 Associate to regular expression ab∗ba∗ + b + ba∗a a DFA.
1.2-11 Prove, using the pumping lemma, that none of the following languages are
regular:

L1 =
{

ancbn | n ≥ 0
}

, L2 =
{

anbnan | n ≥ 0
}

, L3 =
{

ap | p prím
}

.
1.2-12 Prove that if L is a regular language, then {u−1 | u ∈ L} is also regular.
1.2-13 Prove that if L ⊆ Σ∗ is a regular language, then the following languages are

- - - -
? ?

0,1

1 0 1

0,1

q0 q1 q2 q3

Figure 1.30 DFA for Exercise 1.2-9.
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Figure 1.31 Pushdown automaton.

also regular.
pre(L) = {w ∈ Σ∗ | ∃u ∈ Σ∗, wu ∈ L}, suf(L) = {w ∈ Σ∗ | ∃u ∈ Σ∗, uw ∈ L}.

1.2-14 Show that the following languages are all regular.
L1 = {abncdm | n > 0, m > 0},
L2 = {(ab)n | n ≥ 0},
L3 = {akn | n ≥ 0, k constant}.

1.3. Pushdown automata and context-free languages

In this section we deal with the pushdown automata and the class of languages —
the context-free languages — accepted by them.

As we have been seen in Section 1.1, a context-free grammar G = (N, T, P, S) is
one with the productions of the form A→ β, A ∈ N , β ∈ (N ∪T )+. The production
S → ε is also permitted if S does not appear in right hand side of any productions.

Language L(G) = {u ∈ T ∗ | S
∗

=⇒
G

u} is the context-free language generated by

grammar G.

1.3.1. Pushdown automata

We have been seen that finite automata accept the class of regular languages. Now
we get to know a new kind of automata, the so-called pushdown automata, which
accept context-free languages. The pushdown automata differ from finite automata
mainly in that to have the possibility to change states without reading any input
symbol (i.e. to read the empty symbol) and possess a stack memory, which uses the
so-called stack symbols (See Fig. 1.31).

The pushdown automaton get a word as input, start to function from an initial
state having in the stack a special symbol, the initial stack symbol. While working,
the pushdown automaton change its state based on current state, next input symbol
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(or empty word) and stack top symbol and replace the top symbol in the stack with
a (possibly empty) word.

There are two type of acceptances. The pushdown automaton accepts a word by
final state when after reading it the automaton enter a final state. The pushdown
automaton accepts a word by empty stack when after reading it the automaton
empties its stack. We show that these two acceptances are equivalent.

Definition 1.21 A nondeterministic pushdown automaton is a system
V = (Q, Σ, W, E, q0, z0, F ) ,

where
• Q is the finite, non-empty set of states
• Σ is the input alphabet,
• W is the stack alphabet,
• E ⊆ Q×

(
Σ ∪ {ε}

)
×W ×W ∗ ×Q is the set of transitions or edges,

• q0 ∈ Q is the initial state,
• z0 ∈W is the start symbol of stack,
• F ⊆ Q is the set of final states.

A transition (p, a, z, w, q) means that if pushdown automaton V is in state p,
reads from the input tape letter a (instead of input letter we can also consider the
empty word ε), and the top symbol in the stack is z, then the pushdown automaton
enters state q and replaces in the stack z by word w. Writing word w in the stack is
made by natural order (letters of word w will be put in the stack letter by letter from
left to right). Instead of writing transition (p, a, z, w, q) we will use a more suggestive
notation

(
p, (a, z/w), q

)
.

Here, as in the case of finite automata, we can define a transition function

δ : Q× (Σ ∪ {ε})×W → P(W ∗ ×Q) ,

which associate to current state, input letter and top letter in stack pairs of the form
(w, q), where w ∈W ∗ is the word written in stack and q ∈ Q the new state.

Because the pushdown automaton is nondeterministic, we will have for the tran-
sition function

δ(q, a, z) = {(w1, p1), . . . , (wk, pk)} (if the pushdown automaton reads an input
letter and moves to right), or

δ(q, ε, z) = {(w1, p1), . . . , (wk, pk)} (without move on the input tape).
A pushdown automaton is deterministic, if for any q ∈ Q and z ∈W we have
• |δ(q, a, z)| ≤ 1, ∀a ∈ Σ ∪ {ε} and
• if δ(q, ε, z) 6= ∅, then δ(q, a, z) = ∅, ∀a ∈ Σ.
We can associate to any pushdown automaton a transition table, exactly as in

the case of finite automata. The rows of this table are indexed by elements of Q, the
columns by elements from Σ ∪ {ε} and W (to each a ∈ Σ ∪ {ε} and z ∈W will cor-
respond a column). At intersection of row corresponding to state q ∈ Q and column
corresponding to a ∈ Σ ∪ {ε} and z ∈ W we will have pairs (w1, p1), . . . , (wk, pk) if
δ(q, a, z) = {(w1, p1), . . . , (wk, pk)}.

The transition graph, in which the label of edge (p, q) will be (a, z/w) corre-
sponding to transition

(
p, (a, z/w), q

)
, can be also defined.
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Figure 1.32 Example of pushdown automaton.

Example 1.25 V1 = ({q0, q1, q2}, {a, b}, {z0, z1}, E, q0, z0, {q0}). Elements of E are:

(
q0, (a, z0/z0z1), q1

)

(
q1, (a, z1/z1z1), q1

) (
q1, (b, z1/ε), q2

)

(
q2, (b, z1/ε), q2

) (
q2, (ε, z0/ε), q0

)
.

The transition function:

δ(q0, a, z0) = {(z0z1, q1)}
δ(q1, a, z1) = {(z1z1, q1)} δ(q1, b, z1) = {(ε, q2)}
δ(q2, b, z1) = {(ε, q2)} δ(q2, ε, z0) = {(ε, q0)} .

The transition table:

Σ ∪ {ε} a b ε

W z0 z1 z1 z0

q0 (z0z1, q1)

q1 (z1z1, q1) (ε, q2)

q2 (ε, q2) (ε, q0)

Because for the transition function every set which is not empty contains only one element
(e.g. δ(q0, a, z0) = {(z0z1, q1)}), in the above table each cell contains only one element,
And the set notation is not used. Generally, if a set has more than one element, then its
elements are written one under other. The transition graph of this pushdown automaton is
in Fig. 1.32.

The current state, the unread part of the input word and the content of stack
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constitutes a configuration of the pushdown automaton, i.e. for each q ∈ Q, u ∈ Σ∗

and v ∈W ∗ the triplet (q, u, v) can be a configuration.
If u = a1a2 . . . ak and v = x1x2 . . . xm, then the pushdown automaton can change

its configuration in two ways:
• (q, a1a2 . . . ak, x1x2 . . . xm−1xm) =⇒ (p, a2a3 . . . ak, x1, x2 . . . xm−1w),

if
(
q, (a1, xm/w), p

)
∈ E

• (q, a1a2 . . . ak, x1x2 . . . xm) =⇒ (p, a1a2 . . . ak, x1, x2 . . . xm−1w),
if

(
q, (ε, xm/w), p

)
∈ E.

The reflexive and transitive closure of the relation =⇒ will be denoted by
∗

=⇒.
Instead of using =⇒, sometimes ` is considered.

How does work such a pushdown automaton? Getting started with the initial
configuration (q0, a1a2 . . . an, z0) we will consider all possible next configurations,
and after this the next configurations to these next configurations, and so on, until
it is possible.

Definition 1.22 Pushdown automaton V accepts (recognizes) word u by final
state if there exist a sequence of configurations of V for which the following are
true:
• the first element of the sequence is (q0, u, z0),
• there is a going from each element of the sequence to the next element, excepting

the case when the sequence has only one element,
• the last element of the sequence is (p, ε, w), where p ∈ F and w ∈W ∗.

Therefore pushdown automaton V accepts word u by final state, if and only if

(q0, u, z0)
∗

=⇒ (p, ε, w) for some w ∈ W ∗ and p ∈ F . The set of words accepted by
final state by pushdown automaton V will be called the language accepted by V by
final state and will be denoted by L(V).

Definition 1.23 Pushdown automaton V accepts (recognizes) word u by empty
stack if there exist a sequence of configurations of V for which the following are
true:
• the first element of the sequence is (q0, u, z0),
• there is a going from each element of the sequence to the next element,
• the last element of the sequence is (p, ε, ε) and p is an arbitrary state.

Therefore pushdown automaton V accepts a word u by empty stack if

(q0, u, z0)
∗

=⇒ (p, ε, ε) for some p ∈ Q. The set of words accepted by empty stack by
pushdown automaton V will be called the language accepted by empty stack by V
and will be denoted by Lε(V).

Example 1.26 Pushdown automaton V1 of Example 1.25 accepts the language {anbn | n ≥
0} by final state. Consider the derivation for words aaabbb and abab.

Word a3b3 is accepted by the considered pushdown automaton because
(q0, aaabbb, z0) =⇒ (q1, aabbb, z0z1) =⇒ (q1, abbb, z0z1z1) =⇒ (q1, bbb, z0z1z1z1)
=⇒ (q2, bb, z0z1z1) =⇒ (q2, b, z0z1) =⇒ (q2, ε, z0) =⇒ (q0, ε, ε) and because q0 is a final

state the pushdown automaton accepts this word. But the stack being empty, it accepts
this word also by empty stack.
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Figure 1.33 Transition graph of the Example 1.27

Because the initial state is also a final state, the empty word is accepted by final state,
but not by empty stack.

To show that word abab is not accepted, we need to study all possibilities. It is easy to
see that in our case there is only a single possibility:

(q0, abab, z0) =⇒ (q1, bab, z0z1) =⇒ (q2, ab, z0) =⇒ (q0, ab, ε), but there is no further
going, so word abab is not accepted.

Example 1.27 The transition table of the pushdown automaton V2 =
({q0, q1}, {0, 1}, {z0, z1, z2}, E, q0, z0, ∅) is:

Σ ∪ {ε} 0 1 ε

W z0 z1 z2 z0 z1 z2 z0

q0 (z0z1, q0) (z1z1, q0) (z2z1, q0) (z0z2, q0) (z1z2, q0) (z2z2, q0) (ε, q1)

(ε, q1) (ε, q1)

q1 (ε, q1) (ε, q1) (ε, q1)

The corresponding transition graph can be seen in Fig. 1.33. Pushdown automaton V2

accepts the language
{

uu−1 | u ∈ {0, 1}∗
}

. Because V2 is nemdeterministic, all the con-
figurations obtained from the initial configuration (q0, u, z0) can be illustrated by a com-
putation tree. For example the computation tree associated to the initial configuration
(q0, 1001, z0) can be seen in Fig. 1.34. From this computation tree we can observe that,
because (q1, ε, ε) is a leaf of the tree, pushdown automaton V2 accepts word 1001 by empty
stack. The computation tree in Fig. 1.35 shows that pushdown automaton V2 does not
accept word 101, because the configurations in leaves can not be continued and none of
them has the form (q, ε, ε).
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(q0, 1001, z0)

(q0, 001, z0z2) (q1, 1001, ε)

(q0, 01, z0z2z1)

(q0, 1, z0z2z1z1) (q1, 1, z0z2)

(q0, ε, z0z2z1z1z2) (q1, ε, z0)

(q1, ε, ε)

Figure 1.34 Computation tree to show acceptance of the word 1001 (see Example 1.27).

(q0, 101, z0)

(q0, 01, z0z2) (q1, 101, ε)

(q0, 1, z0z2z1)

(q0, ε, z0z2z1z2)

Figure 1.35 Computation tree to show that the pushdown automaton in Example 1.27 does not
accept word 101.

Theorem 1.24 A language L is accepted by a nondeterministic pushdown automa-
ton V1 by empty stack if and only if it can be accepted by a nondeterministic push-
down automaton V2 by final state.
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Proof a) Let V1 = (Q, Σ, W, E, q0, z0, ∅) be the pushdown automaton which accepts
by empty stack language L. Define pushdown automaton V2 = (Q∪ {p0, p}, Σ, W ∪
{x}, E′, p0, x, {p}), where p, p0 6∈ Q, , x 6∈W and

E′ = E ∪
{(

p0, (ε, x/xz0), q0

)}

∪
{(

q, (ε, x/ε), p
) ∣

∣ q ∈ Q
}

.

Working of V2: Pushdown automaton V2 with an ε-move first goes in the initial
state of V1, writing z0 (the initial stack symbol of V1) in the stack (beside x). After
this it is working as V1. If V1 for a given word empties its stack, then V2 still has x
in the stack, which can be deleted by V2 using an ε-move, while a final state will be
reached. V2 can reach a final state only if V1 has emptied the stack.

b) Let V2 = (Q, Σ, W, E, q0, z0, F ) be a pushdown automaton, which accepts
language L by final state. Define pushdown automaton V1 = (Q ∪ {p0, p}, Σ, W ∪
{x}, E′, p0, x, ∅), where p0, p 6∈ Q, x 6∈W and

E′ = E ∪
{(

p0, (ε, x/xz0), q0

)}

∪
{(

q, (ε, z/ε), p
) ∣

∣ q ∈ F, p ∈ Q, z ∈W
}

.

∪
{(

p, (ε, z/ε), p
) ∣

∣ p ∈ Q, z ∈W ∪ {x}
}

Working V1: Pushdown automaton V1 with an ε-move writes in the stack beside x
the initial stack symbol z0 of V2, then works as V2, i.e reaches a final state for each
accepted word. After this V1 empties the stack by an ε-move. V1 can empty the
stack only if V2 goes in a final state.

The next two theorems prove that the class of languages accepted by nondeter-
ministic pushdown automata is just the set of context-free languages.

Theorem 1.25 If G is a context-free grammar, then there exists such a non-
deterministic pushdown automaton V which accepts L(G) by empty stack, i.e.
Lε(V) = L(G).

We outline the proof only. Let G = (N, T, P, S) be a context-free grammar. Define
pushdown automaton V = ({q}, T, N ∪ T, E, q, S, ∅), where q 6∈ N ∪ T, and the set
E of transitions is:
• If there is in the set of productions of G a production of type A→ α, then let

put in E the transition
(
q, (ε, A/α−1), q

)
,

• For any letter a ∈ T let put in E the transition
(
q, (a, a/ε), q

)
.

If there is a production S → α in G, the pushdown automaton put in the stack
the mirror of α with an ε-move. If the input letter coincides with that in the top of
the stack, then the automaton deletes it from the stack. If in the top of the stack
there is a nonterminal A, then the mirror of right-hand side of a production which
has A in its left-hand side will be put in the stack. If after reading all letters of the
input word, the stack will be empty, then the pushdown automaton recognized the
input word.

The following algorithm builds for a context-free grammar G = (N, T, P, S) the
pushdown automaton V = ({q}, T, N ∪ T, E, q, S, ∅), which accepts by empty stack
the language generated by G.
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From-Cfg-to-Pushdown-Automaton(G)

1 for all production A→ α
do put in E the transition

(
q, (ε, A/α−1), q

)

2 for all terminal a ∈ T
do put in E the transition

(
q, (a, a/ε), q

)

3 return V

If G has n productions and m terminals, then the number of step of the algorithm
is Θ(n + m).

Example 1.28 Let G = ({S, A}, {a, b}, {S → ε, S → ab, S → aAb, A → aAb, A →
ab}, S). Then V = ({q}, {a, b}, {a, b, A, S}, E, q, S, ∅), with the following transition table.

Σ ∪ {ε} a b ε

W a b S A

(ε, q) (ε, q) (ε, q) (bAa, q)

q (ba, q) (ba, q)

(bAa, q)

Let us see how pushdown automaton V accepts word aabb, which in grammar G can
be derived in the following way:

S =⇒ aAb =⇒ aabb ,

where productions S → aAb and A → ab were used. Word is accepted by empty stack (see
Fig. 1.36).

Theorem 1.26 For a nondeterministic pushdown automaton V there exists always
a context-free grammar G such that V accepts language L(G) by empty stack, i.e.
Lε(V) = L(G).

Instead of a proof we will give a method to obtain grammar G. Let V = (Q, Σ, W, E,
q0, z0, ∅) be the nondeterministic pushdown automaton in question.

Then G = (N, T, P, S), where
N = {S} ∪ {Sp,z,q | p, q ∈ Q, z ∈W} and T = Σ.
Productions in P will be obtained as follows.
• For all state q put in P production S → Sq0,z0,q.
• If

(
q, (a, z/zk . . . z2z1), p

)
∈ E, where q ∈ Q, z, z1, z2, . . . zk ∈ W (k ≥ 1) and

a ∈ Σ ∪ {ε}, put in P for all possible states p1, p2, . . . , pk productions
Sq,z,pk

→ aSp,z1,p1
Sp1,z2,p2

. . . Spk−1,zk,pk
.

• If
(
q, (a, z/ε), p

)
∈ E, where p, q ∈ Q, z ∈ W, and a ∈ Σ ∪ {ε}, put in P

production
Sq,z,p → a.
The context-free grammar defined by this is an extended one, to which an
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(q, aabb, S)

(q, aabb, ε) (q, aabb, bAa) (q, aabb, ba)

(q, abb, b)(q, abb, bA)

(q, abb, bbAa) (q, abb, bba)

(q, bb, bb)

(q, b, b)

(q, ε, ε)

(q, bb, bbA)

(q, bb, bbbAa) (q, bb, bbba)

Figure 1.36 Recognising a word by empty stack (see Example 1.28).

equivalent context-free language can be associated. The proof of the theorem is
based on the fact that to every sequence of configurations, by which the pushdown
automaton V accepts a word, we can associate a derivation in grammar G. This
derivation generates just the word in question, because of productions of the form
Sq,z,pk

→ aSp,z1,p1
Sp1,z2,p2

. . . Spk−1,zk,pk
, which were defined for all possible states

p1, p2, . . . , pk. In Example 1.27 we show how can be associated a derivation to a
sequence of configurations. The pushdown automaton defined in the example recog-
nizes word 00 by the sequence of configurations

(q0, 00, z0) =⇒ (q0, 0, z0z1) =⇒ (q1, ε, z0) =⇒ (q1, ε, ε),
which sequence is based on the transitions

(
q0, (0, z0/z0z1), q0

)
,

(
q0, (0, z1/ε), q1

)
,

(
q1, (ε, z1/ε), q1

)
.

To these transitions, by the definition of grammar G, the following productions can
be associated

(1) Sq0,z0,p2
−→ 0Sq0,z1,p1

Sp1,z0,p2
for all states p1, p2 ∈ Q,

(2) Sq0,z1,q1
−→ 0,

(3) Sq1,z0,q1
−→ ε.

Furthermore, for each state q productions S −→ Sq0,z0,q were defined.
By the existence of production S −→ Sq0,z0,q there exists the derivation S =⇒

Sq0,z0,q, where q can be chosen arbitrarily. Let choose in above production (1) state
q to be equal to p2. Then there exists also the derivation

S =⇒ Sq0,z0,q =⇒ 0Sq0,z1,p1
Sp1,z0,q,

where p1 ∈ Q can be chosen arbitrarily. If p1 = q1, then the derivation
S =⇒ Sq0,z0,q =⇒ 0Sq0,z1,q1

Sq1,z0,q =⇒ 00Sq1,z0,q
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will result. Now let q equal to q1, then
S =⇒ Sq0,z0,q1

=⇒ 0Sq0,z1,q1
Sq1,z0,q1

=⇒ 00Sq1,z0,q1
=⇒ 00,

which proves that word 00 can be derived used the above grammar.
The next algorithm builds for a pushdown automaton V = (Q, Σ, W, E, q0, z0, ∅)

a context-free grammar G = (N, T, P, S), which generates the language accepted by
pushdown automaton V by empty stack.

From-Pushdown-Automaton-to-Cf-Grammar(V, G)

1 for all q ∈ Q
2 do put in P production S → Sq0,z0,q

3 for all
(
q, (a, z/zk . . . z2z1), p

)
∈ E � q ∈ Q, z, z1, z2, . . . zk ∈W

(k ≥ 1), a ∈ Σ ∪ {ε}
4 do for all states p1, p2, . . . , pk

5 do put in P productions Sq,z,pk
→ aSp,z1,p1

Sp1,z2,p2
. . . Spk−1,zk,pk

6 for All
(
q(a, z/ε), p

)
∈ E � p, q ∈ Q, z ∈W , a ∈ Σ ∪ {ε}

7 do put in P production Sq,z,p → a

If the automaton has n states and m productions, then the above algorithm
executes at most n + mn + m steps, so in worst case the number of steps is O(nm).

Finally, without proof, we mention that the class of languages accepted by de-
terministic pushdown automata is a proper subset of the class of languages accepted
by nondeterministic pushdown automata. This points to the fact that pushdown
automata behave differently as finite automata.

Example 1.29 As an example, consider pushdown automaton V from the Example 1.28:
V = ({q}, {a, b}, {a, b, A, S}, E, q, S, ∅). Grammar G is:

G = ({S, Sa, Sb, SS , SA, }, {a, b}, P, S) ,
where for all z ∈ {a, b, S, A} instead of Sq,z,q we shortly used Sz. The transitions:

(
q, (a, a/ε), q

)
,

(
q, (b, b/ε), q

)
,

(
q, (ε, S/ε), q

)
,

(
q, (ε, S/ba), q

)
,

(
q, (ε, S/bAa), q

)
,

(
q, (ε, A/ba), q

)
,

(
q, (ε, A/bAa), q

)
.

Based on these, the following productions are defined:
S → SS

Sa → a
Sb → b
SS → ε | SaSb | SaSASb

SA → SaSASb | SaSb.
It is easy to see that SS can be eliminated, and the productions will be:

S → ε | SaSb | SaSASb,
SA → SaSASb | SaSb,
Sa → a, Sb → b,

and these productions can be replaced:
S → ε | ab | aAb,
A → aAb | ab.
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S

a A

a A

a A b

a b

Figure 1.37 Derivation (or syntax) tree of word aaaabb.

1.3.2. Context-free languages

Consider context-free grammar G = (N, T, P, S). A derivation tree of G is a finite,
ordered, labelled tree, which root is labelled by the the start symbol S, every interior
vertex is labelled by a nonterminal and every leaf by a terminal. If an interior vertex
labelled by a nonterminal A has k descendents, then in P there exists a production
A→ a1a2 . . . ak such that the descendents are labelled by letters a1, a2, . . . ak. The
result of a derivation tree is a word over T , which can be obtained by reading the
labels of the leaves from left to right. Derivation tree is also called syntax tree.

Consider the context-free grammar G = ({S, A}, {a, b}, {S → aA, S → a, S →
ε, A → aA, A → aAb, A → ab, A → b}, S). It generates language L(G) =
{anbm | n ≥ m ≥ 0}. Derivation of word a4b2 ∈ L(G) is:

S =⇒ aA =⇒ aaA =⇒ aaaAb =⇒ aaaabb.
In Fig. 1.37 this derivation can be seen, which result is aaaabb.

To every derivation we can associate a syntax tree. Conversely, to any syntax
tree more than one derivation can be associated. For example to syntax tree in Fig.
1.37 the derivation

S =⇒ aA =⇒ aaAb =⇒ aaaAb =⇒ aaaabb
also can be associated.

Definition 1.27 Derivation α0 =⇒ α1 =⇒ . . . =⇒ αn is a leftmost
derivation, if for all i = 1, 2, . . . , n − 1 there exist words ui ∈ T ∗,
βi ∈ (N ∪ T )∗ and productions (Ai → γi) ∈ P , for which we have

αi = uiAiβi and αi+1 = uiγiβi .

Consider grammar:
G = ({S, A}, {a, b, c}, {S → bA, S → bAS, S → a, A→ cS, A→ a}, S).

In this grammar word bcbaa has two different leftmost derivations:
S =⇒ bA =⇒ bcS =⇒ bcbAS =⇒ bcbaS =⇒ bcbaa,
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S =⇒ bAS =⇒ bcSS =⇒ bcbAS =⇒ bcbaS =⇒ bcbaa.

Definition 1.28 A context-free grammar G is ambiguous if in L(G) there exists
a word with more than one leftmost derivation. Otherwise G is unambiguous.

The above grammar G is ambiguous, because word bcbaa has two different left-
most derivations. A language can be generated by more than one grammar, and
between them can exist ambiguous and unambiguous too. A context-free language
is inherently ambiguous, if there is no unambiguous grammar which generates it.

Example 1.30 Examine the following two grammars.
Grammar G1 = ({S}, {a, +, ∗}, {S → S + S, S → S ∗ S, S → a}, S) is ambiguous because

S =⇒ S + S =⇒ a + S =⇒ a + S ∗ S =⇒ a + a ∗ S =⇒ a + a ∗ S + S =⇒ a + a ∗ a + S
=⇒ a + a ∗ a + a and
S =⇒ S ∗ S =⇒ S + S ∗ S =⇒ a + S ∗ S =⇒ a + a ∗ S =⇒ a + a ∗ S + S =⇒ a + a ∗ a + S
=⇒ a + a ∗ a + a.

Grammar G2 = ({S, A}, {a, ∗, +}, {S → A + S | A, A → A ∗ A | a}, S) is unambiguous.
Can be proved that L(G1) = L(G2).

1.3.3. Pumping lemma for context-free languages

Like for regular languages there exists a pumping lemma also for context-free lan-
guages.

Theorem 1.29 (pumping lemma). For any context-free language L there exists a
natural number n (which depends only on L), such that every word z of the language
longer than n can be written in the form uvwxy and the following are true:

(1) |w| ≥ 1,
(2) |vx| ≥ 1,
(3) |vwx| ≤ n,
(4) uviwxiy is also in L for all i ≥ 0.

Proof Let G = (N, T, P, S) be a grammar without unit productions, which generates
language L. Let m = |N | be the number of nonterminals, and let ` be the maximum
of lengths of right-hand sides of productions, i.e. ` = max

{
|α| | ∃A ∈ N : (A→ α) ∈

P
}

. Let n = `m+1 and z ∈ L(G), such that |z| > n. Then there exists a derivation
tree T with the result z. Let h be the height of T (the maximum of path lengths
from root to leaves). Because in T all interior vertices have at most ` descendents,
T has at most `h leaves, i.e. |z| ≤ `h. On the other hand, because of |z| > `m+1, we
get that h > m + 1. From this follows that in derivation tree T there is a path from
root to a leave in which there are more than (m + 1) vertices. Consider such a path.
Because in G the number of nonterminals is m and on this path vertices different
from the leaf are labelled with nonterminals, by the pigeonhole principle, it must be
a nonterminal on this path which occurs at least twice.

Let us denote by A the nonterminal being the first on this path from root to
the leaf which firstly repeat. Denote by T ′ the subtree, which root is this occurrence
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S

A

A

T

T ′′

T ′

u v w x y

Figure 1.38 Decomposition of tree in the proof of pumping lemma.

of A. Similarly, denote by T ′′ the subtree, which root is the second occurrence of A
on this path. Let w be the result of the tree T ′. Then the result of T ′′ is in form
vwx, while of T in uvwxy. Derivation tree T with this decomposition of z can be
seen in Fig. 1.38. We show that this decomposition of z satisfies conditions (1)–(4)
of lemma.

Because in P there are no ε-productions (except maybe the case S → ε), we
have |w| ≥ 1. Furthermore, because each interior vertex of the derivation tree has
at least two descendents (namely there are no unit productions), also the root of T ′′

has, hence |vx| ≥ 1. Because A is the first repeated nonterminal on this path, the
height of T ′′ is at most m + 1, and from this |vwx| ≤ `m+1 = n results.

After eliminating from T all vertices of T ′′ excepting the root, the result of

obtained tree is uAy, i.e. S
∗

=⇒
G

uAy.

Similarly, after eliminating T ′ we get A
∗

=⇒
G

vAx, and finally because of the

definition of T ′ we get A
∗

=⇒
G

w. Then S
∗

=⇒
G

uAy, A
∗

=⇒
G

vAx and A
∗

=⇒
G

w.

Therefore S
∗

=⇒
G

uAy
∗

=⇒
G

uwy and S
∗

=⇒
G

uAy
∗

=⇒
G

uvAxy
∗

=⇒
G

. . .
∗

=⇒
G

uviAxiy
∗

=⇒
G

uviwxiy for all i ≥ 1. Therefore, for all i ≥ 0 we have S
∗

=⇒ uviwxiy, i.e. for all

i ≥ 0 uviwxiy ∈ L(G) .

Now we present two consequences of the lemma.

Corollary 1.30 L2 ⊂ L1.

Proof This consequence states that there exists a context-sensitive language which
is not context-free. To prove this it is sufficient to find a context-sensitive language
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for which the lemma is not true. Let this language be L = {ambmcm | m ≥ 1}.
To show that this language is context-sensitive it is enough to give a convenient

grammar. In Example 1.2 both grammars are extended context-sensitive, and we
know that to each extended grammar of type i an equivalent grammar of the same
type can be associated.

Let n be the natural number associated to L by lemma, and consider the word
z = anbncn. Because of |z| = 3n > n, if L is context-free z can be decomposed in
z = uvwxy such that conditions (1)–(4) are true. We show that this leads us to a
contradiction.

Firstly, we will show that word v and x can contain only one type of letters.
Indeed if either v or x contain more than one type of letters, then in word uvvwxxy
the order of the letters will be not the order a, b, c, so uvvwxxy 6∈ L(G), which
contradicts condition (4) of lemma.

If both v and x contain at most one type of letters, then in word uwy the
number of different letters will be not the same, so uwy 6∈ L(G). This also contradicts
condition (4) in lemma. Therefore L is not context-free.

Corollary 1.31 The class of context-free languages is not closed under the inter-
section.

Proof We give two context-free languages which intersection is not context-free. Let
N = {S, A, B}, T = {a, b, c} and

G1 = (N, T, P1, S) where P1 :
S → AB,
A→ aAb | ab,
B → cB | c,

and G2 = (N, T, P2, S), where P2 :
S → AB,
A→ Aa | a,
B → bBc | bc.

Languages L(G1) = {anbncm | n ≥ 1, m ≥ 1} and L(G2) = {anbmcm | n ≥ 1, m ≥
1} are context-free. But

L(G1) ∩ L(G2) = {anbncn | n ≥ 1}

is not context-free (see the proof of the Consequence 1.30).

1.3.4. Normal forms of the context-free languages

In the case of arbitrary grammars the normal form was defined (see page 21) as gram-
mars with no terminals in the left-hand side of productions. The normal form in the
case of the context-free languages will contains some restrictions on the right-hand
sides of productions. Two normal forms (Chomsky and Greibach) will be discussed.
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Chomsky normal form

Definition 1.32 A context-free grammar G = (N, T, P, S) is in Chomsky normal
form, if all productions have form A → a or A → BC , where A, B, C ∈ N ,
a ∈ T .

Example 1.31 Grammar G = ({S, A, B, C}, {a, b}, {S → AB, S → CB, C → AS, A →
a, B → b}, S) is in Chomsky normal form and L(G) = {anbn | n ≥ 1}.

To each ε-free context-free language can be associated an equivalent grammar is
Chomsky normal form. The next algorithm transforms an ε-free context-free gram-
mar G = (N, T, P, S) in grammar G′ = (N ′, T, P ′, S) which is in Chomsky normal
form.

Chomsky-Normal-Form(G)

1 N ′ ← N
2 eliminate unit productions, and let P ′ the new set of productions

(see algorithm Eliminate-Unit-Productions on page 21)
3 in P ′ replace in each production with at least two letters in right-hand side

all terminals a by a new nonterminal A, and add this nonterminal to N ′

and add production A→ a to P ′

4 replace all productions B → A1A2 . . . Ak, where k ≥ 3 and A1, A2, . . . , Ak ∈ N ,
by the following:

B → A1C1,
C1 → A2C2,
. . .
Ck−3 → Ak−2Ck−2,
Ck−2 → Ak−1Ak,

where C1, C2, . . . , Ck−2 are new nonterminals, and add them to N ′

5 return G′

Example 1.32 Let G = ({S, D}, {a, b, c}, {S → aSc, S → D, D → bD, D → b}, S). It is
easy to see that L(G) = {anbmcn | n ≥ 0, m ≥ 1}. Steps of transformation to Chomsky
normal form are the following:

Step 1: N ′ = {S, D}
Step 2: After eliminating the unit production S → D the productions are:

S → aSc | bD | b,
D → bD | b.

Step 3: We introduce three new nonterminals because of the three terminals in productions.
Let these be A, B, C. Then the production are:

S → ASC | BD | b,
D → BD | b,
A → a,
B → b,
C → c.

Step 4: Only one new nonterminal (let this E) must be introduced because of a single
production with three letters in the right-hand side. Therefore N ′ = {S, A, B, C, D, E},
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and the productions in P ′ are:
S → AE | BD | b,
D → BD | b,
A → a,
B → b,
C → c,
E → SC.

All these productions are in required form.

Greibach normal form

Definition 1.33 A context-free grammar G = (N, T, P, S) is in Greibach normal
form if all production are in the form A→ aw, where A ∈ N , a ∈ T , w ∈ N∗.

Example 1.33 Grammar G = ({S, B}, {a, b}, {S → aB, S → aSB, B → b}, S) is in
Greibach normal form and L(G) = {anbn | n ≥ 1}.

To each ε-free context-free grammar an equivalent grammar in Greibach normal
form can be given. We give and algorithm which transforms a context-free grammar
G = (N, T, P, S) in Chomsky normal form in a grammar G′ = (N ′, T, P ′, S) in
Greibach normal form.

First, we give an order of the nonterminals: A1, A2, . . . , An, where A1 is the start
symbol. The algorithm will use the notations x ∈ N ′+, α ∈ TN ′∗ ∪N ′+.

Greibach-Normal-Form(G)

1 N ′ ← N
2 P ′ ← P
3 for i← 2 to n � Case Ai → Ajx, j < i
4 do for j ← 1 to i− 1
5 do for all productions Ai → Ajx and Aj → α (where α has no Aj

as first letter) in P ′ productions Ai → αx,
delete from P ′ productions Ai → Ajx

6 if there is a production Ai → Aix � Case Ai → Aix
7 then put in N ′ the new nonterminal Bi,

for all productions Ai → Aix put in P ′ productions Bi → xBi

and Bi → x,delete from P ′ production Ai → Aix,
for all production Ai → α (where Ai is not the first letter of α)
put in P ′ production Ai → αBi

8 for i← n− 1 downto 1 � Case Ai → Ajx, j > i
9 do for j ← i + 1 to n

10 do for all productions Ai → Ajx and Aj → α
put in P ′ production Ai → αx and
delete from P ′ productions Ai → Ajx,
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11 for i← 1 to n � Case Bi → Ajx
12 do for j ← 1 to n
13 do for all productions Bi → Ajx and Aj → α

put in P ′ production Bi → αx and
delete from P ′ productions Bi → Ajx

14 return G′

The algorithm first transform productions of the form Ai → Ajx, j < i such
that Ai → Ajx, j ≥ i or Ai → α, where this latter is in Greibach normal form.
After this, introducing a new nonterminal, eliminate productions Ai → Aix, and
using substitutions all production of the form Ai → Ajx, j > i and Bi → Ajx will
be transformed in Greibach normal form.

Example 1.34 Transform productions in Chomsky normal form
A1 → A2A3 | A2A4

A2 → A2A3 | a
A3 → A2A4 | b
A4 → c

in Greibach normal form.
Steps of the algorithm:
3–5: Production A3 → A2A4 must be transformed. For this production A2 → a is

appropriate. Put A3 → aA4 in the set of productions and eliminate A3 → A2A4.
The productions will be:

A1 → A2A3 | A2A4

A2 → A2A3 | a
A3 → aA4 | b
A4 → c

6-7: Elimination of production A2 → A2A3 will be made using productions:
B2 → A3B2

B2 → A3

A2 → aB2

Then, after steps 6–7. the productions will be:
A1 → A2A3 | A2A4

A2 → aB2 | a
A3 → aA4 | b
A4 → c
B2 → A3B2 | A3

8–10: We make substitutions in productions with A1 in left-hand side. The results is:
A1 → aA3 | aB2A3 | aA4 | aB2A4

11–13: Similarly with productions with B2 in left-hand side:
B2 → aA4B2 | aA3A4B2 | aA4 | aA3A4

After the elimination in steps 8–13 of productions in which substitutions were made,
the following productions, which are now in Greibach normal form, result:

A1 → aA3 | aB2A3 | aA4 | aB2A4

A2 → aB2 | a
A3 → aA4 | b
A4 → c
B2 → aA4B2 | aA3A4B2 | aA4 | aA3A4
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Example 1.35 Language

L =
{

anbkcn+k | n ≥ 0, k ≥ 0, n + k > 0
}

can be generated by grammar

G =
{

{S, R}, {a, b, c}, {S → aSc, S → ac, S → R, R → bRc, R → bc}, S
}

First, will eliminate the single unit production, and after this we will give an equivalent
grammar in Chomsky normal form, which will be transformed in Greibach normal form.

Productions after the elimination of production S → R:
S → aSc | ac | bRc | bc
R → bRc | bc.

We introduce productions A → a, B → b, C → c, and replace terminals by the correspond-
ing nonterminals:

S → ASC | AC | BRC | BC,
R → BRC | BC,
A → a, B → b, C → c.

After introducing two new nonterminals (D, E):
S → AD | AC | BE | BC,
D → SC,
E → RC,
R → BE | BC,
A → a, B → b, C → c.

This is now in Chomsky normal form. Replace the nonterminals to be letters Ai as in the
algorithm. Then, after applying the replacements

S replaced by A1, A replaced by A2, B replaced by A3, C replaced by A4, D replaced
by A5,

E replaced by A6, R replaced by A7,
our grammar will have the productions:

A1 → A2A5 | A2A4 | A3A6 | A3A4,
A2 → a, A3 → b, A4 → c,
A5 → A1A4,
A6 → A7A4,
A7 → A3A6 | A3A4.

In steps 3–5 of the algorithm the new productions will occur:
A5 → A2A5A4 | A2A4A4 | A3A6A4 | A3A4A4 then
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4

A7 → A3A6 | A3A4, then
A7 → bA6 | bA4.

Therefore
A1 → A2A5 | A2A4 | A3A6 | A3A4,
A2 → a, A3 → b, A4 → c,
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4

A6 → A7A4,
A7 → bA6 | bA4.

Steps 6–7 will be skipped, because we have no left-recursive productions. In steps 8–10
after the appropriate substitutions we have:

A1 → aA5 | aA4 | bA6 | bA4,
A2 → a,
A3 → b,
A4 → c,
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A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4

A6 → bA6A4 | bA4A4,
A7 → bA6 | bA4.

Exercises
1.3-1 Give pushdown automata to accept the following languages:

L1 =
{

ancbn | n ≥ 0
}

,

L2 =
{

anb2n | n ≥ 1
}

,

L3 =
{

a2nbn | n ≥ 0
}
∪

{
anb2n | n ≥ 0

}
,

1.3-2 Give a context-free grammar to generate language L = {anbncm | n ≥ 1, m ≥
1}, and transform it in Chomsky and Greibach normal forms. Give a pushdown
automaton which accepts L.

1.3-3 What languages are generated by the following context-free grammars?
G1 =

(
{S}, {a, b}, {S → SSa, S → b}, S

)
, G2 =

(
{S}, {a, b}, {S → SaS, S →

b}, S
)
.

1.3-4 Give a context-free grammar to generate words with an equal number of
letters a and b.
1.3-5 Prove, using the pumping lemma, that a language whose words contains an
equal number of letters a, b and c can not be context-free.
1.3-6 Let the grammar G = (V, T, P, S), where

V = {S},
T = {if, then, else, a, c},
P = {S → if a then S, S → if a then S else S, S → c},

Show that word if a then if a then c else c has two different leftmost derivations.
1.3-7 Prove that if L is context-free, then L−1 = {u−1 | u ∈ L} is also context-free.

Problems

1-1 Linear grammars
A grammar G = (N, T, P, S) which has productions only in the form A → u1Bu2

or A → u, where A, B ∈ N, u, u1, u2 ∈ T ∗, is called a linear grammar. If in a
linear grammar all production are of the form A→ Bu or A→ v, then it is called a
left-linear grammar. Prove that the language generated by a left-linear grammar is
regular.
1-2 Operator grammars
An ε-free context-free grammar is called operator grammar if in the right-hand
side of productions there are no two successive nonterminals. Show that, for all ε-free
context-free grammar an equivalent operator grammar can be built.
1-3 Complement of context-free languages
Prove that the class of context-free languages is not closed on complement.
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Chapter Notes

In the definition of finite automata instead of transition function we have used the
transition graph, which in many cases help us to give simpler proofs.

There exist a lot of classical books on automata and formal languages. We men-
tion from these the following: two books of Aho and Ullman [?, ?] in 1972 and 1973,
book of Gécseg and Peák [?] in 1972, two books of Salomaa [?, ?] in 1969 and 1973,
a book of Hopcroft and Ullman [?] in 1979, a book of Harrison [?] in 1978, a book
of Manna [?], which in 1981 was published also in Hungarian. We notice also a book
of Sipser [?] in 1997 and a monograph of Rozenberg and Salomaa [?]. In a book of
Lothaire (common name of French authors) [?] on combinatorics of words we can
read on other types of automata. Paper of Giammarresi and Montalbano [?] gener-
alise the notion of finite automata. A new monograph is of Hopcroft, Motwani and
Ullman [?]. In German we recommend the textbook of Asteroth and Baier [?]. The
concise description of the transformation in Greibach normal form is based on this
book.

A practical introduction to formal languages is written by Webber [?].
Other books in English: [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].
At the end of the next chapter on compilers another books on the subject are

mentioned.
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