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ON A FAMILY OF FUNCTIONAL EQUATIONS
WITH ONE PARAMETER

Z. Daróczy1 2 (Debrecen, Hungary)

Dedicated to my friend Imre Kátai on his 70th birthday

Abstract. Let I ⊂ R be a non-void open interval and let 0 < α <
< 1 , α 6= 1

2 be a given parameter. The functions f, g : I → R+ are
solutions of the functional equation

f

(
x + y

2

) (
2αg(y)− g(x)

)
= αf(x)g(y)− (1− α)f(y)g(x)

(x, y ∈ I), if and only if f and g are constant functions on I.

1. Introduction

We consider a one-parameter family of functional equations which plays
important role in the solution of Matkowski-Sutô type problem ([1, 2, 3, 4,
8, 5, 6, 7]). These equations are interesting themselves independently of the
original problem.

Let I ⊂ R be a non-void open interval and let 0 < α < 1 be a given
parameter. We investigate the functional equation

f

(
x + y

2

) (
2αg(y)− g(x)

)
= αf(x)g(y)− (1− α)f(y)g(x) (1)
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for all x, y ∈ I, where f, g : I → R+ (R+ is the set of positive real numbers)
are unknown functions.

For the case α = 1
2 we have the following proposition ([1]).

Theorem 1 If α = 1
2 and the functions f, g : I → R+ are continuous

solutions of the functional equation (1), then there exist constants a, b ∈ R
and c ∈ R+, such that

f(x) = ax + b > 0 and g(x) =
c

ax + b

for all x ∈ I.

We remark, that in the case I = R the constant a is 0 necessarily (and
b ∈ R+).

In this paper we discuss the following problems:

1. Is the continuity in Theorem 1 necessary, i.e. there exist solutions
f, g : I → R+ of (1) in the case α = 1

2 which are non continuous at
the interval I or not.

2. What is the situation in the case α 6= 1
2 .

2. On the non continuous solutions in the case α = 1
2

Theorem 2 There exist non continuous solutions f, g : I → R+ of the
functional equation (1) in the case α = 1

2 .

Proof. Let t ∈ I be fix. We define

g(x) :=





a1 if x = t

a if x 6= t
(x ∈ I),

and

f(x) :=





b1 if x = t

b if x 6= t
(x ∈ I),

where a1, a, b1, b are positive constants and a1 6= a , b1 6= b. These functions
f, g : I → R+ are non continuous at I and solutions of (1) in the case α = 1

2 ,
if

2 =
a1b− ab1

a(b− b1)
. (2)
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This assertion is trivial if x 6= t , y 6= t.
If x = t and y 6= t, then (1) yields

a(b− b1) =
1
2
(a1b− ab1) ,

i.e. by (2) f and g are solutions of (1). By the symmetry of (1) we have the
proof of our assertion. For the equation (2) is an example the following one:
a = b = 3 , a1 = 4 and b1 = 2. ¥

2. Main result about the equation (1) in the case α 6= 1
2

Our main result of this paper is the following surprising

Theorem 3 Let α ∈]0, 1[ and α 6= 1
2 . The functions f, g : I → R+ are

solutions of the functional equation (1) if and only if there exist constants
a, b ∈ R+ such that

f(x) = a and g(x) = b

for all x ∈ I.

To prove this theorem we need the following lemmas.

Lemma 1 Let 0 < α < 1 , α 6= 1
2 . If the pair (f, g) (f, g : I → R+) satisfies

the functional equation (1) then the following equations

f

(
x + y

2

)
=

f(x)g(y) + f(y)g(x)
g(x) + g(y)

, (3)

αg(y)− (α + 1)g(x) 6= 0 , (4)

f(x)g(y)
f(y)g(x)

=
αg(x)− (α + 1)g(y)
αg(y)− (α + 1)g(x)

(5)

for all x, y ∈ I are true.

Proof. In equation (1) we interchange x and y, then

f

(
x + y

2

)
[2αg(x)− g(y)] = αf(y)g(x)− (1− α)f(x)g(y). (6)
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We add equations (1) and (6), then we have

f

(
x + y

2

)
(2α− 1)[g(x) + g(y)] = (2α− 1)[f(x)g(y) + f(y)g(x)] .

From this equation by 2α− 1 6= 0 it follows (3). From (3) by (1) we obtain

f(x)g(y) + f(y)g(x)
g(x) + g(y)

[2αg(y)− g(x)] = αf(x)g(y)− (1− α)f(y)g(x)

for all x, y ∈ I. From the above equation by short computation we have

f(x)g(y)[αg(y)− (α + 1)g(x)] = f(y)g(x)[αg(x)− (α + 1)g(y)] (7)

for all x, y ∈ I. If x = y, then αg(x) − (α + 1)g(x) = −g(x) < 0, therefore
assertion (4) is true. If x 6= y in (7) and αg(y)− (α + 1)g(x) = 0, then from
(7) we have αg(x)− (α + 1)g(y) = 0, i.e.

g(x)
g(y)

=
α

1 + α
and

g(y)
g(x)

=
α

1 + α
,

which is impossible. Hence (4) is true for all x, y ∈ I. From (7) by (4) we
have (5) for all x, y ∈ I. ¥

Lemma 2 Let 0 < α < 1 , α 6= 1
2 be a fixed number. If the functions

f, g : I → R+ with the property f(y0) = g(y0) = 1 (y0 ∈ I) satisfy functional
equation (1), then

[g(x)− g(y)][1− g(x)][1− g(y)] = 0 (8)

for all x, y ∈ I.

Proof. By 1 we know that (4) and (5) are true. From (5) with y = y0 ∈ I
we have

f(x) = g(x)
αg(x)− (α + 1)
α− (α + 1)g(x)

for all x ∈ I. We substitute this form of f in equation (5), then we obtain

g(x)αg(x)−(α+1)
α−(α+1)g(x)g(y)

g(y)αg(y)−(α+1)
α−(α+1)g(y)g(x)

=
αg(x)− (α + 1)g(y)
αg(y)− (α + 1)g(x)
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for all x, y ∈ I. From this equation with the notation

F (x, y) = [αg(x)− (α + 1)][α− (α + 1)g(y)][αg(y)− (α + 1)g(x)]

we have
F (x, y) = F (y, x)

for all x, y ∈ I. From this equation with an easy computation and with the
notation A := α2(α + 1) + α(α + 1)2 > 0 it follows

Ag(x)−Ag(y) + Ag(y)g2(x)−Ag(x)g2(y) + Ag2(y)−Ag2(x) = 0,

i.e.
[g(x)− g(y)][1 + g(x)g(y)− g(x)− g(y)] = 0 .

But this is (8) for all x, y ∈ I. ¥

4. Proof of the Theorem 3

In this section we give a complete proof of Theorem 3.

Proof.

1. First we suppose that the functions f, g : I → R+ are solutions of
the functional equation (1) (where 0 < α < 1 , α 6= 1

2) and f(y0) =
g(y0) = 1 for y0 ∈ I. We assert, that in this case f(x) = g(x) = 1 for
all x ∈ I. Contrary, we suppose that there exists y1 ∈ I (y1 6= y0),
such that

g(y1) = c 6= 1 and c > 0 .

With the substitution y = y1 in (8) we have

[g(x)− c][1− g(x)] = 0 (9)

for all x ∈ I. We define

E := { x | x ∈ I , g(x) = 1 } 6= ∅

and
E∗ := { x | x ∈ I , g(x) = c } 6= ∅ .



180 Z. Daróczy

By equation (9) any x ∈ I is in E or in E∗, i.e. E ∩ E∗ = ∅ and
I = E ∪ E∗. By Lemma 2

f(x) = g(x)αg(x)−(α+1)
α−(α+1)g(x) =





1 if x ∈ E,

cαc−(α+1)
α−(α+1)c if x ∈ E∗.

If x ∈ E and y ∈ E∗ then by equation (3) we have

f

(
x + y

2

)
=

f(x)c + f(y)
c + 1

=
c + cαc−(α+1)

α−(α+1)c

c + 1
.

Now,
x + y

2
∈ E or

x + y

2
∈ E∗. In the first case we have

c + cαc−(α+1)
α−(α+1)c

c + 1
= 1 ,

or in the second case

c + cαc−(α+1)
α−(α+1)c

c + 1
= c

αc− (α + 1)
α− (α + 1)c

.

In both cases we obtain c2 = c, i.e. c = 1, which is a contradiction.

Then g(x) = 1 for all x ∈ I and by (10) it follows f(x) = 1 for all
x ∈ I.

2. If the pair (f, g) (f, g : I → R+) is a solution of (1) (0 < α < 1 , α 6= 1
2)

then the pair
(

f
f(y0) ,

g
g(y0)

)
(y0 ∈ I) is a solution of (1), too, and

f(y0)
f(y0)

= 1,
g(y0)
g(y0)

= 1.

By (i) we have
f(x)
f(y0)

= 1,
g(x)
g(y0)

= 1

for all x ∈ I. With f(y0) := a > 0 and g(y0) := b > 0 we obtain the
assertion of Theorem 3.

¥
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