ON A FAMILY OF FUNCTIONAL EQUATIONS WITH ONE PARAMETER

Z. Daróczy ${ }^{12}$ (Debrecen, Hungary)

Dedicated to my friend Imre Kátai on his 70th birthday

Abstract

Let $I \subset \mathbb{R}$ be a non-void open interval and let $0<\alpha<$ $<1, \alpha \neq \frac{1}{2}$ be a given parameter. The functions $f, g: I \rightarrow \mathbb{R}_{+}$are solutions of the functional equation $$
f\left(\frac{x+y}{2}\right)(2 \alpha g(y)-g(x))=\alpha f(x) g(y)-(1-\alpha) f(y) g(x)
$$ $(x, y \in I)$, if and only if f and g are constant functions on I.

1. Introduction

We consider a one-parameter family of functional equations which plays important role in the solution of Matkowski-Sutô type problem (1, 2, 3, 4, [8, [5, 6, 7]). These equations are interesting themselves independently of the original problem.

Let $I \subset \mathbb{R}$ be a non-void open interval and let $0<\alpha<1$ be a given parameter. We investigate the functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)(2 \alpha g(y)-g(x))=\alpha f(x) g(y)-(1-\alpha) f(y) g(x) \tag{1}
\end{equation*}
$$

[^0]for all $x, y \in I$, where $f, g: I \rightarrow \mathbb{R}_{+}\left(\mathbb{R}_{+}\right.$is the set of positive real numbers $)$ are unknown functions.

For the case $\alpha=\frac{1}{2}$ we have the following proposition ([1]).
Theorem 1 If $\alpha=\frac{1}{2}$ and the functions $f, g: I \rightarrow \mathbb{R}_{+}$are continuous solutions of the functional equation (1), then there exist constants $a, b \in \mathbb{R}$ and $c \in \mathbb{R}_{+}$, such that

$$
f(x)=a x+b>0 \quad \text { and } \quad g(x)=\frac{c}{a x+b}
$$

for all $x \in I$.
We remark, that in the case $I=\mathbb{R}$ the constant a is 0 necessarily (and $\left.b \in \mathbb{R}_{+}\right)$.

In this paper we discuss the following problems:

1. Is the continuity in Theorem 1 necessary, i.e. there exist solutions $f, g: I \rightarrow \mathbb{R}_{+}$of (1) in the case $\alpha=\frac{1}{2}$ which are non continuous at the interval I or not.
2. What is the situation in the case $\alpha \neq \frac{1}{2}$.

2. On the non continuous solutions in the case $\alpha=\frac{1}{2}$

Theorem 2 There exist non continuous solutions $f, g: I \rightarrow \mathbb{R}_{+}$of the functional equation (1) in the case $\alpha=\frac{1}{2}$.

Proof. Let $t \in I$ be fix. We define

$$
g(x):=\left\{\begin{array}{ll}
a_{1} & \text { if } x=t \\
a & \text { if } x \neq t
\end{array} \quad(x \in I),\right.
$$

and

$$
f(x):=\left\{\begin{array}{ll}
b_{1} & \text { if } x=t \\
b & \text { if } x \neq t
\end{array} \quad(x \in I),\right.
$$

where a_{1}, a, b_{1}, b are positive constants and $a_{1} \neq a, b_{1} \neq b$. These functions $f, g: I \rightarrow \mathbb{R}_{+}$are non continuous at I and solutions of (1) in the case $\alpha=\frac{1}{2}$, if

$$
\begin{equation*}
2=\frac{a_{1} b-a b_{1}}{a\left(b-b_{1}\right)} . \tag{2}
\end{equation*}
$$

This assertion is trivial if $x \neq t, y \neq t$.
If $x=t$ and $y \neq t$, then (1) yields

$$
a\left(b-b_{1}\right)=\frac{1}{2}\left(a_{1} b-a b_{1}\right)
$$

i.e. by (2) f and g are solutions of (1). By the symmetry of (1) we have the proof of our assertion. For the equation (2) is an example the following one: $a=b=3, a_{1}=4$ and $b_{1}=2$.

2. Main result about the equation (1) in the case $\alpha \neq \frac{1}{2}$

Our main result of this paper is the following surprising
Theorem 3 Let $\alpha \in] 0,1\left[\right.$ and $\alpha \neq \frac{1}{2}$. The functions $f, g: I \rightarrow \mathbb{R}_{+}$are solutions of the functional equation (1) if and only if there exist constants $a, b \in \mathbb{R}_{+}$such that

$$
f(x)=a \quad \text { and } \quad g(x)=b
$$

for all $x \in I$.

To prove this theorem we need the following lemmas.
Lemma 1 Let $0<\alpha<1, \alpha \neq \frac{1}{2}$. If the $\operatorname{pair}(f, g)\left(f, g: I \rightarrow \mathbb{R}_{+}\right)$satisfies the functional equation (1) then the following equations

$$
\begin{align*}
f\left(\frac{x+y}{2}\right) & =\frac{f(x) g(y)+f(y) g(x)}{g(x)+g(y)} \tag{3}\\
\alpha g(y) & -(\alpha+1) g(x) \neq 0 \tag{4}\\
\frac{f(x) g(y)}{f(y) g(x)} & =\frac{\alpha g(x)-(\alpha+1) g(y)}{\alpha g(y)-(\alpha+1) g(x)} \tag{5}
\end{align*}
$$

for all $x, y \in I$ are true.

Proof. In equation (1) we interchange x and y, then

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)[2 \alpha g(x)-g(y)]=\alpha f(y) g(x)-(1-\alpha) f(x) g(y) \tag{6}
\end{equation*}
$$

We add equations (1) and (6), then we have

$$
f\left(\frac{x+y}{2}\right)(2 \alpha-1)[g(x)+g(y)]=(2 \alpha-1)[f(x) g(y)+f(y) g(x)] .
$$

From this equation by $2 \alpha-1 \neq 0$ it follows (3). From (3) by (1) we obtain

$$
\frac{f(x) g(y)+f(y) g(x)}{g(x)+g(y)}[2 \alpha g(y)-g(x)]=\alpha f(x) g(y)-(1-\alpha) f(y) g(x)
$$

for all $x, y \in I$. From the above equation by short computation we have

$$
\begin{equation*}
f(x) g(y)[\alpha g(y)-(\alpha+1) g(x)]=f(y) g(x)[\alpha g(x)-(\alpha+1) g(y)] \tag{7}
\end{equation*}
$$

for all $x, y \in I$. If $x=y$, then $\alpha g(x)-(\alpha+1) g(x)=-g(x)<0$, therefore assertion (4) is true. If $x \neq y$ in (7) and $\alpha g(y)-(\alpha+1) g(x)=0$, then from (7) we have $\alpha g(x)-(\alpha+1) g(y)=0$, i.e.

$$
\frac{g(x)}{g(y)}=\frac{\alpha}{1+\alpha} \quad \text { and } \quad \frac{g(y)}{g(x)}=\frac{\alpha}{1+\alpha}
$$

which is impossible. Hence (4) is true for all $x, y \in I$. From (7) by (4) we have (5) for all $x, y \in I$.

Lemma 2 Let $0<\alpha<1, \alpha \neq \frac{1}{2}$ be a fixed number. If the functions $f, g: I \rightarrow \mathbb{R}_{+}$with the property $f\left(y_{0}\right)=g\left(y_{0}\right)=1\left(y_{0} \in I\right)$ satisfy functional equation (1), then

$$
\begin{equation*}
[g(x)-g(y)][1-g(x)][1-g(y)]=0 \tag{8}
\end{equation*}
$$

for all $x, y \in I$.
Proof. By 11 we know that (4) and (5) are true. From (5) with $y=y_{0} \in I$ we have

$$
f(x)=g(x) \frac{\alpha g(x)-(\alpha+1)}{\alpha-(\alpha+1) g(x)}
$$

for all $x \in I$. We substitute this form of f in equation (5), then we obtain

$$
\frac{g(x) \frac{\alpha g(x)-(\alpha+1)}{\alpha-(\alpha+1) g(x)} g(y)}{g(y) \frac{\alpha g(y)-(\alpha+1)}{\alpha-(\alpha+1) g(y)} g(x)}=\frac{\alpha g(x)-(\alpha+1) g(y)}{\alpha g(y)-(\alpha+1) g(x)}
$$

for all $x, y \in I$. From this equation with the notation

$$
F(x, y)=[\alpha g(x)-(\alpha+1)][\alpha-(\alpha+1) g(y)][\alpha g(y)-(\alpha+1) g(x)]
$$

we have

$$
F(x, y)=F(y, x)
$$

for all $x, y \in I$. From this equation with an easy computation and with the notation $A:=\alpha^{2}(\alpha+1)+\alpha(\alpha+1)^{2}>0$ it follows

$$
A g(x)-A g(y)+A g(y) g^{2}(x)-A g(x) g^{2}(y)+A g^{2}(y)-A g^{2}(x)=0
$$

i.e.

$$
[g(x)-g(y)][1+g(x) g(y)-g(x)-g(y)]=0
$$

But this is (8) for all $x, y \in I$.

4. Proof of the Theorem 3

In this section we give a complete proof of Theorem 3.

Proof.

1. First we suppose that the functions $f, g: I \rightarrow \mathbb{R}_{+}$are solutions of the functional equation (1) (where $0<\alpha<1, \alpha \neq \frac{1}{2}$) and $f\left(y_{0}\right)=$ $g\left(y_{0}\right)=1$ for $y_{0} \in I$. We assert, that in this case $f(x)=g(x)=1$ for all $x \in I$. Contrary, we suppose that there exists $y_{1} \in I\left(y_{1} \neq y_{0}\right)$, such that

$$
g\left(y_{1}\right)=c \neq 1 \quad \text { and } \quad c>0
$$

With the substitution $y=y_{1}$ in (8) we have

$$
\begin{equation*}
[g(x)-c][1-g(x)]=0 \tag{9}
\end{equation*}
$$

for all $x \in I$. We define

$$
E:=\{x \mid x \in I, g(x)=1\} \neq \emptyset
$$

and

$$
E^{*}:=\{x \mid x \in I, g(x)=c\} \neq \emptyset
$$

By equation (9) any $x \in I$ is in E or in E^{*}, i.e. $E \cap E^{*}=\emptyset$ and $I=E \cup E^{*}$. By Lemma 2

$$
f(x)=g(x) \frac{\alpha g(x)-(\alpha+1)}{\alpha-(\alpha+1) g(x)}= \begin{cases}1 & \text { if } x \in E \\ c \frac{\alpha c-(\alpha+1)}{\alpha-(\alpha+1) c} & \text { if } x \in E^{*}\end{cases}
$$

If $x \in E$ and $y \in E^{*}$ then by equation (3) we have

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x) c+f(y)}{c+1}=\frac{c+c \frac{\alpha c-(\alpha+1)}{\alpha-(\alpha+1) c}}{c+1}
$$

Now, $\frac{x+y}{2} \in E$ or $\frac{x+y}{2} \in E^{*}$. In the first case we have

$$
\frac{c+c \frac{\alpha c-(\alpha+1)}{\alpha-(\alpha+1) c}}{c+1}=1
$$

or in the second case

$$
\frac{c+c \frac{\alpha c-(\alpha+1)}{\alpha-(\alpha+1) c}}{c+1}=c \frac{\alpha c-(\alpha+1)}{\alpha-(\alpha+1) c}
$$

In both cases we obtain $c^{2}=c$, i.e. $c=1$, which is a contradiction.
Then $g(x)=1$ for all $x \in I$ and by (10) it follows $f(x)=1$ for all $x \in I$.
2. If the pair $(f, g)\left(f, g: I \rightarrow \mathbb{R}_{+}\right)$is a solution of (1) $\left(0<\alpha<1, \alpha \neq \frac{1}{2}\right)$ then the pair $\left(\frac{f}{f\left(y_{0}\right)}, \frac{g}{g\left(y_{0}\right)}\right)\left(y_{0} \in I\right)$ is a solution of (1), too, and

$$
\frac{f\left(y_{0}\right)}{f\left(y_{0}\right)}=1, \quad \frac{g\left(y_{0}\right)}{g\left(y_{0}\right)}=1
$$

By (i) we have

$$
\frac{f(x)}{f\left(y_{0}\right)}=1, \quad \frac{g(x)}{g\left(y_{0}\right)}=1
$$

for all $x \in I$. With $f\left(y_{0}\right):=a>0$ and $g\left(y_{0}\right):=b>0$ we obtain the assertion of Theorem 3.

References

[1] Daróczy Z. and Páles Zs., Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen, 61 (1-2) (2002), 157-218. $\Rightarrow 175,176$
[2] Daróczy Z. and Páles Zs., The Matkowski-Sutô problem for weighted quasi-arithmetic means, Acta Math. Hungar., 100 (3) (2003), 237-243. $\Rightarrow 175$
[3] Daróczy Z. and Páles Zs., A Matkowski-Sutô-type problem for weighted quasi-arithmetic means, Annales Univ. Sci. Budapest. Sect. Comp., 22 (2003), 69-81. $\Rightarrow 175$
[4] Daróczy Z. and Páles Zs., On functional equations involving means, Publ. Math. Debrecen, 62 (3-4) (2003), 363-377. $\Rightarrow 175$
[5] Głazowska D., Jarczyk W. and Matkowski J., Arithmetic mean as a linear combination of two quasi-arithmetic means, Publ. Math. Debrecen, 61 (3-4) (2002), 455-467. $\Rightarrow 175$
[6] Jarczyk W. Invariance of weighted quasi-arithmetic means with continuous generators, Publ. Math. Debrecen, 71 (2007). $\Rightarrow 175$
[7] Jarczyk W. and Matkowski J., Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math., 88 (1) (2006), 39-51. \Rightarrow 175
[8] Matkowski J., Invariant and complementary quasi-arithmetic means, Aequationes Math., 57 (1) (1999), 87-107. $\Rightarrow 175$

Z. Daróczy

Institute of Mathematics
University of Debrecen
H-4010 Debrecen, P.O.B. 12

Hungary
daroczy@math.klte.hu

[^0]: ${ }^{1}$ This research was supported by the Hungarian National Foundation for Scientific Research under grant OTKA NK68040.
 ${ }^{2}$ Mathematical Subject Classification: 08A72,03E72

