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1 Introduction 
 
My thesis is based on a mathematical complexity problem, namely the investigation of perfect 
maps, especially perfect tori. The central issue is the existence of such maps with certain 
parameters. This issue can be approached by two points of view: 
 
theoretical: Many of construction methods were proposed and many theorems and proofs 
were produced, as well. These results apply only to certain sets of perfect maps. The 
conjecture is that such maps exist for every parameter set, but the general proof remains to be 
seen. 
 
practical: The other approach is to search for certain maps with practical algorithms. The 
certainty of existence and the possibility for investigating the structure of an existing map may 
lead nearer to the final solution. 
 
My research is related to the practical approach, but it diverges from the previous attempts: I 
am going to test the power of evolutionary computing (EC) applied to this complexity 
problem. There are more arguments for applying EC algorithms. The search space is very 
large even in case of maps with small parameters, it is out of reach of computer search. In the 
worst case the time complexity of a branch and bound search algorithm – even if equipped 
with smart heuristics – is the same as complete enumeration, so it took millions of years to 
reconnoitre the search space with the recent computational capacity. The EC algorithm is a 
quite different approach, it provides a means of coping with large and discontinuous search 
spaces, and furthermore the problem fits into the area of evolutionary computing: the maps 
have straightforward representations and we can easily define adequate fitness functions, as 
well. 
 
About the Problem to Solve 
 
The precise definitions of perfect maps can be found in the next section, but the essence in a 
nutshell is the following. Perfect Maps (or de Bruijn Tori) are two-dimensional arrays in 
which every possible rectangular sub-array (of fixed size) occurs precisely once. 
 
The problem from the perspective of system analysis 
 
From the perspective of system analysis there are three main components of a system: inputs, 
outputs and the model that processes the inputs and returns the corresponding outputs. The 
book of Eiben and Smith [52] classes the possible problems among three categories: 
optimization, modeling and simulation problems. 
 
Our mathematical problem is an optimization problem (Figure 1-1): 
 

i) input The candidate perfect maps, namely the elements of the search space. 
 

ii) model  The model is known, that is we know the way to decide whether a 
map is a perfect one or not. 
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iii) output The qualification of the input. In case of a “traditional” search 
algorithm it is “yes” or “no”. In case of genetic algorithm it stands for 
the fitness values. 

 
Figure 1-1 Optimization problem 

 
Research Objective 
 
The main goal of my thesis is to demonstrate that evolutionary computing is a useful tool in 
the investigation of this complexity problem and should be considered before declaring the 
computational limits of the resolvability. It is a tool that provides the computer with some 
kind of intelligence hence the computing capacity can be used in a quite different way than 
before. 
 
Apart from proving the aptitude of EC, there are two more important issues I aim at: to gather 
all the available information about the foregoing results and to verify them, as well as find 
such maps whose existence was only a conjecture so far. It is a great challenge, because 
neither theoretical proofs shore up their existence nor practical attempts, namely no one could 
construct or simply search for such mathematical objects due to the size of the search space. 
The detailed survey on my research can be found in section 4. 
 
The Structure of My Thesis 
 
The next section is dedicated to the complexity problem. I tried to compile a concise well-
structured survey (“state-of-the-art”) on the problem based on the corresponding papers. 
There were more issues I considered about this survey. First, the literature regarding the 
problem is quite large and complex. There are many papers devoted to special practical 
applications (robot self location, pseudorandom arrays, etc.) or features (e.g. decodable maps), 
while others are interested in construction methods. The really important issues in terms of 
my thesis are the results concerning the existence question (necessary and sufficient 
conditions) of the maps, hence I collected and structured only this kind of information. The 
notations were quite diverse and sometimes confusing, so I aimed at using a uniform and 
consistent notation based on the papers of Hulbert and Isaak. 
 
Considering the size of the problem it is very tempting to have an eye to the possibility of 
parallelization, especially if the appropriate hardware is to hand. In the third section I 
collected the alternative ways to parallelizing an evolutionary algorithm (section 3.1) and I 
gave a short description of the parallel testing environment, the DAS-2 (section 3.2). 
 
The fourth section contains my research. It is divided into two main parts: the first one 
(section 4.1) contains the concise specification of the implemented algorithms (both the 
reference and the genetic algorithm), and the second one is devoted to the outcomes of the 
experiments and some theoretical results (section 4.2). 

known specified  ? 

Model 

output input 
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I implemented several algorithms during my work, the list of them can be found in Appendix 
B. The principles of the certain algorithms are detailed in the corresponding sections and the 
documentation of the most important application can be found in Appendix A. 
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2 Theoretical Survey on the Mathematical Problem 

2.1 One-Dimensional Case 

2.1.1 Perfect Sequences (de Bruijn Cycles) 
 
In one dimension the aperiodic and periodic cases are not clearly distinguished in the 
literature, because they are barely different from each other and the conversion is trivial 
between them. The phrases de Bruijn Cycle and de Bruijn Sequence are equally in use to stand 
for the periodic case, where the sequence is considered to be wrapped round on itself. This 
corresponds to writing it on the outside of a cylinder. 
 
DEFINITION  1  A k

n nk );( - de Bruijn Cycle is a cyclic k -ary sequence of length nk  

with the property that every k-ary n-tuple appears exactly once contiguously on the cycle. The 
parameter n is often called the span of the sequences. 
 

]11101000[  

Figure 2-1 A 2)3;8( - de Bruijn Cycle 

 
REMARK  2  In a cycle there are two directions and they need to be considered as 
different in spite of the fact that they represent the same cycle. For example in Figure 2-2 we 
have two cycles: ]11101000[  (found clockwise) and ]10111000[  
(found counter-clockwise). 
 

 
Figure 2-2 

 
THEOREM  3  A k

n nk );( - de Bruijn Cycle exists for every k and n ( 2≥k  and 1≥n ). 

 
Such cycles were first discovered in 1894 by Flye-Sainte Marie [1], and rediscovered in 1946 
by de Bruijn [2] and Good [3]. An excellent survey on the topic by Fredricksen can be found 
in [4]. 
 
De Bruijn Cycles have applications in the study of position-detection [5, 6, 7, 8, 9, 10, 11, 12], 
pseudorandom numbers, cryptography, nonlinear shift registers and coding theory, and a vast 
literature exists [13, 14, 15, 16, 17]. 

0 

0 
0 

0 

1 

1 
1 

1 
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2.1.2 The Decoding Problem 
 
The decoding problem is to discover the position any specified n-tuple within a particular 
sequence. In spite of its importance [5, 8, 30] it has been much less well studied than the 
construction problem. 
 
A summary of the previous work and two new methods for construction of de Bruijn Cycles 
(which have the advantage that they can be decoded very efficiently) can be found in [18]. 

2.1.3 Infinite Perfect Sequences 

2.1.3.1 Superperfect Sequences 
 
DEFINITION  1  A k

n nk );( - Superperfect Sequence is a Perfect Sequence whose nk  

length prefixes are k
n nk );( - de Bruijn Cycles for �,2,1=n . 

 
In 1984 N. Vörös [19] gave a sufficient condition for the existence of such sequences. 

2.1.3.2 Growing Sequences  
 
DEFINITION  1  A k

n nk );( - Growing Sequence is a Perfect Sequence whose nk  length 

prefixes are k
n nk );( - de Bruijn Cycles for �,2,1=k . 

 
DEFINITION  2  Let �21kkk =  be a strictly increasing sequence of positive integers. 

An 
k

n nk );( - Growing Sequence is a Perfect Sequence whose n
ik  length prefixes are 

ik
n
i nk );( - de Bruijn Cycles for �,2,1=i . 

 
REMARK  3  This is the one-dimensional equivalent of a more general definition that 
can be found in Section 2.3.1.2.1. 
 
Hurlbert and Isaak [45] in 1994 constructed a Growing Sequence for the case when k  is the 
sequence of the even number. Then years later, Horváth and Iványi [21] proved the following 
 
LEMMA  4  If 1≥n  and 1≥k  then any k

n nk );( - de Bruijn Cycle can be continued 

in order to get a 1);)1(( ++ k
n nk - de Bruijn Cycle. 

 
This lemma yields [21] the following 
 
THEOREM  5  If 1≥n  and �21kkk =  with ik i = , then exists a 

k
n nk );( - Growing 

Sequence. 
 
The most general result (see section 2.3.1.2.1) can be found in [20].  

2.1.3.3 Alternating Sequences  
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Alternating Sequences are hybrids of the previously mentioned two kind of infinite sequences. 
The proof of their existence can be found in [21]. 
 
DEFINITION  1  An Alternating Sequence is a Perfect Sequence whose ii  length prefixes 
are i

i ii );( - de Bruijn Cycles and ii )1( +  length prefixes are 1);)1(( ++ i
i ii - de Bruijn Cycles 

for �,2,1=i . 

2.1.4 Perfect Factors (Equivalence-Class de Bruijn Cycles) 
 
Perfect Factors are related objects introduced by Etzion [22] and later by Hurlbert and Isaak 
[40] as Equivalence-Class de Bruijn Cycles. Perfect Factors have proved useful in 
constructions for de Bruijn Tori and have been extensively studied in [23, 24, 25, 26]. 
 
DEFINITION  1  An kTnR );;( - Perfect Factor is a set of RkT n /=  k-ary, period R 

sequences in which every k-ary n-tuple occurs exactly once as a subsequence. The parameter 
n is often called the span of the sequences.  
 













]010110222[

],202002111[

],121221000[

 

Figure 2-3 A 3)3;3;9( - Perfect Factor 

 
REMARK  2  Perfect Factors are generalizations of the classical de Bruijn Cycles: a 
de Bruijn Cycle is a Perfect Factor with 1=T , that is  a k

n nk )1;;( - Perfect Factor. 

 
The following necessary conditions for the existence of a Perfect Factor were formulated in 
[25]. 
 
LEMMA  3  Suppose A is an kTnR );;( - Perfect Factor. Then 

i) ,| nkR  and 

ii) nkRn ≤<  or  )1( == nR . 
 
CONJECTURE  4 The conditions of Lemma 3 are sufficient for the existence of an 

kTnR );;( - Perfect Factor. 

 
Etzion [22] has shown that the conjecture holds in the binary case. This was extended to cases 
where k is a prime power by Paterson [26]. Mitchell and Paterson [27] have shown the 
sufficiency for the case when 1−= Rn .  
 
In the view of the first condition in Lemma 3 we can assume that the prime factorizations of k 
and R are:  

∏
=

=
n

i

k
i

ipk
1

 and ∏
=

=
n

i

r
i

ipR
1

 where nkr ii ≤≤0  for each i. 
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It was also proved in [26] that the conditions of Lemma 3 are sufficient when np is
i >  for 

every index i. In [23] this result has been improved to establish the sufficiency of the 

conditions of Lemma 3 whenever np is
i >  for at least one index i. 

 
Mitchell has shown that the conjecture holds if 5<n  [24] and that Perfect Factors exist for all 
triples kRkR )/,6,( 6  satisfying the conditions of Lemma 3 with some possible exceptions 

[23]. He obtained Perfect Factors for some of those exceptions in [25]. 
 
This result was extended to 7<n  in [27]. Regarding the cases 7=n  and 8, unresolved 
parameter sets and remarks can be found in [27].  
 
Mitchell [24] has shown that the following Perfect Factors exists: 
 

i) dd 6
32 )6,3,6( - Perfect Factor  ),1( ≥d  

ii) dd 10
32 )10,3,10( - Perfect Factor  )1( ≥d  and 

iii) dd 30
32 )30,3,30( - Perfect Factor  ).1( ≥d  

2.1.5 Perfect Multi-Factors 
 
Mitchell introduced two auxiliary classes of combinatorial objects: Perfect Multi-Factors [23] 
and Generalized Perfect Factors [24] (see section 2.1.6), which can be combined in various 
ways to yield Perfect Factors. 
 
DEFINITION  1  Suppose R, m, n and k are positive integers satisfying nkR |  and 2≥k . 

An kmTnR );;;( - Perfect Multi-Factor is a set of RkT n /=  k-ary, period Rm  sequences with 

the property that for every k-ary n-tuple τ, and for every integer j in the range mj <≤0 , τ 
occurs at a position jp ≡ (mod m) in one of these sequences. 
 



















]10110100[

],01011010[

],11100001[

],11110000[

 

Figure 2-4 A 2)2;4;4;4( - Perfect Multi-Factor 

 
REMARK  2  An kTnR )1;;;( - Perfect Multi-Factor is precisely equivalent to an 

kTnR );;( - Perfect Factor. 

 
The following necessary conditions for the existence of a Perfect Multi-Factor were 
formulated in [23]. 
 
LEMMA  3  Suppose A is an kmTnR );;;( - Perfect Multi-Factor. Then 

i) ,| nkR  and 
ii) Rmn <  or  ( mn =  and 1=R ). 
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It has been shown [23] that the above necessary conditions are sufficient if nm ≥ . 

2.1.6 Generalized Perfect Factors 
 
DEFINITION  1  Suppose R, m, n and k are positive integers satisfying nkR |  and 2≥k . 

An kmTnR );;;( - Generalized Perfect Factor is a set of RkT n /=  k-ary, period mR ⋅  

sequences with the property that for every k-ary n-tuple τ, there exists an integer j in the 
range Rj <≤0  such that for every i )0( mi <≤  τ occurs at position iRj +  in one of these 
sequences. 
 
REMARK  2 

i) An kTnR )1;;;( - Generalized Perfect Factor is precisely equivalent to an kTnR );;( - 

Perfect Factor, and 
ii) An kmTn );;;1( - Generalized Perfect Factor is precisely equivalent to an kmTn );;;1( - 

Perfect Multi-Factor. 
 
The following necessary conditions for the existence of a Generalized Perfect Factor were 
formulated in [24]. 
 
LEMMA  3  Suppose A is an kmTnR );;;( - Generalized Perfect Factor. Then 

i) ,| nkR  and 
ii) Rmn <  or  ( mn =  and 1=R ). 

 
These necessary conditions for the existence are not sufficient [24], but there are some 
(constructive) existence results for Generalized Perfect Factors in [24, 27]. 

2.1.7 De Bruijn Graphs 
 
DEFINITION  1  Let { }1,,1,0 −= kK �  be and alphabet and let nK  denote the set of n-

tuples. A ),( nk - de Bruijn Graph is a graph with vertex set nK  and edge set 1+nK  so that if 

>=< +121 nxxxe �

1+∈ nK  then e determines a directed edge going from the vertex 

>< nxxx �21  to the vertex >< +132 nxxx � . 
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Figure 2-5 A )2,2( - de Bruijn Graph 

 
Since a ),( nk - de Bruijn Graph is connected and each vertex has k ingoing and k outgoing 
edges, it has an Euler path [28]. Note that an Euler path in a ),( nk - de Bruijn Graph is 

equivalent to a k
n nk )1,( 1 ++ - de Bruijn Cycle.  

 

The number of distinct Euler paths in a de Bruijn Graph is equal to 
nkk ))!1(( −∆ , where ∆  

denotes the number of spanning trees of the graph [28]. Considering that the in-degree matrix 
contains at most )1( +kk n  non-zero elements, this number can be determined in )!( 1+Ο nk  

time. Even the best non-approximating algorithm (Gaussian elimination) needs )( 3nkΟ  time, 
which is still exponential. 
 
An easily applicable equivalent formula with the specialty that it does not require any 
knowledge about graph theory and can be applied in )( kn +Θ  time, is given in Section 
4.2.6.2. 
 

2.2 Two-Dimensional Case  

2.2.1 Aperiodic Perfect Maps 
 
In the aperiodic case the array is deemed to be written onto a planar surface and the sub-arrays 
are always completely within the borders of the array. 
 
DEFINITION  1  An knmSR ),;,(  - Aperiodic Perfect Map is a k-ary )( SR ×  toroidal 

array with the property that every k-ary )( nm ×  array occurs exactly once in the set of 
)( nm ×  aperiodic sub-arrays. The pair (m, n) is often called the window of the map.  

 

















101000011

011110100

011010000

 

Figure 2-6 A 2)2,2;9,3( - Aperiodic Perfect Map 

100 
010 

001 

000 

011 

00 01

11 10 
110

111 

101 
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LEMMA  2  If A is a k-ary knmSR ),;,(  - Aperiodic Perfect Map then 

i) ,1≥≥ mR  
ii) ,1≥≥ nS  and 

iii) mnknSmR =+−+− )1)(1(  
 
In [41], C. J. Mitchell proved the binary case of the following 
 
CONJECTURE  3 The necessary conditions of Lemma 2 on R, S, m, n are sufficient for the 
existence of a k-ary knmSR ),;,(  - Aperiodic Perfect Map. 

2.2.2 Periodic Perfect Maps (or de Bruijn Tori) 
 
In the periodic case the array is considered to be wrapped round on itself. This corresponds to 
writing the array onto a torus. Sub-arrays then exist starting at any point in the array, which no 
longer has any “ edges” . 

 
Figure 2-7 A torus 

 
These periodic structures can be transformed very simply into corresponding Aperiodic (see 
section 2.2.1) and Semi-Periodic (see section 2.2.3) Perfect Maps. However, Aperiodic and 
Semi-Periodic Perfect Maps can exist for parameter sets for which the corresponding Periodic 
Perfect Maps cannot [41]. 
 
DEFINITION  1  An knmSR ),;,(  - de Bruijn Torus (or Periodic Perfect Map) is a k-ary 

)( SR ×  toroidal array with the property that every k-ary )( nm ×  array occurs exactly once as 
a periodic sub-array of the array. The pair (m,n) is often called the window or order, and  

),( SR  the period  of the torus.  
 



















1110

1101

0100

1000

 

Figure 2-8 A 2)2,2;4,4( - de Bruijn Torus 

 
REMARK  2  The kmR )1,;1,(  - de Bruijn Tori are de Bruijn Cycles. 
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De Bruijn Tori have interesting applications in robot self-location [29, 30], pseudorandom 
arrays [22, 31, 32, 33], and the design of mask configurations for spectrometers [34]. (For an 
interesting variation on this theme see [35]). Even cloth patterns have used these designs, long 
before their mathematical properties were discovered [36]. 
 
In 1984, Ma [37] proved the binary case of the following 1988 theorem of Cock [38] (see also 
[39]). 
 
THEOREM  3  For all m, n and k (except 2=n  if k even) there is a k

sr nmkk ),;,( - de 

Bruijn Torus with mr =  and )1( −= nms . 

2.2.2.1 The Necessary Conditions of the Existence   
 
The necessary conditions of the following Lemma were mentioned by Hurlbert and Isaak in 
[40] and by Mitchell in [41]. 
 
LEMMA  4  If A is a k-ary knmSR ),;,(  - de Bruijn Torus then 

i) 1≥> mR   or 1== mR , 
ii) 1≥> nS   or 1== nS ,  and 

iii) mnkRS =  

2.2.2.2 The Sufficient Conditions of the Existence   
 
Paterson [42] showed that in the binary case the necessary conditions of the Lemma 4 are in 
fact sufficient for the existence of de Bruijn Tori. In [43] he extended his work to alphabets of 
prime-power size. 
 
CONJECTURE  5 If nmSR ,,, and k  satisfy 

i) ,mR >  
ii) ,nS >  and 

iii) mnkRS =  
then there is an knmSR ),;,(  - de Bruijn Torus. 

 
Hurlbert and Isaak [44] produced tori for which the period is not a power of k: 
 

THEOREM  6  Let k have prime factorization ∏ i

ip α and let  ∏= m
i

ippkq log . Then 

for all m, n there is a k
mn nmqkq ),;/,( - de Bruijn Torus. 

 
In [45] they proved a sub-case (see Theorem 1 in Section 2.2.2.4) with the hope that it will 
help to extend this result. 
 
The most progress toward the previous conjecture by Paterson [46] is the following 
 
THEOREM  7  Suppose k, R and S have prime factorizations as follows: 
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,
1

∏
=

=
n

i

k
i

ipk  ∏
=

=
n

i

r
i

ipR
1

 and ∏
=

=
n

i

s
i

ipS
1

 for some mnkr ii ≤≤0  where ,iii rmnks −=  

mR >  and nS > . And that for some i we have mp ir
i >  and np is

i > . Then there exists an 

knmSR ),;,( - de Bruijn Torus. 

 
This prompted Hurlbert, Mitchell and Paterson [47] to examine the parameter sets where 

mp ir
i ≤  for some indices and np is

i ≤  for other indices in the case where 2== nm . They 

developed new construction methods for some sub-cases (see Theorem 2 and Theorem 3 in 
Section 2.2.2.4) and with the combination of those cases obtained the following  
 
THEOREM  8  The necessary conditions of Lemma 4 are sufficient for the existence of 
an kSR )2,2;,( - de Bruijn Torus. 

2.2.2.3 A Special Case: de Bruijn Square 
 
In 1992 Chung, Diaconis and Graham [48] asked whether it is possible that “ square”  tori exist 
for even n. That is, can it be that SR =  and nm = ? This question was resolved for the binary 
case by Fan, Fan, Ma and Siu [49], who proved  
 
THEOREM  1  There exist a 2),;2,2( nnrr - de Bruijn torus if and only if n is even (of 

course, 2/2nr = ). 
 
Hurlbert and Isaak [40] settled the question for general k with the following 
 
THEOREM  2  Except in the case that k is an even square and ,3=n ,5 7  or 9 , there 

is an knnRR ),;,( - de Bruijn Torus if and only if n is even or k is a perfect square. 

 
In [46] Paterson made up for the mission cases ( ,3=n ,5 7  and 9 ), so previous theorem reads 
as follows. 
 
THEOREM  3  There is an knnRR ),;,( - de Bruijn Torus if and only if n is even or k is 

a perfect square. 

2.2.2.4 Some Constructions for Sub-Cases 
 
THEOREM  1  For all s and t there is a sttsst 2

232 )2,2;4,4( - de Bruijn Torus. 

 
THEOREM  2  Suppose 2≥> nm . Then there exists an mnnm )2,2;,( 44 - de Bruijn 

Torus. 
 
THEOREM  3  Suppose 2>n  is odd. Then for every 1≥k , there exists a 

n

k
kn

2

144 )2,2;2,2( − - de Bruijn Torus. 
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2.2.3 Semi-Periodic Perfect Maps 
 
In the semi-periodic case the array is considered as periodic in one dimension and aperiodic in 
the other. This corresponds to writing the array onto the outside of a cylinder. 
 
DEFINITION  1  An knmSR ),;,(  - Semi-Periodic Perfect Map is a k-ary )( SR ×  toroidal 

array with the property that every k-ary )( nm ×  array occurs exactly once in the set of 

)( nm ×  semi-periodic sub-arrays. The pair ( )nm,  is often called the window of the map.  
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Figure 2-9 A 2)2,2;8,3( - Semi-Periodic Perfect Map 

 
LEMMA  2  If A is a k-ary knmSR ),;,(  - Semi-Periodic Perfect Map then 

i) ,1≥≥ mR  
ii) 1≥> nS   or 1== nS ,  and 

iii) mnkSmR =+− )1(  
 
In [41], C. J. Mitchell proved the binary case of the following 
 
CONJECTURE  3 The necessary conditions of Lemma 2 on R, S, m, n are sufficient for the 
existence of a k-ary knmSR ),;,(  - Semi-Periodic Perfect Map. 

2.2.4 The Decoding Problem 
 
As already mentioned with reference to the one-dimensional case in Section 2.1.2, Perfect 
Maps play a significant role in many applications, especially in position location [30, 50]. 
Decoding means a method for computing the position of a given sub-array within a Perfect 
Map. In [50] we can found methods for constructing Perfect Maps, which can be decoded 
efficiently. Some remark on the efficiency of other methods can be found in [41]. 

2.2.5 Infinite Perfect Maps 
 
The definitions of the two-dimensional Growing Perfect Maps and Alternating Perfect Maps 
can be easily generalized from their one-dimensional equivalent (see section 2.1.3). For the 
most general definition see section 2.3.2. 
 
The following Infinite Perfect Maps can be considered as two-dimensional interpretations of 
the Superperfect Sequences. 
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2.2.5.1 Increasing Perfect Maps 
 
DEFINITION  1  An kxnmxSR ))(,);(,( - Increasing Perfect Map is a Perfect Map with 

the property that every prefix of the map is a kxnmxSR ))(,);(,( - de Bruijn Torus, where 

xxn =)(   and RkxS mx /)( =  for �,2,1=x . 
 

 
 

Figure 2-10 Sketch of an Increasing Perfect Map 

2.2.5.2 Expanding Perfect Maps 
 
DEFINITION  1  An kxcnxmxcSxcR )),(),();,(),,(( - Expanding Perfect Map is a Perfect 

Map with the property that every prefix of the map is a kxcnxmxcSxcR )),(),();,(),,(( - de 

Bruijn Torus ( 0≥c ), where xxm =)( , xcxcn +=),( , )1,(/),( ),()1( −= − xcRkxcS xcnxm  and 

),(/),( ),()( xcSkxcR xcnxm=   for �,2,1=x . 
 
REMARK  2  Expanding consists of two consecutive steps: first increasing the Perfect 
Map in one direction, then increasing it in the other direction. 

 

  
Figure 2-11 Sketch of an Expanding Perfect Map 
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2.2.6 Perfect Factors 
 
DEFINITION  1  An kTvuSR );,;,( - Perfect Factor is a set of T SR ×  periodic arrays, 

with symbols drawn from a set of size k, having the property that every possible vu ×  array 
occurs exactly once as a periodic sub-array in precisely one of the arrays.  
 
REMARK  2  An kvuSR )1;,;,( - Perfect Factor is simply an kvuSR ),;,( - de Bruijn 

Torus. 
 
Hurlbert, Mitchell and Paterson [47] obtained a complete answer for the necessary and 
sufficient conditions of the existence in the case where k is a prime-power: 
 
THEOREM  3  Let p be a prime and k, r, s and t be integers. The conditions that 

2, >sr pp  and ktsr 4=++  are necessary and sufficient for the existence of a 

kp

tsr ppp );2,2;,( - Perfect Factor.  

 

2.3 Higher dimensions 

2.3.1 De Bruijn d-Tori 
 

DEFINITION  1  Let ),...,( 1 drrR =  and  ),...,( 1 dnnn =  with ii nr >  and .∏ ∏= in

i kr  

We call a d-dimensional toroidal k-ary block an d
knR );( - de Bruijn Torus if it has dimensions 

drr ××�1  and every k-ary dnn ××�1  block appears exactly once contiguously in the d-

dimensional torus. 
 
DEFINITION  2  A fundamental block of an d

knR );( - de Bruijn Torus is an array 

consisting of ir  consecutive rows in the ith dimension for ,1=i  2, … , d. Repeating such a 

block produces the torus. 
 
REMARK  3  A matrix appears uniquely in an infinite periodic array if it appears 
uniquely in a fundamental block. 
 
One then has the following theorem, mentioned in [38] and proved in [44]. 
 
THEOREM  4  For all ,n d  and k  there is an R  so that there is an d

knR );( - de Bruijn 

Torus (except that 2=in  for at most one index i  when k  is even) with the following 

properties: 

1
1

nkr =  and 
∏

==

−

=

−
−

−

=
∏

1

1

)1(
1

1

1

)(

j

i
ij

j

nn
n

j

i
ij krr  

 
REMARK  5  So Cock’s technique [38] easily generalizes to higher dimensions, but 
unfortunately, each new dimension has size exponential in the previous.  
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CONJECTURE  6 If k, R  and n satisfy 
i) ii nr >  or 1== ii nr  for all di ≤≤1  and 

ii) 
∏

= =∏
=

d

i
ind

i
i kr 1

1

 

then there is an d
knR );( - de Bruijn Torus. 

2.3.1.1 A Special Case: de Bruijn d-Cubes 
 
Hurlbert and Isaak [40] assumed that Conjecture 6 is true for nnn d ===�1  and 

dn
d

d

krr /
1 ===� , that is de Bruijn d-Cubes. In [20] Horváth and Iványi constructed the 

smallest possible (a 256256256 ××  sized 8-ary) 3-Cube.  

2.3.1.2 Infinite de Bruijn d-Cubes 

2.3.1.2.1 Growing de Bruijn d-Cubes 
 
In [20] Horváth and Iványi proposed the following definitions and proved Theorem 3. 
 
DEFINITION  1  Let �21kkk =  be a strictly increasing sequence of positive integers. 

A d
k

dn nk
d

);( / - Growing de Bruijn Cube is a de Bruijn d-Cube whose prefixes are d
k

dn
i i

d

nk );( / - 

de Bruijn Cubes  for �,2,1=i . 
 
DEFINITION  2  For 2, ≥kn  the new alphabet size ),( nkK  is 
 
 
 
 
where q is the product of prime divisors of n not dividing k. 

THEOREM  3  If 1≥d , 2≥n , 2≥k  and ),gcd( dnd

di

i Nk =  for �,2,1=i  then exists a 
d
k

dn nk
d

);( / - Growing de Bruijn Cube. 

2.3.2 Infinite de Bruijn d-Tori 

2.3.2.1 Increasing de Bruijn d-Tori 
 
DEFINITION  1  An d

kxnxR ))();(( - Increasing de Bruijn Torus is a de Bruijn d-Torus 

with the property that every )(xR  sized prefix of the torus  is an d
kxnxR ))();(( - de Bruijn 

Torus, where xnnnxn d ,,,,)( 121 −= �  and 121121 /,,,,)( 121
−−

−= d
xfff

d rrrnrrrxR d
��

�  for 

�,2,1=x . 

2.3.2.2 Expanding de Bruijn d-Tori 
 

if any prime divides k, 

otherwise, 



=
,

,
),(

kq

k
nkK
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DEFINITION  1  An d
kxnxR ))();(( - Expanding de Bruijn Torus is a de Bruijn d-Torus 

with the property that every prefix of the torus is an d
kxnxR ))();(( - de Bruijn Torus, where 

xcxn ii +=)(  ( 01 =c , 0≥ic  for �,3,2=i )  and  

∏∏
+==

−

−
∏ ∏

= = +=
d

ij
j

i

j
j

xnxn

i xrxrkxr

i

j

d

ij
jj

11

)1()(

)1()(/)( 1 1  for �,2,1=x . 

2.3.2.3 Developing de Bruijn d-Tori 
 
DEFINITION  1  Let �21nnn =  be a sequence of positive integers. An d

knR );( - 

Developing de Bruijn Torus is a de Bruijn d-Torus with the property that every i-dimensional 

prefix of the torus is an i
knR );( - de Bruijn Torus, where ∏

≠

∏=
jl

l

n

j rkr l /   for ij ,,2,1 �= . 

2.3.2.4 Growing de Bruijn d-Tori 
 
DEFINITION  1  Let �21kkk =  be a strictly increasing sequence of positive integers. 

An d
k

nkR ));(( - Growing de Bruijn Torus is a de Bruijn d-Torus with the property that every 

prefix of the torus is an d
ki i

nkR ));(( - de Bruijn Torus, where ∏
≠

∏=
jk

k
n

iij rkkr k /)(  

),,1( dj �=   for �,2,1=i . 

2.3.2.5 Alternating de Bruijn d-Tori 
 
DEFINITION  1  An d

k
nR );( - Alternating de Bruijn Torus is a de Bruijn d-Torus with the 

property that every ii  sized prefix of the torus is an d
inR );( - de Bruijn Torus with ∏ = in j , 

and every ii )1( +  sized prefix is an d
inR 1);( + - de Bruijn Torus with 1+=∏ in j , for 

�,2,1=i . 

2.3.3 Perfect Factors (de Bruijn Families) 
 
DEFINITION  1  A d-dimensional k-ary, order n Perfect Factor (or de Bruijn Family) of 
size t and period R  is a family },,{ 1 tBB �  of d-dimensional k-ary toroidal arrays, of period 

R  each, with the property that for every d-dimensional k-ary matrix M of size n  there is a 
unique j and a unique i  so that M appears in jB  at position i . (We will say that a particular 

matrix M of size n  appears in B at a position diii ,,1 �=  if M appears in the positions 

i through ni + .) We call such a Perfect Factor an d
ktnR );;( - Perfect Factor. 

 
REMARK  2  In the case that 1== td , Perfect Factors have been called de Bruijn 
Cycles. Perfect Factors with 1=t  and 1>d  have been called de Bruijn Tori (or Perfect 
Maps). 
 
Hurlbert and Isaak [51] obtained the following 
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THEOREM  3  Let ∏
=

=
s

i
i

ipk
1

α  for primes ip  and for dj ≤ suppose that ∏
=

=
s

i
ij

jipr
1

,β  

with each 2, >ji

ip β . Further assume that for each si ≤  there is a permutation 

),,( ,1, diii σσσ �=  of },,1{ d�  so that for each dl ≤  we have ∑
=

≤
l

j

l
ii ji

1
, 2

,
αβ σ . Then there is 

an d
ktnR );;( - Perfect Factor, where each 2=in . 

 



3 TOOLS FOR PARALLELIZING THE ALGORITHM 
 

24 

 
 

3 Tools for Parallelizing the Algorithm 

3.1 The Available Evolutionary Computing Tools 
 
The following two models were specified by Eiben and Smith [52]. 

3.1.1 Island Model 
 
The principle of the Island Model is that we have multiple populations in parallel. They exist 
and evolve independently from one another; each one is a separate “ island” . Sometimes 
individuals are moving from a population to another neighbouring one, this process is called 
migration. Its mechanism is illustrated in Figure 3-1, where we have three populations with 
three individuals migrating, one from island 2 to1 and two from island 3 to 2. 

 
Figure 3-1 Sketch of the Island Model 

 
Migration takes place after an epoch, namely a number of generations. While the populations 
are evolving independently from the others, they are exploring a certain part of the search 
space, namely they are exploiting that area. If a new individual gets into the population, it can 
direct the search into other (maybe fitting) directions and by this means expand the space 
searched so far, hence facilitating exploration. 
 
Basic parameters and some recommendations to consider: 
 

i) How long should be an epoch? Its length is usually fixed, but we have countless 
possibilities to plant it into the evolutionary mechanism and make it depend on some 
other parameter or feature of the populations. 

 
ii) How many individuals to exchange? If we exchange a large number of individuals, the 

populations may converge to the same solution too rapidly, and we will have a lot of 
populations producing the same results, consuming time and capacity unnecessarily. 

 

1 2 

3 
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iii) Which individuals to exchange? The selection may carry out on the basis of fitness, or 
it can be simply a random choice. In the latter case it is less likely that a population 
will be took over by a new high-fitness migrant. 

 
iv) How to initialize the different populations? It is not guaranteed that the different 

populations are exploring different regions of the search space, that’s why we have to 
be very cautious and apply some refined heuristics during the initialization process. 

 
It is possible to maintain different populations with different parameters, like the continents 
have different features in real life. 

3.1.2 Diffusion Model 
 
The principle of the Diffusion Model is that we have multiple overlapping subpopulations in 
parallel. The members of the populations can be considered being scattered over on a toroidal 
grid, and communicating only with individuals in their neighbourhood. Communication 
means the applicability of the recombination and selection operators in this context. This 
mechanism is illustrated in Figure 3-2, where the black individual in the middle 
communicates exclusively with the grey ones in its immediate vicinity. 

 
Figure 3-2 Sketch of the Diffusion Model 

 
Basic parameters and some recommendations to consider: 
 

i) How large should be a neighbourhood? The size of the neighbourhood is usually the 
same for all nodes, but we can make it depend on some feature of the individual, by so 
doing the populations turn into some kind of realistic community, where the 
individuals are making friends with each other: there are timid ones with smaller 
vicinity and social ones with larger vicinity. 

 
ii) Which element to replace? Owning to the overlapping feature of the subpopulations 

we have to be very careful when applying the replacement operator. If both 
subpopulations want to replace the same individual, race conditions may occur. This 
situation is illustrated in Figure 3-2, where two subpopulations indicated by black 
frames want to replace the same individual in their intersection. One possible solution 
is to replace the central node of a subpopulation. 
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3.2 The Parallel Testing Environment 
 
The system where I run my parallel applications is called DAS-2 (Distributed ASCI 
Supercomputer 2). It was designed by the Advanced School for Computing and Imaging, a 
cooperation between a number of Dutch Universities. The machine is built of clusters of 
workstations, which are interconnected by SurfNet, the Dutch university Internet backbone for 
wide-area communication. The nodes within a local cluster are connected by a Myrinet-2000 
network, a popular high-speed LAN. The system was built by IBM and runs the Red Hat 
Linux operating system. The clusters are located at five Dutch Universities, there are 200 
nodes altogether. I use only one cluster of 72 nodes, located at the Vrije Univeristeit. 
 
Each node contains:  
 

• Two 1 GHz Pentium IIIs  
• At least 1 GB RAM (2 GB for two "large" nodes)  
• A 20 GByte local IDE disk  
• A Myrinet interface card  
• A Fast Ethernet interface card  

 
Each cluster consists of a file/compile server (called fs0 that of VU) and a number of compute 
nodes. Running of jobs must be done on the worker nodes via the cluster scheduling system 
OpenPBS. This system reserves the requested number of nodes for a specific duration (the 
default is 15 minutes). The user interface of this job manager is called prun, which provides a 
convenient way to start jobs. 
 
For more information about the DAS-2, see http://www.cs.vu.nl/das2. 
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4 My research 
 
Concise Survey 
 
As I already mentioned in the introduction, I have got three aims: proving the aptitude of EC, 
verifying the foregoing results and finding such maps whose existence was only a conjecture 
so far. 
 
At first I studied the one-dimensional equivalents of the tori, namely de Bruijn cycles. My aim 
was to observe all the features that can be useful in higher dimensions, and to use the obtained 
experience in course of the implementation of the higher-dimensional cases. By means of the 
reference algorithm (a backtrack search algorithm) I managed to devise a formula concerning 
the number of tokens in a cycle. This result allows of applying a representation (permutation 
representation) of the individuals in the EA that proved to be more efficient during the 
evolution than the straightforward one (integer representation) that first I had a whack at. 
Although it is not so relevant from the point of view of my research regarding EAs, but during 
my experiments I observed a mathematical relation concerning the number of de Bruijn 
cycles, that diverges from the known one (the number of Euler paths). 
 
Next I started to experiment with two-dimensional tori. Unfortunately, in this case the 
experiments with the reference algorithm are often time-consuming and sometimes also 
impossible due to the size of the search space. Hence I couldn’t gain sufficient data to devise a 
similar formula concerning the number of tokens as in case of one-dimensional cycles. Even 
so the results of these experiments show that there is a relationship, even if we are not able to 
devise it. 
 
Hence in the two-dimensional case I was forced to use the straightforward integer 
representation. It worked, however, the evaluation of individuals was very costly, so that it set 
a limit to my experiments. This issue holds in the higher dimensional cases, as well. With the 
recent computational capacity it is not guaranteed that the evolution gives any result in 
reasonable time. I also tried to speed up the algorithm by means of parallelization. I 
parallelized both the reference and the genetic algorithm, but either the outcomes of the 
experiments were not satisfying or the matter of applicability is troublesome. 
 
I concluded the following. I believe that the mathematical relationship regarding the number 
of tokens exists in higher dimensions, as well. Furthermore I believe that the evolution with a 
representation based on tokens could be the most efficient tool in finding perfect maps. Hence 
my aim in the following is to experiment with the genetic algorithm in order to get closer to 
the possibility of the permutation representation. 
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4.1 Specification of the Algorithms 

4.1.1 One-dimensional Case 

4.1.1.1 Reference Algorithm 
 
A backtrack search is implemented in DbcBackTrack.java. 
 
Functioning of the Algorithm 
 
The program reads the parameters (the alphabet size and the span size) from the standard 
input and searches the space of all the possible candidates for de Bruijn Cycles. 
 
The longest possible cycle that the program is able to produce, has the length of 1231 −  (the 
reason for this is the integer representation of the cycle length). The alphabet size and the 
span size are represented as a byte variable, which has a maximum value of 128 − . While 
reading the parameters from the standard input, the program gives a warning and the set of 
possible values if the length of the cycle would exceed the above threshold. When having the 
parameters, it gives the length and the number of such cycles (see section 4.2.6.2), and asks 
whether to find all the possible ones. 
 
Its output (the cycles, the number of basic steps and backtracks, and the CPU time needed, 
respectively) is written to a file named dbc_alphabet_span_bt.txt where the strings “ alphabet”  
and “ span”  denote the actual size of the parameters. 
 
Specification of the Algorithm 
 
In what follows k and n denote the size of the alphabet and the span, respectively. 

 

Search space: The space of all the possible candidate cycles. Its size is 
nkk (note that nk is 

the length of the cycles). 
 
Basic step: Inserting an element of the alphabet into the cycle. 
 
Each candidate is bound to contain the all zeros tuple, so we insert this tuple into the forepart 
of the candidate. This part of the candidate is fixed, there is no backtracking from this level 
(the levels of the search tree correspond to the positions in the candidate, so this means the 
( 1−n )th level, because we have inserted n zeros into the candidate and the level numbering 
begins with zero). In other words this means that the search does not need to be executed 
beginning with the other possible tuples. The explanation for this heuristic is the periodic 
feature of the cycles, namely no matter from which position the cycle is inspected. Hence we 
can be sure that all the possible candidates will be found on the branch beginning with the all 
zeros span. 
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The Principle of the Functioning 
 
To provide the proper functioning we have two arrays: 
 

i) tuplesInCandidate   It is a one-dimensional array, whose indices stand for the 
decimal values of the tuples and the elements indicate whether the corresponding tuple 
is used in the candidate (1 if it is used, 0 otherwise). So the tuples need not to be stored 
actually, there is a conversion function instead that converts a tuple into a decimal 
value if needed. This array guarantees that the candidate is a prefix of a de Bruijn 
cycle, hence the candidate needs not to be examined in every step whether it is a legal 
one. 

 
ii) triedAlready   On each level we keep a record of the elements, which we have 

already inspected a branch beginning with. These elements are stored in a two-
dimensional array where the indices of the first dimension stand for the levels, and 
those of the second dimension stand for the element of the alphabet. Likewise in the 
case of the previously mentioned array tuplesInCandidate, the elements indicate 
whether the corresponding tuple was tried already. 

 
In every step we choose an element from the alphabet (which was not tried yet in this level, 
namely it is not in the appropriate array of triedAlready), and try to insert it into the candidate. 
If the arising tuple is legal (it is not in the array tuplesInCandidate) then the insertion is 
accomplished actually and the appropriate element of tuplesInCandidate is set, otherwise we 
backtrack one level in the search tree and modify the content of triedAlready accordingly. The 
possible number of basic steps in a level equals to the alphabet size k, and if there is no more 
non-tried element, a backtracking is needed. This backtracking differs a little bit from the 
previously mentioned one, because it is made from a ramification of the search tree, so the 
elements of the array triedAlready concerning the actual level needs to be reset to provide the 
coming element the possibility of continuation. This situation is illustrated in the figure 
below. 
 

 
Figure 4-1 Backtracking from a ramification 

 
Due to the two assistant arrays the insertion of the new element cannot corrupt the 
“ perfection”  and candidates on the lowest level (when the level is equal to the length of the 
cycle) are bound to be de Bruijn Cycles and to differ from the previously found ones. 

A B 
We have tried all 
the elements on the 
level of A. 

We would like to try 
these elements also on 
this branch of the tree, 
although it is the same 
level. 
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Parallelizing the Algorithm 
 
The parallel version of the algorithm is implemented by means of Java RMI (Remote Method 
Invocation) and Java threads. It is adjusted to the parallel testing environment, the DAS-2 (see 
section 3.2). The program consists of two components outlined below. 
 

i) The remote object is implemented in DbcBackTrackRemoteObject.java. Its task is to 
perform a search beginning with a particular node on a certain branch of the search 
tree, to that end it provides an interface with a public function called doBackTrack(). 

 
ii) The main program is implemented in DbcBackTrackRemote.java. It divides the search 

tree among a given number of threads, namely every thread is provided with a node, 
which the search has to be performed beginning with. 

 
The number of threads equals to the number of loaded remote objects, so there is a one-to-one 
correspondence between them. The task of the threads is to connect to the remote objects, 
invoke their doBackTrack() function, and return with the solution. The references to the 
remote objects can be retrieved by creating a file (id), which contains the names of the hosts 
they are running on. This can be done in the following way. When starting the remote objects, 
the output of the prun command has to be directed into the file: 
 
>prun –v –1 ./run_java numproc DbcBackTrackRemoteObject 2> id 

 
The –v flag is essential, it reports the host allocation. The –1 flag indicates that we want to run 
one process per node. The executable run_java is a special script, which sets the appropriate 
system properties to make running Java applications possible. The argument numproc stands 
for the number of processors. 
 
The main program will read the information about the hosts from the id file, and will start a 
proper number of threads. 
 

4.1.1.2 Genetic Algorithm 
 
The first stage to build a genetic algorithm is to decide on a representation of a candidate 
solution to the problem. A straightforward idea is letting the phenotype and the genotype of an 
individual be the same, namely fixed-length combinations of the elements of the alphabet. 
 
I made several experiments applying different operators and selection mechanisms, and the 
conclusion is that the algorithm based on a “ tricky”  representation works more efficiently (for 
detailed comparison see section 4.2.3.1). This is a permutation representation based on tokens 
(see section 4.2.6.1), and the components of this algorithm are outlined below. 
 
The algorithm itself is implemented in DbcGA.java and the different components are 
implemented in separate classes (Initialization.java, ParentSelection.java, Mutation.java, 
Recombination.java, Evaluation.java and SurvivorSelection.java). These components provide 
an interface with some functions that realize various operators and mechanisms. 
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4.1.1.2.1 Representation 
 
The phenotype space and the genotype space are different. Phenotypes are the possible 
solutions within the original problem context. Genotypes are permutations of references to 
different tokens. Given the alphabet and the span size, the number of tokens is particular, and 
each chromosome has to contain all the possible tokens. The chromosomes consist of unique 
elements, because even if two tokens are equal, the references to them are different. The 
mapping between the genotype and the phenotype is illustrated in the figure below. 
 

 
Figure 4-2 Representation of an individual 

 
Applying this representation the search space will be all the possible permutations of the 
tokens. The size of this space – considering each one of the tokens as unique – is N(k,n)!, 
where N(k,n) denotes the number of tokens given the alphabet size (k) and the span size (n). 

4.1.1.2.2 Initialization and Termination Condition 
 
Initialization:  The population has a fixed size, and first it is filled with random 
permutations of the possible elements (the references to tokens). 
 
Termination condition: The evolution is terminated if the program has found an 
appropriate cycle. This search may take quite much time, even in case of small parameters. 
Nonetheless, I didn’t define any other termination conditions, because our aim is to find a 
cycle and it’s up to the user to decide when to stop the search. 
 
Note that our problem is a global optimization problem, where a “ good”  (near perfect, at least 
by reason of its fitness) but suboptimal solution cannot be satisfactory. In other words the 
anytime behaviour [52] is not granted in our case. 

4.1.1.2.3 Evaluation Function 
 
The evaluation function assigns a quality measure to genotypes. The aim is to minimize this 
function, it minimum value is zero. An individual with minimum fitness value is bound to be 
a de Bruijn cycle. This function has two components: 

1 0 0 0 
2 1 1 1 
3 0   
4 1   

 

1 4 3 2 

0 0 0 1 0 1 1 1 

genotype: 

phenotype: 

tokens 

references to tokens 
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i) In the phenotype space:  
 
At each position we inspect the chromosome whether the tuple beginning at that position is 
unique, so every position has an own part-fitness value. When considering a tuple, all the 
positions need to be examined before its beginning position. If it is unique then the part-
fitness will be zero, otherwise it will stand for the rank of the tuple, namely how many times it 
occurred before (see the figure below). The actual fitness can be gained by summing up these 
part-fitness values. The zero value of this fitness indicates that all the tuples are unique, 
namely we have found what we were searching for. 
 

 

Figure 4-3 Ranks of the positions in a 2)3;8( - de Bruijn Cycle 

 
ii) In the genotype space:  

 
If two tokens get next to each other, it will be a legal arrangement only if their elements are 
different. The reason for this is that the longest token is span-sized long, and if it gets next to 
any of the tokens having the same elements, then the span-sized tuple will be occur twice, 
hence corrupting perfection. 
 
In a chromosome there are N(k,n) fitting points, where tokens can get next to each other. We 
observe the number of legal connections by means of a variable: if two adjacent tokens are 
different, then it is increased by one. If the value of this variable equals to N(k,n), then the 
chromosome has a legal permutation of the elements. This measure is realized by adding the 
difference of the number of tokens and N(k,n) to the fitness value. 

4.1.1.2.4 Variation Operators 
 
The variation and selection operators I applied are commonly used for permutation 
representations. I based my implementations on the book of Eiben and Smith [52]. Here I give 
a short description of the certain operators. 

4.1.1.2.4.1 Recombination 

 
I applied an order crossover. It is a binary operator, namely it merges information from two 
parents into the offspring. In my implementations two parents always breed two children. The 
number of descendants is determined by the generational gap, which indicates the percentage 

0 1 2 3 4 5 6 7 

0 0 0 0 1 1 1 1 

0 1 0 0 0 1 0 0 
 

ranks: 

phenotype: 

It is 1, because the all zeros 
tuple occurred once before. 
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of the population that is replaced by the new individuals. This parameter is given by the user, 
likewise the population size, and the number of offspring is determined by their product. 
 
The individuals are selected from the mating pool in pairs at random. It is up to the crossover 
rate whether the two candidate parents will breed a child or not. This parameter is given also 
by the user, and the outcome of a random drawing – compared to this rate – will be decisive: 
if the random value is smaller than the rate the candidates will mate, otherwise the children 
will be created asexually, namely the parents will be simply copied into the offspring. 
 
The principles of the ordered crossover: 
 
First, we have to choose two crossover points at random, and then copy the genes between 
them into the corresponding child. The remaining genes are copied into the other child 
according to the following three rules: 
 

i) the copying starts from the second crossover point and wraps around at the end 
ii) only the unused genes are copied 

iii) the original order of the genes is preserved 

4.1.1.2.4.2 Mutation 

 
I applied two mutation operators: swap mutation and inversion mutation. The mutation is a 
unary operator, which takes an individual as input and alters it according to the mutation rate. 
The mutation rate is a parameter given by the user. Each individual has a probability to be 
mutated. If this value is smaller than the mutation rate then the individual is left unchanged, 
otherwise it is altered according to the semantics of the actual operator: 
 
swap mutation: It randomly picks two genes in the individual and swaps them. 
 
inversion mutation: It randomly selects two positions in the individual and reverses the 
order of the genes between those positions. 

4.1.1.2.5 Selection Operators 

4.1.1.2.5.1 Parent Selection 

 
I applied three kinds of parent selection methods: ranking selection, fitness proportional 
selection and tournament selection. All the three of them apply to the population as a whole 
and return the mating pool. The mating pool contains the individuals that are good enough –
based on their fitness – to become parents. In my implementations the mating pool has the 
same size as the population (µ). 
 
The first two methods can be divided into two consecutive steps: at first they define a 
probability distribution that indicates the likelihood of each individual being selected for 
reproduction, then a selection method is applied to sample the parents from this distribution. I 
applied two sampling methods: roulette wheel algorithm and stochastic universal sampling 
algorithm. The former corresponds to spinning a one-armed roulette wheel µ times, where the 
sizes of the holes reflect the selection probabilities, while the latter is equivalent to making 
one spin of a wheel with µ equally spaced arms. I based my implementations on the 
corresponding pseudo codes in [52]. 
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The principles of determining the probability distributions: 
 
ranking selection: First, the population is ranked based on the fitness values in such a way 
that the worst individual has rank 0, while the best has rank µ. Next, I applied a linear 
mapping to assign selection probabilities to the individuals based on the following formula 
[52]: 
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where i stands for the actual rank and s is parameter ( 0.20.1 ≤< s ) given by the user. 
 
fitness proportional selection: The individuals are selected according to their fitness 

values, namely the probability that an individual is selected for mating is ∑ =

µ

1
/

j ji ff . 

 
tournament selection:  I applied two kinds of tournament selection methods: 
deterministic and stochastic. In both cases k individuals are selected randomly, where k stands 
for the tournament size. In the deterministic case always the best individual survives, 
otherwise there is a probability indicating the likelihood that the fittest member is selected. 
Both this probability and the tournament size are parameters given by the user. 
 
In case of the stochastic version I applied a roulette wheel algorithm to select the winner. I 
determined the selection probabilities in the following way. The likelihood that the individual 
with the best fitness will be selected is p. I distributed the remaining likelihood p – 1 among 
the other k – 1 contestants based on their fitness. 
 
Note that this selection can be performed with or without replacement. In my implementations 
the replacement doesn’ t make sense in case of parent selection, because the size of the 
population and the mating pool are equal. I applied this option only in case of survivor 
selection. 

4.1.1.2.5.2 Survivor Selection 

 
All the selection operators mentioned above are possible replacement schemes in case of 
survivor selection, as well. They can be applied with a tiny difference, namely they take the 
union of the population and the offspring (µ + λ) as input and return the survivors (µ), but the 
mechanism of the selection is the same. 
 
I applied two selection methods that deviate from the previous ones, because they are not 
probabilistic but deterministic: 
 
best from union: The best λ members are selected to be survivors. They are selected from 
the union of the population and the offspring (µ + λ). 
 
replace worst:  The worst λ members of the population are replaced by the offspring. 
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4.1.1.2.6 Parallelizing the Algorithm 
 
The Island Model (see section 3.1.1) serves as the basis of the parallel version of the 
algorithm. It is implemented by means of Java RMI (Remote Method Invocation) and Java 
threads. It is adjusted to the parallel testing environment, the DAS-2 (see section 3.2). The 
program consists of three components outlined below. 
 

i) The Remote Object 
 
The remote object is implemented in DbcGARemoteObject.java. Its task is to evolve a 
population, a separate “ island” , and it also supports the migration of the individuals. To that 
end it provides an interface with six public functions described below. 
 
The function startGA(byte alphabet, byte tupleSize, int populationSize, int epoch, int 
numberOfMigrants) creates and evolves a population with the given parameters. The 
parameter epoch stands for the number of generations after individuals are exchanged. The 
migration needs to be synchronized, namely the exchange of individuals have to be an atomic 
operation. 
 
This atomicity is realized as follows. When the migration is in due time - that is the required 
number of generations has evolved -, the evolution of the population is suspended until all the 
migration mechanisms (sending and receiving individuals) accomplishes. From the aspect of 
the remote object the migration consists of four consecutive steps: 
 

i) First, it indicates that it is ready to accept requests for the selection and sending of 
migrants. It is realized by setting the value of the private variable 
waitingForSendMigrantsThread to true. The interface provides read access to this 
variable through the public function isWaitingForSendMigrantsThread(). 

 
ii) It prepares the migrants by marshalling the selected individuals and their fitness values 

into a “ package” , which is implemented as a vector of length two, the first element 
reserved for the individuals, the second for their fitness values. The number of the 
individuals is determined by the parameter numberOfMigrants, and the selection 
mechanism is based on fitness, namely the ones with best fitness are selected for 
migration. It is important to remark that the individuals are not effectively moved to 
the other population, they are merely copied. If the marshalling is ready, the object 
notifies the thread SendMigrantsThread already waiting for the migrants. 

 
iii) Then it indicates that it is ready to accept requests for the reception of migrants. It is 

realized by setting the value of the private variable waitingForReceiveMigrantsThread 
to true. The interface provides read access to this variable through the public function 
isWaitingForReceiveMigrantsThread(). 

 
iv) The replacement of the individuals is settled by the thread ReceiveMigrantsThread, 

and the remote object has to wait while it accomplishes. In the course of replacement 
first the individuals with worst fitness are wiped out from the population, then the 
migrants are unmarshalled and inserted into it. It is important to remark that the 
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references of the migrants need to be readjusted to the local ones. If the replacement is 
ready, the thread notifies the object that the evolution of the population may continue. 

 
ii) The Migration Manager 

 
The migration of the individuals is implemented in MigrationManager.java. It creates the 
conditions of migration by providing every population with two kinds of threads, a 
SendMigrantsThread, and a ReceiveMigrantsThread. The contact point between these threads 
and the populations is realized by the sendMigrants(int numberOfMigrants) and the 
receiveMigrants(Vector migrants) function of the remote object, respectively. These functions 
perform the actual exchange of individuals and can be invoked by the threads. 
 
It is important to note that the communication structure is a ring, namely the individuals are 
migrating between the neighbouring populations as illustrated in the figure below. 
 

 
Figure 4-4 The migration between populations 

 
As already mentioned with reference to the remote object, the migration needs to be 
synchronized. This synchronization was made clear on the level of individual population in 
the previous section. Now we inspect a higher level, where we take all the population into 
consideration. 
 
The main concern is that the reception of migrants from a neighbouring population requires 
these migrants to be already prepared. Hence we have to apply some kind of scheduling, and 
it works as follows. First, we demand every population to prepare their emigrants. 
Transitionally, until all the populations are ready, they are stored in an array called 
ellisIsland1. Then, the elements of this array are delivered to the proper population. This 
scheduling – keeping the populations wait for each other – does not have a detrimental impact 
on the performance, because the populations are evolving with the same parameters, hence the 
time needed to produce a new generation is the same for every island. 
 
iii) The Main Program 

 
The main program is implemented in DbcGARemote.java. Its task is to start the threads that 
evolve the separate populations on different remote objects, and the migration manager, 
respectively. The references of the remote objects can be retrieved in the same way as in the 
case of the backtrack search algorithm (see section 4.1.1.1). 

                                                 
1  Inspired by New York immigrants’  quarantine in Ellis Island in the early 20th century. 
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4.1.2 Two-dimensional Case 

4.1.2.1 Reference Algorithms 
 
In two dimensions we distinguish three different kinds of cases regarding the periodicity of 
the map. The aperiodic case is implemented in ApmBackTrack.java, the semi-periodic case in 
SpmBackTrack.java and the periodic case in PpmBackTrack.java. All the three of these 
algorithms are backtrack search algorithms. 
 
Functioning of the Algorithms 
 
These algorithms are embedded in a compound software, the Perfect Map Generator, which 
provides a graphical user interface to control the algorithms. For further information about the 
functioning see the user documentation of the former software (Appendix A). 
 
Specification of the Algorithms 
 
In what follows k denotes the alphabet, (m,n) the dimension of the window and (R,S) the 
dimension of the map. 
 

Search space: The space of all the possible candidate maps. Its size is 
mnkk (note that mnk is 

the area of the map, namely the number of its elements). 
 
Basic step: Inserting an element of the alphabet into the map. 
 
The principle of the functioning is the same as in the one-dimensional case. The candidate is a 
matrix this time, and the levels of the search tree correspond to the positions in the candidate, 
which are pairs in the form of (row, column). The conversion between the levels and these 
pairs is trivial (the quotient of the level and n yields the corresponding row, while the 
remainder yields the corresponding column). 
 
In every step we choose a non-tried element from the alphabet, and try to fit it into the 
candidate. This insertion is carried out in row-major order, so first the rows of the matrix are 
filled up. Before we accomplish the insertion actually, the arising window should be inspected 
whether it is a legal one. This window is meant to have the newly inserted element in its right 
bottom corner (see Figure 4-5). There are cases when it is not possible to create such a 
window (see level 0 – 4, 8 and 12, respectively in Figure 4-5), they are treated as legal. 
 

 

Figure 4-5 Creating an 2)2,2;4,4(  - Periodic Perfect Map 
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The only issue that needs to be treated differently in case of the three algorithms is the matter 
of periodicity. The two concerned case are: 
 

i) Semi-periodic case: By inserting the last element into a row, not only one window is 
arising, but n. If one of them is illegal, we backtrack one level in the search tree, 
namely let the copy undone. 

 
ii) Periodic case:  Not only the last elements of the rows are concerned, but the last 

elements of the columns, as well. By inserting the last element into a column then m 
new windows are arising that needs to be checked. 

 
If we are about to find all the possible perfect maps, every newly found map needs to be 
checked whether it differs from the previously found ones. This checking should consider the 
possible periodicity of the map, namely the maps arising by shifting the original map should 
not be considered as different. 

4.1.2.2 Genetic Algorithms 

4.1.2.2.1 Representation 
 
In the one-dimensional case I applied a permutation representation based on tokens (see 
section 4.2.6.1). I examined several perfect maps, but in the two-dimensional case I didn’ t 
find an analogous relation neither in the phenotype space nor in the genotype space. 
 
Representation: I applied an integer representation where the values are restricted to a 
finite set, namely the alphabet. Note that is analogous to the one-dimensional straightforward 
representation, where the phenotype and the genotype are the same. In this case they are not 
the same, however, because the two-dimensional phenotype needs to be mapped to one 
dimension where we can apply the existing operators; but the essence is the same, namely the 
genotype contains the elements of the matrix directly. 
 
Mapping:  The mapping between the phenotype space and the genotype space is 
illustrated in the figure below. The elements of the phenotype are stored in row-major order in 
the genotype. The inverse mapping (determining the position in the phenotype given the 
position in the genotype) is evident, as well: the quotient of the position and n yields the 
corresponding row, while the remainder yields the corresponding column. 

 
Figure 4-6 Representation of an individual 
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4.1.2.2.2 Initialization and Termination Condition 
 
Initialization:  The population has a fixed size, and first it is filled with random 
individuals (arrays of length nm ⋅ ). 
 
Termination condition: The considerations with regard to the termination condition are 
the same as in the one-dimensional case (see section 4.1.1.2.2). 

4.1.2.2.3 Evaluation Function 
 
The evaluation function assigns a quality measure to genotypes. The aim is to minimize this 
function, it minimum value is zero. An individual with minimum fitness value is bound to be 
a Perfect Map. The evaluation is performed in the phenotype space and the idea is the same as 
in the one-dimensional case (see section 4.1.1.2.3) with the necessary modifications due to the 
higher dimension, namely at each position we inspect the matrix whether the window at that 
position is unique. The semantics of the evaluation is the same, it is not detailed here. 

4.1.2.2.4 Variation Operators 
 
I implemented more realizations of the certain operators, and I observed and compared the 
outcomes of the genetic algorithm applying different operators in course of the evolution. The 
results concerning these experiments can be found in section 4.2.3.3. 
 
The variation and selection operators I applied are commonly used for integer representations, 
and I based my implementations on the book of Eiben and Smith [52]. Here I give a short 
description of the certain operators. 

4.1.2.2.4.1 Recombination 

 
I applied two kinds of recombination operators: uniform crossover and n-point crossover. The 
semantics of the recombination is the same as in the one-dimensional case (see section 
4.1.1.2.4.1). 
 
The principles of the two crossover operators: 
 
uniform crossover: Each gene of the individual is treated independently, and a random 
variable will decide from which parent to inherit the certain genes. 
 
n-point crossover: The parents are divided into sections by n crossover points. The 
sections will be copied into the children alternately. The number of crossover points is a 
parameter given by the user. 

4.1.2.2.4.2 Mutation 

 
I applied two kinds of mutation operators: random resetting and creep mutation. The 
semantics of the mutation is the same as in the one-dimensional case (see section 4.1.1.2.4.2). 
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The principles of the two mutation operators: 
 
random resetting: A new value is chosen at random from the set of permissible values, 
namely from the alphabet. 
 
creep mutation: A small value is added to the gene. This value has an upper bound if it 
is positive or a lower bound otherwise, because the sum may not to exceed the set of 
permissible values. Both the positive and the negative values have equal chances, this choice 
is implemented by means of a random variable. 

4.1.2.2.5 Selection Operators 
 
I used the same operators as in the one-dimensional case (see section 4.1.1.2.5). Note that the 
selection operators can be applied independently from the representation, because they take 
only the fitness information into account. 

4.1.3 Higher Dimensions 

4.1.3.1 Practical Considerations 
 
What does a three-dimensional torus look like? 
 
The following figure illustrates a three-dimensional torus that consists of concentric two-
dimensional tori actually. The interpretation of the dimensions of this torus is the following: 
the first dimension stands for the number of embedded two-dimensional tori (“ pipes” ), the 
second one denotes the first dimension of the embedded tori (“ circumference of the pipes” ) 
and the third one means the second dimension of the embedded tori (“ length of the pipes” ), 
respectively. 
 

 
Figure 4-7 A three-dimensional torus 

 
Theoretical results 
 
The only theoretical result regarding the existence of a higher dimensional torus is the 
generalization of Cock’ s technique (see Theorem 4 in section 2.3.1). The set of solutions that 
this theorem provides is very small, furthermore the parameters of such a torus are very 
special, namely each new dimension has size exponential in the previous. 
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With small parameters it gives reliable results. If n = <2,2,2>, k = 2 and d = 3, then the 
solution is r = <4,4,16>. It is the smallest possible torus in three dimensions. 
 
Practical results 
 
In [20] Horváth and Iványi constructed the smallest possible (a 256256256 ××  sized 8-ary) 
3-Cube.  
 
Finding and verifying a higher-dimensional torus meets with obstacles on account of the 
limited storage capacity and the finite CPU speed. 
 
Storage requirements of the d-Cubes: 
 

( )3
82,2,2;256,256,256  16 MB 

( )3
23,3,3;512,512,512  128 MB 

( )4
22,2,2,2;16,16,16,16  64 kB 

( )4
32,2,2,2;81,81,81,81  41 MB 

 
Storage requirements of the smallest possible d-Tori: 
 

( )3
22,2,2;64,2,2  256 bytes 

( )4
22,2,2,2;16,16,16,16  64 kB 

( )5
22,2,2,2,2;256,64,64,64,64  4 GB 

 
Storage requirements of the backtrack search algorithm: 
 
In this paragraph I try to estimate the minimum storage demand of the backtrack search 
algorithm. There are two objects that are essential and serve as the basis of the algorithm: the 
array that contains the elements tried already in a level and the candidate solution itself, 
respectively. I will give a lower bound by reason of these objects. 
 
These objects will have the following form in three dimensions ( ir , ni �1=  stand for the 

dimensions of the map): 
 
byte[][] triedAlready = new byte[r1 * r2 * r3][alphabet]; 
byte[][] candidate = new byte[r1][r2][r3]; 

 
Storage demands (lower bound): 
 

( )3
82,2,2;256,256,256  triedAlready: 82563 ⋅  bytes = 128 MB 

candidate: 3256  bytes = 16 MB 
sum total: 144 MB 

( )3
23,3,3;512,512,512  triedAlready: 25123 ⋅  bytes = 256 MB 

candidate: 3512  bytes = 128 MB 
sum total: 384 MB 
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( )4
22,2,2,2;16,16,16,16  triedAlready: 2164 ⋅  bytes = 128 kB 

candidate: 416  bytes = 64 kB 
sum total: 192 kB 

( )4
32,2,2,2;81,81,81,81  triedAlready: 3814 ⋅  bytes ≈ 123 MB 

candidate: 481  bytes ≈ 41 MB 
sum total: 164 MB 

 
CPU time requirements of the backtrack search algorithm 
 
Let us consider an d

knR );( - torus where ),...,( 1 drrR =  and  ),...,( 1 dnnn = . The size of the 

search space is ∏ irk , namely the search tree has ∏ irk  leaves: 
 
 

 
Figure 4-8 Sketch of the search tree 

 
Let x denote the number of such tori (it is not known). The time complexity of the algorithm 
(when finding a single map): 
 

worst case:  (if we are examining all the wrong cases 
before finding a good solution) 
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The most meaningful measure is the number of basic steps, but it is difficult to determine the 
exact number of basic steps in the certain cases. A basic step is defined as inserting a new 
element into the candidate (see section 4.1.2.1), namely stepping to the next vertex in the 
search tree. 
 
Let us consider a 2)2,2;16,2( - Semi-Periodic Perfect Map. In this case the number of vertices 
of the search tree is ∼8590 million (the root and the leaves included), and the algorithm made 
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164 thousand basic steps to find a map. One basic step takes 0,05 ms on a 3000 MHz CPU. 
Although it is not so important in terms of our aim, but interesting to mention that the 
algorithm made ∼135 million basic steps to find all the possible maps, that is it traversed 
about 1,57% of the search tree. 
 
Conclusions 
 
On the strength of the storage and CPU requirements it is clear that the backtrack search has 
no chance to cope with these large search spaces. I implemented the three and four-
dimensional genetic algorithms, and during the tests I applied the parameter sets and operators 
that turned out to be the best working in the two-dimensional case. 

4.1.3.2 Three-dimensional Genetic Algorithm 
 
The three-dimensional genetic algorithm is equivalent to the two-dimensional one, only the 
issue of representation differs. 
 
The phenotype of an individual (a) is a three-dimensional solid of size 321 rrr ×× . The 

genotype (b) is a vector of length 321 rrr ⋅⋅ . The mapping between them is the following. The 

chromosome has 3r  segments, which correspond to the slices of the solid (indicated by grey in 

Figure 4-9). That is to say every segment represents a matrix. The structure of such a segment 
equals to the chromosome in the two-dimensional case, namely it contains the elements of a 
matrix in row-major order. 
 

 

(a) 

 

(b) 

 
Figure 4-9 Representation of an individual 
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4.1.3.3 Four-dimensional Genetic Algorithm 
 
The four-dimensional genetic algorithm is equivalent to the three-dimensional one, only the 
issue of representation differs. This case is a little bit intricate, because we have to imagine a 
four-dimensional hypercube. Any additional dimensions actually mean where to find the 
previous one. For example in three dimensions this means that there are r3 slices and the third 
dimension indicates which slice to choose. In four dimensions there are r4 three-dimensional 
solids and the fourth dimension indicates which solid to choose. The simplest way to imagine 
such a case is to consider the fourth dimension as series of discrete time intervals. 
 
The phenotype of an individual (a) is series of r4 discrete time intervals. The genotype (b) is a 
vector of length 4321 rrrr ⋅⋅⋅ . The mapping between them is the following. The chromosome 

has r4 segments, which correspond to the time intervals. That is to say every segment 
represents a snapshot, a separate three-dimensional solid. The structure of such a segment 
equals to the chromosome in the three-dimensional case (see section 4.1.3.2). 
 

(a) 

 

(b) 

 
Figure 4-10 Representation of an individual 
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4.2 Experiments and Results 
 
All the Excel files containing the detailed outcomes of my experiments can be found at the 
web address http://juditk.web.elte.hu/msc/. 
 
I made my experiments considering the following three main issues: 
 

i) Parameter tuning of the genetic algorithms. 
ii) Comparison of the algorithms (the sequential and the parallel, and the reference- and 

the genetic algorithm, respectively). 
iii) Searching different maps with the algorithm that proved to be the best during the 

experiments. 

4.2.1 The performance measures 
 
Both in case of the backtrack search and the genetic algorithm I measured the CPU time 
needed (in milliseconds) to find a solution. Apart from this I applied the following measures: 
 
backtrack search algorithm: number of backtracks and basic steps (see section 4.1.1.1) 
genetic algorithm: average number of evaluations to a solution (AES) 
 
Although I didn’ t define any other termination condition besides finding the optimal map (see 
reasoning in section 4.1.1.2.2), yet in a few cases – to get to know the progress of the genetic 
algorithm  – I applied a condition, namely the number of fitness evaluations. In these cases I 
studied the success rate (SR) (the percentage of runs terminating with success) and the 
effectiveness by means of the mean best fitness (MBF) (the average of the best fitness values 
over all runs). 
 
Because of the stochastic nature of EAs, these performance measures are statistical, and a 
number of experiments need to be performed to gain sufficient experimental data. I conducted 
all of my experiments 100 times, hence all the values regarding the results in this thesis mean 
the average of 100 experiments. 

4.2.2 Experiments with the Reference Algorithms 
 
Comparison of the sequential and the parallel backtrack search algorithm 
 
There are two cases that need to be treated differently when comparing the sequential and the 
parallel algorithm: whether we are about to find all the maps (a) or not (b). In both cases 
suppose that the solutions are distributed on the branches of the search tree uniformly. 
 
(a) In this case the parallelization does not mean significant speed-up, since one thread has 

the same likelihood of finding a solution as more.  
 

My test results shore up the above train of thoughts, as well: 
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Figure 4-11 Speed-up (finding a single cycle) 

 
(b) In this case the maximum speed-up is defined by the number of threads (t). The whole 

search tree needs to be checked, but this job is divided into equally sized parts: each 
thread has to examine the t1  part of the search space, which means utmost ×t  speed-
up. 

 
 There are two parameter sets that I could experiment with, because the number of 

possible cycles sets limits to the search: 
  

parameter set number of such cycles 

2)4;16(  16 

2)5,32(  2048 

 
 The speed-up is similar in both cases (the graph has the same shape), here only the 

results regarding the tests of the first set are published. In case of 32 processors there is 
a ×9  speedup instead of the expected 32. This difference can be attributed to the 
communication overhead and the control of the threads. 
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Figure 4-12 Speed-up (finding all the cycles) 
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4.2.3 Experiments with the Genetic Algorithms 

4.2.3.1 Comparison of the Permutation and Integer Representations 

4.2.3.1.1 Algorithm Setups 
 
I compared the performance of both the permutation and the integer representation on two 
parameter sets. I search for a 2

4 )4;2(  - dBC and a 2
5 )5;2( - dBC, respectively. Note that in 

case of the permutation representation the length of the chromosome does not equal to the 
length of the cycle ( nk ), but to the number of tokens ( nk / 2). The detailed setup of the GAs is 
shown in the tables below. 
 

Representation permutation 
GA model steady-state 
Chromosome length (L) kn / 2  
Population size L / 2 
Recombination ordered crossover (pc = 1.0) 
Mutation swap mutation (pm = 0.5) 
Selection ranking (s = 2.0, roulette wheel) 
Replacement best from union 

Table 1 GA setup (permutation representation) 

 
Representation integer 
GA model steady-state 
Chromosome length (L) kn  
Population size L / 4 
Recombination uniform crossover (pc = 1.0) 
Mutation random resetting (pm = 0.25) 
Selection ranking (s = 2.0, roulette wheel) 
Replacement best from union 

Table 2 GA setup (integer representation) 

 

4.2.3.1.2 Test Results 
 
The AES and SR values are almost similar in case of the 16-length cycle, in both cases the 
integer representation is superior with a subtle difference. This behaviour changes 
significantly in case of longer cycles. The similarity of the outcomes in case of short cycles is 
due to the fact, that the prerequisites of the permutation representation are much more 
demanding, hence in case of small cycles the integer representation is able overcome it 
through probability reasons – but in larger cases this issue does not matter. 
 
The MBF values are more optimal (lower) in case of the integer representation, which shows 
that the integer representation reaches near-optimal values quicker, but from there it makes 
further progress very slowly. 
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Figure 4-13 AES, SR and MBF of the two representations 

 

4.2.3.2 Comparison of the Sequential and the Parallel GAs 

4.2.3.2.1 Algorithm Setups 
 
I performed my experiments on the DAS-2 (see section 3.2) with 1, 2, 4, 8 and 16 processors. 
Due to the scheduling system and the workload of the DAS-2, I base my conclusions on the 
outcomes of 5 independent runs. 
 
I applied the following parameter set. I searched for a 2)5;32( - de Bruijn Cycle, and evolved 
1, 2, 4, 8 and 16 populations in parallel (depending on the number of processors) with two 
migrants in every epoch. I examined three cases according to the length of an epoch (2, 4 and 
8 generations). The certain islands evolved their populations with the same parameters (see 
the table below).  
 

GA model steady-state 
Chromosome length 25 / 2 
Population size 16 
Representation permutation 
Recombination ordered crossover (pc = 1.0) 
Mutation swap mutation (pm = 0.5) 
Selection - 
Replacement best from union 

Table 3 Island model GA setup 
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4.2.3.2.2 Test Results 
 
The below figure shows the progress due to migration. The best results were produced by the 
PGA (parallel GA), where the migrants were exchanged in every 4th generation. It is also clear 
to see that the progress is the most significant in case of 2 islands, while the any additional 
island cause to the performance only a subtle increase. 
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Figure 4-14 The progress due to migration 

 
Although my conjecture was that the scheduling of migration won’ t have a detrimental impact 
on the performance (see the in reasoning section 4.1.1.2.6), the practice disproved this 
assumption as illustrated in the figure below. 
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Figure 4-15 The impact of migrating on the performance 

 
 
 



4.2 EXPERIMENTS AND RESULTS 
 

 50 

The conclusion is that the island model GA could be a useful tool in finding perfect maps. 
Evolving two or four populations in parallel can be very efficient, because the exchange of 
individuals with good fitness (in our case: low enough) and with different genotype, facilitates 
exploration. Furthermore in this case of two or four populations the impact of migrating on 
the performance is still reasonable. 
 
In spite of the fact that the outcomes of my experiments are satisfying, there are practical 
limits of the applicability of this method. The DAS-2 is dedicated to experiments, not for 
production work, hence it is allowed to run a program only for 15 minutes. The most 
challenging aim of this thesis – namely find a map, whose existence was only a conjecture so 
far – demands much more time than provided by this system.  
 

4.2.3.3 Parameter Tuning of the One-dimensional GA 

4.2.3.3.1 Algorithm Setups 
 
My experiments concerning the parameter tuning are based on the AES measure. I examined 
the performance of the certain operators in case of a 2

5 )5;2( - dBC. The parameter setup of the 
different experiments differs only with respect to the actual operator, otherwise it is the based 
on the table below. 
 
 

GA model generational (gap = 0.8) 
Chromosome length (L) 25 / 2  
Population size 16 
Representation permutation 
Recombination ordered crossover (pc = 1.0) 
Mutation swap mutation (pm = 0.5) 
Selection ranking (s = 2.0, roulette wheel) 
Replacement best from union 

Table 4 GA default setup (for parameter tuning) 
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4.2.3.3.2 Test Results 
 
Parent selection 
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Figure 4-16 Comparing the parent selection methods 

 
The meaning of the certain columns: 
 

1) ranking selection (s = 1.5, roulette wheel) 
2) ranking selection (s = 2.0, roulette wheel) 
3) ranking selection (s = 1.5, stochastic universal sampling) 
4) ranking selection (s = 2.0, stochastic universal sampling) 
5) fitness proportional (roulette wheel) 
6) fitness proportional (stochastic universal sampling) 
7) deterministic tournament (k = 2) 
8) deterministic tournament (k = 4) 
9) deterministic tournament (k = 8) 
10) stochastic tournament (k = 2, p = 0.5) 
11) stochastic tournament (k = 2, p = 0.6) 
12) stochastic tournament (k = 2, p = 0.7) 
13) stochastic tournament (k = 2, p = 0.8) 
14) stochastic tournament (k = 2, p = 0.9) 

 
There is no significant difference between the ranking and the fitness proportional selection, 
and it is also difficult to say which selection algorithm (the roulette wheel or the stochastic 
universal sampling) is superior. In case of ranking selection the difference is imperceptible, 
while in case of fitness proportional selection the roulette wheel algorithm performed better 
with 10,3 %. The tournament selection methods proved to be the most efficient, and the best 
solution was produced by a deterministic tournament with tournament size 8. 
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Recombination 
 
As illustrated in the figure below the rate 0.8 is a dividing value; the smaller values show 
significantly inferior performance, and the larger ones are quite similar to each other. The 
figure shows the outcome of an experiment series, where the 1.0 gave the best result, 
however, I conducted more experiment series where also 0.9 and 0.95 gave superior results. 
Owing to the subtle difference I don’ t see any reason for applying smaller crossover rate than 
1.0. 
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Figure 4-17 AES plotted against the crossover rate 

 
Mutation 
 
On average, the swap mutation turned out to be superior with 30%, notwithstanding the two 
operators perform roughly similarly in half of the cases (if the mutation rate is ≥ 0.5). 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.1 0.25 0.5 0.75 1.0

mutation rate

A
E

S

inversion mutation

swap mutation

 
Figure 4-18 Comparison of the mutation operators 

 
Survivor selection 
 
It is unambiguous that the “ best from union”  selection method performs most efficiently. 
Almost such results were produced by the “ replace worst”  selection method with 5.025.0 −  
generational gap. 
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Figure 4-19 Comparison of the survivor selection methods 

 
The meaning of the certain columns: 
 

1) best from union 
2) replace worst (gap = 0.1) 
3) replace worst (gap = 0.25) 
4) replace worst (gap = 0.5) 
5) replace worst (gap = 0.75) 
6) deterministic tournament selection (k = 2, with replacement) 
7) deterministic tournament selection (k = 2, without replacement) 

 
Population size 
 
Every problem size has its own ideal population size. In case of small populations the 
individuals are getting similar to each other in due course and the evolution can rely only on 
the mutation operator, while if the populations are too big, we may perform extra evaluations.  
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Figure 4-20 AES plotted against the population size (32-length cycle) 
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Figure 4-21 AES plotted against the population size (64-length cycle) 

 

4.2.3.3.3 Conclusions 
 
Here I report the summary of the experiments of the previous section. These are the 
parameters that proved to be the most efficient, hence they will form the basis any of the 
further experiments. 
 

GA model steady-state 
Chromosome length (L) kn / 2  
Population size L / 2 
Representation permutation 
Recombination ordered crossover (pc = 1.0) 
Mutation swap (pm = 0.5) 
Selection deterministic tournament (k = 8) 
Replacement best from union 

Table 5 The outcome of the hand-tuning 

 

4.2.3.4 Parameter Tuning of the Two-dimensional GA 

4.2.3.4.1 Algorithm Setups 
 
My experiments concerning the parameter tuning are based on the AES measure. I examined 
the performance of the certain operators in case of a 2)2,2;4,4( - PPM. The parameter setup of 
the different experiments differs only with respect to the actual operator, otherwise it is the 
based on the table below. 
 

GA model generational (gap = 0.8) 
Chromosome length (L) 4 ⋅ 4 = 16  
Population size 16 
Representation integer 
Recombination uniform crossover (pc = 1.0) 
Mutation random resetting (pm = 0.25) 
Selection ranking (s = 2.0, roulette wheel) 
Replacement best from union 

Table 6 GA default setup (for parameter tuning) 
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4.2.3.4.2 Test Results 
 
Parent selection 
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Figure 4-22 Comparison of the parent selection methods 

 
The meaning of the certain columns: 
 

1) ranking selection (s = 1.5, roulette wheel) 
2) ranking selection (s = 2.0, roulette wheel) 
3) ranking selection (s = 1.5, stochastic universal sampling) 
4) ranking selection (s = 2.0, stochastic universal sampling) 
5) fitness proportional (roulette wheel) 
6) fitness proportional (stochastic universal sampling) 
7) deterministic tournament (k = 2) 
8) deterministic tournament (k = 4) 
9) deterministic tournament (k = 8) 
10) stochastic tournament (k = 2, p = 0.5) 
11) stochastic tournament (k = 2, p = 0.6) 
12) stochastic tournament (k = 2, p = 0.7) 
13) stochastic tournament (k = 2, p = 0.8) 
14) stochastic tournament (k = 2, p = 0.9) 

 
The best performing method is the fitness proportional selection, however, both the ranking 
selection (4) and the stochastic tournament (10) provided similar results and the difference is 
quite subtle. It is also apparent that the performance of th stochastic tournament is 
deteriorating as the value of p is increasing. It is due to the fact that the diversity of the 
population is an important issue, and if only the best individual survives, then it may lead the 
evolution to a possibly wrong direction. 
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Recombination 
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Figure 4-23 Comparison of the crossover operators 

 
The values below the axis stand for the number of crossover points. There is no significant 
difference between the methods; the uniform crossover, the 1-point and the 2-point crossover 
performed almost similarly, however, the uniform crossover was the superior with a subtle 
difference. 
 
Mutation 
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Figure 4-24 Comparison of the mutation operators 

 
The rate 0.5 is a dividing value, because the random resetting is significantly superior with 
smaller rates, but the creep mutation performs better with larger ones, however, in this case 
the difference is not so considerable. 
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Survivor selection 
 

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5

selection methods

A
E

S

 
Figure 4-25 Comparison of the survivor selection methods 

 
The meaning of the certain columns: 
 

1) best from union 
2) replace worst (gap = 0.75) 
3) fitness proportional (roulette wheel algorithm) 
4) deterministic tournament selection (k = 2, with replacement) 
5) deterministic tournament selection (k = 2, without replacement) 

 
The “ best from union”  selection method is significantly superior to the replace worst and the 
fitness proportional selection, and it is also superior to the deterministic tournament selection 
methods, but in this case the difference is not so considerable. 
 
Population size 
 
Likewise in the case of the one-dimensional GA, every parameter set has its ideal population 
size. The figure shows that 32 is the ideal population size for a map with 16 elements. 
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Figure 4-26 AES plotted against the population size 

4.2.3.4.3 Conclusions 
 
Here I report the summary of the experiments of the previous section. These are the 
parameters that proved to be the most efficient, hence they will form the basis any of the 
further experiments.  
 

GA model steady-state 
Chromosome length (L) kn  
Population size L / 4 
Representation integer 
Recombination uniform crossover (pc = 1.0) 
Mutation random resetting (pm = 0.25) 
Selection fitness proportional 
Replacement best from union 

Table 7 The outcome of the hand tuning 

 

4.2.4 Comparison of the Reference and Genetic Algorithms 
 
It is difficult to compare two different algorithms that have practically nothing in common. 
The only possibility is to choose a measure in both cases that characterizes the behaviour of 
the algorithm. These measures are the number of basic steps + backtracks in case of 
backtrack search and the AES in case if GA. 
 
I compared the one-dimensional algorithms, because the permutation representation works 
more efficiently. I applied the GA with the parameters that turned out to be the best working 
during the hand tuning (see section 4.2.3.3), the parameters are summarized in the section 
Error! Reference source not found. 
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Figure 4-27 Performance of the algorithms 

 
It is apparent that the graph of the backtrack search is smoothly increasing, while that of the 
GA is very steep. This shows that the backtrack search is superior in case of small parameter 
sets. I also made some experiments with large parameter sets, and my observations about the 
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progress of the search suggest that the GA is able to find a solution where the backtrack 
search get stuck and has no chance due to the size of the search space. The supposed relation 
between the behaviour of the algorithms in the long run is illustrated in the figure below. 
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Figure 4-28 The relation between the algorithms in the long run 

 

4.2.5 Practical Results 
 
I managed to find maps with a great variety of small parameters. In case of larger parameters 
the integer representation was not able to produce results in reasonable time, because the 
evaluation of an individual is very costly in case of large maps. Unfortunately, this means that 
my aim to find a “ brand-new”  map was not granted, however, the progress of the evaluation 
indicates the capability of GAs in this problem context.  
 
In the following I report my conclusions about the experiments with large maps. 
 
The smallest periodic perfect map whose existence is not shored up by the theory has the 
parameters 6)2,3;216,216( . Its CPU demands are nearly the same as the smallest four-

dimensional tori and it takes quite much time to evolve even an individual (see below). 
 
Results regarding the three-dimensional case 
 
I searched for the smallest possible three-dimensional torus, a 3

2)2,2,2;2,2,64(  - de Bruijn 
Torus. Note that there are more choices concerning the dimensions of this map and this is 
merely my preference among the possible ones. 
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Figure 4-29 The progress of the evolution 

 
The above figure illustrates the progress of the evolution: rapid progress in the beginning (the 
fitness average decreased from 145 to 80 during ∼1300 evaluations) and flattening out later on 
(it decreased from 80 to 74 during ∼3500 evaluations).  
 
Results regarding the four-dimensional case 
 
In the four-dimensional case the search meets with obstacles, because the size of an individual 
is too big and my fitness definition is quite costly in case of big individuals: it makes  
 

2

)1( +⋅ lengthlength
 

 
comparison (the length stands for the length of the chromosome). One comparison means the 
comparison of two windows. It takes one step in the best case (if the first element doesn’ t 
match), nm ⋅  steps in the worst case (if the two windows are equal), so the average number of 
steps is:  
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 I made my experiments with the smallest possible four-dimensional torus, a 

4
2)2,2,2,2;16,16,16,16(  - de Bruijn Torus. The above formula gives 9104 ⋅≈  steps in this case, 

which can be made in ∼6,4 hours on a 1200 MHz CPU. It can be seen that finding such a map 
is a very long-lasting venture with the current computational capacity, but at least not 
impossible. 
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4.2.6 Theoretical Results 

4.2.6.1 The Number of Tokens in a de Bruijn Cycle 
 
While improving the one-dimensional genetic algorithm I noticed that every de Bruijn cycle 
consists of a definite number of tokens. Let’ s consider the case when 2=k  and 4=n . Figure 
4-30 shows a possible 2)4;16( - de Bruijn Cycle. 
 
 

]1111010110010000[  

Figure 4-30 A 2)4;16( - de Bruijn Cycle 

 
A token is an uninterrupted sequence of identical numbers. The de Bruijn cycle in Figure 4-30 
has the following tokens: 
 

{ >< 0000 , >< 1111 , >< 00 , >< 11 , >< 0 , >< 0 , >< 1 , >< 1 } 
 
The relation between k, n and the number of tokens is as follows. 
 

Length of the token Number of the token 

n  k  

1−n  kk )2( −  
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... ... 

in −  12)1( −− ikk  
 

4.2.6.2 The Number of de Bruijn Cycles 
 
The number of spanning trees of a ),( nk - de Bruijn Graph (see Section 2.1.7) is as follows: 
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I obtained the above formula by observing the results of a number of experiments. I used a 
program (DBGraph.java) to create de Bruijn graphs and my final goal was to determine the 
number of their spanning trees. These graphs needed to be converted to an equivalent form 
without self-loops before creating their in-degree matrix. When having these matrices I used 
the Maple software to get the determinant of their minors. I verified the formula for the cases 
when 6,,2,1 �=k  and 4,3,2,1=n .  
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Note that because the number of spanning trees of a ),( nk - de Bruijn Graph will be always 
the power of k, it is sufficient to compute the logarithm of the above formula, namely 
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Applying this formula the number of spanning trees of a ),( nk - de Bruijn Graph can be 
determined in )( kn +Θ  time, which is much faster than any other algorithm known so far (see 
section 2.1.7). 
 
Considering the facts about Euler paths (see section 2.1.7) the number of k

n nk );( - de Bruijn 

Cycles can be given by the following formula:  
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4.2.6.3 The Number of Tokens in a Two-dimensional Periodic Perfect Map 
 
Although I didn’ t manage to devise the correct mathematical relationship concerning the 
number of tokens in a periodic perfect map, my experiments show that there is some kind of 
relationship. Here I report my observations. 
 
I had the possibility of observing only two periodic maps ( 2)2,2;4,4( - PPM and 3)2,2;9,9( - 

PPM), because the search space of next possible map ( 4)2,2;16,16( - PPM) is too large, and 
none of my algorithm gave result in reasonable time. I wrote a Java program (parse.java) that 
parses the matrices and outputs the number of tokens both in horizontal and in vertical 
directions (it takes the file output by my search algorithm as input). The result is the 
following. 
 
(1) 2)2,2;4,4( - PPM 
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Figure 4-31 The two possible 2)2,2;4,4( - PPM 

 
The two above tori show the following regularity: both of them have two >< 1  tokens and 
two >< 111  tokens in both directions. This applies also to the all zeros tokens.  
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(2) 3)2,2;9,9( - PPM 

 
The number of such maps are unknown so far, hence I examined 208 of them. 
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Figure 4-32 A possible 3)2,2;9,9( - PPM 

 
There are 54 tokens in both directions: 18 0-token, 18 1-token and 18 2-token. For example, 
the map in the above figure has the following 0-tokens: 
 

>< 00000000  1 piece 

>< 0  16 pieces 

>< 000  1 piece 

 
Other possible maps have different distribution regarding the size of the tokens. I could not 
determine which sizes are permissible, but I suspect that not all of them. Just recall that in 
case of the 2)2,2;4,4( - PPM there are two >< 1  tokens and two >< 111  tokens, but there is 
no >< 00  token at all. 
 
To devise a similar formula (F) that of the one-dimensional case, we have to observe many 
cases and furthermore it will be a bit more intricate, because it has not two but five arguments: 

),,,,( knmSRF . These observations take much time applying both the backtrack search and 
the genetic algorithm. 

4.2.6.4 The Number of Two-dimensional Perfect Map 
 
Although I didn’ t manage to devise a similar characteristic function that gives the number of 
perfect maps as in the one-dimensional case, here I report all my observations and conclusions 
regarding this issue. 
 
The following table contains all the possible binary maps with two by two windows. Their 
existence is proven theoretically (see section 2.2.2.2). 
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 parameter sets the number of the maps 
periodic 

2)2,2;4,4(  2 

semi-periodic 
2)2,2;16,2(  48 3220736 ⋅=  

 
2)2,2;8,3(  1132264 3 ⋅⋅=  

 
2)2,2;4,5(  6264 =  

aperiodic 
2)2,2;17,2(  412 32331776 ⋅=  

 
2)2,2;9,3(  522560 9 ⋅=  

 
2)2,2;5,5(  25 52800 ⋅=  

 
2)2,2;3,9(  522560 9 ⋅=  

 
I counted up the number of these maps by means of a backtrack search algorithm with a view 
to observe the inherency in their numbers and devise a formula as in the one-dimensional case 
(see section 4.2.6.2). Unfortunately, these pieces of information are insufficient to draw the 
correct conclusion, and finding all the maps is a time-consuming venture even in case of small 
parameters. For example, the algorithm made more than 90 million backtracks to find all the 

2)2,2;16,2( - Semi-Periodic Perfect Maps (it took 123 minutes on a 3000 MHz CPU). 
 
The theoretical basis of their number is in close connection with the number of Euler paths in 
a graph as in the one-dimensional case (see section 2.1.7). I constructed the two-dimensional 
equivalents of de Bruijn graphs as follows. Note that both the de Bruijn graphs and their two-
dimensional equivalents are two-dimensional graphs, the attribute “ two-dimensional”  stands 
for the dimension of the map represented by the graph. 
 
The vertices of the graph stand for the decimal values of the possible windows, and the edges 
are generated as illustrated in the figure below (every vertex has mk  incoming and mk  
outgoing edges): 

 
Figure 4-33 Generation of the outgoing edges (binary alphabet, 22 ×  window) 
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The last n – 1 columns will 
be the first n – 1 columns 
of the subsequent vertices. 

The last columns of the 
subsequent vertices will 
be all the possible m -
vectors. 
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Let us consider the following 2)2,2;4,4( - Periodic Perfect Map: 
 



















1110

1101

0100

1000

. 

 
The corresponding graph (the edges 5 → 15, 9 → 13, 10 → 0 and 6 → 12 are omitted for 
layout reasons): 
 

 
Figure 4-34 The de Bruijn graph of a two-dimensional map 

 
Note that every row of the map is a semi-periodic Sm ×  matrix. These matrices form m 
disjoint cycles in the graph (illustrated by different colors). The number of such disjoint 
cycles gives the number of the corresponding perfect map. This mathematical relationship is 
unknown as yet. 
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5 Summary and Final Remarks 
 
We have seen that the backtrack search algorithm can be useful in a few cases, if the maps are 
small and hence their search spaces are manageable with the current computational capacity 
within a reasonable time. I used this algorithm to observe interesting characteristics of maps 
with small parameters, and apply the obtained information to tune the genetic algorithms. 
 
Genetic algorithms can cope with large search spaces, where the backtrack search algorithm 
has no chance whatever. In the one-dimensional case I applied a permutation representation, 
while in the higher dimensions only the straightforward integer representation was available. 
Unfortunately, my fitness definition was costly and it took quite much time to find a larger 
map. 
 
My experiments show that GAs are suitable for giving answers to this complexity problem. 
Compared to the backtrack search algorithm it is inferior in case of small parameter sets, but 
the progress of the algorithms in case of larger parameter sets suggest that GAs are capable of 
providing solutions in reasonable time, while the backtrack search algorithms are not. 
 
Although my ambitions to realize my challenging aim – namely finding a map, whose 
existence was only a conjecture so far –, were not granted, I think this thesis made a step 
towards getting to know perfect maps, and designated a path where it is maybe worth to 
continue the research. 
 
Future Work 
 
First, we have to observe a feature that makes the permutation representation possible in 
higher dimensions, as well. I believe that the perfect maps have this outward appearance – 
namely the regularity of the number of tokens – not only in the one-dimensional case but in 
higher dimensions, as well. Moreover I believe that a genetic algorithm with a representation 
provided by the tokens could be the most efficient tool in finding such maps. 
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Appendix A 
 

Documentation of the Perfect Map Generator software 

A.1 User Documentation 

A.1.1 System requirements 
 

• Java Runtime Environment (version 1.4.2.)  
• Netscape browser in case of Linux operating system (optional, only for visiting a 

webpage for further information about the program) 

A.1.2 Parameter Settings  
 
First we have to choose the problem (regarding the periodicity of the map), the method and 
the parameters. Filling in the parameters is possible either by clicking in the appropriate field, 
or by navigating between the fields with the Tab key. The entered input value is checked by 
the program immediately when the field has lost the focus, i.e. if we are trying to fill in the 
next field. If the value is legal, the field becomes inactive, indicating that the program has 
accepted the input. Otherwise it gives a warning and the set of possible values. Note that as 
long as an input is not accepted, there is no possibility to go on with filling in the next field. If 
we would like to alter an already accepted value, it can be done by pushing the Clear button. 
See that it will reset all the parameters (it is needed because the parameters influence one 
another’ s allowable value).  
 
Remarks about the certain fields: 
 

i) alphabet: This is the first one we have to fill in (there is no other choice, 
because only this field is active). Its maximum value is 127. 
 

ii) window size: After having the alphabet, first the m, then the n field needs to be 
filled in. The program checks whether mnk  exceeds the value of 

1231 − . Note that mnk  is the number of the elements in the map. 
 

iii) map size: Given the alphabet and the window size, there are more 
possibilities concerning the size of the map. The user shows a 
preference by filling the R. Depending on the type of periodicity 
the program determines the maximum allowable value of both R 
and S, so the S field is not editable by the user, but it is filled in 
automatically right after we have left the R field.   
 

After having all the required parameters, we have to decide whether to find all the possible 
maps. Note that this feature is available only in case if we have chosen backtrack search 
algorithm as method, otherwise this box is inactive. 
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Figure 0-1 The application 

 
Settings for the Genetic Algorithm 
 
There is a separate panel (see Figure 0-2) to control the parameters and the operators of the 
genetic algorithm. It can be reached through the Genetic Algorithm menu of the menu bar, by 
clicking on the Settings item. 
 
There are choices regarding the following options and operators, respectively: 
 

• Population size 
• Parent selection 
• Recombination 
• Mutation 
• Survivor selection 
• Print option (whether to print the populations to the output file) 

 
For further information about the certain operators see the specification of the genetic 
algorithm (Section 4.1.2.2). 
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Figure 0-2 Settings for the genetic algorithm 

 

A.1.3 Interpretation of the Output 
 
After having started the search, the appropriate information panel will be active. In case of 
backtrack search algorithm the upper panel informs about the number of backtracks and basic 
steps made so far, and a progress bar helps to keep track of the actual state of the search. It 
shows the levels of the search tree, and there are three different stripes rolling on it: the gray 
one indicates the maximum level reached so far, the blue one stands for the actual level, and 
the pink one shows the lowest level to where we have made a backtrack already. In case of 
genetic algorithm the lower panel informs about the number of generations, number of fitness 
evaluations and about the fitness average in the certain populations.  
 
If we have chosen the option to find all the possible maps, the number of ones found so far is 
printed on the screen, as well. If the search had terminated the user is informed about the time 
needed (in milliseconds). These pieces of information and also the maps found are printed to 
an output file named {apm, spm, ppm}_k_(R,S)_(m,n)_{bt, ga}.txt, where R, S, m and n stand 
for the actual value of the parameters. 
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A.2 Development Documentation  
 
The program was written in Java (Java 2, Standard Edition, v1.4.2.). 

A.2.1 Graphical User Interface 
 
The GUI is implemented in PerfectMapGenerator.java. 

A.2.1.1 Components 
 
The GUI consists of a main frame and three modal dialog windows that can be launched by 
clicking on the certain items in the menu bar. Two of them provide information about the 
program (help and author information) and the third one (GADialog) provides an interface to 
control the parameters and the operators of the genetic algorithm. 
 
The following two figures illustrate the main components of the main frame and the 
GADialog dialog window, respectively. By main components I mean the ones on the first 
level (note that the components are embedded hierarchically into each other, so the first-level 
ones are the components contained directly by the root pane) and those ones that are on lower 
levels but contain other components or have an important role in the layout. 
 
Notice that this embedding is one level deep in case of the main frame, and four levels deep in 
case of the GADialog window. The more-level embedding has no special role; it serves only 
convenience considerations to facilitate the layout. 

 
Figure 0-3 Main components of the GUI 

 

(1) menuBar 
(2) pane 
(3) problemMethodPane 
(4) alphabetPane 
(5) windowPane 
(6) mapPane 
(7) findAllPane 
(8) startStopClearPane 
(9) processLabel1 
(10) processLabel2 
(11) BTPane 
(12) GAPane 
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Figure 0-4 Main components of the GADialog window 

 
There are four methods directing the graphical look of the application: 
 

private JMenuBar 
createMenuBar() 

Creates the menu bar with two menus: helpMenu and 
GAMenu. It adds two menu items (helpMenuItem and 
aboutMenuItem) to the helpMenu, and one item 
(settingsMenuItem) to the GAMenu. 

private Container 
createGADialogPane() 

Provides the appearance of the GADialog window by 
creating its top-level container, and embedding the 
required components into this container hierarchically. 

private Container 
createContentPane() 

Provides the appearance of the main frame by creating 
its top-level container, and embedding the required 
components into this container hierarchically. 

private static void 
createAndShowGUI() 

Creates the main frame, and sets its various features, 
among others the menu bar and the content pane. 

 
There are components, which are controlled by another object. These are the ones, which 
inform the user about the actual state of the search: nbtValue (number of backtracks), 
nbsValue (number of basic steps), ngsValue (number of generations), nfesValue (number of 
fitness evaluations), fitnessAverageValue (fitness average), pbta (progress bar), processLabel1 
(informs about the actual state of the search, namely whether it is in progress, stopped or 
finished), processLabel2 (number of maps found so far). All of these components are objects 
of type JLabel, except pbta, which is an instance of the embedded class ProgressBTArea. 

(1) pane 
(2) leftPane 
(3) rightPane 
(4) populationSizeLabel 
(5) populationSizeTextField 
(6) parentSelectionPane 
(7) tournamentPane 
(8) probMethodPane 
(9) recombinationPane 
(10) mutationPane 
(11) survivorSelectionPane 
(12) tournamentPane2 
(13) probMethodPane2 
(14) printToFileButton 
(15) OKButton 
(16) failureLabel 

(1) 

(16) 

(15) 

(14) 
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(10) 

(9) 

(8) 

(6) 

(5) (4) 
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This class performs the custom painting of the progress bar. These components are public 
fields and can be reached by other objects without any function call. 

A.2.1.2 Events 
 
The class PerfectMapGenerator implements four kinds of event listeners, which are discussed 
in detail in what follows. 
 

i) ActionListener 
 
Except the components that serve for parameter input in the main frame 
(alphabetTextField, mTextField, nTextField, RTextField and STextField), the two 
checkboxes (replacementButton and printToFileButton) and the one that realizes a 
hyperlink (webPageLabel), all the other components use this kind of listener for event 
handling. 
 
This method has as many branches as the number of components that registered 
themselves for an action event. To decide which component had fired the actual event, 
every one of them has to provide the event object with an identifier by invoking their 
setActionCommand() method. The branch-on conditions can be gained from the 
ActionEvent object by invoking its getActionCommand() method. 
 
About the certain actions: 
 
• help, about Both of them create a standard modal dialog window (“ Help”  and 

“ About” ) provided by the class JOptionPane, the former by invoking the 
showOptionDialog() method, the latter by invoking the showMessageDialog() method 
of the class. The structure of the message dialog is strictly defined, but in case of the 
option dialog we may perform many kinds of customization: its content pane consists 
of a lot of inactive labels (most of the text is read from a file named help.txt), and an 
active one (webPageLabel), which is registered for mouse events (see the paragraph 
MouseListener). 

 
• GASettings It creates a fully customizable modal dialog window (“ Settings for the 

genetic algorithm” ) by means of the class JDialog. All the components in the 
GADialog dialog window have a very simple role, namely to set a variable that 
represents a parameter or an operator of the genetic algorithm (populationSize, 
parentSelection, s, s2, k, k2, tournamentSelection, p, p2, replacement, probMethod, 
probMethod2, recombination, n, generationalGap, crossoverRate, mutation, 
mutationRate, survivorSelection, printToFile). It is very important that all these 
variables should have an initial value, because the user is not obliged to fill in any 
value or even to open this dialog window.  

 
• OK The values in the GADialog dialog window will be saved if the user clicks this 

button. This saving is not a permanent but a temporary one, namely it affects the 
functioning of the program during one run. If it is closed and launched again, the 
default values will be loaded. 
 
There are a lot of commands (rankingSelection, FPSelection, etc.) – not itemized here, 
whose role is only to indicate that the state of a radio button or a combo box had 
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changed, and the appropriate variable needs to be set. Note that the states of radio 
buttons and combo boxes in the GADialog dialog window will be saved automatically, 
without having to click the OK Button. The reason for this is that the states of these 
options are loaded according to the values of the variables mentioned in the 
GASettings item of this paragraph. 

 
• problem, method, findAll The mechanism is very similar in case of these 

commands. First, two pieces of information are needed: which JComboBox object was 
the event fired by, and which item of the combo box is selected. The former can be 
gained by invoking the getSource() method of the ActionEvent object and the later by 
invoking the getSelectedItem() method of the returned JComboBox object. After 
having the selected item, the appropriate variables (whichProblem, whichMethod and 
findAll, respectively) can be set accordingly. In case of “ method”  we have to take care 
also of the state of the findAll combo box, because it should be editable only in case of 
backtrack search algorithm.  

 
The following three commands have the joint feature that they are applicable depending 
on the actual state of the search (indicated by the variable inProgress). The start and clear 
have an effect only in the case when the search is not in progress, and the stop is 
applicable otherwise.  
 
• start It is legal only if the user had filled in all the required parameters (it is 

indicated by mapSizeRReady – note that if the field R is ready, all the other fields are 
bound to be ready). Otherwise only a warning is written on the screen (via 
processLabel1). Depending on the problem and the method (indicated by 
whichProblem and whichMethod) different algorithms need to be launched. Launching 
means that we instantiate the class of the appropriate search algorithm, and pass the 
yielding object to a thread that will invoke its start() method. In case of backtrack 
search algorithm this thread is an instance of the embedded class BTTrigger, in case of 
genetic algorithm it is an instance of the embedded class GATrigger. The only task of 
these classes is to launch the algorithm.   

 
• stop Its only task is to invoke the kill() method of the executive thread. Every 

algorithm has a static variable stopped and the only thing the kill() method has to do is 
to set this variable of the appropriate algorithm to true. 

 
• clear This command resets all the text fields in the main frame to their initial state. 

 
ii) ItemListener 

 
There are two checkboxes in the GADialog dialog window (replacementButton and 
printToFileButton) that are registered for item events, hence this method has two branches 
according to the actual checkbox. The branch-on conditions can be gained from the 
ItemEvent object by invoking its getItemSelectable() method, which returns the actual 
checkbox object. Each branch has following two branches, because we have to decide 
whether the click selected or deselected the check box. This can be done by means of the 
getStateChange() method of the ItemEvent object. 
 

iii) FocusListener 
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This listener is used for parameter input in the main frame. The program checks the input 
values as soon as it gets them. Because most of the inputs have influence on one another’ s 
allowable value, it is important to inform the user at the earliest opportunity if there is 
something illegal. This earliest opportunity is when the user had finished the filling in of a 
field. The application should be informed somehow about this event, and I chose an 
ergonomical solution that deviates from the traditional OK-button technique, namely the 
loss of focus. To this end the class PerfectMapGenerator implements the focusLost() 
method of the FocusListener interface.  
 
This method has five branches according to the actual text field. The branch-on conditions 
can be gained from the FocusEvent object by invoking its getComponent() method, which 
returns the actual text field object. The value control and the field state settings (it is 
important that user should fill in the fields in the proper order, that’ s why only the actual 
field is active) are managed accordingly in the certain branches.  
 

iv) MouseListener 
 

This listener is used in the only case when the user clicks on the hyperlink in the Help 
dialog window. The class PerfectMapGenerator implements three of the mouse listener 
methods, viz. mouseClicked(), mouseEntered(), and mouseExited(). The first one invokes 
the displayURL method of the class BrowserControl. This is an embedded class whose 
task is to launch the appropriate browser application (Netscape under Linux, and the 
default browser under Windows). The latter two methods provide a hyperlink-like feel by 
displaying an underlining when the mouse moves over the web address (note that this is 
necessary, because the web address is just a plain label). 

A.2.2 Search Algorithms 
 
In what follows there is an itemized list of the classes that implement the search algorithms. 
The documentation of the classes comprises the explanation of the methods, remarks about 
their role and all the implementation notes that I have found important, respectively. 
 
The constructors of the classes mainly serve for parameter passing, namely they set the 
private variables of the class according to the ones got by parameter. They won’ t be 
mentioned in case of the certain classes separately, only if they have something extra role. 

A.2.2.1 Backtrack Search Algorithms 

A.2.2.1.1 Class BackTrackMethods 
 
All the three kinds of the backtrack search algorithm (ApmBackTrack, PpmBackTrack and 
SpmBackTrack) extend the abstract class BackTrackMethods. The reasons for using 
inheritance: 
 

i) "Reusing of code", namely the class BackTrackMethods provides some common 
methods linked with the problem context, which are necessary for all the three 
algorithms. The process and the implementation of the search are very similar in all 
the three of the cases and the only difference is the handling of periodicity. Hence only 
those methods are not implemented by this class, which are concerned in the matter of 
periodicity.  



APPENDIX A 
 

 75 

 
ii) The launching of the algorithms is carried out by a separate thread. The type of the 

algorithm is passed by parameter to the thread, so if there is some kind of relationship 
between the types of the algorithms, a common ancestor, for instance, then the same 
thread object can be used in every case. 

 
Global variables 
 

byte  
alphabet 

The alphabet size. 

int[]  
windowSize 

The dimension of the window. It is an array with two 
elements, the first one stands for m and the second 
one for n. 

int[]  
mapSize 

The dimension of the map. It is an array with two 
elements, the first one stands for R and the second 
one for S. 

boolean  
findAll 

The value of this boolean variable indicates whether 
to find all the possible maps. 

byte[] possibleWindows It is an array to store all the possible windows, it has 
the length of mnk . The indices of the array stand for 
the decimal value of a certain window. So the 
windows need not to be stored actually, there is a 
conversion function instead that converts a window 
into a decimal value if needed. The elements of the 
array indicate that the corresponding window is used 
(1) or free (0). 

public boolean  
stopped 

It is a public variable to provide the user interface the 
possibility to control the running of the algorithm. 
The algorithm checks the value of this variable 
systematically, and if it is false, the search 
terminates. 

 
Methods 
 

public 
BackTrackMethods( 
  byte alphabet,  
  int windowSizeM,  
  int windowSizeN,  
  int mapSizeR,  
  int mapSizeS,  
  boolean findAll) 

The constructor. It sets the private variables of the class 
according to the ones got by parameter, initializes the 
possibleWindows array, and sets the value of the public 
field stopped to false. 
 

protected void It fills the given map with the given element.  
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fill( 
  byte[][] map,  
  byte element) 

 

private int 
encode( 
  byte[] what,  
  int alphabet)  

A private function that converts a one-dimensional 
alphabet-ary array into a decimal value. 
 

protected int 
encode( 
  byte[][] what)  

It encodes a two-dimensional alphabet-ary array into a 
decimal value as follows. First it maps the two-
dimensional array into a one-dimensional one, then 
invokes the private encode() function. 

 
The conversion is carried out in row-major order (see Figure 0-5). It is an unambiguous 
operation, so there is a one-to-one correspondence between the two-dimensional and the one-
dimensional arrays.  

( ) 60110
01

10
→→





 

 

Figure 0-5 The encoding 

 

protected byte 
pickElement( 
  byte[] triedAlready)  
 

It picks an element from the alphabet, which is not in 
the array triedAlready. This array is based on the same 
idea as possibleWindows, so this method inspects 
whether it has a zero element in the appropriate 
position. 

protected abstract boolean  
copy( 
  byte[][] candidate, 
  byte newElement,  
  int level) 

This is an abstract method to be overridden in the 
descending classes, because this method is concerned 
in the matter of periodicity, so it cannot be applied 
universally. 

protected abstract void delete( 
  byte[][] candidate, 
  int level) 

Likewise the previous method, it is an abstract method, 
as well. The reason is the same, namely it is concerned 
in the matter of periodicity, and so the deletion of an 
element should be treated differently in the descendants 
according to the periodicity. 

protected byte[][] 
createWindow( 
  byte[][] candidate,  
  int row,  
  int column) 

It creates a window at the specified position in such a 
way that the specified position should fell on the left 
upper corner of the window. In most of the cases it is 
used such a way that it is invoked with actual 
parameters that demand the newly inserted element to 
fall on the right bottom corner of the window as 
illustrated in the figure below. 
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Figure 0-6 Sketch of a 2)2,2;4,4( - Periodic Perfect Map 

 

private static boolean 
areTheyTheSame( 
  byte[][] array1, 
  byte[][] array2, 
  int kindOfPeriodicity) 

Inspects whether the two arrays are equal according to 
the kind of periodicity. It is a static method invoked by 
the method isItInPMAlready(), so it cannot be 
implemented as an abstract method, however, it would 
be the most obvious solution. 
 
The arrays should be compared taking into account that 
their shifted equivalent should differ, as well. In the 
semi-periodic case this shifting needs to be considered 
in one dimension, and in the periodic case in both 
dimensions. 

private static boolean 
isItInPMAlready( 
  byte[][] pm, 
  Vector PM, 
  int kindOfPeriodicity) 

In the aperiodic case it simply returns with false (note 
that the found maps are bound to be different), 
otherwise it inspects whether the given map differs 
from the previously found ones that are stored in the 
Vector PM. It is a static method invoked by the method 
start() if a new Perfect Map is found.  

protected byte[][] 
clone( 
  byte[][] spm) 

It creates a deep copy of the specified map. If we are 
about to find all the possible maps, it is important to 
check whether it differs from the previously found 
ones. To make this comparison possible we need to 
store the maps found so far.  

protected void 
printMap( 
  byte[][] apm,  
  PrintStream pout) 

It prints the given map to the given output. 
 

protected void 
start( 
  PrintStream pout, 
  int kindOfPeriodicity) 
     throws 
         OutOfMemoryError 

It performs the search as follows. After having the 
appropriate assistant variables and arrays initialized, 
comes next the loop of the backtrack search. This 
search could be implemented as a recursive one, but I 
used the break-continue technique instead. It is more 
applicable in case of deep search trees, where the 
recursive one may get stuck because of stack overflow 
error.  

    
    
    
    

 

By inserting the black element the 
method createWindow() will be 
invoked by such parameters that 
demand the placing like this. 
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Every step of the search corresponds to a level of the 
search tree, namely a position in the candidate. In every 
step we choose a non-tried element from the possible 
ones, put it into the appropriate array of triedAlready, 
and try to fit it into the candidate. If it is a legal 
operation (i.e. the copy() returns with true), then we 
step to the next level, else backtrack to the previous 
one. If there is no more non-tried element, also a 
backtracking is needed, but it is made from a 
ramification of the search tree this time, so the 
appropriate array of triedAlready needs to be reset. 
 
The user interface is informed about the actual state of 
the search by setting the proper variables of the class 
PerfectMapGenerator. It means that the control of 
some of the GUI components is managed within this 
method. 

 
Figure 0-7 Flowchart of the backtrack search 

 

A.2.2.1.2 Class ApmBackTrack 
 
This class extends the class BackTrackMethods and implements its two abstract methods 
according to the aperiodic case. 
 
 
 
 

Picking a new 
element 
 (level) 

There is a suitable 
element (level) 

There are no more 
elements (level) 

Putting it into 
triedAlready 

(level) 

backtracking (level--) 

Fit it into the 
candidate 
 (level) 

if legal then stepping to next level (level++) 

Resetting 
triedAlready 

(level) 

if illegal then backtracking (level--) 
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Methods 
 

protected boolean 
copy( 
  byte[][] candidate, 
  byte newElement, 
  int level) 

Inserts an element into the candidate as follows. The 
corresponding row and column can be gained from the level 
(the quotient of the level and n yields the row, while the 
remainder yields the column). After having the element 
inserted, the raising window needs to be inspected whether it 
is a legal one. If it is legal the method returns with true, 
otherwise we let the copy undone and return with false. Note 
that there are cases when there is no “ arising window”  (see 
the semantics of the method createWindow() in the class 
BackTrackMethods), these cases are treated as legal. 

protected void 
delete( 
  byte[][] candidate, 
  int level) 

Deletes an element determined by the level from the 
candidate. The window determined by that element needs to 
be deleted from the array possibleWindows, as well. 

 

A.2.2.1.3 Class SpmBackTrack 
 
This class extends the class BackTrackMethods and implements its two abstract methods 
according to the semi-periodic case. 
 
Methods 
 

protected boolean 
copy( 
  byte[][] candidate, 
  byte newElement, 
  int level) 

The implementation of this method is the same as in the 
aperiodic case, but there is an additional piece of code in this 
case that checks the periodicity if needed (if we have all the 
elements in a row, namely we are in the last column). It is 
accomplished by means of a rollback-technique, namely all 
the arising windows are stored in a rollback array, so when 
checking the windows, not only the possibleWindows should 
be inspected, but the rollback array, as well. If the insertion 
was legal, the content of the rollback array is copied into the 
array possibleWindows.  

protected void 
delete( 
  byte[][] candidate, 
  int level) 

The principle of the deletion is the same as in the aperiodic 
case, but here we have to be careful by deleting the elements 
that influence the periodicity, namely the last elements of the 
columns. In this case all the concerned windows should be 
deleted from the array possibleWindows. 

 
The following figure shows the situation, where the insertion/deletion of an element in the last 
column (indicated by black) influences not only one window, but two (indicated by grey).  
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Figure 0-8 Sketch of a 2)2,2;4,4( - Semi-Periodic Perfect Map 

 

A.2.2.1.4 Class PpmBackTrack 
 
This class extends the class BackTrackMethods and implements its two abstract methods 
according to the periodic case. 
 
Methods 
 

protected boolean 
copy( 
  byte[][] candidate, 
  byte newElement, 
  int level) 

The implementation of this method is the same as in the 
semi-periodic case, with the difference that here not only the 
last elements of the rows should be treated carefully, but the 
last element of the columns, as well. Note that the windows 
arisen by inserting the right bottom element need to be 
treated separately because of the semantics of the method 
createWindow() in the class BackTrackMethods. 

protected void 
delete( 
  byte[][] candidate, 
  int level) 

The principle of the deletion is the same as in the semi-
periodic case, but here the last elements of the rows and also 
those of the columns need to be considered with all the 
collateral windows. 

 

Figure 0-9 Sketch of a 2)2,2;4,4( - Semi-Periodic Perfect Map 

 

A.2.2.2 Genetic Algorithms 
 
The different operators of the genetic algorithm are implemented in different classes 
(ParentSelection.java, Recombination.java, Mutation.java and SurvivorSelection.java). Apart 
from the operators, the mechanism of initialization and evaluation is implemented separately, 
as well (Evaluation.java and Initialization.java, respectively). All of these classes provide 
public functions, each performing a different realization of the operator in point. 

One of the windows 
arisen by inserting 
the black element is 
indicated by grey. 
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The mechanism of the evolution is implemented in the class GAMethods through the method 
start(), hence the declarations of the operators should be done in this class, but the actual 
instantiating is carried out in a different class according to the periodicity (ApmGA, PpmGA 
and SpmGA). Note that the kind of periodicity does not have any influence on the certain 
operators, only the manner of evaluation differs. 
 
When considering a genetic algorithm in terms of performance, a very important factor is the 
number of fitness evaluations. It is an expensive operation, so our aim is to reduce its number 
to such an extent as possible. When applying the certain operators, we have to take care also 
of the fitness values that we have already, and try to avoid the extra evaluations. 

A.2.2.2.1 Package util 
 
This package contains two classes, each providing methods that can be useful in a particular 
unit of the genetic algorithm. This collecting of the common methods has many advantages: 
“ reusing of code” , namely the methods need not be defined and implemented multiple times 
in separate units, only in this package instead. This organization provides a clearly arranged 
code and the possibility of simple modification. 

A.2.2.2.1.1 Class CommonMethods 

 
This class contains all the problem-specific methods that can be useful for any classes of the 
genetic algorithm. 
 

It maps the individual into the phenotype space, namely it creates 
a matrix of proper size from its genotype. 
 
This method is used for: 

public byte[][] 
createPhenoType( 
   byte[] individual) 

• evaluation (class Evaluation) – because the evaluation is 
performed in the phenotype space 

• survivor selection (class SurvivorSelection) – because the 
individuals need to be checked whether they are perfect 
ones 

• evolution (class GAMethods) – in case if the population 
is printed to the output file 

A.2.2.2.1.2 Class SelectionMethods 

 
This class contains all the methods that can be useful for both of the selection operators 
(ParentSelection and SurvivorSelection). 
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The first two of the following methods take part in ranking the population according to the 
fitness values. 
 

public int 
searchMax( 
   int[] array) 

It is used to determine the maximum element of the given 
array. This element will be passed to the method searchMin().  

public int 
searchMin( 
   int[] array 
   int max) 

Returns the position of the minimum element. The parameter 
max stands for the maximum element at the beginning - note 
that the content of the array changes, every newly found 
minimum value will be replaced by (max + 1). This 
replacement guarantees that we will find the correct values in 
ascendant order. 

public int 
searchMinPos( 
   int[] array) 

It returns the position of the minimum element. This method is 
used in course of tournament selection. 

 

A.2.2.2.2 Class GAMethods 
 
All the three kinds of the genetic algorithm (ApmGA, PpmGA and SpmGA) extend the abstract 
class GAMethods. The reasons for using inheritance are the same as in case of backtrack 
search. 
 
Global variables 
 
The variables int alphabet, int[] windowSize, int[] mapSize and boolean stopped have the 
same meaning as in case of backtrack search algorithm. 
 

PrintStream 
pout 

If the value of the printToFile variable is true, the populations 
will be printed to this output (specified in the class 
PerfectMapGenerator according to the actual parameters of the 
map). 

boolean 
printToFile 

It is a boolean variable indicating whether to print the populations 
to the output file. 

 
The classes representing the operators are declared also as global variables, their public 
functions are invoked in the method start(), which performs the evolution. 
 
The following variables determine the behaviour and the quality of the genetic algorithm, 
namely their values indicate which operator to use in the course of the evolution. They 
represent the user’ s choice made in the GADialog dialog window, and according to their 
values the appropriate operators will be applied: 
 
parentSelection (1: ranking selection, 2: fitness proportional selection, 3: tournament 
selection), tournamentSelection (used in parent selection; 1: deterministic, 2: stochastic), 
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tournamentSelection2 (used in survivor selection; 1: deterministic, 2: stochastic), 
recombination (1: uniform crossover, 2: n-point crossover), mutation (1: random resetting, 2: 
creep mutation) and survivorSelection (1: ranking selection, 2: fitness proportional selection, 
3: tournament selection, 4: best from union, 5: replace worst). 
 
Methods 
 

public 

GAMethods(...) 
This constructor has many arguments that deliver the user’ s 
choice to the algorithms. These choices are “ filtered”  already, 
because they had not been sent to this class directly, but to its 
descendants, who passes only the necessary ones on to the 
certain classes representing the operators and to the ancestor 
class, respectively. 
 
Besides the parameter passing it has another task, as well. It 
initializes the value of the public field stopped to false.  

private double 
average( 
   int[] array) 

It computes the average of the values in the given array.  

private void 
printPopulation( 
   Vector population, 
   int[] survivorFitness, 
   PrintStream pout) 

It prints all the individuals of the given population including 
the corresponding fitness values to the given output.  

protected void 
start() 

It performs the evolution, namely applies the appropriate 
operators in the correct order as illustrated in the figure below. 

 
Figure 0-10 Flowchart of the evolution 
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A.2.2.2.3 Class ApmGA, PpmGA and SpmGA 
 
These three classes are almost the same. They consist merely of a constructor, whose task is to 
instantiate the classes that represent the operators. The constructor has a lot of parameters, 
these are the values that the user had chosen in the GADialog dialog window. That is to say 
these values determine the behaviour of the genetic algorithm. 
 
First, it invokes the constructor of the ancestor class with the actual parameters that are 
necessary there – i.e. only the parameters of the map, no operator-specific ones. Then it 
initializes a Random object and passes it to the classes that need some kind of random 
function. As well as every class is provided with the parameters, which are necessary to the 
proper functioning of the operator represented by the class. 
 
As I already mentioned above, the kind of periodicity does not have any influence on the 
certain operators, only the manner of evaluation differs. Hence the only issue that differs in 
case of the three classes is the instantiation of the appropriate descendant (ApmEvaluation, 
SpmEvaluation and PpmEvaluation) of the class Evaluation. 

A.2.2.2.4 Class Initialization 
 
This class performs a random initialization by means of its only one public function 
initialize().   

A.2.2.2.5 Class ParentSelection 
 
The constructor of the class serves only for parameter passing, namely it sets the private 
variables of the class according to the ones got by parameter. 
 
The methods in class SelectionMethods (in package util) – complemented with the following 
method – make the implementation of the certain selection operators easier. 
 

private Vector 
rank( 
   Vector offspring, 
   int[] fitnessValues) 

It ranks the population according to the fitness 
values. The fittest individual has the lowest rank. It 
is realized by searching the array of fitness values 
for the minimum value through the method 
searchMin(). The minimum fitness value and the 
corresponding individual will be put in the ranked 
population and in the array of ranked fitness values, 
respectively. The minimum value will be replaced 
with the increased maximum value, hence making 
the search for the next minimum value possible. 

 
There are three kinds of parent selection operators implemented in this class: 
 

• ranking selection - rankingSelection() 
• fitness proportional selection - FPSelection() 
• tournament selection - tournamentSelection() 
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For determining the selection probabilities I implemented two algorithms: 
 

• roulette wheel algorithm - rouletteWheel() 
• stochastic universal sampling algorithm - SUS() 

 
The implementation of the above operators and that of the ones in the following two classes 
are not detailed here, since it is consistent with their specification (see section 4.1.2.2). 

A.2.2.2.6 Class Recombination 
 
This class implements two kinds of recombination operators: 
 

• uniform crossover - uniformCrossover() 
• n-point crossover - nPointCrossover() 

A.2.2.2.7 Class Mutation 
 
This class implements two kinds of mutation operators: 
 

• random resetting - randomReset(). 
• creep mutation – creepMutation() 

A.2.2.2.8 Class Evaluation 
 

protected byte[][] 
createWindow( 
   byte[][] candidate, 
   int row, 
   int column) 

It creates a window at the specified position in such 
a way that the specified position should fell on the 
left upper corner of the window. 

protected boolean 
equals( 
   byte[][] array1, 
   byte[][] array2) 

Compares two two-dimensional arrays for equality. 
The two arrays are defined to be equal if they 
contain the same elements in the same order. 

protected abstract int 
fitnessValue( 
   byte[] individual) 

Computes the fitness value of an individual. It is 
implemented according to the kind of periodicity. 

protected int[] 
evaluate( 
   Vector offspring) 

Evaluates a population, namely computes the 
fitness value of every individual by means of the 
method fitnessValue(). It returns the array of fitness 
values. The link between the population and this 
array are formed by the indices, namely an element 
of this array corresponds to the individual with the 
same index in the population. 
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A.2.2.2.9 Class ApmEvaluation, PpmEvaluation, SpmEvaluation  
 
All the three of these classes extend the class Evaluation. This inheritance is needed because 
the evaluation should be treated differently according to the kind of periodicity. They 
implement the abstract method fitnessValue() of the ancestor class. The implementation is 
very similar in the three cases: it inspects the positions in the map and computes the ranks of 
the certain windows (for the exact specification of the evaluation function see the 
specification of the genetic algorithm in Section 4.2.2). As for the difference, the set of 
positions to inspect (indicated by grey) differs in the three cases: 
 

 
Figure 0-11 Sketch of Perfect Map with two-by-two window 

 

A.2.2.2.10 Class SurvivorSelection 
 
This class re-implements all the methods of the class ParentSelection with a little 
modification. While in case of parent selection it was not necessary to take care of the fitness 
values, in case of survivor selection this is essential. The reason for this is that the user is 
informed about the fitness average in course of the evolution. It is possible only if keep the 
fitness values during the survivor selection. Hence all the methods are re-implemented in such 
a way that they return not only the population, but the corresponding fitness values, as well. 
These methods are not itemized here. 
 

public 
SurvivorSelection( 
   byte alphabet, 
   int mapSizeR, 
   int mapSizeS, 
   int populationSize, 
   Random rand, 
   PrintStream pout, 
   double s2, 
   int k2, 
   boolean replacement2, 
   int probMethod2) 

It invokes the constructor of the ancestor class and passes 
almost all of its parameters to it, except pout, because it is 
used only if a map needs to be printed to the output file. 
This occurs only in case if the population is looked for 
Perfect Maps, which mechanism is settled within the 
confines of the survivor selection by means of the 
checkPM() method. 

private Vector 
unite( 
   Vector offspring, 
   int[] fitnessValues, 
   Vector population, 
   int[] populationFitness) 

Unites the offspring and the population. The reason for 
this is that almost all of the selection methods apply to the 
union of the population and the offspring. It takes care 
also of the fitness values by uniting them accordingly. It 
returns with a vector of size two, whose first element is 
the united population and the second is the array of united 
fitness values. 
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private boolean 
checkPM( 
   Vector offspring, 
   int[] fitnessValues, 
   Vector population, 
   int[] populationFitness) 

Checks whether there is a Perfect Map in the population 
or in the offspring. It is realized by examining both arrays 
of fitness values, and if a zero value is found, the 
corresponding individual is mapped into the phenotype 
space through the method createPhenoType() of the class 
CommonMethods (in package util), and the arising 
phenotype is written to the output file. 

private void 
printMap( 
   byte[][] map, 
   PrintStream pout) 

It prints the given map to the given output. 

 
The following selection methods have three issues in common:  
 

i) First it is needed to check whether the population or the offspring contains a Perfect 
Map (by means of the checkPM() method). If yes, the methods return a null value 
indicating that the search should be terminated. The checkPM() method takes care also 
of the printing of the found maps to the output file. 

 
ii) Except the method replaceWorst(), all of them apply to the union of the offspring and 

the population. 
 
iii) They return a vector of size two, whose first element is the survivor population and the 

second one is the array of their fitness values. 
 

public Vector 
theVeryBest( 
   Vector offspring, 
   int[] fitnessValues, 
   Vector population, 
   int[] populationFitness) 

Selects the best individuals based on their fitness. It is 
realized by first ranking the population based on fitness 
by means of the method rank(), then selecting the 
required number of individuals from the front part of the 
ranked list. Their number equals to the user defined 
population size. 

public Vector 
fitnessBased( 
   Vector offspring, 
   int[] fitnessValues, 
   Vector population, 
   int[] populationFitness, 
   int whichMethod) 

Performs a fitness-based selection by invoking the 
method FPSelection(). The parameter whichMethod 
stands for the option, which algorithm to use for 
determining the selection probabilities (1: roulette wheel 
algorithm, 2: stochastic universal sampling). 

public Vector 
rankBased( 
   Vector offspring, 
   int[] fitnessValues, 
   Vector population, 
   int[] populationFitness, 
   int whichMethod) 

Performs a rank-based selection by invoking the method 
rankingSelection(). The parameter whichMethod stands 
for the option, which algorithm to use for determining 
the selection probabilities (1: roulette wheel algorithm, 
2: stochastic universal sampling). 
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public Vector 
tournamentBased( 
   Vector offspring, int[] 
   fitnessValues, 
   Vector population, 
   int[] populationFitness) 

Performs a tournament selection by invoking the 
method tournamentSelection(). The size of the 
tournament (k2) and the replacement option 
(replacement2) (whether to put back the winner into the 
tournament pool) are passed by parameter to the 
constructor of the class.  

public Vector 
replaceWorst( 
   Vector offspring, 
   int[] fitnessValues, 
   Vector population, 
   int[] populationFitness) 

Its task is to replace the worst individuals in the 
population with the newly created offspring. It is 
realized by adding the occurrent “ good”  individuals 
from the population (their number equals to the 
difference of the population size and the offspring size) 
and the offspring to the survivor pool. 
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Appendix B 
 

List of the Referenced Programs 
 
All the referenced programs and their source codes are available via the web address 
http://juditk.web.elte.hu/msc/. 
 
The below list follows the directory structure of the above web address. 
 
 Description of the content and the corresponding section 
 
[1 Dimension] 

 
  

 
 [DbcBackTrack] 
 

One-dimensional reference algorithm. 4.1.1.1 

 
 [DbcBackTrack_parallel] 
 

The parallelization of the one-dimensional 
reference algorithm. 

4.1.1.1 

 
 [DbcGA] 
 

One-dimensional genetic algorithm. 4.1.2.2 

 
 [DbcGA_parallel] 
 

The parallelization of the one-dimensional 
genetic algorithm. 

4.1.1.2.6 

 
 [DBGraph] 
 

De Bruijn Graph generator. 4.2.6.2 

 
[2 Dimensions] 
 

Perfect Map Generator software (two-
dimensional reference algorithm and 
genetic algorithm) 

4.1.2.1, 
4.1.2.2, 

Appendix A 
 
 [doc] 
 

The API specification of the Perfect Map 
Generator software. 

 

 
 [solutions] 
 

The output files created during testing.  

 
[3 Dimensions] 
 

Three-dimensional genetic algorithm. 4.1.3.2 

 
[4 Dimensions] 
 

Four-dimensional genetic algorithm. 4.1.3.3 
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