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1 INTRODUCTION

1 Introduction

My thesisis based on a mathematical complexity problem, namely the investigation of perfect
maps, especialy perfect tori. The central issue is the existence of such maps with certain
parameters. Thisissue can be approached by two points of view:

theoretical:  Many of construction methods were proposed and many theorems and proofs
were produced, as well. These results apply only to certain sets of perfect maps. The
conjecture is that such maps exist for every parameter set, but the general proof remains to be
Seen.

practical: The other approach is to search for certain maps with practical algorithms. The
certainty of existence and the possibility for investigating the structure of an existing map may
lead nearer to the final solution.

My research is related to the practical approach, but it diverges from the previous attempts: |
am going to test the power of evolutionary computing (EC) applied to this complexity
problem. There are more arguments for applying EC algorithms. The search space is very
large even in case of maps with small parameters, it is out of reach of computer search. In the
worst case the time complexity of a branch and bound search agorithm — even if equipped
with smart heuristics — is the same as complete enumeration, so it took millions of years to
reconnoitre the search space with the recent computational capacity. The EC algorithm is a
quite different approach, it provides a means of coping with large and discontinuous search
spaces, and furthermore the problem fits into the area of evolutionary computing: the maps
have straightforward representations and we can easily define adequate fitness functions, as
well.

About the Problem to Solve

The precise definitions of perfect maps can be found in the next section, but the essence in a
nutshell is the following. Perfect Maps (or de Bruijn Tori) are two-dimensional arrays in
which every possible rectangular sub-array (of fixed size) occurs precisely once.

The problem from the per spective of system analysis

From the perspective of system analysis there are three main components of a system: inputs,
outputs and the model that processes the inputs and returns the corresponding outputs. The
book of Eiben and Smith [52] classes the possible problems among three categories:
optimization, modeling and simulation problems.

Our mathematical problem is an optimization problem (Figure 1-1):

i) input The candidate perfect maps, namely the elements of the search space.

i)  model The model is known, that is we know the way to decide whether a
map is a perfect one or not.
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lii)  output The qualification of the input. In case of a “traditional” search
algorithm it is *“yes” or “no”. In case of genetic algorithm it stands for
the fitness values.

Model

? ——»{ known ———-» specified
input output

Figure 1-1 Optimization problem

Resear ch Objective

The main goal of my thesis is to demonstrate that evolutionary computing is a useful tool in
the investigation of this complexity problem and should be considered before declaring the
computational limits of the resolvability. It is a tool that provides the computer with some
kind of intelligence hence the computing capacity can be used in a quite different way than
before.

Apart from proving the aptitude of EC, there are two more important issues | aim at: to gather
all the available information about the foregoing results and to verify them, as well as find
such maps whose existence was only a conjecture so far. It is a great challenge, because
neither theoretical proofs shore up their existence nor practical attempts, namely no one could
construct or simply search for such mathematical objects due to the size of the search space.
The detailed survey on my research can be found in section 4.

The Structure of My Thesis

The next section is dedicated to the complexity problem. | tried to compile a concise well-
structured survey (“state-of-the-art”) on the problem based on the corresponding papers.
There were more issues | considered about this survey. First, the literature regarding the
problem is quite large and complex. There are many papers devoted to special practical
applications (robot self location, pseudorandom arrays, etc.) or features (e.g. decodable maps),
while others are interested in construction methods. The really important issues in terms of
my thesis are the results concerning the existence question (necessary and sufficient
conditions) of the maps, hence | collected and structured only this kind of information. The
notations were quite diverse and sometimes confusing, so | aimed at using a uniform and
consistent notation based on the papers of Hulbert and Isaak.

Considering the size of the problem it is very tempting to have an eye to the possibility of
parallelization, especially if the appropriate hardware is to hand. In the third section |
collected the alternative ways to parallelizing an evolutionary algorithm (section 3.1) and |
gave a short description of the parallel testing environment, the DAS-2 (section 3.2).

The fourth section contains my research. It is divided into two main parts: the first one
(section 4.1) contains the concise specification of the implemented algorithms (both the
reference and the genetic algorithm), and the second one is devoted to the outcomes of the
experiments and some theoretical results (section 4.2).
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I implemented several agorithms during my work, the list of them can be found in Appendix
B. The principles of the certain algorithms are detailed in the corresponding sections and the
documentation of the most important application can be found in Appendix A.



2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

2 Theoretical Survey on the Mathematical Problem

2.1 One-Dimensional Case

2.1.1 Perfect Sequences (de Bruijn Cycles)

In one dimension the aperiodic and periodic cases are not clearly distinguished in the
literature, because they are barely different from each other and the conversion is trivial
between them. The phrases de Bruijn Cycle and de Bruijn Sequence are equally in use to stand
for the periodic case, where the sequence is considered to be wrapped round on itself. This
corresponds to writing it on the outside of acylinder.

DEFINITION 1 A (k";n), - de Bruijn Cycle is a cyclic k-ary sequence of length k"

with the property that every k-ary n-tuple appears exactly once contiguously on the cycle. The
parameter n is often called the span of the sequences.

[00010111

Figure2-1A (8;3), - deBruijn Cycle

REMARK 2 In a cycle there are two directions and they need to be considered as
different in spite of the fact that they represent the same cycle. For example in Figure 2-2 we

havetwocycles: [0 O O 1 O 1 1 1] (foundclockwiseyand[0 O O 1 1 1 0 1]
(found counter-clockwise).

Figure2-2

THEOREM 3 A (k";n), - de Bruijn Cycle exists for every kand n (k =2 and n>1).

Such cycles were first discovered in 1894 by Flye-Sainte Marie [1], and rediscovered in 1946
by de Bruijn [2] and Good [3]. An excellent survey on the topic by Fredricksen can be found
in[4].

De Bruijn Cycles have applications in the study of position-detection [5, 6, 7, 8, 9, 10, 11, 12],
pseudorandom numbers, cryptography, nonlinear shift registers and coding theory, and a vast
literature exists [13, 14, 15, 16, 17].



2.1 ONE-DIMENSIONAL CASE

2.1.2 The Decoding Problem

The decoding problem is to discover the position any specified n-tuple within a particular
sequence. In spite of its importance [5, 8, 30] it has been much less well studied than the
construction problem.

A summary of the previous work and two new methods for construction of de Bruijn Cycles
(which have the advantage that they can be decoded very efficiently) can be found in [18].

2.1.3 Infinite Perfect Sequences

2.1.3.1 Super perfect Sequences

DEFINITION 1 A (k";n), - Superperfect Sequence is a Perfect Sequence whose k"
length prefixesare (k";n), - de Bruijn Cyclesfor n=12,....

In 1984 N. Voros [19] gave a sufficient condition for the existence of such sequences.

2.1.3.2 Growing Sequences

DEFINITION 1 A (k";n), - Growing Sequence is a Perfect Sequence whose k" length
prefixesare (k";n), - deBruijn Cyclesfor k =1,2,....

DEFINITION 2 Let k =(kk,...) bea strictly increasing sequence of positive integers.
An (E”;n)g- Growing Sequence is a Perfect Sequence whose k' length prefixes are
(k";n),, - deBruijn Cyclesfor i =12,....

REMARK 3 This is the one-dimensional equivalent of a more general definition that
can be found in Section 2.3.1.2.1.

Hurlbert and Isaak [45] in 1994 constructed a Growing Sequence for the case when k is the
sequence of the even number. Then years later, Horvath and Ivanyi [21] proved the following

LEMMA 4 If n>1 and k =1 then any (k";n), - de Bruijn Cycle can be continued
inorder togeta ((k+2)";n),,,- deBruijn Cycle.

This lemma yields [21] the following

THEOREM 5 If n=1 and k =(kk,...) with k; =i, then exists a (k"; ), - Growing

Sequence.

The most general result (see section 2.3.1.2.1) can be found in [20].

2.1.3.3 Alternating Sequences

10



2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

Alternating Sequences are hybrids of the previously mentioned two kind of infinite sequences.
The proof of their existence can be found in [21].

DEFINITION 1 An Alternating Sequence is a Perfect Sequence whose i' length prefixes
are (i';i), - de Bruijn Cycles and (i +1)' length prefixes are ((i +1)';i),.,- de Bruijn Cycles
fori=212,....

2.1.4 Perfect Factors (Equivalence-Class de Bruijn Cycles)

Perfect Factors are related objects introduced by Etzion [22] and later by Hurlbert and Isaak
[40] as Equivalence-Class de Bruijn Cycles. Perfect Factors have proved useful in
constructions for de Bruijn Tori and have been extensively studied in [23, 24, 25, 26].

DEFINITION 1 An (Rn;T),- Perfect Factor is a set of T=k"/R k-ary, period R

sequences in which every k-ary n-tuple occurs exactly once as a subsequence. The parameter
n is often called the span of the sequences.

00 0 01221 2 1,0
HL 11200 2 0 2,9
H2 2201101 0of

Figure2-3 A (9;3,3),- Perfect Factor

REMARK 2 Perfect Factors are generalizations of the classical de Bruijn Cycles. a
de Bruijn Cycleisa Perfect Factor with T =1, thatis a (k";n;1), - Perfect Factor.

The following necessary conditions for the existence of a Perfect Factor were formulated in
[25].
LEMMA 3 Suppose Aisan (R;n;T), - Perfect Factor. Then

i) RJ]k", and

i) n<R<k"or (R=n=1).

CONJECTURE 4 The conditions of Lemma 3 are sufficient for the existence of an
(Rm;T), - Perfect Factor.

Etzion [22] has shown that the conjecture holds in the binary case. This was extended to cases
where k is a prime power by Paterson [26]. Mitchell and Paterson [27] have shown the
sufficiency for the casewhen n=R-1.

In the view of the first condition in Lemma 3 we can assume that the prime factorizations of k
and Rare:

k= I_J p“ and R= ” p," where 0<r, <kn for eachi.

11



2.1 ONE-DIMENSIONAL CASE

It was also proved in [26] that the conditions of Lemma 3 are sufficient when p,® >n for
every index i. In [23] this result has been improved to establish the sufficiency of the
conditions of Lemma 3 whenever p,* >n for at least oneindex i.

Mitchell has shown that the conjecture holdsif n <5 [24] and that Perfect Factors exist for all
triples (R,6,k®/R), satisfying the conditions of Lemma 3 with some possible exceptions
[23]. He obtained Perfect Factors for some of those exceptionsin [25].

This result was extended to n<7 in [27]. Regarding the cases n=7 and 8, unresolved
parameter sets and remarks can be found in [27].

Mitchell [24] has shown that the following Perfect Factors exists:

i)  (6,36°d®),,- Perfect Factor (d >1),
i)  (10,310°d®),,, - Perfect Factor (d >1) and
i) (30,3302d?),, - Perfect Factor (d 21).

2.1.5 Perfect Multi-Factors

Mitchell introduced two auxiliary classes of combinatorial objects. Perfect Multi-Factors [23]
and Generalized Perfect Factors [24] (see section 2.1.6), which can be combined in various
ways to yield Perfect Factors.

DEFINITION 1 Suppose R, m, n and k are positive integers satisfying R| k" and k= 2.
An (R;n;T;m), - Perfect Multi-Factor isa set of T =k"/R k-ary, period Rm sequences with
the property that for every k-ary n-tuple 7, and for every integer j intherange O< j<m, 7
occursat a position p = | (mod m) in one of these sequences.

o 0 0 0111 1,0
100001114
010110101,5
HO 0 1 0110 QF

N

Figure2-4 A (4,4;4,2),, - Perfect Multi-Factor

REMARK 2 An (Rn;T;1), - Perfect Multi-Factor is precisely equivalent to an
(Rm;T), - Perfect Factor.

The following necessary conditions for the existence of a Perfect Multi-Factor were
formulated in [23].

LEMMA 3 Suppose Aisan (R;n;T; m), - Perfect Multi-Factor. Then
i)  RJ|k", and
i) n<Rmor (n=mand R=1).

12



2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

It has been shown [23] that the above necessary conditions are sufficient if m=n.

2.1.6 Generalized Perfect Factors

DEFINITION 1 Suppose R, m, n and k are positive integers satisfying R|k" and k= 2.
An (Rn;T;m), - Generalized Perfect Factor is a set of T=k"/R k-ary, period Rlm

sequences with the property that for every k-ary n-tuple 7, there exists an integer j in the
range 0< j <R such that for everyi (O<i <m) roccurs at position j+iR in one of these
sequences.

REMARK 2
i)  An (Rn;T;1),- Generalized Perfect Factor is precisely equivalent to an (R;n;T), -
Perfect Factor, and
i)  An (In;T;m), - Generalized Perfect Factor is precisely equivalent to an (I, n;T;m), -
Perfect Multi-Factor.

The following necessary conditions for the existence of a Generalized Perfect Factor were
formulated in [24].

LEMMA 3 Suppose Aisan (R;n;T; m), - Generalized Perfect Factor. Then
i)  RJ]k", and
i) n<Rmor (n=mand R=1).

These necessary conditions for the existence are not sufficient [24], but there are some
(constructive) existence results for Generalized Perfect Factorsin [24, 27].

2.1.7 De Bruijn Graphs

DEFINITION 1 Let K ={01,...,k -1} be and alphabet and let K" denote the set of n-
tuples. A (k,n) - de Bruijn Graph is a graph with vertex set K" and edge set K" so that if
e=<XX,...X.,, >0K"™ then e determines a directed edge going from the vertex
<X X,...X, > tothevertex < X,X;...X,,; >.

13



2.1 ONE-DIMENSIONAL CASE

Figure 2-5A (2,2) - de Bruijn Graph

Since a (k,n) - de Bruijn Graph is connected and each vertex has k ingoing and k outgoing
edges, it has an Euler path [28]. Note that an Euler path in a (k,n)- de Bruijn Graph is

equivalentto a (k"*,n+1), - de Bruijn Cycle.

The number of distinct Euler paths in a de Bruijn Graph is equal to A((k -D)!)*", where A
denotes the number of spanning trees of the graph [28]. Considering that the in-degree matrix
contains at most k"(k+1) non-zero elements, this number can be determined in O(k™™!)

time. Even the best non-approximating algorithm (Gaussian elimination) needs O(k*") time,
which is still exponential.

An easily applicable equivalent formula with the specialty that it does not require any

knowledge about graph theory and can be applied in ©(n+Kk) time, is given in Section
4.2.6.2.

2.2 Two-Dimensional Case

2.2.1 Aperiodic Perfect Maps

In the aperiodic case the array is deemed to be written onto a planar surface and the sub-arrays
are always completely within the borders of the array.

DEFINITION 1 An (R,S;m,n), - Aperiodic Perfect Map is a k-ary (RxS) toroidal
array with the property that every k-ary (mxn) array occurs exactly once in the set of
(mxn) aperiodic sub-arrays. The pair (m, n) is often called the window of the map.

0001011 OH

M 01 01 111 0

H 1000010 1
Figure2-6 A (3,9;2,2),- Aperiodic Perfect Map
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2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

LEMMA 2 If Aisak-ary (R, S;m,n), - Aperiodic Perfect Map then
i) R=m=1,

i) S=n=z=1 and

i)  (R=-m+D(S—-n+1)=k™

In[41], C. J. Mitchell proved the binary case of the following

CONJECTURE 3 The necessary conditions of Lemma 2 on R, S m, n are sufficient for the
existence of ak-ary (R,S;m,n), - Aperiodic Perfect Map.

2.2.2 Periodic Perfect Maps (or de Bruijn Tori)

In the periodic case the array is considered to be wrapped round on itself. This corresponds to
writing the array onto atorus. Sub-arrays then exist starting at any point in the array, which no
longer has any “edges’.

Figure 2-7 A torus

These periodic structures can be transformed very simply into corresponding Aperiodic (see
section 2.2.1) and Semi-Periodic (see section 2.2.3) Perfect Maps. However, Aperiodic and
Semi-Periodic Perfect Maps can exist for parameter sets for which the corresponding Periodic
Perfect Maps cannot [41].

DEFINITION 1 An (R,S;m,n), - deBruijn Torus (or Periodic Perfect Map) is a k-ary
(RxS) toroidal array with the property that every k-ary (mxn) array occurs exactly once as

a periodic sub-array of the array. The pair (m,n) is often called the window or order, and
(R,S) theperiod of thetorus.

EP 00 1H
M 0 1 0
o 1 1B
11 15
Figure2-8 A (4,4,2,2), - de Bruijn Torus

REMARK 2 The (R1mQ), - deBruijn Tori are de Bruijn Cycles.
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2.2 TWO-DIMENSIONAL CASE

De Bruijn Tori have interesting applications in robot self-location [29, 30], pseudorandom
arrays [22, 31, 32, 33], and the design of mask configurations for spectrometers [34]. (For an
interesting variation on this theme see [35]). Even cloth patterns have used these designs, long
before their mathematical properties were discovered [36].

In 1984, Ma[37] proved the binary case of the following 1988 theorem of Cock [38] (see also
[39]).

THEOREM 3 For all m, nand k (except n=2 if k even) thereisa (k',k*;m,n), - de
Bruijn Toruswith r =m and s=m(n-1).

2.2.2.1 The Necessary Conditions of the Existence

The necessary conditions of the following Lemma were mentioned by Hurlbert and Isaak in
[40] and by Mitchell in [41].

LEMMA 4 If Aisak-ary (R, S;m,n), - deBruijn Torus then
i) R>m=1 or R=m=1,

i) S>n=1o S=n=1, and

i)  RS=k™

2.2.2.2 The Sufficient Conditions of the Existence

Paterson [42] showed that in the binary case the necessary conditions of the Lemma 4 arein
fact sufficient for the existence of de Bruijn Tori. In [43] he extended his work to alphabets of
prime-power size.

CONJECTURE 5 If R,;S,mnand k satisfy
i) R>m,
ii) S>n, and

i)  RS=k™

then thereisan (R, S;m,n), - de Bruijn Torus.
Hurlbert and Isaak [44] produced tori for which the period is not a power of k:

THEOREM 6 Let k have prime factorization |_| p,“ and let = k|_| p, "™ Then
for all m, nthereisa (g,k™ /qg;m,n), - de Bruijn Torus.

In [45] they proved a sub-case (see Theorem 1 in Section 2.2.2.4) with the hope that it will
help to extend this resullt.

The most progress toward the previous conjecture by Paterson [46] is the following

THEOREM 7 Suppose k, R and Shave prime factorizations as follows:
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2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

k= I_J p", R= pI and S:”piS for some O0<r, <kmn where s =kmn-r,,
R>m and S>n.And that for some i we have p," >m and p,* >n. Then there exists an

(R, S;m,n), - de Bruijn Torus.

This prompted Hurlbert, Mitchell and Paterson [47] to examine the parameter sets where
p," <m for someindices and p,* <n for other indices in the case where m=n=2. They

developed new construction methods for some sub-cases (see Theorem 2 and Theorem 3 in
Section 2.2.2.4) and with the combination of those cases obtained the following

THEOREM 8 The necessary conditions of Lemma 4 are sufficient for the existence of
an (R S;2,2), - deBruijn Torus.

2.2.2.3 A Special Case: deBruijn Square

In 1992 Chung, Diaconis and Graham [48] asked whether it is possible that “square” tori exist
forevenn. That is, canit bethat R=S and m =n? This question was resolved for the binary
case by Fan, Fan, Ma and Siu [49], who proved

THEOREM 1 There exist a (2",2";n,n),- de Bruijn torus if and only if n is even (of
course,r =n’/2).

Hurlbert and 1saak [40] settled the question for general k with the following

THEOREM 2 Except in the case that kis an even squareand n=3,5,7 or 9, there
isan (R,R n,n), - deBruijn Torusif and only if nis even or kis a perfect square.

In [46] Paterson made up for the mission cases(n =3, 5, 7 and 9), so previous theorem reads
asfollows.

THEOREM 3 Thereisan (R,R;n,n), - de Bruijn Torusif and only if niseven or k is
a perfect square.

2.2.2.4 Some Constructionsfor Sub-Cases

THEOREM 1 For all sandtthereisa (4st?,4s’t?;2,2),, - de Bruijn Torus.
THEOREM 2 Suppose m>n=2. Then there exists an (m*,n*;2,2), - de Bruijn
Torus.

THEOREM 3 Suppose n>2 is odd. Then for every k=1, there exists a

(2n*,2%*;2,2) - deBruijn Torus.
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2.2 TWO-DIMENSIONAL CASE

2.2.3 Semi-Periodic Perfect Maps

In the semi-periodic case the array is considered as periodic in one dimension and aperiodic in
the other. This corresponds to writing the array onto the outside of a cylinder.

DEFINITION 1 An (R,S;m,n), - Semi-Periodic Perfect Map isa k-ary (RxS) toroidal
array with the property that every k-ary (mxn) array occurs exactly once in the set of
(mxn) semi-periodic sub-arrays. The pair (m, n) is often called the window of the map.

7111000 0f
M 10100 1 0Q
B o11110 0f

Figure2-9A (3,8,2,2), - Semi-Periodic Perfect Map

LEMMA 2 If Aisak-ary (R, S;m,n), - Semi-Periodic Perfect Map then
i) R=mz=]

ii) S>n=21or S=n=1, and

i) (R-m+1)S=k™

In[41], C. J. Mitchell proved the binary case of the following

CONJECTURE 3 The necessary conditions of Lemma 2 on R, S m, n are sufficient for the
existence of ak-ary (R,S;m,n), - Semi-Periodic Perfect Map.

2.2.4 The Decoding Problem

As aready mentioned with reference to the one-dimensional case in Section 2.1.2, Perfect
Maps play a significant role in many applications, especially in position location [30, 50].
Decoding means a method for computing the position of a given sub-array within a Perfect
Map. In [50] we can found methods for constructing Perfect Maps, which can be decoded
efficiently. Some remark on the efficiency of other methods can be found in [41].

2.2.5 Infinite Perfect Maps

The definitions of the two-dimensional Growing Perfect Maps and Alternating Perfect Maps
can be easily generalized from their one-dimensional equivalent (see section 2.1.3). For the
most general definition see section 2.3.2.

The following Infinite Perfect Maps can be considered as two-dimensional interpretations of
the Superperfect Sequences.
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2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

2.2.5.1 Increasing Perfect Maps

DEFINITION 1 An (R, S(x);m,n(x)), - Increasing Perfect Map is a Perfect Map with
the property that every prefix of the map is a (R, S(x);m,n(x)),- de Bruijn Torus, where
n(x) =x and S(x) =k™ /R for x=12,....

SX)
A

(X

=0
—

R4

Figure 2-10 Sketch of an Increasing Perfect Map
2.2.5.2 Expanding Perfect Maps
DEFINITION 1 An (R(c, x), S(c, x); m(x),n(c, X)), - Expanding Perfect Map is a Perfect
Map with the property that every prefix of the map is a (R(c, x), S(c, X); m(x),n(c, X)), - de

Bruijn Torus (c=0), where m(x) = x, n(c,x) =c+x, S(c,x) = k™D [R(c,x-1) and
R(c,X) = k™™"eX /S(c,x) for x=1,2,....

REMARK 2 Expanding consists of two consecutive steps: first increasing the Perfect
Map in one direction, then increasing it in the other direction.

y)
A

3\\
=
—

R(X) <

Figure 2-11 Sketch of an Expanding Perfect Map
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2.2 TWO-DIMENSIONAL CASE

2.2.6 Perfect Factors

DEFINITION 1 An (R, Su,v;T), - Perfect Factor isa set of T RxS periodic arrays,

with symbols drawn from a set of size k, having the property that every possible uxv array
occurs exactly once as a periodic sub-array in precisely one of the arrays.

REMARK 2 An (R S;u,v;1),- Perfect Factor is simply an (R,S;u,v), - de Bruijn
Torus.

Hurlbert, Mitchell and Paterson [47] obtained a complete answer for the necessary and
sufficient conditions of the existence in the case where k is a prime-power:

THEOREM 3 Let p be a prime and k, r, s and t be integers. The conditions that
p',p*>2 and r+s+t=4k are necessary and sufficient for the existence of a

(p", p%22p") o Perfect Factor.

2.3 Higher dimensions

2.3.1 DeBruijn d-Tori

DEFINITION 1 Let R=(r,,..,r,) and A =(n,..n,) with r, >n and |_|ri UL
We call a d-dimensional toroidal k-ary block an (R;M)¢ - de Bruijn Torusif it has dimensions

r,x---xry and every k-ary n, x---xn, block appears exactly once contiguously in the d-
dimensional torus.

DEFINITION 2 A fundamental block of an (R;m)¢- de Bruijn Torus is an array
consisting of r, consecutive rows in the i" dimension for i =1, 2, ... , d. Repeating such a
block produces the torus.

REMARK 3 A matrix appears uniquely in an infinite periodic array if it appears
uniquely in a fundamental block.

One then has the following theorem, mentioned in [38] and proved in [44].

THEOREM 4 For all m, d and k thereisan R sothat thereisan (R;M){ - de Bruijn
Torus (except that n, =2 for at most one index i when k is even) with the following
properties:

j-1
j-1 N (nj—l)rl n

r,=k™ and r, =(|‘J "=k A
1=

REMARK 5 So Cock’s technique [38] easily generalizes to higher dimensions, but
unfortunately, each new dimension has size exponential in the previous.
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2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

CONJECTURE 6 Ifk, R and n satisfy
i) r>norr=n=1forall<i<d and
d - n
il

i) Dri =

then thereisan (R;M)¢ - de Bruijn Torus.

2.3.1.1 A Special Case: de Bruijn d-Cubes

Hurlbert and Isaak [40] assumed that Conjecture 6 is true for n =---=n, =n and

rp=--=ry= k"', that is de Bruijn d-Cubes. In [20] Horvath and Ivanyi constructed the
smallest possible (a 256 x 256 x 256 sized 8-ary) 3-Cube.

2.3.1.2 Infinite de Bruijn d-Cubes

2.3.1.2.1 Growing de Bruijn d-Cubes
In [20] Horvéath and Ivanyi proposed the following definitions and proved Theorem 3.

DEFINITION 1 Let k = <k1k2...> be a strictly increasing sequence of positive integers.
A (K™ n)¢ - Growing de Bruijn Cube is a de Bruijn d-Cube whose prefixes are R n)y, -
de Bruijn Cubes for i =12,....

DEFINITION 2 For n,k = 2 the new alphabet size K(k,n) is

k, ifanyprimedividesk,
Kk = [ ’P
kg, otherwise,

where q isthe product of prime divisors of n not dividing k.
di

THEOREM 3 If d=1, n=2, k=2 and k =N®" for i =12,... then exists a

(k™' n)¢- Growing de Bruijn Cube.

2.3.2 Infinitede Bruijn d-Tori

2.3.2.1IncreasingdeBruijn d-Tori

DEFINITION 1 An (R(x);N(x))¢ - Increasing de Bruijn Torus is a de Bruijn d-Torus
with the property that every R(x) sized prefix of the torus is an (R(x);n(x))¢ - de Bruijn
Torus, where f(x) =(n;,n,,...,Ny,;,x) and R(x) :<r1,rz,...,ro,_l,nflfszd*1X /rlrz...rd_1> for
x=12,....

2.3.2.2 Expanding de Bruijn d-Tori
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2.3 HIGHER DIMENSIONS

DEFINITION 1 An (R(x);N(x))¢ - Expanding de Bruijn Torus is a de Bruijn d-Torus
with the property that every prefix of the torus is an (R(x);n(x))f - de Bruijn Torus, where
n(x)=c¢ +x(c,=0,c =20fori=23,...) and

i d
ICS

|‘_ln,-(x)}_‘ d
rn(x)=k= == ITIr. ()] ]r. (x=-1 for x=21.2,....
[Jr 0[]

j=i+l

2.3.2.3 Developing de Bruijn d-Tori

DEFINITION 1 Let A=(nn,...) be a sequence of positive integers. An (R;M); -
Developing de Bruijn Torus is a de Bruijn d-Torus with the property that every i-dimensional
prefix of the torusis an (R; M), - de Bruijn Torus, where r = Uk /'_I rn for j=12,....i.

Z]

2.3.2.4 Growing deBruijn d-Tori

DEFINITION 1 Let k = <k1k2...> be a strictly increasing sequence of positive integers.
An (ﬁ(lz);ﬁ)g - Growing de Bruijn Torus is a de Bruijn d-Torus with the property that every

prefix of the torus is an (R(k);N); - de Bruijn Torus, where r, (ki):kiﬂnk/l_lfk
%)
(j=1...,d) fori=12....

2.3.2.5 Alternating de Bruijn d-Tori

DEFINITION 1 An (R; ﬁ)g - Alternating de Bruijn Torusis a de Bruijn d-Torus with the
property that every i' sized prefix of the torusis an (R;n)? - de Bruijn Torus with |_| n, =i,
and every (i+1)' sized prefix is an (R;n)%,- de Bruijn Torus with |_|nj =i+1, for
i=12,....

2.3.3 Perfect Factors (de Bruijn Families)

DEFINITION 1 A d-dimensional k-ary, order n Perfect Factor (or de Bruijn Family) of
sizet and period R isafamily {B,,...,B} of d-dimensional k-ary toroidal arrays, of period

R each, with the property that for every d-dimensional k-ary matrix M of size i thereisa
uniquej and a unique i so that M appearsin B, at position i . (We will say that a particular

matrix M of size n appears in B at a position i_=<i1,...,id> if M appears in the positions
i through i +1.) We call such a Perfect Factor an (R;;t){ - Perfect Factor.

REMARK 2 In the case that d =t =1, Perfect Factors have been called de Bruijn
Cycles. Perfect Factors with t =1 and d >1 have been called de Bruijn Tori (or Perfect

Maps).
Hurlbert and Isaak [51] obtained the following
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2 THEORETICAL SURVEY ON THE MATHEMATICAL PROBLEM

THEOREM 3 Let k= ” p," for primes p, and for j <d supposethat r; = I_j p*

with each p, A >2. Further assume that for each i<s there is a permutation
|

0,=(0,,,-,0,4) of {1,...,d} sothat for each | <d we have Zl’gi"’w <a,2 . Then thereis
J:

an (R;m;t) - Perfect Factor, whereeach n. = 2.
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3 TOOLS FOR PARALLELIZING THE ALGORITHM

3 Toolsfor Parallelizing the Algorithm
3.1 The Available Evolutionary Computing Tools

The following two models were specified by Eiben and Smith [52].
3.1.1 Idand Model

The principle of the ISand Model is that we have multiple populations in paralel. They exist
and evolve independently from one another; each one is a separate “island”. Sometimes
individuals are moving from a population to another neighbouring one, this process is called
migration. Its mechanism is illustrated in Figure 3-1, where we have three populations with
three individuals migrating, one from island 2 tol and two fromisland 3 to 2.

1 2

e
&

3

Figure 3-1 Sketch of the Island Model

Migration takes place after an epoch, namely a number of generations. While the populations
are evolving independently from the others, they are exploring a certain part of the search
space, namely they are exploiting that area. If a new individual gets into the population, it can
direct the search into other (maybe fitting) directions and by this means expand the space
searched so far, hence facilitating exploration.

Basic parameter s and some recommendationsto consider :

i) How long should be an epoch? Its length is usualy fixed, but we have countless
possibilities to plant it into the evolutionary mechanism and make it depend on some
other parameter or feature of the populations.

i)  How many individuals to exchange? If we exchange a large number of individuals, the

populations may converge to the same solution too rapidly, and we will have a lot of
populations producing the same results, consuming time and capacity unnecessarily.
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3 TOOLS FOR PARALLELIZING THE ALGORITHM

i)

iv)

Which individuals to exchange? The selection may carry out on the basis of fitness, or
it can be simply a random choice. In the latter case it is less likely that a population
will be took over by a new high-fitness migrant.

How to initialize the different populations? It is not guaranteed that the different
populations are exploring different regions of the search space, that’s why we have to
be very cautious and apply some refined heuristics during the initialization process.

It is possible to maintain different populations with different parameters, like the continents
have different features in real life.

3.1.2 Diffusion Mode€

The principle of the Diffusion Model is that we have multiple overlapping subpopulations in
parallel. The members of the populations can be considered being scattered over on a toroidal
grid, and communicating only with individuals in their neighbourhood. Communication
means the applicability of the recombination and selection operators in this context. This
mechanism is illustrated in Figure 3-2, where the black individual in the middle
communicates exclusively with the grey ones in its immediate vicinity.

Figure 3-2 Sketch of the Diffusion Model

Basic parameter s and some recommendationsto consider :

)

How large should be a neighbourhood? The size of the neighbourhood is usually the
same for all nodes, but we can make it depend on some feature of the individual, by so
doing the populations turn into some kind of realistic community, where the
individuals are making friends with each other: there are timid ones with smaller
vicinity and social ones with larger vicinity.

Which element to replace? Owning to the overlapping feature of the subpopulations
we have to be very careful when applying the replacement operator. If both
subpopulations want to replace the same individual, race conditions may occur. This
situation is illustrated in Figure 3-2, where two subpopulations indicated by black
frames want to replace the same individual in their intersection. One possible solution
is to replace the central node of a subpopulation.
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3 TOOLS FOR PARALLELIZING THE ALGORITHM

3.2 The Parallel Testing Environment

The system where | run my parale applications is called DAS-2 (Distributed ASCI
Supercomputer 2). It was designed by the Advanced School for Computing and Imaging, a
cooperation between a number of Dutch Universities. The machine is built of clusters of
workstations, which are interconnected by SurfNet, the Dutch university Internet backbone for
wide-area communication. The nodes within alocal cluster are connected by a Myrinet-2000
network, a popular high-speed LAN. The system was built by IBM and runs the Red Hat
Linux operating system. The clusters are located at five Dutch Universities, there are 200
nodes altogether. | use only one cluster of 72 nodes, located at the Vrije Univeristeit.

Each node contains;

e Two 1 GHz Pentiumllls

* Atleast 1 GB RAM (2 GB for two "large" nodes)
* A 20 GByteloca IDE disk

e A Myrinet interface card

e A Fast Ethernet interface card

Each cluster consists of afile/compile server (called fsO that of VU) and a number of compute
nodes. Running of jobs must be done on the worker nodes via the cluster scheduling system
OpenPBS. This system reserves the requested number of nodes for a specific duration (the
default is 15 minutes). The user interface of this job manager is called prun, which provides a
convenient way to start jobs.

For more information about the DAS-2, see http://www.cs.vu.nl/das2.
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4 MY RESEARCH

4 My research

Concise Survey

As | dready mentioned in the introduction, | have got three aims. proving the aptitude of EC,
verifying the foregoing results and finding such maps whose existence was only a conjecture
so far.

At first | studied the one-dimensional equivalents of the tori, namely de Bruijn cycles. My aim
was to observe al the features that can be useful in higher dimensions, and to use the obtained
experience in course of the implementation of the higher-dimensional cases. By means of the
reference algorithm (a backtrack search algorithm) | managed to devise a formula concerning
the number of tokensin acycle. This result allows of applying a representation (permutation
representation) of the individuals in the EA that proved to be more efficient during the
evolution than the straightforward one (integer representation) that first | had a whack at.
Although it is not so relevant from the point of view of my research regarding EAs, but during
my experiments | observed a mathematical relation concerning the number of de Bruijn
cycles, that diverges from the known one (the number of Euler paths).

Next | started to experiment with two-dimensional tori. Unfortunately, in this case the
experiments with the reference algorithm are often time-consuming and sometimes aso
impossible due to the size of the search space. Hence | couldn’t gain sufficient data to devise a
similar formula concerning the number of tokens as in case of one-dimensional cycles. Even
so the results of these experiments show that there is arelationship, even if we are not able to
deviseit.

Hence in the two-dimensiona case | was forced to use the straightforward integer
representation. It worked, however, the evaluation of individuals was very costly, so that it set
alimit to my experiments. Thisissue holds in the higher dimensional cases, as well. With the
recent computational capacity it is not guaranteed that the evolution gives any result in
reasonable time. | also tried to speed up the agorithm by means of parallelization. |
parallelized both the reference and the genetic agorithm, but either the outcomes of the
experiments were not satisfying or the matter of applicability is troublesome.

| concluded the following. | believe that the mathematical relationship regarding the number
of tokens exists in higher dimensions, as well. Furthermore | believe that the evolution with a
representation based on tokens could be the most efficient tool in finding perfect maps. Hence
my aim in the following is to experiment with the genetic algorithm in order to get closer to
the possibility of the permutation representation.
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4 MY RESEARCH

4.1 Specification of the Algorithms

4.1.1 One-dimensional Case

4.1.1.1 Reference Algorithm

A backtrack search isimplemented in DbcBackTrack.java.
Functioning of the Algorithm

The program reads the parameters (the aphabet size and the span size) from the standard
input and searches the space of all the possible candidates for de Bruijn Cycles.

The longest possible cycle that the program is able to produce, has the length of 2% -1 (the
reason for this is the integer representation of the cycle length). The alphabet size and the
span size are represented as a byte variable, which has a maximum value of 2° —1. While
reading the parameters from the standard input, the program gives a warning and the set of
possible values if the length of the cycle would exceed the above threshold. When having the
parameters, it gives the length and the number of such cycles (see section 4.2.6.2), and asks
whether to find all the possible ones.

Its output (the cycles, the number of basic steps and backtracks, and the CPU time needed,
respectively) iswritten to afile named dbc_alphabet_span_bt.txt where the strings “ al phabet”
and “span” denote the actual size of the parameters.

Specification of the Algorithm

In what follows k and n denote the size of the alphabet and the span, respectively.

Search space:  The space of all the possible candidate cycles. Its sizeis k* (note that k"is
the length of the cycles).

Basic step: Inserting an element of the al phabet into the cycle.

Each candidate is bound to contain the all zeros tuple, so we insert this tuple into the forepart
of the candidate. This part of the candidate is fixed, there is no backtracking from this level
(the levels of the search tree correspond to the positions in the candidate, so this means the
(n-1)" level, because we have inserted n zeros into the candidate and the level numbering
begins with zero). In other words this means that the search does not need to be executed
beginning with the other possible tuples. The explanation for this heuristic is the periodic
feature of the cycles, namely no matter from which position the cycle is inspected. Hence we
can be sure that all the possible candidates will be found on the branch beginning with the al
zeros span.
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4 MY RESEARCH

The Principle of the Functioning

To provide the proper functioning we have two arrays.

)

tuplesinCandidate It is a one-dimensional array, whose indices stand for the
decimal values of the tuples and the elements indicate whether the corresponding tuple
iIsused in the candidate (1 if it is used, O otherwise). So the tuples need not to be stored
actually, there is a conversion function instead that converts a tuple into a decimal
value if needed. This array guarantees that the candidate is a prefix of a de Bruijn
cycle, hence the candidate needs not to be examined in every step whether it is alegal
one.

triedAlready On each level we keep a record of the elements, which we have
aready inspected a branch beginning with. These elements are stored in a two-
dimensional array where the indices of the first dimension stand for the levels, and
those of the second dimension stand for the element of the alphabet. Likewise in the
case of the previously mentioned array tuplesinCandidate, the elements indicate
whether the corresponding tuple was tried already.

In every step we choose an element from the aphabet (which was not tried yet in this level,
namely it is not in the appropriate array of triedAlready), and try to insert it into the candidate.
If the arising tuple is lega (it is not in the array tuplesinCandidate) then the insertion is
accomplished actually and the appropriate element of tuplesinCandidate is set, otherwise we
backtrack one level in the search tree and modify the content of triedAlready accordingly. The
possible number of basic stepsin alevel equals to the aphabet size k, and if there is no more
non-tried element, a backtracking is needed. This backtracking differs a little bit from the
previously mentioned one, because it is made from a ramification of the search tree, so the
elements of the array triedAlready concerning the actual level needs to be reset to provide the
coming element the possibility of continuation. This situation is illustrated in the figure

below.

/ We would like to try

We have tried all these elements also on

the elements on the A B this branch of the tree,

level of A. athough it is the same
f \ level.

Figure 4-1 Backtracking from aramification

Due to the two assistant arrays the insertion of the new element cannot corrupt the
“perfection” and candidates on the lowest level (when the level is equal to the length of the
cycle) are bound to be de Bruijn Cycles and to differ from the previously found ones.
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4.1 SPECIFICATION OF THE ALGORITHMS

Parallelizing the Algorithm

The parallel version of the algorithm is implemented by means of Java RMI (Remote Method
Invocation) and Java threads. It is adjusted to the parallel testing environment, the DAS-2 (see
section 3.2). The program consists of two components outlined below.

i)  The remote object is implemented in DbcBackTrackRemoteObject.java. Its task is to
perform a search beginning with a particular node on a certain branch of the search
tree, to that end it provides an interface with a public function called doBackTrack().

i)  Themain program is implemented in DbcBackTrackRemote.java. It divides the search
tree among a given number of threads, namely every thread is provided with a node,
which the search has to be performed beginning with.

The number of threads equals to the number of |oaded remote objects, so there is a one-to-one
correspondence between them. The task of the threads is to connect to the remote objects,
invoke their doBackTrack() function, and return with the solution. The references to the
remote objects can be retrieved by creating a file (id), which contains the names of the hosts
they are running on. This can be done in the following way. When starting the remote objects,
the output of the prun command has to be directed into the file:

>prun —v =1 _/run_java numproc DbcBackTrackRemoteObject 2> id

The-v flag is essential, it reports the host allocation. The -1 flag indicates that we want to run
one process per node. The executable run_java is a specia script, which sets the appropriate
system properties to make running Java applications possible. The argument numproc stands
for the number of processors.

The main program will read the information about the hosts from the id file, and will start a
proper number of threads.

4.1.1.2 Genetic Algorithm

The first stage to build a genetic algorithm is to decide on a representation of a candidate
solution to the problem. A straightforward ideais letting the phenotype and the genotype of an
individual be the same, namely fixed-length combinations of the elements of the al phabet.

| made several experiments applying different operators and selection mechanisms, and the
conclusion is that the algorithm based on a “tricky” representation works more efficiently (for
detailed comparison see section 4.2.3.1). Thisis a permutation representation based on tokens
(see section 4.2.6.1), and the components of this algorithm are outlined below.

The agorithm itself is implemented in DbcGA.java and the different components are
implemented in separate classes (Initialization.java, ParentSelection.java, Mutation.java,
Recombination.java, Evaluation.java and Survivor Selection.java). These components provide
an interface with some functions that realize various operators and mechanisms.
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4.1.1.2.1 Representation

The phenotype space and the genotype space are different. Phenotypes are the possible
solutions within the original problem context. Genotypes are permutations of references to
different tokens. Given the alphabet and the span size, the number of tokensis particular, and
each chromosome has to contain all the possible tokens. The chromosomes consist of unique
elements, because even if two tokens are equal, the references to them are different. The
mapping between the genotype and the phenotype isillustrated in the figure below.

references to tokens

genotype: 1]4]3] \ 3] 2]
N

phenotype: | o |o|0|1/0|1]1]1]

R|O|F—]|O

A W N P

tokens

Figure 4-2 Representation of an individual

Applying this representation the search space will be all the possible permutations of the
tokens. The size of this space — considering each one of the tokens as unique —is N(k,n)!,
where N(k,n) denotes the number of tokens given the alphabet size (k) and the span size (n).

4.1.1.2.2 Initialization and Termination Condition

Initialization: The population has a fixed size, and first it is filled with random
permutations of the possible elements (the references to tokens).

Termination condition: The evolution is terminated if the program has found an
appropriate cycle. This search may take quite much time, even in case of small parameters.
Nonetheless, | didn’t define any other termination conditions, because our aim is to find a
cycle and it’s up to the user to decide when to stop the search.

Note that our problem is a global optimization problem, where a “good” (near perfect, at least
by reason of its fitness) but suboptimal solution cannot be satisfactory. In other words the
anytime behaviour [52] is not granted in our case.

4.1.1.2.3 Evaluation Function

The evaluation function assigns a quality measure to genotypes. The aim is to minimize this
function, it minimum value is zero. An individual with minimum fitness value is bound to be
a de Bruijn cycle. This function has two components:
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i)  Inthe phenotype space:

At each position we inspect the chromosome whether the tuple beginning at that position is
unigue, so every position has an own part-fitness value. When considering a tuple, al the
positions need to be examined before its beginning position. If it is unique then the part-
fitness will be zero, otherwise it will stand for the rank of the tuple, namely how many times it
occurred before (see the figure below). The actua fitness can be gained by summing up these
part-fitness values. The zero value of this fithess indicates that all the tuples are unique,
namely we have found what we were searching for.

o
(3
N
w
N
ol
~

phenotype: o/j0j0|0|1/1|1|1
ranks; 0/1(0/0|0|1|0]|0
T It is 1, because the all zeros

tuple occurred once before.

Figure 4-3 Ranks of the positionsin a (8;3), - de Bruijn Cycle

i) Inthe genotype space:

If two tokens get next to each other, it will be a legal arrangement only if their elements are
different. The reason for thisis that the longest token is span-sized long, and if it gets next to
any of the tokens having the same elements, then the span-sized tuple will be occur twice,
hence corrupting perfection.

In a chromosome there are N(k,n) fitting points, where tokens can get next to each other. We
observe the number of legal connections by means of a variable: if two adjacent tokens are
different, then it is increased by one. If the value of this variable equals to N(k,n), then the
chromosome has a legal permutation of the elements. This measure is realized by adding the
difference of the number of tokens and N(k,n) to the fitness value.

4.1.1.2.4 Variation Operators

The variation and selection operators | applied are commonly used for permutation
representations. | based my implementations on the book of Eiben and Smith [52]. Here | give
a short description of the certain operators.

4.1.1.2.4.1 Recombination

| applied an order crossover. It is a binary operator, namely it merges information from two
parents into the offspring. In my implementations two parents always breed two children. The
number of descendants is determined by the generational gap, which indicates the percentage
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of the population that is replaced by the new individuals. This parameter is given by the user,
likewise the popul ation size, and the number of offspring is determined by their product.

The individuals are selected from the mating pool in pairs at random. It is up to the crossover
rate whether the two candidate parents will breed a child or not. This parameter is given also
by the user, and the outcome of a random drawing — compared to this rate — will be decisive:
if the random value is smaller than the rate the candidates will mate, otherwise the children
will be created asexually, namely the parents will be simply copied into the offspring.

The principles of the ordered crossover:

First, we have to choose two crossover points at random, and then copy the genes between
them into the corresponding child. The remaining genes are copied into the other child
according to the following three rules:

i)  thecopying starts from the second crossover point and wraps around at the end
ii)  only the unused genes are copied
i)  theorigina order of the genesis preserved

4.1.1.2.4.2 Mutation

| applied two mutation operators. swap mutation and inversion mutation. The mutation is a
unary operator, which takes an individual asinput and atersit according to the mutation rate.
The mutation rate is a parameter given by the user. Each individual has a probability to be
mutated. If this value is smaller than the mutation rate then the individual is left unchanged,
otherwise it is altered according to the semantics of the actual operator:

swap mutation: It randomly picks two genesin the individual and swaps them.

inversion mutation: It randomly selects two positions in the individual and reverses the
order of the genes between those positions.

4.1.1.2.5 Selection Operators

4.1.1.2.5.1 Parent Selection

| applied three kinds of parent selection methods: ranking selection, fitness proportional
selection and tournament selection. All the three of them apply to the population as a whole
and return the mating pool. The mating pool contains the individuals that are good enough —
based on their fithess — to become parents. In my implementations the mating pool has the
same size as the population (L).

The first two methods can be divided into two consecutive steps: at first they define a
probability distribution that indicates the likelihood of each individual being selected for
reproduction, then a selection method is applied to sample the parents from this distribution. |
applied two sampling methods: roulette wheel algorithm and stochastic universal sampling
algorithm. The former corresponds to spinning a one-armed roulette wheel 1 times, where the
sizes of the holes reflect the selection probabilities, while the latter is equivalent to making
one spin of a wheel with y equaly spaced arms. | based my implementations on the
corresponding pseudo codesin [52].
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The principles of determining the probability distributions:

ranking selection:  First, the population is ranked based on the fithess values in such a way
that the worst individual has rank 0, while the best has rank (. Next, | applied a linear
mapping to assign selection probabilities to the individuas based on the following formula
[52]:

(2-9) N 2i(s-1)

P(i) = ,
0 7 (0 7ha

wherei stands for the actual rank and sis parameter (1.0 < s< 2.0) given by the user.

fitness proportional selection: The individuals are selected according to their fitness
values, namely the probability that an individual is selected for mating is f, /Z‘j’:l f,.

tour nament selection: | applied two kinds of tournament selection methods:
deterministic and stochastic. In both cases k individuals are selected randomly, where k stands
for the tournament size. In the deterministic case always the best individua survives,
otherwise there is a probability indicating the likelihood that the fittest member is selected.
Both this probability and the tournament size are parameters given by the user.

In case of the stochastic version | applied a roulette wheel algorithm to select the winner. |
determined the selection probabilities in the following way. The likelihood that the individual
with the best fitness will be selected is p. | distributed the remaining likelihood p — 1 among
the other k — 1 contestants based on their fitness.

Note that this selection can be performed with or without replacement. In my implementations
the replacement doesn’t make sense in case of parent selection, because the size of the
population and the mating pool are equal. | applied this option only in case of survivor
selection.

4.1.1.2.5.2 Survivor Selection

All the selection operators mentioned above are possible replacement schemes in case of
survivor selection, as well. They can be applied with a tiny difference, namely they take the
union of the population and the offspring (1 + A) asinput and return the survivors (), but the
mechanism of the selection is the same.

| applied two selection methods that deviate from the previous ones, because they are not
probabilistic but deterministic:

best from union: The best A members are selected to be survivors. They are selected from
the union of the population and the offspring (¢ + A).

replace wor st: Theworst A members of the population are replaced by the offspring.
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4.1.1.2.6 Parallelizing the Algorithm

The Island Model (see section 3.1.1) serves as the basis of the paralel version of the
agorithm. It is implemented by means of Java RMI (Remote Method Invocation) and Java
threads. It is adjusted to the parale testing environment, the DAS-2 (see section 3.2). The
program consists of three components outlined below.

i)  TheRemote Object

The remote object is implemented in DbcGARemoteObject.java. Its task is to evolve a
population, a separate “island”, and it also supports the migration of the individuals. To that
end it provides an interface with six public functions described below.

The function startGA(byte alphabet, byte tupleSze, int populationSze, int epoch, int
number OfMigrants) creates and evolves a population with the given parameters. The
parameter epoch stands for the number of generations after individuals are exchanged. The
migration needs to be synchronized, namely the exchange of individuals have to be an atomic
operation.

This atomicity is realized as follows. When the migration is in due time - that is the required
number of generations has evolved -, the evolution of the population is suspended until al the
migration mechanisms (sending and receiving individuals) accomplishes. From the aspect of
the remote object the migration consists of four consecutive steps.

i)  Firgt, it indicates that it is ready to accept requests for the selection and sending of
migrants. It is realized by setting the value of the private variable
waitingFor SendMigrantsThread to true. The interface provides read access to this
variable through the public function iswWaitingFor SendMigrantsThread().

i) It prepares the migrants by marshalling the selected individuals and their fitness values
into a “package’, which is implemented as a vector of length two, the first element
reserved for the individuals, the second for their fitness values. The number of the
individuals is determined by the parameter numberOfMigrants, and the selection
mechanism is based on fitness, namely the ones with best fitness are selected for
migration. It is important to remark that the individuals are not effectively moved to
the other population, they are merely copied. If the marshalling is ready, the object
notifies the thread SendMigrantsThread aready waiting for the migrants.

iii)  Then it indicates that it is ready to accept requests for the reception of migrants. It is
realized by setting the value of the private variable waitingFor ReceiveMigrantsThread
to true. The interface provides read access to this variable through the public function
IsWaitingFor RecelveMigrantsThread().

iv)  The replacement of the individuals is settled by the thread ReceiveMigrantsThread,
and the remote object has to wait while it accomplishes. In the course of replacement
first the individuals with worst fitness are wiped out from the population, then the
migrants are unmarshalled and inserted into it. It is important to remark that the
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references of the migrants need to be readjusted to the local ones. If the replacement is
ready, the thread notifies the object that the evolution of the population may continue.

i)  TheMigration Manager

The migration of the individuals is implemented in MigrationManager.java. It creates the
conditions of migration by providing every population with two kinds of threads, a
SendMigrantsThread, and a ReceiveMigrantsThread. The contact point between these threads
and the populations is redized by the sendMigrants(int numberOfMigrants) and the
receiveMigrants(Vector migrants) function of the remote object, respectively. These functions
perform the actual exchange of individuals and can be invoked by the threads.

It is important to note that the communication structure is a ring, namely the individuals are
migrating between the neighbouring populations asillustrated in the figure below.

Figure 4-4 The migration between populations

As dready mentioned with reference to the remote object, the migration needs to be
synchronized. This synchronization was made clear on the level of individual population in
the previous section. Now we inspect a higher level, where we take all the population into
consideration.

The main concern is that the reception of migrants from a neighbouring population requires
these migrants to be aready prepared. Hence we have to apply some kind of scheduling, and
it works as follows. First, we demand every population to prepare their emigrants.
Transitionally, until al the populations are ready, they are stored in an array called
dlisisland’. Then, the elements of this array are delivered to the proper population. This
scheduling — keeping the populations wait for each other — does not have a detrimental impact
on the performance, because the populations are evolving with the same parameters, hence the
time needed to produce a new generation is the same for every island.

i)  TheMain Program

The main program is implemented in DbcGARemote.java. Its task is to start the threads that
evolve the separate populations on different remote objects, and the migration manager,
respectively. The references of the remote objects can be retrieved in the same way as in the
case of the backtrack search algorithm (see section 4.1.1.1).

! Inspired by New York immigrants quarantinein Ellis Island in the early 20" century.
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4.1.2 Two-dimensional Case

4.1.2.1 Reference Algorithms

In two dimensions we distinguish three different kinds of cases regarding the periodicity of
the map. The aperiodic case is implemented in ApmBackTrack.java, the semi-periodic case in
SomBackTrack.java and the periodic case in PpmBackTrack.java. All the three of these
algorithms are backtrack search agorithms.

Functioning of the Algorithms

These algorithms are embedded in a compound software, the Perfect Map Generator, which
provides a graphical user interface to control the algorithms. For further information about the
functioning see the user documentation of the former software (Appendix A).

Specification of the Algorithms

In what follows k denotes the alphabet, (m,n) the dimension of the window and (R,S) the
dimension of the map.

Search space:  The space of al the possible candidate maps. Itssizeis k" (note that k™ is
the area of the map, namely the number of its elements).

Basic step: Inserting an element of the alphabet into the map.

The principle of the functioning is the same as in the one-dimensional case. The candidateis a
matrix this time, and the levels of the search tree correspond to the positions in the candidate,
which are pairs in the form of (row, column). The conversion between the levels and these
pairs is trivial (the quotient of the level and n yields the corresponding row, while the
remainder yields the corresponding column).

In every step we choose a non-tried element from the alphabet, and try to fit it into the
candidate. Thisinsertion is carried out in row-major order, so first the rows of the matrix are
filled up. Before we accomplish the insertion actually, the arising window should be inspected
whether it isalegal one. This window is meant to have the newly inserted element in its right
bottom corner (see Figure 4-5). There are cases when it is not possible to create such a
window (seelevel 0—4, 8 and 12, respectively in Figure 4-5), they are treated as legal.

The window arisen
by inserting a zero
element on the 5"
level.

Figure 4-5 Creating an (4,4;2,2), - Periodic Perfect Map
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The only issue that needs to be treated differently in case of the three algorithms is the matter
of periodicity. The two concerned case are:

i) Semi-periodic case: By inserting the last element into a row, not only one window is
arising, but n. If one of them is illegal, we backtrack one level in the search tree,
namely let the copy undone.

i) Periodic case Not only the last elements of the rows are concerned, but the last
elements of the columns, as well. By inserting the last element into a column then m
new windows are arising that needs to be checked.

If we are about to find all the possible perfect maps, every newly found map needs to be
checked whether it differs from the previously found ones. This checking should consider the
possible periodicity of the map, namely the maps arising by shifting the original map should
not be considered as different.

4.1.2.2 Genetic Algorithms

4.1.2.2.1 Representation

In the one-dimensional case | applied a permutation representation based on tokens (see
section 4.2.6.1). | examined several perfect maps, but in the two-dimensional case | didn’'t
find an analogous relation neither in the phenotype space nor in the genotype space.

Representation: | applied an integer representation where the values are restricted to a
finite set, namely the alphabet. Note that is analogous to the one-dimensiona straightforward
representation, where the phenotype and the genotype are the same. In this case they are not
the same, however, because the two-dimensional phenotype needs to be mapped to one
dimension where we can apply the existing operators; but the essence is the same, namely the
genotype contains the elements of the matrix directly.

Mapping: The mapping between the phenotype space and the genotype space is
illustrated in the figure below. The elements of the phenotype are stored in row-major order in
the genotype. The inverse mapping (determining the position in the phenotype given the
position in the genotype) is evident, as well: the quotient of the position and n yields the
corresponding row, while the remainder yields the corresponding column.

n
0O|1(1]0

henotype; 1]/1]0]0

p yp m oTol1 1o
1/0/0]0

genotype: 'o[1]1]o0of1]1]0]0]0]0|1]0|1|/0]|0]0O]
N J\_ J\_ J\L J

Y Y Y Y
1. row 2. row 3. row 4. row

Figure 4-6 Representation of an individual
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4.1.2.2.2 Initialization and Termination Condition

Initialization: The population has a fixed size, and first it is filled with random
individuals (arrays of length m[n).

Termination condition: The considerations with regard to the termination condition are
the same as in the one-dimensional case (see section 4.1.1.2.2).

4.1.2.2.3 Evaluation Function

The evaluation function assigns a quality measure to genotypes. The aim is to minimize this
function, it minimum value is zero. An individua with minimum fitness value is bound to be
a Perfect Map. The evaluation is performed in the phenotype space and the idea is the same as
in the one-dimensional case (see section 4.1.1.2.3) with the necessary modifications due to the
higher dimension, namely at each position we inspect the matrix whether the window at that
position is unique. The semantics of the evaluation isthe same, it is not detailed here.

4.1.2.2.4 Variation Operators

I implemented more realizations of the certain operators, and | observed and compared the
outcomes of the genetic agorithm applying different operators in course of the evolution. The
results concerning these experiments can be found in section 4.2.3.3.

The variation and selection operators | applied are commonly used for integer representations,
and | based my implementations on the book of Eiben and Smith [52]. Here | give a short
description of the certain operators.

4.1.2.2.4.1 Recombination

| applied two kinds of recombination operators. uniform crossover and n-point crossover. The
semantics of the recombination is the same as in the one-dimensional case (see section
4.1.1.2.4.1).

The principles of the two crossover operators:

uniformcrossover: Each gene of the individual is treated independently, and a random
variable will decide from which parent to inherit the certain genes.

n-point crossover:  The parents are divided into sections by n crossover points. The
sections will be copied into the children alternately. The number of crossover points is a
parameter given by the user.

4.1.2.2.4.2 Mutation

| applied two kinds of mutation operators. random resetting and creep mutation. The
semantics of the mutation is the same as in the one-dimensional case (see section 4.1.1.2.4.2).
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The principles of the two mutation operators:

randomresetting: A new value is chosen at random from the set of permissible values,
namely from the al phabet.

creep mutation: A small value is added to the gene. This value has an upper bound if it
IS positive or a lower bound otherwise, because the sum may not to exceed the set of
permissible values. Both the positive and the negative values have equal chances, this choice
Isimplemented by means of arandom variable.

4.1.2.2.5 Selection Operators

| used the same operators as in the one-dimensional case (see section 4.1.1.2.5). Note that the
selection operators can be applied independently from the representation, because they take
only the fitness information into account.

4.1.3 Higher Dimensions

4.1.3.1 Practical Considerations

What does a three-dimensional toruslook like?

The following figure illustrates a three-dimensional torus that consists of concentric two-
dimensiona tori actually. The interpretation of the dimensions of this torus is the following:
the first dimension stands for the number of embedded two-dimensional tori (“pipes’), the
second one denotes the first dimension of the embedded tori (“circumference of the pipes’)
and the third one means the second dimension of the embedded tori (“length of the pipes’),
respectively.

Figure 4-7 A three-dimensional torus

Theoretical results

The only theoretical result regarding the existence of a higher dimensiona torus is the
generaization of Cock’s technique (see Theorem 4 in section 2.3.1). The set of solutions that
this theorem provides is very small, furthermore the parameters of such a torus are very
special, namely each new dimension has size exponential in the previous.

40



4 MY RESEARCH

With small parameters it gives reliable results. If n=<2,22>, k =2 and d = 3, then the
solutionis I = <4,4,16>. It isthe smallest possible torusin three dimensions.

Practical results

In [20] Horvéath and Ivanyi constructed the smallest possible (a 256 x 256 x 256 sized 8-ary)
3-Cube.

Finding and verifying a higher-dimensional torus meets with obstacles on account of the
limited storage capacity and the finite CPU speed.

Storage requirements of the d-Cubes:

(256,256,256,2,2,2); 16 MB
(512,512,512;333); 128 MB
(1616,16,16;2,2,2,2); 64 kB
(B18181812.2.2.2) 41 MB

Storage requirements of the smallest possibled-Tori:

(2,2,64,2,2,2) 256 bytes
(161616,16,2,2,2,2); 64 kB
(64,64,64,64,256,2,2,2,2,2), 4GB

Storage requirements of the backtrack search algorithm:

In this paragraph 1 try to estimate the minimum storage demand of the backtrack search
algorithm. There are two objects that are essential and serve as the basis of the algorithm: the
array that contains the elements tried already in a level and the candidate solution itself,
respectively. I will give a lower bound by reason of these objects.

These objects will have the following form in three dimensions (r;, i =1...n stand for the
dimensions of the map):

byte[][] triedAlready = new byte[rl * r2 * r3][al phabet];
byte[][] candidate = new byte[r1][r2][r3];

Storage demands (lower bound):

(256,256,256,2,2,2); triedAlready: 256° (8 bytes = 128 MB
candidate: 256° bytes = 16 MB
sum total: 144 MB
(512,512,512;33,3)} triedAlready: 512° (2 bytes = 256 MB
candidate: 512° bytes = 128 MB
sum total: 384 MB
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(16,1616,16;2,2,2,2); triedAlready: 16* [2 bytes= 128 kB
candidate: 16" bytes = 64 kB
sum total: 192 kB
(81,81,8181;2,2,2,2); triedAlready: 81° [3 bytes= 123 MB
candidate: 81* bytes= 41 MB
sum total: 164 MB

CPU time requirements of the backtrack search algorithm

Let us consider an (R;N){ - torus where R =(r,,...,r,;) and A =(n,,...,n,). The size of the

search spaceis k1", namely the search tree has kl'1" leaves:

The number of internal verticesis:

r-1
35
]:

The number of leavesis — (& & - > v
kI

Figure 4-8 Sketch of the search tree

Let x denote the number of such tori (it is not known). The time complexity of the algorithm
(when finding a single map):

worst case: (if we are examining all the wrong cases Q(k|‘|ri —x)
before finding a good solution)
best case: (if the solution is on the first branch of the o
tree)
average case: (if the solutions are distributed uniformly M
among the leaves) Q %
X

The most meaningful measure is the number of basic steps, but it is difficult to determine the
exact number of basic steps in the certain cases. A basic step is defined as inserting a new
element into the candidate (see section 4.1.2.1), namely stepping to the next vertex in the
search tree.

Let us consider a (2,16;2,2) ,- Semi-Periodic Perfect Map. In this case the number of vertices
of the search tree is [(B590 million (the root and the leaves included), and the algorithm made
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164 thousand basic steps to find a map. One basic step takes 0,05 ms on a 3000 MHz CPU.
Although it is not so important in terms of our aim, but interesting to mention that the
agorithm made 1135 million basic steps to find al the possible maps, that is it traversed
about 1,57% of the search tree.

Conclusions

On the strength of the storage and CPU requirements it is clear that the backtrack search has
no chance to cope with these large search spaces. | implemented the three and four-
dimensional genetic algorithms, and during the tests | applied the parameter sets and operators
that turned out to be the best working in the two-dimensional case.

4.1.3.2 Three-dimensional Genetic Algorithm

The three-dimensional genetic algorithm is equivaent to the two-dimensiona one, only the
Issue of representation differs.

The phenotype of an individua (8) is a three-dimensional solid of size r, xr, xr,. The
genotype (b) is a vector of length r, [r, [r,. The mapping between them is the following. The
chromosome has r, segments, which correspond to the slices of the solid (indicated by grey in

Figure 4-9). That isto say every segment represents a matrix. The structure of such a segment
equals to the chromosome in the two-dimensional case, namely it contains the elements of a
matrix in row-mgor order.

@ o,
r3
r‘1
l.row r,.row

— —
b | | | |

N J N J

N N
1. dlice ry. slice

Figure 4-9 Representation of an individual
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4.1.3.3 Four-dimensional Genetic Algorithm

The four-dimensional genetic algorithm is equivalent to the three-dimensiona one, only the
issue of representation differs. This case is alittle bit intricate, because we have to imagine a
four-dimensional hypercube. Any additional dimensions actually mean where to find the
previous one. For example in three dimensions this means that there are r3 slices and the third
dimension indicates which dlice to choose. In four dimensions there are r, three-dimensional
solids and the fourth dimension indicates which solid to choose. The simplest way to imagine
such acase isto consider the fourth dimension as series of discrete timeintervals.

The phenotype of an individual (a) is series of r, discrete time intervals. The genotype (b) isa
vector of length r, [r, [, [r,. The mapping between them is the following. The chromosome
has r, segments, which correspond to the time intervals. That is to say every segment

represents a snapshot, a separate three-dimensiona solid. The structure of such a segment
equals to the chromosome in the three-dimensional case (see section 4.1.3.2).

time
>
y By y 4
(@
— A A
v v v
1. snapshot 2. snapshot r, . Snapshot
l.dice r,.slice
w L T
N J NS J
N N
1. snapshot r, . Shapshot

Figure 4-10 Representation of an individual
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4.2 Experiments and Results

All the Excdl files containing the detailed outcomes of my experiments can be found at the
web address http://juditk.web.elte.hu/msc/.

I made my experiments considering the following three main issues:

i)  Parameter tuning of the genetic algorithms.
ii)  Comparison of the algorithms (the sequential and the parallel, and the reference- and
the genetic agorithm, respectively).
iii)  Searching different maps with the algorithm that proved to be the best during the
experiments.

4.2.1 The performance measures

Both in case of the backtrack search and the genetic algorithm | measured the CPU time
needed (in milliseconds) to find a solution. Apart from this | applied the following measures:

backtrack search algorithm: number of backtracks and basic steps (see section 4.1.1.1)
genetic algorithm: average number of evaluations to a solution (AES)

Although | didn’t define any other termination condition besides finding the optimal map (see
reasoning in section 4.1.1.2.2), yet in afew cases — to get to know the progress of the genetic
algorithm — | applied a condition, namely the number of fitness evaluations. In these cases |
studied the success rate (SR) (the percentage of runs terminating with success) and the
effectiveness by means of the mean best fitness (MBF) (the average of the best fitness values
over dl runs).

Because of the stochastic nature of EAS, these performance measures are statistical, and a
number of experiments need to be performed to gain sufficient experimental data. | conducted
al of my experiments 100 times, hence all the values regarding the results in this thesis mean
the average of 100 experiments.

4.2.2 Experimentswith the Reference Algorithms

Comparison of the sequential and the parallel backtrack search algorithm

There are two cases that need to be treated differently when comparing the sequential and the
parallel agorithm: whether we are about to find all the maps (a) or not (b). In both cases
suppose that the solutions are distributed on the branches of the search tree uniformly.

@ In this case the parallelization does not mean significant speed-up, since one thread has
the same likelihood of finding a solution as more.

My test results shore up the above train of thoughts, as well:
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(b)

__ 20000 x —e— 4 processors
£ 1500 " —=— 8processors
= 10000 16 processors
= —¢— 32 processors
g 5000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

span size (binary alphabet)
Figure 4-11 Speed-up (finding asingle cycle)

In this case the maximum speed-up is defined by the number of threads (t). The whole
search tree needs to be checked, but this job is divided into equally sized parts: each
thread has to examine the 1/t part of the search space, which means utmost t x speed-

up.

There are two parameter sets that | could experiment with, because the number of
possible cycles sets limits to the search:

parameter set number of such cycles
(16;4), 16
(325, 2048

The speed-up is similar in both cases (the graph has the same shape), here only the
results regarding the tests of the first set are published. In case of 32 processorsthereis
a 9x speedup instead of the expected 32. This difference can be attributed to the
communication overhead and the control of the threads.

CPU time (ms)
-c88E88H%

1 2 4 8 16 32

number of processors

Figure 4-12 Speed-up (finding al the cycles)
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4.2.3 Experimentswith the Genetic Algorithms
4.2.3.1 Comparison of the Permutation and I nteger Representations

4.2.3.1.1 Algorithm Setups

| compared the performance of both the permutation and the integer representation on two
parameter sets. | search for a (2%;4), - dBC and a (2°;5),- dBC, respectively. Note that in
case of the permutation representation the length of the chromosome does not equal to the

length of the cycle (k"), but to the number of tokens (k"/ 2). The detailed setup of the GAsis
shown in the tables below.

Representation permutation

GA model Steady-state

Chromosome length (L) K'/ 2

Population size L/2

Recombination ordered crossover (p; = 1.0)
Mutation swap mutation (pm, = 0.5)
Selection ranking (s = 2.0, roul ette wheel)
Replacement best from union

Table 1 GA setup (permutation representation)

Representation integer

GA model Steady-state

Chromosome length (L) K"

Population size L/4

Recombination uniform crossover (p. = 1.0)
Mutation random resetting (pm = 0.25)
Selection ranking (s = 2.0, roul ette wheel)
Replacement best from union

Table 2 GA setup (integer representation)

4.2.3.1.2 Test Results

The AES and SR values are amost similar in case of the 16-length cycle, in both cases the
integer representation is superior with a subtle difference. This behaviour changes
significantly in case of longer cycles. The similarity of the outcomes in case of short cyclesis
due to the fact, that the prerequisites of the permutation representation are much more
demanding, hence in case of small cycles the integer representation is able overcome it
through probability reasons — but in larger cases this issue does not matter.

The MBF vaues are more optimal (lower) in case of the integer representation, which shows

that the integer representation reaches near-optimal values quicker, but from there it makes
further progress very slowly.
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Figure 4-13 AES, SR and MBF of the two representations
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4.2.3.2 Comparison of the Sequential and the Parallel GAs

4.2.3.2.1 Algorithm Setups

| performed my experiments on the DAS-2 (see section 3.2) with 1, 2, 4, 8 and 16 processors.
Due to the scheduling system and the workload of the DAS-2, | base my conclusions on the

outcomes of 5 independent runs.

| applied the following parameter set. | searched for a (32,5), - de Bruijn Cycle, and evolved
1, 2, 4, 8 and 16 populations in parallel (depending on the number of processors) with two
migrants in every epoch. | examined three cases according to the length of an epoch (2, 4 and
8 generations). The certain islands evolved their populations with the same parameters (see

O permutation
representation

W integer
representation

the table below).
GA model steady-state
Chromosome length 2°/2
Population size 16
Representation permutation
Recombination ordered crossover (p; = 1.0)
Mutation swap mutation (pm = 0.5)
Selection -
Replacement best from union

Table 3 Idand model GA setup
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4.2.3.2.2 Test Results

The below figure shows the progress due to migration. The best results were produced by the
PGA (parallel GA), where the migrants were exchanged in every 4™ generation. It isalso clear
to see that the progress is the most significant in case of 2 islands, while the any additional
island cause to the performance only a subtle increase.

700
600
500 -
400 -
300 -
200 -
100

0 T T T 1
1 2 4 8 16

fitness evaluations

number of processors
Figure 4-14 The progress due to migration

Although my conjecture was that the scheduling of migration won’'t have a detrimental impact
on the performance (see the in reasoning section 4.1.1.2.6), the practice disproved this
assumption asillustrated in the figure below.

120000
100000 -

80000 -
—e—cpoch =2

60000 - —=—epoch =4

40000 - epoch =8

CPU time (ms)

20000 -

0" |
1 2 4 8 16

number of processors

Figure 4-15 The impact of migrating on the performance
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The conclusion is that the island model GA could be a useful tool in finding perfect maps.
Evolving two or four populations in paralel can be very efficient, because the exchange of
individuals with good fitness (in our case: low enough) and with different genotype, facilitates
exploration. Furthermore in this case of two or four populations the impact of migrating on
the performance is still reasonable.

In spite of the fact that the outcomes of my experiments are satisfying, there are practical
limits of the applicability of this method. The DAS-2 is dedicated to experiments, not for
production work, hence it is alowed to run a program only for 15 minutes. The most
chalenging aim of this thesis — namely find a map, whose existence was only a conjecture so
far — demands much more time than provided by this system.

4.2.3.3 Parameter Tuning of the One-dimensional GA

4.2.3.3.1 Algorithm Setups

My experiments concerning the parameter tuning are based on the AES measure. | examined
the performance of the certain operatorsin case of a (2°;5), - dBC. The parameter setup of the

different experiments differs only with respect to the actual operator, otherwise it is the based
on the table below.

GA model generational (gap = 0.8)
Chromosome length (L) 2°/2

Population size 16

Representation permutation

Recombination ordered crossover (p; = 1.0)
Mutation swap mutation (pm, = 0.5)
Selection ranking (s = 2.0, roulette wheel)
Replacement best from union

Table 4 GA default setup (for parameter tuning)
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4.2.3.3.2 Test Results

Parent selection

800

700 -
600 -
500 -

400

AES

300 -
200 -
100 -

1 2 3 4 5 6 7 8

9

selection methods

10

11

Figure 4-16 Comparing the parent selection methods

The meaning of the certain columns:

1
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

There is no significant difference between the ranking and the fitness proportional selection,
and it is also difficult to say which selection algorithm (the roulette whedl or the stochastic
universal sampling) is superior. In case of ranking selection the difference is imperceptible,
while in case of fitness proportional selection the roulette wheel agorithm performed better
with 10,3 %. The tournament selection methods proved to be the most efficient, and the best
solution was produced by a deterministic tournament with tournament size 8.

ranking selection (s = 1.5, roulette whesel)
ranking selection (s = 2.0, roul ette wheel)

ranking selection (s = 1.5, stochastic universal sampling)
ranking selection (s = 2.0, stochastic universal sampling)

fitness proportional (roul ette wheel)

fitness proportional (stochastic universal sampling)

deterministic tournament (k = 2)
deterministic tournament (k = 4)
deterministic tournament (k = 8)
stochastic tournament (k =2, p=0.5)
stochastic tournament (k =2, p = 0.6)
stochastic tournament (k =2, p=0.7)
stochastic tournament (k =2, p = 0.8)
stochastic tournament (k =2, p=0.9)
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Recombination

As illustrated in the figure below the rate 0.8 is a dividing vaue; the smaller values show
significantly inferior performance, and the larger ones are quite similar to each other. The
figure shows the outcome of an experiment series, where the 1.0 gave the best result,
however, | conducted more experiment series where also 0.9 and 0.95 gave superior results.
Owing to the subtle difference | don’'t see any reason for applying smaller crossover rate than
1.0.

140000 3000
120000 2500
100000 2000
4] 80000 @ 1500
< 60000 <
40000 1000
20000 500
0 - ‘ : O 0 - ; ; ‘ ‘ ‘
0.5 0.6 0.7 0.8 0.75 0.8 0.85 0.9 0.95 1.0
crosover rate crosover rate
Figure 4-17 AES plotted against the crossover rate
Mutation

On average, the swap mutation turned out to be superior with 30%, notwithstanding the two
operators perform roughly similarly in half of the cases (if the mutation rateis= 0.5).

4500
4000

3500

3000
n 2500 ) )
L —e&— inverson mutation
< 2000

1500 —®— swap mutation

1000

500 —8— $

04 ; ; ; ‘
0.1 0.25 0.5 0.75 1.0

mutation rate
Figure 4-18 Comparison of the mutation operators

Survivor selection
It is unambiguous that the “best from union” selection method performs most efficiently.

Almost such results were produced by the “replace worst” selection method with 0.25-0.5
generational gap.
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1800
1600 -
1400
1200 H
1000 H
800 -
600
400 -
200

AES

1 2 3 4 5 6 7
selection methods

Figure 4-19 Comparison of the survivor selection methods

The meaning of the certain columns:

1)  best from union

2) replaceworst (gap =0.1)

3) replaceworst (gap = 0.25)

4)  replaceworst (gap = 0.5)

5) replaceworst (gap = 0.75)

6) deterministic tournament selection (k = 2, with replacement)

7)  deterministic tournament selection (k = 2, without replacement)

Population size

Every problem size has its own ideal population size. In case of small populations the
individuals are getting similar to each other in due course and the evolution can rely only on
the mutation operator, while if the populations are too big, we may perform extra evaluations.

3000 |
2500 -
2000 -

g 1500 -

1000
500 -

1 2 3 4 5 6

population size

Figure 4-20 AES plotted against the population size (32-length cycle)
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40000
30000
8 20000
10000

4 8 16 32 64 128 256

population size

Figure 4-21 AES plotted against the population size (64-length cycle)

4.2.3.3.3 Conclusions

Here | report the summary of the experiments of the previous section. These are the
parameters that proved to be the most efficient, hence they will form the basis any of the
further experiments.

GA model steady-state

Chromosome length (L) K"/ 2

Population size L/2

Representation permutation

Recombination ordered crossover (p; = 1.0)
Mutation swap (pm = 0.5)

Selection deterministic tournament (k = 8)
Replacement best from union

Table 5 The outcome of the hand-tuning

4.2.3.4 Parameter Tuning of the Two-dimensional GA

4.2.3.4.1 Algorithm Setups

My experiments concerning the parameter tuning are based on the AES measure. | examined
the performance of the certain operatorsin case of a (4,4,2,2),,- PPM. The parameter setup of

the different experiments differs only with respect to the actual operator, otherwise it is the
based on the table below.

GA model generational (gap = 0.8)
Chromosome length (L) 4[4 =16

Population size 16

Representation integer

Recombination uniform crossover (p. = 1.0)
Mutation random resetting (pm = 0.25)
Selection ranking (s = 2.0, roul ette wheel)
Replacement best from union

Table 6 GA default setup (for parameter tuning)

54



4 MY RESEARCH

4.2.3.4.2 Test Results

Parent selection

1 2 3 4 5 6 7 8 9 10 1 12 13

selection methods

Figure 4-22 Comparison of the parent selection methods

The meaning of the certain columns:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

The best performing method is the fitness proportional selection, however, both the ranking
selection (4) and the stochastic tournament (10) provided similar results and the difference is
quite subtle. It is also apparent that the performance of th stochastic tournament is
deteriorating as the value of p is increasing. It is due to the fact that the diversity of the
population is an important issue, and if only the best individual survives, then it may lead the

ranking selection (s = 1.5, roul ette wheel)

ranking selection (s = 2.0, roulette whesel)

ranking selection (s = 1.5, stochastic universal sampling)
ranking selection (s = 2.0, stochastic universal sampling)
fitness proportional (roulette wheel)

fitness proportional (stochastic universal sampling)
deterministic tournament (k = 2)

deterministic tournament (k = 4)

deterministic tournament (k = 8)

stochastic tournament (k =2, p=0.5)

stochastic tournament (k = 2, p = 0.6)

stochastic tournament (k =2, p=0.7)

stochastic tournament (k = 2, p = 0.8)

stochastic tournament (k =2, p=0.9)

evolution to a possibly wrong direction.
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Recombination

1400 -
1200 -
1000 -
800 -
600 -
400 -
200 -

AES

uniform 1 2 4

n-point crossover
Figur e 4-23 Comparison of the crossover operators

The values below the axis stand for the number of crossover points. There is no significant
difference between the methods; the uniform crossover, the 1-point and the 2-point crossover

performed almost similarly, however, the uniform crossover was the superior with a subtle
difference.

Mutation

—e— random resetting

—8— creep mutation

0.1 0.25 0.5 0.75 1.0

mutation rate

Figure 4-24 Comparison of the mutation operators

The rate 0.5 is a dividing value, because the random resetting is significantly superior with
smaller rates, but the creep mutation performs better with larger ones, however, in this case
the difference is not so considerable.
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Survivor selection

8000

7000 H

6000 -

5000 H

AES

4000 -
3000 H

2000 +

1000 -

1 2 3 4 5
selection methods

Figure 4-25 Comparison of the survivor selection methods

The meaning of the certain columns:

1)
2)
3)
4)
5)

best from union

replace worst (gap = 0.75)

fitness proportional (roulette wheel agorithm)

deterministic tournament selection (k = 2, with replacement)
deterministic tournament selection (k = 2, without replacement)

The “best from union” selection method is significantly superior to the replace worst and the
fitness proportional selection, and it is also superior to the deterministic tournament selection
methods, but in this case the difference is not so considerable.

Population size

Likewise in the case of the one-dimensiona GA, every parameter set has its ideal population
size. Thefigure showsthat 32 isthe ideal population size for amap with 16 elements.

1600 -
1400 -
1200 -
1000 4
800 -
600 -
400 -
200 -

AES

4 8 16 32 64 128 256

population size
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Figure 4-26 AES plotted against the population size

4.2.3.4.3 Conclusions

Here | report the summary of the experiments of the previous section. These are the
parameters that proved to be the most efficient, hence they will form the basis any of the
further experiments.

GA model steady-state

Chromosome length (L) K"

Population size L/4

Representation integer

Recombination uniform crossover (p. = 1.0)
Mutation random resetting (pm = 0.25)
Selection fitness proportional
Replacement best from union

Table 7 The outcome of the hand tuning

4.2.4 Comparison of the Reference and Genetic Algorithms

It is difficult to compare two different algorithms that have practically nothing in common.
The only possibility is to choose a measure in both cases that characterizes the behaviour of
the algorithm. These measures are the number of basic steps + backtracks in case of
backtrack search and the AESin case if GA.

| compared the one-dimensional agorithms, because the permutation representation works
more efficiently. | applied the GA with the parameters that turned out to be the best working
during the hand tuning (see section 4.2.3.3), the parameters are summarized in the section
Error! Reference source not found.

14000 -
12000 -
10000 -
8000 -
6000 -
4000 -
2000 -

N
(=]
o

=
a7
o
AES

100

a1
o

basic steps + backtracks

o

v

2 3 4 5 6 2 3 4 5 6
span size (binary alphabet) span size (binary aphabet)
Figur e 4-27 Performance of the algorithms

It is apparent that the graph of the backtrack search is smoothly increasing, while that of the
GA isvery steep. This shows that the backtrack search is superior in case of small parameter
sets. | also made some experiments with large parameter sets, and my observations about the
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progress of the search suggest that the GA is able to find a solution where the backtrack
search get stuck and has no chance due to the size of the search space. The supposed relation
between the behaviour of the algorithmsin the long runisillustrated in the figure below.

backtrack search

Figure 4-28 The relation between the algorithms in the long run

4.25 Practical Results

I managed to find maps with a great variety of small parameters. In case of larger parameters
the integer representation was not able to produce results in reasonable time, because the
evaluation of an individual is very costly in case of large maps. Unfortunately, this means that
my aim to find a “brand-new” map was not granted, however, the progress of the evaluation
indicates the capability of GAsin this problem context.

In the following | report my conclusions about the experiments with large maps.

The smallest periodic perfect map whose existence is not shored up by the theory has the
parameters (216,216;3,2),. Its CPU demands are nearly the same as the smallest four-

dimensional tori and it takes quite much time to evolve even an individua (see below).

Resultsregarding the three-dimensional case
| searched for the smallest possible three-dimensiona torus, a (64,2,2,2,2,2)5 - de Bruijn

Torus. Note that there are more choices concerning the dimensions of this map and this is
merely my preference among the possible ones.
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160 -
140 -
120 -
100 L_‘ —fitness average
80 - .
60 - —— best fitness
40 -
20 -
0
o <
38R E JEHRS

fitness evaluations

Figure 4-29 The progress of the evolution

The above figure illustrates the progress of the evolution: rapid progress in the beginning (the
fitness average decreased from 145 to 80 during (11300 eval uations) and flattening out later on
(it decreased from 80 to 74 during (13500 evaluations).

Resultsregarding the four-dimensional case

In the four-dimensiona case the search meets with obstacles, because the size of an individua
Istoo big and my fitness definition is quite costly in case of big individuals: it makes

length [ (length +1)
2

comparison (the length stands for the length of the chromosome). One comparison means the
comparison of two windows. It takes one step in the best case (if the first element doesn’'t
match), mln stepsin the worst case (if the two windows are equal), so the average number of
stepsis:

mihr” 0, ;7 @) +r, 0, [, O0,)
y :

| made my experiments with the smallest possible four-dimensional torus, a
(16,16,16,16;2,2,2,2)% - de Bruijn Torus. The above formula gives = 4[10° steps in this case,
which can be made in [16,4 hours on a 1200 MHz CPU. It can be seen that finding such amap

Is a very long-lasting venture with the current computational capacity, but a least not
impossible.
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4.2.6 Theoretical Results

4.2.6.1 The Number of Tokensin adeBruijn Cycle

While improving the one-dimensional genetic algorithm | noticed that every de Bruijn cycle
consists of adefinite number of tokens. Let’s consider the case when k=2 and n=4. Figure
4-30 shows a possible (16;4) ,- de Bruijn Cycle.

[0 0001001121 0101111

Figure 4-30 A (16;4),- de Bruijn Cycle

A token is an uninterrupted sequence of identical numbers. The de Bruijn cyclein Figure 4-30
has the following tokens:

{<0 0 0 0>,<1111><0 0>,<1 1>,<0>,<0>,<1>,<1>}

The relation between k, n and the number of tokensis as follows.

Length of the token Number of the token
n k

n-1 (k-2)k

n-2 (k -1)%k

n-3 (k -1)%k?

n-i (k-D%k'™*

4.2.6.2 The Number of de Bruijn Cycles

The number of spanning trees of a (k, n) - de Bruijn Graph (see Section 2.1.7) is asfollows:

n-2 1+k 12]
k<2 D(El_ll f'(x), where f(x) =k**(x)* and x=k a2 .

| obtained the above formula by observing the results of a number of experiments. | used a
program (DBGraph.java) to create de Bruijn graphs and my final goal was to determine the
number of their spanning trees. These graphs needed to be converted to an equivalent form
without self-loops before creating their in-degree matrix. When having these matrices | used
the Maple software to get the determinant of their minors. | verified the formula for the cases
when k=12,....,6 and n=1234.
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Note that because the number of spanning trees of a (k,n) - de Bruijn Graph will be always
the power of k, it is sufficient to compute the logarithm of the above formula, namely

n-2 -
(k—2)+y+” f'(y),where f(y)=(k-1)+kly and y:1+jk222j.

Applying this formula the number of spanning trees of a (k,n)- de Bruijn Graph can be
determined in ©(n + k) time, which is much faster than any other agorithm known so far (see
section 2.1.7).

Considering the facts about Euler paths (see section 2.1.7) the number of (k";n), - de Bruijn
Cycles can be given by the following formula:

%k—2)+y+i:j f‘(y)EJI(k—l)!)k"'l,where f(y)=(k-D+kly and y=1+'5 2].

4.2.6.3 The Number of Tokensin a Two-dimensional Periodic Perfect Map

Although | didn't manage to devise the correct mathematical relationship concerning the
number of tokens in a periodic perfect map, my experiments show that there is some kind of
relationship. Here | report my observations.

| had the possibility of observing only two periodic maps ((4,4;2,2),- PPM and (9,9;2,2),-
PPM), because the search space of next possible map ((16,16;2,2),- PPM) is too large, and

none of my algorithm gave result in reasonable time. | wrote a Java program (parse.java) that
parses the matrices and outputs the number of tokens both in horizontal and in vertical
directions (it takes the file output by my search algorithm as input). The result is the
following.

(1) (44,22),- PPM

BD 0 01 00 15
M 0 100 1 1 17
01180 o 1 10
11 15 01 OE
Figure 4-31 The two possible (4,4;2,2) , - PPM

The two above tori show the following regularity: both of them have two <1> tokens and
two <111> tokensin both directions. This applies aso to the all zeros tokens.
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(2) (9.9,2,2),- PPM

The number of such maps are unknown so far, hence | examined 208 of them.

000000001
M 0102112 0f
5’201010102%
1011120 20
D 2210211 2°
@ 1021111 20
%02212211%
(b1 012 2 2 2 o0
%12202112?

Figure 4-32 A possible (9,9;2,2) ,- PPM

There are 54 tokens in both directions: 18 O-token, 18 1-token and 18 2-token. For example,
the map in the above figure has the following O-tokens:

<0 0 00O OO0 0> |1lpiece
<0> 16 pieces
<0 0 0> 1 piece

Other possible maps have different distribution regarding the size of the tokens. | could not
determine which sizes are permissible, but | suspect that not all of them. Just recall that in

case of the (4,4;2,2),- PPM there are two <1> tokens and two <111> tokens, but there is
no <00 > token at all.

To devise a similar formula (F) that of the one-dimensional case, we have to observe many
cases and furthermore it will be abit more intricate, because it has not two but five arguments:
F(R,S,m,n,k). These observations take much time applying both the backtrack search and

the genetic algorithm.

4.2.6.4 The Number of Two-dimensional Perfect Map

Although | didn't manage to devise a similar characteristic function that gives the number of
perfect maps asin the one-dimensional case, here | report all my observations and conclusions
regarding thisissue.

The following table contains all the possible binary maps with two by two windows. Their
existence is proven theoretically (see section 2.2.2.2).
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parameter sets the number of the maps

periodic (4,4,2,2), 2
semi-periodic | (216;2,2), 20736 =2°13"

(3822, 264 =2°[3[11

(5,4,2,2), 64 =2°
aperiodic (217;2,2), 331776 = 2** [3*

(39,22, 2560 = 2° [5

(552,2), 800 = 2° [5?

(9322, 2560 = 2° [5

| counted up the number of these maps by means of a backtrack search algorithm with aview
to observe the inherency in their numbers and devise aformula as in the one-dimensional case
(see section 4.2.6.2). Unfortunately, these pieces of information are insufficient to draw the
correct conclusion, and finding all the maps is a time-consuming venture even in case of small
parameters. For example, the algorithm made more than 90 million backtracks to find all the

(216;2,2),,- Semi-Periodic Perfect Maps (it took 123 minutes on a 3000 MHz CPU).

The theoretical basis of their number is in close connection with the number of Euler pathsin
a graph as in the one-dimensional case (see section 2.1.7). | constructed the two-dimensional
equivalents of de Bruijn graphs as follows. Note that both the de Bruijn graphs and their two-
dimensional equivaents are two-dimensional graphs, the attribute “two-dimensional” stands
for the dimension of the map represented by the graph.

The vertices of the graph stand for the decimal values of the possible windows, and the edges

are generated as illustrated in the figure below (every vertex has k™ incoming and k™
outgoing edges):

00

OF The last columns of the
00 subsequent vertices will
be al the possible m -
1

38 38 38 38

The last n — 1 columns will [0 0O vectors.
be the first n — 1 colgmns [% 0[ 10
of the subsequent vertices. OD
L
10
1

Figure 4-33 Generation of the outgoing edges (binary alphabet, 2% 2 window)



4 MY RESEARCH

Let us consider the following (4,4;2,2),, - Periodic Perfect Map:

M0 0 10

0
@01%
Q0 1 10
0011 1F

The corresponding graph (the edges 5 - 15,9 - 13,10 -~ O and 6 - 12 are omitted for
layout reasons):
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Figure 4-34 The de Bruijn graph of a two-dimensional map

Note that every row of the map is a semi-periodic mx S matrix. These matrices form m
digoint cycles in the graph (illustrated by different colors). The number of such digoint
cycles gives the number of the corresponding perfect map. This mathematical relationship is
unknown as yet.
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5 Summary and Final Remarks

We have seen that the backtrack search agorithm can be useful in afew cases, if the maps are
small and hence their search spaces are manageable with the current computational capacity
within a reasonable time. | used this algorithm to observe interesting characteristics of maps
with small parameters, and apply the obtained information to tune the genetic algorithms.

Genetic algorithms can cope with large search spaces, where the backtrack search algorithm
has no chance whatever. In the one-dimensional case | applied a permutation representation,
while in the higher dimensions only the straightforward integer representation was available.
Unfortunately, my fitness definition was costly and it took quite much time to find a larger

map.

My experiments show that GAs are suitable for giving answers to this complexity problem.
Compared to the backtrack search algorithm it isinferior in case of small parameter sets, but
the progress of the algorithms in case of larger parameter sets suggest that GAs are capabl e of
providing solutions in reasonabl e time, while the backtrack search algorithms are not.

Although my ambitions to realize my challenging am — namely finding a map, whose
existence was only a conjecture so far —, were not granted, | think this thesis made a step
towards getting to know perfect maps, and designated a path where it is maybe worth to
continue the research.

FutureWork

First, we have to observe a feature that makes the permutation representation possible in
higher dimensions, as well. | believe that the perfect maps have this outward appearance —
namely the regularity of the number of tokens — not only in the one-dimensional case but in
higher dimensions, as well. Moreover | believe that a genetic algorithm with a representation
provided by the tokens could be the most efficient tool in finding such maps.
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Appendix A

Documentation of the Perfect Map Generator software

A.1 User Documentation

A.1.1 System requirements

« JavaRuntime Environment (version 1.4.2.)
» Netscape browser in case of Linux operating system (optional, only for visiting a
webpage for further information about the program)

A.1.2 Parameter Settings

First we have to choose the problem (regarding the periodicity of the map), the method and
the parameters. Filling in the parameters is possible either by clicking in the appropriate field,
or by navigating between the fields with the Tab key. The entered input value is checked by
the program immediately when the field has lost the focus, i.e. if we are trying to fill in the
next field. If the value is legal, the field becomes inactive, indicating that the program has
accepted the input. Otherwise it gives a warning and the set of possible values. Note that as
long as an input is not accepted, there is no possibility to go on with filling in the next field. If
we would like to ater an already accepted value, it can be done by pushing the Clear button.
See that it will reset all the parameters (it is needed because the parameters influence one
another’ s allowable value).

Remarks about the certain fields:

i)  aphabet: This is the first one we have to fill in (there is no other choice,
because only thisfield is active). Its maximum value is 127.

ii) window size:  After having the alphabet, first the m, then the n field needs to be
filled in. The program checks whether k™ exceeds the value of
2% -1. Notethat k™ isthe number of the elementsin the map.

i)  mapsize: Given the aphabet and the window size, there are more
possibilities concerning the size of the map. The user shows a
preference by filling the R. Depending on the type of periodicity
the program determines the maximum allowable value of both R
and S so the Sfield is not editable by the user, but it is filled in
automatically right after we have left the Rfield.

After having al the required parameters, we have to decide whether to find al the possible

maps. Note that this feature is available only in case if we have chosen backtrack search
algorithm as method, otherwise this box isinactive.
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i®) Perfect Map Generator
Help Genetic Algorithm

Choose a problem:

Choose a method:

Number of backtracks:

Humber of basic steps:

Alphabet size: 2
Window size Map size
m: 2 R: a
n: 2 1A 3
Find all?
| Start | | Stop | | Clear |
Processing...

Maps found so far: 46

rinformation about the backtrack search
14706
22076

|

Number of gener ations:
Number of fitness evaluations:

Fithess average:

rinformation about the genetic algorithm

Figure 0-1 The application

Settingsfor the Genetic Algorithm

There is a separate panel (see Figure 0-2) to

control the parameters and the operators of the

genetic algorithm. It can be reached through the Genetic Algorithm menu of the menu bar, by

clicking on the Settings item.

There are choices regarding the following options and operators, respectively:

Population size
Parent selection
Recombination
Mutation
Survivor selection

Print option (whether to print the populations to the output file)

For further information about the certain operators see the specification of the genetic

algorithm (Section 4.1.2.2).
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Settings for the genatic algorithm

Population size: 16

Parent selection
{_ Ranking selection
s

(' Fitness proportional selection

® Tournament selection

tournament size: 2

® deterministic

~Mutation ——

(% Random resetting
i_) Creep mutation

Mutation rate: |01

Survivor selection

/# Ranking selection

s 1.0

) Fitness proportional selection

) Tournament selection

(I stochastic p: tournament size:

Selection probabilities

) Best from union

Recombination ) Replace worst

Generational gap: 0.5
Selection probabilities
{® Uniform crossover

@ Roulette wheel
() n-point crossover

{_l Stochastic universal sampling
n:

Crossaover rate: IK:] [+ print populations to output file

Figure 0-2 Settings for the genetic algorithm

A.1.3 Interpretation of the Output

After having started the search, the appropriate information panel will be active. In case of
backtrack search algorithm the upper panel informs about the number of backtracks and basic
steps made so far, and a progress bar helps to keep track of the actual state of the search. It
shows the levels of the search tree, and there are three different stripes rolling on it: the gray
one indicates the maximum level reached so far, the blue one stands for the actual level, and
the pink one shows the lowest level to where we have made a backtrack already. In case of
genetic agorithm the lower panel informs about the number of generations, number of fitness
evaluations and about the fitness average in the certain populations.

If we have chosen the option to find all the possible maps, the number of ones found so far is
printed on the screen, as well. If the search had terminated the user is informed about the time
needed (in milliseconds). These pieces of information and also the maps found are printed to
an output file named {apm, spm, ppm}_k (R,S)_(m,n)_{bt, ga}.txt, where R, S, m and n stand
for the actual value of the parameters.

69



A.1 USER DOCUMENTATION

A.2 Development Documentation

The program was written in Java (Java 2, Standard Edition, v1.4.2.).

A.2.1 Graphical User Interface

The GUI isimplemented in PerfectMapGenerator .java.

A.2.1.1 Components

The GUI consists of a main frame and three modal dialog windows that can be launched by
clicking on the certain items in the menu bar. Two of them provide information about the
program (help and author information) and the third one (GADialog) provides an interface to
control the parameters and the operators of the genetic algorithm.

The following two figures illustrate the main components of the main frame and the
GADialog dialog window, respectively. By main components | mean the ones on the first
level (note that the components are embedded hierarchically into each other, so the first-level
ones are the components contained directly by the root pane) and those ones that are on lower
levels but contain other components or have an important role in the layout.

Notice that this embedding is one level deep in case of the main frame, and four levelsdeep in
case of the GADialog window. The more-level embedding has no specia role; it serves only
convenience considerations to facilitate the layout.

(1) /

(©)

(@) menuea
(2)  pane
®) O (3) problemMethodPane

(4) aphabetPane
@ (5 windowPane
/ (6) mapPane
| ® | (7) findAllPane
(8) startStopClearPane

(©)

T : (9) processLabell

//I (10) processLabel2
(10) (11 (11) BTPane
(12) GAPane

(12)

Figure 0-3 Main components of the GUI
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@

@

©)

(1) pane
T 3 (2 leftPane
() (3) rightPane
(4) populationSizel abel
(5) populationSizeTextField
a1 (6) parentSelectionPane
(7) tournamentPane
(8) probMethodPane
(13) (9) recombinationPane
(10) mutationPane
(11) survivorSelectionPane
(12) tournamentPane2

[Z (13) probM ethodPane2
(14) printToFileButton

(15) OKButton

(16) fail ureL abel

[ (16)

Figure 0-4 Main components of the GADialog window

There are four methods directing the graphical ook of the application:

private JMenuBar
creat eMenuBar ()

private Contai ner
creat eGAD al ogPane()

private Contai ner
cr eat eCont ent Pane()

private static void
cr eat eAndShowGJ ()

Creates the menu bar with two menus: helpMenu and
GAMenu. It adds two menu items (helpMenultem and
aboutMenultem) to the helpMenu, and one item
(settingsMenultem) to the GAMenu.

Provides the appearance of the GADialog window by
creating its top-level container, and embedding the
required components into this container hierarchically.

Provides the appearance of the main frame by creating
its top-level container, and embedding the required
components into this container hierarchicaly.

Creates the main frame, and sets its various features,
among others the menu bar and the content pane.

There are components, which are controlled by another object. These are the ones, which
inform the user about the actual state of the search: nbtValue (number of backtracks),
nbsValue (number of basic steps), ngsValue (number of generations), nfesValue (number of
fitness evaluations), fitnessAverageVal ue (fitness average), pbta (progress bar), processLabel 1
(informs about the actual state of the search, namely whether it is in progress, stopped or
finished), processLabel2 (number of maps found so far). All of these components are objects
of type JLabel, except pbta, which is an instance of the embedded class ProgressBTArea.
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This class performs the custom painting of the progress bar. These components are public
fields and can be reached by other objects without any function call.

A.2.1.2 Events

The class PerfectMapGenerator implements four kinds of event listeners, which are discussed
in detail in what follows.

i)  ActionListener

Except the components that serve for parameter input in the man frame
(alphabetTextField, mTextField, nTextField, RTextField and STextField), the two
checkboxes (replacementButton and printToFileButton) and the one that realizes a
hyperlink (webPagelabel), al the other components use this kind of listener for event
handling.

This method has as many branches as the number of components that registered
themselves for an action event. To decide which component had fired the actual event,
every one of them has to provide the event object with an identifier by invoking their
setActionCommand() method. The branch-on conditions can be gained from the
ActionEvent object by invoking its getActionCommand() method.

About the certain actions:

* help, about Both of them create a standard modal dialog window (“Help” and
“About”) provided by the class JOptionPane, the former by invoking the
showOptionDialog() method, the latter by invoking the showMessageDialog() method
of the class. The structure of the message dialog is strictly defined, but in case of the
option dialog we may perform many kinds of customization: its content pane consists
of alot of inactive labels (most of the text is read from a file named help.txt), and an
active one (webPagelabel), which is registered for mouse events (see the paragraph
MouseL.istener).

* GASettings It creates a fully customizable modal dialog window (* Settings for the
genetic algorithm”) by means of the class JDialog. All the components in the
GADialog dialog window have a very simple role, namely to set a variable that
represents a parameter or an operator of the genetic algorithm (populationSze,
parentSelection, s, s2, k, k2, tournamentSelection, p, p2, replacement, probMethod,
probMethod2, recombination, n, generationalGap, crossoverRate, mutation,
mutationRate, survivorSelection, printToFile). It is very important that all these
variables should have an initial value, because the user is not obliged to fill in any
value or even to open this dialog window.

e OK Thevauesinthe GADialog dialog window will be saved if the user clicks this
button. This saving is not a permanent but a temporary one, namely it affects the
functioning of the program during one run. If it is closed and launched again, the
default values will be loaded.

There are alot of commands (rankingSelection, FPSelection, etc.) — not itemized here,
whose role is only to indicate that the state of a radio button or a combo box had
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i)

i)

changed, and the appropriate variable needs to be set. Note that the states of radio
buttons and combo boxes in the GADialog dialog window will be saved automatically,
without having to click the OK Button. The reason for this is that the states of these
options are loaded according to the values of the variables mentioned in the
GASettings item of this paragraph.

problem, method, findAll The mechanism is very similar in case of these
commands. First, two pieces of information are needed: which JComboBox object was
the event fired by, and which item of the combo box is selected. The former can be
gained by invoking the getSource() method of the ActionEvent object and the later by
invoking the getSelecteditem() method of the returned JComboBox object. After
having the selected item, the appropriate variables (whichProblem, whichMethod and
findAll, respectively) can be set accordingly. In case of “method” we have to take care
also of the state of the findAll combo box, because it should be editable only in case of
backtrack search algorithm.

The following three commands have the joint feature that they are applicable depending
on the actual state of the search (indicated by the variable inProgress). The start and clear
have an effect only in the case when the search is not in progress, and the stop is
applicable otherwise.

start It is lega only if the user had filled in al the required parameters (it is
indicated by mapSzeRReady — note that if the field R is ready, all the other fields are
bound to be ready). Otherwise only a warning is written on the screen (via
processLabell). Depending on the problem and the method (indicated by
whichProblem and whichMethod) different algorithms need to be launched. Launching
means that we instantiate the class of the appropriate search algorithm, and pass the
yielding object to a thread that will invoke its start() method. In case of backtrack
search algorithm this thread is an instance of the embedded class BTTrigger, in case of
genetic algorithm it is an instance of the embedded class GATrigger. The only task of
these classes is to launch the algorithm.

stop Its only task is to invoke the kill() method of the executive thread. Every
algorithm has a static variable stopped and the only thing the kill() method hasto do is
to set this variable of the appropriate algorithm to true.

clear Thiscommand resets al the text fields in the main frameto their initia state.

ItemListener

There are two checkboxes in the GADialog dialog window (replacementButton and
printToFileButton) that are registered for item events, hence this method has two branches
according to the actual checkbox. The branch-on conditions can be gained from the
I[temEvent object by invoking its getltemSelectable() method, which returns the actua
checkbox object. Each branch has following two branches, because we have to decide

whether the click selected or deselected the check box. This can be done by means of the

getSateChange() method of the ItemEvent object.

FocusListener
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This listener is used for parameter input in the main frame. The program checks the input
values as soon as it gets them. Because most of the inputs have influence on one another’s
allowable value, it is important to inform the user at the earliest opportunity if there is
something illegal. This earliest opportunity is when the user had finished the filling in of a
field. The application should be informed somehow about this event, and | chose an
ergonomical solution that deviates from the traditional OK-button technique, namely the
loss of focus. To this end the class PerfectMapGenerator implements the focusLost()
method of the FocusListener interface.

This method has five branches according to the actual text field. The branch-on conditions
can be gained from the FocusEvent object by invoking its getComponent() method, which
returns the actual text field object. The value control and the field state settings (it is
important that user should fill in the fields in the proper order, that’s why only the actual
field is active) are managed accordingly in the certain branches.

iv)  MouseListener

This listener is used in the only case when the user clicks on the hyperlink in the Help
dialog window. The class PerfectMapGenerator implements three of the mouse listener
methods, viz. mouseClicked(), mouseEntered(), and mouseExited(). The first one invokes
the displayURL method of the class BrowserControl. This is an embedded class whose
task is to launch the appropriate browser application (Netscape under Linux, and the
default browser under Windows). The latter two methods provide a hyperlink-like feel by
displaying an underlining when the mouse moves over the web address (note that thisis
necessary, because the web addressis just aplain |abdl).

A.2.2 Search Algorithms

In what follows there is an itemized list of the classes that implement the search agorithms.
The documentation of the classes comprises the explanation of the methods, remarks about
their role and all the implementation notes that | have found important, respectively.

The constructors of the classes mainly serve for parameter passing, namely they set the
private variables of the class according to the ones got by parameter. They won't be
mentioned in case of the certain classes separately, only if they have something extrarole.

A.2.2.1 Backtrack Search Algorithms

A.2.2.1.1 Class BackTrackMethods

All the three kinds of the backtrack search algorithm (ApmBackTrack, PpmBackTrack and
SomBackTrack) extend the abstract class BackTrackMethods. The reasons for using
inheritance:

i) "Reusing of code", namely the class BackTrackMethods provides some common
methods linked with the problem context, which are necessary for all the three
algorithms. The process and the implementation of the search are very similar in all
the three of the cases and the only difference is the handling of periodicity. Hence only
those methods are not implemented by this class, which are concerned in the matter of
periodicity.
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i)  The launching of the algorithms is carried out by a separate thread. The type of the
algorithm is passed by parameter to the thread, so if there is some kind of relationship
between the types of the algorithms, a common ancestor, for instance, then the same
thread object can be used in every case.

Global variables

byte The aphabet size.
al phabet
int [1] " The dimension of the window. It is an array with two
e elements, the first one stands for m and the second
onefor n.
i”t[S} The dimension of the map. It is an array with two
— elements, the first one stands for R and the second
onefor S
baol ean The value of this boolean variable indicates whether
findAl | : .
to find all the possible maps.
byte[] possi bl eW ndows It is an array to store al the possible windows, it has
the length of k™. The indices of the array stand for
the decimal value of a certain window. So the
windows need not to be stored actually, there is a
conversion function instead that converts a window
into a decimal value if needed. The elements of the
array indicate that the corresponding window is used
(2) or free (0).
P;Jb' i CdbOO' ean It is a public variable to provide the user interface the
S possibility to control the running of the algorithm.
The algorithm checks the value of this variable
systematically, and if it is fadse, the search
terminates.
Methods
Egb'kiTC <Nt hod The constructor. It sets the private variables of the class
Rl e according to the ones got by parameter, initializes the
int windowSi zeM possibleWindows array, and sets the value of the public
int windowsi zeN, field stopped to false.
int mapS zeR
i nt mapSi zeS,
bool ean findAll)
protected void It fills the given map with the given element.
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fill(

byte[][] map,
byt e el erment)

private int
encode(

byte[] what,

i nt al phabet)

protected int
encode(
byte[][] what)

A private function that converts a one-dimensional
alphabet-ary array into a decimal value.

It encodes a two-dimensional alphabet-ary array into a
decima vaue as follows. First it maps the two-
dimensional array into a one-dimensional one, then
invokes the private encode() function.

The conversion is carried out in row-major order (see Figure 0-5). It is an unambiguous
operation, so there is a one-to-one correspondence between the two-dimensiona and the one-

g ;@q(o 110)-6

dimensiona arrays.

protected byte
pi ckEl enent (
byte[] triedAl ready)

prot ected abstract bool ean
copy(

byte[][] candi date,

byt e newEl enent,

int |evel)

protected abstract voi d del et e(
byte[][] candidate,
int |evel)

protected byte[][]

cr eat eW ndow(
byte[][] candi date,
int row,
i nt col um)

Figure 0-5 The encoding

It picks an element from the alphabet, which is not in
the array triedAlready. This array is based on the same
idea as possibleWindows, so this method inspects
whether it has a zero element in the appropriate
position.

This is an abstract method to be overridden in the
descending classes, because this method is concerned
in the matter of periodicity, so it cannot be applied
universally.

Likewise the previous method, it is an abstract method,
aswell. The reason is the same, namely it is concerned
in the matter of periodicity, and so the deletion of an
element should be treated differently in the descendants
according to the periodicity.

It creates a window at the specified position in such a
way that the specified position should fell on the left
upper corner of the window. In most of the cases it is
used such a way that it is invoked with actua
parameters that demand the newly inserted element to
fall on the right bottom corner of the window as
illustrated in the figure below.
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| I S——

By inserting the black element the
method createWindow() will be
invoked by such parameters that
demand the placing like this.

Figure 0-6 Sketch of a(4,4;2,2) , - Periodic Perfect Map

private static bool ean

ar eTheyTheSane(
byte[][] arrayl,
byte[][] array2,

i nt ki ndCf Peri odi ci ty)

private static bool ean

i sltlnPVA ready(
byte[][] pm
Vect or PM
int ki ndCf Peri odi city)

protected byte[][]
cl one(

byte[][] spm)

protected void
pri nt Map(
byte[][] apm
Pri nt Stream pout)

protected void
start (
Pri nt Stream pout,
int ki ndCf Peri odi city)
t hr ows
Qut O Menor yEr r or

Inspects whether the two arrays are equal according to
the kind of periodicity. It is a static method invoked by
the method isltinPMAlready(), so it cannot be
implemented as an abstract method, however, it would
be the most obvious solution.

The arrays should be compared taking into account that
their shifted equivalent should differ, as well. In the
semi-periodic case this shifting needs to be considered
in one dimension, and in the periodic case in both
dimensions.

In the aperiodic case it simply returns with false (note
that the found maps are bound to be different),
otherwise it inspects whether the given map differs
from the previously found ones that are stored in the
Vector PM. It is a static method invoked by the method
start() if anew Perfect Map is found.

It creates a deep copy of the specified map. If we are
about to find all the possible maps, it is important to
check whether it differs from the previously found
ones. To make this comparison possible we need to
store the maps found so far.

It prints the given map to the given output.

It performs the search as follows. After having the
appropriate assistant variables and arrays initialized,
comes next the loop of the backtrack search. This
search could be implemented as a recursive one, but |
used the break-continue technique instead. It is more
applicable in case of deep search trees, where the
recursive one may get stuck because of stack overflow
error.
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Every step of the search corresponds to a level of the
search tree, namely a position in the candidate. In every
step we choose a non-tried element from the possible
ones, put it into the appropriate array of triedAlready,
and try to fit it into the candidate. If it is a legd
operation (i.e. the copy() returns with true), then we
step to the next level, else backtrack to the previous
one. If there is no more non-tried element, also a
backtracking is needed, but it is made from a
ramification of the search tree this time, so the
appropriate array of triedAlready needs to be reset.

The user interface is informed about the actual state of
the search by setting the proper variables of the class
PerfectMapGenerator. It means that the control of
some of the GUI components is managed within this
method.

if legal then stepping to next level (level++)

Thereis asuitable

element (level) Putting it into Fitit into the
triedAlready |———p» candidate
— (level) (level)
Picking a new
element
(level)
A Resetting
There are no more triedAlready
elements (level) (level)

backtracking (level--)

if illegal then backtracking (level--)

Figure 0-7 Flowchart of the backtrack search

A.2.2.1.2 Class ApmBackTrack

This class extends the class BackTrackMethods and implements its two abstract methods

according to the aperiodic case.
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Methods

pr ot ect ed bool ean
copy(
byte[][] candi date,
byt e newE enent,
int level)

protected void

Inserts an element into the candidate as follows. The
corresponding row and column can be gained from the level
(the quotient of the level and n yields the row, while the
remainder yields the column). After having the element
inserted, the raising window needs to be inspected whether it
Is alega one. If it is legal the method returns with true,
otherwise we let the copy undone and return with false. Note
that there are cases when there is no “arising window” (see
the semantics of the method createWindow() in the class
BackTrackMethods), these cases are treated as legal.

Deletes an element determined by the level from the

deL;: gf] [] candidate, candidate. The window determined by that element needs to
int level) be deleted from the array possibleWindows, as well.
A.2.2.1.3 Class SpmBackTrack

This class extends the class BackTrackMethods and implements its two abstract methods
according to the semi-periodic case.

Methods

prot ect ed bool ean
copy(
byte[][] candi date,
byt e newE enent,
int level)

protected void

del et e(
byte[][] candi date,
int level)

The implementation of this method is the same as in the
aperiodic case, but there is an additional piece of codein this
case that checks the periodicity if needed (if we have all the
elements in a row, namely we are in the last column). It is
accomplished by means of a rollback-technique, namely all
the arising windows are stored in a rollback array, so when
checking the windows, not only the possibleWindows should
be inspected, but the rollback array, as well. If the insertion
was legal, the content of the rollback array is copied into the
array possibleWindows.

The principle of the deletion is the same as in the aperiodic
case, but here we have to be careful by deleting the elements
that influence the periodicity, namely the last elements of the
columns. In this case al the concerned windows should be
deleted from the array possibleWindows.

The following figure shows the situation, where the insertion/del etion of an element in the last
column (indicated by black) influences not only one window, but two (indicated by grey).
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Figure 0-8 Sketch of a(4,4,2,2) ,- Semi-Periodic Perfect Map

A.2.2.1.4 Class PpmBackTrack

This class extends the class BackTrackMethods and implements its two abstract methods
according to the periodic case.

Methods
protected bool ean The implementation of this method is the same as in the
T ol semi-periodic case, with the difference that here not only the
byte newEl enent, last elements of the rows should be treated carefully, but the
int level) last element of the columns, as well. Note that the windows
arisen by inserting the right bottom element need to be
treated separately because of the semantics of the method
createWindow() in the class BackTrackMethods.
ggf;fgz ed voi d The principle of the deletion is the same as in the semi-
byte[][] candidate, periodic case, but here the last elements of the rows and also
int level) those of the columns need to be considered with &l the

collateral windows.

One of the windows
arisen by inserting
the black element is
indicated by grey.

Figure 0-9 Sketch of a(4,4;2,2) , - Semi-Periodic Perfect Map

A.2.2.2 Genetic Algorithms

The different operators of the genetic algorithm are implemented in different classes
(ParentSelection.java, Recombination.java, Mutation.java and Survivor Selection.java). Apart
from the operators, the mechanism of initialization and evaluation is implemented separately,
as well (Evaluation.java and Initialization.java, respectively). All of these classes provide
public functions, each performing a different realization of the operator in point.

80



APPENDIX A

The mechanism of the evolution is implemented in the class GAMethods through the method
start(), hence the declarations of the operators should be done in this class, but the actual
instantiating is carried out in a different class according to the periodicity (ApmGA, PpmGA
and SomGA). Note that the kind of periodicity does not have any influence on the certain
operators, only the manner of evaluation differs.

When considering a genetic algorithm in terms of performance, a very important factor is the
number of fitness evaluations. It is an expensive operation, so our aim is to reduce its number
to such an extent as possible. When applying the certain operators, we have to take care also
of the fitness values that we have aready, and try to avoid the extra evaluations.

A.2.2.2.1 Package util

This package contains two classes, each providing methods that can be useful in a particular
unit of the genetic algorithm. This collecting of the common methods has many advantages:
“reusing of code”, namely the methods need not be defined and implemented multiple times
In separate units, only in this package instead. This organization provides a clearly arranged
code and the possibility of simple modification.

A.2.2.2.1.1 Class CommonM ethods

This class contains all the problem-specific methods that can be useful for any classes of the
genetic agorithm.

public byte[][] It maps the individual into the phenotype space, namely it creates
cr eat ePhenoType( . . .
byt e[] i ndi vi dual ) amatrix of proper size from its genotype.

This method is used for:

» evaluation (class Evaluation) — because the evaluation is
performed in the phenotype space

* survivor selection (class Survivor Selection) — because the
individuals need to be checked whether they are perfect
ones

» evolution (class GAMethods) — in case if the population
is printed to the output file

A.2.2.2.1.2 Class SelectionM ethods

This class contains al the methods that can be useful for both of the selection operators
(ParentSelection and Survivor Selection).
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The first two of the following methods take part in ranking the population according to the
fitness values.

ggg'r 'cﬁw;agz It is used to determine the maximum element of the given
int[] array) array. This element will be passed to the method searchMin().
public int Returns the position of the minimum element. The parameter
sear chM n( . ..
int[] array max stands for the maximum element at the beginning - note
int max) that the content of the array changes, every newly found
minimum value will be replaced by (max + 1). This
replacement guarantees that we will find the correct values in
ascendant order.
public int It returns the position of the minimum element. This method is
sear chM nPos( . .
int[] array) used in course of tournament selection.
A.2.2.2.2 Class GAMethods

All the three kinds of the genetic algorithm (ApmGA, PpmGA and SomGA) extend the abstract
class GAMethods. The reasons for using inheritance are the same as in case of backtrack
search.

Global variables

The variables i nt al phabet, int[] wi ndowSi ze, int[] mapSi ze and bool ean stopped have the
same meaning as in case of backtrack search algorithm.

Pri {“ Stream If the value of the printToFile variable is true, the populations
= will be printed to this output (specified in the class
PerfectMapGenerator according to the actual parameters of the

map).

00 G It is a boolean variable indicating whether to print the populations
printToFil e .
to the output file.

The classes representing the operators are declared aso as global variables, their public
functions are invoked in the method start(), which performs the evolution.

The following variables determine the behaviour and the quality of the genetic algorithm,
namely their values indicate which operator to use in the course of the evolution. They
represent the user’s choice made in the GADialog dialog window, and according to their
values the appropriate operators will be applied:

parentSelection (1. ranking selection, 2. fitness proportional selection, 3. tournament
selection), tournamentSelection (used in parent selection; 1. deterministic, 2. stochastic),
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tournamentSelection2  (used

in survivor selection; 1. deterministic, 2: stochastic),

recombination (1: uniform crossover, 2: n-point crossover), mutation (1: random resetting, 2:
creep mutation) and survivor Selection (1: ranking selection, 2: fitness proportional selection,
3: tournament selection, 4: best from union, 5: replace worst).

Methods

public
GAMet hods( - - +)

private doubl e
aver age(
int[] array)

private void
pri nt Popul at i on(
Vect or popul ati on,

int[] survivorFitness,

Pri nt Stream pout)

protected void
start()

This constructor has many arguments that deliver the user’s
choice to the algorithms. These choices are “filtered” already,
because they had not been sent to this class directly, but to its
descendants, who passes only the necessary ones on to the
certain classes representing the operators and to the ancestor
class, respectively.

Besides the parameter passing it has another task, as well. It
initializes the value of the public field stopped to false.

It computes the average of the valuesin the given array.

It prints all the individuals of the given population including
the corresponding fitness values to the given outpui.

It performs the evolution, namely applies the appropriate
operators in the correct order asillustrated in the figure below.

Initialization Parent selection »| Mating pool
_ Recombination
Popul ation
Mutation
T '
Termination Offspring
Survivor selection

Figure 0-10 Flowchart of the evolution
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A.2.2.2.3 Class ApmGA, PpmGA and SpmGA

These three classes are dmost the same. They consist merely of a constructor, whose task isto
instantiate the classes that represent the operators. The constructor has a lot of parameters,
these are the values that the user had chosen in the GADialog dialog window. That is to say
these values determine the behaviour of the genetic algorithm.

First, it invokes the constructor of the ancestor class with the actual parameters that are
necessary there — i.e. only the parameters of the map, no operator-specific ones. Then it
initializes a Random object and passes it to the classes that need some kind of random
function. As well as every class is provided with the parameters, which are necessary to the
proper functioning of the operator represented by the class.

As | aready mentioned above, the kind of periodicity does not have any influence on the
certain operators, only the manner of evaluation differs. Hence the only issue that differsin
case of the three classes is the instantiation of the appropriate descendant (ApmEvaluation,
SomEvaluation and PpmEval uation) of the class Evaluation.

A.2.2.2.4 Class I nitialization

This class performs a random initialization by means of its only one public function
initialize().

A.2.2.2.5 Class ParentSelection

The constructor of the class serves only for parameter passing, namely it sets the private
variables of the class according to the ones got by parameter.

The methods in class SelectionMethods (in package util) — complemented with the following
method — make the implementation of the certain selection operators easier.

f;in‘éate Vect or It ranks the population according to the fitness
erct or offspring, values. The fittest individual has the lowest rank. It
int[] fitnessVal ues) is realized by searching the array of fitness values

for the minimum value through the method
searchMin(). The minimum fitness value and the
corresponding individual will be put in the ranked
population and in the array of ranked fitness values,
respectively. The minimum value will be replaced
with the increased maximum value, hence making
the search for the next minimum value possible.

There are three kinds of parent selection operators implemented in this class:

» ranking selection - rankingSelection()
 fitness proportiona selection - FPSelection()
e tournament selection - tournamentSel ection()
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For determining the selection probabilities | implemented two algorithms:

» roulette wheel algorithm - rouletteWheel ()
» stochastic universal sampling algorithm - SUS()

The implementation of the above operators and that of the ones in the following two classes
are not detailed here, sinceit is consistent with their specification (see section 4.1.2.2).

A.2.2.2.6 Class Recombination

This class implements two kinds of recombination operators:

e uniform crossover - uniformCrossover ()
e n-point crossover - nPointCrossover ()

A.2.2.2.7 Class Mutation

This class implements two kinds of mutation operators:

e random resetting - randomReset().
e creep mutation — creepMutation()

A.2.2.2.8 Class Evaluation

protected byte[][]

cr eat eW ndow(
byte[][] candidate
int row,
i nt col um)

pr ot ect ed bool ean
equal s(
byte[][] arrayl,
byte[][] array2)

protected abstract int
fitnessVal ue(
byt e[] i ndi vidual )

protected int[]
eval uat e(
Vect or of fspring)

It creates awindow at the specified position in such
a way that the specified position should fell on the
left upper corner of the window.

Compares two two-dimensional arrays for equality.
The two arrays are defined to be equal if they
contain the same elements in the same order.

Computes the fitness value of an individual. It is
implemented according to the kind of periodicity.

Evaluates a population, namely computes the
fitness value of every individual by means of the
method fitnessValue(). It returns the array of fitness
values. The link between the population and this
array are formed by the indices, namely an element
of this array corresponds to the individua with the
same index in the population.
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A.2.2.2.9 Class ApmEvaluation, PpmEvaluation, SpmEvaluation

All the three of these classes extend the class Evaluation. This inheritance is needed because
the evaluation should be treated differently according to the kind of periodicity. They
implement the abstract method fitnessValue() of the ancestor class. The implementation is
very similar in the three cases: it inspects the positions in the map and computes the ranks of
the certain windows (for the exact specification of the evaluation function see the
specification of the genetic algorithm in Section 4.2.2). As for the difference, the set of
positions to inspect (indicated by grey) differsin the three cases:

Aperiodic case Semi-Periodic case Periodic case

Figure 0-11 Sketch of Perfect Map with two-by-two window

A.2.2.2.10 Class Survivor Selection

This class re-implements all the methods of the class ParentSelection with a little
modification. While in case of parent selection it was not necessary to take care of the fitness
values, in case of survivor selection this is essential. The reason for this is that the user is
informed about the fitness average in course of the evolution. It is possible only if keep the
fitness values during the survivor selection. Hence all the methods are re-implemented in such
away that they return not only the population, but the corresponding fitness values, as well.
These methods are not itemized here.

public _ It invokes the constructor of the ancestor class and passes

Sur vi vor Sel ect i on( - - NG
byte al phabet . almost al of its parametersto it, except pout, because it is
int napSi zeR used only if a map needs to be printed to the output file.
: 2: ”gpa ;teisbn — This occurs only in case if the population is looked for
Randonm rand, ’ Perfect Maps, which mechanism is settled within the
Pri nt Stream pout , confines of the survivor selection by means of the
ool Ee checkPM() method.
bool eah r epl acement 2,

i nt probMet hod2)

5;: Y:Ee Vect or Unites the offspring and the population. The reason for
Vector of fspring, thisisthat aimost al of the selection methods apply to the
int[] fitnessVal ues, union of the population and the offspring. It takes care
Vect or popul ati on, also of the fitness values by uniting them accordingly. It

i | ati onFi : : : :
Int[] populationfitness) returns with a vector of size two, whose first element is

the united population and the second is the array of united
fitness values.
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ELL‘C/Etpe bool ean Checks whether there is a Perfect Map in the population
Vect'\'gr of fspring, or in the offspring. It is realized by examining both arrays
int[] fitnessval ues, of fithess values, and if a zero value is found, the
Vect or popul ati on, corresponding individual is mapped into the phenotype

int[] popul ati onFit ness)

space through the method createPhenoType() of the class
CommonMethods (in package util), and the arising
phenotype is written to the output file.

private void i i i
ri 1t Map It prints the given map to the given output.

byte[][] map,
Pri nt Stream pout)

The following selection methods have three issues in common:

i)  First it is needed to check whether the population or the offspring contains a Perfect
Map (by means of the checkPM() method). If yes, the methods return a null value
indicating that the search should be terminated. The checkPM() method takes care also
of the printing of the found maps to the output file.

i) Except the method replaceWorst(), all of them apply to the union of the offspring and
the popul ation.

i)  They return avector of size two, whose first element is the survivor population and the
second oneisthe array of their fitness values.

fﬁg'v'efy\égg: ?f Selects the best individuals based on their fitness. It is
Vector of fspring, realized by first ranking the population based on fitness
int[] fitnessValues, by means of the method rank(), then selecting the
Vector popul ati on, required number of individuals from the front part of the

int[] popul ati onFit ness)

ranked list. Their number equals to the user defined
population size.

PP?LLES\QE‘ESE Performs a fitness-based selection by invoking the
" Veotor of fspring, method FPSelection(). The parameter whichMethod
int[] fitnessVval ues, stands for the option, which algorithm to use for
IV‘;tCE ]Or goﬂlugf‘f UL determining the selection probabilities (1: roul ette wheel
e \,\hfcﬁ,\,@t hod) ’ algorithm, 2: stochastic universal sampling).
f;gL‘BgSZgCt or Performs a rank-based selection by invoking the method
Vect or(off spring, rankingSelection(). The parameter whichMethod stands
int[] fitnessVal ues, for the option, which algorithm to use for determining
IVﬁtCE ]Of goﬂf'af‘} I the selection probabilities (1: roulette wheel algorithm,
irs MPCEW hod) ’ 2: stochastic universal sampling).
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public Vector
t our nament Based(
Vector offspring, int[]
fitnessVal ues,
Vect or popul ati on,
int[] popul ati onFit ness)

public Vector
repl aceWr st (
Vector of fspring,
int[] fitnessVal ues,
Vect or popul ati on,
int[] popul ati onFit ness)

Performs a tournament selection by invoking the
method tournamentSelection(). The size of the
tournament (k2) and the replacement option
(replacement?) (whether to put back the winner into the
tournament pool) are passed by parameter to the
constructor of the class.

Its task is to replace the worst individuas in the
population with the newly created offspring. It is
realized by adding the occurrent “good” individuals
from the population (their number equas to the
difference of the population size and the offspring size)
and the offspring to the survivor pool.
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Appendix B
List of the Referenced Programs

All the referenced programs and their source codes are available via the web address
http://juditk.web.elte.hu/msc/.

The below list follows the directory structure of the above web address.
Description of the content and the corresponding section

[1 D nension]

[ DocBackTr ack] One-dimensional reference algorithm. 4111

The parallelization of the one-dimensional

[ DbcBackTrack_paral | el ] reference dgorithm, 4111
[ DocGAl One-dimensional genetic algorithm. 4122
[DbeGA paral l el ] The paralleli_zation of the one-dimensional 41126
genetic algorithm.
[ DBG aph] De Bruijn Graph generator. 42.6.2
Perfect Map Generator software (two- 4.1.2.1,
[2 Dinensions] dimensional reference agorithm and 4.1.2.2,
genetic algorithm) Appendix A
[ doc] The API specification of the Perfect Map
Generator software.
[sol utions] The output files created during testing.
[3 Di nensi ons] Three-dimensiona genetic algorithm. 4132
[4 Dinensi ons] Four-dimensional genetic algorithm. 4.1.3.3
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