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a b s t r a c t

Let A be a (0, 1, ∗)-matrix with main diagonal all 0’s and such that if ai,j = 1 or ∗ then
aj,i = ∗ or 0. Underwhat conditions on the row sums, and or column sums, of A is it possible
to change the ∗’s to 0’s or 1’s and obtain a tournament matrix (the adjacency matrix of
a tournament) with a specified score sequence? We answer this question in the case of
regular and nearly regular tournaments. The result we give is best possible in the sense
that no relaxation of any condition will always yield a matrix that can be so extended.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A matrix in which some of the entries are known and some are not is called a partial matrix. More specifically, A is
a partial matrix and every entry of A is a real number or the symbol ‘‘∗’’ which indicates the entry is an unknown real
number. A problem that has been of interest in the past few decades, the matrix completion problem, is of the form: ‘‘Given
a partial matrix, under what conditions is it possible to assign the unknown entries real fixed values so that the matrix
has the property P ?’’ For example, if A is the matrix

[
1 1
1 ∗

]
,is it possible to change the * to some number such that A is a

real positive definite symmetric matrix? For a survey of results about matrix completions see [1]. Other matrix completion
problems involve the rank of a matrix [2] or the adjacency matrix of a graph or digraph [3,4].
Another area of interest for more than the past few decades is that of tournaments, see the classic text [5] and the recent

survey by the third author [6]. A tournament can be viewed as an orientation of the complete simple (loopless) graph; that
is, a directed graph such that between any two distinct vertices i and j there is either the arc (i, j) or the arc (j, i) in the edge
set, but not both. A tournament matrix is a square matrix which is the adjacency matrix of some tournament. In this case if
A is a tournament matrix then A+ At = J − I where J is the matrix of all ones and I is the identity matrix.
Suppose T is a tournament with vertices labeled v1, v2, . . . , vn such that |{x : vi → x}| ≥ |{y : vj → y}| if i < j. The

number |{x : vi → x}| = si is called the score of vertex vi. The list (s1, s2, . . . , sn) will be called the score sequence of T . If A
is the adjacency matrix of T , that is aij = 1 if and only if vi → vj and 0 otherwise, then the score sequence is equivalent to
the vector Ajwhere j is the n× 1 vector of all 1’s.
In this article we investigate conditions on what can be thought of as a (0, 1, ∗)-partial matrix with essentially all off-

diagonal zeros being ∗’s so that we are assured the matrix can be completed to a tournament matrix with a given score
sequence. In Section 3 we give these conditions for regular tournament matrices (adjacency matrices for tournaments with
all scores equal) and nearly regular tournament matrices (adjacency matrices for tournaments with max

i6=j
{|si − sj|} = 1).

The conditions are in terms of the row sums of the (0, 1)-matrix to be completed and are best possible in the sense that
no relaxation of any condition will always yield a matrix that can be so extended. The next section contains preliminary
definitions and notation, and a theorem of Ford and Fulkerson from [7] which we will use.
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2. Preliminaries

Definition 2.1. A tournament of order n is a directed graphwhich is an orientation of the complete, simple, undirected graph
on n vertices. That is, a tournament is a loopless digraph in which any two distinct vertices are connected by exactly one arc.

Definition 2.2. A regular tournament is a tournament which has the same number of outgoing arcs for each vertex; that is,
each vertex has the same score.

Remark 2.3. Note that each vertex in a regular tournament of order n has out-degree (n−1)
2 . Thus, there is no regular

tournament of positive even order. Tournaments of even order with scores nearly equal are defined next.

Definition 2.4. A nearly regular tournament of order n is a tournament that has n2 vertices each of score
n
2 and

n
2 vertices

each of score (n−2)
2 .

Remark 2.5. Note that every nearly regular tournament of order n arises from the deletion of a vertex from a regular
tournament of order n+ 1.

Definition 2.6. An adjacencymatrix of a digraph is a (0, 1)-matrixM = [mi,j] such thatmi,j = 1 if and only if there is an arc
with initial vertex i and terminal vertex j.

Remark 2.7. LetA(T )be an adjacencymatrix of the tournament T . Then,A(T ) is a (0, 1)-matrix such thatA(T )+A(T )t+I = J ,
where I denotes the identity matrix and J the matrix of all ones. That is, ifM is an adjacency matrix of a tournament,M has
a zero diagonal and for i 6= j,mi,j 6= 0 if and only ifmj,i = 0.

Definition 2.8. Adjacency matrices of tournaments are usually called tournament matrices.

Remark 2.9. If n is odd, the adjacency matrices of regular tournaments (regular tournament matrices) are tournament
matrices with the same number of entries equal to 1 in each row. If n is even, the adjacency matrices of nearly regular
tournaments (nearly regular tournament matrices) are tournament matrices that have n2 rows each with

n
2 entries equal to 1,

and n2 rows each with
n−2
2 entries equal to 1.

Definition 2.10. Let A and B be m × n matrices. The matrix A is said to dominate the matrix B, written A ≥ B or B ≤ A, if
bi,j 6= 0 implies ai,j 6= 0.

Definition 2.11. A proper mixed graph is a triple, G = (V, E, A) such that for any vertex x ∈ V , {x, x} 6∈ E and (x, x) 6∈ A,
and for any two distinct vertices x and y of V exactly one of the following conditions holds: (a) {x, y} is an edge of E , (b)
(x, y) is an arc ofA, or (c) (y, x) is an arc ofA. In the sequel, we will refer to a proper mixed graph as simply amixed graph.

Definition 2.12. A closed route in a mixed graph G is a sequence of vertices, edges and arcs of the form

x1, e1, x2, e2, . . . , eN , x1

where xi is a vertex in V and each ei is either the edge {xi, xi+1} in E or the arc (xi, xi+1) inA. A mixed graph, G, is unicursal
if there exists a closed route in G that contains each edge and each arc of G exactly once.

Definition 2.13. For X ⊆ V let X denote the complement of X in V . We denote by d(X) the number of edges in E of the
form {x, y} where x ∈ X and y ∈ X; by d+(X) the number of arcs in A of the form (x, y) where x ∈ X and y ∈ X; and by
d−(X) the number of arcs inA of the form (x, y)where y ∈ X and x ∈ X .

We recall the following theorem of Ford and Fulkerson, [7, Theorem 7.1].

Theorem 2.14. The mixed graph G = (V, E, A) is unicursal if and only if

1. G is connected;
2. every vertex in G is incident with an even number of edges and arcs; and
3. for every X ⊆ V the difference between the number of directed arcs from X to X and the number of directed arcs from X to X
is less than or equal to the number of edges in E connecting vertices in X to vertices in X. That is, d(X) ≥ |d+(X)− d−(X)|.

The following corollary is a special case of Theorem 2.14 which will suffice for our needs.

Corollary 2.15. Let n be odd and G be a mixed graph such that between any two vertices there is exactly one arc or edge (i.e., a
partially oriented complete graph). Then G is unicursal if and only if for every X ⊆ V , d(X) ≥ |d+(X)− d−(X)|.
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Definition 2.16. Adirected graphD is Eulerian if there is an alternating sequence of vertices and arcs x1, e1, x2, e2, . . . , eN , x1,
whereN is the number of arcs inD, each xi is a vertex ofD, each ei is an arc ofD, ei = (xi, xi+1), for 1 ≤ i ≤ N−1, eN = (xN , x1),
and each arc of D appears exactly once in the sequence (vertices may repeat).

Remark 2.17. The following facts are easily established.

• A tournament T of order n is regular if and only if n is odd and T is Eulerian.
• A unicursal mixed graph has an Eulerian orientation.

3. Completions of regular and nearly regular tournaments

Given A = [ai,j], we denote the sum of the entries in row i of A by ri(A) =
∑n
j=1 ai,j. Instead of ri(A), we will use ri if the

context makes clear the matrix we are referring to. The following basic lemma will be used in the main theorem.

Lemma 3.1. Let A be an n× n, (0, 1) matrix. For 1 ≤ i ≤ n, if ri ≤ max( n−12 − i+ 1, 0), then the sum of any j column sums,
1 ≤ j ≤ n−1

2 , is at most
∑j
i=1

( n−1
2 − i+ 1

)
.

Proof. Consider the number of ones in any j columns of A. Note that the first n−12 row sums of A are at most
n−1
2 , n−12 −

1, . . . , 2, 1 and the others are all zero. So the last j rows of the j columns of A have at most j+ (j− 1)+· · ·+ 2+ 1 ones. The
first n−12 − j rows of these columns have at most j · (

n−1
2 − j) ones. Thus there are at most j · (

n−1
2 − j)+ (

∑j
i=1 i) ones. But,

j · ( n−12 − j)+ (
∑j
i=1 i) = j · (

n−1
2 − j)+

j(j+1)
2 =

j
2 (n− j) and

∑j
i=1

( n−1
2 − i+ 1

)
= j( n−12 )− (

∑j
i=1 i)+ j =

j
2 (n− j). �

Theorem 3.2. Let n be odd and A be an n× n, (0, 1)matrix dominated by a tournament matrix such that the row sums of A are
r1 ≥ r2 ≥ · · · ≥ rn. For 1 ≤ i ≤ n, if ri ≤ max( n−12 − i+ 1, 0), then A is dominated by a regular tournament matrix.

Proof. Let G = (V, E, A) be the mixed graph with V = {1, 2, . . . , n} obtained from the complete graph by orienting the
edges corresponding to the nonzero entries of the matrix A = [ai,j]; that is A = {(i, j) : ai,j = 1}. Let X ⊆ V; we show
d(X) ≥ |d+(X)− d−(X)|.
Case 1: d+(X) ≥ d−(X). If |X | ≤ n−1

2 then

d+(X) ≤
|X |∑
i=1

ri ≤
|X |∑
i=1

(
n− 1
2
− i+ 1

)
=
n− |X |
2
|X |.

For |X | > n−1
2 , let the multiset of n − |X | column sums corresponding to the vertices in V \ X be denoted {cij : j = 1, . . . ,

n− |X |}. Then

d+(X) ≤
n−|X |∑
j=1

cij .

By Lemma 3.1, the sum is at most

n−|X |∑
j=1

(
n− 1
2
− j+ 1

)
= (n− |X |)

n− 1
2
−

n−|X |−1∑
j=1

j,

which simplifies to n−|X |2 |X |. In either case we have d
+(X) ≤ n−|X |

2 |X |.
Note d(X)+ d−(X) = |X |(n− |X |)− d+(X), and so

d(X)+ d−(X) ≥ |X |(n− |X |)−
n− |X |
2
|X | =

n− |X |
2
|X | ≥ d+(X).

We have d(X) ≥ d+(X)− d−(X) = |d+(X)− d−(X)| by our assumption for this case. By Corollary 2.15, G is unicursal.
Case 2: d+(X) ≤ d−(X). Note that d+(X) = d−(X) and d−(X) = d+(X) so our assumption in this case yields d+(X) ≥ d−(X).
Applying the argument in Case 1 with X replaced by X yields d(X) + d−(X) ≥ d+(X). Thus, d(X) ≥ d+(X) − d−(X). And,
d+(X)−d−(X) = d−(X)−d+(X) = |d−(X)−d+(X)| = |d+(X)−d−(X)|. Since d(X) = d(X), we have d(X) ≥ |d+(X)−d−(X)|
and by Corollary 2.15 G is unicursal.
By the above Remark 2.17, there is an orientation of G that is a regular tournament. Therefore, A is dominated by a regular

tournament matrix. �

Theorem 3.3. Let n be even and A be a (0, 1) matrix dominated by a tournament matrix such that the row sums of A are
r1 ≥ r2 ≥ · · · ≥ rn. For 1 ≤ i ≤ n, if ri ≤ max( n2 − i + 1, 0), then A is dominated by a nearly regular tournament
matrix.
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Proof. Append an (n + 1)th row and column of zeros to A to form A+. Then, an easy check shows that A+ satisfies the
hypothesis of Theorem 3.2. Thus A+ is dominated by a regular tournament matrix Z . Delete the last row and column of Z to
obtain a nearly regular tournament matrix that dominates A. �

We let K denote the (0, 1)-matrix that has a zero main diagonal and 1’s elsewhere.
A mixed graph G = (V, E, A) is said to be determined by the matrix A, where A is dominated by a tournament matrix, if

the digraph whose adjacency matrix is A is D = (V, A) and K − (A + At) is the adjacency matrix of the undirected graph
U = (V, E).

Remark 3.4. Note that the hypotheses of the theorems are best possible in the sense that if any of the inequalities are
relaxed there is an example of a (0, 1)-matrix dominated by a tournament matrix that is not dominated by a regular (or
nearly regular) tournament matrix. For example, suppose n = 2k+ 1 and let A be the (2k+ 1)× (2k+ 1)(0, 1)-matrix so
that for some j, 1 < j ≤ k, the last k− j+ 2 entries of the jth row are all 1’s and all other entries in that row are 0’s, and for
each i, 1 ≤ i ≤ (j− 1), the last k− i+ 1 entries of the ith row are all 1’s and all other entries in that row are 0’s, and all of
the entries in all of the other rows of A are 0’s.
Suppose that a (2k+ 1)× (2k+ 1)(0, 1) regular tournament matrix B dominates A. So, every 1 in A yields a 1 in B in the

corresponding position, and, each row sum and each column sum of B is equal to k. Since the first row of A has k 1’s, the first
row of B is the same as the first row of A. Thus, the last k entries of the first column of B are all 0’s. And, since the first entry
of the first column of B is 0, we deduce that the 2nd through (k+ 1)th positions of the first column of B are all 1’s. If j = 2,
then the 2nd row of B has 1’s in the last k positions (by the definition of A) as well as in position 1 (by the remark just made)
for a total of k+ 1 1’s, a contradiction. So, we assume that j > 2. We use induction to show that for all i, 2 ≤ i ≤ j− 1, the
ith row of B has 1s in the k positions 1, 2, . . . , i − 1 and i + k + 1, i + k + 2, . . . , 2k + 1, resulting in 0’s in all other k + 1
positions i, i + 1, i + 2, . . . , i + k. Of course, this will imply that the ith column of B has 0’s in positions 1, 2, . . . , i − 1, i
and i+ k+ 1, i+ k+ 2, . . . , 2k+ 1, and 1s in all other k positions i+ 1, i+ 2, . . . , i+ k. Notice that this implies that the
(k+1− i)× i submatrix of B consisting of rows i+1, i+2, . . . , k+1 and columns 1, 2, . . . , i consists entirely of 1s. Suppose
that B is as described for some i, 2 ≤ i < j−1. Consider row (i+1) of B. As i+1 < j, the last k− (i+1)+1 = k− i positions
of this row are all 1s (by the definition of A). And, as noted, the induction hypothesis implies that the first i positions of this
row are all 1s. This accounts for all of the k 1s in this row of B. So, in row i+ 1 there are 1s in positions 1, 2, . . . , i− 1, i and
i + k + 2, i + k + 3, . . . , 2k + 1, and 0’s in positions i + 1, i + 2, . . . , i + k + 1 (and, the (i + 1)th column of B has 0’s in
positions 1, 2, . . . , i, i+ 1 and i+ k+ 3, i+ k+ 2, . . . , 2k+ 1, and 1s in all other k positions i+ 2, i+ 3, . . . , i+ k+ 2), as
required. This completes the induction. In particular, as each of the first j − 1 columns of B have been determined, we see
that the first j − 1 entries of row j of B are 1s. But, by the definition of A, the last k − j + 2 entries of row j of B are 1s. This
means that B contains at least (k+ 1) 1s, a contradiction. Consequently, there is no such matrix B.
An alternative explanation is: Let G be the mixed graph determined by A. Let X = {1, 2, . . . , j}. Then d+(X) =

∑j
i=1 ri =∑j−1

i=1

( n−1
2 − i+ 1

)
+
n−1
2 − j + 2 =

j(n−j)
2 + 1. Then, d(X) + d

−(X) = j(n − j) − d+(X) = j(n − j) −
(
j(n−j)
2 + 1

)
=

j(n−j)
2 − 1 < d+(X). By Theorem 2.14, G is not unicursal and hence A is not dominated by a regular tournament matrix. A
similar example holds for the nearly regular case.

Theorem 3.3 does not guarantee any specific ordering of the scores. That is, the row sums of the resulting nearly regular
tournament matrix might not be in decreasing order when listed from first row to last row. However, if the hypothesis is
tightened, any permutation of the scores of a nearly regular tournament can be guaranteed:

Theorem 3.5. Let n be even and A be a (0, 1) matrix dominated by a tournament matrix such that the row sums of A are
r1 ≥ r2 ≥ · · · ≥ rn. Let I ⊆ V with |I| = n

2 . For 1 ≤ i ≤ n, if ri ≤ max(
n
2 − i, 0), then A is dominated by a nearly

regular tournament matrix with scores precisely si = n
2 for i ∈ I and sj = n

2 − 1 for j 6∈ I.

Proof. Let B be the matrix whose entries are bi+1,j+1 = ai,j for 1 ≤ i, j ≤ n; b1,i+1 = 1 for i ∈ I; b1,j+1 = 0, for j 6∈ I; and
bk,1 = 0 for k = 1, . . . , n+1. Then B satisfies the hypothesis of Theorem3.2, andhence is dominated by a regular tournament
matrix C . Delete the first rowand columnof C to get a nearly regular tournamentM which dominatesA. Because of the choice
of the first row of B, the rows ofM that have row sum n

2 are precisely the rows indexed by I. �

Corollary 3.6. Let n be odd, k ≤ n−1
2 , and let A be an n × n(0, 1)-matrix which is dominated by a tournament matrix. For

1 ≤ i ≤ n, if ri(A) ≤ max( n−12 − i+ 1, 0), then A is dominated by a tournament matrix with score sequence of k scores
n+1
2 , k

scores n−32 and n− 2k scores
n−1
2 .

Proof. ForQ ⊆ {1, 2, . . . , n−1}, letQ denote the complement ofQ in {1, 2, . . . , n−1}. Wemay assume that the first row
sum of A is n−12 by changing some 0’s to 1’s if needed. Let I = {i|a1,i+1 = 1}, letX ⊆ I such that |X| = k, and let Y ⊆ I

such that |Y| = k, and letZ = X ∪ Y, so that |Z| = (n− 1)− 2k. Let B = (bi,j)where bi,j = ai+1,j+1, 1 ≤ i, j ≤ n− 1. Then
the ith row sum of B is at most n−12 − (i+ 1)+ 1 = (n−1)

2 − i. By Theorem 3.5 there is a nearly regular tournament matrix
C which dominates B with row sums ri, i = 1, . . . , n− 1 with ri = (n−1)

2 for all i ∈ Y ∪ (Z ∩X) and rj = (n−1)
2 − 1 for all
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j ∈ X∪ (Z∩Y). LetM be the matrix
[
0 Eat
Eb C

]
,where [0, Eat] is the first row of A and Eb is the (0, 1)(n− 1)-vector with bi = 1

if and only if i ∈ I. Then,M dominates A and has the desired score sequence. �

Recently Brualdi and Kiernan [8] have established necessary and sufficient conditions for a partial tournament to be
dominated by a tournament of fixed score sequence.
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