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Abstract

Consider a soccer competition among various teams playing against each other in pairs
(matches) according to a previously determined schedule. At some stage of the competition
one may ask whether a particular team still has a (theoretical) chance to win the competition.
The complexity of this question depends on the way scores are allocated according to the out-
come of a match. For example, the problem is polynomially solvable for the ancient FIFA rules
(2:0 resp. 1:1) but becomes NP-hard if the new rules (3:0 resp. 1:1) are applied. We determine
the complexity of the above problem for all possible score allocation rules. ? 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Consider a sports competition like a national soccer league in which all participating
teams play against each other in pairs (matches) according to a pre�xed schedule.
Initially, all teams have total score zero. When a team participates in a match, its total
score is increased by � ∈ R if it loses the match, by � ∈ R if the match ends in a
draw, and by 
 ∈ R if it wins the match. We always assume that �6�6
 and call the
triple (�; �; 
) the rule (score allocation rule) of the competition. In case of a soccer
competition, the former FIFA rule was (�; �; 
) = (0; 1; 2), but this has been changed
into the new rule (�; �; 
)=(0; 1; 3). Other sports like chess or draughts still use the rule
(�; �; 
) = (0; 1; 2), while stratego, also a strategic board game, has as score allocation
rule (�; �; 
) = (0; 1; 6).
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At a given stage of the competition one may ask whether a particular team T0 still
has a (theoretical) chance of “winning” the competition, i.e., ending up with the highest
�nal total score. To analyze this, we may w.l.o.g. assume that T0 wins all remaining
matches, resulting in a �nal total score s0 for T0 and a current total score si for all
other teams Ti 6= T0. The question is now whether the teams Ti 6= T0 can �nish the
remaining matches in such a way that each Ti collects at most ci:=s0 − si additional
score points.
This can be modeled by a multigraph G=(V; E) whose vertices correspond to teams

Ti 6= T0 and edges are in 1–1 correspondence with remaining matches. Each node i ∈ V
has a capacity ci ∈ R. We represent the outcome of a match e= (i; j) by directing the
edge from the winner to the loser (and leaving the edge undirected in case of a draw).
Our sports competition problem (“SC”) can now be formulated as follows:

SC(�; �; 
)

Given a multigraph G=(V; E) and node capacities c ∈ RV can G be partially oriented
such that for each node i ∈ V :

��−(i) + ��0(i) + 
�+(i)6ci? (1.1)

Here, as usual, �+ and �− denote the outdegree and indegree of a node, whereas �0

denotes the number of incident unoriented edges. A partial orientation of G satisfying
capacity constraints (1:1) is called a solution of the instance (G; c).
A simpli�ed version of this (disallowing draws) was presented in Cook et al. [1].

In this case, the problem reduces to a 
ow problem, cf. Cook et al. [1] or Section 2
below. As we shall see, however, the question becomes more interesting if draws may
occur. Our main result implies that in this case the problem is polynomially solvable
if � + 
= 2� (assuming P 6= NP). This means that for games like draughts and chess
the problem is polynomially solvable. However, for soccer competitions, by changing
the score allocation rule into the rule (�; �; 
) = (0; 1; 3), the problem has become
NP-complete. Also for stratego competitions the problem is NP-complete.
We end our introduction with the following simple observation. Given an instance

(G; c) of SC(�; �; 
), we can derive an equivalent instance (G; c′) of SC(0; � − �; 
 −
�) by setting c′i :=ci − ��(i). (Here, � refers to the degree in G.) So with respect
to computational complexity of SC(�; �; 
) we may always assume that (�; �; 
) is
normalized, i.e., �= 06�6
.

2. Complexity results

Our main result completely determines the computational complexity of the sports
competition problem.

Theorem 2.1. SC(�; �; 
) is polynomially solvable in each of the following three cases:
(i) �= �;
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Fig. 1.

(ii) � = 
;
(iii) �+ 
= 2�.
In all other cases; the problem is NP-complete.

Proof. First recall that we may assume (�; �; 
) is normalized, so � = 0. (Note that
normalization does not a�ect (i)–(iii).) Case (i) is then trivial. Indeed, an instance
(G; c) has a solution if and only if c¿0. (Leave all edges unoriented.)
In all other cases we have �¿ 0. By scaling, we may assume that � = 1. (Divide

�; 
 as well as c by �.)
Case (ii) � = 
= 1.
Consider an instance given by G=(V; E) and c ∈ RV . Construct a directed bipartite

graph with node sets V and E and arcs linking each i ∈ V to all edges in E incident
with i in G. Then add an additional source s and sink t as indicated in Fig. 1.
The arcs from s to V all get lower capacity 0 and upper capacity bcic (i ∈ V ).

The arcs from V to E get lower capacity 0 and upper capacity 1. The arcs from E
to t get lower and upper capacity 1. The resulting network has a feasible s − t 
ow
x ∈ R|V |+3|E| if and only if our instance (G; c) has a solution. Indeed, as all capacities
are integral, a feasible 
ow may also be assumed to be integral. Given an integral
feasible 
ow we can interpret an arc (i; (i; j)) from V to E which carries 1 unit of

ow as i winning the match e = (i; j) and conversely (cf. also [1]).
Case (iii) � = 1; 
= 2 (ancient FIFA rule).
This can be solved similarly. In the network of Fig. 1 we simply rede�ne the upper

capacities of all arcs from V to E to be 2. The lower and upper capacities of arcs from
E to t are also set to 2. Again, feasible integral 
ows are in 1–1 correspondence with
solutions of our instance (G; c). Each node e ∈ E in our network has two incoming
arcs which carry a total 
ow of 2 units, distributed as 2:0 or 1:1, corresponding to a
win=loss match or a draw.
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Fig. 2.

Case (iv) � = 1; 
¿ 2.
We prove NP-completeness by reduction from three-dimensional matching (cf. [2]).

Suppose |X |= |Y |= |W |=q and R⊆X ×Y ×W is given. We are to determine whether
R contains a matching R′ ⊆R, i.e., a set of triples covering each element of X ∪Y ∪W
exactly once. Assume w.l.o.g. that each element z ∈ X ∪Y ∪W actually occurs in some
triple r ∈ R. We write z ∈ r to indicate that z occurs in r ∈ R. Given R⊆X × Y ×W ,
we construct a graph G = (V; E) as follows. We �rst make one copy of each element
z ∈ X ∪ Y ∪W for each occurrence of z in R, i.e., we de�ne

�X :={(x; r) | x ∈ X; r ∈ R; x ∈ r};
�Y :={(y; r) |y ∈ Y; r ∈ R; y ∈ r};
�W :={(w; r) |w ∈ W; r ∈ R; w ∈ r}:

Construct a graph G=(V; E) with node set V =X ∪Y ∪W ∪ �X ∪ �Y ∪ �W ∪R and edges
as de�ned by the incidence relations in a straightforward way, i.e.,

E = {(x; (x; r)) | (x; r) ∈ �X }
∪ {(y; (y; r)) | (y; r) ∈ �Y}
∪ {(w; (w; r)) | (w; r) ∈ �W}
∪ {(r; (x; r)) | (x; r) ∈ �X }
∪ {(r; (y; r)) | (y; r) ∈ �Y}
∪ {(r; (w; r)) | (w; r) ∈ �W} (cf : Fig: 2):

Next, de�ne node capacities c ∈ RV as follows:
c ≡ 1 on X ∪ Y;
c ≡ 1 + 
 on �X ∪ �Y ;
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c ≡ max{
; 3} on R;
c ≡ 1 on �W;
c ≡ 
(�− 1) + 1 on W:

(Again, � refers to the degree function of G.)
We claim that this instance (G; c) has a solution if and only if R contains a matching.
“⇐” Suppose R′ ⊆R is a matching. De�ne a corresponding partial orientation of G

as follows. For each w ∈ W choose the unique r′ ∈ R′ with (w; r′) ∈ �W . We leave
the edge (w; (w; r′)) unoriented and orient all other edges from w to �W . This way
the capacity constraints of w are met. For each r′ = (x; y; w) ∈ R′ we orient the edge
(r′; (w; r′)) from r′ towards (w; r′) and the edges (r′; (x; r′)) and (r′; (y; r′)) from �X ;
respectively, �Y towards r′. All edges incident with r ∈ R \ R′ remain unoriented. This
way we ensure that the capacity constraints on �W and R are respected. Finally, orient
all edges between �X and X from �X towards X except those that correspond to an
element in R′ (these remain unoriented). This way the capacity constraints for X and
�X are met. We orient edges between �Y and Y in the same way. This partial orientation
gives a solution of the instance (G; c).
“⇒” Conversely, suppose we are given a partial orientation of G respecting the

capacity constraints. The latter imply that for x ∈ X we have �−(x)¿�(x) − 1 and
�+(x) = 0. We may assume w.l.o.g. that actually �−(x) = �(x) − 1. (Otherwise, i.e.,
if �−(x) = �(x), pick an arbitrary edge incident with x and make it unoriented. The
modi�ed orientation will still respect all capacity constraints.) A similar argument holds
for elements y ∈ Y . Nodes in �X have degree 2. In view of their capacity bound 1+ 
,
we may assume w.l.o.g. that each (x; r) ∈ �X has �0 = 1 and �+ = 1. (Otherwise, again
modify the solution without violating the capacity constraints.) As each x ∈ X has
�−(x) = �(x)− 1 and �0(x) = 1, we conclude that
• There are exactly |X | arcs directed from �X to R. Moreover, if ((x; r); r) is directed
towards r and ((x′; r′); r′) is directed towards r′, then x 6= x′.
The same holds for the directed arcs from �Y to R.
Arguing similarly for nodes in W , we �nd that each w ∈ W has w.l.o.g. �+(w) =

�(w)−1 and �0(w)=1. (Otherwise modify the orientation such that w actually uses its
full capacity.) Because nodes in �W have degree 2 and capacity bound 1, this implies
that

• There are exactly |W | arcs directed from R towards �W . Moreover, if (r; (w; r)) is
directed from r towards (w; r) and (r′; (w′; r′)) is directed from r′ towards (w′; r′),
then w 6= w′.

Finally, the capacity constraints on R imply that a node r ∈ R can have �+¿1 only
if �−¿2. From this and the above observations, it is straightforward to check that

R′ = {r ∈ R | �+(r) = 1}
actually is matching.
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Case (v) � = 1¡
¡ 2.
Again, we prove NP-completeness by reduction from three-dimensional matching. In

the graph G of Fig. 2 we rede�ne the node capacities c ∈ RV as follows:
c ≡ 
(�− 1) + 1 on X ∪ Y;
c ≡ 1 on �X ∪ �Y ;
c ≡ max{2
; 3} on R;
c ≡ 1 + 
 on �W;
c ≡ 1 on W:

Analogously to Case (iv) one can prove that the instance (G; c) has a solution if and
only if R contains a matching.

3. Remarks

As noted already, our results imply that sport competition problems with the new
FIFA rules (�=0; �=1; 
=3) are hard. The reason for this is that the network model
we used for solving cases (ii) and (iii) of our main theorem does not apply for this
case. Indeed, if we increase the upper capacities to 3 on all arcs from V to E and from
E to t in the network of Fig. 1, then a feasible 
ow does no longer necessarily represent
a solution of our instance. (A total 
ow of 2 entering a node e= (i; j) ∈ E distributed
as 2:0 on the two entering arcs does not correspond to a win=loss or a draw.) If we
“repair” this by introducing a “capacity gap” ]1; 3[ on all arcs from V to E we get a

ow problem with capacity gaps which again nicely describes our sports competition
problem. So as a consequence of our result, the following class of problems is also
NP-complete (this might be known, but we could not �nd it in the literature):
Flows with capacity gaps (“FCG”)
Instance: A digraph D = (V; A) with source s and sink t and for each arc a ∈ A

two disjoint capacity intervals I1(a) = [c1(a); c2(a)] and I2(a) = [c3(a); c4(a)] (ci(a) ∈
Z; i = 1; : : : ; 4).
Question: Does a (w.l.o.g. integral) s− t 
ow x ∈ ZA exist with x(a) ∈ I1(a)∪ I2(a)

(a ∈ A)?

Corollary 3.1. FCG is NP-complete.

Finally, as to sports competitions, we would like to remark that also other questions
can be treated in the same way. For example “Is there a chance that T0 ends up with the
lowest �nal score?” turns out to be of exactly the same complexity as SC: Assume that
T0 has a current total score s0 and loses all remaining matches. This results in a current
total score si for all other teams Ti 6= T0. The �rst question is now whether the teams
Ti 6= T0 can �nish the remaining matches in such a way that each Ti collects at least
ci:=s0 − si additional score points. Again, we model this by a multigraph G = (V; E)
whose vertices correspond to teams Ti 6= T0 and edges are in 1–1 correspondence with
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remaining matches. Each node i ∈ V has a (lower) capacity ci ∈ R. Our “reverse”
sports competition problem (“RSC”) can now be formulated as follows:
RSC(�; �; 
):
Given a multigraph G=(V; E) and node capacities c ∈ RV can G be partially oriented

such that for each node i ∈ V :
��−(i) + ��0(i) + 
�+(i)¿ci? (3.1)

It is easy to see that for i ∈ V , (3.1) is equivalent to
(
− �)�0(i) + (
− �)�−(i)6
�(i)− ci:

Hence an instance (G; c) of RSC(�; �; 
) corresponds to an instance (G; 
� − c) of
SC(0; 
− �; 
− �) and the corollary below immediately follows from Theorem 2:1.

Corollary 3.2. RSC(�; �; 
) is polynomially solvable in each of the following three
cases:
(i) �= �;
(ii) � = 
;
(iii) �+ 
= 2�.
In all other cases; the problem is NP-complete.

Questions such as “Is there a chance that T0 ends up being one of the three teams that
have the three lowest �nal scores?” can also be treated in a similar way. Again, assume
that T0 has a current total score s0 and loses all remaining matches. Furthermore, choose
two teams Ti; Tj 6= T0 and let Ti and Tj lose their remaining matches against teams
Tk (k 6= 0; i; j). (Choose, if necessary, an arbitrary outcome for the matches between Ti
and Tj.) These outcomes result in �nal total scores s0, si and sj, and current total scores
sk for all other teams Tk (k 6= 0; i; j). If it is possible that the teams Tk (k 6= 0; i; j) can
�nish the remaining matches in such a way that each Tk collects at least ck :=s0 − sk
additional score points, then T0 can indeed end up being one of the three lowest teams.
If this is not possible for any pair Ti; Tj, then T0 can never end up being one of the
three lowest teams. So one has to solve at most 1

2 |V |(|V | − 1) problem instances in
RSC(�; �; 
). Hence also this question is of the same complexity as SC.
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