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ABSTRACT: In a previous paper the realizability of a finite sel of positive inlegers ot
degr_ees ?f: the vertices of a linear graph was dgycgsseg. Here we are wilh it
realizability of a finite set of pairs of non-negative integers { (di*,di):i = 1,% "
as the degrees of the vertices of a directed graph. The directed graphs considered g
Paper are allowed to have parallel elements but it is assumed to contain no s
elements. The integers d;* and d;~ specify the number of arrowheads directed o
away from vertez v;, respectively. Other related problems such as; realizability of 09
set of non-negative integer pairs as a connected directed graph, strongly connected e
graph, and cycleless directed graph are discussed. The problem of orienting 8 %
graph and the Runyon problem are also considered.
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Introduction

D“_'ecued graphs have been used as a model for sequential machines, - 5
portation networks, and signal flow graphs (a graphical representation e
of linear algebraic equations) (1, 2). Although a number of very ilafff’-'l’e"m”g
Papers on the theory of directed graphs have been published (3, 4, 5), 1t seem:
thajt more ':VOrk of a theoretical nature is needed before we are able t0 spee
(with (j'ertam efficiency) some of the problems encountered in the app]jed -ﬂw

This Paper presents an extension of results on the degrees of the 7]
a (nonoriented) linear graph (6, 7) to the case of directed (oriented) grspts
The statements and proofs of Theorems 1 and 2 in this paper, although m%fl'
complicated than the corresponding theorems for the nonoriented €as¢ ™
follow the same general pattern. be
33 Let G be.a. directed (oriented) graph with n vertices (nodes), "j"’ 544 :

n-vertex linear graph @ with an arrowhead placed upon each of its '
(branches, ares).* Let d, (i = 1, 2, -- -, m) represent the number of elementt
(branches) mcldent- at (connected to) vertex »; in G. The integer d: i oul g
:fegme of vertex v; in G. Letd; = d;+ + d;~, where d;+ represents i of
arr::vr}?: I(;:a(:is directed toward vertex v; and d,— represents the M it
G _a. S directed away from vertex v;. The non-negative integ®r ve

', di7) is called the degree pair of vertex v.. Given a set of non-? uw
' A paper by J. K. Senior (7), which was brought to the attention of the suthor bY j -

Moon, contains results which imni
: : are very similar with the author’s results on the degr®®
vertices of (undirected) graphs (6, 8). The development in this paper, however, follows ™

closely the reasoning that was i
Directed used in the author's papers on this subject.
i . on subj
the paper. Eraphs and directed m@mtedbyboldhoehtmw
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integer pairs (dit, di~), (dot, ds™), -+, (du™, du7) represented b_\-r {(dit, di);
i=1,2, ---,n}; how can we tell whether or not there exists a directed graph
G whose vertices vy, vs, « - -, v, have degree pairs (dit, di), (ds%, dy), **
(d,*, d.7)? If such a graph G exists, we say the set { (d, d):i=1,2---,n}
i realizable, or graph G realizes the set { (di*, i), i = 1,2, =~ n}.

The realizability of a set of integer pairs {(dit, di); i =1, 2, n} as
the degree pairs of a directed graph, as degree pairs of a connected directed
gaph, as degree pairs of a “strongly connected” directed graph, anfi as a
degree pairs of a cycleless directed graph (a directed graph without directed
cireuits) is discussed. Related problems such as how to orient a given (001111'
oriented) graph to satisfy a given set of degree pair specifications, afld the
problem of finding & minimal set of branches whose removal from a directed
gaph leaves the graph cycleless, which is referred to as the Runyon problem,
are considered.

Throughout this paper it is assumed that
.!(d‘+' di7); i =1,2,+--,n} is ordered such that
fori=1,2, ... n — 1, and also it is assumed that di*
of some of the terms used in this paper are found in the

of all other terms may be found in (1).

every given set of integer pairs
d+ +di <dupit+ diz1™
+ di~ > 0. Definitions
Appendix. Definitions

Realizability .
_ In this section, we will state and prove the necessary and .sufﬁcteznt (fc?nil:}-
tions for a given set of non-negative integer pairs { (di*, di),i=12"""

to be realizable as the degree pairs of the vertices of a directed graph. Using

Gale’s results (3), it is possible to arrive at a solution to the above problem for

4 different class of directed graphs. (Such a solution is explicitly stated in (2),

Chap. 9.) In the solution presented in (2), it is assumed that a directed grnpg
does not contain parallel elements (a pair of elements ex(v;, v;) and e;g;. 93
“onnected between the same pair of vertices with their arrowhe‘ads tow: t:)o f,
and also g directed graph is allowed to have self-loop elements, .¢., elemett b is
the type ¢(2;, v;) are allowed. In the case presented here, a directed gmpmill1
allowed to have parallel elements, but a directed graph is BSSumed to con >
"0 self-loop elements. It will be seen that the result den?'ed here is in !li) ;32
Siderably simpler form, and can be tested much more rapidly for rea;za .; :eyr
© above problem “';LS also attacked by Ore (4), Theorem 221 hOV- 00;
te result of Theorem 1 is in a much more convenient form mﬁ . eoﬁ; of
Presented here, although a bit lengthy, is quite elementary. dx"r etel:ll' raph
eorem 1 also suggests a simple procedure for constructing a direc

fom the given set of integer pairs.
., Ya be any two sets of real

Lemma 1: Let Ty, T3y ** " Tn and y, ¥s "
Mumbers such that
n L] l
z T = E Ui- ( )
t=1 =1
= n=1
Then ?:11?- > ya if, and only if Ex (2 4+ y) 2 2 T Un
=1 -
201

Ve 279, No. 4, Apeil 1965

I . LS SRS LR AL

2 d |



% ':
!

T == TNL

8. L. Hakimi

n=1

Proof: Let us assume 2. Zi > Y., then
i=

§h2%+m 9

Using Eq. 1, we can also write
'Zi i 2 Yn 4 Tn: (3)

Adding the inequalities of Eqs. 2 and 3, we obtain 3° (zs + 49 > 20 +%)
which implies the desired inequality. i=1

Let us now assume that nijl (%: + y:) > za + y. which may be written 88
i=1

n—1 n
T+ Y= Ya> Zat Y W
=] =1

al[]'n n-1 s
Making use of Eq. 1, the inequality of Eq. 4 can be written as El i +l_§ i
e

= el i =1
Un 2 Zu + yu, which implies the desired inequality ”}: Zi 2 Yn
i=1

@ Ifenrc-mc; : + Adsu;ﬁcient set of conditions for the three integer pairs ('.”’ ‘?‘—};
» %2 ), \@37, d57) to be realizabl 1 f the vertices
thees verter destt ke vy zable as the degree pairs o

(3) 'Z’l dit = z: di~
L =1
(b) g @* +d) > dit + di.

Proof: Let G be 5 three-vertex directed graph. Let n;; > 0 (5,4 = . ?’3

and ¢ = j) be the number of elements which are connected betweel

v; and »; and which B arn o
: owheads : d like to
that given any set of t} B toward vertex v;. We woul (

-negative integer pairs that satisfies
Mis) which realizes the given set of integer pairs

If G is to realize the g; p!,rsthen‘b‘
: given set of inte - : :
following set of equations must be satj ﬁgelz‘- FREnAk 114 clagres §

* The conditions
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nar + g = dit i
N2 + Nz = di~ ‘
Nis + Nae = da*
gy + Naz = da~
Mg + Maz = ds*
N3 + Nae = dy™.

The above set of equations are not linearly independent ; therefore, in general,
there is no unique solution. Solving for the n;/'s in terms of ns, we obtain

ngy = dit — na

Neg = di~ — N
Mz = dst — ne; = dit — da + Ny
Ngs = da— — Nz = d:_ - d£+ + Nay

Ny = dot — nge = dst — dy~ + dit — na

Since ‘the only acceptable solution is one in which n;; > 0ford,j =1, 2,3, the
following inequalities must be satisfied:

d 0 < 193 < min (d1+, dz_, dt + dst — dl_) (5)
an

Ngy > max (de- — dst, dit — di7). (6)
F"Pm Lemma 1 and the fact that d*, di~ > 0, we can see that there always
eXists an integer nyy which would satisfy condition of Eq. 5; therefore, the

duestion is can n,y be picked such that the inequality of Eq. 6 is also satisfied?
0 show that such an nay exists, we must show that

max (dy- — d;t, dit — dy-) < min (@, diy dit + st —di). (D

We will consider two cases: () dy — ds* > di* — dy~, and (i) di” — di*
<di* — d;~ In the first case, the inequality of Eq. 7 18 reduced to

di~ — ds* < min (di, di, dit + dst — di7)

which ig always true, because di~ — dst < di* (due to Lemma 1)4, ds— — ds*
Sdi, and dy- — d;+ < dit + det — di- (due to condition (a) of the hy-
Pothesis). In the second case, the inequality of Eq. 7 is reduced to

di* — dy- < min (dit, di, di* + dst — ds7)

hich is true, because dit — di- < dit, di* — di- < di~ (due to Lemma 1),
and g+ — g~ < di* + ds* — dy~. This proves that there always exists an

"iteger ny, such that

max (0, di~ — dy*, di* — ds~) < nan < min (di*, di7, di* + it = A5

f'hi‘!h in turn proves the existence of the desired graph.

L o 4 di-
5 oIt should be noted that (di* + di) + (d* +di) = di* o+ di” since AT T
SH tdrand dit 4 di- >0,
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Theorem 1: Given a set of pairs of non-negative integers {(dit, di);

1=12 -+, n}, (n>2), the set is realizable as the degree pairs of the
vertices of an n-vertex directed graph if, and only if

(a) il dit = i: d;~, and
® T @t +d0) > dt + di

Proof: Given a n-vertex directed graph G, it is clear that il dit = El di-

= N(G), where N(G) is equal to the number of elements (branches) in G.
To prove the necessity of (b) assume otherwise, that is, there exists a graph G

=1
in which ”Z.; (d* + di”) < d.* + d,~. Let vertex v, in G correspond to the
G | e n—1 . .
integer dn* + d.~. Then, the inequality ¥ (di* + di) < da* + d,— implies
i=

Pha_t there exists in G at least one element which is incident at v, which is not
incident at any other vertex. This is impossible, hence

a—1
_El (@t + div) > dut + da~

The sufficiency is proved by induction. If » = 2, then condition (a) re
flﬂil'es that di* + dyt = ¢~ 4 ds~, and condition (b) and the fact that th‘l_e
integers are given in a nondecreasing order requires that di+ + di~ = ds™ g 8
From these equations we conclude that drt = di~ and d;~ = dy*. We can TO¥
see that a two vertex graph with d,* + d;~ parallel elements conn: 1
tween vertex v; and vertex v2 and with d,+ of these elements having arrowheads
toward vertex v, and with the remaining d;* elements having arrowheads EO‘
ward vertex v, will be the realization of the two pairs of integers (d-lt “ );
(det,dy). If n = 3, we have already shown in Lemma 2, the sufficiency ©
conditions (a) and (b). To complete the induction, we assume that the m;-
tion is true forn < k, (k > 3), then we will show that it is also true for» =*
Let (di*, dr), (dst, dy), - ", (d*, di) be a set of k mon-negative mtef;:
pairs which satisfies conditions (a) and (b) of the hypothesis. Consider d
following three cases separately: (i) di* < di~ and d;~ < di*, (i) &1 : l:'-
and di~ > di*, and (iii) dy* > di- and di~ < di*. (Note that the fourth combi
nation di* > dy- and dy;~ > di* cannot oceur, for dyt + di- < dit s

Case (i): Consider the set of ¥ — | non-negative integer pairs
(d’+! d‘—): (d3+! di_)r il (dl-l+j dk—l-)l (dk+ -7 dl—l d‘— = dl+)‘
. . L i di-
']:"hlﬁ set of integer pairs (obtained from the original set) clearly samﬁes'c::‘“
tion (b). If (d+ — 4) + (di — dy*) > duy* + doy, i.e., if the 1

(8
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pairs are in a proper order, then to prove condition (b) is satisfied, we must
show that

'fi_: @t +di) > (@t = d) + ([ — di);

k=1
but this is a consequence of the hypothesized inequality _Zl (&t + di)

204F +di. If (det — di”) + (i — di*) < diy* + dir~, then to prove
that the set of integer pairs given in Eq. 8 satisfies condition (b), we must
show that

k-2

E @*4+di) + (@At —di- + di- — dit) 2 dist + dies 9

Since k > 3, we may write the inequality of Eq. 9 as
O+ div) — @+ + dr) + @+ + di)
= if dit + di7) 2 diy™ + dim. (10)F

=3
We known (d* + di) > (dr* + di) and (@t +di) > (dor* + doi);
therefore, the inequality of Eq. 10 is satisfied for k > 3. This proves that if
d* < di- and di~ < dit, then set of k — 1 integer pairs given in Eq. 8 satis-
fies conditions (a) and (b) of the hypothesis, hence, according to the ind-uction
hy,p(’the‘*iﬂ: is realizable as a (k — 1)-vertex directed graph Gi. To realize the
onginal set of k integer pairs {(di*, di7); ¢ = 1,2, - -+, k], we add a vertex v,
0 the directed graph G,. Between vertex v; and the vertex in G corresponding
to the integer pair (di+ — dy—, di~ — di*) we connect di* + di~ parallel ele-
ments. On these elements we place d;* arrowheads directed toward verte.x "
ad di~ arrowheads directed away from v;. The resulting graph G realizes
the origina] set of integer pairs. This ends the inductive proof of the first case.

Case (ii): If d,* < dy~ and dy~ > dy*, the technique used in the previous
tase is not applicable, the integer pairs given by Eq. 8 will not be non-negative,
e it — 4~ < 0, Ip other words, since d;~ > di*, all elements .inmdent_ -
:imex P1cannot be incident at vertex v More specifically, in a possible jeveng

0 86 most dyt 4 g+ elements are connected between vertices vy an'd W

Temaining d;~ — d,+ elements which are incident at v, must be incident

* Other vertices of G. Keeping in mind the above introductory remarks, let us

“lsider the set, of integer pairs (di*, i), (ds*, dx), =+ (d*, d8) “'h":h;

2 ed to satisfy condition (a) and (b). From the above set, we w1ll constru r

Dew set of k — 1 integer pairs that hopefully will satisfy conditions (_8) mld
pice nd which, due to the induction hypothesis, is realizable as a i

Ph G, Now, consider the following set of integer pairs

\&J_’ﬂ @+, di), - -+, (daa®, i), (', di” — di*), (11)
k-2
"B 10, .2 (@* + di) is assumed to be equal to zero when & = 4.
295
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S. L. Hakimi

where d:*"’s are computed recursively as follows: Let us start with integers
di~ and d,*. Subtract from both integers a number z, equal to the minimum
of the two, i.e., z; = min (di, di*), and set di*’ = di+ — min (dr, dt) = 0.
Consider the integers dy~ — z; and d, ,* ; again subtract from both
T3 = min (d~ — ), diy*) and set dii*’ = di_s* — z,. Then consider in-
tegersdi~ — ; — z; and di_s* and subtract from both z3=min (dy —z;— %
di_s*) and set di_s*’ = d,_,* — z;. Continue this process until the values of
dy_i* are found fori = 0, 1, - - -, k — 1. We would like to show that the set of
integer-pairs given by Eq. 11 satisfy conditions (a) and (b) of the hypothesis.
To prove condition (a) is satisfied, we must show that

k k-1

Ld# =% di + (& — di?). (12)

=3 =2

k
From the definition of d:’, we can see that fj di#’ = 3 dyt — dy~; henee
i=2 =2
| I
Eq. 12 may be written as i dit —di— = }f di~ — di*+ which is true accord-
i=g i=2

ing to the hypothesis. To show that the set of integer pairs given by Eq. 11
also satisfies condition (b), let

it < (13)

bt .

d’ = {d‘:H + d"_s
di’ +di- — di¥, t=Fk

Let d, = max (dy, dy, - - , dy). Then, in terms of d”s condition (b) may be
written as

k
T~ >y (4

Letd; = di* + di~fori = 1,2, --- k. Weknow that d; > d;forz = 2;3: -k
l — .

From Eq. 13 and the definition of d;*', we can conclude that 3 di= .Z';d‘ d
. i k. i=2 b sty
Making this substitution in the inequality of Eq. 14, we obtain the inequslif

E 15)
z.‘.'d;-—-d;—d,'zd,’. (

; ¢ and
To prove the inequality of Eq. 15, we consider two cases: dy’ = &1 *"

' . &
%' > Al 1 df = 4y, then Eq. 15 is proved by showing that

k
di—dy—dy>d
=

which may be written g

k
E @ +do) — @t +d) — (@ — dt) > d-— "

Vertices of a Directed Graph

which is the same as

S - a e ar (16)

i=1 =2

However, the inequality of Eq. 16 is always true due to condition (a) of the
hypothesis. If d,’ > d,’, then the inequality of Eq. 15 is easily established by
remembering that & > 3,dx > d,/, di_y > d,’, and d» > dy. We have now shown
that the set of k¥ — 1 integer pairs given by Eq. 11 satisfies conditions (a) and
(b), henee it is realizable as a (k — 1)-vertex directed graph G,. Let the vertex
of G, corresponding to the integer pair (d:*, d;~) be labeled v;, fori = 2,3, -+ -,
k =1, and the vertex of G, corresponding to the integer pair (dit’, di- — di¥)
belabeled v;. To graph G; we add a vertex v;. Between »; and »; we connect d;*
elements with arrowheads toward v; and di* elements with arrowheads toward
%. Then, we connect d:* — d;*' elements between vertex »; and vertices »; for

| =23 -+. k — 1with all of these elements having arrowheads away from v;.

The resulting graph G will realize the original set of integer pairs; this com-
Pletes the induction for case (ii).

Case (iii): The proof of this case is identical to case (ii) and, therefore,

The following Corollary is an immediate consequence of Theorem 1 and
L.

Corollary- Nee d sufficient conditions for a set of non-negative
! : essary and sufficient conditions .
Meger pairs { (d+, di), i = 1,2, - - -, k} (k > 2and dit + di~ < diga* + disi”)

' 0be realizable a5 the degree pairs of the vertices of a directed graph are:

(a) 'z:l dt = l_Z::lds’,

®) 5 d > da

=l

Realio. 251+
. “lizability g5 o Connected Directed Graph

A.dire"te‘i graph G is said to be connected if the nonorientf:d graph tchi

1) ed from G by removing the arrowhead on the elements of G is connectt

). Two directed graphs G, and G, which realize the same set of !nteger Pa-‘trs
Called d-inyariant directed graphs. In other words, if there exists a on:' g
Correspondence between vertices of Gy and G: such that correspond ng
.8 have the same degree pairs, then directed graphs G;-md G areh_én.

A.m;- Con.sider a pair of elements e(v;, v;) and e(0s, v,) in a directed m&l:d th:

e > ™ the Appendix) that the arrowhead in each dlement i foward the

i.e., for example the arrowhead on element (v, 7;) i

Tertex ?;. Assum, all distinet. Remove the

ne also that vertices v;, v;, v, and v, are

Ro. 4, Apeil 1065
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8. L. Hakimi

pair of elements {e(v;, v;); e(v, v,)} from G; and replace them by the pair of
elements {e(v;, v,); e(vx, v;)}, the resulting graph G, will clearly be d-invariant
from G, The operation of replacement of the pair of elements {e(s;v;);
e(vs, ,)} by {e(vi, v.); e(vx,v;)} is called an elementary d-invariant trans-
formation (6).

Consider a directed graph G, the subgraphs g, gs, ---; & (r > 1), are
called the components (maximally connected subgraphs) of G, if g; fori = 1,2,
*++, r i connected, there is no path (not necessarily a directed path) from
any vertex in g; to any vertex in g; (and vice versa), and every element of G
is in exactly one of these subgraphs (1, 6). The proofs of Lemma 3 and Theorem
2 being similar to the proofs of Lemma 1 and Theorem 2 of the previous paper
(6) are, therefore, omitted.

Lemma 3: If G contains r > 1 components and if one of th-e Cﬂmpf’“enta
of G contains a circuit (not necessarily directed), then there exists a diree
graph G, which is d-invariant from G but has r — 1 components.

Theorem 2: Necessary and sufficient conditions for a set of nﬂﬂ-ﬂ“g"‘ﬁ.ve
integer pairs {(dit,di); 1 =1, 2, -, n} to be realizable as the degree pai¥
of the vertices of a connected directéd graph are:

(a) i; dit = i di~

i=1

(b) ”i @+ + di) > dut + du-

(c) ); d+ > (n — 1).

. of
The following Corollary can easily be established as a consequence
Theorem 2.

Corollary: A necessary and sufficient condition for a set of integezrl;?lcz
{(d*,dr);6 = 1,2, .- n} to be realizable as the degree pairs of the ¥
of a connected circuitless directed graph (a tree) is

ild;+=id,-—=n—1.

= =1

Renlizabih‘ty as a Strongly Connected Graph and Cycleless Graphs

_ In this section, we are concerned with the following questions: Under o
circumstances is a set of non-negative integer pairs realizable a8 iy
connected directed graph, and as a cycleless directed graph? A in 6
G is said to be strongly connected if for every pair of vertices ¥ and 75
there is a directed path from v; to v; and a directed path from vj tO Vi

298 J.mdamﬁﬂ*"w
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Lemma 4: A directed graph G is strongly connected if, and only if, G is
connected and every element of G is in at least one eycle in G.

Proof: The necessity is self-evident; to prove sufficiency, consider a
directed graph G which is connected and every element of G is in a eycle. If
G contains two vertices, clearly G is strongly connected. Assume that the
assertion is correct if G contains k — 1 vertices. Let G contain k vertices.
Let e(v;, v;) be an element of G. Let G, be a graph constructed from G by
adding an element e(vj, v;) between vertices »; and »; of G. If G, is strongly
tonnected then G is strongly connected; the addition of element e(z;, 2;) to G
did not introduce any new paths in G. Let directed graph G: be constructed
from G, by shorting (coalescing) vertices v; and »; and removing all of the
resulting self-loop elements. The directed graph G, is clearly connected and
every element in G, is in some cycle. Therefore G; is strongly connected.
Clearly reversing the operation, forming G, from G, we obtain a strongly con-
nected graph G;. We also know that if G, is strongly connected so is G, hence
the Lemma,

_Avertex v, in a directed graph G is said to be compact if the degree pair of
this vertex (d+, d;") has the property that min (d:*, d;”) = 0.

 Theorem 3: Necessary and sufficient conditions for a set of non-ﬂegaﬁ_"e
teger pairs { (d:+, d;) ;5 = 1,2, ---, n} to be realizable as a (the degree pairs
of the vertices of a) strongly connected directed graph are:

(@) The set {(d*,d;-); 4 = 1,2, -+, n} is realizable (satisfies conditions
of Theorem 1).

(b) min (dt,di) >0,fori=1,2, -+, n

Proof: The necessity of condition (a) is known. The necessity of (b) is
“tablished by noting that if in a directed graph G for some vertex v; the
T (d7F, d;-) = 0, then v; is a compact vertex and an element incident at v;
tannot Possibly be in a cyele in G ; therefore, it will not be strongly 'con’,lgcted‘

¢ Must now show the sufficiency of conditions (a) and (b) for realizability as
* Strongly tonnected directed graph. From Lemma 4, if we prove that the
< Of integers (4%, d); & = 1,2, -+, n} is realizable as a connected
ke ' which every element is in some cycle, the theorem is proved. We fi“g‘
that the get {(d+,d); i=1,2, ---,n} is realizable as a connec e2

h, for the set of integer pairs satisfies conditions (a) and (b) of Theorem

4, since dit > 1 for all i, )": d+ > n. Let G be a connected realization
i=1 gl
e set (@ dr);i = 1,2, -, n}. If every element in G is in some c;}r:{l%
"¢ have no problem. Suppose there exists at least one elenfent nGw ::t
there n Any eycle. Let this element be e(v;, v;). Since vertex 1515 not co;zr;:: n;
':;néts an element ¢(v;, v,), and similarly there must exist an €
* P1). Con

t; =l - : 4 i directed
3 tinuing this process, we obtain a directed Bngei:r;:;th :hjgrgchain

-‘h"'“‘- April 1945
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8. L. Hakimi

will either eventually reach v; (which leads to a contradiction, for then e(v;, )
would be in a eycle) or the chain will contain a eycle. Using similar arguments
we can establish the existence of another chain By = - - -¢(u,, v,)e (Us, ve)e(tr, vi).
If the chains E, and E, intersect each other at any vertex, then again e(v;, v;)
will be in some cycle. Therefore, we have two chains E; and Es each containing
a cycle and which do not have common vertices. Take an element of the
cycle in E,, say e(v., v,), and an element of the eycle in E., say e(v, v,). Per-
forming an elementary d-invariant transformation involving these two ele-
ments, i.., replacing the pair of elements {e (v, v,); e(v., v,)}, in G by {e(os, f‘)?
e(n, v,)}, we obtain a graph G, which is d-invariant from G and in which
element e(v;, v;) is in a cycle. Furthermore, if we examine G, we can see that
every element that was in some eyele in G is also in some eycle in G1. Cle.arly
Wwe can continue this process until we obtain a directed graph G; which is d-
invariant from G and in which every element is in some cyele.

Corollary 1: A directed graph G contains a cycle if G contains at most oné
compact vertex.

Proof: We have already shown (see the proof of Theorem 3) that if G has
no compact vertices, then G contains a cycle. What remains to be shown B
that if G contains one compact vertex, then G still contains a cycle. L‘-‘t B
be the compact vertex of G. Let I(»;) represent the subgraph of G consisting
of those elements of G which are incident at v;. Let vertex v;, be a vertex Ofed
which is adjacent to v, i.e., there is an element in I (v;) which is connect :
between v; and v;1. Let us assume all elements of T (v;) have arrowheads m_"ﬂ)
from »;. Since ¥4, 18 not compact, there exists an element of e(vs, 77) ; S smft:
?; is not compact, there is an element e(v;, v). Continuation of this a.rgume"]“
provides the existence of a chain (directed edge-train) E. Since chain E ¥ {
always encounter noncompact vertices, chain E must eventually (-6 le
extended to sufficient length) contain a cycle. If all elements of I (vd) hﬂ‘;f
arrowheads toward v, then using & similar proof we can show the exlstencﬁ :
a gycle, in the directed graph G with one compact vertex. One WY * prﬂ;ll':h
this second case is by reversing the orientation of all elements in G “Glis
results in a new directed graph G'. Clearly G’ is cycleless if, and only >
We can show that G/ must contain a cycle (by the technique used it ot

: : is a0
part of this proof), therefore G contains a cyele. The following Corollary ¥

obvious ctonsequence of Corollary 1.

_ Corollary 2: A necessary condition for a realizable set of “°n'negatl‘;
integer pairs {(d,*, @7);%=1,2, ---, n} to be realizable as the degree prass'
of th'? vertices of a cycleless graph is that there must exist at least tW0 i
and j(1 <4, j < n) such that min (i, d7) = min (@ds*, di7) =0 o
Unfortunately the condition described in Corollary 2 is not suﬁicm(:2 2
ycleless realizability. For example, the set of integer pairs (2, 0), 0,2 >
(3, 3) is realizable and satisfies the condition of the Corollary, but there
o cycleless directed graph that realizes the above set of integer Poirs-

m I ...1&“"""”.
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Although the problem of cycleless realizability of a set of non-negative
integer pairs is not satisfactorily solved, Lemma 5 will suggest a possible
step-by-step method for arriving at a realization.

Orientability
A comparison of Theorem 1 and corresponding Theorem for the nonoriented
| tase (6) may lead us to believe that a nonoriented graph G whose vertices have
| degrees dy, d, - - "y dn can be oriented (i.e., arrowheads ean be placed on the

| tlements of ) such that the vertices of G will have degree pairs (di*, di™),
(@,dy), -+, (d,*, da=), if

(a) min (dit,di") >0
(b) (d:'+ o d;") = d;

for t =
for 1

Il
-
N

(c) |Z=a1 d.‘+ = Zl d.'_.
r Toillustrate that this is not the case, consider the graph of Fig. 1.8 The graph
of Fig. 1 hag the degrees 2, 3, 4, 5, 6. We endeavor to show that the graph of
| cannot be oriented such that it will realize the set of degree pairs (2, 0),
20, 3, 1), (1,9), 2, 4). To see this, consider the subgraph of the graph of
-1 consisting of the parallel elements connected between vertices vs and 5.

¥ (2,1) v

5 (2,4) a
Y
€
2,0) "
5 d
‘. K, 53,0 v (1,4) "

| — nouoriented graph with an  Fie. 2. An example of a non-minimal chord-set.
J le frientation specification.

ktwo S.Ilumbe,. of arrowheads directed toward vertex v, is one and tm(vin:d
‘ the !ﬂm'ofmce there are four elements directly connected between v an ‘ ;t,
b at Iustthe number of arrowheads directed toward ‘vertex v afld z;; mRe_
' mYlunmg four, hence, the orientation specification is not real}za::;. »
¥ sep t]mTheomm 1 and the corresponding theorem for the no:aontant > cats;l é
"enexTh:Eomm 1 merely proves that there exists a graph G which &saﬁze
' h“’iﬂlﬁa 'd St the graph of Fig. 1 and which can be oriented to re:
Wi thegpores icoion: 2,0), 2,1, B 1, (L), B o
{ “Morienteq i € ntroduction we re-define the problem as
|
|

. Ph. Let the vertices of G be labeled vy, vs, + -, va and let the

™ Sty P2 a8 chosen 8o that the vertex identify the vertices, i.¢., there are no
‘hmﬂkm : degrees
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degrees of these vertices be dy, ds, * -+, ds. Let there be associated to each
vertex »; of G of a non-negative integer d;* for 1 = 1,2, - - . ('-l‘he nor-
negative integers d,+, dat, - - -, d.t will be referred to as the orientation spec-
fication.) The problem: Is it possible to put arrowheads on the eleme?xta of @
such that the number of arrowheads directed toward vertex »; is d;* for S 1,2,
- -+, n? Clearly the orientation specification d.*, ds*, - - -, d,* must satisfy the
following two conditions:

(a) 0 S d,‘+ ‘_< d.‘

S d
=1

for g 02 e

(b) 2% dit =

Figure 1 demonstrated that the above two conditions are not sufficient condi-
tions for orientability of a given graph with the orientation specification
di*, da*, - - -, d.*. This problem will be discussed in this section. i

If g1 and g» are two subgraphs of @, then by the “ring sum” of g1 an fgg
denoted by g @ g, we mean a subgraph consisting of those elementsg
which are either in g; or in g, but not in both, by the “union’ of g1 &n fg"
denoted by ¢: U gs, we mean a subgraph consisting of those el-ements "}n”
which are either in g, or in g, (or in both), and finally by the._‘‘1.:*11;ers~=:c’n;::jse
of g1 and g, denoted by g, () g;, we mean a subgraph consisting Ofbte e
elements of @ which are in g, and gs (i.e., which are in both). Let N (g)h i
number of elements in a subgraph g of G, and let d(g) = T iy di* be ¥ ertices
of the subset of the integers d,*, ds*, - - -, d,* which corresponds to ﬂ}e V‘:} vy
of the subgraph g of @. The following Theorem ean be proved. usmgdiﬁerent
Theorem (3). However, the proof given here is based upon an entirely
idea and leads to a more direct method for orienting a graph.

| Theorem 4: Given a nonoriented graph G whose vertices.are }’i:i‘i
U172, va a0d to whose vertices are associated non-negative mhea
dit, dyt, - dH respectively ; then, graph @ is orientable with di* arrow su
directed toward vertex »; (fori = 1,2, ---, n) if, and only if, for e
graph g of G
(a) d(g) — N(gs) > 0,
and

(b) d(@) = N(Q).

Proof: The necessity of condition (b) has already been discussed.
the necessity of condition (a), assume otherwise, that is, for some
0; of G, d(g;) — N(g;) < 0. This inequality implies that there are m°
ments in g; than there are arrowheads directed toward the vertices in 0;
is an impossibility, hence the necessity of condition (a). nts in G-

We will prove the sufficiency by induetion on the number of elemﬁnnected)
If @ has one or two elements (regardless of how the two elements are ¢ e
the sufficiency of conditions (a) and (b) can easily be mblislled' G satisfiet
if G contains k — 1 elements and the orientation specification of

To prov
subgl'ﬂph
ore ele-
which
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[ :’gﬂ(i) do not satisfy condition (a), then there exists a subgraph g, in G’ such

r 4"(g) — N(g)) < 0,

Vertices of a Directed Graph

conditions (a) and (b), then G can be oriented as desired. Now, consider a
graph G with k elements (and, say, n vertices). Let the orientation specification
dit, dyt, - - -, d,* be such that the conditions (a) and (b) are satisfied. Consider
an element e in G. Without the loss of generality, let element ¢ be connected
between vertices v; and vs. Let ¢/ = G @ e, where vertices of G” are labeled as
i G. If G’ and one of the following two sets of orientation specifieation

()7 dit — 1, do*, dy*, - -
(ii)? dit, dot — 1, dyt, - -

r r
&) dnﬁl+, dn+ ™= d1+’, d2+ FeEiy d‘+

" "
. dn—l+, d"‘i' - d1+'~" dst ety dn+

satisfy conditions (a) and (b) of the hypothesis, then, since G’ contains k — 1
elements, G’ can be oriented such that it would have the orientation specifica-
tion given either by (i) or (ii)%. Let G’ be such a directed graph. If G’ realizes
the orientation specification given by (i), then we can construct the directed
graph G by adding element e to G’ and putting an arrowhead on element e
d'i'lt‘eted toward vertex »,. If G’ realizes the orientation specification given by

(i), then G is constructed by adding element e to G’ with the arrowhead on e
be_'ﬂg directed toward vertex v,. Clearly in either case, the resulting graph G

\ will have the desired orientation specification. Therefore, our main task is to

3]_10“' that if G and the orientation specification d,*, ds*, - -+, d,* satisfy con-
ditions (a) and (b), then G’ and one of the two orientation specifications given
b (i) and (if) will satisfy conditions (a) and (b). .

We know that N(G’) = d(G) — 1, therefore, condition (b) is satisfied
Tegardless which of the two sets of orientation specifications are 'Elsed. ‘To
Prove that condition (a) will be satisfied by at least one of the or_xenta,_tion
Pecifications, suppose otherwise. If G’ and the orientation speeification given

t
(1n

@(g5) — N(g,) < 0, where d'(g,) = Z ax.

HG’ and

iy the orientation specification given by (ii) do not satisfy condition (a),
en

Te exists a subgraph g, in G such that

&)= T d.  (18)

where y
iegg

t wil be shown that the inequalities of Eqs. 17 and 18 cannot be simultane-
satisfied. To do this, we will examine subgraphs g and g, h
whichﬁubgraph g contains vertices vy and v, then consider subgraph ¢, U ¢,
8 a subgraph of graph G. From the hypothesis we have

dig,Ue) — N(g; Ue) = 0.

i’?:" 9 18 assumed to contain v1 and vs, d(g, U €) = d'(gy) + 1 and Wﬁ_‘:’fo“;
:Ug = (#5) + 1, therefore, if g, contains vy and s, the inequality o
T

4
=it o ee,

+ +
| & ’t.he equality sign in these equations, we mean that di* — 1 = &', ds
\ 1 d"nd dit = g,+ dit — 1 =dyt", ++ o dt = st AR
= It jg Possible that @ is orientable regardless of which of the two sets of orientation

S are picked,
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Eq. 17 cannot be satisfied. Suppose g, contains neither »; nor v, then, smce
g» € G, we have d(g,) — N(g,) > 0 and d(g,) = d'(g,), hence the inequah‘fy
of Eq. 17 cannot be satisfied. Similarly if g, contains v but not v, then again
the inequality of Eq. 17 cannot be satisfied. The only remaining possibility
is that g, contains v; but not vs. By similar reasoning, we arrive at the conclu-
sion that the only case that the inequality of Eq. 18 could be satisfied is when
g, contains v; but not »;. In any case subgraphs g, and g, are in G, and from the
hypothesis, we have

d(g,) — N(gy) 20 (19)
and

d(g) — N(go) 2 0. (20)

Comparing Eqs. 17 and 19 and remembering that g, contains »; but not 2, that
is d(g,) = d'(g,) + 1, we conclude that

d(gs) — N(gy) = 0 @1
and similarly we can show that
d(g) — N(g) = 0. (=)

Now, we will show that the simultaneous assumption of Egs. 21 and 22 wil
lead into a contradiction.
Let g = g, U g, U ¢, then, from the hypothesis, we know

d(g) — N(g) > 0. (2)

We will examine the inequality of Eq. 23 in the light of Eqs. 21 and 22, Let
95 N go = 0 (i.e., let g, N g, be a null subgraph),® then

d(g) — N(g) < d(g,) + dg,) — [N(gs) + N(go) + N(e)]

which, using Egs. 21 and 22, becomes

d(g) — N(g) = —N(e) = — 1
with contradicts Eq. 23. If 95 N go = gr, then

d(g) — N(g) = d(g,) + d(g,) — d(g,) — [N(g,) + N(go) — N(g») +N(@9]
which may be written as
d(g) = N(g) £ — d(g) + N(g) — N(o)-

However, we know d(g,) — N(g,) > 0; therefore, we have

d(g) —N(g) < —N(e) = — 1

which again contradicts Eq. 23. This concludes the proof of the TheoreT
Although the proof of Theorem 4 suggests a procedure for orienting

'Rmbemtedthtg,nndp.wuldhuveeummﬁm

{
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graph G (to satisfy a given orientation specification), it is not a practical
procedure because of the enormous amount of time that must be spent to
decide the orientation of an element. The importance of Theorem 4 lies in the
fact that it characterizes the difficulties that may arise in the problem of
orienting a given graph.

A question that deserves attention is: How many “different” ways can a
given graph G be oriented to realize a given orientation specification? The
following Theorem sheds some light on this problem.

Theorem 5: Let G be a graph whose vertices are labeled vy, v, - - -, v, and
whose elements are labeled ey, - -+, ;. Let G be a possible way of orienting G
such that there are d;+ arrowheads directed toward vertexv; fori = 1,2, - - -y M,
then G is unique (i.e., there is no other way of orienting G to realize the given
orientation specification d,*, ds*, - - -, d,*) if, and only if, G is cycleless.

Proof: If G contains a cycle ', then we can construct from G a different
way of orienting G' by reversing the arrowheads on the elements of eycle €
i G. It remains to show that if G is cycleless, then there is no other way of
orienting (. The proof for this part of the theorem is left out. The reader can
easily construet a proof after reading the proof of Lemma 5 in the next section.

Cyeleless Directed Graphs and the Runyon Problem

Suppose given a directed graph G, we would like to find a minimal‘ Sl.lb-
graph whose removal from G breaks all cycles in G. However, the first aim in
this section is to deseribe a process by which we can test a directed graph to
see whether or not it contains a cycle.

A directed graph G has successively compact vertices if G has a compact
vertex v; and G, = G @ I(v;) (where, as before, I(v;) is the set of elements in
G which are incident at »;) has a compact vertex v;and G2 = G, @ (v;) has
A compact vertex v, and so forth.

Lemma 5: A directed graph G is cycleless if, and only if, G has successively
“ompact vertices.

Proof: 1t G is cycleless then G has a compact vertex v; (due to Corollary 1,
€orem 3). Since G, = G @ I(r,) is also cycleless, G; must have a compact
Yertex v; and so forth, This proves that if G is cycleless, then G has successively
“ompact vertices Suppose G has successively compact vertices, we would like
to show that G is cycleless. Let v; be a compact vertex of G. Sinee none of the
‘ments incident at v; can be in any cycles, G and Gy = G @ I(r) must con-
the same eycles. However, we know G contains a cot-upact v-rertex Vi
refore G, and G, = G, @ I(v;) contain the same cycles. ance this process
“n be continued until every element of the original graph is removed, this
Proves that G has as many cycles as a null graph, which has no cycles; there-
fore the Lemma,
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Lemma 5 suggests a method for attacking the Runyon problem.!® The
problem is: Given a directed graph G, how do we find a maximal cycleless sub-
graph of G (or how do we find a subgraph of G containing the maximum
number of elements and no cycles)? In a nonoriented graph a maximal circuit-
less subgraph is called a tree and the complement of a tree is called a chord-set
(1). Analogously, we will define a set of elements g. of G (a subgraph of &
of G) to be a chord-set of G if G @ g. is cycleless. If there exists no chord-set
g.’ such that N(g.) < N(g.), then g. is called a minimal chord-set. In such
terms, the problem is to find a minimal chord-set of a directed graph G. In
general, there is more than one minimal chord-set in a directed graph. Lemma i
suggests an efficient procedure for finding a chord-set of G which may (or
may not) be a minimal chord-set. The procedure may be outlined as follows.
Let G be a given directed graph. If there are any compact vertices in G remove
all elements in G which are incident at these vertices. Continue this process
successively until the resulting graph G, has no compact vertices. Let
pi = di/min (d;*, di”) be called the parity index of the vertex v; in G,. Let 7i
be the maximum of the parity indices of the vertices of G,. Let the correspond-
ing vertex in Gy be v;. Let I(v;) = I+(0;) U I-(v), (I*(vy) NI~(@) =0}
where I'*(v;) is the subset of I(r;) which contains elements with arrowhea
toward vertex v; and I—(v,) is the subset of I (v;) which contains elements with
arrowheads away from v;. Let subgraph I*(v;) be defined as follows:

Py = [ECOTHT N )] ST
(), i N[I+*e)1> NI-@)]

Remove I*(v;) from G;. The subgraph I*(»;) is part of the desired chord-set
Fn _the remaining graph G, ® I*(v;), vertex v; is compact and all elements
incident at v; are removed. If there are any other compaect vertices, remove
elements incident at these vertices. Finally, there is found a graph G: Wlfl
has no compact vertices. Search for a vertex 1 in G, with maximum parits:
then 7*(v:) (defined as I*(2;)) is the second part of the desired chord-set-
C:)ntmue this process until the graph is reduced to a null graph. The < ey
@) UI*() U --- = g. is a chord-set, because the vertices of G @ B2
successfully compact, and therefore, G @ g. is cycleless. Unfortunately, the
above process gives a chord-set which is not necessarily a minimal ﬁhﬂ_rd'se"
= sufﬁ.c} ent condition for a chord-set g. to be a minimal chord-set of G is that
there is a set of N(g.) element disjoint cycles (i.e., no two cycles have 23
element in common) such that each element in g. is in one of these ?Yf'es'
The above condition is not necessary, that is, it is possible that g. is 8 i
chord-set of G but the number of disjoint cycles in @ is less than N80 . 5

A cut-set S; of a directed graph G is a minimal set of elements of G whic
vfhen removed from G increases the number of components of G (1)-Ar z
Ve set, I(v), is also considered to be a cut-set, in such a case the isolst
vertex is considered a component of G. Let S; = S+ U S = 8¢ @ 57 (1.4
SHFN S = 0), where S;+ and 8; are two subsets of cut-sew

" This problem was originally suggested by J. P, fthaBellTalePh”w
tories—see Seshu and Reed (1), page 200, f7 R Henya

e

¥

[}
4
|
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sets S;* and S;~ are distinguished from each other by picking an arbitrary
orientation for the cut-set and then the subset of elements that have the same
orientations as the cut-set are denoted by S;* and the remaining elements
(if any) in S; are denoted by S;—. Let the subgraph S;* be defined as

S* — Si+: if N(S."") < N(Sn—)
Sy {Sr, if  N@SH> NS

Theorem 6: A necessary condition for a chord-set g. of directed graph G
to be a minimal chord-set is that for every cut-set S; in G

N(S: N g) < N(8:7).

Proof: Assume that g, is a minimal chord-set but there exists a cut-set
8;in G such that
N(S:Ng)> N(SH).

Since S, is a cut-set, every cycle in G that contains an element of S; must also
contain an element of S;*. Then, every cycle in G that contains an element of
8:M g. must also contain an element of S;*. Therefore, replacing the 91.1b-
gaph S; N g in g by S* must result in another chord-set gy te,
&' =g ®S;MNg @ S*is also a chord-set. However, since we assumed that
N_(S-' Ng)> N(S*), N(g’') < N(g.) which proves that g could not be a
minimal chord-set, hence the theorem.

The following example will illustrate how the result of Theorem 6 may be
used to reduce the number of elements in a chord-set. Consider the directed
gaph of Fig. 2. The elements a, b, ¢, d together form a chord-set g. of the
directed graph of Fig. 2. Chord-set g. could have been obtained by the process

ribed in this section. Consider the cut-set S; consisting of elements a, &, F,f
of the directed graph of Fig. 2. Since N'(g. N S:) = 2> N(8H =1, according
0 Theorem 6, g. is not minimal and g. may be reduced to g’ = & © & ns:
N8:* = bed which is a minimal chord-set ; because there exists in the directed
&raph of Fig. 2 three element disjoint cycles.

C°M!uaions and Further Problems

. The author hopes that this paper has demons'ﬁl'iit’e',j St num!)er g:-'
iieresting problems arise in the study of the degree pairs s VEl:tlﬁeﬁ.
ected graphs, and that a few of these problems are . o phymcalf illf;
tificance, A number of unsolved problems were Sugges.md iy bOdytzd b
Paper. A problem of some physical significance (which was suggeé find i
*r% (1,9) in connection with axiomatics) is: Given a dmet&d e % nnlii v
if subgraph g of G such that for every pair of dnstmct_"eﬂ;;e : ih fron;
there ig g directed path from v; to v; in G, there is also.a dm s theo-
"7, in g. Herz has shown that if G is cyeleless, then g is umaue. So?l‘iarecmd
™ical problems that may deserve attention are: Suppose g1 W:j ah rd-sets
%&lﬂinimal chord-set g, how can we find other minima c ?
"Uﬂﬁﬁunamy, e beahownthatthecondiﬁmdwﬁ'nﬁmnt for &
ord et 40 be & minimal chord-set.
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in G? Under what cireumstances is the minimal chord-set unique (i.e., G has
only one minimal chord-set)? The problem of unique realizability (which has
Peen considered for the non-oriented case in (8)) of a set of non-negative
integer pairs as a directed graph is also an interesting and unsolved problem.

Appendix

A graph is a collection of two types of entities, elements (branches, ares)
a.nd'vmices (nodes, end-points). Each element e(v;, v;) is connected befween
(incident at) a pair vertices »; and v; (v;  v,). A graph g is said to be a subgraph
of G_if elements (branches) of g are in G. Every subgraph contains all of the
vertices which are associated with its elements. The complement of a subgraph
is a subgraph g which contains all of the elements of G which are noting
‘°$ether with every vertex associated with these elements. A directed (or 80
oriented) graph G is a graph G in which every element has an assigned direction,
1.€., given a graph @, if we place an arrowhead on each element of G, we obtains
directed graph G. In a directed graph an element e(v;, ;) is connected be-
tween vertices »; and v; and has an arrowhead toward v;. A directed edgedrai
(or a chain) is a set of elements (a subgraph of G) that can be ordered in the
form e(vi, v), (v, v4), - - -, €(vy, v,) €0y, v,). If the vertices v, v, vy, 3l U
are all distinet the chain is called a directed path from v; to v,. If the vertices
Zjy Uy, * -+, Uy, 0, are distinet but »; = v, then the directed chain is called 3 eyl
(or a directed circuit).
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OceaNoGrAPHICAL ENGINEERING, by R. L.
Weigel. 532 pages, diagrams and illustra-
tions, 84 X 11 in. Englewood Cliffs, N. J.,
Prentice-Hall, Inc. 1964. Price, $18.00

This book is a welcome addition to a very
rapidly expanding branch of engineering in
which, until now, no standard reference work
has appeared. Professor Weigel has drawn
upon his extensive experience as an industrial
consultant, as well as teacher of courses in
hydraulics, coastal engineering, and design of
hydraulic structures, to compile this extensive
v.olume of facts and figures, theory and prac-
tice relating to engineering in an ocean en-
vironment. Much of the material presented
could otherwise only have been obtained at
great effort by plowing through the profes-
sional literature in widely disparate disci-
?[mes. An important feature of this volume
s the author's comments based on his exper-
lence which serves to unify this mass of
heterogeneous material into a comprehensive
text and reference work.

Of nineteen chapters, eleven deal specific-
:I].V with waves and wave action, while others
reat the general characteristics of the ocean
“nvironment and the physical and chemical
Processes which control it. Somewhat curi-
ously, only two chapters deal with engineering
x :h*-‘;“one on functional design and the other
e mooring and anchoring of floating ob-

- This lack of engineering emphasis stems
:;’tte-(f;f&b:-biy f.rom the limitations in the
oy t_h art in modern practice. Only
Bology b:e past ten or fifteen years has tech-
opid n cunﬁ_-onted with the problem of
2 ftmr:gtmd I.n&mtaining complex engineer-
s ctures in the sea, and the successful
i ati(lllulee which ha.w? so far been developed
o Margely empirical and often confined

gr“o)l?“ﬂ&r}' Ppractice.
o a!tfeﬁ_@l!r Weigel has arranged his material
mg!ltforward and perspicuous manner.
usely illustrated with diagrams comparing
imm‘“ of theory and experiment, he has
makiy _many reference tables and graphs

\BE it easy to interpolate values for a
Mmm"ﬂm problem. This work also includes

The t references.

Mi::thnr‘a int.(_mtion to present material
tompromise between a textbook and

engineering reference may, however, lead to
some confusion in its use for either purpose.
For instance, the sections dealing with the
mathematical theory of waves contain a great
deal of material of questionable use to the
practicing engineer, while the serious student
of wave theory would more profitably refer to
the original papers for comprehensive de-
velopments. Moreover, it is often unclear
which of the many formulas presented apply
best to a given situation for lack of qualifica-
tion of their limits of validity. Nevertheless,
the author has accomplished a monumental
job in bringing together a large amount of
factual and theoretical information that will
undoubtedly find its widest application among
those students of the subject who already
possess a sound working knowledge of wave
mechanics. They will find in this encyclopedic
treatment the specific formulation or piece of
information they seek.

All in all, Oceanographical Engincering is an
impressive undertaking likely to exist as a
prineipal reference work for many years.

Witntam G. Vax Dory

Seripps Institution of Oceanography
University of California,

La Jolla, Calif.

Texsors IN ELECTRICAL ENGINEERING, by J.
W. Lynn. 216 pages, disgrams, illustrations,
6 % 9 in. New York, St. Martin’s Press,
Tne., 1964, Price, $10.50.

According to the Preface, the present book
is written to give graduate students and re-
search workers in electrical machine dynamics
a survey of Gabriel Kron's applieation of t.?.n-
sors, and to describe the methods in which
circuits, fields, and electrie machmery are be-
ing united in one mathematieal discipline.

There are seven chapters and four ap-

{ deals very briefly with
d Matrices.” The reader
will have to consult other textbooks fnr a
more complete knowledge on these anb;ef:u::
Chapter 2, “Kron's Network \nalym,
then follows by introducing the ""pr‘:mmve
network,"” #“grthogonal networks, ‘tms-. °
formations,” and "tenaon!:" Le Corl_;u.ﬂgi:
book (Ref. lO)m:j’bemldwdalm;md:
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