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Vol. 26, No. 1, January 1974

ON THE EXISTENCE OF GRAPHS WITH> PRESCRIBED DEGREES
AND CONNECTIVITY*

S. L. HAKIMIt

Abstract. Given a set 6 = {d,,d,,---,d,_,} of positive integers and a positive integer p, the
necessary and sufficient conditions are presented for existence of a p-connected n-vertex graph (which
allows parallel edges but no self-loops) whose vertex degrees are d, d,, - - -, d,_,. Some related prob-
lems are discussed.

1. Introduction. A graph, denoted by G(V, E) or simply G, consists of a set
V = {vg,vy, ", v,_1} Of vertices and a set E = {ey,e;, - -, e,_,} of edges.
With each edge e, € E, there is associated a pair of distinct vertices v; and v;e V.
Such an edge may be represented by the unordered pair (v;,v)). If ¢, = (v;,v)),
then e, is said to be incident at v; and v;, and v; and v; are called adjacent vertices in
G. If two edges, say e, and ¢, € E, have the same unordered pair representation, say
(v;,v;), then they are called parallel edges. A graph may or may not have parallel
edges. Following Harary [1], we call a graph with parallel edges a multigraph but
reserve the word “unigraph” for those graphs which do not have parallel edges.
In a multigraph, it is implicitly assumed that parallel edges are distinguishable
from one another although they have the same unordered pair representations.

A graph g(V', E') is called a subgraph of G(V,E) if E' < E and V' = V. Let
g = g(V', E') be a subgraph of G; the degree of vertex v;e V' with respect to g,
denoted by di(g), is the number of edges of g incident at v;. For each pair of distinct
vertices v, and v € V, a path between v, and v, in G, denoted by p(v,, v,), is a sequence
of edges (v,, Vx1)(Uk1, Vk2) - - - (Ui, Us) Of G Where all vertices in the sequence are
distinct. In the above path, the set of vertices {vy;, vy, -+ , Uk} is the set of non-
terminal vertices of p(v,, vs). Two paths p,(v,,v,) and p,(v,, v) in G are said to be
nonintersecting if their sets of nonterminal vertices are disjoint. Let us define
p,s(G) to be equal to the maximum number of nonintersecting paths between
v, and v, in G with the stipulation that if v, and v, are adjacent in G, then at most one
of these paths is edge (v,, v;). The connectivity of G, denoted by p(G), is

1) p(G) = min - p(G).

vy and vs€
U F g

Let G(V, E) be given. Let X < V. By G — X, we mean the subgraph g(V’, E')
of G,where V' = V — X and E' = {(v;,v;) € Elv; and v; € V'}. We define p(G — X)
to be equal to min p, (G — X), where the minimum is taken over all v, and v, e V',
v, # v,. Let X, < V be a subset of V with the smallest cardinality such that
p(G — X,) = 0. Then by Menger’s theorem [1], p(G) = |X,|, where | X,| is the
cardinality of X . A graph G is p-connected, if p(G) = p.
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Let 6 = {dy,d,, -+, d,—,} be a set of nonnegative integers and assume
dg<dy <---=<d,_,. A graph G(V,E), with V = {vy, v, -, v,_}, realizes § if
d(G)=d;fori =0,1,2,---, n — 1, and such a set § is said to be realizable and G
is a realization of 4. It is known that [2], [3] § is realizable if and only if S(6)
= Y""+d;is even and S(6) = 2d,_,.

This paper presents a complete solution to the following problem: Given a
realizable set § and a positive integer p, what are the necessary and sufficient
conditions for existence of a p-connected realization of 6? A simple procedure for
construction of the desired graphs is described. Also it is easy to find a realization
of 6 with maximum connectivity.

Suppose we are given a set 6 which is realizable as a unigraph [1], [2], [4], [5]
and a positive integer p. We may be asked : is there a p-connected unigraph realiza-
tion of 6? This problem is more difficult. Results for p < 3 are available [1], [6].
We close the paper by discussing this problem and some practical variations of it.

2. The main result. Two special cases of the problem for p =1 and p =2
were solved previously. Since the general theorem (Theorem 3) does not cover the
special cases, we begin this section by stating these known results.

THEOREM 1 (Senior [3] and Hakimi [2]). Let 6 = {dy,d, -+ ,d,_,} be a
given realizable set of integers with d; < d,., for i=0,1,---,n — 2. Then,  is
realizable as a 1-connected graphifand only ifd, 2 1and S(8) = Y725 d; = 2(n — 1).

THEOREM 2 (Hakimi [2]). Let 6 = {dy,d,, -, d,_,} be a given realizable
set of integers with d; < d;,, for i =0,1,---,n — 2. Then, 6 is realizable as a
2-connected graph if and only if n > 2,dq =2, and S(0) = 2d,_, + 2(n — 2).

The main result of this paper is stated as follows.

THEOREM 3. Let 6 = {d,,d,, --,d,_,} be a given realizable set of integers
withd, < d;. fori=0,1,---,n — 2, and p = 3. Then, ¢ is realizable as a p-con-
nected graph if and only if p <n—1,dy = p,and S(0) =2 2d,_, + (n — 1)(p — 1).

Proof. The necessity is proved as follows. Suppose G(V, E) is a p-connected
realization of §. By the definition of connectivity, p cannot exceed n — 1. Also
do(G) = dy = p, because otherwise, p,;(G) < p, and G would not be p-connected.
By Menger’s theorem, p(G — {v,_;}) = p — 1. But the number of edges in
G — {v,_} is equal to (1/2)(3f= ¢ d;) — d,_, which must be at least (1/2)(n — 1)
-(p — 1). This implies the necessity of S(0) = 2d,_, + (n — 1)(p — 1).

The sufficiency is proved in two parts. Part (A): S(0) — 2d,_, = (n — 2)p.
Part B): m— DN(p—1)=S(©0)—2d,_, <(n—2)p. Since p<n—1,n—1)
-(p — 1) < (n — 2)p. Therefore, the above two parts are valid and together exhaust
all possibilities. By [x], we mean the integral part of real number x.

Part (A): S(0) — 2d,_, = (n — 2)p. We first construct a unigraph G(V, E,)
in three steps as follows. :

Step (a). Ifi —j=1,2,---,[p/2lmodn and 0 < i,j < n — 1, then

(v;,v;)€ E;.

Step (b). If pisoddandj =i+ [(n + 1)/2lmodrnandi=0,1,---, [n/2] — 1,
then

(via vj)EEl'
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Step (¢). If p is odd and n is odd, then

(Vpy21> Un—1 JEE,.
It can be shown (Harary [7] and Hakimi [8]) that the graph G, = G(V, E,)
as constructed by the above procedure is p-connected. Furthermore, it can be
seen that

@

d(G,) = p+1, ifpandnareoddandi=n—-1,
e otherwise.

Consider the set of integers 6* = {d§,d¥%, ---, df_,}, where df = d; — d(G,)
fori=0,1,---,n — 1. We would like to show that 6* is realizable as a graph
G,(V,E,). To do this, we first note that d¥ = 0 for i =0,1,---, n — 1, because
ifd,=pfori=0,1,---,n — 1, then both p and n cannot be odd. Also we have
d¥< d¥ fori =0,1,---,n — 2,except whenn and p are both odd. If bothnand p
are odd, then it is possible that d¥_, > d¥ |, in which case d¥_, =d¥_; + 1.
Since S(6%) = Y-, (d; — d{(G,)) = S(0) — 2|E,|, where |E,| is the number of
edges in G, S(6*) is an even number. Finally, to prove 6* is realizable, we must
show that S(6*) = 2 max (d¥_,,d¥_,). We note that max (d}_,,d¥_;) < d,_, — p.
This is because, if p and n are not both odd, then max(d}_,,d} |) =d}_,
=d,_, — p; on the other hand, if p and n are both odd, then max (d}_,,dy_,)
<d*_,+1=d,_,—(+ 1)+ 1=d,_; — p. Therefore, we need only to show
that S(6*) = 2(d,_, — p). Since S(6*) = S(0) — (n — 1)p — d,_1(G;), we must
show that

©) 8(6) — (n — Vp — d,—1(Gy) 2 2Ad,— — D),
or
) S(6) — 2d,-, 2 (n — 2)p + d,—(G,) — p.

If both p and n are not odd, then d,_ (G,) = p, hence (4) is implied by the hypoth-
esis of Part (A). If both p and n are odd, then d,,_ ;(G;) = p + 1 and (4) becomes

&) 8(0) — 2d,—y 2 (n—2p + 1.

But since S(5) — 2d,_, is even and no less than (n — 2)p which is odd, (5) holds.
This ends the proof of the existence of G,(V, E,) which realizes 6*. The proof of
Part (A) is complete by noting that the graph G(V, E; U E,), obtained by super-
imposing G, and G,, is a p-connected realization of 4.

Part (B). (n — )(p — 1) < S(6) — 2d,_, < (n — 2)p. Let us pick integer r
such that S(6) — 2d,_; = pn — p — r. Comparing this equality with the hypothesis
of Part (B), we see that p < r < n — 1. Let us define the set 6* = {d§,d¥, ---, d¥_}
with d* =d, — pfori=0,1,---,n— 2 and d¥_, = d,_; — r. By definition of
r, we have

n—1
(6) 2 di—2d,_y=(n—Dp—r
i=0

which may be rewritten as

n—2

0 Y —p)=dyy—r.

i=0
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However (7), by definition of 6*, implies
n—2

@) Y df =df_y
i=0

Equation (8) and the fact that d; = p for i =0, 1, ---, n — 1 immediately imply
that 6* is realizable as a graph, say G,(V, E,). If the set of n integers d(p, )
={p,p, -+, p,r} is realizable as a p-connected graph G,(V, E(p,r)), then G(V, E,
U E(p,r)) would be a p-connected realization of 5. Thus all that is left to prove is
to show that &(p, r) is realizable as a p-connected graph. We note here that é(p, r)
is realizable, because S(é(p,r)) = (n — 1)p + r = S(6) — S(6*) which is even, and
since p = 3 and r < n — 1, S(&(p, r)) = 2r. The realizability of é(p, r) as a p-con-
nected graph is established in the next section.

3. Basic lemma. The main result of this section is to prove the following
lemma which would complete the proof of Theorem 3.

LemMA. Let 8(p,¥) = {p,p, -+, p,r} be a realizable set of n integers with
p=3andp <r Zn— 1. Then, §(p, r) is realizable as a p-connected unigraph.

It should be noted that the above lemma holds even if r = p for p = 2, but
this is a known result 7], [8] and the method of construction, for this case, is given
in Part (A) of the proof of Theorem 3. Before we give a proof of the lemma, as
stated, we describe an algorithm for the construction of the desired unigraph,
denoted by G(V, E(p, r)). Then, we prove two “assertions’ about the algorithm
which will pave the way for a proof of the lemma.

For the remainder of this section, we represent the set of vertices
V ={vy,0y, -, v,_1} of G by the set of integers {0,1,2,---,n — 1}, that is,
vertex v; is represented by integer ,0 < i £ n — 1. By j = a, we mean j modulo
(n — 1) = a. The algorithm is divided into three cases. These cases together cover
all possibilities. We assume # < n — 1; the case when r = n — 1 will be covered
separately. For each case, the algorithm is completed in three steps.

Case 1. p is even, then r is even.

Step (a). f0<ij<n-—2andi—j=1,2,---, [(p — 1)/2], then (i, j)e E(p,r).

Step (b). Ifj=i+ [(n—2)/2)andi = 0,1, ---, [r/2] — 1, then (i,n — 1) and

(j,n — 1)e E(p, r).

Step (c). f j=i+ [(n—2)y2)and i =[r/2], [r/2] + 1,---, n — 2, then (i,))
e E(p, ). )

Case 2. p is odd, n — 1 is even, then r is even.

Step (a). The same as Step (a) in Case 1.

Step (b). Ifj =i+ [(n— 1)2]Jandi=0,1,---, [r/2] — 1, then (i,n — 1) and
(j’ n— 1) € E(p’ r)'

Step (¢). If j=i+ [(n—1)/2) and i = [r/2],[r/2] + 1, -+, [(n — 1)/2] — 1,
then (i, j) € E(p, ).

Case 3. pis odd and n — 1 is odd, then r is odd.

Step (a). The same as Step (a) in Case 1.

Step (b). The same as Step (b) in Case 2.

Step(c). fj=i+[(n—1)2]and i =[r/2], [r/2] +1,---,[(n — 1)/2] — 1,
then (i, j)e E(p, r), and (n — 2,n — 1) € E(p, r).
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Figure 1 illustrates examples of graphs constructed by this algorithm for each
of the above three cases. About this algorithm, we state and prove the following
two elementary assertions.

ASSERTION 1. Let &(p,r) = {p,p,-- -, p,r} be a realizable set of n integers with
3<p<r<n-—1 Then the graph G(V, E(p, 1)), constructed by the algorithm,
realizes é(p,r), i.e, d(G) =p fori =0,1,--- ,n — 2 and d,_(G) =r.

Proof. We first consider Case 1. After completion of Step (a), we have a graph
G'(V,E'(p,r)) with d(G)=p—-2for i=0,1,---,n—2 and d,_,(G’) = 0. By
the end of Step (b), we obtain G” with

p—1 fori=0,1,---,[r/2] — 1,

p—2 fori={[r/2),[r/2]+ L, ---,[(n—2)2] -1,

d(G")=<p—1 fori=[(n—-2)2],[(n—2)/2]1+1,---,[(n—2)2]+[r/2] - 1,
p—2 fori=[(n—-2)2]+[r2,[(n—-2)/2]+ 2]+ 1,---,n—2,
L7 fori=n-—1.

This is because [r/2] — 1 < [(n — 2)/2] and [(n — 2)/2] + [r/2] — 1 <n — 2. To
see that by the end of Step (c) we obtain the desired graph, we proceed as follows.
We note that if in Step (b), instead of placing (i,n — 1) and (j,n — 1)e E(p, 1),
we would place (i, j) € E(p, r), then we could combine Steps (b) and (c) into a single
step which would require (i,j) € E(p, r) if (i — j) = [(n — 2)/2]. Such a modifica-
tion of the algorithm would result in construction of a graph G* with d(G*)
=pfori=0,1,---,n — 2andd,_,(G*) = 0. However, this modification merely
affects the degree of vertex n — 1, which was already equal to r at the end of Step
(b). This ends the proof for Case 1.

Now, let us consider Case 2. By the end of Step (a), we have a graph G', with
d(G)=p—1fori=0,1,---,n — 2 and d,_,(G) = 0. By the end of Step (b),
we obtain G” with

p fori=0,1,---,[r/2] -1,
p—1 fori=1[r/2),[r/2]+1,---,[(n—1)2] -1,

d(G") =\ p fori=[(n—1)/2L[n— 121+ 1,---,[(n—1)2] + [r/2] - 1,
p—1 fori=[n—1)2]+[r2),[((n—12]+[r/2]+1,---,n—2,
r fori=n-1. )

At the end of Step (c), we have the desired graph, because [(n — 1)/2] — 1
+[(n—1)/2]=n-2.

To prove the assertion for Case 3, we note that by the end of Step (b), we have
a graph G” with d(G") being the same as in (10), except d,_(G") = r — 1. Since
n—1lisodd, [(n—1)2] — 1+ [(n — 1)/2) = n — 3 and, as a result, at the end
of the first part of Step (c) all degrees are correct except the degrees of vertices
n— 2 and n — 1. These deficiencies are corrected by placing (n — 2,n — 1)
€ E(p, r). This completes the proof of Assertion 1.

ASSERTION 2. Let &(p,¥) = {p,p, -+, p,r} be a realizable set of n integers
with3 < p <r < n — 1. Let G(V, E(p, r)) be the graph obtained using the algorithm
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which by Assertion 1 realizes 6(p,r). Let X = V with|X| < p be such that p(G — X)
= 0. Then there exist integers x, s, t € [0,n — 2] with s and t # 0, which define the
disjoint sets of vertices

Vo={x+Lx+2,--,x+s}, Vp={x+s+1Lx+s+2,---,x+s+7},

Vo={x+s+n+1,x+s+n+2,---,x+s+n+1t},

Vi={x+s+n+t+L,x+s+n+t+2, -, x+s+n+t+mn}

such that V, UV, = X, wheren =[(p — 1)2]and s + t + 2n = n — 1.

Proof. p(G — X) = 0 implies that there exist vertices i and je V' — X such that
pi{G — X) = 0. Since |X| < p and r > p, one of the “components” of G — X
cannot be the vertex n — 1, hence i and j may be picked such that neither isn — 1.
Without loss of generality, assume 0 < i < j < n — 2. We first claim that if there
does not exist an integer y,i < y < j, such that V; = {y+1Ly+2,-,y+mn}
< X, then there exists a path between i and j in G — X which passes through only
vertices in B = {k|i < k < j} — X. We show the existence of this path as follows.
Let z be the largest integer in B which is reachable from i using only vertices in B.
If z = j, there is nothing left to prove. If 0 < j — z < w,thenedge (j,z)isin G — X
and the existence of the desired path is established. If j — z > =, then consider
the set of vertices Vj = {z+ 1,2+ 2,---,z + ©}. By assumption, Vi & X thus
for some c,z + ce V; and z + ¢4 X. This implies that edge (z,z + c) exists in
G — X which contradicts the fact that z was the largest integer in B reachable from
i. Thus, we conclude that there exists an integer y,i < y < j, such that {y + 1,
y+2,--+,y + n} = X. Similarly, one can establish the existence of a path between
i and j in G — X passing through only vertices in D = {k|j <k <n -2, or
0 <k i} — X unless there exists an integer ge D such that V; = {q + I,
q+2,-,q+n; < X. We note that V; and V; are disjoint. If we pick x, s and
te[O,n —2]such that x=q+n, y=x +5,and g=x + s + n + ¢, then the
assertion is established. Also since ¢ + n = x, we have x + s+ n+t + n = x,
ors+2n+t=n-—1.

Proof of the lemma. Let §(p,r) = {p,p,---,p,r} be a realizable set of n
integers with 3 < p < r < n — 1. We would like to prove that d(p, r) is realizable
as a p-connected graph.

We first assume r = n — 1. Let G,(V;, E,) with V; = {0,1,---,n — 2} be a
(p — 1)-connected graph which realizes the set of n — 1 integers {p — 1,p — 1,
.-+, p — 1}.(This can be done using the construction procedure given in Part (A)
of the sufficiency proof of Theorem 3. It should be noted that since (n — 1)(p — 1)
+ 2(n — 1) = S(é(p, 7)) is even, both n — 1 and p — 1 cannot be odd. As a result
the degrees of all vertices in the graph obtained by that construction procedure
will be equal to p — 1.) We construct the desired graph G(V, E(p,r)) from G, as
follows: V=V, U {n — 1} and E(p,r) = E; U {(i,n — 1)lie V;}. It is clear that
G(V, E(p, 1)) = G realizes &(p, r). To prove G is p-connected, we note that if i and
j€V,,then there are p — 1 disjoint paths in G, between i and j. In addition to these
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p — 1 paths, there is in G the path (i,n — 1)(n — 1, ) which gives a total of p
disjoint paths between i and j. Therefore, p,(G) = p for all i and j,i # j, and
0 <i,j = n — 2.Since vertex n — 1 is adjacent to all other vertices in G, p;,(G) = p
for all i and j,i # j, and 0 < i,j < n — 1. This ends the proof of the special case,
r=n-—1.

Now let us assume p <r <n — 1. Let G(V, E(p,r)) = G be constructed by
the algorithm. By Assertion 1, G realizes &(p, r). We need to show that G is also
p-connected. Suppose otherwise; then, by Menger’s theorem, there exists a set
X < Vwith |X| < p such that p(G — X) = 0. This, by Assertion 2, implies that
there exist integers x,s,t€[0,n — 2] with s and ¢ 0, which define the disjoint
sets of vertices: V,={x+ 1, x+2,---,x+s}, V={x+s+L,x+s+2,
ceyx+s+n,V={x+s+n+L,x+s+n+2,---,X+s+n+t},and
Vi={x+s+rn+t+L,x+s+n+t+2, -, x+s+nan+t+na with
V,UV,c X, where s + 2n + t =n — 1 and 7 = [(p — 1)/2]. Since the cardin-
ality of ¥, U V, is equal to 2, X can contain one vertex not in ¥, U V; only if p
is even. Thus, we shall consider two cases.

Suppose p is odd ; then V, U V, = X. As was stated in the proof of Assertion
2, i and j may be picked such that p;(G — X) = 0 and neither i nor j is equal to
n — 1. Then without loss of generality, assume ie V, and je V.. Note, since
V, UV, = X, that all vertices in V, (or V) are reachable from i (or j) in G — X,
repectively, by construction. We first claim that if « = x + [s/2] + 1€ V,, then
there existsan e, such that(a)y = x + s + n + g, e V,,and (b)y — a = [(n — 1)/2].
To prove the claim, we note that y — o = [(s + 1)/2] + n + &, — 1. With the
aid of the equality s + ¢ + 2n = n — 1, one can easily show that ife, = [t/2] + 1,
theny — a = [(n — 1)/2] except when s is odd and ¢ is even ; in that case, the choice
of &, = [t/2] would lead to the same result. In either case, | < ¢, < t, oryeV,. A
comparison of the above claim with Case 2 and Case 3 of the algorithm proves
that if y > « either («, y) € E(p,r) or (¢, n — 1) and (n — 1, y) € E(p, 7). In any case,
we havea pathfromitojin G — X. Thus, p,{(G — X) # 0, which proves the lemma
forodd pandy > a.If y < o, a similar proof would lead to the same contradiction.

Suppose p is even; then there is no more than one vertex u such that ue X
and u¢ V, U V,. We need only consider the largest set X ; thus assume u € X
— (Vs U V). As before, p(G — X) = 0 implies that p,(G — X) = 0 for some i and
5> 0=14,j<n— 2 Again, assume ie V,and je V,.

Ifu = n — 1, then by similar arguments as when p was odd, one can establish
the existence of aeV, and ye V, such that either y + [(n — 2)/2] = « or
a + [(n — 2)/2] = y. This proves that («, y) € E(p, ) and hence, there exists a path
fromitojin G — X. This contradicts p;(G — X) = 0, which proves the lemma.

If u # n — 1, then assume, without the loss of generality, that ue V,. All
vertices in V, — {u} are reachable from i in G — X and all vertices in V, are reach-
able from jin G — X. (If p = 4, then it is not obvious that all vertices in V, — {u}
are reachable from i. However, p = 4 implies |X| =3, or X = {u,x + 5 + I,
x + s+t + n+ I}. Also, one may pick any vertex in X to play the role of the
vertex u. This flexibility may be used to show that for some choice of u and V,, all
vertices in V, — {u} are reachable from i.) Let us first assume that & = x + [s/2
€V, and x + [s/2] # u. If we could prove that there exists ye V¥, such that
? + [(n — 2)/2] = «, then either (x, 7)€ E(p,7) or (¢,n — 1) and (n — 1,7) e E(p, r)
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and hence, there exists a path from i to j in G — X, which, as before, leads to a
contradiction. To do this we note that if y=x + n + s + [(¢t + 1)/2], then
y + [(n — 2)/2] = o unless both s and ¢ are even. When both s and ¢ are even,
if we pick y=x+4+7n+ s+ [t +1)/2] + 1, then y + [(n — 2)/2] = «. In either
case yeV,. Now, let us suppose x + [s/2] =u. In this case, we choose
a=x+[s/2]+ 1€V,. Then, we pick y=x + n + s + [(¢t + 1)/2] + 1 which
results in y + [(n — 2)/2] = o, unless both s and t are even, in which case
we pick y =x + m + s + [(t + 1)/2] + 2. However, in any case, ye V, only if
t > 2. Thus, we must consider the case when ¢ < 2 separately. If ¢t < 2, then
y=x+s+n+eel forl £e <t The reader can establish that

Gy =Ex+s+n+e+ [(n—2)2]eV,

and

wm=x+s+n+1—[n-2)/2eV,

where ¢ = tif p = n — 3; otherwise ¢ = 1. This in turn proves that (y, ;) € E(p, r)
and (y,n — 1) and (n — 1, ;)€ E(p,r), where i = 1 and j = 2 or vice versa. Since
either a; # u or a, # u, this would prove the existence of a path from i to j in
G — X which leads to a contradiction. This ends the proof of the lemma.

4. Further problems. Realizability of a set § = {d,,d,, -, d,} of non-
negative integers as the degrees of vertices of a unigraph was first considered by
Havel [4] and later by Hakimi [3]. But the most interesting result on this problem
is due to Erdos and Gallai [5]. Their result, as stated by Harary [1], is as follows.

Given a set of nonnegative integers 6 = {d,,d,, ---, d,} with d; = d;,, for
i=1,2,---,n— 1, then ¢ is realizable as a unigraph if and only if S(5) = Y 7_, d,
is even, and

) Ydi<rr—1)+ ) min(r,d) forallr,l <r<n-—1.
i=1

i=r+1

For the purpose of this discussion, (9) may more conveniently be expressed as
(10) 1Zd,-—(Zdi—lr(r—l)) gl Y o forallr, 1Sr=<n-1,
2.5 =1 2 2,5

where for each i,r + 1 £ i < n,
0 ifd,—r <0,
%“=Vd, —r ifd, —r>0.

The equivalence of (9) and (10) can be established by rewriting (10) as

Ydsrr—-1D+ ) (d-w)
i=1 i=r+1
and noting that d; — o; = min (r,d;)fori=r+ 1,---, n.
The problem of realizability of such a set of integers as a p-connected uni-
graph has been studied by Rao and Rao [6] for p < 3. The general solution to this
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problem has occupied much of this author’s time. This author felt he had a com-
plete proof of the following conjecture, but a flaw in a very long proof was found.
In any case, the evidence is strong that the conjecture is valid.

Conjecture. Let 6 = {d,,d,, ---,d,} be a given set of nonnegative integers
with d; =2 d;,.( fori =1,2,---, n — 1 which is realizable as a unigraph. (a) Then
0 is realizable as a d,-connected unigraph if and only if

n dn—1

1
(11) EZd.-— Y di—3d, - 1)d, - 2| zn—d,
i=1 i=1
(b) If (11) is not satisfied, then § is realizable as a (d, — 1)-connected unigraph.
The proof of the necessity of (11) is as follows. Let G(V, E) be a d,-connected
unigraph realization of 6. Then, G has (1/2) Y7, d; edges. Let

X ={v,05, ", 04—}

Then G — X must be 1-connected. But the number of edges in G — X is at most
/2)3r  di — (X% d; — (1/2)(d, — 1)(d, — 2)). This number must exceed the
minimum number of edges necessary to form a 1-connected graph with n — d, + 1
vertices. This establishes the necessity of (11).

It is instructive to compare (10) and (11). If in (10) we set r = d, — 1, then
the left-hand sides of (10) and (11) are identical. But when r = d, — 1, the right-
hand side of (10) is only guaranteed to be no less than (1/2)(n — d, + 1). This
indicates the fact that not every realizable  is realizable as a d,-connected graph.

It is interesting to note that there exist §’s which are realizable as p-connected
graphs but only realizable as (p — 1)-connected unigraphs. For example,
6=1{9,9,8,4,4,4,4,4,4,4, 4} is realizable as a 4-connected graph (Theorem 3)
but not realizable as a 4-connected unigraph, because § does not satisfy (11). A
3-connected unigraph realization of ¢ is shown in Fig. 2.

N\

Another variation of the above problem which is in fact more practical than

either of the problems considered in this paper is the following.
Given a set § = {d,,d,, ---, d,} of nonnegative integers, find the necessary
and sufficient conditions for the existence of a graph (or unigraph) G(V, E) with

Fi1G. 2
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V = {v,,0,, -, v,} which realizes é such that foralliandj,i # jand 1 £ i,j < n

= Tt

12 piG) = min (d;, d;).

A version of this problem with p;(G) being the “line-connectivity” [1]
between v; and v; has been solved by Chou and Frank [9]. We have some necessary
and some sufficient conditions for the existence of unigraphs realizing § which
satisfy (12), but the complete result seems to be out of reach.

Finally, the existence of unigraphs with prescribed degrees and line-connec-
tivity was studied by Edmonds [10].

Added in proof. Since the submission of this paper, Wang and Kleitman [11]
have developed a proof of the conjecture given here.
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