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Preface

Graph theory is a very popular area of discrete mathematics with not only
numerous theoretical developments, but also countless applications to prac-
tical problems. As a research area, graph theory is still relatively young, but
it is maturing rapidly with many deep results having been discovered over
the last couple of decades.

The theory of graphs can be roughly partitioned into two branches: the
areas of undirected graphs and directed graphs (digraphs). Even though both
areas have numerous important applications, for various reasons, undirected
graphs have been studied much more extensively than directed graphs. One
of the reasons is that undirected graphs form in a sense a special class of
directed graphs (symmetric digraphs) and hence problems that can be for-
mulated for both directed and undirected graphs are often easier for the
latter. Another reason is that, unlike for the case of undirected graphs, for
which there are several important books covering both classical and recent
results, no previous book covers more than a small fraction of the results
obtained on digraphs within the last 25 years. Typically, digraphs are consid-
ered only in one chapter or by a few elementary results scattered throughout
the book.

Despite all this, the theory of directed graphs has developed enormously
within the last three decades. There is an extensive literature on digraphs
(more than 3000 papers). Many of these papers contain, not only interesting
theoretical results, but also important algorithms as well as applications.
This clearly indicates a real necessity for a book, covering not only the basics
on digraphs, but also deeper, theoretical as well as algorithmic, results and
applications.

The present book is an attempt to fill this huge gap in the literature
and may be considered as a handbook on the subject. It starts at a level
that can be understood by readers with only a basic knowledge in university
mathematics and goes all the way up to the latest research results in several
areas (including connectivity, orientations of graphs, submodular flows, paths
and cycles in digraphs, generalizations of tournaments and generalizations
of digraphs). The book contains more than 700 exercises and a number of
applications as well as sections on highly applicable subjects. Due to the fact
that we wish to address different groups of readers (advanced undergraduate
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and graduate students, researchers in discrete mathematics and researchers
in various areas including computer science, operations research, artificial
intelligence, social sciences and engineering) not all topics will be equally
interesting to all potential readers. However, we strongly believe that all
readers will find a number of topics of special interest to them.

Even though this book should not be seen as an encyclopedia on directed
graphs, we included as many interesting results as possible. The book con-
tains a considerable number of proofs, illustrating various approaches and
techniques used in digraph theory and algorithms.

One of the main features of this book is the strong emphasis on algorithms.
This is something which is regrettably omitted in some books on graphs.
Algorithms on (directed) graphs often play an important role in problems
arising in several areas, including computer science and operations research.
Secondly, many problems on (directed) graphs are inherently algorithmic.
Hence, whenever possible we give constructive proofs of the results in the
book. ;From these proofs one can very often extract an efficient algorithm
for the problem studied. Even though we describe many algorithms, partly
due to space limitations, we do not supply all the details necessary in order
to implement these algorithms. The later (often highly non-trivial step) is a
science in itself and we refer the reader to books on data structures.

Another important feature is the vast number of exercises which not only
help the reader to train his or her understanding of the material, but also
complements the results introduced in the text by covering even more mate-
rial. Attempting these exercises (most of which appear in a book for the first
time) will help the reader to master the subject and its main techniques.

Through its broad coverage and the exercises, stretching from easy to
quite difficult, the book will be useful for courses on subjects such as (di)graph
theory, combinatorial optimization and graph algorithms. Furthermore, it
can be used for more focused courses on topics such as flows, cycles and
connectivity. The book contains a large number of illustrations. This will
help the reader to understand otherwise difficult concepts and proofs.

To facilitate the use of this book as a reference book and as a graduate
textbook, we have added comprehensive symbol and subject indexes. It is our
hope that the detailed subject index will help many readers to find what they
are looking for without having to read through whole chapters. In particular,
there are entries for open problems and conjectures. Every class of digraphs
which is studied in the book has its own entry containing the majority of pages
on which this class is treated. As sub-entries to the entry ‘proof techniques’
we have indexed different proof techniques and some representative pages
where the technique is illustrated.

Due to our experience, we think that the book will be a useful teaching
and reference resource for several decades to come.
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Highlights

In this book we cover the majority of the important topics on digraphs rang-
ing from quite elementary to very advanced ones. Below we give a brief outline
of some of the main highlights of this book. Readers who are looking for more
detailed information are advised to consult the list of contents or the subject
index at the end of the book.

Chapter 1 contains most of the terminology and notation used in this
book as well several basic results. These are not only used frequently in other
chapters, but also serve as illustrations of digraph concepts. Furthermore,
several applications of directed graphs are based on these elementary results.
One such application is provided in the last section of the chapter. Basic
concepts on algorithms and complexity can also be found in the chapter.
Due to the comprehensive subject and notation indices, it is by no means
necessary to read the whole chapter before moving on to other chapters.

Chapters 2 and 3 cover distances and flows in networks. Although the
basic concepts of these two topics are elementary, both theoretical and al-
gorithmic aspects of distances in digraphs as well as flows in networks are
of great importance, due to their high applicability to other problems on di-
graphs and large number of practical applications, in particular, as a powerful
modeling tool.

We start with the shortest path problem and a collection of classical algo-
rithms for distances in weighted and unweighted digraphs. The main part of
Chapter 2 is devoted to minimization and maximization of distance parame-
ters in digraphs. We conclude the chapter by the following applications: the
one-way street problem, the gossip problem and exponential neighbourhood
local search, a new approach to find near optimal solutions to combinatorial
optimization problems.

In Chapter 3 we cover basic, as well as some more advanced topics on
flows in networks. These include several algorithms for the maximum flow
problem, feasible flows and circulations, minimum cost flows in networks and
applications of flows. We also illustrate the primal-dual algorithm approach
for linear programming by applying it to the transportation problem. Al-
though there are several comprehensive books on flows, we believe that our
fairly short and yet quite detailed account of the topic will give the major-
ity of readers sufficient knowledge of the area. The reader who masters the
techniques described in this chapter will be well equipped for solving many
problems arising in practice.

Chapter 4 is devoted to describing several important classes of directed
graphs, such as line digraphs, the de Bruijn and Kautz digraphs, series-
parallel digraphs, generalizations of tournaments and planar digraphs. We
concentrate on characterization, recognition and decomposition of these
classes. Many properties of these classes are studied in more detail in the
rest of the book.
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In Chapter 5 we give a detailed account of results concerning the exis-
tence of hamiltonian paths and cycles in digraphs as well as some extensions
to spanning collections of paths and cycles, in particular, the Gallai-Millgram
theorem and Yeo’s irreducible cycle factor theorem. We give a series of nec-
essary conditions for hamiltonicity which ‘converges’ to hamiltonicity. Many
results of this chapter deal with generalizations of tournaments. The reader
will see that several of these much larger classes of digraphs share various nice
properties with tournaments. In particular the hamiltonian path and cycle
problems are polynomially solvable for most of these classes. The chapter il-
lustrates various methods (such as the multi-insertion technique) for proving
hamiltonicity.

In Chapter 6 we describe a number of interesting topics related to hamil-
tonicity. These include hamiltonian paths with prescribed end-vertices, pan-
cyclicity, orientations of hamiltonian paths and cycles in tournaments and
the problem of finding a strong spanning subdigraph of minimum size in a
strong digraph. We cover one of the main ingredients in a recent proof by
Havet and Thomassé of Rosenfeld’s conjecture on orientations of hamiltonian
paths in tournaments and outline a polynomial algorithm for finding a hamil-
tonian path with prescribed end-vertices in a tournament. We conclude the
chapter with a brief introduction of a new approach to approximation algo-
rithms, domination analysis. We illustrate this approach by applying results
on hamiltonian cycles in digraphs to the travelling salesman problem.

Connectivity in (di)graphs is a very important topic. It contains numerous
deep and beautiful results and has applications to other areas of graph theory
and mathematics in general. It has various applications to other areas of
research as well. We give a comprehensive account of connectivity topics in
Chapters 7, 8 and 9 which deal with global connectivity issues, orientations
of graphs and local connectivities, respectively.

Chapter 7 starts from basic topics such as ear-decompositions and the fun-
damental Menger’s theorem and then moves on to advanced topics such as
connectivity augmentation, properties of minimally k-(arc)-strong digraphs,
highly connected orientations of digraphs and packing directed cuts in di-
graphs. We describe the splitting technique due to Mader and Lovasz and
illustrate its usefulness by giving an algorithm, due to Frank, for finding a
minimum cardinality set of new arcs whose addition to a digraph D increases
its arc-strong connectivity to a prescribed number. We illustrate a recent ap-
plication due to Cheriyan and Thurimella of Mader’s results on minimally
k-(arc)-strong digraphs to the problem of finding a small certificate for k-
(arc)-strong connectivity. Many of the proofs in the chapter illustrate the
important proof technique based on the submodularity of degree functions in
digraphs.

Chapter 8 covers important aspects of orientations of undirected and
mixed graphs. These include underlying graphs of certain classes of digraphs.
Nowhere zero integer flows, a special case of flows, related to (edge-)colourings
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of undirected graphs is discussed along with Tutte’s 5-flow conjecture, which
is one of the main open problems in graph theory. The famous theorem by
Nash-Williams on orientations preserving a high degree of arc-strong con-
nectivity is described and the weak version dealing with uniform arc-strong
connectivities is proved using splitting techniques. Submodular flows form a
powerful generalization of circulations in networks. We introduce submodu-
lar flows and illustrate how to use this tool to obtain (algorithmic) proofs
of many important results in graph theory (including the Lucchesi-Younger
theorem and the uniform version of Nash-Williams’ orientation theorem). Fi-
nally we describe in detail an application, due to Frank, of submodular flows
to the problem of orienting a mixed graph in order to maintain a prescribed
degree of arc-strong connectivity.

Chapter 9 deals with problems concerning (arc-)disjoint paths and trees
in digraphs. We prove that the 2-path problem is N"P-complete for arbitrary
digraphs, but polynomially solvable for acyclic digraphs. Linkings in planar
digraphs, eulerian digraphs as well as several generalizations of tournaments
are discussed. Edmonds’ theorem on arc-disjoint branchings is proved and
several applications of this important result are described. The problem of
finding a minimum cost out-branching in a weighted digraph generalizes the
minimum spanning tree problem. We describe an extension, due to Frank, of
Fulkerson’s two-phase greedy algorithm for finding such a branching.

Chapter 10 describes results on (generally) non-hamiltonian cycles in di-
graphs. We cover cycle spaces, polynomial algorithms to find paths and cycles
of ‘logarithmic’ length, disjoint cycles and feedback sets, including a scheme of
a solution of Younger’s conjecture by Reed, Robertson, Seymour and Thomas,
applications of cycles in digraphs to Markov chains and the even cycle prob-
lem, including Thomassen’s even cycle theorem. We also cover short cycles in
multipartite tournaments, the girth of a digraph, chords of cycles and Adédm’s
conjecture. The chapter features various proof techniques including several
algebraic, algorithmic, combinatorial and probabilistic methods.

Digraphs may be generalized in at least two different ways, by consider-
ing edge-coloured graphs or by considering directed hypergraphs. Alternating
cycles in 2-edge-coloured graphs generalize the concept of cycles in bipartite
digraphs. Certain results on cycles in bipartite digraphs, such as the charac-
terization of hamiltonian bipartite tournaments, are special cases of results
for edge-coloured complete graphs. There are useful implications in the other
direction as well. In particular, using results on hamiltonian cycles in bi-
partite tournaments, we prove a characterization of those 2-edge-coloured
complete graphs which have an alternating hamiltonian cycle. We describe
an application of alternating hamiltonian cycles to a problem in genetics.
Generalizations of the classical theorems by Camion, Landau and Rédei to
hypertournaments are described.

Chapter 12 contains some topics that were not covered in other chapters.
These include: an elementary proof of Seymour’s second neighbourhood con-
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jecture in the case of tournaments, various types of orderings of the vertices
of digraphs of paired comparisons, kernels, a recent proof by Galvin of the
Dinitz conjecture on list colourings using kernels in digraphs, and homomor-
phisms (an elegant generalization of colouring and also a useful vehicle for
studying the borderline between P and A/P-complete problems). We describe
basic concepts on matroids as well as questions related to the efficiency of ma-
troid algorithms. We give a brief account on simulated annealing, a broadly
applicable meta-heuristic which can be used to obtain near optimal solutions
to optimization problems, in particular, on digraphs. We discuss briefly how
to implement and tune simulated annealing algorithms so that they may
produce good solutions.

Technical remarks

We have tried to rank exercises according to their expected difficulty. Marks
range from (—) to (++) in order of increasing difficulty. The majority of
exercises have no mark, indicating that they are of moderate difficulty. An
exercise marked (—) requires not much more than the understanding of the
main definitions and results. A (4+) exercise requires a non-trivial idea, or
involves substantial work. Finally, the few exercises which are ranked (++)
require several deep ideas. Inevitably, this labelling is subjective and some
readers may not agree with this ranking in certain cases. Some exercises have
a header in bold face, which means that they cover an important or useful
result not discussed in the text in detail.

We use the symbol O to denote the end of a proof, or to indicate that
either no proof will be given or is left as an exercise.

A few sections of the book require some basic knowledge of linear program-
ming, in particular the duality theorem. A few others require basic knowledge
of probability theory.

We would be grateful to receive comments on the book. They may be sent
to us by email to jbj@imada.sdu.dk. We plan to have a web page containing
information about misprints and other information about the book, see

http://www.imada.sdu.dk /Research/Digraphs/
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1. Basic Terminology, Notation and Results

In this chapter we will provide most of the terminology and notation used
in this book. Various examples, figures and results should help the reader to
better understand the notions introduced in the chapter. The results covered
in this chapter constitute a collection of simple yet important facts on di-
graphs. Most of our terminology and notation are standard. Therefore, some
readers may proceed to other chapters after a quick look through this chapter
(unfamiliar terminology and notation can be clarified later by consulting the
indexes supplied at the end of this book).

In Section 1.1 we provide basic terminology and notation on sets and
matrices. Digraphs, directed pseudographs, subdigraphs, weighted directed
pseudographs, neighbourhoods, semi-degrees and other basic concepts of di-
rected graph theory are introduced in Section 1.2. Isomorphism and basic
operations on digraphs are considered in Section 1.3. In Section 1.4, we in-
troduce walks, trails, paths and cycles, and study some properties of tourna-
ments and acyclic digraphs. Basic notions and results on strong and unilateral
connectivity are considered in Section 1.5. Undirected graphs are formally in-
troduced in Section 1.6; in this section we also characterize eulerian directed
multigraphs, digraphs with out-branchings (in-branchings) and graphs having
strong orientations. Hypergraphs and mixed graphs are defined in Section 1.7.
Several important classes of directed and undirected graphs are introduced
in Section 1.8. Some basic notions on algorithms are given in Section 1.9.
The last section is devoted to a solution of the 2-satisfiability problem using
some properties of digraphs.

1.1 Sets, Subsets, Matrices and Vectors

For the sets of real numbers, rational numbers and integers we will use R, Q
and Z, respectively. Also,let ZL ={z€ Z: z2>0}and Zy={z€ Z: z>
0}. The sets R4, Ro, Q4+ and Qg are defined similarly.

The main aim of this section is to establish some notation and terminology
on finite sets used in this book. We assume that the reader is familiar with
the following basic operations for a pair A, B of sets: the intersection AN B,
the union AU B (if AN B = (), then we will sometimes use A + B instead
of AU B), and the difference A\B (often denoted by A — B). Sets A and



2 1. Basic Terminology, Notation and Results

B are disjoint if AN B = (. We will often not distinguish between a single
element set (singleton) {z} and the element x itself. For example, we may
write AUD instead of AU{b}. The Cartesian product of sets X1, Xo,..., X,
is X1 x Xogx...x X, ={(z1,22,...,2p) : 2, €X;, 1 <i<p}

For sets A, B, A C B means that A is a subset of B; A C B stands for
A C Band A # B. A set B is a proper subset of a set A if B C A and
B # . A collection Sy, Ss,...,S5; of (not necessarily non-empty) subsets of
a set S is a subpartition of S if S;NS; =P foralll < i # 5 <t A
subpartition S1,Ss,...,S5; is a partition of S if U!_;S; = S. We will often
use the name family for a collection of sets. A family F = {X1, Xs,..., Xn}
of sets is covered by a set S if SN X; # @ for every i = 1,2,...,n. We
say that S is a cover of F. For a finite set X, the number of elements in
X (i.e. its cardinality) is denoted by |X|. We also say that X is an | X|-
element set (or just an |X|-set). A set S satisfying a property P is a
maximum (maximal) set with property P if there is no set S’ satisfying P
and |S’| > |S] (S € 5’). Similarly, one can define minimum (minimal) sets
satisfying a property P.

In this book, we will also use multisets which, unlike sets, are allowed
to have repeated (multiple) elements. The cardinality |S| of a multiset M
is the total number of elements in S (including repetitions). Often, we will
use the words ‘family’ and ‘collection’ instead of ‘multiset’.

For an m X n matrix S = [s;;] the transposed matrix (of S) is the
n x m matrix ST = [t] such that t;; = s;; for every i = 1,2,...,m and
j=1,2,...,n. Unless otherwise specified, the vectors that we use are column-

vectors. The operation of transposition is used to obtain row-vectors.

1.2 Digraphs, Subdigraphs, Neighbours, Degrees

A directed graph (or just digraph) D consists of a non-empty finite set
V(D) of elements called vertices and a finite set A(D) of ordered pairs of
distinct vertices called arcs. We call V(D) the vertex set and A(D) the
arc set of D. We will often write D = (V, A) which means that V and A
are the vertex set and arc set of D, respectively. The order (size) of D is
the number of vertices (arcs) in D; the order of D will be sometimes denoted
by |D|. For example, the digraph D in Figure 1.1 is of order and size 6;
V(D) = {u,v,w,z,y,2}, AD) = {(u,v), (u,w), (w,u), (z,u), (z,2), (y,2) }-
Often the order (size, respectively) of the digraph under consideration is
denoted by n (m, respectively).

For an arc (u,v) the first vertex w is its tail and the second vertex v is its
head. We also say that the arc (u,v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices are adjacent,
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/H
N
IS

o

Figure 1.1 A digraph D

i.e. u is adjacent to! v and v is adjacent to u. If (u,v) is an arc, we also say
that u dominates v (or v is dominated by u) and denote it by u—v. We
say that a vertex u is incident to an arc a if w is the head or tail of a. We
will often denote an arc (z,y) by xy.

For a pair X,Y of vertex sets of a digraph D, we define

(X, Y)p={2ye A(D): z€ X,yeY},

ie. (X,Y)p is the set of arcs with tail in X and head in Y. For example, for
the digraph H in Figure 1.2, ({u,v},{w,z})g = {vw}, {w, 2z}, {u,0})g =
{wv}, and ({u,v},{u,v})g = {uv,vu}.

H H'
Figure 1.2 A digraph H and a directed pseudograph H'.

For disjoint subsets X and Y of V(D), X—Y means that every vertex of
X dominates every vertex of Y, X=Y stands for (Y, X)p = 0, and X—Y
means that both X—Y and X=Y hold. For example, in the digraph D of
Figure 1.1, u—{v, w}, {z,y, 2}={u,v,w} and {z,y}—=z.

The above definition of a digraph implies that we allow a digraph to have
arcs with the same end-vertices (for example, uv and vu in the digraph H
in Figure 1.2), but we do not allow it to contain parallel (also called mul-
tiple) arcs, that is, pairs of arcs with the same tail and the same head, or

! Some authors use the convention that z is adjacent to y to mean that there is
an arc from x to y, rather than just that there is an arc xy or yz in D, as we
will do in this book.
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loops (i.e. arcs whose head and tail coincide). When parallel arcs and loops
are admissible we speak of directed pseudographs; directed pseudographs
without loops are directed multigraphs. In Figure 1.2 the directed pseudo-
graph H’ is obtained from H by appending a loop zz and two parallel arcs
from u to w. Clearly, for a directed pseudograph D, A(D) and (X,Y)p (for
every pair X,Y of vertex sets of D) are multisets (parallel arcs provide re-
peated elements). We use the symbol pp(z,y) to denote the number of arcs
from a vertex z to a vertex y in a directed pseudograph D. In particular,
wp(z,y) = 0 means that there is no arc from z to y.

We will sometimes give terminology and notation for digraphs only, but we
will provide necessary remarks on their extension to directed pseudographs,
unless this is trivial.

Below, unless otherwise specified, D = (V, A) is a directed pseudograph.
For a vertex v in D, we use the following notation:

Ni(w)={ueV —v: vue A}, Nyj(v)={weV —v: wv e A)}.

The sets N} (v), Np(v) and Np(v) = Nj(v) U Npy(v) are called the
out-neighbourhood, in-neighbourhood and neighbourhood of v. We
call the vertices in Nj}(v), Ny (v) and Np(v) the out-neighbours, in-
neighbours and neighbours of v. In Figure 1.2, N (u) = {v,w}, N (u) =
{v}, Ny (u) = {v,w}, Nf,(w) = {v, 2}, Ny, (w) = {u, 2}, Ni\,(2) = {w}. For
aset W CV, we let

NEW) = | Npw) - W, Nyw) = | Npw) - w.
weW weWw

That is, N/, (W) consists of those vertices from V — W which are out-
neighbours of at least one vertex from W. In Figure 1.2, Nj;({w, z}) = {v}
and Ny ({w, z}) = {u}.

For a set W C V, the out-degree of W (denoted by dj;(W)) is the num-
ber of arcs in D whose tails are in W and heads are in V — W, i.e. dj,(W) =
|(W,V —=W)p|. The in-degree of W, d, (W) = |(V —W, W)p|. In particular,
for a vertex v, the out-degree is the number of arcs, except for loops, with tail
v. If D is a digraph (that is, it has no loops or multiple arcs), then the out-
degree of a vertex equals the number of out-neighbours of this vertex . We call
out-degree and in-degree of a set its semi-degrees. The degree of W is the
sum of its semi-degrees, i.e. the number dp (W) = d5(W) + d,(W). For ex-
ample, in Figure 1.2, dj; (u) = 2,dy; (u) = 1,dy (v) = 3, df, (w) = 2,d, (w) =
4,d}(2) = dyp.(2) = 1,d5({u,v,w}) = di ({u,v,w}) = 1. Sometimes, it is
useful to count loops in the semi-degrees: the out-pseudodegree of a vertex
v of a directed pseudograph D is the number of all arcs with tail v. Simi-
larly, one can define the in-pseudodegree of a vertex. In Figure 1.2, both
in-pseudodegree and out-pseudodegree of z in H' are equal to 2.

The minimum out-degree (minimum in-degree) of D is

§T(D) = min{d}(x) : x € V(D)} (6~ (D) =min{d,(z): = € V(D)}).
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The minimum semi-degree of D is
§°(D) = min{6™(D),6~(D)}.

Similarly, one can define the maximum out-degree of D, AT (D), and the
maximum in-degree, A~ (D). The maximum semi-degree of D is

A%(D) = max{A*(D), A~(D)}.

We say that D is regular if 6°(D) = A%(D). In this case, D is also called
§°(D)-regular.

For degrees, semi-degrees as well as for other parameters and sets of di-
graphs, we will usually omit the subscript for the digraph when it is clear
which digraph is meant.

Since the number of arcs in a directed multigraph equals the number of
their tails (or their heads) we obtain the following very basic result.

Proposition 1.2.1 For every directed multigraph D,

S d@= Y dt@) =AD).

z€V (D) zeV (D)

O

Clearly, this proposition is valid for directed pseudographs if in-degrees
and out-degrees are replaced by in-pseudodegrees and out-pseudodegrees.

A digraph H is a subdigraph of a digraph D if V(H) C V(D), A(H) C
A(D) and every arc in A(H) has both end-vertices in V(H). If V(H) = V(D),
we say that H is a spanning subdigraph (or a factor) of D . The digraph L
with vertex set {u, v, w, z} and arc set {uv, uw,wz} is a spanning subdigraph
of H in Figure 1.2. If every arc of A(D) with both end-vertices in V(H) is in
A(H), we say that H is induced by X = V(H) (we write H = D(X)) and
call H an induced subdigraph of D. If L is a non-induced subdigraph of D,
then there is an arc zy such that =,y € V(L) and 2y € A(D)— A(L). Such an
arc zy is called a chord of L (in D). The digraph G with vertex set {u,v,w}
and arc set {uw, wv,vu} is a subdigraph of the digraph H in Figure 1.2; G is
neither a spanning subdigraph nor an induced subdigraph of H. The digraph
G along with the arc uv (which is a chord of G) is an induced subdigraph of
H. For a subset A’ C A(D) the subdigraph arc-induced by A’ is the digraph
D(A") = (V' A"), where V' is the set of vertices in V which are incident with
at least one arc from A’. For example, in Figure 1.2, H({zw, uw}) has vertex
set {u,w,z} and arc set {zw,uw}. If H is a subdigraph of D, then we say
that D is a superdigraph of H.

It is trivial to extend the above definitions of subdigraphs to directed
pseudographs. To avoid lengthy terminology, we call the ‘parts’ of directed
pseudographs just subdigraphs (instead of, say, directed subpseudographs).
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For vertex-disjoint subdigraphs H, L of a digraph D, we will often
use the shorthand notation (H,L)p, H—L, H=L and H—L instead of
(V(H),V(L))p, V(H)=V (L), V(H)=V (L) and V(H)—V(L).

A weighted directed pseudograph is a directed pseudograph D along
with a mapping ¢ : A(D)—R. Thus, a weighted directed pseudograph is
a triple D = (V(D), A(D),c). We will also consider vertex-weighted di-
rected pseudographs, i.e. directed pseudographs D along with a mapping
c¢: V(D)—R. (See Figure 1.3.) If a is an element (i.e. a vertex or an arc)
of a weighted directed pseudograph D = (V (D), A(D), ¢), then c(a) is called
the weight or the cost of a . An (unweighted) directed pseudograph can
be viewed as a (vertex-)weighted directed pseudograph whose elements are
all of weight one. For a set B of arcs of a weighted directed pseudograph
D = (V, A, ¢), we define the weight of B as follows: ¢(B) = ) . c(a). Sim-
ilarly, one can define the weight of a set of vertices in a vertex-weighted di-
rected pseudograph. The weight of a subdigraph H of a weighted (vertex-
weighted) directed pseudograph D is the sum of the weights of the arcs in
H (vertices in H). For example, in the weighted directed pseudograph D in
Figure 1.3 the set of arcs {zy, yz, zz} has weight 9.5 (here we have assumed
that we used the arc zz of weight 1). In the directed pseudograph H in Figure
1.3 the subdigraph U = ({u, z, 2z}, {zz, zu}) has weight 5.

2 y(2.5)
Yy
5 3.5
1
0.3 x(2) z(0) u(3)
D H

Figure 1.3 Weighted and vertex-weighted directed pseudographs (the vertex
weights are given in brackets).

1.3 Isomorphism and Basic Operations on Digraphs

Suppose D = (V, A) is a directed multigraph. A directed multigraph obtained
from D by deleting multiple arcs is a digraph H = (V, A’) where zy € A’
if and only if pup(xz,y) > 1. Let zy be an arc of D. By reversing the
arc xy, we mean that we replace the arc xy by the arc yx. That is, in
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the resulting directed multigraph D’ we have up:(x,y) = up(z,y) — 1 and
po (y,x) = po(y,z) + 1.

A pair of (unweighted) directed pseudographs D and H are isomorphic
(denoted by D = H) if there exists a bijection ¢ : V(D)—V(H) such that
up(x,y) = pa(p(z), d(y)) for every ordered pair x,y of vertices in D. The
mapping ¢ is an isomorphism. Quite often, we will not distinguish between
isomorphic digraphs or directed pseudographs. For example, we may say that
there is only one digraph on a single vertex and there are exactly three
digraphs with two vertices. Also, there is only one digraph of order 2 and size
2, but there are two directed multigraphs and six directed pseudographs of
order and size 2 (Exercise 1.4). For a set of directed pseudographs ¥, we say
that a directed pseudograph D belongs to ¥ or is a member of ¥ (denoted
D € W) if D is isomorphic to a directed pseudograph in ¥. Since we usually
do not distinguish between isomorphic directed pseudographs, we will often
write D = H instead of D = H for isomorphic D and H.

In case we do want to distinguish between isomorphic digraphs, we speak
of labeled digraphs. In this case, a pair of digraphs D and H is indistin-
guishable if and only if they completely coincide (i.e. V(D) = V(H) and
A(D) = A(H)). In particular, there are four labeled digraphs with vertex set
{1,2}. Indeed, the labeled digraphs ({1,2},{(1,2)}) and ({1,2},{(2,1)}) are
distinct, even though they are isomorphic.

The converse of a directed multigraph D is the directed multigraph H
which one obtains from D by reversing all arcs. It is easy to verify, using
only the definitions of isomorphism and converse, that a pair of directed
multigraphs are isomorphic if and only if their converses are isomorphic
(Exercise 1.9). To obtain subdigraphs, we use the following operations of
deletion. For a directed multigraph D and a set B C A(D), the directed
multigraph D — B is the spanning subdigraph of D with arc set A(D) — B.
If X C V(D), the directed multigraph D — X is the subdigraph induced by
V(D) - X,ie. D— X = D(V(D) — X).For a subdigraph H of D, we define
D—H = D-V(H). Since we do not distinguish between a single element set
{z} and the element z itself, we will often write D — x rather than D — {z}.
If H is a non-induced subdigraph of D, we can construct another subdigraph
H' of D by adding a chord a of H; H = H + a.

Let G be a subdigraph of a directed multigraph D. The contraction of
G in D is a directed multigraph D/G with V(D/G) = {g}U(V(D) - V(G)),
where g is a ‘new’ vertex not in D, and up,¢(z,y) = pup(x,y),

poja(.9) = Y pp(x,v), ppclg.y)= > wpv,y)
veV(Q) veV(G)

for all distinct vertices z,y € V(D) — V(G). (Note that there is no loop in
D/G.) Let G1,Gs,...,G; be vertex-disjoint subdigraphs of D. Then

D/{G1,Ga,...,G}y = (...((D)G1)/G3)...)/Gy.
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Clearly, the resulting directed multigraph D/{G1,Ga,...,G¢} does not de-
pend on the order of Gy, s, ...,G;. Contraction can be defined for sets of
vertices, rather than subdigraphs. It suffices to view a set of vertices X as a
subdigraph with vertex set X and no arcs. Figure 1.4 depicts a digraph H
and the contraction H/L, where L is the subdigraph of H induced by the
vertices y and z.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the
following operation called composition. Let D be a digraph with vertex
set {v1,va,...,0,}, and let Gy, Gs, ..., G, be digraphs which are pairwise
vertex-disjoint. The composition D[G1,Ga,...,G,] is the digraph L with
vertex set V(G1) UV (G2) U ... UV(G,) and arc set (U} ;A(G;)) U{g:g; :
g € V(Gi),9; € V(G,),viv; € A(D)}. Figure 1.5 shows the composition
TG, Gy, G,], where G, consists of a pair of vertices and an arc between
them, G has a single vertex, GG, consists of a pair of vertices and the pair of
mutually opposite arcs between them, and the digraph T is from Figure 1.4.

y y4
x z x@
.
v v
H T=H/L, L=H{{y,z})
Figure 1.4 Contraction.
Ge
G

Figure 1.5 TG4, Ge, Gy

Let @ be a set of digraphs. A digraph D is #-decomposable if D is a
member of & or D = H|[S,...,S] for some H € & with h = |V(H)| > 2



1.3 Isomorphism and Basic Operations on Digraphs 9

and some choice of digraphs Si,5s,...,S) (we call this decomposition a @-
decomposition). A digraph D is called totally #-decomposable if either
D € & or there is a $-decomposition D = H[Sh,...,Sy] such that h > 2, and
each S; is totally #-decomposable. In this case, if D ¢ &, a ¢-decomposition
of D, #-decompositions S; = H;[Si1,. .., Sin,] of all S; which are not in @, -
decompositions of those of S;; which are not in @, and so on, form a sequence
of decompositions which will be called a total #-decomposition of D. If
D € @, we assume that the (unique) total #-decomposition of D consists of
itself. oL

To illustrate the last paragraph of definitions, consider ¥ = {K1, K2, D2},
where K 1 is the digraph with a single vertex, IH(Q is the (complete) digraph
with two vertices and two arcs, and Dy has two vertices {1,2} and the arc
(1,2). Construct the digraph D by deleting from the digraph in Figure 1.5 the

pair of arcs going from Gy to G,. The digraph D is totally ¥-decomposable.
Indeed, D = Ds[D5,Q)] is a W-decomposition of D, where @ is the sub-

digraph of D induced by V(G,) U V(G,). Moreover, @ = DQ[IH(17I?2] is
a W-decomposition of ). The above two decompositions form a total &-
decomposition of D.

If D = H[Sy,...,S,] and none of the digraphs Si,...,S, has an arc,
then D is an extension of H. Distinct vertices z,y are similar if x,y have
the same in- and out-neighbours in D — {x,y}. For every i = 1,2,...,h, the
vertices of S; are similar in D. For any set @ of digraphs, $** denotes the
(infinite) set of all extensions of digraphs in @, which are called extended
&-digraphs. We say that & is extension-closed if = ¢°*t,

The Cartesian product of a family of digraphs D1, Do, ..., D,, denoted
by D1 x Dy X ... x D, or [[\", D;, where n > 2, is the digraph D having

V(D) =V (Dy) x V(Dg) x ... x V(D)
= {(w1,wa,...,wp): w; € V(D;),i=1,2,...,n}

and a vertex (uy,us,...,u,) dominates a vertex (v1,vs,...,v,) of D if and
only if there exists an r € {1,2,...,n} such that u,v, € A(D,) and u; = v;
for all i € {1,2,...,n} — {r}. (See Figure 1.6.)

The operation of splitting a vertex v of a directed multigraph D con-
sists of replacing v by two (new) vertices u,w so that uw is an arc, all arcs
of the form xv by arcs zu and all arcs of the form vy by wy. The sub-
division of an arc uv of D consists of replacing uv by two arcs uw,ww,
where w is a new vertex. If H can be obtained from D by subdividing
one or more arcs (here we allow subdividing arcs that are already subdi-
vided), then H is a subdivision of D. For a positive integer p and a digraph
D, the pth power D? of D is defined as follows: V(D?) = V(D), z—y
in DP if x # y and there are k < p — 1 vertices 21,22 ..., 2, such that
x—2z1—29— ... —2zp—y in D. According to this definition D' = D. For ex-
ample, for the digraph H,, = ({1,2,...,n}h{(G,i+1): ¢ =1,2,...,n—1}),
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(2,b)
(1, ) X\
\ I »
1 3

(1,a) (3,a)

(3,b)

>

Q

D H DxH
Figure 1.6 The Cartesian product of two digraphs.

we have H2 = ({1,2,...,n},{(i,j): 1<i<j<i+2<n}U{(n—1,n)}).
See Figure 1.7 for the second power of a digraph.

N

D D?

Figure 1.7 A digraph D and its second power D?2.

Let H and L be a pair of directed pseudographs. The union H U L of H
and L is the directed pseudograph D such that V(D) = V(H) U V(L) and
up(x,y) = pa(x,y) + pr(z,y) for every pair z,y of vertices in V(D). Here
we assume that the function pg is naturally extended, i.e. pg(x,y) = 0 if at
least one of x,y is not in V(H) (and similarly for p1). Figure 1.8 illustrates
this definition.

1.4 Walks, Trails, Paths, Cycles and Path-Cycle
Subdigraphs

In the following, D is always a directed pseudograph, unless otherwise speci-
fied. A walk in D is an alternating sequence W = x1a1T2a2%3 . . . Tp_10_1Tk
of vertices x; and arcs a; from D such that the tail of a; is z; and the head
of a; is ;41 for every ¢ = 1,2,...,k — 1. A walk W is closed if ;1 = xy,
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b b b
e e
a c c f a ¢ f
d de——e g
d g
H L HUL

Figure 1.8 The union D = H U L of the directed pseudographs H and L.

and open otherwise. The set of vertices {x1, 22, ..., zx} is denoted by V(W);
the set of arcs {a1,aq9,...,ar_1} is denoted by A(W). We say that W is a
walk from 1 to x; or an (x1, xg)-walk. If W is open, then we say that the
vertex xp is the initial vertex of W, the vertex x; is the terminal vertex
of W, and x7 and xj are end-vertices of W. The length of a walk is the
number of its arcs. Hence the walk W above has length k—1. A walk is even
(odd) if its length is even (odd). When the arcs of W are defined from the
context or simply unimportant, we will denote W by zizs ... xg.

A trail is a walk in which all arcs are distinct. Sometimes, we identify
a trail W with the directed pseudograph (V (W), A(W)), which is a subdi-
graph of D. If the vertices of W are distinct, W is a path. If the vertices
T1,%2,...,Tk—1 are distinct, £ > 3 and x; = zg, W is a cycle. Since paths
and cycles are special cases of walks, the length of a path and a cycle is
already defined. The same remark is valid for other parameters and notions,
e.g. an (x, y)-path. A path P is an [z, y]-path if P is a path between z and
y, e.g. P is either an (x,y)-path or a (y,z)-path. A longest path (cycle) in
D is a path (cycle) of maximal length in D.

When W is a cycle and z is a vertex of W, we say that W is a cycle
through z. In a directed pseudograph D, a loop is also considered a cycle
(of length one). A k-cycle is a cycle of length k. The minimum integer k for
which D has a k-cycle is the girth of D; denoted by ¢g(D). If D does not have
a cycle, we define g(D) = oo. If g(D) is finite then we call a cycle of length
g(D) a shortest cycle in D.

For subsets X, Y of V(D), an (z,y)-path P is an (X,Y)-path if x € X,
y€Y and V(P)N (X UY) = {x,y}. Note that, if X N'Y # () then a vertex
x € XNY forms an (X,Y)-path by itself. Sometimes we will talk about
an (H, H')-path when H and H' are subdigraphs of D. By this we mean a
(V(H),V(H’))-path in D.

An (z1,2,)-path P = 2125 ... 2, is minimal if, for every (a1, z,)-path
Q, either V(P) = V(Q) or @ has a vertex not in V(P). For a cycle C =
Z1T2...TpT1, the subscripts are considered modulo p, i.e. , = x; for every s
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and ¢ such that ¢ = s mod p. As pointed out above (for trails), we will often
view paths and cycles as subdigraphs. We can also consider paths and cycles
as digraphs themselves. Let P, (én) denote a path (a cycle) with n vertices,
ie. B, = ({1,2,...,n},{(1,2),(2,3),...,(n—1,n)}) and C,, = P, + (n,1).

A walk (path, cycle) W is a Hamilton (or hamiltonian) walk (path, cy-
cle) if V(W) = V(D). A digraph D is hamiltonian if D contains a Hamilton
cycle; D is traceable if D possesses a Hamilton path. A trail W = z125 ...z
is an Euler (or eulerian) trail if A(W) = A(D), V(W) = V(D) and z1 = xx;
a directed multigraph D is eulerian if it has an Euler trail.

To illustrate these definitions, consider Figure 1.9.

T2 Ze6

x5 T4 x7

Figure 1.9 A directed graph H.

The walk x1xoxsx3T4T6x724T5x1 is a hamiltonian walk in D. The path
T5T1X2T3T4Tgx7 is hamiltonian path in D. The path zizoxsrsze is an
(z1,x6)-path and zexszzszexs is an (ze,xs)-trail. The cycle zixozsza2521
is a 5-cycle in D. The girth of D is 3 and the longest cycle in D has length 6.

Let W = x125...25, Q = Y192 ...y: be a pair of walks in a digraph D.
The walks W and @Q are disjoint if V(W) NV(Q) =  and arc-disjoint if
AW)NA(Q) = 0. If W and Q are open walks, they are called internally
disjoint if {zs, z3,..., 251} NV(Q) = 0 and V(W) N{y2,y3,...,yt—1} = 0.

We will use the following notation for a path or a cycle W = z125... 2
(recall that z1 = xy if W is a cycle):

W[l'ial'j] =TiTi41 ... Ty

It is easy to see that W{z;,z,] is a path for x; # x;; we call it the subpath
of W from z; to x;. If 1 < i < k then the predecessor of x; on W is the
vertex x;—1 and is also denoted by z; . If 1 <4 < k, then the successor of x;
on W is the vertex z;11 and is also denoted by xj Similarly, one can define
7t = (z7)* and 27~ = (2;)~, when these exist (which they always do if
W is a cycle).
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Also, foraset X CV(W), weset Xt ={zt: ze X}, X ={2": x€
X}, Xt = (XT)*, etc. We will normally use such notation when a vertex
2 under consideration belongs to a unique walk W, otherwise W is given as
a subscript, for example, m;rv

Proposition 1.4.1 Let D be a digraph and let x,y be a pair of distinct
vertices in D. If D has an (x,y)-walk W, then D contains an (z,y)-path P
such that A(P) C A(W). If D has a closed (x,x)-walk W, then D contains
a cycle C through x such that A(C) C A(W).

Proof: Consider a walk P from z to y of minimum length among all (z, y)-
walks whose arcs belong to A(W). We show that P is a path. Let P =
T1%2...Tk, where x = x1 and y = x. If 2; = x; for some 1 <@ < j <K,
then the walk Pz, 2;]P[xj41, ) is shorter than P; a contradiction. Thus,
all vertices of P are distinct, so P is a path with A(P) C A(W).

Let W = z125...2; be a walk from & = 2; to itself (x = zi). Since D
has no loop, zx_1 # 2zi. Let y1y2 ...y be a shortest walk from y; = 21 to
Yyt = 2x—1. We have proved above that y1ys ...y is a path. Thus, y1y2 ...y
is a cycle through y; = «. a

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well-
studied family of digraphs, in particular, due to the following important prop-
erties.

Proposition 1.4.2 FEvery acyclic digraph has a vertex of in-degree zero as
well as a vertex of out-degree zero.

Proof: Let D be a digraph in which all vertices have positive out-degrees.
We show that D has a cycle. Choose a vertex v; in D. Since d*(v1) > 0, there
is a vertex v such that v;—wvy. As d¥(v2) > 0, v2 dominates some vertex vs.
Proceeding in this manner, we obtain walks of the form vivs ... vg. As V(D)
is finite, there exists the least & > 2 such that vy = v; for some 1 < i < k.
Clearly, v;v;41 ...vg is a cycle.

Thus an acyclic digraph D has a vertex of out-degree zero. Since the
converse H of D is also acyclic, H has a vertex v of out-degree zero. Clearly,
the vertex v has in-degree zero in D. ad

Proposition 1.4.2 allows one to check whether a digraph D is acyclic: if D
has a vertex of out-degree zero, then delete this vertex from D and consider
the resulting digraph; otherwise, D contains a cycle.

Let D be a digraph and let xq,xo,...,x, be an ordering of its vertices.
We call this ordering an acyclic ordering if, for every arc z;z; in D, we
have i < j. Clearly, an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. On the other hand, the following holds:

Proposition 1.4.3 Fvery acyclic digraph has an acyclic ordering of its ver-
tices.
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Proof: We give a constructive proof by describing a procedure that generates
an acyclic ordering of the vertices in an acyclic digraph D. At the first step,
we choose a vertex v with in-degree zero. (Such a vertex exists by Proposition
1.4.2.) Set 21 = v and delete x; from D. At the ith step, we find a vertex u
of in-degree zero in the remaining acyclic digraph, set z; = u and delete z;
from the remaining acyclic digraph. The procedure has |V (D)| steps.
Suppose that z;—x; in D, but ¢ > j. As x; was chosen before z;, it
means that x; was not of in-degree zero at the jth step of the procedure; a
contradiction. a

The notion of complexity of algorithms is discussed in Section 1.9. In
Exercise 1.69, the reader is asked to show that the algorithm above can be
performed in time O(|V(D)| + |A(D)|).

Proposition 1.4.4 Let D be an acyclic digraph with precisely one verter x
(y) of in-degree (out-degree) zero in D. For every vertex v € V(D) there is
an (z,v)-path and a (v,y)-path in D.

Proof: A longest path starting at v (terminating at v) is certainly a (v, y)-
path (an (z,v)-path). O

An oriented graph is a digraph with no cycle of length two. A tourna-
ment is an oriented graph where every pair of distinct vertices are adjacent.
In other words, a digraph T" with vertex set {v1, ve,...,v,} is a tournament if
exactly one of the arcs v;v; and v;v; is in T for every i # j € {1,2,...,n}. In
Figure 1.10, one can see a pair of tournaments. It is an easy exercise to verify
that each of them contains a Hamilton path. Actually, this is no coincidence
by the following theorem of Rédei [625]. (In fact, Rédei proved a stronger
result: every tournament contains an odd number of Hamilton paths.)

Figure 1.10 Tournaments.

Theorem 1.4.5 FEvery tournament is traceable.

Proof: Let T be a tournament with vertex set {vy, va,...,v,}. Suppose that
the vertices of T" are labeled in such a way that the number of backward arcs,
i.e. arcs of the form v;v;, j > 4, is minimum. Then, v1vz ... v, is a Hamilton
path in 7. Indeed, if this is not the case, there exists a subscript ¢ < n such
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that v;v; 11 ¢ A(T). Thus, v;y1v; € A(T). However, in this case we can switch
the vertices v; and v;4+1 in the labelling and decrease the number of backward
arcs; a contradiction. a

A g-path-cycle subdigraph F of a digraph D is a collection of ¢ paths
Py,..., P, and t cycles Ci,...,C; such that all of Pi,..., P, C4,...,C; are
pairwise disjoint (possibly, ¢ = 0 or t = 0). We will denote F by F = P,U...U
P, UCy U...UC; (the paths always being listed first). Quite often, we will
consider g-path-cycle factors, i.e. spanning ¢-path-cycle subdigraphs. If
t =0, F is a g-path subdigraph and it is a g-path factor (or just a path-
factor) if it is spanning. If ¢ = 0 we say that F is a t-cycle subdigraph
(or just a cycle subdigraph) and it is a t-cycle factor (or just a cycle
factor) if it is spanning. In Figure 1.11, abc U defd is a 1-path-cycle factor,
and abcea U dfd is a cycle factor (or, more precisely, a 2-cycle factor).

a d

H

Figure 1.11 A digraph H.

The path covering number pc(D) of D is the minimum positive integer
k such that D contains a k-path factor. In particular, pc(D) = 1 if and only if
D is traceable. The path-cycle covering number pce(D) of D is the min-
imum positive integer k such that D contains a k-path-cycle factor. Clearly,
pce(D) < pe(D). The proof of the following simple yet helpful assertion on
the path covering number is left as an easy exercise to the reader (Exercise
1.34).

Proposition 1.4.6 Let D be a digraph, and let k be a positive integer. Then
the following statements are equivalent:

(i) pc(D) = k.

(i) There are k — 1 (new) arcs e, ...,ex—1 such that D + {e1,...,ex—_1} is
traceable, but there is no set of k — 2 arcs with this property.

(#ii) k — 1 is the minimum integer s such that addition of s new vertices to
D together with all possible arcs between V(D) and these new vertices
results in a traceable digraph.

O



16 1. Basic Terminology, Notation and Results

1.5 Strong and Unilateral Connectivity

In a digraph D a vertex y is reachable from a vertex z if D has an (z,y)-
walk. In particular, a vertex is reachable from itself. By Proposition 1.4.1,
y is reachable from x if and only if D contains an (x,y)-path. A digraph D
is strongly connected (or, just, strong) if, for every pair z,y of distinct
vertices in D, there exists an (x,y)-walk and a (y, z)-walk. In other words,
D is strong if every vertex of D is reachable from every other vertex of D.
We define a digraph with one vertex to be strongly connected. It is easy to
see that D is strong if and only if it has a closed Hamilton walk (Exercise
1.47). As C, is strong, every hamiltonian digraph is strong. The following
basic result on tournaments is due to Moon [570].

Theorem 1.5.1 (Moon’s theorem) [570] Let T be a strong tournament on
n > 3 vertices. For every x € V(T) and every integer k € {3,4,...,n}, there
exists a k-cycle through x in T. In particular, a tournament is hamiltonian
if and only if it is strong.

Proof: Let x be a vertex in a strong tournament 7' on n > 3 vertices.
The theorem is shown by induction on k. We first prove that T has a 3-
cycle through z. Since T is strong, both O = NT(x) and I = N~ (z) are
non-empty. Moreover, (O, I) is non-empty; let yz € (O, I). Then, xyzx is a
3-cycle through x. Let C' = xgx; ...z be a cycle in T with ¢ = x¢ = z; and
t€{3,4,...,n—1}. We prove that T has a (¢t + 1)-cycle through z.

If there is a vertex y € V(T) — V(C) which dominates a vertex in C
and is dominated by a vertex in C, then it is easy to see that there exists
an index 7 such that z;—y and y—x;41. Therefore, Clxg, 2;]yClx;y1, 2] is a
(t + 1)-cycle through x. Thus, we may assume that every vertex outside of
C either dominates every vertex in C' or is dominated by every vertex in C.
The vertices from V(T') — V(C') that dominate all vertices from V(C) form a
set R; the rest of the vertices in V(T') — V(C) form a set S. Since T is strong,
both S and R are non-empty and the set (S, R) is non-empty. Hence taking
sr € (S, R) we see that xosrClxa, xg] is a (t + 1)-cycle through z = z,. O

Corollary 1.5.2 (Camion’s theorem) [1/0] Every strong tournament is
hamiltonian. O

A digraph D is complete if, for every pair x,y of distinct vertices of D,
both xy and yz are in D. For a strong digraph D = (V,A), aset S C V
is a separator (or a separating set) if D — S is not strong. A digraph
D is k-strongly connected (or k-strong) if |[V| > k + 1 and D has no
separator with less than k vertices. It follows from the definition of strong
connectivity that a complete digraph with n vertices is (n — 1)-strong, but is
not n-strong. The largest integer k such that D is k-strongly connected is the
vertex-strong connectivity of D (denoted by «(D)). If a digraph D is not
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strong, we set (D) = 0. For a pair s,t of distinct vertices of a digraph D,
aset S C V(D) — {s,t} is an (s, t)-separator if D — S has no (s,t)-paths.
For a strong digraph D = (V, A), a set of arcs W C A is a cut (or a cut set)
if D — A is not strong. A digraph D is k-arc-strong (or k-arc-strongly
connected) if D has no cut with less than k arcs. The largest integer k such
that D is k-arc-strongly connected is the arc-strong connectivity of D
(denoted by A(D)). If D is not strong, we set A(D) = 0. Note that A(D) > k
if and only if d*(X),d™ (X) > k for all proper subsets X of V.

A strong component of a digraph D is a maximal induced subdigraph
of D which is strong. If Dy,...,D; are the strong components of D, then
clearly V(Dy) U...UV(D;) = V(D) (recall that a digraph with only one
vertex is strong). Moreover, we must have V(D;) NV (D,) = 0 for every i # j
as otherwise all the vertices V/(D;) U V(D;) are reachable from each other,
implying that the vertices of V(D;) UV (D;) belong to the same strong com-
ponent of D. We call V(D) U...UV(D,) the strong decomposition of
D. The strong component digraph SC(D) of D is obtained by contract-
ing strong components of D and deleting any parallel arcs obtained in this
process. In other words, if Dy,...,D; are the strong components of D, then
V(SC(D)) = {vi,v2,...,v} and A(SC(D)) = {vv; : (V(D;),V(D;))p #
(}. The subdigraph of D induced by the vertices of a cycle in D is strong,
i.e. is contained in a strong component of D. Thus, SC(D) is acyclic. By
Proposition 1.4.3, the vertices of SC(D) have an acyclic ordering. This im-
plies that the strong components of D can be labeled D,...,D; such that
there is no arc from D; to D; unless j < 4. We call such an ordering an
acyclic ordering of the strong components of D. The strong components
of D corresponding to the vertices of SC(D) of in-degree (out-degree) zero
are the initial (terminal) strong components of D. The remaining strong
components of D are called intermediate strong components of D.Figure
1.12 shows a digraph D and its strong component digraph SC(D).

It is easy to see that the strong component digraph of a tournament 7 is
an acyclic tournament. Thus, there is a unique acyclic ordering of the strong
components of T', namely, T7,...,T; such that T;—T)} for every ¢ < j. Clearly,
every tournament has only one initial (terminal) strong component.

A digraph D is unilateral if, for every pair x,y of vertices of D, either x
is reachable from y or y is reachable from z (or both). Clearly, every strong
digraph is unilateral. A path I3n is unilateral; hence, being unilateral is a
necessary condition for traceability of digraphs. The following is a character-
ization of unilateral digraphs.

Proposition 1.5.3 A digraph D is unilateral if and only if there is a
unique acyclic ordering D1, Do, ..., Dy of the strong components of D and
(V(D;),V(Djit1)) # 0 for everyi=1,2,...,t—1.

Proof: The sufficiency is trivial. To see the necessity, observe that if
(V(D;),V(D;x1)) = 0, then no vertex of V(D;11) is reachable from any ver-
tex of V(D;) and vice versa. Finally, observe that, if (V(D;),V(D;t+1)) # 0
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S1
S3
' %
S2
D SC(D)

Figure 1.12 A digraph D and its strong component digraph SC(D). The vertices
S1, 2, $3, 84, S5 are obtained by contracting the sets {a, b}, {c,d, e}, {f, g, h, i}, {j, k}
and {l, m,n} which correspond to the strong components of D. The digraph D has
two initial components, D1, Dy with V(D) = {a,b} and V(D32) = {¢,d, e}. It has
one terminal component D5 with vertices V(Ds) = {l,m,n} and two intermediate
components Ds, Dy with vertices V(D3) = {f, g, h,i} and V(D4) = {j, k}.

forevery:=1,2,...,t—1, then Dy, Do, ..., D; is the unique acyclic ordering
of the strong components of D, because SC(D) has a hamiltonian path (see
Exercise 1.18). O

1.6 Undirected Graphs, Biorientations and Orientations

An undirected graph (or a graph) G = (V, E) consists of a non-empty
finite set V' = V(G) of elements called vertices and a finite set E = E(G) of
unordered pairs of distinct vertices called edges. We call V(G) the vertex
set and FE(G) the edge set of G. In other words, an edge {z,y} is a 2-
element subset of V(G). We will often denote {z, y} just by zy. If zy € E(G),
we say that the vertices x and y are adjacent. Notice that, in the above
definition of a graph, we do not allow loops (i.e. pairs consisting of the same
vertex) or parallel edges (i.e. multiple pairs with the same end-vertices). The
complement G of a graph G is the graph with vertex set V(G) in which
two vertices are adjacent if and only if they are not adjacent in G.

When parallel edges and loops are admissible we speak of pseudographs;
pseudographs with no loops are multigraphs. For a pair u,v of vertices in
a pseudograph G, pg(u,v) denotes the number of edges between u and v.
In particular, ug(u,u) is the number of loops at u. For a pseudograph G, a
directed pseudograph D is called a biorientation of G if D is obtained from
G by replacing each edge {x,y} of G by either zy or yx or the pair zy and
yx (except for a loop zz which is replaced by a (directed) loop at x). Note
that different copies of the edge xy in G may be replaced by different arcs
in D. Thus if pg(z,y) = 3 then we may replace one edge {z,y} by the arc
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xy, another by the arc yx and the third by the pair of arcs xy and yx. An
orientation of a graph G is a biorientation of G which is an oriented graph
(i.e. digraph having no 2-cycle and no loops). Clearly, every digraph is a bior-
ientation and every oriented graph an orientation of some undirected graph.
The underlying graph UG(D) of a digraph D is the unique graph G such
that D is a biorientation of G. For a graph G, the complete biorientation

—

of G (denoted by @) is a biorientation D of G such that zy € A(D) implies
yx € A(D). A digraph D = (V, A) is symmetric if zy € A implies yz € A.
Clearly, D is symmetric if and only if D is the complete biorientation of some
graph. An oriented path (cycle) is an orientation of a path (cycle).

A pseudograph G is connected if its complete biorientation 5 is strongly

connected. Similarly, G is k-connected if 5 is k-strong. Strong components

g

in G are connected components, or just components in G. A bridge
in a connected pseudograph G is an edge whose deletion from G makes G
disconnected. A pseudograph G is k-edge-connected if the graph obtained
from G after deletion of at most £ — 1 edges is connected. Clearly, a con-
nected pseudograph is bridgeless if and only if it is 2-edge-connected. The
neighbourhood Ng(x) of a vertex x in G is the set of vertices adjacent to
x. The degree d(z) of a vertex x is the number of edges except loops having
x as an end-vertex. The minimum (maximum) degree of G is

0(G@) = min{d(x) : =€ V(G)} (A(G) =max{d(z) : z € V(G)}).

We say that G is regular (or §(G)-regular) if §(G) = A(G). A pair of
graphs G and H is isomorphic if 8‘ and ]? are isomorphic.

A digraph is connected if its underlying graph is connected. The notions
of walks, trails, paths and cycles in undirected pseudographs are analogous
to those for directed pseudographs (we merely disregard orientations). An
xy-path in an undirected pseudograph is a path whose end-vertices are =
and y. When we consider a digraph and its underlying graph UG(D), we
will often call walks of D directed (to distinguish between them and those
in UG(D)). In particular, we will speak of directed paths, cycles and trails.
An undirected graph is a forest if it has no cycle. A connected forest is a
tree. It is easy to see (Exercise 1.41) that every connected undirected graph
has a spanning tree, i.e. a spanning subgraph, which is a tree. A digraph
D is an oriented forest (tree) if D is an orientation of a forest (tree). A
subgraph T' of a (connected) digraph D is a spanning oriented tree of D
if UG(T) is a spanning tree in UG(D). A subdigraph T of a digraph D is an
in-branching (out-branching) if T is a spanning oriented tree of D and T
has only one vertex s of out-degree (in-degree) zero. The vertex s is the root
of T. (See Figure 1.13.) We will often use the notation F;" (F, ) to denote
an out-branching (in-branching) rooted at s in the digraph in question.

Since each spanning oriented tree R of a connected digraph is acyclic as
an undirected graph, R has at least one vertex of out-degree zero and at
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D H L

Figure 1.13 The digraph D has an out-branching with root r (shown in bold);
H contains an in-branching with root s (shown in bold); L possesses neither an
out-branching nor an in-branching.

least one vertex of in-degree zero (see Proposition 1.4.2). Hence, the out-
branchings and in-branchings capture the important cases of uniqueness of
the corresponding vertices. The following is a characterization of digraphs
with in-branchings (out-branchings).

Proposition 1.6.1 A connected digraph D contains an out-branching (in-
branching) if and only if D has only one initial (terminal) strong component.

Proof: We prove this characterization only for out-branchings since the sec-
ond claim follows from the first one by considering the converse of D.

Assume that D contains at least two initial strong components, D; and
Ds. Let T be an arbitrary spanning oriented tree in D. Then each of T'(Dy)
and T(D5) contains a vertex of in-degree zero. These vertices are of in-degree
zero in T as well because of the definition of initial strong components. Thus,
T is not an out-branching and D has no out-branchings. Therefore, if D has
an out-branching, D contains only one initial strong component.

Now we suppose that D contains only one initial strong component Dy,
and 7 is an arbitrary vertex of Di. We prove that D has an out-branching
with root r. In SC(D), the vertex x corresponding to D; is the only vertex
of in-degree zero and, hence, by Proposition 1.4.4, every vertex of SC(D) is
reachable from z. Thus, every vertex of D is reachable from r. We construct
an oriented tree T as follows. In the first step T" consists of . In Step i > 2,
for every vertex y appended to T in the previous step, we add to T" a vertex
z, such that y—z and z € V(T), together with the arc yz. We stop when no
vertex can be included in T'. Since every vertex of D is reachable from r, T
is spanning. Clearly, r is the only vertex of in-degree zero in 7. Hence, T is
an out-branching. a

The oriented tree T constructed in the proof of Proposition 1.6.1 is a
so-called BFS tree of D (see Chapter 2).
The following well-known theorem is due to Robbins.

Theorem 1.6.2 (Robbins’ theorem) [637] A connected graph G has a
strongly connected orientation if and only if G has no bridge.
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Proof: Clearly, if G has a bridge, G has no strong orientation. So assume
that G is bridgeless. Then every edge uv is contained in some cycle (see
Exercise 1.38). Choose a cycle C in G. Orient C as a directed cycle T;.
Suppose that 11,75, ..., T} are chosen and oriented in such a way that every
Tiy1 (1 <4 < k) is either a cycle having only one vertex in common with
T' =T, UTyU...UT; or a path with only initial and terminal vertices in
common with 7% If UG(T*) = G, then we are done as a simple induction
shows that T* is strong. Otherwise, there is an edge xy which is not in
UG(T*) such that z is in UG(T*). Let C be a cycle containing xy. Orient
C to obtain a (directed) cycle Z. Let z be a vertex in UG(T*) which is first
encountered while traversing Z (after leaving x). Then, set Ty41 = Z[z, 2].
The path (or cycle) T41 satisfies the above-mentioned properties. Since E(G)
is finite, after a certain number of iterations £ < m — 1 we have UG(T*) = G.

O

We formulate and prove the following well-known characterization of
eulerian directed multigraphs (clearly, the deletion of loops in a directed
pseudograph D does not change the property of D of being eulerian or other-
wise). The ‘undirected’ version of this theorem marks the beginning of graph
theory [225] (see the book [240] by Fleischner for a reprint of Euler’s original
paper and a translation into English, and see the book [119] by Biggs, Lloyd
and Wilson or Wilson’s paper [737] for a discussion of the historical record).

Theorem 1.6.3 (Euler’s theorem?) A directed multigraph D is eulerian
if and only if D is connected and d*(z) = d~(z) for every vertex x in D.

Proof: Clearly, both conditions are necessary. We give a constructive proof
of sufficiency by building an Euler trail T". Let T be initially empty. Choose
an arbitrary vertex z in D. Since D is connected, there is a vertex y € NT(xz).
Append x to T as well as an arc from z to y. Since d™ (y) = d™ (y), there is
an arc yz with tail y. Add both y and yz to T. We proceed similarly: after
an arc uv is included in T, we append v to T together with an arc a ¢ T
whose tail is v. Due to the condition d™(w) = d~(w) for every vertex w,
the above process can terminate only if the last arc appended to T is an arc
whose head is the vertex x and the arcs of D with tail x are already in T If
all arcs of D are in T', we are done. Assume it is not so. Since D is connected,
this means that T contains a vertex p which is a tail of an arc pg not in T.
‘Shift’ cyclically the vertices and arcs of T such that T" starts and terminates
at p. Add the arc pg to T and apply the process described above. This can
terminate only when the last appended arc’s tail is p and all arcs leaving p
are already in 7'. Again, either we are done (all arcs are already in T') or we
can find a new vertex to restart the above process. Since V(D) is finite, after
several steps all arcs of D will be included in T'. a

2 Euler’s original paper [226] only dealt with undirected graphs, but it is easy to
see that the directed case generalizes the undirected case (see also Exercise 1.44).
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The algorithm described in this proof can be implemented to run in
O(|V(D)| + |A(D)]) time (see Exercise 1.72). A generalization of the last
theorem is given in Theorem 11.1.2. For eulerian directed multigraphs, the
following stronger condition on out-degrees and in-degrees holds.

Corollary 1.6.4 Let D be an eulerian directed multigraph and let § # W C
V(D). Then, dt (W) =d~(W).

Proof: Observe that

D dt(w) = (W, W) +dY (W), Y d~(w) = |[(W,W)|+d(W). (1.1)

weWw wew

By Theorem 1.6.3, >, oy dt(w) = > e d~ (w). The corollary follows from
this equality and (1.1). O

A matching M in a directed (an undirected) pseudograph G is a set of
arcs (edges) with no common end-vertices. We also require that no element
of M is a loop. If M is a matching then we say that the edges (arcs) of
M are independent. A matching M in G is maximum if M contains the
maximum possible number of edges. A maximum matching is perfect if it
has n/2 edges, where n is the order of G. A set @ of vertices in a directed
or undirected pseudograph H is independent if the graph H{Q) has no
edges (arcs). The independence number, a(H), of H is the maximum
integer k such that H has an independent set of cardinality k. A (proper)
colouring of a directed or undirected graph H is a partition of V(H) into
(disjoint) independent sets. The minimum number, x(H ), of independent sets
in a proper colouring of H is the chromatic number of H.

In Section 1.3, the operation of composition of digraphs was introduced.
Considering complete biorientations of undirected graphs, one can easily de-
fine the operation of composition of undirected graphs. Let H be a graph
with vertex set {v1,va,...,v,}, and let G1,Ga, ..., G, be graphs which are
pairwise vertex-disjoint. The composition H[G1,Ga,...,Gy] is the graph L
with vertex set V(G1) UV (G2) U...UV(G,) and edge set

Ui  E(Gi) U{gig; : 9i € V(Gy),g9; € V(G,),viv; € E(H)}.

If none of the graphs Gi,...,G, in this definition of H[G,...,G},] have
edges, then H[G,...,G,] is an extension of H.

1.7 Mixed Graphs and Hypergraphs
Mixed graphs are useful by themselves as a common generalization of undi-

rected and directed graphs. Moreover, mixed graphs are helpful in several
proofs on biorientations of graphs.
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A mixed graph M = (V, A, E) contains both arcs (ordered pairs of
vertices in A) and edges (unordered pairs of vertices in E). We do not allow
loops or parallel arcs and edges, but M may have an edge and an arc with the
same end-vertices. For simplicity, both edges and arcs of a mixed graph are
called edges. Thus, an arc is viewed as an oriented edge (and an unoriented
edge as an edge in the usual sense). A biorientation of a mixed graph
M = (V, A E) is obtained from M by replacing every unoriented edge xy
of E by the arc zy, the arc yz or the pair zy,yx of arcs. If no unoriented
edge is replaced by a pair of arcs, we speak of an orientation of a mixed
graph®. The complete biorientation of a mixed graph M = (V, A, E) is a
biorientation 1\7 of M such that every unoriented edge zy € F is replaced
in ]\H/[ by the pair zy, yx of arcs. Using the complete biorientation of a mixed
graph M, one can easily give the definitions of a walk, trail, path, and cycle
in M. The only extra condition is that every pair of arcs in ]\7 obtained in
replacement of an edge in M has to be treated as two appearances of one
thing. For example, if one of the arcs in such a pair appears in a trail T', then
the second one cannot be in 7. A mixed graph M is strong if ]\7 is strong.
Similarly, one can give the definition of strong components. A mixed graph
M is connected if ]\7 is connected. An edge ¢ in a connected mixed graph
M is a bridge if M — ¢ is not connected.

Figure 1.14 illustrates the notion of a mixed graph. The mixed graph
M depicted in Figure 1.14 is strong; u, (u,v),v,{v,u},u is a cycle in M;
M — x has two strong components: one consists of the vertex y, the other is
M’ = M{{u,v,w}); the edge {v,w} is a bridge in M’, the arc (u,v) and the
edge {u,v} are not bridges in M’; M is bridgeless.

Y
Figure 1.14 A mixed graph.

Theorem 1.7.1 below is due to Boesch and Tindell [120]. This result is
an extension of Theorem 1.6.2. We give a short proof obtained by Volkmann

3 Note that a mixed graph M = (V, A, E) may have a directed 2-cycle in which
case no orientation of M is an oriented graph (because some 2-cycles remain).
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[730]. (Another proof which leads to a linear time algorithm is obtained by
Chung, Garey and Tarjan [157].)

Theorem 1.7.1 Let e be an unoriented edge in a strong mized graph M.
The edge e can be replaced by an arc (with the same end-vertices) such that
the resulting mized graph M’ is strong if and only if e is not a bridge.

Proof: If e is a bridge, then clearly there is no orientation of e that results
in a strong mixed graph. Assume that e is not a bridge. Let M’ = M — e.
If M’ is strong, then any orientation of e leads to a strong mixed graph;
thus, assume that M’ is not strong. Since e is not a bridge, M’ is connected.
Let L1, Lo,...,L; be strong components of M’. Since M is strong, there
is only one initial strong component, say L;, and only one terminal strong
component, say Li. Let u (v) be the end-vertex of e belonging to Li (Lyg).
By strong connectivity of Lq, Lo, ..., Ly and Proposition 1.4.4 (applied to

the strong component digraph of M’), M’ + (v, u) is strong. O

An orientation of a digraph D is a subdigraph of D obtained from D
by deleting exactly one arc between x and y for every pair x # y of vertices
such that both xy and yx are in D. See Figure 1.15 for an illustration of this
definition.

¥YYY©

D H H, H//

Figure 1.15 A digraph D and subdigraphs H, H' and H" of D. The digraph H is
an orientation of D but neither of H', H" is an orientation of D.

Since we may transform a digraph to a mixed graph by replacing every
2-cycle with an undirected edge, we obtain the following reformulation of
Theorem 1.7.1.

Corollary 1.7.2 A strong digraph D has a strong orientation if and only if
UG(D) has no bridge. O

A hypergraph is an ordered set H = (V&) such that V is a set (of
vertices of H) and & is a family of subsets of V (called edges of H).
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The rank of H is the cardinality of the largest edge of H. For example,
Hy = ({1,2,3,4},{{1,2,3},{2,3},{1,2,4}} is a hypergraph. The rank of Hy
is three. The number of vertices in H is its order. We say that H is 2-
colourable if there is a function f : V—{0,1} such that, for every edge
E € &, there exist a pair of vertices z,y € E such that f(z) # f(y). The
function f is called a 2-colouring of H. It is easy to verify that Hy is 2-
colourable. In particular, f(1) = f(2) =0, f(3) = f(4) =1 is a 2-colouring
of Hy. A hypergraph is uniform if all its edges have the same cardinality.
Thus an undirected graph is a 2-uniform hypergraph.

1.8 Classes of Directed and Undirected Graphs

In this section, we define certain families of directed and undirected multi-
graphs which will be used in various chapters of this book.

A multigraph G is complete if every pair of distinct vertices in G are
adjacent. We will denote the complete graph on n vertices (which is unique
up to isomorphism) by K. Its complement K,, has no edge.

A multigraph H is p-partite if there exists a partition Vi, Va,..., V), of
V(H) into p partite sets (i.e., V(H) = V1 U...UV,, V;NV; =0 for every
i # j) such that every edge of H has its end-vertices in different partite
sets. The special case of a p-partite graph when p = 2 is called a bipartite
graph. We often denote a bipartite graph B by B = (V1, Va; E). A p-partite
multigraph H is complete p-partite if, for every pair x € V;, y € V; (i # j),
an edge xy is in H. A complete graph on n vertices is clearly a complete
n-partite graph for which every partite set is a singleton. We denote the
complete p-partite graph with partite sets of cardinalities ni,ng,...,n, by
Kni n,,...n,- Complete p-partite graphs for p > 2 are also called complete
multipartite graphs.

To obtain short proofs of various results on subdigraphs of a directed
multigraph D = (V, A) the following transformation to the class of bipartite
(undirected) multigraphs is extremely useful. Let BG(D) = (V/,V"; E) de-
note the bipartite multigraph with partite sets V/ = {v' : v € V}, V" =
{v": v €V} such that ppgp)(v'w”) = pp(uw) for every pair u,w of ver-
tices in D. We call BG(D) the bipartite representation of D; see Figure
1.16.

A p-partite digraph is a biorientation of a p-partite graph; see Figure
1.17 (b). Bipartite (i.e. 2-partite) digraphs are of special interest. It is well-
known (and was proved already by Konig [497]) that an undirected graph is
bipartite if and only if it has no cycle of odd length. The obvious extension
of this statement to cycles in digraphs is not valid (the non-bipartite digraph
with vertex set {x,y, 2z} and arc set {xy, 2z, yz} is such an example that can
easily be generalized). However, the obvious extension does hold for strong
bipartite digraphs. Theorem 1.8.1 can be traced back to the book [404] by
Harary, Norman and Cartwright.
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1/ 1//
1
4 2/ 2//
3/ 3//
5
4/ 4//
5/ 5//
D BG(D)

Figure 1.16 A directed multigraph and its bipartite representation.

Theorem 1.8.1 A strongly connected digraph is bipartite if and only if it
has no cycle of odd length.

Proof: If D is bipartite, then it is easy to see that D cannot have an odd
cycle. To prove sufficiency suppose that D has no odd cycle. Fix an arbitrary
vertex x in D. We claim that for every vertex y € V(D) — z and every choice
of an (x,y)-path P and a (y,z)-path @, the length of P and Q are equal
modulo 2.

Suppose this is not the case for some choice of y, P and Q. Then choose y,
P and Q such that the parity of the lengths of P and @ differ and |V (P)| +
[V (Q)] is minimum among all such pairs of (z,y)- and (y, z)-paths whose
lengths differ in parity. If V(P) N V(Q) = {z,y}, then PQ is an odd cycle,
contradicting the assumption. Hence there is a vertex z ¢ {x,y} in V(P) N
V(Q). Let z be chosen as the first such vertex that we meet when we traverse
Q from y towards z. Then P[z,y]Q[yz,,z] is a cycle and it is even by our
assumption. But now it is easy to see that the parity of the paths P[z, 2]
and Q[z,x] are different and we get a contradiction to the choice of y, P
and @. This proves the claim and, in particular, it follows that for every
y € V(D) — x, the lengths of all paths from z to y have the same parity.

Now let

U={y: thelength of every (x,y)-path is even},
U'={y: the length of every (z,y)-path is odd}.

This is a bipartition of V(D) and neither U nor U’ contains two vertices
which are joined by an arc, since that would imply that some vertex had
paths of two different parities from z. a

An extension of this theorem to digraphs whose cycles are all of length 0
modulo k£ > 2 is given in Theorem 10.5.1.
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Recall that tournaments are orientations of complete graphs. A semicom-
plete digraph is a biorientation of a complete graph (see Figure 1.17(a)).
The complete biorientation of a complete graph is a complete digraph
(denoted by IH{,L) The notion of semicomplete digraphs and their special
subclass, tournaments, can be extended in various ways. A biorientation of a
complete p-partite (multipartite) graph is a semicomplete p-partite (mul-
tipartite) digraph; see Figure 1.17(c). A multipartite tournament is
an orientation of a complete multipartite graph. A semicomplete 2-partite
digraph is also called a semicomplete bipartite digraph. A bipartite
tournament is a semicomplete bipartite digraph with no 2-cycles.

(a) K4 and a semicomplete digraph of order four.

(b) A 3-partite graph G and a biorientation of G.

(¢) The complete 3-partite graph K2 1,2 and
a semicomplete 3-partite digraph D.

Figure 1.17 Classes of graphs and digraphs.
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One can use the operation of extension introduced in Section 1.3 to de-
fine ‘extensions’ of the above classes of digraphs. We will speak of extended
semicomplete digraphs (i.e., extensions of semicomplete digraphs), ex-
tended semicomplete multipartite digraphs, etc. Clearly, every ex-
tended semicomplete digraph is a semicomplete multipartite digraph, which
is not necessarily semicomplete, and every extended semicomplete multipar-
tite digraph is a semicomplete multipartite digraph. Therefore, the class of
semicomplete multipartite digraphs is extension-closed, and the class of
semicomplete digraphs is not.

Recall that a digraph D is acyclic if D has no cycle. Obviously, every
acyclic digraph is an oriented graph. A digraph D is transitive if, for every
pair of arcs zy and yz in D such that x # z, the arc xz is also in D. It is easy
to show that a tournament is transitive if and only it is acyclic (see Exercise
1.46). Sometimes, we will deal with transitive oriented graphs, i.e. transitive
digraphs with no cycle of length two. A digraph D is quasi-transitive if,
for every triple x,y, z of distinct vertices of D such that zy and yz are arcs
of D, there is at least one arc between = and z. Clearly, a semicomplete
digraph is quasi-transitive. Note that, if there is only one arc between = and
z, it can have any direction; hence quasi-transitive digraphs are generally not
transitive.

e

T Q

Figure 1.18 A transitive digraph T and a quasi-transitive digraph Q.

1.9 Algorithmic Aspects

In this book we will often describe and analyze algorithms on digraphs. We
will concentrate more on graph-theoretical aspects of these algorithms than
on their actual implementation on a computer. (In particular, we will some-
times not prove the best possible complexity of an algorithm. However, in
most such cases, we will provide a reference to a better complexity.) Still
some very basic notions related to data structures and algorithms are re-
quired and will be given below. For more details on design and analysis of
combinatorial algorithms, the reader is addressed to numerous books on the
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subject, e.g., to Aho, Hopcroft and Ullman [6], Brassard and Bratley [134]
and Cormen, Leiserson and Rivest [169].

1.9.1 Algorithms and their Complexity

Recall that unless specified otherwise n (m) denotes the number of vertices
(arcs) in the directed multigraph under consideration. In the following, all
logarithms whose base is unspecified are of base 2. For a pair of given functions
f(k), g(k) of a non-negative integer argument k, we say that f(k) = O(g(k))
if there exist positive constants ¢ and kg such that 0 < f(k) < cg(k) for all
k > ko. If there exist positive constants ¢ and kg such that 0 < cf (k) < g(k)
for all k > ko, we say that g(k) = 2(f(k)). Clearly, f(k) = O(g(k)) if and
only if g(k) = 2(f(k)). If both f(k) = O(g(k)) and f(k) = £2(g(k)) hold,
then we say that f(k) and g(k) are of the same order and denote it by
f(k) = O(g(k)).

In the analysis of an algorithm, first of all we will be interested in its time
complexity which must reflect the running time of the corresponding com-
puter program on various computers. In order to make the time complexity
measure sufficiently universal, it is usually assumed that computations are
performed by some abstract computer. The computer executes elementary
operations, that is, arithmetical operations, comparisons, data movements
and control branching, each in constant time. Since we are interested only in
the asymptotics of the execution time, the number of elementary operations
of an algorithm will be considered as its time complexity. In the vast majority
of cases, the time complexity (which will often be called just the complex-
ity) of an algorithm depends on the size of its input. An algorithm A is an
O(g(n)) algorithm for some function g(n) of its input size if the running time
of A on inputs of size n never exceeds cg(n) for some constant ¢ (depending
only on A).

Since the typical inputs to the algorithms considered in this book are
(weighted) directed multigraphs, the size of inputs will be measured by the
numbers of vertices and arcs, that is, by n and m, and, for digraphs with
weights on the arcs (vertices), by log |cimax|, where |¢max| is the maximum of
the absolute values of the weights of arcs (vertices). An algorithm of com-
plexity O(p(n,m,log |cmax|)), where p(n, m,log|cmax|) is a polynomial in n,
m and log |cmax|, is @ polynomial-time (or just polynomial) algorithm.
The notion of equating efficient algorithms with polynomial algorithms is
due to Edmonds [210] and is at present the most popular formalization for
the intuitive notion of ‘efficient’ algorithms. Although we would normally not
call an algorithm of complexity ©(n'%%?), where n is the size of the input, an
efficient algorithm, it is very rarely the case that polynomial algorithms have
such a high degree of their associated polynomials.

There are two well-known and often-used ways to represent a digraph
D = (V, A) for computational purposes: as a collection of adjacency lists and
as an adjacency matrix.
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For the adjacency matrix representation of a directed multigraph
D = (V,A), we assume that the vertices of D are labeled vy, vs,...,v, in
some arbitrary but fixed manner. The adjacency matrix M (D) = [my;]
of a digraph D is an n x n-matrix such that m;; = 1 if v;—v; and m;; =0
otherwise. For directed pseudographs we let m;; = p(v;, v;), that is, m;; is the
number of arcs from v; to v;. The adjacency matrix representation is a very
convenient and fast tool for checking whether there is an arc from a vertex
to another one. A drawback of this representation is the fact that to check
all adjacencies, without using any other information besides the adjacency
matrix, one needs §2(n?) time. Thus, the majority of algorithms using the
adjacency matrix cannot have complexity lower than 2(n?) (this holds in
particular if we include the time needed to construct the adjacency matrix).
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Figure 1.19 A directed multigraph and a representation by adjacency lists Adj™.

The adjacency list representation of a directed pseudograph D =
(V, A) consists of a pair of arrays Adj* and Adj~. Each of Adjt and Adj~
consists of |V (linked) lists, one for every vertex in V. For each z € V| the
linked list Adj*(x) (Adj~ (z), respectively) contains all vertices dominated
by = (dominating x, respectively) in some fixed order (see Figure 1.19). Using
the adjacency list Adj™(z) (Adj~(x)) one can obtain all out-neighbours (in-
neighbours) of a vertex x in O(|Adj*(z)|) (O(|Adj~(x)|)) time. A drawback
of the adjacency list representation is the fact that one needs, in general,
more than constant time to verify whether x—y. Indeed, to decide this we
have to search sequentially through Adj™(x) (or Adj~(z)) until we either find
y (z) or reach the end of the list.

To illustrate the concepts described in this section, let us consider the
Hamilton path problem in tournaments. Theorem 1.4.5 states that every
tournament is traceable. However, the proof that we have presented is non-
constructive, i.e. it does not provide us with a polynomial algorithm to find
a Hamilton path in a tournament. Now we give two constructive proofs of
Theorem 1.4.5 and show how these lead to polynomial algorithms to construct
a Hamilton path in a tournament.
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Inductive Proof of Theorem 1.4.5: Clearly, the one vertex tournament
has a Hamilton path (the vertex itself). Assume that the theorem holds for
every tournament with less that n(> 2) vertices. Consider a tournament 7'
with n vertices and a vertex x € V(7). By induction, the tournament T — x
has a Hamilton path, P = y19s ... yn—1. If —y1, then P is a Hamilton path
in T if y,_1—x, then Pz is a Hamilton path in T. Assume that y;—x and
—Yn—1. Then, it is easy to show that there exists an index ¢ < n — 1 such
that y;—x and x—y;11. Thus, Ply1, yi]eP[yi+1, Yn—1] is a Hamilton path in
T. O

This constructive proof gives rise to the following simple algorithm to find
a Hamilton path in a tournament. One of the reasons for the simplicity of
this algorithm is that it is recursive (for a discussion of recursive algorithms,
see e.g. the book [169] by Cormen, Leiserson and Rivest).

HamPathTour:

Input: A tournament 7" on n vertices labelled x1, xs, . . ., z, and its adjacency
matrix M = [my;].

Output: A Hamilton path in 7.

Let P:=x; and 7 := 2.

If i > n go to Step 7.

Let P = y1y2...y;—1 be the current path.

If ;—y; then P := x;P. Let i := i+ 1 and go to Step 2.

If y;_1—x; then P := Px;. Let ¢ := i+ 1 and go to Step 2.

For j =1 to i —2 do: If y;—x;—y;11 then P := Py, y;]a; Plyj+1, Yi—1]-
Let ¢ := i+ 1 and go to Step 2.

7. Return the path P.

A S

The correctness of this algorithm follows from the above proof. To see
that this algorithm can be implemented as an O(n?) algorithm, observe that
the algorithm has two nested loops, each of which perform O(n) operations
(we count queries to the adjacency matrix as constant time) and all other
steps take constant time. Thus, the complexity is O(n?).

The reader who is familiar with algorithms for sorting numbers might have
noticed that HamPathTour is very similar to the algorithm Insertion-Sort
which sorts numbers by inserting one at a time in a list (see e.g. [169, pp. 2-4]).
This resemblance is no coincidence. In fact, given any set S = {a1,...,an}
of n distinct real numbers we can form an acyclic tournament 7'(S) with
V(T(S)) = S and A(T(S)) = {aia; : a; < a;,1 < i # j < n}. The
correct (sorted) increasing order on S corresponds to the unique Hamilton
path a,1)ar(2) ... Gr(n) of T(S) which again is the unique acyclic ordering of
V(T(S)) (see also Exercise 1.18). Thus any algorithm for finding a Hamilton
path in a tournament can be used for sorting numbers (we compare numbers,
by looking at the orientation of the arc between the corresponding vertices
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in* T(S)). Conversely, several sorting algorithms can be translated into al-
gorithms for solving the more general problem of finding Hamilton paths in
tournaments. One such example is the classical Mergesort algorithm (see
e.g.[169, pp. 12-15]), which we now translate into the language of tourna-
ments. For simplicity we shall assume that the number of vertices of the
input tournament is a power of two. The reader can easily extend the al-
gorithm to the general case, see Exercise 1.70. It is convenient to state the
algorithm as a recursive algorithm (which is the reason why we specify a
parameter for the algorithm). We assume that the tournament is available
through its adjacency matrix.

MergeHamPathTour(7):

1. Split T into two tournaments 77 and 75 on the same number of vertices.
2. P;:= MergeHamPathTour(7T;), i = 1,2.

3. P:= MergePaths(P, P»).

4. Return P.

Here MergePaths is a procedure, which given two disjoint paths P, P’
in tournament 7' merges these two into one path P* such that V(P*) =
V(P)U V(P'). This can be done in the same way as one would merge two
sorted lists of numbers into one sorted list.

Procedure MergePaths(P, P’):
Input: Paths P = 2129 ... 2 and P/ = 192 ... yr.
Output: A path P* such that V(P*) = V(P)UV(P').

If P’ is empty then P*:=P.

If P is empty then P*:= P’

If 21 dominates y; then P*:=x1MergePaths(P — z1,P’).
If y; dominates x1 then P*:=y;MergePaths(P, P’ — y).
Return P*.

G o =

The classical analysis of the MergeSort algorithm (see e.g. [169]) shows
that the algorithm uses O(nlogn) comparisons to sort n real numbers. Sim-
ilarly it follows from our description above that the algorithm MergeHam-
PathTour will find a Hamilton path in a tournament 7" with n vertices after
making O(nlogn) queries about adjacencies of vertices in T. Note that to
implement the algorithm we do not need to construct the adjacency matrices
of each of the tournaments considered in the recursive calls. Indeed, all adja-
cencies can be checked using the adjacency matrix of the original tournament.
Hence, if we only count the number of times we need to check the direction of
an arc, then MergeHamPathTour is a faster algorithm than HamPathTour.

4 Note that this is only a virtual description, since we do not need to construct
the adjacency matrix in this case. We simply compare the two numbers = and y
and x—y holds if and only if z < y.
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1.9.2 NP-Complete and N'P-Hard Problems

There are many interesting algorithmic problems concerning (di)graphs for
which no polynomial algorithm is known. Many of those problems (formulated
in their decision form) belong to the class N'PC of so-called N'P-complete
problems. For a detailed introduction to the class of N'P-complete problems,
see the book by Garey and Johnson [303]. A problem is a decision problem
if it requires the answer ‘yes’ or ‘no’. By a problem we understand actually a
family of instances. For example, we will consider the Hamilton cycle prob-
lem in a digraph: given a digraph, decide whether or not it has a Hamilton
cycle. Every digraph provides an instance of this problem. The so-called
travelling salesman problem (TSP) is similar: given a weighted complete
digraph D and a real number B, decide whether D contains a Hamilton cycle
of weight at most B. An instance of the last problem consists of a complete
digraph and a specification of the weights of its arcs.

A decision problem S belongs to the complexity class P if and only if there
exists a polynomial algorithm A which, given any instance of S, produces an
answer in the set {‘yes’,‘no’} such that the answer from A on input z is ‘yes’
if and only if x is a ‘yes’ instance for® S. Since A is polynomial, it follows
that it produces its answer after at most p(|z|) steps, where |z| is the size of
the input « and p is a fixed polynomial (depending on §).

A decision problem belongs to the class NP (co-ANP) if, for every ‘yes’-
instance (‘no’-instance) of the problem, there exists a short ‘proof’; called a
certificate, of polynomial size (in n, m and log|¢naz|) such that, using the
certificate, one can verify in polynomial time that the instance is indeed a
‘yes’ (‘no’) instance. The certificate depends on the instance of the problem,
but it must have the same structure for all instances of the problem. To
illustrate this definition, let us show that both the Hamilton cycle problem
and travelling salesman problem are in A'P. Given a permutation 7 of the
vertices in a digraph D (7 is the certificate for hamiltonicity of D), it is
easy to verify whether this permutation corresponds to a Hamilton cycle in
D (note that this certificate has the same structure for each instance of the
problem, namely it is a permutation of the vertices). Indeed, assuming that
V(D) = {1,2,...,n}, we simply have to check that 7(i)7(i + 1) is an arc
of D for every ¢ = 1,2,...,n, where the vertex n + 1 is the same as the
vertex 1. If we also have weights on the arcs, then it is also easy to verify
that the weight of the proposed Hamilton cycle is no more than B. Notice
that the situation here is not symmetric: it is unknown if the ‘complement’
of the Hamilton cycle problem (given a digraph, check whether it has no
Hamilton cycle) is in N'P. Indeed, it is difficult to imagine what kind of
certificate will enable a polynomial algorithm to check that a digraph is not
hamiltonian. Actually, such a certificate would answer in affirmative the well-
known complexity question: whether NP =co-N"P (see e.g. [303, Theorem

5 Thus a hypothetical polynomial algorithm for the Hamilton cycle problem must
produce the answer ‘yes’ precisely when the input digraph has a Hamilton cycle.
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7.2]). A positive answer to this question seems to be unlikely with our current
knowledge of algorithms.

Given a pair of decision problems S, 7, we say that S is polynomially
reducible to 7 (denoted S <p T) if there is a polynomial algorithm .4 that
transforms an instance x of § into an instance A(z) of 7 such that the second
instance has the same answer as the first one. That is, x is a ‘yes’ instance of
S if and only if A(x) is a ‘yes’ instance of 7. Some polynomial reductions are
quite easy. For example, we can readily reduce the Hamilton cycle problem
to the travelling salesman problem: given a digraph D consider a copy of a

I?n such that V(D) = V(I?n), and, for every arc e in K, its weight is 1 if
e € A(D) and 2 otherwise. Let also B = n. Clearly, D is hamiltonian if and

only if with the prescribed weights I?n has a Hamilton cycle of weight not
exceeding B. Obviously, the above transformation can be carried out by a
polynomial algorithm.

A decision problem is AP-hard if all problems in A”P can be polynomi-
ally reduced to this problem. If the problem is NP-hard and also belongs to
NP, then it is N'P-complete. The class N'PC consists of all N'P-complete
problems. In order to show that a decision problem W is A"P-hard, we must
show that every problem in NP can be polynomially reduced to W — a seem-
ingly impossible task. However, polynomial transformations are closed under
composition, that is, § <p 7 and 7 <p K implies that S <p K (see Exercise
1.73). Hence, in order to prove that W is A"P-hard, it suffices to prove that
there is some N'P-complete problem which is polynomially reducible to W
(see Exercise 1.75). Of course this only works if we already have established
that there is some problem that belongs to the class N'PC of N'P-complete
problems. This extremely important and non-trivial step was provided by
Cook in 1971 [165] (independently, a similar discovery was made by Levin
[513]).

Since there are a huge number of known AP-complete problems, the task
to prove that a given problem is NP-complete is sometimes not too diffi-
cult. On the other hand, it is also highly non-trivial in many cases. We will
give a number of examples of N'P-completeness and NP-hardness proofs
throughout this book. It is well-known that the Hamilton cycle problem
is N'P-complete as shown by Karp in his classical paper [474]. ;From the
above transformation, it follows that the travelling salesman problem is N/P-
complete as well.

Quite often we will deal with optimization problems rather than deci-
sion problems. Since an optimization problem consists of finding an optimal
solution to a prescribed problem, such a problem very often has a decision
analogue. For example, in the usual formulation of the travelling salesman
problem the goal is to find a minimum weight Hamilton cycle in a weighted
complete digraph. The decision analogue was stated above. If the decision
analogue of an optimization problem is A'P-hard, then we will also say that
the optimization problem is NP-hard. So, the optimization version of the
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travelling salesman problem is NP-hard. For a wealth of information on
N'P-hard optimization problems and their approximability properties, see
the book [33] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela
and Protasi.

From a complexity point of view, there is no significant difference between
a decision problem and its optimization analogue (if it exists). To illustrate
this statement, let us consider the problem of deciding whether a strong
digraph has a cycle of length at least k (here k is part of the input). The
optimization analogue is the problem of finding a cycle of maximum length
in a strong digraph. If we solve the optimization problem, we easily obtain a
solution to the decision problem: just check whether the length of the longest
cycle is at least k. On the other hand, using binary search one can find an
answer to the optimization problem by solving a number of decision problems.
In our example, we first check whether or not the digraph under consideration
has a cycle of length at least n/2. Then, solve the analogous problem with
n/4 (if D has no cycle of length at least n/2) or 3n/4 (if D has a cycle of
length at least n/2) instead of n/2, etc. So, we would need to solve O(logn)
decision problems, in order to obtain an answer to the optimization problem.

1.10 Application: Solving the 2-Satisfiability Problem

In this section we deal with a problem that is not a problem on digraphs, but
it has applications to several problems on graphs, in particular when we want
to decide whether a given undirected graph has an orientation with certain
properties. In Chapter 8 we will give examples of this. We will show how to
solve this problem efficiently using the algorithm for strong components of
digraphs from Chapter 4.

A boolean variable x is a variable that can assume only two values 0
and 1. The sum of boolean variables x1 + 22 + ... + 21 is defined to be 1 if
at least one of the z;’s is 1 and 0 otherwise. The negation T of a boolean
variable z is the variable that assumes the value 1 — z. Hence T = x. Let X
be a set of boolean variables. For every x € X there are two literals, over z,
namely z itself and Z. A clause C over a set of boolean variables X is a sum
of literals over the variables from X. The size of a clause is the number of
literals it contains. For example, if u, v, w are boolean variables with values
u=0,v=0and w=1, then C = (u+7+w) is a clause of size 3, its value
is 1 and the literals in C are u, ¥ and w. An assignment of values to the set
of variables X of a boolean expression is called a truth assignment. If the
variables are x1, . .., xk, then we denote a truth assignment by ¢t = (¢1,...,t).
Here it is understood that x; will be assigned the value ¢; for i =1,... k.

The 2-satisfiability problem, also called 2-SAT, is the following prob-
lem. Let X = {z1,...,2;} be a set of boolean variables and let C1,...,C, be
a collection of clauses, all of size 2, for which every literal is over X. Decide if
there exists a truth assignment ¢ = (¢1, ..., tx) to the variables in X such that
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the value of every clause will be 1. This is equivalent to asking whether or
not the boolean expression F = C *... *C)p can take the value 1. Depending
on whether this is possible or not, we say that F is satisfiable or unsat-
isfiable. Here ‘«’ stands for boolean multiplication, that is, 1 x1 = 1,
1x0=0%1=0%0=0. For a given truth assignment t = (¢1,...,¢) and
literal ¢ we denote by ¢(t) the value of ¢ when we use the truth assignment
t (ie. if =73 and t3 =1, then q(t) =1—-1=0)

To illustrate the definitions, let X = {x1,z2, 23} and let C; = (Z7 + Z3),
Cy = (22+73), C3 = (T1 +x3) and Cy = (x2 4+ x3). Then it is not difficult to
check that F = C; % Cy x C3 x Cy is satisfiable and that taking x1 = 0,22 =
1,23 = 1 we obtain F = 1.

If we allow more than 2 literals per clause then we obtain the more general
problem Satisfiability (also called SAT) which is N"P-complete, even if all
clauses have size 3, in which case it is also called 3-SAT (see e.g. page
359 in the book [600] by Papadimitriou and Steiglitz). (In his proof of the
existence of an N’P-complete problem, Cook used the satisfiability problem
and showed how every other problem in A"P can be reduced to this problem.)
Below we will show how to reduce 2-SAT to the problem of finding the strong
components in a certain digraph. We shall also show how to find a satisfying
truth assignment if one exists. This step is important in applications, such
as those in Chapter 8.

Let C1, ..., C; be clauses of size 2 such that the literals are taken among
the variables x1,...,x; and their negations and let 7 = C; * ... % C}. be
an instance of 2-SAT. Construct a digraph Dz as follows. Let V(Dg) =
{z1,..., 2, 71,...,Zx} (i.e. Dr has two vertices for each variable, one for
the variable and one for its negation). For every choice of p,q € V(D) such
that some C; has the form C; = (p + q), A(D#) contains an arc from p to ¢
and an arc from g to p (recall that T = z). See Figure 1.20 for examples of
a 2-SAT expressions and the corresponding digraphs. The first expression is
satisfiable, the second is not.

Lemma 1.10.1 If D has a (p,q)-path, then it also has a (g,p)-path. In
particular, if p, q belong to the same strong component in Dz, then D, q belong
to the same strong component in Dr.

Proof: This follows easily by induction on the length of a shortest (p,q)-
path, using the fact that (z,y) € A(Dg) if and only if (7,7) € A(Dg). O

Lemma 1.10.2 If D contains a path from p to q, then, for every satisfying
truth assignment t, p(t) = 1 implies q(t) = 1.

Proof: Observe that F contains a clause of the form (@ +b) and every clause
takes the value 1 under any satisfying truth assignment. Thus, by the fact
that ¢ is a satisfying truth assignment and by the definition of Dz, we have
that for every arc (a,b) € A(Dx), a(t) = 1 implies b(t) = 1. Now the claim
follows easily by induction on the length of the shortest (p, ¢)-pathin Dx. O
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x3 23
x1 o T1 ¢ T2
T2 1 T3 T
T3 T3
(a) (b)

Figure 1.20 The digraph D# is shown for two instances of 2-SAT. In (a) F =
(71 + 73) * (w2 + T3) * (T1 + 23) * (x2 + x3) and in (b) F = (z1 + x2) * (T1 + x2) *
(T2 4 x3) * (T2 + T3)

The following is an easy corollary of Lemma 1.10.1 and Lemma 1.10.2.

Corollary 1.10.3 Ift is a satisfying truth assignment, then for every strong
component D' of D and every choice of distinct vertices p,q € V(D') we
have p(t) = q(t). Furthermore we also have p(t) = q(t). O

Lemma 1.10.4 F is satisfiable if and only if for every i = 1,2,...,k, no
strong component of Dx contains both the variable x; and its negation T;.

Proof: Suppose t is a satisfying truth assignment for F and that there is
some variable x; such that x; and Z; are in the same strong component in D £.
Without loss of generality x;(t) = 1 and now it follows from Lemma 1.10.2
and the fact that Dz contains a path from x; to T; that we also have 7;(t) = 1
which is impossible. Hence if F is satisfiable, then for every i = 1,2,... k,
no strong component of Dx contains both the variable x; and its negation
ZTi.

Now suppose that for every ¢ = 1,2,...,k, no strong component of Dx
contains both the variable z; and its negation Z;. We will show that F is
satisfiable by constructing a satisfying truth assignment for F.

Let Dq,..., D, denote some acyclic ordering of the strong components of
Dy (i.e. there is no arc from D; to D; if i < j). Recall that by Proposition
1.4.3, such an ordering exists. We claim that the following algorithm will
determine a satisfying truth assignment for F: first mark all vertices ‘unas-
signed’ (meaning truth value still pending). Then going backwards starting
from D, and ending with D; we proceed as follows. If there is any vertex
v € V(D;) such that ¥ has already been assigned a value, then assign all
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vertices in D; the value 0 and otherwise assign all vertices in D; the value 1.
Observe that this means that, for every variable x;, we will always assign the
value 1 to whichever of x;, T; belongs to the strong component with the high-
est index. To see this, let p denote whichever of z;,%; belongs to the strong
component of highest index j. Let i < j be chosen such that p € D;. Suppose
we assign the value 0 to p. This means that at the time we considered p,
there was some q € D; such that § € Dy for some f > j. But then p € Dy,
by Lemma 1.10.1, contradicting the fact that i < f.

Clearly all vertices in V' (F) will be assigned a value, and by our previous
argument this is consistent with a truth assignment for the variables of F.
Hence it suffices to prove that each clause has value 1 under the assignment.
Suppose some clause Cy = (p + ¢) attains the value 0 under our assignment.
By our observation above, the reason we did not assign the value 1 to p
was that at the time we considered p we had already given the value 1 to p
and p belonged to a component D; with a higher index than the component
D; containing p. Thus the existence of the arc (p,q) € A(Dx) implies that
q € Dy, for some h > j. Applying the analogous argument to ¢ we conclude
that g is in some component D, with g > h. But then, using the existence
of the arc (g,p), we get that ¢ > g > h > j > 4, a contradiction. This shows
that we have indeed found a correct truth assignment for F and hence the
proof is complete. a

In Chapter 4 we will see that for any digraph D one can find the strong
components of D and an acyclic ordering of these in O(n+m) time. Since the
number of arcs in Dz is twice the number of clauses in Dz and the number
of vertices in Dg is twice the number of variables in Dz, it is not difficult
to see that the algorithm outlined above can be performed in time O(k + r)
and hence we have the following result.

Theorem 1.10.5 The problem 2-SAT is solvable in linear time with respect
to the number of clauses. a

The approach we adopted is outlined briefly in Exercise 15.6 of the book
[600] by Papadimitriou and Steiglitz, see also the paper [230] by Even, Itai
and Shamir.

It is interesting to note that if, instead of asking whether F is satisfiable,
we ask whether there exists some truth assignment such that at least £ clauses
will get the value 1, then this problem, which is called MAX-2-SAT, is N'P-
complete as shown by Garey, Johnson and Stockmeyer [304] (here ¢ is part
of the input for the problem).

1.11 Exercises

1.1. Let X and Y be finite sets. Show that [ X UY |+ | X NY]| = |X|+|Y].
1.2. Let X and Y be finite sets. Show that [ X UY |2 + | X nY|> > | X > + |V
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Find a mistake in the following ‘definition’ of a subdigraph: H = (V', A’) is
a subdigraph of D = (V, A) if and only if V' C V and A’ C A hold.

(—) Draw the six non-isomorphic directed pseudographs of order and size 2.

(—) Prove that the number of vertices of odd degree in a digraph is always
even. Hint: use Proposition 1.2.1.

Prove that for every n > 2 there exists a unique tournament 7' on n vertices
for which all out-degrees of the vertices are distinct.

(=) Prove that every tournament on n > 2k + 2 vertices has a vertex of
out-degree at least k + 1.

Prove that every undirected graph has two vertices with the same degree.

(—) Prove that, if D and H are isomorphic directed pseudographs, then their
converses are also isomorphic.

. Describe an infinite family F of directed pseudographs such that no D € F

is isomorphic to its converse.

. (=) Transitivity of paths. Let D be a digraph and let z,y, z be vertices

in D, x # z. Prove that, if D has an (z,y)-path and a (y, z)-path, then it
contains an (z, z)-path as well.

. (—) Decomposing a closed walk into cycles. Prove that every closed

walk can be decomposed into a collection of (not necessarily disjoint) cycles.

. Open walk decomposition. Prove that every open walk can be decom-

posed into a path and some cycles (not necessarily disjoint).

. (=) Prove that, if the in-degree of every vertex in a digraph D is positive,

then D has a cycle.

. (=) Let = and y be distinct vertices of a digraph D. Suppose that there is a

sequence of cycles C,...,Ck in D such that z is in C1, y is in C, and C; and
Ci+1 have at least one common vertex for every ¢ € {1,2,...,k — 1}. Prove
that there exists an (x,y)-path in D.

. Prove Proposition 1.4.6.

(=) Let G be an (undirected) multigraph. Using Proposition 1.2.1, prove
that the sum of degrees of vertices in G equals twice the number of edges in

G.

Uniqueness of acyclic orderings. Prove that an acyclic digraph D has a
unique acyclic ordering if and only if D is traceable.

. (=) Let D be the digraph in Figure 1.21.
(

a) Determine the set of out-neighbours and the set of in-neighbours for all
vertices of D.

(b) Determine the semi-degrees of D.

(c) Determine 6°(D) and A°(D).

(d) Is D regular?

=3

(=) Let D be the digraph in Figure 1.21.
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Figure 1.21 A digraph D.

(a) Draw the subdigraphs induced by the vertex sets {a,b,c,d,e} and
{a7 d7 f7g7 h}'

(b) Draw the subdigraphs arc-induced by the arc sets {ab, cd, ed, hc, ha} and
{ab, be, de, fb,bg}.

(c) Let H be the subdigraph of D with vertex set V(H) = {a,b,c,d, e, h}
and arc set A(H) = {ab, bc, dc, ed, eh, ae}. List all chords of H in D.

(d) Let H be as above. Is H induced in D? Is it arc-induced?

(=) Let D be the digraph from Figure 1.21. Draw the directed multigraphs
D/{a,b,c,d,e,h} and D/{e, f, h}.

(—) Prove that an undirected graph is eulerian if and only if it has an eulerian
orientation.

(=) Let D be the digraph from Figure 1.21. Determine the independence
number «(D) of D.

Let D be the digraph in Figure 1.21. Determine the chromatic number of
UG(D).

Let T = (V, A) be a tournament such that every vertex is on a cycle. Prove
that for every a € A the digraph T — a is unilateral.

Prove that, if a tournament T has a cycle, then it has two hamiltonian paths.

Let D be a semicomplete multipartite digraph such that every vertex of D
is on some cycle. Prove that D is unilateral.

Let G be an undirected graph. Prove that either G or its complement G is
connected.

Prove that every strong tournament 7" on at least 4 vertices has two distinct
vertices x,y such that T"— x and T' — y are both strong.

Strong connectivity is equivalent to cyclic connectivity in digraphs.
A digraph is cyclically connected if for every pair x, y of distinct vertices of
D there is a sequence of cycles C1, ..., Cy such that z is in C4, y is in C}, and
C; and Ci4+1 have at least one common vertex for every ¢ € {1,2,...,k —1}.
Prove that a digraph D is strong if and only if it is cyclically connected.
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(—) Let D be the digraph from Figure 1.21. Find an out-branching with root
ain D.

(—) Prove that a directed multigraph D is strong if and only if it has an
out-branching rooted at v for every vertex v of D.

(+) Preserving cycle subdigraphs. Let D be a strong digraph with the
property that, for every pair x,y of vertices, the deletion of all arcs between
z and y results in a connected digraph. Let F = C; UC2 U ... U C; be a
cycle subdigraph in D such that every cycle C; has length at least three.
Prove that D has a strong spanning oriented subgraph containing F. Hint:
use Corollary 1.7.2 (Volkmann [730]).

Prove Proposition 1.4.6.
(=) Show that every digraph D contains a path of length at least §°(D).

Show that every oriented graph D on n vertices and with 6°(D) > [(n—1)/4]
is strong. Show that this is best possible in terms of §°(D).

Prove that a connected digraph is strong if and only if every arc is contained
in a cycle. Hint: use the result of Exercise 1.30.

Prove that every edge of a 2-edge-connected graph belongs to a cycle.
(—) Prove that an undirected tree of order n has n — 1 edges.
Prove that every undirected tree has a vertex of degree one.

Prove that every connected undirected graph G has a spanning tree. Hint:
observe that a connected spanning subgraph of G with minimum number of
edges is a tree.

Using the results of the last two exercises, prove that every connected undi-
rected graph G has a vertex = such that G — x is connected.

An undirected multigraph G is eulerian if it contains a closed trail T' such
that A(T') = A(G). Prove without using Theorem 1.6.3 that G is eulerian if
and only if G is connected and d(z) is even for every vertex x of G.

Prove using Exercise 1.43 that, if an undirected graph G = (V, E) has no
vertex of odd degree, then it has an orientation D = (V, A) such that d};(v) =
d;(v) for allv e V.

Let G = (V, E) be an eulerian graph. Using Exercise 1.43 and Corollary 1.6.4,
prove that d(W) is even for every proper subset W of V.

(—) Prove that a tournament is transitive if and only if it is acyclic. Hint:
apply Theorem 1.5.1.

Hamiltonian walks in strong digraphs. Prove that a digraph is strong
if and only if it has a Hamilton closed walk.

(=) Prove that every strong digraph H has an extension D = H[K,,,...,

Kn,], h = |V(H)|, such that D is hamiltonian. Hint: consider a hamiltonian
closed walk in H.
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A transitive triple in a digraph D is a set of three vertices z,y, z such that
zy,xz and yz are arcs of D. Prove that, if a 2-strong digraph D contains a
transitive triple, then D has two cycles whose length differ by one.

List all the acyclic orders of the digraph SC(D) in Figure 1.12.

(—) Hamiltonian extensions of cycles. Characterize extensions of cycles
which are hamiltonian.

Let D = C_"T[Fm,...,FW] be an extension of a cycle. Prove that (D) =
min{n; : t=1,2,...,7}.

(+) Traceable semicomplete bipartite digraph characterization.
Prove that a semicomplete bipartite digraph B is traceable if and only if
it contains a 1-path-cycle factor F. Hint: demonstrate that, if F consists of
a path and a cycle only, then B is traceable; use it to establish the desired
result (Gutin [355]). (See also Chapter 5.)

(+) Let B be a strong semicomplete bipartite digraph containing a cycle
factor consisting of two cycles. Prove that B is hamiltonian (Gutin [353]).

(+) Hamiltonian semicomplete bipartite digraph characterization.
Using the result of Exercise 1.54 prove that a semicomplete bipartite digraph
B is hamiltonian if and only if B is strong and B contains a cycle factor
(Gutin [353]). (See also Chapter 5.)

(—) Show that every orientation of a quasi-transitive digraph is a quasi-
transitive digraph.

Prove that every strong quasi-transitive digraph of order n > 3 has a strong
orientation, and so does every strong semicomplete bipartite digraph with
every partite set of cardinality at least 2. Hint: use Corollary 1.7.2.

(—) Prove that, if a bipartite tournament has a cycle then it has a 4-cycle.

(—) Describe an infinite family of strong bipartite tournaments without a
6-cycle.

Characterize 2-connected undirected graphs for which every cycle has odd
length.

(—) Show that for every undirected graph G on n vertices we have x(G) >

[n/a(G)].

Show that a digraph D has a cycle factor if and only if its bipartite repre-
sentation BG(D) contains a perfect matching.

Describe an infinite family of strong multipartite tournaments, each of which
have a cycle factor but is not hamiltonian.

Describe an infinite family of strong quasi-transitive digraphs, each of which
have a cycle factor but is not hamiltonian.

Give a characterization of hamiltonian complete 3-partite undirected graphs.

Give an infinite class of strong extended tournaments, none of which is hamil-
tonian.
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4-kings in bipartite tournaments. A vertex v in a digraph D is a k-king,
if for every u € V(D) — {v} there is a (v, u)-path of length at most k. Prove
that a vertex of maximum out-degree in a strong bipartite tournament is a
4-king. For all s,t > 4 construct strong bipartite tournaments with partite
sets of cardinality s and ¢ which do not have 3-kings. (Gutin [356])

(+) A special case of the maximum independent set problem. The
maximum independent set problem is as follows. Given an undirected graph
G, find an independent set of maximum cardinality in G. The purpose of
this exercise is to show that a special case of the maximum independent set
problem is equivalent to the 2-satisfiability problem and hence can be solved
using any algorithm for 2-SAT.

(a) Let G = (V, E) be a graph on 2k vertices and suppose that G has a
perfect matching (i.e. a collection ey, ..., e, of edges with no common
end-vertex). Construct an instance F of 2-SAT which is satisfiable if
and only if G has an independent set of k vertices. Hint: fix a perfect
matching M of G and let each edge in M correspond to a variable and
its negation.

(b) Prove the converse, namely if F is any instance of 2-satisfiability, then
there exists a graph G = (V, E) with a perfect matching such that G has
an independent set of size |V (G)|/2 if and only if F is satisfiable.

(¢) Prove that it is AN'P-complete to decide if a given graph has an indepen-
dent set of size at least ¢, even if G has a perfect matching. Hint: use a
reduction from MAX-2-SAT.

Linear time algorithm for finding an acyclic ordering of an acyclic
digraph. Verify that the algorithm given in the proof of Proposition 1.4.3
can be implemented as an O(n + m) algorithm using the adjacency list rep-
resentation.

Show how to extend the algorithm MergeHamPathTour (see Subsection 1.9.1)
so that it works for tournaments with an arbitrary number of vertices.

Based on the proof of Theorem 1.5.1, give a polynomial algorithm to find
cycles of lengths 3,4, ...,n through a given vertex in a strong tournament 7'.
What is the complexity of your algorithm and how do you store information
about T and the cycles you find?

(+) Fast algorithm for Euler trails. Demonstrate how to implement the
algorithm in the proof of Theorem 1.6.3 as an O(n + m) algorithm. Hint:
use adjacency lists along with a suitable data structure to store the trail
constructed so far.

Suppose S, T, K are decision problems such that S <p 7 and 7 <p K. Prove
that S <p K.

The independent set problem is as follows: Given a graph G = (V, E)
and natural number k, decide whether G has an independent set of size at
least k. Show that the independent set problem belongs to the complexity
class N'P.

Suppose W is an NP-complete problem and that 7 is a decision problem
such that W <p 7. Prove that 7 is N"P-hard.

Finding a cycle of maximum weight in a digraph. Show that it is
an N'P-hard problem to find a cycle of maximum weight in a digraph with
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weights on its arcs. Hint: show how to reduce the Hamilton cycle problem to
this problem by a polynomial reduction.

The acyclic subdigraph problem. Let S be the following decision prob-
lem. Given a digraph D and a natural number k, does D contain an induced
acyclic subdigraph on at least k vertices? Show that the independent set
problem polynomially reduces to S (the independent set problem is: given a
graph G and a number k, does G contain an independent set of size at least
k7).

Show that if a decision problem S belongs to the complexity class P then it
also belongs to N'P.

Show that P C NP N co—NP.

Show that if there is some decision problem & which belongs to both of the
classes P and N'PC, then P = N'P.

(+) Reducing the Hamilton cycle problem to Satisfiability. Describe
a polynomial reduction from the Hamilton cycle problem to the Satisfiability
problem. Hint: model different attributes by different sets of clauses. For
example you should use one family of clauses to ensure that every vertex is
the tail of at least one arc.

Describe a polynomial reduction from the problem of deciding whether an
undirected graph has a matching of size k to the problem MAX-2-SAT.

Finding a 1-maximal cycle. A cycle C in a digraph D is 1-maximal if
D has no cycle C’ such that C — a is a subpath of C’ for some arc a of C.
Describe a polynomial algorithm for finding a 1-maximal cycle in a strong
digraph. What is the complexity of your algorithm? Hint: compare it with
the proof of Theorem 1.5.1.

Describe a linear time algorithm to check whether a given acyclic digraph
has more than one acyclic ordering. Hint: use the result of Exercise 1.18.

Transitive subtournaments in tournaments. Show that every tourna-
ment on 8 vertices contains a transitive tournament on 4 vertices (as an
induced subdigraph). Hint: start from a vertex of maximum out-degree. Use
the idea above to prove that every tournament on n vertices contains a tran-
sitive tournament of size £2(logn).
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In this chapter, we study polynomial algorithms which find distances in
weighted and unweighted digraphs as well as some related complexity re-
sults. We consider bounds on certain distance parameters of a digraph and
describe several results on minimizing (and maximizing) the diameter of an
orientation of a graph. We study some applications of distances in digraphs to
the travelling salesman problem, the one-way street problem and the gossip
problem.

Additional terminology and notation are given in Section 2.1. Some basic
results on the structure of shortest paths in weighted digraphs are proved in
Section 2.2. In Section 2.3 we study algorithms to find shortest paths from a
vertex to the rest of the vertices of weighted and unweighted digraphs. We
also consider the Floyd-Warshall algorithm to compute distances between all
pairs of vertices in a weighted digraph. In Section 2.4 we consider bounds
on the following parameters: out-radius, in-radius, radius and diameter of a
digraph. The problem of maximizing the diameter of a strong orientation of
a bridgeless graph is investigated in Section 2.5. The problem of minimizing
the diameter of an orientation of a bridgeless graph, which has applications to
the one-way street problem and the gossip problem, is studied extensively in
Sections 2.6, 2.7, 2.8 and 2.9. Notice that while both the problem of finding an
orientation of minimum diameter and the problem of finding an orientation
of maximum diameter are AN'P-hard, the former is much more complicated
from a graph theoretical point of view than the latter.

So-called kings in various classes of digraphs are investigated in Section
2.10. The notion of a king is related to the study of domination in biology
and sociology. The last two sections are devoted to applications of distances
in digraphs. In Section 2.11 we discuss the one-way street problem and the
gossip problem as well as their natural extensions to digraphs. Some recent
results on the topics are described. In particular, we state theorems on sharp
upper bounds of the minimum diameter orientations of quasi-transitive and
semicomplete bipartite digraphs. In Section 2.12 we consider a new approach
to compute near optimal solutions to the travelling salesman problem, the
exponential neighbourhood local search (ENLS). We show how to utilize the
notions and results on distances in the study of ENLS.
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2.1 Terminology and Notation on Distances
Let D = (V, A) be a directed pseudo-graph. Recall that, for a set W C V,

NEW) = | M) - w, Npw) = | N(w) - W
weW weW

Let N),(W) =W, NA'(W) = NS (W), Ny (W) = N, (W). For every posi-
tive integer p, we can define the pth out-neighbourhood of W as follows:

N V) = N D) - | NE D).
=0

Similarly, one can define N,”(W) for every positive integer p. In par-
ticular, N*2(W) = NH(NH(W)) — (W U NT(W)). Sometimes, NAP(W)
(NP (W)) is called the open pth out-neighbourhood (open pth in-
neighbourhood) of W. We will also use the closed pth in- and out-
neighbourhoods of a set W of vertices of D which are defined as follows
(p>0):

NR[W] =W, NiPW]=|J NS W), NpPW]=|]JNp (W)
1=0 )

To simplify the notation, we set N [W] = N [W] and N, [W] = N, [W].
See Figure 2.1.

e d

Figure 2.1 A digraph D. The out-neighbourhoods of the set W = {a,b} are
N*({a,b}) = {f.g}, N**({a,b}) = {e}, N**({a,b}) = {d}, N"*({a,b}) = {c}.
The closed out-neighbourhoods of W = {a,b} are N*[{a,b}] = {a,b, f, g},
N*2[{a,0}] = {abe, fg}, NT[{a,b}] = {a,bd.e fg}, N"'[{a,b}] =
{a,b,c,d,e,f,g}-

Let D = (V, A, c) be a directed multigraph with a weight function ¢ :
A—TR on its arcs. Recall that the weight of a subdigraph D" = (V, A’) of D is
given by c(A’) =3 4 c(a). Whenever we speak about the length of a walk
we mean the weight of that walk (with respect to ¢). A negative cycle in a
weighted digraph D = (V, A, ¢) is a cycle W whose weight ¢(W) is negative.
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We assume that D has no negative cycle, for otherwise the following
definition becomes meaningless. If x and y are vertices of D then the distance
from x to y in D, denoted dist(x, y), is the minimum length of a (x, y)-walk,
if y is reachable from z, and otherwise dist(z,y) = co. Since D has no cycle
of negative weight, it follows that dist(z,z) = 0 for every vertex = € V. Tt
follows from Proposition 1.4.1 that there is a shortest (z, y)-walk which is, in
fact, a path (if D has no cycle of zero weight either, a shortest walk is always
a path). Furthermore, by Proposition 1.4.1, the distance function satisfies the
triangle inequality:

dist(z, z) < dist(z,y) + dist(y, z) for every triple of vertices z,y,z. (2.1)

The above definitions are applicable to unweighted directed multigraphs
as well: simply take the weight of every arc equal to one (then, the length of
a walk in the ‘weighted’ and ‘unweighted’ cases coincide).

The distance from a set X to a set Y of vertices in D is

dist(X,Y) = max{dist(z,y) : = € X,y € Y}1. (2.2)

The diameter of D is diam(D) = dist(V, V). Clearly, D has finite diameter
if and only if D is strong. The out-radius rad' (D) and the in-radius
rad™ (D) of D are defined by

radt (D) = min{dist(z,V): 2 € V}, rad (D)= min{dist(V,z): =z € V}.

Because of the obvious duality between out-radius and in-radius, in many
cases, we will consider only one of them. The radius of D is

rad(D) = min{(dist(z, V) + dist(V, z))/2: z € V}.

To illustrate the definitions above, consider the digraph D in Figure 2.1.
Here we have dist(a,V) = dist(b,V) = dist(e,V) = 4 and dist(c,V) =
dist(d, V) = dist(f,V) = dist(g, V') = 3. Furthermore, we have dist(V,c) =
dist(V, f) = 4, dist(V,a) = dist(V,b) = dist(V,d) = 3 and dist(V,e) =
dist(V, g) = 2. Now we see that rad™ (D) = 3, rad™ (D) = 2, rad(D) = 2.
and diam(D) = 4. It is also easy to see that dist({a,c},{b, f}) = 3.

The following proposition gives a characterization of weighted digraphs
D of finite out-radius.

Proposition 2.1.1 A weighted digraph D has a finite out-radius if and only
if D has a unique initial strong component.

Proof: A digraph with two or more initial strong components is obviously
of infinite out-radius. If D has only one initial strong component, then D
contains an out-branching (by Proposition 1.6.1). Thus, rad™(D) < co. O

! This definition may seem somewhat unnatural (with max instead of min), but it
simplifies some of the notation in this chapter and also appears quite useful.
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This proposition implies that a weighted digraph D has a finite in-radius if
and only if D has a unique terminal strong component. Notice that rad(D) <
oo if and only if D is strong.

For an undirected graph G, we can introduce the notions of distance

between pairs of vertices, vertex sets, radius, etc. by considering G. For an
integer r, a vertex v is an r-king if dist(v, V) < r. For example, the vertex ¢
in Figure 2.1 is a 3-king.

2.2 Structure of Shortest Paths

In this section we study elementary, but very important properties of shortest
paths in weighted digraphs. We also consider some complexity results on
paths in directed and mixed weighted graphs.

We assume that D = (V, A, c) is a weighted digraph with no negative
cycle.

Proposition 2.2.1 If P = z1xs ... 2 is a shortest (x1,xk)-path in D, then
Plx;, xj] is a shortest (x;,x;)-path for all 1 <i < j <k.

Proof: Suppose that z;Qx; is an (z;, z;)-path whose length is smaller than
that of P[z;,z;]. Then the weight of the walk W = P[zy,z;|QP[z;, ] is
less than the length of P. However, by Proposition 1.4.1, and the fact that
D has no negative cycle, W contains an (z;,x;)-path R whose length is at
most that of W and hence is smaller than that of P, a contradiction. a

Let s be a fixed vertex of D such that dist(s, V') < co. Consider spanning
subdigraphs of D, each of which contains a shortest path from s to every
other vertex in D. The proof of the following theorem shows that given any
such subdigraph D’ of D, we can construct an out-branching of D rooted at
s, which contains a shortest (s,u)-path for every u € V — s.

Theorem 2.2.2 Let D' and s be as above. There exists an out-branching
F} such that, for every u € V, the unique (s,u)-path in F is a shortest
(s,u)-path in D.

Proof: We will give a constructive proof showing how to build F from any
collection {P, : v € V —s} of shortest paths from s to the rest of the vertices.

Choose a vertex u € V — s arbitrarily. Let initially F," := P,. By Propo-
sition 2.2.1, for every x € V(F.), the unique (s, z)-path in F. is a shortest
(s,z)-path in D. Hence, if V(F;') = V, then we are done. Thus, we may
assume that there exists w ¢ V(F;). Let z be the last vertex on P, which
belongs to F.t. Define H as follows:

V(H) = V(F) UV (Pulz,w)), AH) = A(FF)U A(Py[z, w]).
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We claim that, for every vertex x in P,[z,w], the unique (s,z)-path in H
is a shortest (s,z)-path in D. By Proposition 2.2.1, P,[s, z] is a shortest
(s,z)-path in D. Since z € V(F;"), the unique (s,z)-path @ in H has the
same length as P, s, z]. Therefore, the length of the path QP,[z, z] is equal
to the length of the path P,[s, z]. Now observe that QP,[z,z] is the unique
(s,z)-path in H. We set F} := H and use an analogous approach to include
all vertices of D and preserve the desired property of F;. a

Our constructive proof above implies the existence of a polynomial al-
gorithm to construct the final out-branching, starting from a collection of
shortest paths from s to all other vertices. We call such an out-branching a
shortest path tree from s. As we will see in Exercises 2.8 and 2.9, the
algorithms described in the next section can be easily modified so that they
construct a shortest path tree directly, while searching for the shortest paths.

If we allow D to have negative weight cycles, then we obtain the following
result for shortest paths (recall that in the presence of negative cycles the
length of a shortest walk may not be defined, whereas the length of a shortest
path is still well-defined).

Proposition 2.2.3 It is N'P-hard to find a shortest path between a pair of
vertices of a given weighted digraph.

Proof: Let D = (V, A) be an (unweighted) digraph and let = # y be vertices
of D. Set c¢(uv) = —1 for every arc uv € A. We have obtained a weighted
digraph D’ = (V, A,c). Clearly, D' has an (z,y)-path of length 1 — n if
and only if D has a hamiltonian (x,y)-path. Since the problem of finding
a hamiltonian (z,y)-path is NP-complete (see Exercise 6.3) and D’ can be
constructed from D in polynomial time, our claim follows. a

Clearly D’ above has a negative cycle if and only if D has any directed
cycle. As we will show in Subsection 2.3.2, we can find a longest path in an
acyclic digraph in polynomial time, using a reduction to the shortest path
problem.

In Section 2.3, we will see that one can check whether a weighted digraph
has a negative cycle in polynomial time. However, unless P = NP, this
result cannot be extended to weighted mixed graphs, because of the following
theorem by Arkin and Papadimitriou [28].

Theorem 2.2.4 Given a weighted mized graph, it is N'P-complete to deter-
mine whether a negative cycle exists. a

It follows from Proposition 2.2.3 that it is NP-hard to find a shortest path
between a pair of vertices in a weighted mixed graph. More interestingly,
Arkin and Papadimitriou showed that the same is true even if we restrict
ourselves to weighted mixed graphs without negative cycles [28].
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2.3 Algorithms for Finding Distances in Digraphs

In this section we describe well-known algorithms to find distances in weighted
and unweighted digraphs. Almost all algorithms which we describe are for
finding the distances from a fixed vertex of a digraph to the rest of the ver-
tices. If the given digraph is unweighted then one can use the very simple and
fast breadth-first search algorithm, that is introduced in Subsection 2.3.1. If
the given digraph D is weighted and acyclic, another fast and simple approach
based on dynamic programming is provided in Subsection 2.3.2. When D is
an arbitrary digraph, but its weights are non-negative, Dijkstra’s algorithm
introduced in Subsection 2.3.3 solves the problem. When the weights may be
negative, but no negative cycle is allowed, the Bellman-Ford-Moore algorithm
given in Subsection 2.3.4 can be applied. This algorithm has the following
additional useful property: it can be used to detect a negative cycle (if one
exists).

If we are interested in finding the distances between all pairs of vertices of
a weighted digraph D, we can apply the Bellman-Ford-Moore algorithm from
every vertex of D. However, there is a much faster algorithm, due to Floyd
and Warshall. We describe the Floyd-Warshall algorithm in Subsection 2.3.5.
The reader can find comprehensive overviews of theoretical and practical
issues on the topic in the papers [153] by Cherkassky and Goldberg and [154]
by Cherkassky, Goldberg and Radzik.

2.3.1 Breadth-First Search (BFS)

This approach allows one to find quickly the distances from a given vertex s
to the rest of the vertices in an unweighted digraph D = (V, A). BFS is based
on the following simple idea. Starting at s, we visit each vertex z dominated
by s. We set dist’(s,z) := 1 and s := pred(z) (s is the predecessor of ).
Now we visit all vertices y not yet visited and dominated by vertices = of
distance 1 from s. We set dist’(s,y) := 2 and z := pred(y). We continue
in this fashion until we have reached all vertices which are reachable from s
(this will happen after at most n— 1 iterations, by Proposition 1.4.1). For the
rest of the vertices z (not reachable from s), we set dist’(s, z) := oo. In other
words, we visit the first (open) out-neighbourhood of s, then its second (open)
out-neighbourhood, etc. A more formal description of BFS is as follows. At
the end of the algorithm, pred(v) = nil means that either v = s or v is not
reachable from s. The correctness of the algorithm is due to the fact that
dist(s, z) = dist'(s,z) for every & € V. This will be proved below.

BFS
Input: A digraph D = (V, A) and a vertex s € V.
Output: dist’(s,v) and pred(v) for all v € V.

1. For each v € V set dist’(s,v) := oo and pred(v) := nil.
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2. Set dist/(s, s) := 0. Create a queue @ consisting of s.

3. While @ is not empty do the following. Delete a vertex u, the head of @,
from @ and consider the out-neighbours of u in D one by one. If, for an
out-neighbour v of u, dist’(s,v) = oo, then set dist’ (s, v) := dist'(s,u)+1,
pred(v) := u, and put v to the end of Q.

If D is represented by adjacency lists, the complexity of the above algo-
rithm is O(n + m). Indeed, Step 1 requires O(n) time. The time to perform
Step 3 is O(m) as the out-neighbours of every vertex are considered only once
and ), oy d*(x) = m, by Proposition 1.2.1.

To prove the correctness of BFS, it suffices to prove that dist(s,z) =
dist/(s, x) for every x € V. By Steps 2 and 3 of the algorithm, dist(s,z) <
dist’(s, ). Indeed, vivy ... vy, where v; = s, v, = = and v; = pred(v;y1) for
every i = 1,2,...,k—1, is an (s, z)-path. By induction on dist(s, x), we prove
that, in fact, the equality holds. If dist(s,z) = 0, then = s and the result
follows. Suppose that dist(s,z) = k > 0 and consider a shortest (s, z)-path
P. Let y be the predecessor of z, i.e., y = . By the induction hypothesis,
dist’(s,y) = dist(s,y) = k — 1. Since x is dominated by y , by the algorithm,
dist’(s,z) < dist’(s,y) + 1 = k = dist(s, z). Combining dist(s,z) < dist’(s, x)
with dist’(s, z) < dist(s, ), we are done.

The BFS algorithm allows one to compute the radius, out-radius, in-
radius and diameter of a digraph in time O(n? 4+ nm). Using the array pred
one can generate the actual paths. We finish this section with the following
two important observations which are stated as propositions. Proposition
2.3.1 follows from the description of BFS. Proposition 2.3.2 has been already
proved. In both propositions D = (V, A) is a directed multigraph with a
specified vertex s.

Proposition 2.3.1 Let U be the set of wvertices reachable from s. Then
(U, B), where B = {(pred(v),v) : v € U — s} is an out-branching in D(U)
with root s. a

We call the out-branching in the above proposition a BFS tree of D(U)
with root s, or simply a BFS tree from s. It is instructive to compare
Proposition 2.3.1 with Theorem 2.2.2.

Proposition 2.3.2 Let dist(s, V) < oo. For every non-negative integer p <
dist(s, V'), we have NTP(s) ={v € V : dist(s,v) = p}. 0

Given an directed multigraph D = (V, A) and a vertex s we call sets
N°(s), N*(s), N*2(s), N*3(s), ..,

the distance classes from s. By the proposition above, NT%(s) consists

precisely of those vertices whose distance from s is i. See Figure 2.2 for an

illustration of a BFS tree and the corresponding distance classes.
Summarizing the discussion above we obtain the following.
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Theorem 2.3.3 When applied to a directed multigraph D and a vertex s in
D, the BFS algorithm correctly determines a BFS tree T' from s in D in time
O(n+m). Furthermore, the distance classes from s in D are the same as the
distance classes from s in T. a

w T z

Figure 2.2 A digraph D with a BFS tree indicated by the bold arcs. The distance
classes from s are N°(s) = s, NT(s) = {u,w}, NT2(s) = {v,z,y} and NT3(s) =

{z}-

2.3.2 Acyclic Digraphs

Let D = (V,A,c) be an acyclic weighted digraph. We will show that the
distances from a vertex s to the rest of the vertices can be found quite easily,
using dynamic programming. Without loss of generality, we may assume that
the in-degree of s is zero. Let £ = vy, vs, ..., v, be an acyclic ordering of the
vertices of D such that v; = s. Clearly, dist(s,v1) = 0. For every i, 2 < i <mn,
we have

dist(s, v;) = {mm{dist(svvj) +e(vy,vs) 0 v; € N~ (vy)}if N~ (v;) £ 0

00 otherwise.

(2.3)
The correctness of this formula can be shown by the following argument.
We may assume that v; is reachable from s. Since the ordering L is acyclic,
the vertices of a shortest path P from s to v; belong to {v1,va,...,v;}. Let
vg be the vertex dominating v; in P. By induction, dist(s,v) is computed
correctly using (2.3). The term dist(s, vx) + c(vk, v;) is one of the terms in
the right-hand side of (2.3). Clearly, it provides the minimum.

The algorithm has two phases: the first finds an acyclic ordering, the
second implements Formula (2.3). The complexity of this algorithm is O(n +
m) since the first phase runs in time O(n+m) (see Section 4.1) and the second
phase requires the same asymptotic time due to the formula ) ., d™(z) =m
in Proposition 1.2.1. Hence we have shown the following.

Theorem 2.3.4 The shortest paths from a fized vertex s to all other vertices
can be found in time O(n +m) for acyclic digraphs. a
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We can also find the length of longest (s, x)-paths in linear time in any
acyclic digraph, by replacing the weight c(uv) of every arc uv with —c(uv). In
particular, we can see immediately that the longest path problem for acyclic
digraphs is solvable in polynomial time. In fact, a longest path of an acyclic
digraph can always be found in linear time:

Theorem 2.3.5 For acyclic digraphs a longest path can be found in time
O(n+m).

Proof: Exercise 2.6. a

2.3.3 Dijkstra’s Algorithm

The next algorithm, due to Dijkstra [192], finds the distances from a given
vertex s in a weighted digraph D = (V, A,¢) to the rest of the vertices,
provided that all the weights of arcs are non-negative.

In the course of the execution of Dijkstra’s algorithm, the vertex set of D
is partitioned into two sets, P and ). Moreover, a parameter ¢, is assigned
to every vertex v € V. Initially all vertices are in @. In the process of the
algorithm, the vertices reachable from s move from @ to P. While a vertex
v is in @, the corresponding parameter ¢, is an upper bound on dist(s,v).
Once v moves to P, we have §,, = dist(s,v). A formal description of Dijkstra’s
algorithm follows.

Dijkstra’s algorithm

Input: A weighted digraph D = (V, A, ¢), such that ¢(a) > 0 for every a € A,
and a vertex s € V.

Output: The parameter ¢, for every v € V such that §, = dist(s,v).

1. Set P:=0,Q:=V,d,:=0and §, := oo for every v € V — s.
2. While @ is not empty do the following.
Find a vertex v € @ such that 6, = min{d, : v € Q}.
Set Q:=Q —v, P:=PUnw.
8y 1= min{d,, b, + c(v,u)} for every u € Q N NT(v).

To prove the correctness of Dijkstra’s algorithm, it suffices to show that
the following proposition holds.

Proposition 2.3.6 At any time during the execution of the algorithm, we
have that

(a) For every v € P, §, = dist(s,v).
(b) For every u € Q, 6, 1is the distance from s to u in the subdigraph of D
induced by P U u.
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Proof: When P = (), §; = dist(s, s) = 0 and the estimates §,, = co, u € V —s,
are also correct.

Assume that P = Py and Q = @y are such that the statement of this
proposition holds. If Qg = (), we are done. Otherwise, let v be the next
vertex chosen by the algorithm. Since Part (b) follows from Part (a) and
the way in which we update §, in the algorithm, it suffices to prove Part
(a) only. Suppose that (a) does not hold for P = Py U v. This means that
0y > dist(s,v). Let W be a shortest (s,v)-path in D. Since §, > dist(s, v), W
must contain at least one vertex from Q = Qg — v. Let u be the first vertex
on W which is not in Fy. Clearly, u # v. By Proposition 2.2.1 and the fact
that u € W, we have dist(s, u) < dist(s, v). Furthermore, since the statement
of this proposition holds for Py and Qq, we obtain that dist(s,u) = §,. This
implies that d,, = dist(s,u) < dist(s,v) < d,. In particular, §,, < J,, which
contradicts the choice of v by the algorithm. a

Each time a new vertex v is to be chosen we use O(n) comparisons to find
min{d, : v € @Q}. Updating the parameters takes O(n) time as well. Since
Step 2 is performed n—1 times, we conclude that the complexity of Dijkstra’s
algorithm is O(n?). In fact, Dijkstra’s algorithm can be implemented (using
so-called Fibonacci heaps) in time O(nlogn + m) (see the paper [278] by
Fredman and Tarjan).

Summarizing the discussion above we obtain

Theorem 2.3.7 Dijkstra’s algorithm determines the distances from s to all
other vertices in time O(nlogn + m). O

Figure 2.3 illustrates Dijkstra’s algorithm.

It is a challenging open question whether there exists a linear algorithm
for calculating the distances from one vertex to all other vertices in a given
digraph with no negative cycles. It is easy to see that Dijkstra’s algorithm
sorts the vertices according to their distances from s. Fredman and Tarjan
[278] showed that, if Dijkstra’s algorithm can be implemented as a linear time
algorithm, then one can sort numbers in linear time. Thorup [715] showed
that the opposite claim holds as well: if one can sort numbers in linear time,
then Dijkstra’s algorithm can be implemented as a linear time algorithm.
Currently, no one knows how to sort in linear time?.

In the case when D is the complete biorientation of an undirected graph
G and c(u,v) = ¢(v,u) holds for every arc uv of D, Thorup [716] recently
gave a linear algorithm for calculating shortest paths from a fixed vertex to all
other vertices. Thorup’s algorithm avoids the sorting bottleneck by building a
hierarchical bucketing structure, identifying vertex pairs that may be visited
in any order.

2 Some readers may be confused about this as they may know of a lower bound
of 2(nlogn) for sorting a set of n numbers. However, this lower bound is only
valid for comparison based sorting. There are algorithms for sorting n numbers
that are faster than (2(nlogn), see e.g. the paper [25] by Anderson.
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Figure 2.3 Execution of Dijkstra’s algorithm. The white vertices are in Q; the
black vertices are in P. The number above each vertex is the current value of the
parameter §. (a) The situation after performing the first step of the algorithm. (b)—
(g) The situation after each successive iteration of the loop in the second step of
the algorithm. The fat arcs indicate the corresponding shortest path tree found by
the algorithm if extended as in Exercise 2.8.

2.3.4 The Bellman-Ford-Moore Algorithm

This algorithm originates from the papers [102] by Bellman, [245] by Ford
and [572] by Moore. Let D = (V, A, ¢) be a weighted digraph, possibly with
arcs of negative weight. The algorithm described below can be applied to find
the distances from a given vertex s in D to the rest of the vertices, provided
D has no negative cycle.



56 2. Distances

Let 6(v,m) be the length of a shortest (s,v)-path that has at most m
arcs. Clearly, §(s,0) = 0 and §(v,0) = oo for every v € V —s. Let v € V. We
prove that for every m > 0,

d(v,m+1) = min{d(v,m), min{d(u, m) + c(u,v) : v N~ (v)}}. (2.4)

We show (2.4) by induction on m. For m = 0, (2.4) trivially holds. For
m > 1, (2.4) is valid due to the following argument. Assume that there is a
shortest (s,v)-path P with no more than m+1 arcs. If P has at most m arcs,
its length is 0(v,m), otherwise P contains m + 1 arcs and, by Proposition
2.2.1, consists of a shortest (s,u)-path with m arcs and the arc wv for some
u € N~ (v). If every shortest (s, v)-path has more than m+1 arcs, then there
is no in-neighbour u of v such that §(u, m) < oco. Therefore, Formula (2.4)
implies correctly that §(v,m + 1) = co.

Since no path has more than n — 1 arcs, 6(v,n — 1) = dist(s, v) for every
v € V —s. Thus, using (2.4) for m =0,1,...,n — 2, we obtain the distances
from s to the vertices of D. This results in the following algorithm.

The Bellman-Ford-Moore algorithm

Input: A weighted digraph D = (V, A, ¢) with no negative cycle, and a fixed
vertex s € V.

Output: The parameter 0, for every v € V such that §, = dist(s,v) for all
veV.

1. Set 65 := 0 and 6, := oo for every v € V — s.
2. For i = 1 to n—1 do: for each vu € A update the parameter ¢, by setting
0y = min{dy, §, + c(v,u)}.

It is easy to verify that the complexity of this algorithm is O(nm). Hence
we have

Theorem 2.3.8 When applied to a weighted directed graph D = (V, A, c)
with no negative cycle and a fixed vertex s € V, the Bellman-Ford-Moore
algorithm correctly determines the distances from s to all other vertices in D
in time O(nm). O

Figure 2.4 illustrates the execution of the Bellman-Ford-Moore algorithm.

Checking whether D has no negative cycle can be accomplished as fol-
lows. Let us assume that D is strong (otherwise, we will consider the strong
components of D one by one; an effective algorithm to build the strong com-
ponents is described in Chapter 4). Let us append the following additional
step to the above algorithm:

3. For every arc vu € A do: if §, > &, + ¢(vu) then return the message
‘the digraph contains a negative cycle’.
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Figure 2.4 Execution of the Bellman-Ford-Moore algorithm. The vertex labellings
and arc weights are given in the first digraph. The values of the parameter 0 are
given near the vertices of the digraphs (a)—(f). In the inner loop of the second step
of the algorithm the arcs are considered in the lexicographic order: ab, ac, ba, bc,
¢b, da, dc, ec, ed, sd, se. (a) The situation after performing the first step of the
algorithm. (b)—(f) The situation after each of the 5 successive executions of the
inner loop in the second step of the algorithm.

Theorem 2.3.9 A strong weighted digraph D has a negative cycle if and
only if Step & returns its message.

Proof: Suppose that D has no negative cycle. By the description of Step
2 and Proposition 2.2.1, §,, < §, + c¢(vu) for every arc vu € A. Hence, the
message will not be returned.

Assume that D has a negative cycle Z = vvy...v5v1. Assume for the
purpose of contradiction that Step 3 of the Bellman-Ford-Moore algorithm
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does not return the message. Thus, in particular, §,, < d,,_, + ¢(v;—1v;) for

every i = 1,2,...,k, where vg = vi. Hence,
k k k
Z% < Zévi,l + ZC(voi).
i=1 i=1 i=1

Since the first two sums in the last inequality are equal, we obtain 0 <
Zle c(vi—1v;) = ¢(Z); a contradiction. O

2.3.5 The Floyd-Warshall Algorithm

The above algorithms can be run from all vertices to find all pairwise dis-
tances between the vertices of a strong digraph D. However, if D has nega-
tive weight arcs, but does not contain a negative cycle, we may only use the
Bellman-Ford-Moore algorithm n times, which will result in O(n?m) time
(see Exercise 2.19 for a faster method). The Floyd-Warshall algorithm will
find the required distances faster, in O(n?) time. According to Skiena [674],
in practice, the algorithm even outperforms Dijkstra’s algorithm applied from
n vertices (when the weights in D are all non-negative) due to the simplicity
of its code (and, thus, smaller hidden constants in the time complexity). The
algorithm originates from the papers [243] by Floyd and [734] by Warshall.
We assume that we are given a strong weighted digraph D = (V, 4, ¢) that
has no negative cycle. In this subsection, it is convenient to assume that
V={1,2,...,n}.

Denote by d; the length of a shortest (i,j)-path in D({1,2,...,m —1}U
{i,7}), for all 1 < m < n— 1. In particular, 6ilj is the length of the path 77, if
it exists. Observe that a shortest (¢, j)-path in D({1,2,...,m}U{3,j}) either
does not include the vertex m, in which case (5;?“ =om

i7» or does include it,
: : m+1l __ em m
in which case §;;"" = d;;, + ,,;. Therefore,

+1 : m m m
6 = min{d;}, 67, + I b (2.5)
Observe that 9] = 0 for all ¢« = 1,2,...,n, and, furthermore, for all pairs

i,j such that i # j, 8;; = c(i, ) if ij € A and ;; = oo, otherwise. Formula
(2.5) is also correct when there is no (4, j)-path in D({1,2,...,m} U {i,j}).
Clearly, (5?]4“ is the length of a shortest (¢, j)-path (in D). It is also easy to
verify that O(n3) operations are required to compute 6;}“ for all pairs i, j.

The above assertions can readily be implemented as a formal algorithm
(the Floyd-Warshall algorithm, see Exercise 2.14). The Floyd-Warshall al-
gorithm allows one to find the diameter and radius of a weighted digraph
without cycles of negative weight in O(n?) time. Using the algorithm, we
may check whether D has no negative cycle. For simplicity let us assume, as
above, that D is strong. Then the verification can be based on the following
theorem (see, e.g., Lawler’s book [509]) whose proof is left to the interested
reader as Exercise 2.15.
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Theorem 2.3.10 A weighted digraph D has a negative cycle if and only if
o < 0 for some m,i € {1,2,...,n}. 0

2.4 Inequalities Between Radius, Out-Radius and
Diameter

For a network representing a certain real-world system, it is desirable to have
a small diameter as it increases the reliability of the system (see e.g., Fiol,
Yebra and Alegre [236]). Small out-radius means that the system has an ele-
ment that can quickly reach the rest of the elements (for example, by sending
a message to them). In-radius and radius have similar interpretations. How-
ever, networks representing real-world systems normally do not have many
arcs to avoid too costly constructions. The objectives of minimizing the diam-
eter or/and radius (or out-radius) and the size of a digraph clearly contradict
each other. Therefore, it is important for a designer to know what kind of
trade-off can be achieved. The inequalities of this section give some insight
into this problem.

2.4.1 Radius and Diameter of a Strong Digraph

It is well-known that, in a connected undirected graph G, we have rad(G) <
diam(G) < 2rad(G). This inequality holds also for strong digraphs (for our
definition of radius).

Proposition 2.4.1 For a strong digraph D = (V, A), we have rad(D) <
diam(D) < 2rad(D).

Proof: Clearly, rad(D) < diam(D). Let = be a vertex of D such that
(dist(x, V') + dist(V, z))/2 = rad(D), and let y, z be vertices of D such that
dist(y, z) = diam(D). Since dist(y, z) < dist(y,x) + dist(x, z) < 2rad(D), we
conclude that diam(D) < 2rad(D). O

The following simple bound (called the Moore bound) on the order of a
strong digraph is important in certain applications [236]. We leave its proof
to the reader (Exercise 2.25).

Proposition 2.4.2 Letn, d andt be the order, the maximum out-degree and
the diameter, respectively, of a strong digraph D. Thenn < 14+d+d?>+...+d’.
O

The Moore bound is attained for d = 1 by the cycle ét+1 and for ¢t = 1 by the
complete digraph on d+1 vertices. However, it is well-known (see Bridges and
Toueg [136] and Plesnik and Zndm [609]) that this bound cannot be attained
for d > 1 and t > 1. Therefore,
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dtt—1

n < d_1

for d > 1 and t > 1. After simple algebraic transformations, we obtain the
following.

Proposition 2.4.3 Letn, d andt be the order, the maximum out-degree and
the diameter, respectively, of a strong digraph D. If d > 1 and t > 1, then

t > |log,(n(d—1)+1)].
O

The cases d = 2,3 have received special consideration. For d = 2, Miller
and Fris [566] proved that there is no 2-regular digraph of diameter ¢t > 3
and order n = d + d? + ... + d'. Moreover, for most values of ¢ no 2-regular
digraphs of order n = d +d? + ... + d' — 1 exist (see Miller [565]). 3-regular
digraphs of order n = d + d? + ... + d', with d = 3, have been studied by
Baskoro, Miller, Plesnik and Zndm [96].

2.4.2 Extreme Values of Out-Radius and Diameter

In this subsection, we will consider results on the following problems: what
is the minimum (maximum) value of the out-radius and diameter of a strong
digraph with n vertices and m arcs?

We start with the minimization problem for the out-radius. Theorem 2.4.4
is due to Goldberg [327].
Theorem 2.4.4 Let D be a strong digraph and let f(n,m) = [m’:&_l .
Then rad™ (D) > f(n,m). For all integers m > n > 2, there exists a digraph
D(n,m) (which we call the Goldberg digraph D(n,m)) of order n and size m
whose out-radius is f(n,m).

Proof: Let v be a vertex of D such that dist(v, V) = rad® (D), and let T be
a BFS tree of D with root v. Let also W be the set of vertices w € V such
that dj(w) = 0. For a vertex w € W, let P(w) denote the set of vertices,
except for v, in the (v, w)-path of T. Then,

n—1=|Upew Pw)| < Z |P(w)| < |W|dist(v, V) = |[W|rad ™ (D).
weWw

Thus,
|Wlrad® (D) > n — 1. (2.6)

Since D is strong, every vertex w € W is the tail of an arc in D — A(T).
Being a tree, T has n — 1 arcs (see Exercise 1.39). Hence, |[W| < m —(n—1).
Combining this with (2.6), we obtain that rad™ (D) > f(n,m).



2.5 Maximum Finite Diameter of Orientations 61

Set r=n—1—(m—n+1)(f(n,m)—1). It is not difficult to verify that
0 < r <m—n+ 1. The digraph D(n,m) is constructed as follows. Take r
cycles of length f(n,m)+1 and m —n+1—r cycles of length f(n,m), mark
a vertex in each cycle by v, and then identify all m —n+1 vertices marked by
v. Since r > 0, at least one of the cycles in D(n,m) has f(n,m)+ 1 vertices.
Thus, dist(v, V(D(n,m))) = f(n,m). Hence, rad™ (D(n,m)) = f(n,m). 0O

Figure 2.5 depicts D(10,14). Clearly, rad*(D(10,14)) = 2.

Figure 2.5 The Goldberg digraph D(10,14).

Being quite simple, the problem of finding a tight upper bound for the
out-radius of a digraph of order n and size m has not been studied in the
literature. The following two theorems solve the problems of establishing
lower and upper bounds for the diameter of a strong digraph. Theorem 2.4.5
was proved by Goldberg [328]; Theorem 2.4.6 was derived by Ghouila-Houri
[314].

Theorem 2.4.5 Let D be a strong digraph of order n and size m, m > n+1,

and let g(n,m) = mef;iJ Then diam(D) > g(n,m). This bound is the best

possible. a

Theorem 2.4.6 Let D be a strong digraph of order n and size m. Then
diam(D) < n—1, ifn < m < (n®> +n —2)/2 and diam(D) < [n+ 1 —

\/Qm —n? —n+ 1], otherwise. O

Oriented graphs of diameter 2 and minimum size (for fixed order n) were
discussed by Fiiredi, Horak, Pareek and Zhu [285].

2.5 Maximum Finite Diameter of Orientations

For a connected bridgeless multigraph G, let G’ denote an orientation of G
having maximum finite diameter. Let Ip(G) stand for the length of a longest
path of G. The following theorem was obtained by Gutin [366].
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Theorem 2.5.1 Let G be a connected bridgeless graph. Then, diam(G') =
Ip(G).

Proof: For every strongly connected orientation Gy of G we obviously have
diam(Gp) < Ip(G). Hence, to prove this theorem it suffices to construct some
orientation G of G with the property diam(G;) = Ip(G).

Let P = x125...2; be a longest path of G, and associate each vertex
x; with a label r(z;) = 4. Since G has no bridge, the edge zj_12) is not a
bridge. Consequently, there exists an ({z1, z2,...,Zk_1}, zx)-path Ry which
is different from the path xj_ixx. Let x; be the initial vertex of R;. Define
r(v) = i for all vertices v € V(Ry) — {xx}. Since z;_1x; is not a bridge
there exists an ({1, x2,...,2i—1} {®i, Tit1, ..., 2 UV (Ry))-path Ry which
is different from the path x;_jz;. If x; is the initial vertex of Ry (observe
that j < i), then define r(v) = j for all vertices v in Ry besides the terminal
one. Analogously, we can build paths R3, Ry, ... and define the label r(.) of
the vertices of R3, Ry, ... until we obtain a path R, with the initial vertex z;
and set r(v) = 1 for all vertices v in R, but the terminal one.

Now, we orient the path P from z to z; (we obtain the directed path @),
and each path R; (i = 1,2,...,s) from its end vertex having a bigger label
to its other end vertex (we derive the path Q;). It is easy to check that the
oriented graph induced by the arcs of the paths U;_;Q; UQ is strong. Define

X = V(G) - (UL V(R) U V(P))

and suppose that X # () (the case X = () is easier). Since G has no bridge
there exists some vertex v € X and a pair of paths from v to vertices in
V(G) — X with no common vertices (besides v), see Exercise 7.18. We merge
these two paths to one (path S7). Now orient the last path from its end vertex
having the bigger label to the one having the smaller label. If the labels of
the two end vertices coincide then the orientation is arbitrary. The labels of
all other vertices of the path S; are the same as the label of terminal vertex
of this path.

If X —V(S1) # 0 we will continue the construction of paths Ss, Ss, . ..
passing over the rest of the vertices of X until U!_;V(S;) = X, where the
orientations and labels are chosen in the same manner. Finally orient each
unoriented edge uv from u to v if r(u) > r(v) and from v to u otherwise.

Let D denote the obtained oriented graph. The digraph D contains a
strongly connected spanning subgraph. Therefore, D is strongly connected.
Since all the arcs (u,w) of D, besides those in P, are oriented such that
r(u) > r(w), there is no path from z; to x having length less than k& — 1.
Hence, diam(D) = k — 1. O

Since the longest path problem for undirected graphs is N"P-hard (see the
book [303] by Garey and Johnson), the last theorem implies that the problem
to find a maximum finite diameter orientation of a graph is A"P-hard as well.
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2.6 Minimum Diameter of Orientations of Multigraphs

The same complexity result holds for the following problem: find a minimum
diameter orientation of a graph. Indeed, the following assertion holds.

Theorem 2.6.1 (Chvatal and Thomassen) [16/] It is N'P-complete to
decide whether an undirected graph admits an orientation of diameter 2.

For a bridgeless multigraph G, let diamp;,(G) denote the minimum di-
ameter of an orientation of G. We will present a minor modification of the
original proof of Theorem 2.6.1 by Chvétal and Thomassen [164]. The main
difference is in the use of Lemma 2.6.2 (which is applied to two different
results in this section). Define a bipartite tournament BT, with partite
sets U, W, each of cardinality s, as follows. Let U = {uj,us,...,us} and
W = {wy,wa,...,ws}. The vertex u; dominates only vertices w;, wit1,. ..,
Wit |s/2)—1 (the subscripts are taken modulo s) for every i = 1,2,...,s.

Lemma 2.6.2 Let s > 2. The diameter diam(BTs) equals 3. In particular,
dist(U,U) = dist(W, W) = 2.

Proof: Clearly, it suffices to show that dist(U,U) = dist(W, W) = 2. This
follows from the fact that, for every i # j, we have N*(u;) — Nt (u;) # 0
and, hence, there is a vertex w € W such that uw;—w—u;. a

Lovész [520] proved that it is A/P-hard to decide whether a hypergraph of
rank® 3 is 2-colourable. By the result of Lovéasz, Theorem 2.6.1 follows from
the next theorem.

Theorem 2.6.3 Given a hypergraph H of rank 3 and order n, one can con-
struct in polynomial time (in n) a graph G such that diamuy,, (G) = 2 if and
only if H is 2-colourable.

Proof: Let k be the integer satisfying 8 < k£ < 11 and n + k is divisible by 4.
Let Hy be a hypergraph obtained from H by adding k£ new vertices vy, ..., k.
Moreover, append three new edges {{v;, vit1}: ¢ = 1,2,3} to Hy if H has an
odd number of edges, and add four new edges {{v;,v;y1}: i =1,2,3,4} to
Hj otherwise. Observe that Hy has an even number of edges, which is at least
four. To construct G, take disjoint sets R and @ such that the elements of R
(Q) are in a one-to-one correspondence with the vertices (the edges) of Hp.
Let G(R) and G{Q) be complete graphs, and p € R and ¢ € @ be adjacent if
and only if the vertex corresponding to p belongs to the edge corresponding
to ¢ (in Hyp).

Append four new vertices wy, wa, w3, w, and join each of them to all the
vertices in R U @. Finally, add a new vertex x and join it to all the vertices

3 Recall that the rank of a hypergraph is the cardinality of its largest edge.
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in R. We show that the obtained graph G has the desired property. (Clearly,
G can be constructed in polynomial time.)

Assume that G admits an orientation G* of diameter 2. For a vertex
u € R, set f(u) = 0 if and only if z—u in G*; otherwise, f(u) = 1. Since
distg« (z, q) = 2 (distg« (g, z) = 2, respectively) for each ¢ € Q, every edge e
of H contains a vertex y such that f(y) =0 (f(y) = 1, respectively). Thus
H is 2-colourable.

Now assume that H is 2-colourable. Then Hy admits a 2-colouring which
generates a partition R = R; U Ry such that every edge of Hy has a vertex
corresponding to an element from R; and |R;| > 4 (for every i = 1,2). An
orientation G’ of G of diameter 2 is defined as follows. Orient the edges in
each complete graph G(L) € {G(R;), G(R2), G{(Q)} such that the resulting
tournament contains the bipartite tournament BT]r|. Let A;, B; be the par-
tite sets of the bipartite tournaments in G(R;) (i = 1,2) and let A, B be the
partite sets of the bipartite tournament in G(Q). The rest of the edges in G
are oriented as follows:

r—R1—Ry—x, Ri—Q—Ry,

Using Lemma 2.6.2, it is not difficult to verify that diam(G’) = 2. For
example, to show that distg: (A1, V(G')) < 2 and diste (V(G'), 41) < 2, it
suffices to observe that distg/ (A1, A1) = 2 and

BiURyUQU {wy,wa} € NT(Ay),
{z,w3,ws} € NT(ByURyUQU{wy,ws})
By U{z,ws,ws} C N~ (Ay),
N~ (By U{z,w3,ws}) € Ro UQ U {wy,wsz}.

O

Chvétal and Thomassen [164] dealt with the following parameter which
we call the strong radius. The strong radius of a strongly connected digraph
D = (V, A), srad(D), is equal to

min{max{dist(v, V), dist(V,v)} : v e V}.

Chvéatal and Thomassen [164] showed that it is A'P-hard to decide whether
a graph admits a strongly connected orientation of strong radius 2. The
strong radius is of interest because, in particular, srad(D) < diam(D) <
2srad(D) for every strongly connected digraph D (this follows from the fact
that rad(D) < srad(D) for every strong digraph D and Proposition 2.4.1).
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Following [164], we prove a sharp upper bound for the value of the strong
radius of a strong orientation of a bridgeless connected multigraph. The first
part of the proof of Theorem 2.6.4 is illustrated in Figure 2.6.

Figure 2.6 Constructing the orientation D of H in the proof of Theorem 2.6.4.
The integers on arcs indicate the step number in the process of obtaining D.

Theorem 2.6.4 [164] Fvery bridgeless connected multigraph G = (V, E) ad-
mits an orientation of strong radius at most (rad(G))? + rad(G).

Proof: We will show a slightly more general result. Let u € V be arbi-
trary and let distg(u, V') = r, then there is an orientation L of G such that
disty (u, V) <72 +r and distz (V,u) <72 +r.

Since G is bridgeless, every edge uv is contained in some undirected cycle;
let k(v) denote the length of a shortest cycle through wv. It is not difficult to
prove (see Exercise 2.28) that, for every v € N(u),

k(v) < 2r + 1. (2.7)

We claim that there is a subgraph H of G and an orientation D of H with
the following properties:

(a) Ng(u) CV(H).

(b) For each v € N(u), D has a cycle C, of length k(v) containing either uv
or vu.

(¢) D is the union of the cycles C,.

Observe that by this claim and (2.7), we have

max{distp (u, V(D)),distp(V(D),u)} < 2r. (2.8)

We demonstrate the above claim by constructing H and D step by step.
Let uv be an edge in G and let Z, be an undirected cycle of length k(v)
through wv. Orient Z, arbitrarily as a directed cycle and let C, denote the
cycle obtained this way. Set H := Z,, D := C,. This completes the first
step. At step i(> 2), we choose an edge uw such that w ¢ V(H) and an
undirected cycle Z = wyws ... wpwy in G such that wy = u, ws = w, and
k = k(w). If no vertex in Z,, — u belongs to H, then append the directed
cycle C, = wiws ... wrwy to D and the cycle Z to H. Go to the next step.
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Otherwise, there is a vertex w; (2 < i < k) such that w; € V(H) (and
hence w; € V(D)). Suppose that w; has the least possible subscript with this
property. Since w; € V (D), there is some neighbour v of u such that w; € C,.
(Recall that C, is a directed cycle.) Let C, = vivy...v01, where u = vy,
v € {va,v:}, and w; = v; for some j. By considering the converse of D, if
necessary, we may assume, without loss of generality, that v = vy. Now we
consider two cases.

Case 1: wp # v. In this case, define the directed cycle C,, = wwsws
...w;Cy[vjq1,u] and observe that C, has length k(w). (Indeed, if Cy, had
more than k(w) arcs, the path Cy[w;,u] would be longer than the path
Py, = wywit1 ... wxu. In that case, the walk Z,[u, v;]P2[w;+1,u] containing
uv would be of length less than k(v); a contradiction.) Let Z,, := UG(Cl).
Add Cy to D and Z,, to H. Go to the next step.

Case 2: wi = v. In this case, define the directed cycle C,, as follows: C,, =
Cylu, vjlwi—1w;—2 ... wou and observe that C, has length k(w) (the proof of
the last fact is similar to the one given in Case 1). Let Z,, := UG(C,,). Add
Cy to D and Z,, to H. Go to the next step.

Since V(@) is finite and we add at least one new vertex to H at each step,
this process will terminate with the desired subgraph H and its orientation
D. Thus, the claim is proved.

Consider the directed multigraph D. In G, contract all the vertices of D
into a new vertex u* (the operation of contraction for undirected multigraphs
is similar to that for directed multigraphs) and call the resulting multigraph
G*. Note that G* is bridgeless and that by the property (a) of the above
claim, we obtain distgs(u*, V(G*)) < r — 1. By the induction hypothesis,
there is an orientation L* of G* such that

distz (u*, V(L*)) < 7? —r and distp- (V(L*),u*) < r? — 7. (2.9)

Consider an orientation L of G obtained by combining L* with D and
orienting the rest of the edges in G arbitrarily. By (2.8) and (2.9), we have

disty, (u, V(L)) < r? +r and dist,(V(L),u) <72 + 7.

O
The sharpness of the bound in Theorem 2.6.4 is proved in [164]. Theorem
2.6.4 immediately implies the following.

Corollary 2.6.5 For every bridgeless connected multigraph G of radius r,
diamuyin (G) < 2r% + 2r. O

Plesnik [607] generalized Theorem 2.6.4 and Corollary 2.6.5 to orientations
of weighted multigraphs.
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Theorem 2.6.6 Let G be a bridgeless connected multigraph in which every
edge has weight between 1 and W. If the radius of G is r, then G admits
an orientation of strong radius at most r> + rW and of diameter at most
2r% 4+ 2rWw. O

Plesnik [607] showed that the result of the previous theorem regarding
the strong radius is sharp.

Chung, Garey and Tarjan [157] generalized Corollary 2.6.5 to mixed
graphs. They proved the following.

Theorem 2.6.7 FEvery bridgeless connected mixed graph G of radius r ad-
mits an orientation of diameter at most 82 +8r. Such an orientation can be
found in time O(r*(n +m)). O

2.7 Minimum Diameter Orientations of Complete
Multipartite Graphs

Many authors consider the following parameter p(G) of a bridgeless graph
G: p(G) := diampy(G) — diam(G). It turns out that, for many interesting
graphs G, p(G) = 0, 1 or 2 (a result which is quite different from the ‘pes-
simistic’ bound proved in Theorem 2.6.4). In this section, we discuss results
on minimum diameter orientations of complete multipartite graphs.

Soltés [676] obtained the following result for complete bipartite graphs.

Theorem 2.7.1 Ifny > ngy > 2, then p(Kp, n,) =1 forng < (LnZ?ZJ)’ and
p(Kp, ny) = 2, otherwise.

The original proof of Theorem 2.7.1 is rather long. A shorter proof of
this result using the well-known Sperner’s lemma* is given by Gutin [361].
We present below an adapted version of the proof in [361]. We start from
Sperner’s lemma. (We call a family F of subsets of {1,2,...,n} an antichain
if no set in F is contained in another.)

Lemma 2.7.2 Let F be an antichain on {1,...,n}. Then

71 ()

The bound is attained by taking F to be the family of all subsets of size |n/2].
O

* For an elegant probabilistic proof of Sperner’s lemma, see Alon and Spencer [14].
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Proof of Theorem 2.7.1: Let ny > ny > 2. Let O(K) be the set of strongly
connected orientations of a complete bipartite graph K = K, ,,. It is easy
to see that no digraph in O(K) has diameter 2. Thus, it suffices to show that
there is an orientation D € O(K) of diameter 3 when n; < (Lng%)’ and
that there is an orientation D € O(K) of diameter 4 but no orientation of
diameter 3 when nq; > (LHZ?%)'

Let us first assume that n; < (LnZ;%)' If ny = ng, then the bipartite
tournament BT,,, defined just before Lemma 2.6.2 provides the required ori-
entation (see Lemma 2.6.2). Now, consider the case when n; > ns. Let V4 and
V5 be the partite sets of K, |V;| = n;. Let U be a subset of V; of cardinality
ng. Orient the edges between U and V5 in such a way that the resulting di-
graph D’ is isomorphic to BT, and d*(v) = |ns/2] for every v € U. Clearly,
{N*(v): v €U} is an antichain on V5 (see Lemma 2.7.2). This antichain

na

is formed by some subsets of V5 of cardinality [ns/2]. Since |V;| < (Uw 7 J)
and there are (Ln’;jQ j) subsets of V5 (each of cardinality |ns/2]) forming a
(maximum) antichain, the out-neighbourhoods of vertices in V; — U can be
chosen in such a way that the family F = {N*(v): v € V;} is an antichain.
The family F determines an orientation of K which we denote by D. By
Lemma 2.6.2, dist p/(Va, V2) = 2 and, thus, distp(Va, Vo) = 2. Since the out-
neighbourhoods of every pair of vertices in V; are not contained in each other,
distp(Vi, Vi) = 2. Thus, diam(D) = 3 as every vertex in D is dominated by
another vertex.

Now let us assume that ny > (LNZ%J)' Let H € O(K) and V1, V5 be the
partite sets of K such that n; = |V;|. By Lemma 2.7.2, there is a pair of
vertices ¥,y € Vj such that N7 () C Nj(y). Therefore, disty(z,y) > 2.
Hence, by the obvious parity reason, disty(x,y) > 4. Thus, there is no
orientation of K of diameter 3. To present an orientation H of K of di-
ameter 4, choose a set W C V; of cardinality (anz/’z J)' Orient the edges of
K (W U V3) such that the resulting digraph H’ is isomorphic to the digraph
D defined above. Let w be a fixed vertex of W. For a vertex v € W U V5, set
N (v) = N (v), and for a vertex v € Vi — W set Nj;(v) = N (w). We have
proved that diam(H') = 3. It remains to show that dist(V; — W,V (H)) <4
and dist(V(H), Vi — W) < 4. Actually, by the definition of H, it suffices to
demonstrate that dist(w,w’) = 4, where w’ € V; — W. The last fact follows
from dist g (w, V2) < 3 and Ny (w') NVa # 0. |

Let f(ni,...,n) be the minimum possible diameter of a k-partite tourna-
ment with partite sets of sizes ny,...,ng. For k = 2 the value of this function
was determined in Theorem 2.7.1 (if min{nq,ns} = 1, then f(ni,ng) = o0).
For k > 3 the problem to determine the function f(n,...,n;) was posed
independently by Gutin [366] and Plesnik [607]. It is easy to show that
2 < f(ni,...,ng) < 3for every k > 3 and all positive integers n1, ..., nk (see
Proposition 2.7.4 below). Thus, it suffices to find out when f(nq,...,ng) = 2.
In [366, 487, 607], it was shown that f(ny,...,ng) =2ifny =nay=... =ny
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except for k = 4, ny = ng = ng = ng = 1 (it is easy to see that
f(1,1,1,1) = 3). This result was extended by Koh and Tan [488] as follows.

An ordered pair p, q of integers is called a co-pair if 1 <p < ¢ < (LPI/)QJ)'
An ordered triple p, g, of positive integers is called a co-triple if p,q and
p,T are co-pairs.

Theorem 2.7.3 If my,...,my can be partitioned into co-pairs when k is
even and into co-pairs and a co-triple when k is odd, then f(mq,...,mg) = 2.
|

Since even this theorem falls short to provide a complete solution to the
above-mentioned problem, we give only a proof of the most basic result on
f(n1,...,n;) obtained independently by Plesnik [607] and Gutin [361].

Proposition 2.7.4 For every k > 3 and all positive integers nq,. .., ng, we
have 2 < f(ny,...,ng) < 3.

Proof: Obviously, f(ny,...,ng) > 2.

If k is odd, let R(nq,na,...,ng) stand for a multipartite tournament with
partite sets Vi,. .., Vj of cardinalities n1, ..., ny such that V;—Vj if and only
if j—i=1,2,...,|k/2] (mod k). If k is even, then R(ny,na,...,ng) is
determined as follows:

R(?’Ll,ng, .. ,nk) — Vi 2 R(ny,no, ... 7nk,1) s

VioVi (i=1,3,5,... . k—1), Vi>Vi (j =2,4,6,....k—2) .
We show that diamR(ny,na,...,ng) < 3 for every k > 3.

Case 1: k is odd, k > 3. It is sufficient to prove that dist(V1,V;) < 3
forall 4 = 1,2,...,k. If 1 < j < |k/2] + 1, then V;—V; by the definition.
If (5] +1 < j < k, then Vigo41 — Vj, hence dist(V1,V;) = 2. Since
Vi— VLk/QJ-‘rl — VLk/2J+2_)V17 we have dist(V7, V) < 3.

Case 2: k is even, k > 4. Since R(ny,...,ng) — Vi = R(ng,...,nk—1),
we have dist(V;,V;) < 3 for all 1 <14, j < k — 1. Moreover, Vy—V,—Vi11
for i = 1,3,5,...,k — 3 and Vp — Vj_1. Therefore dist(Vy,V;) < 2 for
t=1,2,...,k — 1. Analogously, V;—V; 11—V} for i = 1,3,5,...,k — 3 and
Vi—1—V1—V2—V;. Hence dist(V;, Vi) < 3 for t = 1,2,...,k — 1. Finally,
Vi—V1—Vo—Vi. Therefore dist(Vy, Vi) < 3. |

2.8 Minimum Diameter Orientations of Extensions of
Graphs

Proposition 2.7.4 was generalized by Koh and Tay [496, 691] to extensions
of graphs. We recall the notion of an extension of a graph introduced in
Chapter 1. Let H be a graph with vertex set {1,...,h} and let ny,...,n,
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be positive integers. Then G = H[K,, ..., Kp,] is the graph with vertex set
{(piyi) : 1 <i<h, 1<p; <n;} such that vertices (p;,4) and (p;, ) are
adjacent in G if and only if ij € E(H). (We call G an extension of H.)

Theorem 2.8.1 (Koh and Tay) [496] Let H be a connected graph of order
h>3. Let G=H[K,,,... Kn,] with n; > 2, 1 <i < h. Then, diam(H) <
diamp,in (G) < diam(H) + 2.

Figure 2.7 An orientation F' of G = P; [?3,?2,?2]. Observe that diam(G) = 2
and diam(F) = 4.

This theorem is illustrated by Figure 2.7. The requirement h > 3
is important as one can see from Theorem 2.7.1 (diam(K2) = 1, but
diamyin (K2[Kp,, K2]) = 4 for ny > 3). Clearly, diam(H) < diam(D) for
every orientation D of G. To prove the more difficult part of the inequality
in Theorem 2.8.1, we will use the following lemma.

Lemma 2.8.2 [{96] Let t;,n; be integers such that 2 < t; < n; for 1 <
i < h. If the graph G' = H[K,,,..., Ky, | admits an orientation F' in
which every vertex v lies on a cycle C, of length not exceeding s, then

G = H[K,,,...,K,,] has an orientation F whose diameter is at most
max{s, diam(F")}.

Proof: Given an orientation I’ of G’, we define an orientation F' of G as
follows. We have (p,i)—(q,j) in F if and only if one of the following holds:

(a) p<ti, qg<t;and (p,i)—(q,j) in F'.
(b) p<t;, g >t; and (p,i)—(t;,j) in F'.
(¢) p>t;, qg<t; and (t;,i)—(q,7) in F’.
(d) p>t; and ¢ > t; and (¢;,7)—(t;, ) in F".

)—

Let uw = (p,i) and v = (q,J) be a pair of distinct vertices in F. If i # j,
then it is clear that dist g (u, v) < diam(F") (we can use obvious modifications
of the corresponding paths in F’). We have the same result if i = j but p < ¢;
or g < t;. If i = j, p,q > t;, then using the cycle C, we conclude that
distp(u,v) < s. ]



2.9 Minimum Diameter Orientations of Cartesian Products of Graphs 71

Proof of Theorem 2.8.1: We prove that there exists an orientation D of G
such that diam(D) < diam(H) 4 2. If diam(H) = 1, then this claim follows
from Proposition 2.7.4. Thus, we may assume that diam(H) > 2.

Define an orientation F’ of H[T, ..., T}, where every T; = Ko, as follows:

(1,)—(1,7)—(2,1)—(2, /)—(1,i) if and only if i < j. (2.10)

Let w = (p,i) and v = (q,j) be a pair of distinct vertices in F’. We
show that distp/(u,v) < diam(H) + 2. Suppose that ikiks ... ksj is a path of
length s+1 = disty (4, j) in H. Then the path @ = (p, 1), (kT, k1), (k3, k2), ...,
(k¥ ks), (j*,7), where z* = 1 or 2, is of length distz (i, j) in F'. If j* = ¢, then
the last inequality follows. Otherwise, i.e. j* # ¢, the path Q, (3—k¥, ks), (q, §)
is of length disty(¢,7) + 2 in F’. Thus, distp/(u,v) < diam(H) + 2. Thus,
diam(F’) < diam(H). By (2.10), every vertex of F’ belongs to a cycle of
length 4. Now this theorem follows from Lemma 2.8.2. a

Thus, totally non-trivial extensions (i.e., with at least two vertices in every
independent set used for the extension) of bridgeless undirected graphs G can
be divided into three classes according to the difference between the minimum
diameter of an orientation of the extension (with at least two vertices in every
independent set used for the extension) and diam(G). Some wide subclasses
of these three classes have been constructed in [496, 691]. These constructions
indicate that perhaps the following conjecture is true.

Conjecture 2.8.3 [/96] If H in Theorem 2.8.1 is of diameter at least 3,
then the upper bound on diampy,,(G) there can be replaced by diam(H) + 1.

2.9 Minimum Diameter Orientations of Cartesian
Products of Graphs

The Cartesian product of a family of undirected graphs G, Go,...,G,,
denoted by G = Gy x G3 X ... x Gy, or [[_, G;, where n > 2, is the graph
G having V(G) = V(G1) x V(G2) x ... x V(G,) = {(wy,wa,...,wy,) :
w; € V(Gy),i = 1,2,...,n} and a pair of vertices (uy,usa,...,u,) and
(v1,v2,...,v,) of G are adjacent if and only if there exists an r € {1,2,...,n}
such that u,v, € E(G,) and u; = v; for all ¢ € {1,2,...,n} — {r}. Let P,
(Ch, K,) be the (undirected) path (cycle, complete graph) of order n and let
T, stand for a tree of order n. Roberts and Xu [638, 639, 640, 641] and Koh
and Tan [484] evaluated the quantity p(Py X Ps). (We remark that Roberts
and Xu [638, 639, 640, 641] considered objective functions other than p for
orientations of the Cartesian products of undirected paths.) Koh and Tay
[491] proved that most of those results can be extended as follows.

Theorem 2.9.1 Forn > 2, ky > 3, ko > 6 and (ki1, k2) # (3,6), we have
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p(J] Pr) = 0.
=1
O

This, in particular, generalizes the main result of McCanna [558] on n-
cubes, i.e. the graphs []"_; P». Koh and Tay [490] have obtained the values
of q(r, k) = p(Cap x By) for r, k > 2:

(a) q(r,k)=01if k > 4.
(b) q(r,k) =2if k=2 and r is even.
(c) q(r,k) =1, otherwise.

They have also evaluated p(K,, X Py), p(K,, X Cary1) and p(K,, x K,,)
[492], p(Km x Cap) [495] and p(T,, x Ty,) [493]. Konig, Krumme and Lazard
[500] studied the Cartesian products of cycles. They proved the following
interesting result.

Theorem 2.9.2 Let p,q be integers with p,q > 6. If at least one of these
two integers is even, then p(Cp x Cy) = 0. If both p and q are odd, then
p(Cp x Cy) = 1. O

Konig, Krumme and Lazard [500] evaluated p(C), x Cy) in most cases
when the minimum of p and ¢ is smaller than 6. They also extended the
p(Cp x Cy) = 0 part of Theorem 2.9.2 to the Cartesian products of three
or more cycles. These results are described in more detail in [691]. Some of
the above results were extended by Koh and Tay [491], where the following
theorem was proved.

Theorem 2.9.3 Form >2,r >0, ki > 3, ka > 6 and (ki1,k2) # (3,6), we
have p(IT%, Py, % [1;—; Cn,;) = 0. 0

This result was further extended by Koh and Tay in [494]. The rest of
this subsection is based on [494].

Let G be the set of all bipartite graphs G such that diam(G) > 3 and G
admits an orientation (called a G-orientation) of diameter diam(G), in which
every vertex is contained in a cycle of length at most diam(G). Let G* be the
set of all bipartite graphs G such that diam(G) > 3 and G admits an ori-
entation I (called a G*-orientation) of diameter diam(G) with the following
further properties: every vertex is contained in a cycle of F' of length at most
diam(G) and if u—v in F then there exists a (u,v)-walk of length at least
three and at most diam(G).

Let S be the set of all graphs in which every graph G admits an orientation
H (called an S-orientation) such that for all vertices u,v € V(H) at least
one of the following holds:

(a) min{distgy (u,v),disty(v,u)} < diam(G).
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(b) There are vertices y and z such that
max{distg (u,y) + dist g (v,y), dist g (2, w) + dist g (2, v)} < diam(G).

Let §* be the set of all graphs in which every graph G admits an orien-
tation H (called an S*-orientation) such that for all vertices u,v € V(H) at
least one of the following holds:

(a) min{disty (u,v),disty(v,u)} < diam(G).
(b) There is a vertex y such that disty(u,y) + disty (v, y) < diam(G).
(¢) There is a vertex z such that disty(z,u) + distg(z,v) < diam(G).

Clearly, G* C G and S C S*. Koh and Tay [494] showed the following:

) For m > 2 and k > 4, Cs,,, x P, € G*.

) C4 X C4 eq.

) For m > 2 and n > 3, Ca,, X Co,, € G*.

) If 7" and T” are trees of diameter at least four, then 7" x T" € G*.

() {Pj: 722 U{C;: j>3U{K;: j>1}U{G: p(G) =0} C S, also
{Kpq: 2<p<gq}CS.

(f) If T is a tree which is not a path, then T' € §*.

(g) If Go is the set of all graphs of diameter two, then Go C S*.

Due to the fact that the families G,G*, S, S* of graphs are quite large, the
following results proved by Koh and Tay [494] are undoubtedly interesting.

Theorem 2.9.4 IfGe€GandA; €S,i=1,2,...,n, then p(Gx[[\_; 4;) =
0.

Theorem 2.9.5 If G € G* and A; € 8", i = 1,2,...,n, then p(G X
[, A) = 0. 0

We will prove only Theorem 2.9.4 since the proof of Theorem 2.9.5 is
similar and is left as Exercise 2.32.

Proof of Theorem 2.9.4: Let diam(G) = k and let U and W be the
partite sets of G. Let F' (H;) be a G-orientation (an S-orientation) of G (A,
i=1,2,...,n). We will orient G x []"_; A; inductively as follows:

1. Orient G as F and A; as Hy. In G x Ay, orient an edge {(z,i), (z,7)}
from (x,7) to (x,7) if and only if either x € U and ij € A(Hy) or x € W
and ji € A(Hy); orient an edge {(z,%), (y,¢)} from (x,7) to (y,?) if and
only if zy € A(F).

2. Suppose that G x H;Zl A;, where 1 < r < n—1, has been oriented. Orient
A,y1as H,y1. Orient GXH:LI A; so that the orientation of GX[];_; 4;%
{4} is isomorphic to that of G x [[;_, A; for each j € V(A,41) and
orient an edge {(z,a1,...,a,,%),(z,a1,...,a,,j)} from (z,a1,...,a,,%)
to (z,a1,...,a.,7) if and only if either x € U and ij € A(H,11) or
xr € W and jl S A(Hr+1)-
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Let F* be the resulting orientation of G x [[\_, A;. Define the following
sets

Ry; = {(u,v) € V(H; x H;) : disty, (u,v) < diam(4;)},

Ro; = {(u,v) € V(H; x H;) : (u,v) & Ry;, disty,(v,u) < diam(A4;)},
Rs; = {(U,’U) S V(HZ X Hz) : (’U,ﬂ)) € Ry; U Rgi7 E|y7Z S V(HZ)
max {distgy, (u,y) + distg, (v,y), dist g, (z,u) + dist g, (z,v)} < diam(4;)}.

Observe that Ry;, Ra;, R3; form a partition of V(H; x H;).

Let (z,a1,...,a,) and (y,b1,...,b,) be a pair of distinct vertices of
F*. We will construct, in F*, a path PiP,PsP, from (z,a1,...,a,) to
(y,b1,...,by,) of length at most diam(G x [[;—, A;) = k + > ., diam(4;).
(See Exercise 2.29.)

Without loss of generality, assume that = € U (the case of z € W can be
treated similarly). Let 2’ be the successor of x either on a shortest (x, y)-path
in F'if  # y or on a shortest cycle through x if x = y. Clearly, 2’ € W.

The path P is a shortest path from (z,aq,...,a,) to (z,c1,...,¢,), where
¢,1=1,...,n, is defined as follows:

(a) c; = b; if (ai, bz) € Ry;.
(b) c; = a; if (ai,bi) € Ro;.
(c) If (ai, b;) € Rs;, we set ¢; = y;, where y; is a vertex satisfying

distg, (@i, yi) + dist g, (bs, ys) < diam(A;).

The path Ps is a shortest path from (x,¢q,...,¢,) to (2',¢1,...,¢n). The
path Ps is a shortest path from (2/,¢1,...,¢,) to (2/,b1,...,b,) and the path
P, is a shortest path from (z,b1,...,b,) to (y,b1,...,b,). Observe that the
total length of Py and Ps does not exceed Y-, diam(A;) and the total length
of P, and Py is at most k. O

2.10 Kings in Digraphs

In this section, we study r-kings in tournaments, semicomplete multipartite
digraphs and other generalizations of tournaments. The main emphasis is on
4-kings in semicomplete multipartite digraphs. The notion of a 2-king and
some results on 2-kings in tournaments will be generalized in Section 12.3.2.

2.10.1 2-Kings in Tournaments

Studying dominance in certain animal societies, the mathematical sociologist
Landau [508] observed that every tournament has a 2-king. In fact, in every
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tournament 7', each vertex = of maximum out-degree is a 2-king. Indeed, for a
vertex y € T', y # x, either x—y or there is an out-neighbour of x which is an
in-neighbour of y. In both cases, dist(z,y) < 2. Observe that if a tournament
T has a vertex of in-degree zero, this vertex is the only r-king in T" for every
positive integer r. Moon [569] proved the following.

Theorem 2.10.1 FEvery tournament with no vertex of in-degree zero has at
least three 2-kings.

Proof: Exercise 2.35. O

The following example shows that this bound on the number of 2-kings
by Moon is sharp. Let T;, be a tournament with vertex set {zy,22,...,Zn}
and arc set A = X UY U{z,_2x,}, where

X:{$i$i+1i 7;:1727...771—1},
Y={zjz;,: 1<i<j—-1<n-1,(,i # (nn—2)}

It is easy to verify that, for n > 5, z,,_3,%,_2,T,_1 are the only 2-kings in
T, (Exercise 2.37), see Figure 2.8.

e N

Figure 2.8 An example of a tournament with exactly three 2-kings. The arcs which
are not shown are oriented from right to left.

Since the converse of a tournament is a tournament, the above two results
can be reformulated for 2-serfs. (A vertex x is a 2 serf if dist(V, z) < 2.) The
concepts of 2-kings and 2-serfs in tournaments were extensively investigated
by both mathematicians and political scientists (the latter have studied so-
called majority preferences). The interested reader is referred to Reid [630]
for a comprehensive recent survey on the topic.

2.10.2 Kings in Semicomplete Multipartite Digraphs

It is easy to see that Proposition 2.1.1 implies that a multipartite tourna-
ment T has a finite out-radius if and only if T' contains at most one vertex of
in-degree zero (Exercise 2.38). Moreover, the following somewhat surprising
assertion holds. If a multipartite tournament has finite out-radius, the out-
radius is at most four. In other words, every multipartite tournament with
at most one vertex of in-degree zero contains a 4-king. (Similar results hold
for quasi-transitive digraphs and a certain class of digraphs that includes
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multipartite tournaments, see Subsection 2.10.3.) This result was proved in-
dependently by Gutin [356] and Petrovic and Thomassen [605]. The bound
is sharp as there exist infinitely many p-partite tournaments without 3-kings
for every p > 2 [356]. Indeed, bipartite tournaments Cy[K 4, K 4, K 4, K 4] for
¢ > 2 do not have 3-kings (dist(u,v) = 4 for distinct vertices u,v from the
same K ). It is clear that every multipartite tournament, for which the initial
strong component is some C4[K 4, Kq, Kq, K4] (¢ > 2), has no 3-king either.

Thus, 4-kings are of particular interest in multipartite tournaments. In
a number of papers (see, e.g., Gutin [361], Koh and Tan [485, 486, 489,
Petrovi¢ [604] and the survey paper [630] by Reid) the authors investigate
the minimum number of 4-kings in multipartite tournaments without vertices
of in-degree zero. (If a multipartite tournament has exactly one vertex of in-
degree zero, it contains exactly one 4-king, so this case is trivial.) In our view,
the most interesting result in this direction was obtained by Koh and Tan in
[485].

Theorem 2.10.2 LetT be a k-partite tournament with no vertex of in-degree
zero. If k = 2, T contains at least four 4-kings; it has exactly four 4-kings
if its initial strong component consists of a cycle of length four. If k > 3, T
contains at least three 4-kings; it has exactly three 4-kings if its initial strong
component consists of a cycle of length three. ad

This theorem can be considered as a characterization of bipartite (p-
partite, p > 3) tournaments with exactly k 4-kings for k € {1,2,3,4}
(k € {1,2,3}). The next theorem by Gutin and Yeo [376] goes further with
respect to both exact number of 4-kings and the class of digraphs under
consideration.

Theorem 2.10.3 Let D = (V, A) be a semicomplete multipartite digraph
and let k be the number of 4-kings in D. Then

1. k=1 if and only if D has exactly one vertex of in-degree zero.

2. k = 2,3 or 4 if and only if the initial strong component of D has k
vertices.

3. k =5 if and only if either the initial strong component QQ of D has five
vertices or @ contains at least six vertices and possesses a path P =

pop1p2p3pa such that dist(po,ps) = 4 and {p1,p2,p3,pa}=V — V(P).
0

We have seen that a vertex of maximum out-degree in a tournament is
a 2-king. It is slightly more difficult to show that a vertex of maximum out-
degree in a bipartite tournament is a 4-king (Exercise 1.67). With 4-kings in
k-partite tournaments for £ > 3, the situation is more complicated as can
be seen from the next theorem by Goddard, Kubicki, Oellermann and Tian
[321].
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Theorem 2.10.4 Let T be a strongly connected 3-partite tournament of or-
dern > 8. If v is a vertex of mazimum out-degree in T, then dist(v, V(T)) <
[n/2] and this bound is best possible. O

In the rest of this subsection, we will prove the following theorem using
an argument adapted from [376].

Theorem 2.10.5 Fvery semicomplete multipartite digraph with at most one
vertex of in-degree zero has a 4-king.

For the proof we need the following lemmas:

Lemma 2.10.6 If P = pgopy...pe is a shortest path from pg to pe in a
semicomplete multipartite digraph D, and £ > 3, then there is a (pe, po)-path
of length at most 4 in D{V (P)).

Proof: Since £ > 3 and P is a shortest path we have ({po,p1},p¢) = 0. If
pe—po we are done, so assume that py, and pg belong to the same partite set
of D. This implies that p,—p;. Analogously, (pg, {p2,p3}) = 0, which implies
that either pgp1popspo or pep1papo is a (pe, po)-path of length at most 4 in
D(V(P)). a

Lemma 2.10.7 Let D be a semicomplete multipartite digraph and let Q@ be
an nitial strong component of D. If Q has at least two vertices, then D has
only one initial strong component. Every vertex in Q, which is a 4-king in Q,
is a 4-king in D.

Proof: Assume that |V(Q)| > 2, but D has another initial strong component
Q)’. Since () contains adjacent vertices, there is an arc between @) and @Q’, a
contradiction.

Let = be a 4-king in @ and let y € V(D) — V(Q) be arbitrary. If  and y
are adjacent, then clearly x—y. Assume that z and y are not adjacent. Since
@ is strong, it contains a vertex z dominated by z. Clearly, t—z—y. Hence
dist(x,y) < 2 and z is a 4-king in D. 0

Lemma 2.10.8 Let D be a strong semicomplete multipartite digraph and let
w be a vertex in D. Fori > 3, if NT'(w) # 0, then dist(N T (w), NT¢[w]) < 4.

Proof: Let 2 € N™¢(w) be arbitrary. Since a shortest path from w to z is
of length i > 3, by Lemma 2.10.6, dist(z,w) < 4. Let ¢ € N™¢[w] — {w, 2}
and let ror1 ...7; be a shortest (w,q)-path in D. If 1 < j < 3 then, since z
dominates at least one of the vertices g, 71, either zrgry ...r; or zry...7; is
a (z,q)-path in D of length at most 4. If j > 4 then, since z dominates at
least one of the vertices r;_s3,7;_g, either zr;_sr;j_or;_17; or 2rj_or;_17; is
a (z,q)-path in D of length at most 4. ad

Proof of Theorem 2.10.5: Let D be a semicomplete multipartite digraph
with at most one vertex of in-degree zero. If D has a vertex x of in-degree zero,
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then clearly x is a 2-king in D. Thus, assume that D has no vertex of in-degree
zero. Then, every initial strong component ) of D has at least two vertices.
By Lemma 2.10.7, @ is unique and every 4-king in @ is a 4-king in D. It
remains to show that @) has a 4-king. If every vertex in @ is a 4-king, then we
are done. Otherwise, let w be a vertex in () which is not a 4-king of Q. Then,
r = distq(w, V(Q)) > 5. By Lemma 2.10.8, distq(Ng" (w), NG [w]) < 4, ie.,
every vertex in N;T(w) is a 4-king in @ (since Ngr[w] =V(Q)). O

2.10.3 Kings in Generalizations of Tournaments

Bang-Jensen and Huang [80] considered kings in quasi-transitive digraphs.
The main result of [80] is the following.

Theorem 2.10.9 Let D be a quasi-transitive digraph. Then we have

(1) D has a 3-king if and only if it has a finite out-radius®.
(2) If D has a 3-king, then the following holds:

(a) Every vertex in D of maximum out-degree is a 3-king.
(b) If D has no vertex of in-degree zero, then D has at least two 3-kings.
(c¢) If the unique initial strong component of D contains at least three vertices,
then D has at least three 3-kings.
O

In the following family of quasi-transitive digraphs, every digraph has a
3-king but no 2-king: C5[Ky,, Kk,, Kk, for every ki, ko, k3 > 2.
In [605], Petrovic and Thomassen obtained the following,.

Theorem 2.10.10 Let G be an undirected graph whose complement is the
disjoint union of complete graphs, paths and cycles. Then every orientation
of G with at most one vertex of in-degree zero has a 6-king. a

2.11 Application: The One-Way Street and the Gossip
Problems

In this section, we show how (some extensions of) the one-way and gossip
problems lead one to consider minimum diameter orientations of digraphs.
Recall that an orientation of a digraph D is a subdigraph of D obtained from
D by deleting exactly one arc between x and y for every pair x # y of vertices
such that both zy and yx are in D. Some results are given on minimum diam-
eter orientations of digraphs from well-known classes, semicomplete bipartite
digraphs and quasi-transitive digraphs.

5 See Proposition 2.1.1.
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2.11.1 The One-Way Street Problem and Orientations of Digraphs

Graph theoretical modelling of the one-way problem can be traced back to
the classical paper of Robbins [637]. It is well-known that introduction of
one-way streets usually decreases the number of car accidents and allows one
to simplify the traffic control. By Robbins’ theorem (see Theorem 1.6.2) a
connected graph G has a strongly connected orientation if and only if G has
no bridge. This theorem shows when the one-way street system can be intro-
duced. One reason why one-way streets are not used everywhere is that the
travelling distances after such arrangements will increase. To minimize this
disadvantage of the one-way traffic system, we may choose certain assign-
ments of directions that minimize some disadvantage criterion. Three such
criteria are discussed by Roberts and Xu [638, 639, 640, 641] Most other pa-
pers on the topic deal only with one criterion: the minimization of the longest
path that has to be travelled, i.e. the diameter of an orientation of the undi-
rected graph representing the street configuration. We restrict ourselves to
this objective function.

Practically all papers on the topic consider orientations of undirected
graphs. This corresponds to converting all streets, which were initially two-
way, into one-way streets (see, e.g., Koh and Tay [492, 493, 495], Konig,
Krumme and Lazard [500] and Plesnik [608]). This model is quite restricted:
certain streets may already be one-way. To take such streets into considera-
tion, one has to study orientations of directed rather than undirected graphs.
While there are a few papers (see, e.g., Boesch and Tindell [120], Chung,
Garey and Tarjan [157], and Volkmann [730]) dealing with finite diameter
orientations of digraphs, we are aware of only one paper [378] devoted to
minimizing the diameter of an orientation of a digraph. In particular, the
following results are proved by Gutin and Yeo [378]. For a digraph D, as in
the case of undirected graphs, let diamy,;, (D) denote the minimum diameter
of an orientation of D.

Theorem 2.11.1 If D is a strong quasi-transitive digraph of order n > 3,
then
diamyi, (D) < max{3, diam(D)}.

There is an infinite family Q of strong quasi-transitive digraphs such that for
every Q € Q, diam(Q) = 2 but no orientation of Q is of diameter® 2. a

Theorem 2.11.2 If D is a strong semicomplete bipartite digraph of order
n > 4 such that D #K1 n—1, then diampi, (D) < max{5,diam(D)}. There is
an infinite family B of strong semicomplete bipartite digraphs such that for
every B € B, diam(B) = 4 but diamuy;, (B) = 5. O

5 Observe that by Exercise 1.57 every strong quasi-transitive digraph of order
n > 3 has a strong orientation. So does every strong semicomplete bipartite
digraph with every partite set of cardinality at least 2. On the other hand,

Kin-1, n > 2, has no strong orientation.
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The sharpness of the upper bounds of these theorems can be seen from the
following examples. Let Ty, k > 3, be a (transitive) tournament with vertices
Z1,T2,...,%, and arcs x;x; for every 1 <4 < j < k. Let y be a vertex not in
T}, which dominates all vertices of T}, but x; and is dominated by all vertices
of Ty, but 1. (See Figure 2.9.) The resulting semicomplete digraph Dy has
diameter 2. However, the deletion of any arc of Dy between y and the set
{za,z3,..., 251} leaves a digraph with diameter 3. Indeed, if we delete yx;
(z;y), 2 <i <k —1, then a shortest (zy,x;)-path ((x;, z1)-path) becomes of
length 3.

Figure 2.9 A semicomplete digraph of diameter 2 with no orientation of diameter
2.

Let H be a strong semicomplete bipartite digraph with the following
partite sets V; and Vs and arc set A: Vi = {21, 22,235}, Vo = {y1,¥2,y3}, and

A= {1?13/1,y1$17$1y27y39«"1,$2y1, Y222,Y3x2,Y1x3, r3Ys, 1733/2}-

Let H = H—x1y; and H” = H —y,z;. It is easy to verify that diam(H) = 4
(in particular, dist(ys, y3) = 4) and that diam(H') = diam(H") = 5 (a short-
est (x1,ys3)-path in H' and a shortest (ya,x1)-path in H” are of length 5).
The digraph H can be used to generate an infinite family of semicomplete
bipartite digraphs with the above property: replace x3, say, by a set of inde-
pendent vertices.

2.11.2 The Gossip Problem

‘There are n ladies, and each one of them knows an item of scandal which
is not known to any of the others. They communicate by telephone, and
whenever two ladies make a call, they pass on to each other, as much scandals
as they know at the time. How many calls are needed before all ladies know
every scandal?’ This is the way the so-called gossip problem (apparently due
to A. Boyd) was stated by Hajnal, Milner and Szemerédi [392] in 1972. Since
then numerous research papers on the topic have been published (see e.g.
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surveys Fraigniaud and Lazard [248], Hedetniemi, Hedetniemi and Liestman
[409], Hromkovi¢, Klasing, Monien and Peine [433]). The main reason of this
popularity is a high applicability of the gossip problem, especially in computer
networks.

Actually the above quotation captures only a special case of the gossip
problem. In a more general setting, this problem can be formulated as follows.
Let G be a connected graph of order n. Every vertex v of G holds initially an
item I(v) (different from the items of other vertices). A vertex v can pass all
items it currently has to all or some of its neighbours at one step. The aim is
to calculate the minimum number of steps required to pass to every vertex u
the set {I(v): v € V(G)} of all items.

The problem can be specified by allowing only one-way communications
(like in radio communications over one frequency or email) when at every
given step, for every pair u, v of adjacent vertices, either u can pass all items
it holds to v, or v can pass all items it holds to u, but not both [248]. This
specification is often called half-duplex. The half-duplex gossip problem is
NP-hard [248]. On the other hand, this problem is normally of interest, from
the applications point of view, only for some special families of graphs such
as the Cartesian products of cycles used in practice to build the Intel A-
prototype (see Rattner [622]) and many transputer-based machines (see May
[557]). Several important families of graphs are discussed by Fraigniaud and
Lazard [248]. The solutions obtained for them are based on an upper bound
that includes, as the main term, the minimum diameter of an orientation of
a given undirected graph [248].

In the half-duplex gossip problem, we may consider symmetric digraphs
8 instead of undirected graphs G. The half-duplex model can be extended
from symmetric to arbitrary digraphs D, where a vertex v can pass all its
items only to vertices u such that vu is an arc in D. The use of arbitrary
digraphs may well be of interest when security concerns dictate that some of
the directions of communications are forbidden.

We consider only the half-duplex model for a strong digraph D. Let s(D)
stand for the minimum number of steps for gossiping in this model. Since the
minimum number of steps to pass all items of vertex u to another vertex v
is dist(u,v), we have s(D) > diam(D).

Gutin and Yeo [378] proved the following simple upper bound on s(D),
which is an improvement on the similar upper bound in [248] even in the case
of symmetric digraphs.

Theorem 2.11.3 Let D = (V, A) be a strong digraph. Then
s(D) < min{2rad(D), diamy;,(D)}.

Proof: Let H be an orientation of D of minimum diameter. Let every vertex
in D pass its items to all out-neighbours in H. Repeat this iteration till every
vertex holds all items. Clearly, the number of iterations required is the length
of the longest path in H, i.e. s(D) < diam(H) = diam,,;, (D).
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Let « be a vertex of D such that rad(D) = (dist(x, V) + dist(V, z))/2.
Let F,f (F, ) be a BFS tree of D rooted at z (the converse of a BFS tree of
the converse of D rooted at z). In the first dist(V, z) steps pass items from
vertices to their out-neighbours along arcs of F, . Thus, in the end, = holds
all items. During the next dist(xz, V') steps pass items from vertices to their
out-neighbours along arcs of F,". Hence, in the end, every vertex holds all
items. Thus, s(D) < 2rad(D). O

The bound of Theorem 2.11.3 is of special interest when D satisfies
diam(D) = diampi, (D). In this case, a minimum diameter orientation of
D provides an optimal solution to the gossip problem. Thus, an orienta-
tion H of diameter possibly exceeding diam(D) by a small constant leads
to a good approximate solution for the gossip problem (given H, the up-
per bound min{2rad(D),diam(H)} for s(D) can be computed in polyno-
mial time). In the previous subsection, we saw that slight modifications of
diam(D) = diamyy;, (D) hold for some important families of digraphs.

2.12 Application: Exponential Neighbourhood Local
Search for the TSP

The aim of this section is to introduce a new approach to obtain near optimal
solutions for the travelling salesman problem (TSP). The main idea is to find,
in polynomial time, a best solution in a specially constructed set of solutions
of exponential cardinality. This idea can be applied not only to the TSP, but
also to other AN'P-hard combinatorial optimization problems. This general
idea was used already in the papers by Sarvanov and Doroshko [651, 652]
and Gutin [354].

2.12.1 Local Search for the TSP

The TSP is stated as follows. Given a weighted complete digraph ([H(n,c),

find a hamiltonian cycle in K, of minimum cost. In this section and some
others where the TSP is considered, we will often call a hamiltonian cycle

in [H(n a tour; it is also assumed that V([H(n) = {1,2,...,n}. The TSP
is a well-studied A'P-hard problem with numerous applications (see, e.g.,
the books by Cook, Cunningham, Pulleyblank and Schrijver [166], Lawler,
Lenstra, Rinooykan and Shmoys [511], Reinelt [632] and the paper [466] by
Johnson and McGeoch). Since the TSP is N'P-hard, no polynomial time
exact algorithms to solve the problem are known. However, there is a well-
tested approach (see, e.g., Johnson and McGeoch [466]) that provides near
optimal solutions (which is sufficient in most applications) in reasonable time
for large-scale instances of the TSP. The approach consists of two phases. In
the first phase, a construction heuristic quickly produces a solution which
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is normally far from optimal but is much better than a random solution”.
(Some construction heuristics for the TSP are described later in this book.)
In the second phase, a local search heuristic is used. During every iteration of
this heuristic, a neighbourhood of a current best solution is considered and
a better solution (in certain cases, the best solution in the neighbourhood)
is found. When no better solution in the neighbourhood exists the heuristic
terminates. (There are several variations of the above description [466].)

In many cases, so-called 3-Opt is applied. In 3-Opt, the neighbourhood of

a hamiltonian cycle C consists of all tours in [H(n obtained from C' by deleting
three arcs and then adding three arcs. (This notion can be easily generalized
to k-Opt for every fixed k > 3.) The cardinality of this neighbourhood is
certainly ©(n?). Also, O(n?) time is required to completely search this neigh-
bourhood (i.e., to find the best hamiltonian cycle) if we look at the tours of
the neighbourhood one by one. Certainly, the cubic time is unacceptable for
large-scale instances of the TSP. However, 3-Opt is widely used in practice
since usually only a small fraction of the neighbourhood is searched before a
better solution is found. Despite the fact that 3-Opt allows one to find quite
good solutions to large-scale instances of the TSP, the way of looking at the
solutions one by one seems rather inefficient.

Therefore, in the 1980’s, Sarvanov and Doroshko [651, 652] and Gutin
[354] introduced independently some neighbourhoods of exponential size
where the best solution can be obtained in polynomial time. Recently, var-
ious neighbourhoods of exponential size for the TSP were suggested and
investigated (see, e.g., Balas and Simonetti [37], Burkard, Deineko and Woeg-
inger [137], Glover [318], Glover and Punnen [320], Potts and Velde [611] and
Punnen [616]). The paper [188] by Deineko and Woeginger is an excellent
survey on the topic. Balas and Simonetti [37] and Carlier and Villon [448]
constructed and implemented local search algorithms which use exponential
neighbourhoods. Their results are very encouraging. They also show the ne-
cessity of further theoretical research on the topic.

There are different types of neighbourhoods for the TSP; many of them
can be found in [188, 466]. The following definition of a neighbourhood struc-
ture for the TSP is due to Deineko and Woeginger [188]. In this definition,
we assume that every tour T' = m(1)m(2)...7(n)w(1) starts from the ver-
tex 1, i.e., (1) = 1. Therefore, we will identify T with the permutation
m(1)7(2)...7(n). A neighbourhood structure consists of a neighbourhood
N(T) for every tour T such that the neighbourhood N(7(1)7(2)...7w(n)) =
7w+ N(12...n), where 7(1) = 1 and * stands for the permutation product (ap-
plied from right to left). This definition is somewhat restrictive (for example,
it requires the cardinality of neighbourhoods to be the same) but reflects the
very important ‘shifting’ property of neighbourhoods which distinguish them

7 For certain families of instances of the TSP, some construction heuristics produce
near optimal tours by themselves; see, e.g., Glover, Gutin, Yeo and Zverovich
[319]. In such cases local search is perhaps not required.
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from arbitrary sets of tours. Another important property of neighbourhood
N(T) of a tour T, which is usually imposed, is that the best tour of N(T')
can be computed in time polynomial in n. This is necessary to guarantee
an efficient local search. Neighbourhoods satisfying this property are called
polynomially searchable.

The largest known polynomially searchable neighbourhoods are those of
size 20("1°gn) (note that there are (n — 1)! tours in I?n and (n — 1)! =
20(nlogn) a5 well). Such neighbourhoods were introduced independently in
[354, 616, 652]. Punnen’s neighbourhoods [616] are the most general among
them. We will consider a special family of these neighbourhoods, which is
a slight generalization of neighbourhoods in [354, 652]. We call those neigh-
bourhoods the assignment neighbourhoods. (See Subsection 2.12.3 for the
definition of these neighbourhoods.) Some features of these neighbourhoods
were investigated in [369]. Gutin [369] proved that, for every 3 > 0, there is a
neighbourhood of cardinality 2("1°¢™) that can be searched in time O(n'+7).
Deineko and Woeginger [188] demonstrated that to search a neighbourhood
of cardinality 2°("1°8™) one needs time 2(n'*#), where 3 > 0.

Since the diameter of neighbourhood structure digraphs (defined later) is
of certain importance for local search, this parameter has also been studied.
We present some recent results on the topic in Subsection 2.12.4.

2.12.2 Linear Time Searchable Exponential Neighbourhoods for
the TSP

In this section, we demonstrate how to use the algorithm from Subsection
2.3.2 to search some exponential neighbourhoods. We introduce a neighbour-
hood of exponential size based on one of the approaches described by Glover
and Punnen [320]. Assume that n, the order of ([H(n, ¢), equals one modulo
three (it is easy to see how to modify our approach when n does not equal one
modulo three). Let C = vvlvivivivivd.. . vv}v?v be a hamiltonian cycle of

I? n- Define a neighbourhood of C' as follows:
NB(C) = {voitof Tt T2 pirpftlyf t2y 0 5, € {0,1,2),i = 1,2, t},

where all superscripts are taken modulo three. Clearly, |[NB(C)| = 3L7/3).
We show how to find the best hamiltonian cycle in NB(C') in time O(n).
Construct an auxiliary weighted digraph D = (V, A, w) as follows:

V={p.qu uj,ui: ic{l,2,. .. t}}

A:{pu{,ufq,ujuf+1: Jke€{0,1,2}, i€ {1,2,...,t —1}}.

Moreover, w(p,ul) = c(v,v]) + c(v],vI™) + c(wI™ 0vIT?) for every j €

{0,1,2},

w(uj uz+1) = C(”f” vF) + el D)

) 1+1)+C( i+1> Vit1 i+1 5 Vigl
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for every i € {1,2,...,t — 1}, 5,k € {0,1,2}, and w(u},q) = c(vf"’z,v) for
every k € {0,1,2}.

All (p, q)-paths in D are of the form puj'u3? ... u;'q, where s; € {0,1,2},
1=1,2,...,t. Therefore, the mapping

S1,,52 Slvf1+1vi91+2

1, 8042
¢ puilus? ... ujtq—ov] syprtlyset2y

Ut
is a bijection from the set of (p, ¢)-paths in D into N B(C'). Moreover, for every
(p, ¢)-path Rin D, we have w(R) = ¢(¢(R)). Hence, to find a minimum weight
hamiltonian cycle in NB(C), it suffices to compute a shortest (p, ¢)-path in
D. This can be done in time O(|A|) = O(n) by the algorithm described in
Subsection 2.3.2. Moreover, since we can readily give an acyclic ordering of
vertices in D, we do not need the first phase of the algorithm in Subsection
2.3.2.

2.12.3 The Assignment Neighbourhoods

The purpose of this subsection is to introduce the assignment neighbour-
hoods. .

Let C = z1x5...2571 be a cycle in K. The operation of removal of
a vertex x; (1 < ¢ < k) results in the cycle z1@a ... 21241 ... Tz (thus,
removal of z; is not deletion of x; from C). Let y be a vertex of [H(n not in
C. The operation of insertion of a vertex y into an arc x;x;41 results in the
cycle 122 ... 2 yTit1 . .. xpx1. An insertion of y into C is an insertion of y
into z;x; 4 for some 1 < i < k. For aset Z ={z1,...,25} (s <k) of vertices
not in C, an insertion of Z into C' means an insertion of z; in C followed
by an insertion of zo into the obtained cycle, etc. Furthermore, we require
that, in the cycle obtained after insertion of all vertices of Z into C, no pair
of vertices from Z is adjacent.

Let T = z129 ... 2,21 be a tour in ]H(n and let Z = {z;,,zi,,...,x; } be a
set of pairwise non-adjacent vertices of T'. The assignment neighbourhood
N(T, Z) of T with respect to Z consists of the tours that can be obtained from
T by removal of the vertices from Z one by one followed by an insertion of Z
into the cycle derived after the removal. For example, for H = x1xox3242571,
N(H,{z1,23}) = {@20i040;T522, ToT;TaT5T T, TaTaT; X52T2 @ {%,j} =
{1,3}}. Let T = 2125 ... zpx and s = |Z|; then it is easy to verify that

IN(T, Z)| = (n — $)!/(n — 25)!

(clearly, we have n — s > s).

We show that the best tour in N (7, Z) can be found in time O(n?) [369,
616]. Let C' = y1y2...yn—sy1 be the cycle obtained from T after removal
of Z and let Z = {z1,22,...,25}. Let ¢ be an injective mapping from Z
to Y = {y1,¥2, ..., Yn—s} If we insert some z; into an arc y;y;4+1, then the
weight of C' will be increased by c(y;2;) + c(2:yj4+1) — c(y;y;+1). Therefore,
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if we insert every z;, i = 1,2,..., s, into Yg(;)Ye(i)4+1, the weight of C' will be
increased by

S

f(#) = Z(C(y¢(i)zi) + c(2i¥g(i)+1) — Yo Yo (i)+1))-

=1

Clearly, to find a tour of N(T,Z) of minimum weight, it suffices to minimize
f(@) on the set of all injections ¢ from Z to Y. This can be done using the
following weighted complete bipartite graph B. The partite sets of B are
Z and Y, and the weight of an edge z;y; is set to be c(y;2;) + c(ziyj41) —
(Yiys+1)-

By the definition of B, every maximum matching M of B corresponds to
an injection ¢ps from Z to Y. Moreover, the weights of M and ¢j; coincide.
A minimum weight maximum matching in B can be found by solving the
assignment problem (see Section 3.12). Therefore, in O(n?) time, we can find
the best tour in N(T', Z).

2.12.4 Diameters of Neighbourhood Structure Digraphs for the
TSP

Given a neighbourhood N(T') for every tour T in Kn (i.e., some neighbour-
hood structure), the corresponding neighbourhood digraph (of order

(n—1)!) is a directed graph with vertex set consisting of all tours in [H( n and
arc set of pairs (T7,7") such that 7" € N(T”). When all neighbourhoods
N(T) are polynomially searchable, the corresponding digraph is polyno-
mially searchable. The diameter of the neighbourhood digraph is one of
the most important characteristics of the neighbourhood structure and the
corresponding local search scheme [188, 318, 448]. Clearly, a neighbourhood
structure with a neighbourhood digraph of smaller diameter seems to be more
useful than that with a neighbourhood digraph of larger diameter, let alone
a neighbourhood structure whose digraph has infinite diameter (in the last
case, some tours are not ‘reachable’ from the initial tour during local search
procedure).

For example, the neighbourhood digraph for polynomially searchable
‘pyramidal’ neighbourhoods introduced by Carlier and Villon [448] has di-
ameter d,, = O(logn). (In [448], it was proved that d, < logn, the lower
bound d,, = 2(logn) follows from the facts that the cardinality of pyramidal
neighbourhoods is 2°(") [448] and the total number of tours is 2 (" 1°8™) )

In this subsection, using the assignment neighbourhoods, we construct
certain polynomially searchable ‘compound’ neighbourhoods whose digraphs
have diameter bounded by a small constant. We follow the presentation of
Gutin and Yeo [375].

For a positive integer k£ < n/2, the neighbourhood digraph I'(n, k) has

a vertex set formed by all tours in K,. In I'(n,k), a tour T" dominates a
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tour R if there exists a set Z of k non-adjacent vertices of T such that
R € N(T,Z). Clearly, T dominates R if and only if R dominates T, i.e.,
I'(n, k) is symmetric. We denote by disty (T, R) the distance from T to R in
I'(n, k).

For a tour T in [H{ n, let I denote the family of all sets of k£ non-adjacent
vertices in T'. Clearly, the neighbourhood Ny (T') of a tour T in I'(n, k) equals

UZEInkN(T7 Z)

Thus if, for some k, i(n,k) = |Z,k| is polynomial in n, then since N(T, Z)
is polynomially searchable I'(n,k) is polynomially searchable. Otherwise,
I'(n, k) may be non-polynomially searchable. Since polynomially searchable
I'(n, k) are our main interest, we start by evaluating i(n, k) in Theorem 2.12.1.
It follows from Theorem 2.12.1 that, for fixed k, i(n,k) and i(n,n — k) are
polynomial.

Theorem 2.12.1 [375] i(n,k) = (".*) + (") O

Corollary 2.12.2 If p is a non-negative fized integer (p < |n/2|), then
I'(n,p+1) and I'(n, |(n —p)/2]) are polynomially searchable.
Proof: This follows from Theorem 2.12.1 and (7]’;) = (m’fk). a0
It can be shown (Exercise 2.47) that for n is even I'(n,n/2) consists of an
exponential number of strongly connected components and, thus, its diame-
ter is infinite (for example, z1xs ... z,x1 and X1 ... Tp_2TpTy—121 belong to
different strong components of this digraph). Therefore, below we consider
I'(n, k) for k < n/2 only.

Theorem 2.12.3 (Gutin and Yeo) [375] diam(I'(n, [(n —1)/2])) < 4.

Proof: We assume that n > 5, as for 2 < n < 4 this claim can be verified
directly. Let C = z1zo...xpx1 and T = y1y2 ... ypy1 be a pair of distinct
tours in K. Put k = [(n—1)/2]. We will prove that dist,(7,C) < 4, thus
showing that diam(I'(n,k)) < 4.

We call a vertex v even (odd) with respect to C if v = z;, where 1 <
j <mand j is even (odd). For a set of vertices X of IH(n, let Xoqq (Xeven) be
the set of odd (even) vertices in X.

First we consider the case of even n, i.e. k = n/2—1. The proof in this case
consists of two steps. At the first step, we show that there exists a tour 7"
whose vertices alternate in parity and such that dist;(7,T") < 2. Moreover,
T" has a pair of consecutive vertices which are also consecutive in C. At the
second step, we will see that disty(T",C) < 2 as the odd and even vertices
of T" (except for the vertices of the above pair) can be separately reordered
to form C'. Thus, we will conclude that disty (7, C) < 4. Now, we proceed to
the proof.



88 2. Distances

Clearly, T has a pair y;,y;4+1 such that y;4, is odd and y; is even. Let

Z = {Yjr2:Yj+ar - Yjrok}

and let |Z,q4| = s. Remove the vertices of Z from T" and then insert the s odd
vertices of Z into the arcs yj+1¥j+3, - - -, Yj+2s—1Yj+2s+1 and k—s even vertices

of Z into the arcs yjt2s+1Yj+2s5+3: Yj+2s5+3Yj+25+55 - - - » Yj+2k—1Yj+2k+1. We
have obtained a tour

!
T = YiYj+1Vj42Y54-3V54+4Y5+5 - - - Yj+2k—1Vj42kYj4+2k+1Y5 5

where {vj12,..., 042k} = Z.

Let Z' = {yj+3,Yj+5,---»Yj+2k+1} and let |Z! | =t. Since the number
of odd vertices in V(I?n)f{yj, Y41} isequal to k = |Zoga| +|Z. 44l = s+k—t,
we obtain that s = ¢. Remove Z’ from T’ and insert the ¢ even vertices of Z’
into the arcs Y4 1v;42,Vj42Vj44, Vj46Vj48, - - - , Vj42s—2V 425 and the k—s odd
vertices of Z' into the arcs v;i2s+2Vj42s44, - - -, Vj+2k—2Vj4+2k, Vjtoky;. We
have derived a tour T” = ujus . ..un,u;. Clearly, the vertices of T” alternate
in parity, i.e., for every m, if u,, is odd, then u,,+1 is even.

Now we prove that the processes of insertion of Z and Z’ can be performed
in such a way that T" contains a pair of consecutive vertices which are also
consecutive in C' (i.e. there exist indices p and ¢ such that u, = z, and
Upt1 = Tqt1). Since 1 < |Z'] < n, there exists a pair of distinct indices i, m
such that z;, ., € Z" and 41, 2m—1 € Z'. Without loss of generality, we
assume that ¢ is odd. We consider two cases.

Case 1: |Z/ ;,| > 2. We prove that we may choose index ¢ = 4. Since x;41 & Z’
and 7 4 1 is even, either y; = ;41 or Ti41 € Zeyen- If Tit1 € Zeyen, in the
process of insertion of Z, we insert x;y1 into yjyox—1Yjtor+1, i.€. Tiy1 =
vj42k. In the process of insertion of Z’, we insert x; into vj4ory; if Tip1 = y;

or into v, ok_2Vj42k, Otherwise (ie. 41 = vj+2k).
Case 2: |Z! ;| = 1. Thus, m is even. Since n > 6, it follows that |Z > 2.

Analogously to Case 1, one may take ¢ = m — 1.

'l)e'I'L|

Therefore, without loss of generality, we assume that w,_1 = z;, u, =
Zit1. Since {ug, ug, ..., Usk, Tiv1} = Cepen, We can delete {ug,uq, ..., usp}
from T” and insert it into the obtained cycle to get the tour C’ given by
C' = U1y 3U3Ti15Us ... Uok_1T4_1Un_1ZT;11u1. Analogously, we can delete
{u1,us, ..., uzk—1} from C’ and insert it into the obtained cycle to get C.
We conclude that disty (7, C) < 4.

Now let n be odd; then k = (n — 1)/2. Notice that, without loss of gen-
erality, we may assume that z, = y, (to fix the initial labellings of T and
(). Consider tours X = 2123 ... 2pZnr121 and Y = 192 . . . Yn—1YnYnt1¥y1 i
Kn+1, where y, =y, yYny1 = Tpy1. If we assume that j =n, j+1=n+1,
we can obtain, analogously to the case of even n, a tour Y such that the
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vertices of Y alternate in parity (with respect to their indices in X), x,11
follows z,, in Y and dist(Y,Y"”) < 2. Now if i =n and i + 1 =n + 1, then
we can show, similarly to the case of even n, that distg(Y”, X) < 2 and, thus,
distx (Y, X) < 4. Notice that, in the whole process of constructing X from
Y, we have never removed z,, and x,4; or inserted any vertex into the arc
TpZn+1. Thus, we could contract the arc x 2,41 to x, and obtain C from T’
in four ‘steps’. This shows that dist, (7T, C) < 4. O

We can extend Theorem 2.12.3 using the following.

Theorem 2.12.4 [375] Let dist,(T,C) =1 for tours T and C and let m be
any integer smaller than k. Then, dist,,(T,C) < [k/m].

Corollary 2.12.5 For every positive m < |(n —1)/2],
diam((n,m)) < AT|(n — 1)/2] /m].

In particular, if p is a positive fized integer, then diam(I'(n, [(n—p)/2])) < 8
provided n > 2p + 1.

Proof: The first inequality follows directly from the above two theorems and
the triangle inequality for distances in graphs. It also implies the second one.
Indeed, n > 2p + 1 infers

MSQaHdSOQ—MSQ.

Hence, [Q] < 2. O

2.13 Exercises

2.1. Formulate the shortest (s,t)-path problem as a linear programming problem
with integer variables. Hint: use a variable for each arc.

2.2. (—) Show by an example that a minimum weight out-branching with root s
may not be a shortest path tree from s.

2.3. (—) Ilustrate the shortest path algorithm for acyclic digraphs (Subsection
2.3.2) on the acyclic digraph in Figure 2.10.

2.4. Finding the longest paths from a fixed vertex to all other vertices
in a weighted acyclic digraph. Develop a polynomial algorithm for finding
the longest paths from a fixed vertex s to all other vertices in an arbitrary
weighted acyclic digraph. Preferably your algorithm should run in linear time.

2.5. Find the longest paths from s to all other vertices in the acyclic digraph in
Figure 2.10, e.g. using the algorithm that you designed in Exercise 2.4.
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2.6.

2.7.

2.8.

2.9.

2.10.

2.12.

2.13.

2. Distances

o

Figure 2.10 A weighted acyclic digraph.

Finding a longest path in a weighted acyclic digraph in linear time.
Show how to find a longest path in a weighted acyclic digraph D in linear
time. Hint: use a variant of the dynamic programming approach taken in
(2.3), or construct a superdigraph D’ of D such that one can read out a
longest path in D from a shortest path tree from some vertex s in D’.

(—) Execute Dijkstra’s algorithm on the digraph in Figure 2.11.

7

.

10

1
1

s 1

7 1

2
1 3
4
<
12

Figure 2.11 A digraph with non-negative weights on the arcs.

Complete the description of Dijkstra’s algorithm in Subsection 2.3.3 such
that not only the distances from s to the vertices of D are computed, but
also the actual shortest paths are found.

Complete the description of the Bellman-Ford-Moore algorithm in Subsec-
tion 2.3.4 such that not only the distances from s to the vertices of D are
computed, but also the actual shortest paths are found.

(=) Execute the Bellman-Ford-Moore algorithm on the digraph in Figure
2.12. Perform the scanning of arcs in lexicographic order.

. Negative cycle detection using the Bellman-Ford-Moore algorithm.

Prove Theorem 2.3.10.

Show how to detect a negative cycle in the digraph in Figure 2.13 using the
extension of the Bellman-Ford-Moore algorithm.

Show by an example that Dijkstra’s algorithm may not find the correct dis-
tances if it is applied to a weighted directed graph D where some arcs have
negative weights, even if there is no negative cycle in D.



2.14.

2.15.
2.16.

2.17.

2.18.

2.13 Exercises 91

Figure 2.13 A weighted digraph with a negative cycle.

(—) Show how to implement the Floyd-Warshall algorithm so that it runs in
time O(n?).

Prove Theorem 2.3.10.

Re-weighting the arcs of a digraph. Let D = (V, A,¢) be a weighted
digraph and let 7 : V' — R be a function on the vertices of D. Define a new
weight function ¢* by ¢*(u,v) = c(u,v) + 7(u) — w(v) for all v € V. Let dist*
be the distance function with respect to D* = (V, A,c¢*), and let P be an
(z,y)-path in D. Prove that P is a shortest (z,y)-path in D (with respect
to ¢) if and only if P is a shortest (z,y)-path in D* (with respect to c¢).
Hint: consider what happens to the length of a path after the transformation
above.

(—) Consider the weights introduced in Exercise 2.16. Show that the weight
of a cycle in D is unchanged under the transformation from D = (V, A, ¢) to
D* = (V,A,c").

Getting rid of negative weight arcs by re-weighting. Let D = (V, A, ¢)
be a weighted digraph with some arcs of negative weight, but with no negative
cycle. Let D' = (V, A’, ¢’) be obtained from D by adding a new vertex s and
all arcs of the form sv, v € V, and setting ¢'(s,v) = 0 for all v € V and
' (u,v) = c(u,v) for all u,v € V. Let w(v) = distp/ (s, v) for all v € V. Define
c* by ¢*(u,v) = ¢(u,v) + 7(u) — w(v) for all u,v € V. Prove that ¢*(u,v) > 0
for all u,v € V.
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2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.
2.26.
2.27.

2.28.

2.29.

2.30.

2.31.
2.32.
2.33.

2.34.

2.35.

2. Distances

Johnson’s algorithm for shortest paths. Show that by combining the
observations of Exercises 2.16-2.18, one can obtain an O(n”logn + nm) al-
gorithm for the all pairs shortest path problem in digraphs with no negative
cycles (Johnson [463]).

Let M = [my;] be the adjacency matrix of a digraph D = (V, A) with V =
{1,2,...,n} and let k be a natural number. Prove that there is an (4, j)-walk
of length k in D if and only if the (7, j) entry of the kth power of M is positive.

Show how to compute the kth power of the adjacency matrix of a digraph of
order n in time O(P(n)logk), where P(n) is the time required to compute
the product of two n X n matrices.

Finding a shortest cycle in a digraph. Describe a polynomial algorithm
to find the shortest cycle in a digraph. Hint: use Exercise 2.20.

(+) The generalized triangle-inequality. An arc-weighted digraph D =
(V, A, c) satisfies the generalized triangle-inequality if, whenever P and
Q are (z, y)-paths for some z,y € V(D) we have that |A(P)| < |A(Q)| implies
that ¢(P) < ¢(Q). Describe a polynomial algorithm to check whether a given
arc-weighted digraph satisfies the generalized triangle-inequality.

The generalized triangle-inequality was defined above. Show that one can
find the shortest path from a given vertex to all other vertices in O(n + m)
time in a weighted digraph which satisfies the generalized triangle-inequality.

Prove Proposition 2.4.2.
(—) Draw the Goldberg digraph D(12,15) (see the proof of Theorem 2.4.4).

(=) Derive a formula for the maximum diameter of an orientation of the
complete k-partite graph Ky, n,,...,n, - Hint: apply Theorem 2.5.1.

Short cycles through an edge. Let G = (V, E) be a 2-edge-connected
graph and let uv € E. Prove that G has a cycle of length at most 2dist(u, V))+
1 through the edge uv. Hint: use the (undirected) distance classes from v and
v as well as the fact that uv is not a bridge.

(=) Let G1,Ga,...,Gp be connected undirected graphs. Prove that

P
diam (177, G;) = _ diam(G,).
=1

Prove that p(Cp x Cq) > 0 when both p and ¢ are odd (p,q > 3) (West, see
[500]).

Construct orientations of P3 X Pg and P3 X P; of diameter 8.
Prove Theorem 2.9.5.

(=) For every odd number n > 3, give an example of a tournament 7" of
order n, in which all vertices are 2-kings.

(=) Let T be a tournament on 4 vertices. Show that 7' contains a vertex
which is not a 2-king.

Prove Theorem 2.10.1 (Moon [571]).
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(—) Describe an infinite family of semicomplete digraphs, in which every
member has exactly two 2-kings.

Prove that the tournament 7}, in Subsection 2.10.1 has only three 2-kings for
n > 5.

Prove that a multipartite tournament 7" has a finite out-radius if and only if
T contains at most one vertex of in-degree zero. Hint: use Proposition 2.1.1.

(—) Characterize 2-kings in multipartite tournaments.

3-kings in quasi-transitive digraphs. Show that every quasi-transitive
digraph of finite radius has a 3-king (Bang-Jensen and Huang [80]).

Prove Theorem 2.9.5.
Prove Theorem 2.12.1.
Prove Theorem 2.12.4.

Prove that, in the half-duplex model of gossiping (see Section 2.11), s(G) <
diam(G) + 1 for every connected bipartite graph G (Krumme, Cybenko and
Venkataraman [504]).

Using the upper bound of the previous exercise, prove that s(Cax) = k + 1
for every integer k > 2.

(—) Evaluate the cardinality of a neighbourhood in k-Opt for the TSP (k >
3).

(—) Poor quality exponential neighbourhoods. Show that, if n is even,
then I'(n,n/2) (see Subsection 2.12.4) consists of an exponential number of
strongly connected components and, thus, its diameter is infinite.

(—) Find the cardinality of the assignment neighbourhood N(T,Z) for the
TSP with n vertices and k = |Z| (Gutin [369]).

Maximizing exponential neighbourhoods. Find the value of k = |Z] for
which the cardinality of the assignment neighbourhood N(T', Z) for the TSP
with n vertices is maximum (Gutin [369]).






3. Flows in Networks

The purpose of this chapter is to describe basic elements of the theory and
applications of network flows. This topic is probably the most important
single tool for applications of digraphs and perhaps even of graphs as a whole.
At the same time, from a theoretical point of view, flow problems constitute
a beautiful common generalization of shortest path problems and problems
such as finding internally (arc)-disjoint paths from a given vertex to another.
The theory of flows is well understood and fairly simple. This, combined with
the enormous applicability to real-life problems, makes flows a very attractive
topic to study. From a theoretical point of view, flows are well understood
as far as the basic questions, such as finding a maximum flow from a given
source to a given sink or characterizing the size of such a flow, are concerned.
However, the topic is still a very active research field and there are challenging
open problems such as deciding whether an O(nm) algorithm! exists for the
general maximum flow problem.

Several books deal almost exclusively with flows see e.g. the books [7] by
Ahuja, Magnanti and Orlin, [199] by Dolan and Aldous, the classical text
[246] by Ford and Fulkerson and [578] by Murty. In particular, [7] and [578]
contain a wealth of applications of flows. In this chapter we can only cover
a very small part of the theory and applications of network flows, but we
will try to illustrate the diversity of the topic and show several applications
of a practical as well as theoretical nature. Many of the results given in this
chapter will be used in several other chapters such as those on connectivity
and hamiltonian cycles.

3.1 Definitions and Basic Properties

A network is a directed graph D = (V, A) associated with the following
functions on V x V: a lower bound [/;; > 0, a capacity u;; > [;; and
a cost ¢;; for each (i,j) € V x V. These parameters satisfy the following
requirement:

! Here and everywhere in this chapter n is the number of vertices and m the
number of arcs in the network under consideration.
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For every (i,7) € V x V, if ij € A, then l;; = u;; = 0. (3.1)

In order to simplify notation in this chapter we also make the assumption
that

Cij = —Cjj V(’L,j) eV xV. (32)

This assumption may seem restrictive but it is purely a technical con-
vention to make some of the following definitions simpler (in particular, the
definition of costs in the residual network in Subsection 3.1.2). When it comes
to implementing algorithms for various flow problems involving costs, this as-
sumption can easily be avoided (Exercise 3.2). Finally we assume that if there
is no arc between ¢ and j (in any direction) then ¢;; = 0.

In some cases we also have a function b : V' — R called a balance vector
which associates a real number with each vertex of D. We will always assume
that

> b(v) =0. (3.3)
veV
We use the shorthand notation N = (V, A, [, u,b,c) to denote a network
with corresponding digraph D = (V, A) and parameters [, u, b, c¢. If there are
no costs specified, or there is no prescribed balance vector, then we omit the
relevant letters from the notation. Note that whenever we consider a network
N = (V,A,l,u,b,c) we also have a digraph, namely the digraph D = (V, A)
that we obtain from N by omitting all the functions [, u, b, c.
For a given pair of not necessarily disjoint subsets U, W of the vertex set
of a network ' = (V, A, l,u) and a function f on V' x V we use the notation
f(U, W) as follows (here f;; denotes the value of f on the pair (¢, 7)):

fFOW)= > fij (3.4)

iceU,jew

We will always make the realistic assumption that n = O(m) which holds
for all interesting networks. In fact, almost always, the networks on which we
work will be connected as digraphs.

3.1.1 Flows and Their Balance Vectors

A flow in a network N is a function z : A — Ry on the arc set of A'. We
denote the value of = on the arc ij by z;;. For convenience, we will sometimes
think of z as a function of V' x V' and require that z;; = 0 if ij ¢ A (see e.g.
the definition of residual capacity in (3.7)). An integer flow in N is a flow
x such that z;; € Z, for every arc ij. For a given flow z in A/ the balance
vector of x is the following function b, on the vertices:
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be(v) = Z Tow — Z Tuw YvEV. (3.5)

That is, b, (v) is the difference between the flow on arcs with tail v and the
flow on arcs with head v. We classify vertices according to their balance values
(with respect to z). A vertex v is a source if b, (v) > 0, a sink if b, (v) <0
and otherwise v is balanced (b, (v) = 0). When there is no confusion possible
(in particular when there is only one flow in question) we may drop the index
x on b and say that b is the balance vector of x.

A flow z in N = (V,A,l,u,b,c) is feasible if [;; < z;; < u;; for all
ij € A and b, (v) = b(v) for all v € V. If no balance vector is specified for the
network, then a feasible flow « is only required to satisfy l;; < x;; < u;; for
all (4,7) € A.

The cost of a flow z in N = (V, A,l,u,c) is given by

CTJ) = Z CijTij. (36)
ijEA

See Figure 3.1 for an example of a feasible flow.

(1,3,4,3)

(2,4,5,6) (0,3,3,2)

(0,0,3,1)

(5,6,8,4)

(3,3,3,1)

(4,5,7,8)

(2,2,4,1)

c e

Figure 3.1 A network N' = (V, A,l,u,c) with a feasible flow x specified. The
specification on each arc ij is (lij, Tij, uij, cij ). The cost of the flow is 109.

We point out that whenever the lower bounds are all zero (an assumption
that is not a restriction of the modeling power of flows as we shall see in
Section 3.2) we will always assume that if iji is a 2-cycle of a network N
and z is a flow in N, then at least one of z;;,z;; is equal to zero. We call
such a flow a netto flow in . The practical motivation for this restriction
is that very often one uses flows to model items (water, electricity, telephone
messages, etc.) that move from one place to another in time. Here it makes
perfect sense to say that sending 3 units from ¢ to j and 2 units from j to
i is the same as sending 1 unit from ¢ to j and nothing from j to ¢ (we say
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that 2 of the units cancel out). In some of the definitions below it is easier
to work with netto flows.

The notion of flows generalize that of paths in directed graphs. Indeed, if
P is an (s,t)-path in a digraph D = (V, A), then we can describe a feasible
flow z in the network N’ = (V, A,l = 0,u = 1) by taking x;; = 1 if ij is an
arc of P and z;; = 0 otherwise. This flow has balance vector

1 ifvo=s
by(v) =< —1 ifv=t¢
0 otherwise.

We can also see that if there are weights on the arcs of D and we let A inherit
these weights as costs on the arcs, then the cost of the flow defined above
is equal to the length (weight) of P. Hence the shortest path problem is a
special case of the minimum cost flow problem (which is studied in Section
3.10) with respect to the balance vector described above (here we implicitly
used Theorem 3.3.1 for the other direction of going from a flow to an (s, t)-
path in D.) In a very similar way we can also see that flows generalize cycles
in digraphs. It is an important and very useful fact about flows that in some
sense one can also go the other way. As we shall see in Theorem 3.3.1, every
flow in a network with n vertices and m arcs can be decomposed into no
more than n + m flows along simple paths and cycles. Furthermore, paths
and cycles play a fundamental role in several algorithms for finding optimal
flows where the optimality is with respect to measures we define later.

3.1.2 The Residual Network

The concept of a residual network was implicitly introduced by Ford and
Fulkerson [246].

For a given flow z in a network N' = (V, A,l,u,c), define the residual
capacity r;; from i to j as follows:

rij = (uij — i) + (250 — Lji)- (3.7)

The residual network N (z) with respect to x is defined as N(z) =
(V,A(z),l = 0,7,¢), where A(x) = {ij : 7; > 0}. That is, the cost function
is the same? as for A and all lower bounds are zero. See Figure 3.2 for an
illustration.

The arcs of the residual network have a natural interpretation. If ij € A
and x;; = 5 < 7 = u;;, then we may increase x by up to two units on the arc
ij at the cost of ¢;; per unit. Furthermore, if we also have l;; = 2 then we can
also choose to decrease x by up to 3 units along the arc 5. The cost of this
decrease is exactly cj; = —c;; per unit. Note that a decrease of flow along the

2 Note that this differs from definitions in other texts such as [7], but we can do
this since we made the assumption (3.2).
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(2, -3)

Figure 3.2 The residual network A (z) corresponding to the flow in Figure 3.1.
The data on each arc is (7, c).

arc 7§ may also be thought of as sending flow in the opposite direction along
the residual arc ji and then canceling out.

3.2 Reductions Among Different Flow Models

The purpose of this section is to show that one can restrict the general defi-
nition of a flow network considerably and still retain its modeling generality.
We also show that one can model networks with lower bounds, capacities and
costs on the vertices by networks, where all these numbers are on arcs only.

3.2.1 Eliminating Lower Bounds

We start with the following easy observation which shows that within the
general model the assumption that all lower bounds are zero does not limit
the model.

Lemma 3.2.1 Let N = (V, A l,u,b,c) be a network.

(a) Suppose that the arc ij € A has l;; > 0. Let N' be obtained from N
by making the following changes: b(j) = b(j) + l;j, b(i) = b(3) — l;;,
wij = wij — lij, lij == 0. Then every feasible flow x in N corresponds to
a feasible flow z' in N’ and vice versa. Furthermore, the costs of these
two flows are related by ¢cTx = c¢Ta’' + lijeij.

(b) There exists a network Nij=o in which all lower bounds are zero such
that every feasible flow x in N corresponds to a feasible flow ' in Ni=g

and vice versa. Furthermore, the costs of these two flows are related by

T, __ T,/
crx=cta’ + 34l
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Proof: Part (a) is left to the reader as Exercise 3.3. Since we may eliminate
lower bounds one arc at the time, (b) follows from (a) by induction on the
number of arcs. O

It is also useful to observe that we can construct A7 from A in time
O(n + m) and reconstruct the flow z from 2’ in time O(m). Hence the time
for eliminating lower bounds and reconstructing a flow in the original network
is negligible since all algorithms on networks need O(n+m) time just to input
the network.

3.2.2 Flows with one Source and one Sink

Let s, t be distinct vertices of a network N' = (V, A,1 = 0,u,c). An (s, t)-flow
is a flow = satisfying the following for some k € Ry:

k ifv=s
be(v) =< —k ifv=t
0 otherwise.

The value of an (s,t)-flow z is denoted by |z| and is defined by

|z| = by (s). (3.8)

The next lemma combined with Lemma 3.2.1 shows that using only (s, t)-
flows, one can model everything which can be modeled via flows in the general
network model.

Lemma 3.2.2 Let N = (V,A,l = 0,u,b,c) be a network. Let* M =
Z{v:b(v)>0} b(v) and let Ng be the network defined as follows: Ny = (V U
{s,t}, A", I = 0,4/, V, ), where

(a) A" =AU {sr:b(r)>0}U{rt:b(r) <0},

(b) ui; = iy for allij € A, us. = b(r) for all v such that b(r) > 0 and
ugt = —b(q) for all q such that b(q) < 0,

(c) ci; = cij for allij € A and ¢’ =0 for all arcs leaving s or entering t,

(d) b'(v) =0 forallveV,b(s)=M, b (t) =—-M.

Then every feasible flow x in N corresponds to a feasible flow ' in Ny and
vice versa. Furthermore, the costs of x and x' are related by c'x = ¢/Ta'. See
Figure 3.5.

Proof: Exercise 3.4. O

It follows from Lemma 3.2.2 that given any network A in which all lower
bounds are zero, we can check the existence of a feasible flow in N by con-
structing the corresponding network N; and check whether this network has

3 Recall that we also have M = — Z{U:b(v)<0} b(v) by (3.3).
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an (s,t)-flow z such that |z| = M where M is defined in Lemma 3.2.2. This
latter task is precisely the problem of finding the maximum value of a feasible
(s,t)-flow in Ny, a problem which we study extensively in Sections 3.5-3.7.
See also Theorem 3.8.3.

-3
(1,1)
(4,3) (4, 3)
6 ¢ p 4 t
(1,0) y‘
0
(7,2 (2,0)
(5,2) (5,2)
6 ¢ (6, 6) _s
(a) (b)

Figure 3.3 Part (a) shows a network A with a feasible flow with respect to the
balance vector specified at each vertex. The numbers on each arc are (capacity,
flow). Costs are omitted for clarity. Part (b) shows the network N as defined in
Lemma 3.2.2 and a feasible flow 2" in Ny:.

3.2.3 Circulations

A circulation is a flow x with b, (v) = 0 for all v € V. Combining our next
result with Lemma 3.2.1 and Lemma 3.2.2 shows that one can also model
everything that can be modeled in the general (flow) network model by the
seemingly much more restricted circulations. Note that we cannot completely
exclude lower bounds in this reduction (see Exercise 3.5).

Lemma 3.2.3 Let N = (V,A,l = 0,u,b,c) be a network with distinct ver-
tices s,t and let the balance vector of N satisfy b(v) = 0 for allv € V —{s,t},
b(s) = M, b(t) = —M, for some M € Ry. Let N* = (V,AU {ts}, 1", u", ")
be the network obtained from N by adding a new arc ts with lower bound
lis = M, capacity ugs = M and cost ¢, = 0, keeping the lower bound, ca-
pacity and cost of each original arc and posing no restriction on the balance
vector of N*. Then every feasible (s,t)-flow x in N corresponds to a feasible
circulation x” in N* and vice versa. Furthermore, the costs of x and x' are
related by cTx = "T2".

Proof: Exercise 3.5. O

The concept of a circulation is a very useful tool for applications to ques-
tions concerning sub(di)graphs of (di)graphs as we show in Section 3.11.
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3.2.4 Networks with Bounds and Costs on the Vertices

In some applications of flows one is not interested in imposing lower bounds
and capacities on arcs, but rather on vertices. One such example is when one
is looking for a cycle subdigraph that contains all vertices of a certain subset
X and possibly other vertices (see Section 3.11). Another example is when one
is looking for a path factor which covers all vertices of a digraph (see Section
5.3). We show below how to model networks with lower bounds, capacities and
costs on vertices (and possibly also on arcs) by standard networks where all
functions, other than the balance vectors, are on the arcs. First we introduce
a useful transformation of any digraph to a bipartite digraph which we will
use not only for the problem above but also several other places in the book.

bs bt

o @ c

B

dg - @ dy

Figure 3.4 The vertex splitting procedure.

Given a digraph D = (V, A), construct a new digraph Dgr as follows.
For each vertex v € V, Dgr contains two new vertices v,,v; and the arc
vws. For each arc zy € A(D), A(Dgr) contains the arc xzy;. See Figure 3.4.
We say that the digraph Dgr is obtained from D by the vertex splitting
procedure.

Now suppose that N' = (V, A, l,u,b,c,l*,u*,c*) is a network with a pre-
scribed balance vector b, lower bounds, capacities and costs [, u, c on the arcs
(the case when there are no such specifications can easily be modeled by
taking | = 0,u = oo, ¢ = 0) and lower bounds, capacities and costs I*, u*, ¢*
on the vertices. To be precise we have to define the meaning of these new
parameters. There is some freedom in such a definition, but for the applica-
tions we will need, it suffices to use the definition that [*(v) is the minimum
and u*(v) the maximum amount of flow that may pass through v and the
cost of sending one such unit through v is ¢*(v). By ‘passing through’ we
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mean the obvious thing when b(v) = 0 and if b(v) > 0 (b(v) < 0) we think of
I*(v),u*(v), c*(v) as bounds and costs per unit on the total amount of flow
out of (in to) v.

Let Dgr be the digraph obtained from D = (V, A) by performing the
vertex splitting procedure. Define a new network based on the digraph Dgr
by adding lower bounds, capacities and costs as follows:

(a) For every arc i j; (corresponding to an arc ij of A) we let h'(isj¢) = h(ij),
where h € {l,u,c}.
(b) For every arc i;is (corresponding to a vertex i of V') we let b/ (i45) = h*(4),
where h* € {I*,u*,c*}.
Finally we define the function o’ as follows:
If b(¢) = 0 then ¥ (is) = V(i) = 0;
If b(¢) > 0 then (i) = b(¢) and ' (is) = 0;
If b(i) < 0 then b/(i;) = 0 and V' (is) = b(7).

(1,3,2)

5 (1,4,6)

Figure 3.5 The construction of N’ from A . The specification is the balance vector
and (I, u, ¢). For clarity only one arc of N has a description of bounds and cost.

See Figure 3.5 for an example of the construction. It is not difficult to
show the following result.

Lemma 3.2.4 Let N and N’ be as described above. Then every feasible flow
in N corresponds to a feasible flow in N = (V(Dgr), A(Dgr),l', v/, V', ¢)
and vice versa. Furthermore, the costs of these flows are the same.

Proof: Exercise 3.6. O
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3.3 Flow Decompositions

In this section we consider a network N' = (V, A,l = 0,u) and denote by
D = (V, A) the underlying digraph of A. By a path or cycle in N we mean
a directed path or cycle in D. We will show that every flow in a network
can be decomposed into a small number of very simple flows in the same
network. Besides being a nice elementary mathematical result, this also has
very important algorithmic consequences as will be clear from the succeeding
sections.

A path flow f(P) along a path P in N is a flow with the property that
there is some number k € Ry such that f(P);; = k if 4 is an arc of P and
otherwise f(P);; = 0. Analogously, we can define a cycle flow f(W) for any
cycle W in D. The arc sum of two flows z, 2, denoted = + z’, is simply the
flow obtained by adding the two flows arc-wise.

Theorem 3.3.1 Every flow = in N can be represented as the arc sum of
some path and cycle flows f(P1), f(P2), ..., f(Pa), f(C1),..., f(Cg) with the
following two properties:

(a) Every directed path P;, 1 < i < « with positive flow connects a source
vertex to a sink vertex.
(b)) a+B<n+mand f <m.

Proof: Let z be a non-zero flow in A. Suppose first that b, (ig) > 0 for
some ig € V. Since b;(ig) > 0 it follows from (3.5) that there is some arc
ipiy1 leaving 49 with z;,;, > 0. If b(i;) < O then we have found a path from
ip to the sink ;. Otherwise b(é1) > 0 and it follows from (3.5) and the fact
that z;,;, > 0 that i; has some arc ¢;¢s leaving it with z;,;, > 0. Continuing
this way, we either find a path P from iy to a sink vertex i; such that z
is positive on all arcs on P, or eventually some vertex that was examined
previously must be reached for the second time. In the later case we have
detected a cycle C' = i,4,41 ...%p_1%p%r such that z is positive on all arcs of
C. Now we change the flow = as follows:

(i) If we detected a path P from iy to a sink iz then let 0 = min{z;,; , :
igiq+1 € A(P)} and define p by p = min{b, (i), —bs(ix),d}. Let f(P) be
the path flow of value p along P. Decrease x by p units along P.

(i) Otherwise we have detected a cycle C. Let p = min{w; i, , : igiqr1 €
A(C)} and let f(C) be a cycle flow of value u along C. Decrease = by u
units along C.

If no arc carries positive flow after the changes made above we are done.
Otherwise we repeat the process above. If every vertex v becomes balanced
with respect to the current flow = (i.e. b, (v) = 0) before x is identically zero,
then just start from a vertex i which has an arc igi; with positive flow. From
now on only cycle flows will be extracted in the subroutine described above.
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Since each of these iterations either results in a vertex becoming balanced
with respect to the current flow, or in an arc ij loosing all its flow, i.e., x;;
becomes zero, the total number of iterations, extracting either a path flow
or a cycle flow from the current flow, is at most n + m. It follows from the
description above that (a) and the first part of (b) holds. The second part of
(b) follows from the fact that each time we extract a cycle flow at least one
arc loses all its flow. ad

The proof above immediately implies an algorithm for finding such a
decomposition in time O(m?) if one uses DFS to find the next path or cycle
flow to extract. However if we use an appropriate data structure and a little
care, this complexity can be improved.

Lemma 3.3.2 Given an arbitrary flow x in N one can find a decomposition
of x into at most n +m path and cycle flows, at most m of which are cycle
flows, in time O(nm).

Proof: Exercise 3.7. a
The following useful fact is an easy consequence of Theorem 3.3.1.

Corollary 3.3.3 Let N be a network. Every circulation in N can be decom-
posed into no more than m cycle flows. a

3.4 Working with the Residual Network

Suppose N is a network and z,z’ are feasible flows in /. What can we say
about the relation between x and z’? Clearly one can be obtained from the
other by changing the flow along each arc appropriately, but we can reveal
much more interesting relations as we shall see below. In fact it turns out
that if x is feasible in N and 2’ is any other feasible flow in A/, then 2’ can be
expressed in terms of x and some feasible flow in the residual network N (z).
The other direction holds as well: if x is feasible in A/ and y is feasible in
N (z) then we can ‘add’ y to z and obtain a new feasible flow in N. These
two properties imply that in order to study flows in a network N it suffices
to find one feasible flow z and then work in the residual network A (z). We
assume below that all lower bounds are zero. Recall that due to the results
in Section 3.2 this restriction does not limit our modeling power.

The first lemma shows that if x is a feasible low in N = (V, A, = 0,u, b, ¢)
and Z is a feasible flow in M (z) then one can ‘add’ # to z and obtain a new
feasible flow in A. Here ‘adding’ is arc-wise and should be interpreted as
defined below. Recall that we may assume we are dealing with netto flows.

Definition 3.4.1 Let x be a feasible flow in N = (V,A,l = 0,u,c) and let
Z be a feasible flow in N (z). Define the flow z* = x ® T as follows: Start by
letting x7; := w;j for every ij € A and then for every arc ij in N(z) such
that Z;; > 0 we modify * as follows (see Figure 3.6).
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(a) If zj; = 0 then x; = ;5 + Tyj.
(b) If x;; =0 and x;; < &;; then Ty =Ty — xj; and xj; = 0.

(c) If Zj; > Ty then x;‘l =T — Tij

Note that by (3.7), if 0 < xj; < &;; then ij € A. Using that z is a netto
flow it is easy to check that the resulting flow x* is also a netto flow.

z T z*
(a) ( iij >0 J { Tij >0 J { Tij —‘r.fz'j J
o ———0 o ———0 o ———0
i .’i’ij >0 .7 { T < fij .7 { :ii]' — Tji ]
() — o - o " -o
.Iiij = 0
,L' ~. . ; . - . . - .
(C) Tij > 0 J 1 Tji > Tij J 1 Tji — Xij J

Figure 3.6 The three different cases in Definition 3.4.1. The three columns shows
the flows Z, x and z*, respectively. An arc between 7 and j is shown unless the
corresponding flow on that arc is zero.

Theorem 3.4.2 Let x be a feasible flow in N = (V, A,l = 0,u,c) with bal-
ance vector by, and T is a feasible flow in N(z) = (V, A(z),r,c) with balance
vector bz. Then z* = x® T is a feasible flow in N with balance vector by + bz
and the cost of =* is given by cTa* = cTx + cT'%.

Proof: Let us first show that 0 < m;‘j < wy; for every ij € A. We started
the construction of z* by letting z}; := x;; for every arc. Hence it suffices to
consider pairs (4, j) for which #;; > 0. We consider the three possible cases
(a)-(c) in Definition 3.4.1. In Case (a) we have z};, = 0 and

* ~
0 <z =i +Tij < Tij + 145
= Tij + (uij — Tgy + l’ji)

= U4y,

since we have x;; = 0 in Case (a). In Case (b) we will have z%; = 0 and
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. -
0<ay; =Tij — x5 <rij —xj
= (wij = @ij +j0) = x5

= Uy,

since we have x;; = 0 in Case (b). In Case (c) it is easy to see that we get
zj; = 0 and that 0 < z7; <.

Consider the balance vector of the resulting flow. We wish to prove that
x* has balance vector b, + bz, that is, for every i € V,

boe (i) = > al;— Y afy = ba(i) + ba(i). (3.9)
ijEA jicA

This can be proved directly from the definitions of the balance expressions
for z and . However this approach is rather tedious and there is a simple
inductive proof using Theorem 3.3.1. If % is just a cycle flow in A/(z), then it
is easy to see (Exercise 3.12) that the balance vector of x* equals that of x.
Similarly, if Z is just a path flow of value ¢ along a (p, ¢)-path, for some distinct
vertices p,q € V, then by (v) = by (v) for vertices v which are either internal
vertices on P or not on P and by« (p) = b, (p) + 9, by+(q) = bx(q) — 6. In the
general case, when Z is neither a path flow nor a cycle flow in V() we consider
a decomposition of  into path and cycle flows in A/(z) according to Theorem
3.3.1. Using the observation above and Theorem 3.3.1 (implying that when
adding all balance vectors of the paths and cycles in a decomposition, we
obtain the balance vector of Z) it is easy to prove by induction on the number

of paths and cycles in the decomposition that (3.9) holds.
We leave it to the reader to prove using the same approach as above that
the cost of z* is given by c¢lz* = cT'z + ¢I'# (see Exercise 3.12). O

The next theorem shows that the difference between any two feasible flows
in a network can be expressed as a feasible flow in the residual network with
respect to any of those flows.

Theorem 3.4.3 Let N = (V, A,l = 0,u,c) be a network and let x and '
be feasible metto flows in N with balance vectors b, and by:. There exists a
feasible flow T in N (z) with balance vector by = by — b, such that ' = & .
Furthermore, the costs of these flows satisfy ¢'& = ¢Ta' — cTx.

Proof: Let z,2’ be feasible netto flows in N' = (V, A, = 0,u,c) and define
a flow in M (x) as follows. For every arc pqg € N(z) we let Z,, := 0 and then
for every arc ij € A such that either z;; > 0 or aigj > 0 holds, we modify T
as follows:

/ e e ol /
(a) If z;; > xy; then Zj; 1= x5 — xj; + @,

(b) If x;j > Tij then i'ij = :C;J — Xy + Ty
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Using that z and 2’ are feasible netto flows in N, one can verify that
is a feasible netto flow in N (z) (Exercise 3.13). It also follows easily from
Definition 3.4.1 that ' = x ® Z. Now the last two claims regarding balance
vector and cost follow from Theorem 3.4.2. a

The following immediate corollary of Theorem 3.4.3 and Corollary 3.3.3
will be useful when we study minimum cost flows in Section 3.10.

Corollary 3.4.4 Ifz and x’ are feasible flows in the network N = (V, A,l =
0,u,c) such that b, = by, then there exist a collection of at most m cycles
Wi, Wa, ..., Wy in N (z) and cycle flows f(W1), ..., f(Wy) in N'(z) such that
the following holds:

(a) &’ =z&(f(Wi)+...+f(Wi)) = (.. ((z&f(W))ef(W2)). .. )& f (Wk);
(b) Tz’ =cTo + Zle L F(W5). O

3.5 The Maximum Flow Problem

In this and the next section we study (s, t)-flows in networks with all lower
bounds equal to zero. That is we consider networks of the type N' = (V, A,l =
0,u) where s,t € V are special vertices and we are only interested in flows
x which satisfy b, (s) = —b,(t) and b, (v) = 0 for all other vertices. We call
s the source and ¢ the sink of N. By Theorem 3.3.1, every (s,t)-flow x
can be decomposed into a number of path flows along (s, t)-paths and some
cycle flows whose values do not affect the value of the flow x. Based on this
observation we also say that z is a flow from s to .

Recall from (3.8) that the value |z| of an (s, t)-flow is |x| = by (s). We are
interested in determining the maximum value k& for which N has a feasible
(s,t)-flow of value* k. Such a flow is called a maximum flow in A. The
problem of finding a maximum flow from s to t in a network with a specified
source s and sink ¢ is known as the maximum flow problem [246].

An (s, t)-cut is a set of arcs of the form (S, ) where S, S form a partition
of V such that s € S,t € S. The capacity of an (s, t)-cut (5, S) is the number
u(S,5), that is, the sum of the capacities of arcs with tail in S and head in
S (recall (3.4)). Cuts of this kind are interesting in relation to the maximum
flow problem as we shall see below.

Lemma 3.5.1 For every (s,t)-cut (S,S) and every (s,t)-flow z, we have
|z| = z(S,S) — z(S, S). (3.10)

Proof: Starting from the definition of |z| and the fact that b, (v) = 0 for all
v € S — s we obtain

4 Observe that there always exists a feasible flow in AN since we have assumed
[=0.
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|| = by (s) + Z ba (1)

i€S—s

= @i — > )

i€S ijeA jicA
=z(S,V)—z(V,S)
=x(5,9) +2(S,5) —x(S,S) — (5, 9)
=x(9,9) — z(S,9),

where we also used (3.4). O

Since a feasible flow x satisfies x < u, every feasible (s, t)-flow must satisfy
2(5,5) < u(S,S) for every (s,t)-cut (S, S). (3.11)
A minimum (s, t)-cut is an (s, t)-cut (S, S) with
u(S,S) = min{u(S’, ) : (S',57) is an (s,t)-cut in N'}.

It follows from (3.11) and Lemma 3.5.1 that the capacity of any (s,?)-
cut provides an upper bound for the value |z| for any feasible flow z in the
network. We also obtain the following useful consequence.

Lemma 3.5.2 If a flow x has value |z = u(S,S) for some (s,t)-cut (S, S)
then z(S,S) =0, = is a mazimum (s,t)-flow and (S,S) is a minimum (s,t)
cut. a

)

Suppose x is an (s, t)-flow in A" and P is an (s, t)-path in A'(z) such that
ri; > € > 0 for each arc ij on P. Let z” be the (s,t)-path flow of value e
in A (z) which is obtained by sending € units of flow along the path P. By
Theorem 3.4.2, we can obtain a new flow 2’ = z @ 2’ of value |z| + € in N,
implying that z is not a maximum flow in /. We call a path P in N (z) as
above an augmenting path with respect to z. The capacity 6(P) of an
augmenting path P is given by

5(P) = min{rij :4j is an arc of P}. (3.12)

We call an arc ¢j of P for which z;; < u;; a forward arc of P and an
arc ij of P for which x;; > 0 a backward arc of P.

When we ‘add’ the path flow = to = according to Definition 3.4.1 we
say that we augment along P by ¢ units. It follows from the definition of
0(P) and Theorem 3.4.2 that §(P) is the maximum value by which we can
augment x along P and still have a feasible flow in A/ after the augmentation.

Now we are ready to prove the following fundamental result, due to Ford
and Fulkerson, relating minimum (s, t)-cuts and maximum (s, t)-flows.
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Theorem 3.5.3 (Max-flow Min-cut theorem) [2/6] Let N = (V, A,l =
0,u) be a network with source s and sink t. For every feasible (s, t)-flow x in
N the following are equivalent:

(a) The flow x is a mazimum (s,t)-flow.
(b) There is no (s,t)-path in N(z). B
(¢) There exists an (s,t)-cut (S,S) such that || = u(S,S).

Proof: We show that (a)=(b)=(c)=(a).

s @ S s [ 5@ s S @t
x =0
z =0
N () N

Figure 3.7 Illustration of part (b)=(c) in the proof of Theorem 3.5.3. The set S
consists of those vertices that are reachable from s in A(x). The left part shows

the situation in the residual network where we have S=S and the right part shows
the corresponding situation in N.

(a)=>(b): Suppose z is a maximum flow in N and that N (z) contains an
(s,t)-path P. Let 6(P) > 0 be the capacity of P and let 2’ be the (s, t)-
path flow in NV (x) which sends 6(P) units of flow along P. By Theorem
3.4.2 x @’ is a feasible flow in N of value |z| + 6(P) > |z|, contradicting
the maximality of . Hence (a)=-(b).

(b)=(c): Suppose that N (z) contains no (s,t)-path. Let

S ={y €V :N(z) contains an (s,y)-path}.

By the definition of S, there is no arc from S to S in A/(x). Thus the
definition of V(z) implies that for every arc ij € (S, S) we have z;; = u;;
and for every arcij € (S, S) we have z;; = 0 (see Figure 3.7). This implies
that we have |z| = x(S,5) — z(S, S) = u(S,S5) — 0 = u(S, S). Hence we
have proved that (b)=-(c).

(¢c)=>(a): This follows directly from Lemma 3.5.2. O

3.5.1 The Ford-Fulkerson Algorithm

The proof of Theorem 3.5.3 suggests the following simple method for finding
a maximum (s,t)-flow in a network where all lower bounds are zero. Start
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with « = 0. This is a feasible flow since 0 = [;; < u;; for all arcs ij € A. Try
to find an (s, t)-path P in A (z). If there is such a path P, then augment = by
0(P) units along P. Continue this way until there is no (s,¢)-path in N (z)
where z is the current flow. This method, due to Ford and Fulkerson [246],
is called the Ford-Fulkerson (FF) algorithm.

Strictly speaking this is not really an algorithm if we do not specify how
we wish to search for an augmenting (s, t)-path. It can be shown (see Exercise
3.17) that, when the capacities are allowed to take non-rational values and
there is no restriction on the choice of augmenting paths (other than that
one has to augment as much as possible along the current path), then the
process above may continue indefinitely and without even converging to the
right value of a maximum flow (see Exercise 3.17). For real-life applications
this problem cannot occur since all numbers represented in computers are
rational approximations of real numbers and in this case the algorithm will
always terminate (Exercise 3.18).

Theorem 3.5.4 If N' = (V,A,l = 0,u) has all capacities integers, then
the Ford-Fulkerson algorithm finds a mazimum (s,t)-flow in time O(m|z*|),
where x* is a mazimum (s,t)-flow.

Proof: The following generic process called the labelling algorithm will
find an augmenting path in A/(x) in time O(n +m) if one exists®. Start with
all vertices unlabelled except s and every vertex unscanned. In the general
step we pick a labelled but unscanned vertex v and scan all its out-neighbours
while labelling (by backwards pointers showing where a vertex got labelled
from) those vertices among the out-neighbours of v that are un-labelled.
If ¢ becomes labelled this way, the process stops and an augmenting path,
determined by the backwards pointers, is returned. If all vertices are scanned
and t was not labelled the process stops and the set of labelled vertices S
and its complement S correspond to a minimum (s,t)-cut (recall the proof
of Theorem 3.5.3).

Each time we augment along an augmenting path, the value of the current
flow increases by at least one, since the capacities in the residual network
are all integers (this is clear in the first iteration and easy to establish by
induction for the rest of the iterations of the algorithm). Hence there can be
no more than |z*| iterations of the above search for a path and the complexity
follows. a

To see that the seemingly very pessimistic estimate in Theorem 3.5.4
for the time spent by the algorithm may in fact be realized, consider the
network in Figure 3.8 and the sequence of augmenting paths specified there.
The reader familiar with the literature on flows may see that our example is
different from the classical example in books on flows. The reason for this is

® We could also use path finding algorithms such as BFS and DFS, but the original
algorithm by Ford and Fulkerson uses only the generic labelling approach. See
also Section 3.6.
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Figure 3.8 A possibly bad network for the Ford-Fulkerson algorithm. The number
M denotes a large integer. If we choose augmenting paths of the form sabeft with
augmenting capacity 1 in odd numbered iterations and augmenting paths of the
form sdebct with augmenting capacity 1 in even numbered iterations, then a max-
imum flow x of value 2M will be found only after 2M augmentations. Clearly, if
instead we augment first along sabct and then along sdeft, each time by M units,
we can find a maximum flow after just two augmentations.

that if we interpret the Ford-Fulkerson algorithm precisely as it is described
in [246, page 18] (see also the proof of Theorem 3.5.4), then the algorithm
will not behave badly on the usual example, whereas it still will do so on the
example in Figure 3.8.

The value of the maximum flow in the example in Figure 3.8 is 2M. This
shows that the complexity of the Ford-Fulkerson algorithm is not bounded by
a polynomial in the size of the input (recall from Chapter 1 that we assume
that numbers are represented in binary notation). It is worth noting though
that Theorem 3.5.4 implies that if all capacities are small integers then we get
a very fast algorithm which, due to its simplicity, is easy to implement. The
following is an easy but very important consequence of the proof of Theorem
3.5.3:

Theorem 3.5.5 (Integrality theorem for maximum (s, t)-flows) [246]
Let N = (V, Al = 0,u) be a network with source s and sink t. If all capacities
are integers, then there exists an integer mazimum (s,t)-flow in N.

Proof: This follows from our description of the Ford-Fulkerson algorithm. We
start with = 0 and every time we augment the flow we do this by adding an
integer valued path flow of value 6(P) € Z,. Hence the new (s, t)-flow is also
an integer flow. It follows from the fact that all capacities are integers that in
a finite number of steps we will reach a maximum flow (by Lemma 3.5.1 |z|
cannot exceed the capacity of any cut). Now the claim follows by induction
on the number of augmentations needed before we have a maximum flow. 0O

An (s,t)-flow in a network A is maximal if every (s, t)-path in A uses at
least one arc pg such that z,, = u,, (such an arc is called saturated). That
is, either = is maximum or after augmenting along an augmenting path P the
resulting flow z’ has z}; < z;; for some arcS. This is equivalent to saying that

6 Recall that we always work with netto flows.
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every augmenting path with respect to x contains at least one backward arc
when P is considered as an oriented path in A. It is important to distinguish
between a maximal flow and a maximum flow. An (s, t)-flow z is maximal if
it is either maximum, or in order to augment it to a flow with a higher value,
we must reduce the flow in some arc. See also Figure 3.9.

a . b

(2, 1)

(1, 1)

c (R

Figure 3.9 A network N with flow  which is maximal but not maximum as the
path P = sabedt is an (s, t)-path in A (z). Note that the arc be is a backward arc
of P. The data on each arc are (capacity, flow).

3.5.2 Maximum Flows and Linear Programming

We digress for a short while to give some remarks on the relation between
maximum flows and linear programming. First observe that the maximum
flow problem (with lower bounds all equal to zero) is equivalent to the fol-
lowing linear programming problem:

maximize k

subject to
k ifv=s
be(v) =< —k ifv=t
0  otherwise.
0 < x5 < uyy for every ij € A.

The matrix T of the constraints of this linear program is given by T =
{‘?} , where S is the vertex-arc incidence matrix’ of the underlying directed

graph of the network (recall the definition of b,) and I is the m x m identity
matrix. The matrix S has the property that every column contains exactly

" The vertex-arc incidence matrix S = [s;;] of a digraph D = (V, A) has rows
labelled by the vertices of V' and columns labelled by the arcs of A and the entry
Sv,,a; equals 1 if the arc a; has tail v;, —1 if a; has head v; and 0, otherwise.
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one +1 and exactly one —1. This implies that S is totally unimodular, i.e.,
each square submatrix of S has determinant 0, 1, or —1 (see e.g., the book
[166] by Cook, Cunningham, Pulleyblank and Schrijver). Hence it follows
from Exercise 3.19 that the matrix T is also totally unimodular. Therefore the
integrality theorem for maximum flows (Theorem 3.5.5) follows immediately
from the Hoffmann-Kruskal characterization of total unimodularity (see [166,
Theorem 6.25]).

Since the maximum flow problem is just a linear programming problem,
it follows that one can find a maximum flow using any method for solving
general linear programming problems. In particular, by the total unimodular-
ity of T', the Simplex algorithm will always return an integer maximum flow
provided that all capacities are integers. However, due to the special nature
of the problem, more efficient algorithms can be found when we exploit the
structure of flow problems. Finally, we remark that the Max-flow Min-cut
theorem can be derived from the duality theorem for linear programming
(see e.g. the book [600]).

3.6 Polynomial Algorithms for Finding a Maximum
(s,t)-Flow

The Ford-Fulkerson algorithm can be modified in various ways to ensure that
it becomes a polynomial algorithm. We describe two such modifications (see
also Exercises 3.25 and 3.26). After doing so we describe a different approach
in which we do not augment the flow by just one path at the time. For the
first two subsections we need the following definition.

Definition 3.6.1 A layered network is a network N = (V,A,l = 0,u)
with the following properties:

(a) There is a partition V.=VoUV; UVo U ... UV, UViyy such that Vo =
{s}, Vi1 = {t} and

(b) every arc of A goes from a layer V; to the next layer Vii1 for some
1=0,1,...,k.

See Figure 3.10 for an example of a layered network.

3.6.1 Flow Augmentations Along Shortest Augmenting Paths

Edmonds and Karp [216] observed that in order to modify the Ford-Fulkerson
algorithm so as to get a polynomial algorithm, it suffices to choose the aug-
menting paths as shortest paths with respect to the number of arcs on the
path.

Let z be a feasible (s, t)-flow in a network A/. Denote by d0,(s,t) the length
of a shortest (s,t)-path in M'(x). If no such path exists we let 0,(s,t) = oco.
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Figure 3.10 A layered network with source s and sink ¢. The numbers on the arcs
indicate the capacities.

® i

Suppose that there is an augmenting path in A/ (z) and let P be a shortest
such path. Let r be the number of arcs in P. Define the network LA (z) as
the network one obtains from A (z) by taking the vertices from the distance
classes Vo, Vi,..., V., ie. Vi = {v : disty () (5, v) = i}, and all arcs belonging
to (Vi, Vis1)a(e) fori = 0,1,...,7—1 along with their residual capacities ;.
Observe that, by the definition of distance classes, LN (z) contains all the
shortest augmenting paths with respect to z in N (z).

The crucial fact that makes augmenting along shortest paths a good ap-
proach is the following lemma.

Lemma 3.6.2 [216] Let x be a feasible (s,t)-flow in N and let 2’ be obtained
from x by augmenting along a shortest path in N (x). Then

Our(8,t) > 0.(s,1). (3.13)

Proof: Suppose this is not the case for some z, z’ where 2’ is obtained from z
by augmenting along a shortest path P in A'(z). By the remark above LN (x)
contains all the shortest augmenting paths (with respect to z) in N'(z). Let
r = §,(s,t). By our assumption N (z') contains an (s, t)-path P’ whose length
is less than r. Thus P’ must use an arc ij such that ij € A(N(z)). However,
every arc that is in A'(2’) but not in LN (z) is of the form ji where ij is an
arc of P, or is inside a layer of LN (x). It follows that P’ has at least r + 1
arcs, contradicting the assumption. ad

Note that even if N'(2") contains no (s,t)-path of length d,(s,t), it may
still contain a path of length d,(s,t) 4+ 1, since we may use an arc which was
inside a layer of LN (x).

Theorem 3.6.3 (Edmonds, Karp) [216] If we always augment along
shortest augmenting paths, then the Ford-Fulkerson algorithm has complexity
O(nm?).

Proof: By Lemma 3.6.2, the length of the current augmenting path increases
monotonically throughout the execution of the algorithm. It follows from the



116 3. Flows in Networks

proof of Lemma 3.6.2 that, if the length of the next augmenting path does
not go up, then that path is also a path in LN (z). Note also that at least
one arc from some layer V; to the next disappears after each augmentation
(recall that in each augmentation we augment by §(P) units along the current
augmenting path P). Hence the number of iterations in which the length of
the current augmenting path stays constant is at most m. Since the length
can increase at most n — 2 times (the length of an (s, t)-path is at least 1 and
at most n — 1) and we can find the next augmenting path in time O(n + m)
using BFS we obtain the desired complexity. a

Zadeh [753] constructed networks with n vertices and m arcs for which the
Edmonds-Karp algorithm requires £2(nm) augmentations to find a maximum
flow. Hence the estimate on the worst case complexity is tight.

3.6.2 Blocking Flows in Layered Networks and Dinic’s Algorithm

Let £L=(V =VWUWVU... UV, A/l = 0,u) be a layered network with
Vo = {s} and V}, = {t}. An (s,t)-flow = in £ is blocking if there no (s,t)-
path of length k in the residual network £(x). Note that a blocking flow is
also maximal flow (recall the difference between a maximal and a maximum
flow as explained in the end of Section 3.5). That is, every augmenting path
with respect to x (if there is any) must use at least one arc pg such that
p € Vj,q €V, for some j > i.

We saw above that if we always augment along shortest augmenting paths,
then the length of a shortest augmenting path is monotonically increasing.
Hence if we have a method to find a blocking flow in a layered network in
time O(p(n,m)), then we can use that method to obtain an O(np(n,m))
algorithm for finding a maximum (s, ¢)-flow in any given network.

The method of Edmonds and Karp above achieves a blocking flow in time
O(m?). It was observed by Dinic [195] (who also independently and earlier
discovered the method of using shortest augmenting paths) that a blocking
flow in a layered network can be obtained in time O(nm), thus resulting in
an O(n?m) algorithm for maximum flow.

The idea is to search for a shortest augmenting path in a depth first search
manner. We modify slightly the standard DFS algorithm (see Section 4.1) as
shown below. The vector 7 is used to remember the arcs of the augmenting
path detected if one is found.

Dinic’s algorithm (one phase)
Input: A layered network £L=(V =1 UV U... UV, Al =0,u).
Output: A blocking flow z in L.

1. Initialization: z;; := 0 for every arc ij in A, let v := s be the current
vertex and let A’ := A.
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2. Searching step: If there is no arc with tail v in A’ (from v to the next
layer among the remaining arcs), then if v = s go to Step 5; otherwise
go to Step 4;

If there is an arc vw € A’, then let v := w, let w(w) := v. If v # ¢ repeat
Step 2.

3. Augmentation step: Using the m labels find the augmenting path P
detected and augment x along P by §(P) units. Delete all arcs ij of A’
for which x;; = u;;. Erase all labels on vertices (7 () := nil for all i € V).
Let v := s and go to Step 2.

4. Arc deletion step: (The search above has revealed that there is no
(v,t)-path in the current digraph D’ = (V, A’). Furthermore, v # s).
Delete all arcs with head or tail v from A’; let v := 7(v) and go to Step
2.

5. Termination: Return the blocking flow x.

Theorem 3.6.4 Dinic’s algorithm (one phase of) correctly determines a
blocking flow in a given layered network L in time O(nm).

Proof: Let L= (V=VoUWV U... UV,, A1 =0,u). Each time the current
flow is augmented in the algorithm it is changed along an augmenting path
of length k. We only delete an arc from A’ when it is no longer present in
the residual network £(x) where x is the current flow. Hence no deleted arc
could be used in an augmenting path of length k£ with respect to the current
flow. Furthermore, when the algorithm terminates there is no (s, t)-path in
the current digraph D’ = (V, A’). Here A’ consists of those arcs from one
layer to the next which are still not filled to capacity by the current x. It
follows that the algorithm terminates with a blocking flow.

The complexity follows from the fact that we perform at most O(n) steps
between each deletion of an arc which is either saturated (via the actual
augmenting path P) or enters a vertex for which we deleted all arcs having
that vertex as the head or tail (see Step 4). O

3.6.3 The Preflow-Push Algorithm

The flow algorithms we have seen in the previous sections have the common
feature that they all increase the flow along one augmenting path at a time.
Very often, when searching for an augmenting path, one finds a path P con-
taining an arc rq whose capacity is relatively small compared to the capacity
of the prefix P[s, ] of that path (see e.g. Figure 3.11). This means that along
PJ[s,r] we were able to augment by a large amount of flow, but due to the
smaller capacity of the arc rq we only augment by that smaller amount and
start all over again. In Dinic’s algorithm this could be taken into account by
not starting all over again, but instead backtracking until a new forward arc
can be found in the layered network. However we are still limited to finding
one path at a time. Now we present a different approach, due to Goldberg
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M M M M T

Figure 3.11 A bad example for a standard flow algorithm such as the Edmonds-
Karp algorithm. The capacities of arcs are either 1, if no number is shown or M,
where M is a large number. Algorithms such as the Edmonds-Karp algorithm will
augment M times along the path from s to r each time by just one unit.

and Tarjan [324, 325], which allows one to work with more than one aug-
menting path at a time. The algorithm of Goldberg and Tarjan, called the
preflow-push algorithm, tries to push as much flow towards ¢ as possible,
by first sending the absolute maximum possible, namely »_ 4 usr, out of s
and then trying to push this forward to t. At some point no more flow can be
sent to t and the algorithm returns the excess flow back to s again. This very
vague description will be made precise below (the reader should compare this
with the so-called MKM-algorithm described in Exercise 3.25).

Let N = (V, A,1 = 0,u) be a network with source s and sink t. A feasible
flow z in AV is called a preflow if b, (v) < 0 for all v € V — 5. Note that every
(s,t)-flow z is also a preflow since we have by(v) = 0if v € V — {s,t} and
by (t) = —by(s) < 0. Hence preflows generalize (s, t)-flows, an observation that
we shall use below. Let = be a preflow in a network A'. A height function
with respect to x is a function h : V — Z, which satisfies

=n, h(t)=0; (3.14)
h(p) < h(q) +1 for every arc pq of N (z).

The following useful lemma is an immediate consequence of Theorem
3.3.1(a).



3.6 Polynomial Algorithms for Finding a Maximum (s, t)-Flow 119

Lemma 3.6.5 Let x be a preflow in a network N = (V,1 = 0,u) with source
s and sink t and let v be a vertex such that b, (v) < 0. Then N(z) contains a
(v, s)-path.

Proof: By the definition of a preflow, s is the only vertex r for which we have
b.(r) > 0. Hence, by Theorem 3.3.1(a), every decomposition of  into path
and cycle flows contains an (s, v)-path P. Now it follows that A/(z) contains
a (v, s)-path, since every arc of P has positive flow in A/ and hence give rise
to an oppositely oriented arc in N (x). O

Now we are ready to describe the (generic) preflow-push algorithm. Dur-
ing the execution of the algorithm, a vertex v € V is called active if b, (v) < 0.
An arc pq of N(x) is admissible if h(p) = h(q) + 1. The algorithm uses two
basic operations push and lift.

push(pg): Let p be a vertex with b,(p) < 0 and let pg be an admissible
arc in N(z). The operation push(pg) changes x,, to z,, + p, where
p = min{—b;(p), rpq}

lift(p): Let p be a vertex with b, (p) < 0 and h(p) < h(q) for every arc pg in
N (z). The operation lift(p) changes the height of p as follows:

h(p) := min{h(z) + 1 : pz is an arc of N'(z)}.

By the remark after the proof of Lemma 3.6.5, the number h(p) is well-
defined. See Figure 3.12 for an illustration of a lift.

height height

10+ 10+

(a) (b)

Figure 3.12 Lifting the vertex p from height 4 to height 7.

Lemma 3.6.6 Let © be a preflow in N and let h be defined as in (3.14).
If p € V satisfies by (p) < 0, then at least one of the operations push(pq),
lift(p) can be applied.
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Proof: Suppose b, (p) < 0, but we cannot perform a push from p. Then there
is no admissible arc with tail p and hence we have h(p) < h(q) for every arc
pq in N (z). It follows from Lemma 3.6.5 that there is at least one arc out of
p in M (z) and hence we can perform the operation lift(p). O

The generic preflow-push algorithm

Input: A network N' = (V1 = 0,u) with source s and sink ¢.
Output: A maximum (s, t)-flow in N.

Preprocessing step:

(a) For each p € V let h(p) := distpr(p, t);

(b) Let h(s) :=n;

(c) Let xsp := ugy, for every arc out of s in N
(d) Let x;; := 0 for all other arcs in N.

Main loop:
While there is an active vertex p € V —t do the following:
if N'(z) contains an admissible arc pg then push(pq) else lift(p).

Theorem 3.6.7 The generic preflow-push algorithm correctly determines a
mazximum (s,t)-flow in N in time O(n*m).

Proof: We first show that the function h remains a height function through-
out the execution of the algorithm. Initially this is the case since we use
exact distance labels and there are no arcs out of s in N'(z) (Exercise 3.20).
Observe that for every vertex p, h(p) is only changed when we perform the
operation lift(p) and then it is changed so as to preserve the condition (3.14).
Furthermore, the operation push(pg) may introduce a new arc gp in N (z),
but this arc will satisfy h(g) = h(p) — 1 and hence does not violate (3.14).
It follows that h remains a height function throughout the execution of the
algorithm.

It is easy to see that x remains a preflow throughout the execution of the
algorithm, since only a push operation affects the current = and by definition
a push operation preserves the preflow condition.

Now we prove that, if the algorithm terminates, then it does so with a
maximum flow z. Suppose that the algorithm has terminated. This means
that no vertex v € V has b;(v) < 0. Thus it follows from the definition of a
preflow that x is an (s, t)-flow. To prove that z is indeed a maximum flow, it
suffices to show that there is no (s, t)-path in A/(z). This follows immediately
from the fact that h remains a height function throughout the execution of
the algorithm. By (3.14), every arc pq in N (z) has h(p) < h(g) + 1 and we
always have h(s) = n, h(t) = 0. Since no (s, t)-path has more than n —1 arcs,
there is no (s, t)-path in A/(z) and hence, by Theorem 3.5.3, z is a maximum
(s,t)-flow.

To prove that the algorithm terminates and to determine its complexity,
it is useful to distinguish between two kinds of pushes. An execution of the
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operation push(pq) is a saturating push if the arc pq is filled to capacity
after the push and hence pq is not an arc of N (z) immediately after that
push. A push which is not saturating is an unsaturating push.

We now establish a number of claims from which the complexity of the
algorithm follows.

(A) The total number of lifts is O(n?): By Lemma 3.6.5, every vertex
p with b, (p) < 0 has a path to s in M(x). Hence, we have h(p) < 2n —1,
by (3.14). Since the height of a vertex p increases by at least one every
time the operation lift(p) is performed, no vertex can be lifted more than
2n — 2 times. The claim follows.

(B) The total number of saturating pushes is O(nm): Let us consider
a fixed arc pg and find an upper bound for the number of saturating
pushes along this arc in the algorithm. When we perform a saturating
push along pg, we have h(p) = h(q) + 1 and the arc pq disappears from
the residual network. It can only appear again in the current residual
network after flow has been pushed from ¢ to p in some later execution
of the operation push(gp). At that time we have h(q) = h(p) + 1. This
and the fact that h remains a height function and never decreases at
any vertex, implies that before we can perform a new saturating push
along pq, h(p) has increased by at least two. We argued above that we
always have h(p) < 2n — 1 and now we conclude that there are at most
O(n) saturating pushes along any given arc. Thus the total number of
saturating pushes is O(nm).

(C) The total number of unsaturating pushes is O(n?m): Let & =
> b (v)<0 (V). Then @ > 0 during the whole execution of the algorithm
and since h(v) < 2n at any time during the execution we have ¢ < 2n?
after the preprocessing step. Let us examine what happens to the value
of @ after performing the different kinds of operations. A lift will increase
@ by at most 2n — 1. Hence, by (A), the total contribution to @ from
lifts is O(n?). A saturating push from p to ¢ can increase ¢ by at most
h(q) < 2n —1 (it may also decrease @ if p becomes balanced, but we are
not concerned about that here). Hence, by (B), the total contribution to
& from saturating pushes is O(n?m). An unsaturating push from p to
g will decrease @ by at least one, since p becomes balanced and h(p) =
h(g)+1 (if ¢ was balanced before, then ¢ decreases by one and otherwise
it decreases by h(p)).

It follows from the considerations above that the total increase in &
during the execution of the algorithm is O(n?m). Now it follows from
the fact that @ is never negative that the total number of unsaturating
pushes is O(n?m). O

It is somewhat surprising that the simple approach above results in an
algorithm of such a low complexity. The complexity bound is valid no matter
which vertex we choose to push from or lift. This indicates the power of
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the approach. However, the algorithm does have its drawbacks. If no control
is supplied to direct the algorithm (as to which vertices to push from or
lift), then a large amount of time may be spent without any effect on the
final maximum flow. The reader is asked in Exercise 3.21 to give an example
showing that a large amount of useless work may be performed if no extra
guidance is given to the choice of pushes. There are several approaches which
can improve the performance of the preflow-push algorithm we mention just
two of these. For details see e.g. [7].

(a) If we examine the active vertices in a first-in first-out (FIFO) order, then
we obtain an O(n?) algorithm [325].

(b) If we always push from a vertex p which has the largest height h(p) among
all active vertices, then we obtain an O(n?\/m) algorithm [149, 325].

Cheriyan and Maheshwari [149] have shown by examples that the worst
case bounds for the FIFO and maximum height variants are tight. For another
way to improve the performance of the generic algorithm in practice, see
Exercise 3.22.

3.7 Unit Capacity Networks and Simple Networks

In this section we consider two special cases of networks, both of which occur
in applications and for which, due to their special structure, one can obtain
faster algorithms for finding a maximum flow. All networks considered in this
section are assumed to have a source s and a sink .

3.7.1 Unit Capacity Networks

A unit capacity network is a network ' = (V, A,l = 0,u = 1), i.e. all arcs
have capacity equal to one. Unit capacity networks are important in several
applications of flows to problems such as finding a maximum matching in
a bipartite graph (Subsection 3.11.1), finding an optimal path cover of an
acyclic digraph (Section 5.3) and finding cycle subdigraphs covering specified
vertices (Subsection 3.11.5).

Lemma 3.7.1 If N is a unit capacity network without cycles of length 2 and
x s a feasible (s,t)-flow, then N'(z) is also a unit capacity network.

Proof: Exercise 3.39. O

Let N = (V,A,l = 0,u = 1) be a unit capacity network with source
s and sink t. Since the value of a minimum (s,¢)-cut in N is at most n —
1 (consider the cut (s,V — s)), we see from Theorem 3.5.4 that the Ford-
Fulkerson algorithm will find a maximum (s,t)-flow in time O(nm). The
purpose of this section is to show that one can obtain an even faster algorithm.
Our exposition is based on an idea due to Even and Tarjan [232].
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Lemma 3.7.2 Let L= (V =VoUWVU... UV}, Al =0,u=1) be a layered
unit capacity network with Vo = {s} and Vi, = {t}. One can find a blocking
(s,t)-flow in L in time O(m).

Proof: It suffices to see that the capacity of each augmenting path is 1 and
no two augmenting paths of the same length can use the same arc. Hence it
follows that Dinic’s algorithm will find a blocking flow in time O(m). O

Lemma 3.7.3 Let N = (V,A,l = 0,u = 1) be a unit capacity network and
let * be a mazimum (s,t)-flow in N'. Then

distar(s,t) < 2n/+/|z*| (3.15)

Proof: Let w = dista(s,t) and let Vy = {s},V1,Va,...,V,, be the first w
distance classes from s. Since N contains no multiple arcs, the number of
arcs from V; to Vi1 is at most |V;||Viy1| for ¢ = 0,1,...,w — 1. Since the
arcs in (V;, V;41) correspond to the arcs across an (s, t)-cut in N, we have
|z*| < |Vi||Viga] for ¢ = 0,1,...,w — 1. Thus max{|V;|, |[Vit1|} > /|z*| for

1=0,1,...,w — 1. Now we easily see that
- —w+1
n=|Vz) Vil = Vil =) (3.16)
i=0
implying that w < 2n/+/|z*|. O

Theorem 3.7.4 [232] For unit capacity networks the complexity of Dinic’s
algorithm is O(n3m).

Proof: Let A/ be a unit capacity network with source s and sink ¢t. We
assume for simplicity that N has no 2-cycles. The case when A does have
a 2-cycle can be handled similarly (Exercise 3.41). Let ¢ be the number of
phases performed by Dinic’s algorithm before a maximum (s, ¢)-flow is found
in M. Let 0 = 2@, 2™ . 2 denote the (s,t)-flows in N which have
been calculated after the successive phases of the algorithm. Thus z(?) is the
starting flow which is the zero flow and z(¥ denotes the flow after phase i
of the algorithm. Let 7 = [n3] and let K = |2(?| denote the value of a
maximum (s, t)-flow in N.

By Lemmas 3.7.1 and 3.7.2 it suffices to prove that the total number of
phases, ¢, is O(n%) This is clear in the case when K < 7, since we augment
the flow by at least one unit after each phase. So suppose that K > 7.
Choose j such that |2)| < K — 7 and [#U*+Y| > K — 7. By Theorem 3.4.2
and Theorem 3.4.3 the value of a maximum flow in A/ (z()) is K — [¢0)| > 7.

Applying Lemmas 3.7.1 and 3.7.3 to NV (7)), we see that dist () (8, ) <

2n3. Using Lemma 3.6.2 and the fact that each phase of Dinic’s algorithm
. . . 2 .
results in a blocking flow, we see that 7 < 2n3. Thus, since at most 7 phases
. . . 2
remain after phase j we conclude that the total number of phases ¢ is O(n3).
O
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3.7.2 Simple Networks

A simple network is a network N' = (V, A,1 = 0, u) with special vertices s, t
in which every vertex in V — {s, ¢} has precisely one arc entering or precisely
one arc leaving. For an example see Figure 3.13.

Figure 3.13 A simple network. Capacities are not shown.

Below we assume that the simple network in question does not have any
2-cycles. It is easy to see that this is not a serious restriction (Exercise 3.42).

Lemma 3.7.5 Let N = (V,A,l =0,u = 1) be a simple unit capacity network
on n vertices and let z* be a mazimum (s,t)-flow in N'. Then

distar(s, t) < n/|z*|. (3.17)

Proof: Let w = distar(s, t) and Vo = {s}, V1, Va,..., V,, be the first w distance
classes from s. Every unit of flow from s to ¢ passes through the layer V; for
i=1,2,...,w— 1. Furthermore, since N is a simple unit capacity network,
at most one unit of flow can pass through each v € V. Thus |V;| > |z*|, for
i=1,2,...,w—1 and hence

w—1
V> Vil 2 (0= D7),
i=1
implying that w < |V|/|z*|. O

Lemma 3.7.6 If N is a simple unit capacity network, then N(z) is also a
simple unit capacity network.

Proof: Exercise 3.40. O

Using Lemma 3.7.5 and Lemma 3.7.6 one can prove the following result
due to Even and Tarjan. We leave the details as Exercise 3.43.

Theorem 3.7.7 [232] For simple unit capacity networks Dinic’s algorithm
has complexity O(v/nm). O
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We point out that Dinic’s algorithm will also find a maximum (s, t)-flow in
time O(y/nm) in a simple network even if not all capacities are one, provided
that the network has the property that at most one unit of flow can pass
through any vertex v € V' — {s,t}. In particular a vertex may be the tail of
an arc with capacity co provided that it is the head of at most one arc and
this arc (if it exists) has capacity one. We use this extension of Theorem 3.7.7
in Section 3.11.

3.8 Circulations and Feasible Flows

We now return to the general flow model when lower bounds are present on
the arcs. We wish to determine whether a feasible flow exists with respect to
the given lower bounds and capacities on the arcs and a prescribed balance
vector. As we showed in Section 3.2, in order to study the general case, it
suffices to study circulations since we may use Lemmas 3.2.1-3.2.3 to trans-
form the general case to the case of circulations. Note that in this section we
always assume that all the data of the network are integers (that is [ and u
are integers).

We need the following very simple observation. The proof is analogous to
that of Lemma 3.5.1.

Lemma 3.8.1 If x is a circulation in N then for every partition S,S of V.
we have x(S,S) = x(S5,S). O

The example in Figure 3.14 gives us a starting point for detecting what
can prevent the existence of a feasible circulation.

(3,5) (0,2)

1,5)
Figure 3.14 A network with no feasible circulation. The specification on the arcs

is (I, u).

Let A be the network in Figure 3.14 and let S = {b} and S = {a,c}.
Then I(S,S) =3 > 2 = u(S,S). Now using Lemma 3.8.1 we see that if z is
a feasible flow in V' we must have

2 = u(S,5) > (S, 5) = (S, 8) > (S, S) = 3,
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implying that there is no feasible flow in A/. More generally, our argument
shows that if V' = (V, A,1,u) is a network for which some partition S, .S of V
satisfies [(S, S) > u(S9,S), then A has no feasible circulation. Hoffman [431]
proved that the converse holds as well.

Before we prove Theorem 3.8.2 we remark that Theorem 3.4.2 remains
valid for networks with non-zero lower bounds provided that we modify the
definition of z @ Z slightly (see Exercise 3.30).

Theorem 3.8.2 (Hoffman’s circulation theorem) [/31] A network N' =
(V, A, l,u) with non-negative lower bounds on the arcs has a feasible circula-
tion if and only if the following holds for every proper subset S of V':

1(S,9) <u(sS,S). (3.18)

Proof: Let N = (V,A,l,u) be a network. We argued above that if = is
a feasible circulation in A/, then for every partition (S,S) of V we have
1(S,8) <u(s,S).

To prove the converse we assume that (3.18) holds for all S C V and give
an algorithmic proof showing how to construct a feasible circulation starting
from the all-zero circulation. Clearly z = 0 is a circulation in A and if [ = 0,
then we are done. So we may assume that [;; > x;; for some ij € A.

We try to find a (j,i)-path in N (x). If such a path P exists, then we
let 6(P) > 0 be the minimum residual capacity of an arc on P. Let ¢ =
min{é(P),l;; —x;; }. By Theorem 3.4.2 (which, as remarked earlier, also holds
when some lower bounds are non-zero), we can increase the current flow x
by € units along the cycle ¢ P and obtain a new circulation.

We claim that we can continue this process until the current circulation
x has l;; < x5 < uy; for all arcs ij € A, that is, we can obtain a feasible
circulation in A/ (observe that the procedure above preserves the inequality
x < u). Suppose this is not the case and that at some point we have x4 < I
for some arc st and there is no (¢, s)-path in N'(z). Define T as follows:

T = {r: there exists a (¢,r)-path in N'(z)}.

It follows from the definition of the residual network A(x) (in particular
(3.7)) that in NV we have z;; = u;; for all arcs ij with i € T and j € T and
Tgr < g for all arcs gr with ¢ € T and r € T Using that s € T and x5 < I
we obtain that

W(T,T) = «(T,T) = «(T,T) < I(T,T),

contradicting the assumption that (3.18) holds. This and the fact that all
data are integers shows that the algorithm we described above will indeed
find a feasible circulation in V. O

It is not difficult to turn the proof above into a polynomial algorithm
which, given a network N’ = (V, A, [, u), either finds a feasible circulation x
in AV, or a subset S violating (3.18) (Exercise 3.29). O
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We conclude with a remark on finding feasible flows with respect to arbi-
trary balance vectors in general networks. This problem is relevant as a start-
ing point for many algorithms on flows. It follows from the results in Section
3.2 and the fact that the preflow-push algorithm can be turned into an O(n?)
algorithm (using the FIFO implementation) that the following holds.

Theorem 3.8.3 There exists an O(n?) algorithm for finding a feasible flow
in a given network N' = (V, A,l,u,b). Furthermore, if l,u,b are all integer
functions, then an integer feasible flow can be found in time O(n?). a

Using Lemma 3.2.2 and Theorem 3.8.2 one can derive the following fea-
sibility theorem for flows by Gale (Exercise 3.44):

Theorem 3.8.4 [289] There exists a feasible flow in the network N =
(V, A1 =0,u,b) if and only if

Zb(s) <u(S9,9) for every S C V. (3.19)
ses

3.9 Minimum Value Feasible (s, t)-Flows

Let NV = (V, A,l,u) be a network with source s, sink ¢ and non-negative
lower bounds on the arcs. A minimum feasible (s, t)-flow in A is a feasible
(s,t)-flow whose value is minimum possible among all feasible (s,t)-flows.
Although at first glance this problem may seem somewhat artificial, it turns
out that for many applications it is actually a minimum feasible flow that is
sought (see e.g. Section 5.3 and Section 5.9).

To estimate the value of a minimum (s, t)-flow, let us define the demand,
7(S,S) of an (s,t)-cut (S, S) as the number

(S, S) =1(S,S) —u(S,S). (3.20)

Let x be a feasible flow. Then, by Lemma 3.5.1, for every (s, t)-cut (5,5)
we have

|z| = z(S,S) — x(S,S)
>1(S,S) —u(S,9) (3.21)
=~(S,9).

Hence the demand of any (s,t)-cut provides a lower bound for the value
of a minimum feasible (s,t)-flow. The next result shows that the minimum
value of an (s, t)-flow is exactly the maximum demand of an (s, t)-cut.
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Theorem 3.9.1 (Min-flow Max-demand theorem) Let N' = (V, A, [, u)
be a network with non-negative lower bounds on the arcs. Suppose x is a
minimum feasible (s,t)-flow in N'. Then

|z| = max{v(S,S) : s € S,t € S}. (3.22)

Furthermore we can find a minimum feasible (s,t)-flow by two applications
of any algorithm for finding a mazimum (s,t)-flow.

Proof: Suppose z is a feasible (s,t)-flow in V. If |z| = 0, then z is clearly
a minimum (s,t)-flow (since all lower bounds are non-negative). Hence we
may assume that |z| > 0. Suppose that y is a feasible (¢,s)-flow in N (z).
Then x @ y is a feasible flow in N of value |z| — |y|, by Theorem 3.4.2 (as
we remarked in the last section, this lemma is also valid in the general case
of non-zero lower bounds). Now suppose that y is a maximum (¢, s)-flow in
N(x). Apply Theorem 3.5.3 to y and N(x) and let (7,T) be a minimum
(t,s)-cut in N'(x). The capacity of (T,T) is by definition equal to r(T,T),
where 7 is the capacity function of N'(x). By the choice of (T,T) and the
definition of the residual capacities we have

lyl = r(T.T)
= Z, (wij — @i5) + Z (Tgp —
ije(T.,T) pe(T,T)
=u(T,T) - I(T, )+x(T T)—z(T,T)
=w(T,T) = UT,T) + ||, (3.23)

by Lemma 3.5.1. Rearranging this, we obtain that |z|—|y| = (T, T)—u(T, T).
This implies that the flow @y (whose value is |z|—|y|) is a minimum feasible
(s,t)-flow and proves (3.22).

It remains to prove the second claim on how to find a minimum (s, t)-flow.
It follows from the argument above that once we have any feasible (s, t)-flow,
we can find a minimum (s, ¢)-flow by just one max flow calculation. On the
other hand it follows from Lemma 3.2.1 and Lemma 3.2.2 that we can find a
feasible (s, t)-flow in A/ (if any exists) by performing the two transformations
suggested in those lemmas and then using a max flow algorithm to check
whether there is a feasible flow in the last network constructed (now feasibility
is with respect to the value of b(s) and all lower bounds are zero). O

3.10 Minimum Cost Flows

We now turn to networks with costs on the arcs and study the follow-
ing problem called the minimum cost flow problem: Given a network
N = (V,A,l,u,b,c) find a feasible flow of minimum cost (recall that the cost
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of a flow is given by ZijeA x;j¢;j). By the results in Section 3.2, without loss
of generality, we may treat the problem only for networks with lower bound
zero on all arcs and furthermore assume that we are looking for either an
(s,t)-flow of value b(s) or a circulation of minimum cost. However, for differ-
ent applications, different flow models may be more convenient than others.
Hence, except for always assuming that the lower bounds are zero, we will
treat the general case, and hence all the special cases also, below.

We mentioned in Section 3.2 that the shortest path problem is a special
case of the minimum cost flow problem. To see this, let D = (V, A, ¢) be an
arc weighted digraph with special vertices s, t and assume that D has no cycle
of negative weight. Let N' = (V, A,l = 0,u = 1,¢) be the network obtained
from D by adding a lower bound of zero and a capacity of 1 to each arc of D
and interpreting the weight of an arc in D as its cost in A/. We claim that a
shortest (s, t)-path in D corresponds to a minimum cost integer (s, t)-flow of
value 1 in V. Clearly, any (s, t)-path P of weight M in D can be transformed
into an (s, t)-flow of cost M just by sending one unit of flow along P in N.
Thus it suffices to prove that every (s,t)-flow = of value one and cost M can
be transformed into an (s,t)-path in D of weight at most M. By Theorem
3.3.1 we may decompose z into a path flow of value one along an (s, t)-path
P’ and a number of cycle flows. All these cycles have non-negative cost since
D has no negative cycle. Hence it follows that P’ has cost at most M. It
follows from our observations above that every minimum cost (s,t)-flow of
value 1 in N can be decomposed into an (s,t)-path of the same cost and
some cycle flows along cycles of cost zero.

In Exercise 3.47 the reader is asked to show that the maximum flow
problem is also a special case of the minimum cost flow problem. However,
the minimum cost flow problem is interesting not only because it generalizes
these two problems, but also because a large number of practical applications
can be formulated as minimum cost flow problems. The very comprehensive
book by Ahuja, Magnanti and Orlin [7] contains a large number of such
applications. We will discuss one of these in a reformulated form below.

A small cargo company uses a ship with a capacity to carry at most r units
of cargo. The ship sails on a long route (say from Southampton to Alexandria)
with several stops at ports in between. At these ports cargo may be unloaded
and new cargo loaded. At each port there is an amount b;; of cargo which is
waiting to be shipped from port ¢ to port j > ¢ (ports are numbered after
the order in which the ship visits them). Let f;; denote the income for the
company from transporting one unit of cargo from port i to port j. The goal
for the cargo company is to plan how much cargo to load at each port so as
to maximize the total income while never exceeding the capacity of the ship.
We illustrate how to model this problem, which we call the ship loading
problem, as a minimum cost flow problem because it shows not only that
sometimes it is easier to work with the general model, but also that allowing
negative costs on the arcs may simplify the formulation.
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Let n be the number of stops including the starting port and the terminal
port. Let N' = (V, A, = 0,u,c) be the network defined as follows:

V ={v1,ve,...,0,} U{vi; : 1 <i<j<n},
A= {Ulvg,vg’l}g, Ce ,vn_lvn} U {vijvi,vijvj 1<i< < n}

The capacity of the arc v;v;41 isr fort =1,2,...n—1 and all other arcs have
capacity co. The cost of the arc v;;v; is — fi; for 1 <4 < j < n. All other arcs
have cost zero (including those of the form v;;v;). The balance vector of v;; is
b;; for 1 <4 < j < n and the balance vector of v; is —(b1i+bai+ ... +bi—14)
for i =1,2,...,n. (See Figure 3.15.)

Figure 3.15 The network for the ship loading problem with 3 intermediate stops.
For readability vertices are named by numbers only. The costs (capacities) are
only shown when non-zero (not infinite). The balance vectors are as specified in
the description in the text, i.e. the balance vector of the vertex 34 is bss and the
balance vector of the vertex 4 is —(b14 + baa + bsa).

We claim that this network models the ship loading problem. Indeed,
suppose that ti9,%t13,...,tin,t23,...,tn—1n are cargo numbers, where t;;(<
b;j) denote the amount of cargo the ship will transport from port ¢ to port j
and that the ship is never loaded above capacity. The total income from these
cargo loads is I = 37, ;i< tij fij. Let x be the flow in V' defined as follows.
The flow on an arc of the form v;;v; is t;;, the flow on an arc of the form
v350; is bj; — t;; and the flow on an arc of the form v;v;41,4=1,2,...,n—1,
is the sum of those t,, for which a < ¢ and b > ¢ + 1. It follows from the
fact that ¢;;, 1 <7 < j < n, are legal cargo numbers that x is feasible with
respect to the balance vector and the capacity restriction. It is also easy to
see that the cost of z is —1I.
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Conversely, suppose that z is a feasible flow in N of cost J. We claim
that we get a feasible cargo assignment s;;, 1 < i < j < n with income —J
by letting s;; be the value of x on the arc v;;v;. This is easy to check and
we leave the details to the reader. It follows that a minimum cost flow in A/
corresponds to an optimal loading of the ship and vice versa.

Below we consider the minimum cost flow problem in some detail. Further
applications are given in Section 3.11. See also Section 3.12 for two important
special cases of the minimum cost flow problem.

We use the notion of the cost of a path or a cycle in a network. This is
simply the sum of the costs of all arcs in the path or cycle. An augmenting
path (cycle) with respect to a given flow x in a network N is a path (cycle)
in M (z). Whenever we speak about an augmenting cycle or path P we use
d(P) to denote the minimum residual capacity of an arc on P in N (z).
Furthermore, for every 8 < §(P) we denote by 2’ := z & SP the flow we
obtain from z by augmenting along P with 3 units.

Whenever we say that a flow x is optimal in a network A/, we mean by
this that z is a minimum cost flow among all flows in A with balance vector
by

3.10.1 Characterizing Minimum Cost Flows

Recall from Theorem 3.5.3 that, when we consider maximum (s, t)-flows, we
can verify optimality by showing that there is no (s,t)-path in the residual
network with respect to the current flow. It turns out that we can also use
the residual network to check whether a given feasible flow in a network N =
(V, A, 1, u, c) has minimum cost among all flows with the same balance vector.
Suppose first that z is feasible in N and that there is some cycle W in A/ (z)
such that the cost ¢(W) of W is negative. Let 6 denote the minimum residual
capacity of an arc on W and let 2’ be the cycle flow in A'(z) which sends §
units around W. Then it follows from Theorem 3.4.2 that z® ' is a flow in N
with the same balance vector as z and cost cZx+cTa’ = cTx+5c(W) < Tz,
Thus if M (z) contains a cycle of negative cost, then z is not a minimum cost
feasible flow in N with respect to the balance vector b,.

The interesting thing is that the other direction holds as well. Indeed,
suppose z is feasible in N' = (V, A, [, u, b, ¢) and that N'(z) contains no cycle
of negative cost. Let y be an arbitrary feasible flow in N. Since we have
specified a balance vector b for N, it follows from Corollary 3.4.4 that there
exist a collection of at most m cycles Wy, Wa, ..., Wy in N'(z) and cycle flows
fWy), ..., f(Wy) in N (z) such that Ty = ch—&—Zf:l c¢(W;)d;, where §; > 0
is the amount of flow that f(W;) sends along W; in A (x). Since N'(z) has no
negative cost cycle, ¢c(W;) > 0fori=1,2,...,k and we see that® ¢cT'y > ¢’z

8 In fact, our argument shows that ¢Ty = ¢’z if and only if y can be obtained
from z by ‘adding’ zero or more cycle flows, each of cost zero, in N (z).
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Thus we have established the following important optimality criterion for the
minimum cost flow problem.

Theorem 3.10.1 Let x be a feasible flow in the network N' = (V, A, 1, u, b, c).
Then x is a minimum cost feasible flow in N if and only if N'(x) contains
no directed cycle of negative cost. a

It is natural to ask how useful this optimality criterion is. First ob-
serve that using the Bellman-Ford-Moore algorithm (Subsection 2.3.4) we
can check whether an arbitrary given network contains a negative cycle in
time O(nm). Thus we obtain the following algorithm, due to Klein [480], for
finding a minimum cost feasible flow in a network.

The cycle canceling algorithm
Input: A network N = (V, A,l,u,b,c).
Output: A minimum cost feasible flow in N.

1. Find a feasible flow z in .

2. Search for a negative cycle in N (x).

3. If such a cycle W is found then augment x by 6(WW) units along W and
go to Step 2.

4. Return x.

Just as is the case for the Ford-Fulkerson algorithm, the cycle canceling
algorithm may never terminate if the capacities are non-rational numbers. It
is easy to modify the example in Exercise 3.17 to show this. However, if all
lower bounds and capacities are integers (or just rational numbers) then this
is indeed an algorithm, although not always a very fast one. See Figure 3.16
for an illustration of the algorithm.

Let U and C denote the maximum capacity of AN/ and the maximum
numerical value among all costs of N.

Theorem 3.10.2 If all lower bounds, capacities, costs and balance vectors
of the input network N are integers, then the cycle canceling algorithm finds
an optimum flow in time O(nm2CU).

Proof: By Theorem 3.8.3 we can find a feasible flow  in A in time O(n?).
Hence Step 1 can be performed within the promised time bound, since we
assume that all networks in this chapter have m = 2(n). The maximum
possible cost of a feasible flow in N is mUC and the minimum possible cost
is —mUC. Since we decrease the cost of the current flow by at least one
in Step 3 it follows that after at most O(mUC) executions of Step 3 we
obtain a minimum cost feasible flow. Now the complexity follows from the
fact that Step 2 can be performed in time O(nm) using the Bellman-Ford-
Moore algorithm. ad

Furthermore, just as it was the case for maximum flows, we have a nice
integrality property.
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Figure 3.16 An illustration of the cycle canceling algorithm. (a) A network N
with a feasible flow x with respect to the balance vector (b(1),5(2),b(3),b(4)) =
(2,3,1,—6). The data on the arcs are (capacity, flow, cost); (b) the residual network
N (z). The data on the arcs are (residual capacity, cost); (c) the residual network
after augmenting by 2 units along the cycle 1421; (d) the residual network after
augmenting by 2 units along the cycle 2432; (e) the final optimal flow.

Theorem 3.10.3 (Integrality theorem for minimum cost flows) If all
lower bounds, capacities and balance vectors of the network N are integers,
then there exists an integer minimum cost flow.

Proof: This is an easy consequence of the proof of Theorem 3.10.2. By
Theorem 3.8.3 we may assume that the flow = after Step 1 is an integer flow.
Now the claim follows easily by induction of the number of augmentations
made by the cycle canceling algorithm since in each augmentation we change
the current flow by an integer amount along the arcs of the augmenting cycle.

O

For arbitrary networks with integer valued data the complexity of the
cycle canceling algorithm is not very impressive and the algorithm is clearly
not polynomial since its running time is exponential in both the maximum
capacity and the maximum (absolute value of the) cost. It is easy to construct
examples for which the algorithm, without some guidance as to how the next
negative cycle should be chosen, may use O(mUC') augmentations before it
arrives at an optimum flow (Exercise 3.52). However, for several applications,
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such as when we are looking for certain structures in digraphs, both U and
C are small and then the algorithm is quite attractive due to its simplicity
(see e.g. some of the results in Section 3.11).

The problem of finding a strongly polynomial algorithm? for the mini-
mum cost flow problem was posed by Edmonds and Karp [216] in 1972 and
remained open until Tardos [687] found the first such algorithm in 1985. We
mentioned above that if we use just any negative cycle in Step 3, then the
cycle canceling algorithm may use a non-polynomial number of iterations.
Goldberg and Tarjan showed that the following variant of the algorithm is
already strongly polynomial [326]. The mean cost of a cycle W is the number

c(W)/|AW)].

Theorem 3.10.4 [326] If we always augment along a cycle of minimum
mean cost (as negative mean cost as possible) in Step 3, then the cycle can-
celing algorithm has complexity O(n*m3logn) even if some arcs have non-
rational data. a

The correctness of the algorithm, provided that it terminates, follows
from Theorem 3.10.1, since there is no negative cycle in the current residual
network at termination. Due to space considerations we will not prove the
complexity part of the theorem here. We refer the interested reader to [7, 578]
for nice accounts for the complexity of this algorithm. It is interesting to note
that, although the proof of the complexity statement of Theorem 3.10.4 is
quite non-trivial, it uses just the basic definitions of flows along with some
new concepts which are used to make the proof smoother.

3.10.2 Building up an Optimal Solution

The cycle canceling algorithm starts from a (generally) non-optimal but fea-
sible flow and continues through a sequence of feasible flows until an optimal
flow is found (provided the algorithm ever terminates). In this subsection we
describe another approach, due to Jewell [460] and Busacker and Gowen [138],
in which we start from a (generally) in-feasible flow which is optimal'® and
continue through a sequence of optimal but in-feasible flows until a feasible
and optimal flow is reached.

Theorem 3.10.5 (The buildup theorem) [460, 138] Suppose that = is a
minimum cost feasible flow in a network N' = (V, A,l = 0,u,c) with respect
to the balance vector b = b, and let P be a minimum cost (p, q)-path in N'(x).
Let o < §(P) and let f(P) be the path flow of value o in N(x). Then the
flow 2’ :=x & f(P) is a minimum cost feasible flow in N with respect to the
balance vector b’ given by

9 A graph algorithm is strongly polynomial if (counting each arithmetic opera-
tion as constant time) the number of operations is bounded by a polynomial in
n and m.

10 Recall that optimality is with respect to flows with the same balance vector.
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b(v) ifvé{p,q}
b(v) =1 blp)+a ifv=p
b(q) —a ifv=q.

Proof: By Theorem 3.10.1 it is sufficient to prove that there is no negative
cycle in A (2'). Since z is optimal there is no negative cycle in N'(z). Suppose
that A(x’) contains a negative cycle W. By the definition of x’, every arc
in V(') is either an arc of N(x) or the opposite of an arc on P. Consider
the directed multigraph H that we obtain from A(P)U A(W) considered as
a multiset by deleting all arcs a such that both a and the opposite arc is in
A(P)JA(W). It is easy to see that if we add the arc gp to H then we obtain a
directed multigraph M such that each connected component of M is eulerian.
Hence, by Exercise 3.8, we can decompose A(H) into a (p, ¢)-path P’ and a
number of cycles Wy, Ws, ..., Wy. It follows from our remark above and the
way we defined H that all arcs of P, Wy, Ws, ..., W, are arcs of N'(z). By
(3.2) opposite arcs have costs which cancel and hence, using that ¢(W) < 0
we obtain

> ¢(P'),

since the cost of each W; must be non-negative because W; is a cycle in
N (z). Thus we see that P’ is a (p, ¢)-path with a cost smaller than that of
P, contradicting the minimality of P. Hence W cannot exist and the proof
is complete. a

Based on Theorem 3.10.5 we can construct an algorithm, called the
buildup algorithm [460, 138], for finding an optimal feasible flow in a net-
work N = (V, A,l = 0,u,b,c). The algorithm described below only works if
there are no negative cycles in the starting network. This restriction poses no
practical problems since, according to Exercise 3.49, we may reduce the gen-
eral minimum cost flow problem to the case when all costs are non-negative.
Under the assumption that N has no negative cycles, the flow z = 0 is an
optimal circulation in A. At any time during the execution of the buildup
algorithm the sets U,, Z, are defined with respect to the current flow z as
follows:

Uz = {v[be(v) < b(v)}, Zy = {v[ba(v) > b(v)}.
Observe that U, = ) if and only if Z, = 0.

The buildup algorithm

Input: A network N = (V,; A,1 =0, u, b, ¢).

Output: A minimum cost feasible flow in N with respect to b or a proof
that the problem is infeasible.
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. Let x;; := 0 for every ij € A;

. If U, = 0 then go to Step §;

. If there is no (U, Z,)-path in N(z) go to Step 9;

. Let p and ¢ be chosen such that p € U,,q € Z, and N (z) contains a
(p, q)-path;

. Find a minimum cost (p, ¢)-path P in N (x);

. Let e = min{d(P), b(p) —b.(p), bx(q) —b(q)} (6(P) is the residual capacity
of P);

7. Let z := z @ eP; Modify U, Z, and go to Step 2;

8. Return z;

9. Return ‘no feasible solution’.

=~ O N

(@233

See Figure 3.17 for an illustration of the algorithm.

(2,0,2)

Figure 3.17 The buildup algorithm performed on the network from Figure 3.16(a).
Part (a)-(d) show the current residual network with respect to the flow x, starting
from z = 0 in (a). For each arc (u, ¢) is specified and in (a) b(v) is specified for each
vertex. White circles correspond to the set U, and white boxes correspond to Z,.
Black circles represent vertices that have reached the desired balance value. Part
(e) shows the final optimal flow.

Theorem 3.10.6 [/60, 138] Let N = (V, A,l = 0,u,b,c) have all data inte-
gers and no negative costs. The buildup algorithm correctly determines a min-
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imum cost feasible flow x in N or detects that no feasible flow exists in N'. The
algorithm can be performed in time O(n*mM), where M = max,cy |b(v)|.
Furthermore, if there is a feasible flow in N, then the algorithm will find an
integer optimal feasible flow in N .

Proof: Exercise 3.50. O

The following result shows that, when we consider minimum cost (s, t)-
flows, the cost of successive augmenting (s,¢)-paths form a monotonically
increasing function. One can make a more general statement (Exercise 3.51),
but for simplicity we consider only (s, t)-flows here.

Proposition 3.10.7 Let N be a network with distinct vertices s,t and let x
be an optimal (s,t)-flow in N. Suppose x’ is obtained from x by augmenting
along a minimum cost (s,t)-path P in N'(x) and that 2" is obtained from x’
by augmenting along a minimum cost (s,t)-path P’ in N'(z'). Then

To—cly >ca —cTa. (3.24)

Proof: Let z,2’, 2" and P, P’ be as described in the proposition. Analogously
to the way we argued in the proof of Theorem 3.10.5 we can show that the
directed multigraph H’ obtained from the multiset of arcs from A(P)UA(P’)
by deleting arcs that are opposite in the two paths can be decomposed into
two (s,t)-paths @, R and some cycles W1,..., W, such that all arcs of these
paths and cycles are in V' (x). Since x is optimal each cycle W;, 1 =1,2,...,p
has non-negative cost by Theorem 3.10.1. Using that P is a minimum cost
(s,t)-path in NV (x) we conclude that each of R,Q have cost at least c(P)
implying that ¢(P’) > ¢(P). Hence (3.24) holds. O

3.11 Applications of Flows

In this section we illustrate the applicability of flows to a large spectrum of
problems both of a theoretical and practical nature. For further applications
see e.g. Section 3.12 and Chapter 7. Since we will need these results in later
chapters the main focus is on finding certain substructures in digraphs.

3.11.1 Maximum Matchings in Bipartite Graphs

Let G = (V, E) be an undirected graph. Recall that a matching in G is a set
of edges from F, no two of which share a vertex and a maximum matching of
G is a matching of maximum cardinality among all matchings of G. Matching
problems occur in many practical applications such as the following schedul-
ing problem. We are given a set T' = {t1,ta,...,t,} of tasks (such as handling
a certain machine) to be performed and a set P = {p1, p2, ..., ps} of persons,
each of which is capable of performing some of the tasks from 7. The goal
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is to find a maximum number of tasks such that each task can be performed
by some person who does not at the same time perform any other task and
no task is performed by more than one person. This can be formulated as a
matching problem as follows. Let B = (P, T'; E') be the bipartite graph whose
vertex set is PUT and such that for each 4,7 such that 1 <i<s, 1 <j<r,
E contains the edge p;t; whenever person p; can perform task ¢;. Now it is
easy to see that the answer to the problem above is a matching in B which
covers the maximum possible number of vertices in T' (see also Exercise 3.53).
For arbitrary graphs finding a maximum matching fast is quite complicated
and it was a great breakthrough when Edmonds [210] found a polynomial
algorithm. For the case of bipartite graphs we describe a simple algorithm
based on flows.

Theorem 3.11.1 For bipartite graphs the mazimum matching problem is
solvable in time O(y/nm).

Proof: Let B = (X,Y; E) be an undirected bipartite graph with bipartition
(X,Y). Construct a network Ng = (X UY U{s,t}, 4,1 = 0,u) as follows (see
Figure 3.18):

A={ij:ieX,jeYandij€ E}U{si:i € X}U{jt:jeY}, u;; =00
for all ij € (X,Y), ug; =1forallie X and ujy =1forall j €Y.

B N

Figure 3.18 A bipartite graph and the corresponding network. Capacities are one
on all arcs of the form sv,ut and co on all arcs corresponding to edges of B.

We claim that the value of a maximum (s,t)-flow in Np equals the size
of a maximum matching in B. To see this suppose that x is an integer flow
in NV of value k. Let M = {ij : i € X,j € Y and x;; > 0}. For each i € X
the flow on the arc z; is either zero or one. Furthermore, if x4, = 1, then
it follows from the fact that z is integer valued and b, (i) = 0 that precisely
one arc from ¢ to Y has non-zero flow. Similarly , for each j € YV, if zj; =1
then precisely one arc from X to j has non-zero flow. It follows that M is a
matching of size k in B and hence, by Theorem 3.5.5, the size of a maximum
matching in B is at least the value of a maximum flow in NVp.
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On the other hand, if M' = {¢;r; : ¢ € X,r; € Y,i = 1,2,...,h} is
a matching in B, then we obtain a feasible (s,t)-flow of value h in N'g by
sending one unit of flow along each of the internally disjoint paths sg;r;t,
i = 1,2,...,h. This shows that the opposite inequality also holds and the
claim follows.

It follows from the arguments above that, given a maximum integer flow
x, we can obtain a maximum matching M of B by taking precisely those arcs
of the form w;v;, u; € X,v; € Y which have flow value equal to 1. Note that
N3p is a simple network. Hence the complexity claim follows from the fact
that we can find a maximum flow in A/ in time O(y/nm), using the algorithm
of Theorem 3.7.7 (recall that this complexity is also valid for simple networks
where not all capacities are 1, provided that at most one unit of flow can pass
through any vertex distinct from s, t). a

In the case of dense graphs a slightly faster algorithm of complexity
O(n'®y/m/logn) was given by Alt, Blum, Mehlhorn and Paul in [23]. It
is still possible to obtain fast algorithms for finding a maximum matching
in general graphs, see e.g. Tarjan’s book [690]. However, it does not seem
possible to formulate the maximum matching problem for an arbitrary graph
as an instance of the maximum flow problem in some network. In [482] a
generalization of flows which contains the maximum matching problem for
general graphs as a special case was studied by Kocay and Stone.

A vertex cover of an undirected graph G = (V, E) is a subset U C V
such that every edge e € E has at least one of its end vertices in U. Since no
two edges of a matching share a vertex, it follows that for every vertex cover
U in G, the size of U is at least the size of a maximum matching. For general
graphs there does not have to be equality between the size of a maximum
matching and the size of a minimum vertex cover. For instance if G is just
a b-cycle, then the size of a maximum matching is 2 and no vertex cover
has less than 3 vertices. We now prove the following result, due to Konig
[498], which shows that for bipartite graphs equality does hold. The proof
illustrates the power of the Max-flow Min-cut theorem.

Theorem 3.11.2 (Ko6nig’s theorem) [{98] Let B = (X,Y; E) be an undi-
rected bipartite graph with bipartition (X,Y"). The size of a mazimum match-
ing in B equals the size of a minimum vertex cover in B.

Proof: Let Ng = (VU{s,t}, A,l = 0,u) be defined as in the proof of Theorem
3.11.1. Let  be a maximum flow in Nz and let (S,S) be the minimum cut
defined as in the proof of Theorem 3.5.3 with respect to z (see Figure 3.19).
Recall that S is precisely those vertices of V' U {s,t} which can be reached
from s in N (z). Since the capacity of each arc from X to Y is oo, there is
no edge from SN X to SNY in G. Thus U = (X N S)U (Y N 9) is a vertex
cover in B. Furthermore, it follows from the definition of S that we must
have z,; = 1 for all 4 € X NS and zj = 1 for all j € Y N.S. This shows
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XNns Yns

Xns Yyns

Figure 3.19 The situation when a maximum flow has been found. The thick dotted
arc indicates that there is no arc between the two sets X NS and Y N S.

that |z| = | X N S|+ |Y N S|. We showed in the proof of Theorem 3.11.1 that
|M*| = || = |X NS|+ |Y N S|, where M* is a maximum matching in B.
Hence |M*| = |U|, implying that U is a minimum vertex cover and the proof
is complete. a

Recall that a matching is perfect if it covers all vertices. We saw above that
the simple proof of Theorem 3.11.1 was easily modified to a proof of Konig’s
theorem. Not surprisingly we can also derive the following characterization of
the existence of a perfect matching in a bipartite graph. The result below is a
slight weakening of a result (dealing with matchings that meet all vertices of
one bipartition class of bipartite graphs) due to Hall [393]. For an undirected
graph G = (V, E) and a subset U C V', we denote by N(U) the set of vertices
in V — U which have at least one edge to a vertex in U.

Theorem 3.11.3 (Hall’s theorem) [393] A bipartite graph B = (X,Y; E)
has a perfect matching if and only if | X| = |Y| and the following holds:

IN(U)| > |U| for every U C X. (3.25)

Proof: The necessity of |X| = |Y] and (3.25) is clear since every vertex in U
has a private neighbour in Y if B has a perfect matching.

Suppose now that (3.25) holds and let x be an integer maximum flow in
the network Np which is defined as in the proof of Theorem 3.11.1. If we can
prove that |x| = |X| then it follows from the proof of Theorem 3.11.1 that
B has a perfect matching. So suppose |z| < |X|. By the proof of Theorem
3.11.2 we have |z| = |X N'S|+ Y N S|, where S is the set of vertices that are
reachable from s in Ag(x). Since (3.25) holds and we argued in the proof of
Theorem 3.11.2 that all neighbours of X NS are in Y N S, we also have

IX|=|XNS|+|XnS|<|YnS|+|XNnS|=|z| <|X],

a contradiction. Hence we must have || = |X| and the proof is complete. O
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3.11.2 The Directed Chinese Postman Problem

Suppose a postman has to deliver mail along all the streets in a small'! town.
Assume furthermore that on one-way streets the mail boxes are all on one
side of the street, whereas for two-way streets, there are mail boxes on both
sides of the street. For obvious reasons the postman wishes to minimize the
distance he has to travel in order to deliver all the mail and return home to
his starting point. We show below how to solve this problem in polynomial
time using minimum cost flows.

We can model the problem by a directed graph D = (V, A) and a weight
function w : A—R4 where V contains a vertex for each intersection of streets
in the town and the arcs model the streets. A 2-cycle corresponds to a two-
way street and an arc which is not in a 2-cycle corresponds to a one-way
street in the obvious way. The weight of an arc corresponds to the length of
the corresponding street. Now it is easy to see that an optimal route for the
postman corresponds to a closed walk in D which traverses each arc at least
once.

We have seen in Theorem 1.6.3 that if a digraph is eulerian, then it con-
tains a closed trail which covers all arcs precisely once. Thus if D is eulerian
the optimalwalk is simply a eulerian trail in D (using each arc exactly once).
Below we show how to solve the general case by reducing the problem to a
minimum cost circulation problem. First observe that there is no solution to
the problem if D is not strongly connected, since any closed walk is strongly
connected as a digraph. Hence we assume below that the digraph in question
is strong, a realistic assumption when we think of the postman problem.

Let D = (V, A) be a strong digraph and let ¢ be a weight function on A.
The cost ¢(W) of a walk W is 3. 4 c;;W;; where W;; denotes the number
of times the arc ij occurs on W. Define N as the network N' = (V, A,l =
1,u = o0, c¢), that is, all arcs have lower bounds one, capacity infinity and
cost equal to the weight on each arc.

Theorem 3.11.4 The cost of a minimum cost circulation in N equals the
minimum cost of a Chinese postman walk in D.

Proof: Suppose W is a closed walk in D which uses each arcij € A W;; > 1
times. Then it is easy to see that we can obtain a feasible circulation of cost
c¢(W) in NV just by sending W;; units of flow along each arc ij € A.
Conversely, suppose x is an integer feasible circulation in N. Form a
directed multigraph D’ = (V, A") by letting A’ contain z;; copies of the arc
ij for each ij € A. It follows from the fact that x is an integer circulation that
D’ is an eulerian directed multigraph (see Figure 3.20). Hence, by Theorem
1.6.3, D’ has an eulerian tour T'. The tour T corresponds to a closed walk W

in D which uses each arc at least once and clearly we have ¢(W) = c¢T'z. O

' This assumption is to make sure that the postman can carry all the mail in his
backpack, say. Without this assumption the problem becomes much harder.
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(a) (0)

Figure 3.20 Part (a) shows a digraph with cost 1 (not shown) on every arc. Part
(b) shows the values of a minimum cost circulation in the corresponding network.
This circulation corresponds to the postman tour abdacdacbda.

3.11.3 Finding Subdigraphs with Prescribed Degrees

In some algorithms on directed multigraphs an important step is to decide
whether a directed multigraph D contains a subdigraph with prescribed de-
grees on the vertices. One such example is when we are interested in checking
whether D contains a cycle factor (see Chapter 5). Below we show that such
problems and more general versions of these problems can be answered using
flows. See Exercise 3.67 for another application of flows to a similar question
involving construction of directed multigraphs with specified in- and out-
degrees. Another application of the techniques illustrated in this subsection
can be found in Section 7.16.

Theorem 3.11.5 There exists a polynomial algorithm for the following prob-
lem. Given a directed multigraph D = (V, A) with V = {v1,va,...,v,} and
integers aj,ag,...,an, b1,ba,... by, find a subdigraph D' = (V, A*) of D
which satisfies dj, (v;) = a; and dp, (v;) = b; for eachi=1,2,...,n, or show
that no such subdigraph exists. Furthermore, if there are costs specified for
each arc, then we can also find in polynomial time the cheapest (minimum
cost) subdigraph which satisfies the degree conditions.

Proof: We may assume that a; < dj;(v;), b; < dp(v;) for each i =1,2,...,n
and that Y ;a;, = Y. b;. Clearly each of these conditions is necessary
for the existence of D’ and they can all be checked in time O(n). Let M =
>, a; and define a network A as follows: N = (V/UV"U{s,t}, A", = 0,u),

where V' = {v],v5,...,u,}, V" = {of,0f,...;vl} and A" = {sv] : i =
L2,...,npufvft s j =1,2,...,n} U{vjv] : viu; € A}. Finally, we let
Usy, = Gy, Uyl = b; for i =1,2,...,n and all other arcs have capacity one.

1Clearly the maximum possible value of an (s,t)-flow in A is M. We claim
that A has an (s,t)-flow of value M if and only if D has the desired subdi-
graph.

Suppose first that D’ = (V, A*) is a subdigraph satisfying d};, (v;) = a;
and dp,, (v;) = b; for each i = 1,2,...,n. Then the following is an (s, t)-flow
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of value M in N x4 = a;, v,y = b;, for each i = 1,2,...,n and Togoy
equals one if v;v; € A* and zero otherwise.

Suppose now that z is an integer (s,¢)-flow of value M in A and let
A* = {vv; Lo = 1}. Then D' = (V, A*) is the desired subdigraph.

It follows from our arguments above that we can find the desired subdi-
graph D’ in polynomial time using any polynomial algorithm for finding a
maximum flow in a network.

Observe also that, if we have a cost function ¢ on the arcs of D and let A/
inherit costs in the obvious way (arcs incident to s or ¢ have cost zero), then
finding a minimum cost subdigraph D’ can be solved using any algorithm for
minimum cost flows. ad

It follows from Theorem 3.11.5 that we can decide whether a given digraph
has a spanning k-regular subdigraph for some specified natural number & in
polynomial time. In fact, using minimum cost flows we can even find the
cheapest such subdigraph in the case that there are costs on the arcs. What
happens if we do not require the regular subdigraph to be spanning? If £ = 1,
then the existence version of the problem is trivial, since such a subdigraph
exists unless D is acyclic. Yannakakis and Alon observed that already when
k > 2 the existence version of the problem becomes NP-complete. For details
see [279].

3.11.4 Path-Cycle Factors in Directed Multigraphs

We saw in the last subsection that we can use flows to find a cycle factor in
a given digraph or to prove that none exists. We now show that flows are in
fact very useful for studying the more general path-cycle factors in digraphs.
Finding this type of subdigraph is an important ingredient in several polyno-
mial algorithms for hamiltonian path and cycle algorithms for generalizations
of tournaments (see Chapter 5).

We start with three necessary and sufficient conditions for the existence of
a cycle factor in a digraph. The reason for giving all three is that in certain
cases one of them provides a better way to deal with the problem under
consideration than the other two. The first two parts are given in Ore’s book
[595]; the last is due to Yeo [748].

Proposition 3.11.6 Let D = (V, A) be a directed multigraph.

(a) D has a cycle factor if and only if the bipartite representation BG(D) of
D contains a perfect matching.

(b) D has a cycle factor if and only if there is no subset X of V' such that
cither |U,cx N*(v)] < |X| or |U,cx N~(v)] < X].

(¢) D has a cycle factor if and only if V' cannot be partitioned into subsets
Y, Z, R1, Ra such that (Y,R1) =0, (Re, R1UY) =0, |Y|>|Z]| and Y

is an independent set.
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Proof: (a): The reader was asked to prove (a) in Exercise 1.62, but we give
the proof here for completeness. Suppose BG(D) has a perfect matching
consisting of edges v’lv;’(l), ...,v;v;:(n), where 7 is a permutation of the set
{1,...,n}. Then the arcs V1Ux(1); -+, UnVUn(n) form a cycle factor. Indeed, in
the digraph D’ induced by these arcs every vertex v; has out-degree and in-
degree equal to one and such a digraph is precisely a disjoint union of cycles
(Exercise 3.57).

Conversely, if C; UC U ... UCy is a cycle factor in D, then for every
v; € V let w(i) be the index of the successor of v; on the cycle containing
v;. Then 7 induces a permutation of V' and {vjv], : vi € V'} is a perfect
matching in BG(D).

(b): Clearly D has a cycle factor if and only if the converse of D has a
cycle factor, so it suffices to show that D has a cycle factor if and only if there
is no subset X satisfying |J,cy VT (v)| < |X]|. Necessity is clear because if
|Upex NT(v)| < |X| holds for some X then there can be no cycle subdigraph
which covers all vertices of X (there are not enough distinct out-neighbours).
So suppose |J,ex NT(v)| > |X]| holds for all X C V. Then it is easy to
see that [N(X’)| > |X’| holds for every subset X' C V' of BG(D) (where
V(BG(D)) = V' U V", recall Section 1.6). It follows from Theorem 3.11.3
that BG(D) has a perfect matching and now we conclude from (a) that D
has a cycle factor.

(c): We first prove the necessity. Suppose D has a cycle factor F and
yet there is a partition Y, Ry, Ro, Z as described in (c). By deleting suitable
arcs from the cycles in F we can find a collection of |Y| vertex-disjoint paths
such that all these paths start in Y and end at vertices of V — Y each of
which dominate some vertex in Y (here we used that Y is an independent
set). However this contradicts the existence of the partition Y, Ry, Rs, Z as
described in (c), since it follows from the fact that |Z| < |Y| that there can
be at most |Z]| such paths in D (all such paths must pass through Z).

Now suppose that D has no cycle factor. Then we conclude from (b) that
there exists a set X such that |[{J,cx NT(v)| < |X]| holds. Let

Y ={ve X idpy,(v) =0}, Ry = V-X-N"(X),Ry = X-V,Z = N*(X),

Then (Y, Ry) = 0, (R2, RiUY) = () and Y is an independent set. Furthermore,
since |U,ex NT(v)| < |X| we also have [Z] +|X = Y| = [U,ex NT(v)] <
|X| =|X = Y|+ Y], implying that |Z| < |Y|. This shows that Y, Z, R, R
form a partition as in (c). O

It is not difficult to show that Proposition 3.11.6 remains valid for directed
pseudographs (where we allow loops) provided that we consider a loop as a
cycle (Exercise 3.58). We will use that extension below.

Combining Proposition 3.11.6 with Theorem 3.11.1 we obtain

Corollary 3.11.7 The existence of a cycle factor in a digraph can be checked
and a cycle factor found (if one exists) in time O(y/nm). O
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Recall that the path-cycle covering number pec(D) of a directed pseudo-
graph is the least positive integer k such that D has a k-path-cycle factor. The
next result (whose proof is left as Exercise 3.68) and Theorem 3.11.1 imply
that we can calculate pcc(D) in polynomial time for any directed pseudo-
graph.

Proposition 3.11.8 Let n be the number of vertices in a directed pseudo-
graph D and let v be the number of edges in a mazimum matching of BG(D).
If v = n, then pce(D) = 1, otherwise pce(D) =n — v. O

The following result by Gutin and Yeo generalizes Proposition 3.11.6(c).

Corollary 3.11.9 [377] A digraph D has a k-path-cycle factor (k > 0) if
and only if V(D) cannot be partitioned into subsets Y, Z, Ry, Ro such that
(Y,R1) =0, (Ry, RAUY) =0, |Y|>|Z|+k and Y is an independent set.

Proof: Assume that k > 1. Let D’ be an auxiliary digraph obtained from D
by adding k new vertices u1, ..., ur together with the arcs {u;,w, wu; : w €
V(D), i=1,2,...,k}. Observe that D has a k-path-cycle factor if and only
if D’ has a cycle factor. By Proposition 3.11.6 (c¢), D’ has a cycle factor if
and only if its vertex set cannot be partitioned into sets Y, Z’, R1, Ry that
satisfy (Y,R1) =0, (R2, R1UY) =0, |Y] > |Z'| and Y is an independent
set. Note that if Y, Z’, R1, Ry exist in D’ then the vertices uq,...,u; are in
Z'. Let Z = Z' — {uy,...,ur}. Clearly, the subsets Y, Z, Ry, Ry satisfy
(Y,R1) =0, (R, B1UY) =0,|Y]| > |Z|+k and Y is an independent set. O

The proof above and Corollary 3.11.7 easily implies the first part of the
following proposition.

Proposition 3.11.10 Let D be a directed pseudograph and let k be a fixed
non-negative integer. Then

(a) In time O(\/nm) we can check whether D has a k-path-cycle-factor and
construct one (if it exists).

(b) Given a k-path-cycle factor in D, in time O(m), we can check whether
D has a (k — 1)-path-cycle factor and construct one (if it exists).

Proof: Exercise 3.69. O

3.11.5 Cycle Subdigraphs Covering Specified Vertices

In the solution of several algorithmic problems, such as finding the longest
cycle in an extended semicomplete digraph or a semicomplete bipartite di-
graph, it is an important subproblem to find a cycle subdigraph which covers
as many vertices as possible. Below we show how to solve this problem using
a reduction to the assignment problem, due to Alon (see [363]).
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Theorem 3.11.11 There is an O(n®) algorithm which finds, for any given
digraph D, a cycle subdigraph covering the mazximum number of vertices in

D.

Proof: Let D be a digraph and let D’ be the directed pseudograph one
obtains by adding a loop at every vertex. Let B be the weighted bipartite
graph one obtains from the bipartite representation BG(D’) of D’ by adding
the following weights to the edges: the weight of an edge z'y” of B equals 1 if
x # y and equals 2 if © = y. It is easy to see (Exercise 3.63) that, by solving
the assignment problem for B (in time O(n?), see Section 3.12) and then
removing all the edges with weight 2 from the solution, we obtain a set of
edges of B corresponding to some 1-regular subdigraph F' of D of maximum
order. a

Jackson and Ordaz [452] proved the following sufficient condition for the
existence of a cycle factor in a digraph. (For undirected graphs the analogous
condition implies that the graph has a hamiltonian cycle [161].)

Proposition 3.11.12 [/52] If D is a k-strong digraph such that the mazi-
mum size of an independent set in D is at most k, then D has a spanning
cycle subdigraph.

We now prove a generalization of this result and discuss its relevance to
the problem of finding a cycle through a specified set of vertices in certain
generalizations of tournaments. Deciding whether there is a cycle containing
all vertices from a prescribed set X in an arbitrary digraph is an N"P-complete
problem already when |X| = 2 (see Theorems 9.2.3 and 9.2.6). Proposition
3.11.12 corresponds to the special case X = V in the following theorem, due
to Bang-Jensen, Gutin and Yeo.

Theorem 3.11.13 [70] Let D = (V,A) be a k-strong digraph and let
X C V(D) be such that a(D(X)) < k. Then D has a cycle subdigraph (not

necessarily spanning) covering X .

Proof: This can be proved directly from Theorem 3.8.2 (Exercise 3.65). We
give a simple proof based on Proposition 3.11.6 which also holds for directed
pseudographs (see Exercise 3.58).

Let D and X be as defined in the theorem. Form the directed pseudograph
D’ from D by adding a loop at each vertex not in X. Then D has a cycle
subdigraph covering X if and only if D’ has a cycle factor, because the new
arcs cannot contribute to cycles which cover vertices from X. Suppose D’ has
no cycle factor. Then by Proposition 3.11.6 (c) we can partition the vertices
of V into sets Ry, R2,Y,Z so that (Y,Ry) =0, (R, RyUY) =10, |Y]| > |Z]
and Y is an independent set. Note that no vertex with a loop can be in an
independent set (see Section 1.6 for the definition of an independent set of
vertices). Thus we have Y C X. It follows from the description of the arcs
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between the sets above that there is no path from Y to Ry in D — Z. Thus we
must have |Z| > k since D is k-strong. But now we have the contradiction

k<|Z| < Y| <a(D(X)) <k

Thus D’ has a cycle factor, implying that D has a cycle subdigraph covering
X. O

Theorem 3.11.13 shows that the obvious necessary condition for the exis-
tence of a cycle covering a specified subset X, namely that there exists some
collection of disjoint cycles covering X is satisfied in many cases. Indeed, if D
is k-strong, then we may take X arbitrarily large, provided its independence
number stays below k + 1.

We point out that, when |X| = k and D is k-strong, then the existence
of a cycle subdigraph covering X can also be proved easily using Menger’s
theorem (Theorem 7.3.1). See Exercise 7.17.

The proof above combined with that of Theorem 3.11.11 immediately
implies the following result.

Theorem 3.11.14 There exists an O(n®) algorithm for checking whether
a giwen digraph D = (V; A) with a prescribed subset X C V has a cycle
subdigraph covering X . a

3.12 The Assignment Problem and the Transportation
Problem

In this section we study two special cases of the minimum cost flow problem,
both of which occur frequently in practical applications. Being special cases
of the minimum cost flow problem, they can be solved using any of the algo-
rithms described in Section 3.10. The purpose of this section is to illustrate a
general approach, the primal dual algorithm, for solving linear programming
problems while using the transportation problem as an example. In order to
read parts of this section the reader is supposed to have some basic knowledge
of linear programming and the duality theorem for linear programming (see
e.g. the book [600] by Papadimitriou and Steiglitz).

In the assignment problem, the input consists of a set of persons
Py, Py, ..., P,, aset of jobs Jy, Ja,...,J, and an n x n matrix M = [M;]
whose entries are non-negative integers. Here M;; is a measure for the skill
of person P; in performing job J; (the lower the number the better P; per-
forms job J;). The goal is to find an assignment 7 of persons to jobs so
that each person gets exactly one job and the sum Z?:l Mr(;y is mini-
mized. Note that it is easy to formulate the weighted bipartite matching
problem (given a complete'? undirected bipartite graph K, , with weights

12 Assuming that the graph is complete is no restriction since we can always replace
non-edges by edges of weight co.
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on its edges, find a perfect matching of minimum total weight) as an instance
of the assignment problem. On the other hand, it is also easy to see that,
given any instance of the assignment problem, we may form a complete bipar-
tite graph B = (U,V; E) where U = {Py, Pa,..., P, }, V. ={J1, Jo, ..., Ju}
and E contains the edge F;J; with the weight M;; for each i = 1,2,...,m,
j=1,2,...,n. This shows that the assignment problem is equivalent to the
weighted bipartite matching problem.

It is also easy to see from this observation that the assignment problem is
a (very) special case of the minimum cost flow problem. In fact, if we think
of M;; as a cost, then what we are secking is a flow of minimum cost so that
the balance vector is one for each P;, i = 1,2,...,m and the balance vector
is minus one for each Jj;, j =1,2,...,n.

In the transportation problem we are given a set of production plants
S1,89,...,5, which produce a certain product to be shipped to a set of
retailers Ty, T, ..., T,,. For each pair (.5;, T;) there is a real-valued cost ¢;; of
transporting one unit of the product from S; to 7. Each plant produces a;,
i=1,2,...,m, units per time unit and each retailer needs b;, j =1,2,...,n,
units of the product per time unit. We assume below that >/ a; = 37, b,
(this is no restriction of the model as shown in Exercise 3.71). The goal is to
find a transportation schedule for the whole production (i.e. how many units
to send from S; to Tj fori =1,2,...,m, j =1,2,...,n) in order to minimize
the total transportation cost.

Again the transportation problem is easily seen to be a special case of the
minimum cost flow problem. Consider a bipartite network A/ with bipartition
classes S = {S51,59,...,5n} and T = {T1,T3,...,T,} and all possible arcs
from S to T" where the capacity of the arc S;7T}; is co and the cost of sending
one unit of flow along ST} is ¢;;. Now it is easy to see that an optimal trans-
portation schedule corresponds to a minimum cost flow in A/ with respect to
the balance vectors

b(S;) =a;,i=1,2,...,m, and b(Tj) = —b;,j =1,2,...,n.

The fact that both the assignment problem and the transportation prob-
lem are special cases of the minimum cost flow problem allows one to use
any algorithm for finding a minimum cost flow to solve these problems. Be-
low we are going to describe how to obtain more efficient algorithms for the
transportation problem and the assignment problem by using the so-called
primal-dual algorithm approach to linear programming problems. First we
formulate the transportation problem as a linear programming problem.

m n
min E E CijLij

i=1 j=1

st Y mij=a;, i=1,2,...,m (3.26)
j=1
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m
Zl‘ij:bj ,j:1,2,...,n
i=1

x5 > 0 for all ¢, 7.

The linear programming dual of the transportation problem is

m n
max E o;a; + E ﬁjbj
i=1 j=1

st. o+ 05 <c¢y foralli,j (3.27)
o, 3; unrestricted for all ¢, j.

Here the dual variables o, ..., a,, correspond to the first set of equalities
and the dual variables 31, ..., 3, correspond to the second set of equalities
in the transportation problem.

Assume that we are given a feasible solution ay, ..., @y, 81, - .., By to the
dual (3.27) and define a set ZJ of indices by ZJ = {(4,7) : & + 8; = ¢}
Suppose that z is a feasible solution to the transportation problem and that
x;; = 0 for all (¢, ) € ZJ. Then we have

m n
> D> = Y ey

i=1 =1 (i4)€TT
= > (ei+Bjay
(4,9)€TT
=2l > w)+d B D ay)
=1 {ji(ig)eTT}) =L {i)e1T)

n

= Zaiai + Zﬂjbj.
=1 7

1

Combining this with the weak duality theorem for linear programming!3
shows that x is an optimal solution to the transportation problem.

In order to study how to use this observation algorithmically, we define the
restricted primal problem with respect to the given dual solution («, 3):

13 When the primal is a minimization problem, then the value of the dual objective
function is at most the value of the primal objective function for any pair of
feasible solutions to the dual and the primal.
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m+n

min E T
i=1

n
s.t. E azij+ri:ai, 1:1,2,...,m
Jj=1

inj+rm+j: i, J=12,...,n (3.28)
=1

zi; >0 for all (i,7) € ZJ

ri=0, 1=1,2,.... m+n.

The variables ry, 79, ..., n4+yn are usually called slack variables. They
ensure that (3.28) always has a feasible solution. Furthermore, the optimum
in (3.28) is zero if and only if (3.26) has a feasible solution. The dual of (3.28),
called the dual of the restricted primal problem, is as follows:

m n

max E o;a; + ﬂjbj
i=1 j=1

st. a;+08; <0 forall (4,5) € ZT (3.29)
a;,3; <1 foralli,j.

Let x, 7 be an optimal solution to the restricted primal problem (that is,
one that minimizes Z:’Qn ;). Observe that if » = 0, then « is also a feasible
solution to the transportation problem and since z;; = 0 for all (¢,j) ¢ 7.7,
we see from the argument above that x is in fact an optimal solution to the
transportation problem. Furthermore, it follows from (3.28) that minimizing
S is equivalent to the following maximization problem:

i=1
max E Lij

(3,9)€TT

m
s.t. Zwij <a; t=1,2,....m
i=1

injgbj J=12,....n (330)
j=1

Tij > (0 for (’L,j) clg

zi; =0 for (i,7) €27
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This is just a maximum flow problem. Indeed, let N, 5 = (V,A,1 =
0,u) be the network whose vertices are V.= X UY U {s,t}, where X =

{s1,82,...,8m} and Y = {t1,t2,...,t,} and whose arcs are A = {ss; : i =
1,2,....myU{tjt: 5 =1,2,....,n}U{s;t; : (4,j) € ZJ}. The capacity of the
arc ss; is a;, 1 = 1,2, ..., m, the capacity of the arc ¢;tis b;, 7 = 1,2,...,n and

the capacity of each arc of the form s;t; is co. We call NV, ) the admissible
network with respect to (a,3). It is not difficult to show that there is
a 1-1 correspondence between maximum (s,t)-flows in N, gy and optimal
solutions to (3.30).

What do we do if the value of the maximum (s, t)-flow in NV, g) is strictly
smaller than Y | a; (recall that this is equivalent to saying that the optimum
value in (3.28) is strictly greater than zero)? In this case x, restricted to the
arcs {s;t; : (¢,5) € ZJ}, is not a feasible solution to the transportation
problem. However, this is where the main step in the primal-dual algorithm
comes into play. We now show that in this case it is always possible to modify
the current dual solution («, 3) to a new feasible dual solution (¢, #’) in such
a way that the value of a maximum (s,t)-flow in the network N/ g is at
least as large as the corresponding value in N, g). Furthermore, if it is the
same, then after a finite number of repetitions of dual solution changes, the
value of a maximum flow in the current admissible network will increase.

Let  be a maximum flow in N, g and suppose that |z| < >, a;.
Let S be the set of vertices that are reachable from s in N, gy(z). Let I =
{1,2,...,m}, J={1,2,...,n} and define I*, J* by

I"'={iel:s;eS}; J'={jeJ:t;eS}.

As we saw in the proof of Theorem 3.5.3, (S, S) is a minimum (s, #)-cut
in J\/(a’ 3)- In particular, since all arcs of the form s;t; have capacity oo, there
is no pair (4,j) € ZJ for which i € I* and j € J — J* (compare this with the
proof of Theorem 3.11.2). Thus, arguing as we did in the proof of Theorem
3.11.2 and using Theorem 3.5.3 we obtain

2l = Y ai+ > b (3.31)
icI—I* JEJT*

Going back to the problem (3.30) and using the fact that |z| is exactly
the value of an optimal solution to this problem, we see from (3.31) that the
optimal solution for the current problem (3.28) is given by

n+m

min Z r; = iai +ibj — 2|
i=1 i=1 j=1
=Zai+2bj—2( Z a; + Z bj)
i=1 j=1

i€I—TI* jeJ*
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S ITED ST HUED 3
iel* iel—I* jeJ—J* jeJ*

This implies that the following feasible solution (&, () is optimal for (3.29):

Ql

*_{1 if i e I*
-1 ifiel-1TI*
(3.32)
*_{—1 if j € J*
1 ifjeJ—J

Let
—a; — f

€= min{c”'d_ T () ¢ 1T and o+ B; >0 (3.33)
i j

_ min{w:iel*,jebf—(}*},

and define (a*, 3*) as follows:

« ) a;t€ ifiel*
YU T \ai—e ificl -1
(3.34)
gt = Bj—eifjeJ*
I\ Bijteifjed—J"

It follows easily from the fact that |z| < 377 a; = Y77, by that I* # 0
and J — J* # (). Furthermore, since there is currently no arc s;t; with (i, j) ¢
ZJ, we have ¢;; —a; — ; > 0 for all such pairs (7, j). This shows that € exists
and is strictly greater than zero.

Lemma 3.12.1 Let o, 3,a™*, 3" be as above. Then the following holds:

(a) (a*,3%) is a feasible solution to the dual (3.27) of the transportation
problem.

(b) For every arc sit; in Niq gy such that x is non-zero the arc s;t; is also
an arc of Nia~ g+

(c) The network N« g=y contains at least one arc s;t; for which i € I* and
jedJ—J*%

(d) The value of a mazimum (s,t)-flow in N~ g-) is at least as large as the
value of the current mazimum flow x in N4 g).
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Proof: Exercise 3.72. O

Putting the observations we made above together, we obtain the following
algorithm for the transportation problem.

The primal-dual algorithm for the transportation problem
Input: An instance of the transportation problem.
Output: An optimal transportation schedule'4.

1. Initialize the dual variables as follows:

For i:=1to m let a; :==min{c;; : j =1,2,...,m};

For j:=1tonlet 8, :=min{c;; —a; :i=1,2,...,m};
Construct the admissible network N, g);

Find a maximum flow z in M, g;

If |z] = Y%, a; then return z;

Update the dual variables according to (3.33) and (3.34);
Construct the new admissible network and go to Step 3.

O O W

Theorem 3.12.2 The primal-dual algorithm will find an optimum solution
for any given transportation problem with m plants and n retailers in time
O(M(n+m)?), where M = 37" a; = Y7 b;.

Proof: We give a brief sketch which gives a complexity of O(M (n + m)?).
In Exercise 3.74 the reader is asked to show how to implement the algorithm
so that one obtains the desired complexity.

It is easy to check that the dual variables which are calculated in Step
1 form a feasible solution and that the admissible network will contain at
least one arc from X to Y. Forming NV, g can be done in time O((n +m)?)
and we can find the first maximum flow in time O((n + m)?M) using the
Ford-Fulkerson algorithm (see Theorem 3.5.4).

We can easily construct N, g+ from N, g) in time O((n + m)?). By
Lemma 3.12.1(b) we do not have to start all over when we wish to calculate
a maximum flow in the updated admissible network N(,- g+). In fact, the
current flow z (interpreted in the obvious way) is a feasible (s,t)-flow in
/\/'(a*ﬂ*). Thus starting from z and searching for an augmenting path in the
residual network, we can either find an augmenting path or detect that the
current z is still maximum in time O((n + m)?). This and the fact that we
always augment by an integer amount of flow implies that, in order to prove
the complexity O(M (n + m)3) for the algorithm, it suffices to show that the
number of changes in the dual variables between two consecutive increases
in the value of the maximum flow in the admissible network is at most m.

Suppose that the current flow x has value less than 2121 a; and let us
estimate the number of times we can change the dual variables without en-
abling an increase in the flow value. Let (a, 8) be the actual dual variables,
let S be the set of vertices that are reachable from s in N, g)(x) and define

' In the form of an optimal flow, from which the schedule can be read out easily.



154 3. Flows in Networks

S* similarly for N4+ g+). By Lemma 3.12.1(b), no arc which carries flow dis-
appears when we change from ./\/'(a,ﬁ) to N(a= g+)- It is easy to show that this
implies that S C S*. By Lemma 3.12.1(c) we add at least one new arc s;t;
such that s; € S and t; € S (in N(a,p) there is no such arc since they all have
infinite capacity) and hence we obtain that |[S*NY| > |SNY. Since [Y|=m
it follows that after at most m changes of dual variables we can increase the
flow in the current admissible network. ad

For the assignment problem we have n = m and M = n, implying that
the following holds (see also Exercise 3.76).

Theorem 3.12.3 The assignment problem on n persons and n jobs is solv-
able in time O(n?). O

For the assignment problem the O(n?) implementation of the primal-dual
algorithm above is due to Kuhn [505] and is also known under the name the
Hungarian method. The interested reader can find more details on the
implementation of the primal-dual algorithm for the transportation and the
assignment problems in e.g. the book [578] by Murty.

In practice it is not necessary to work explicitly on the network /\/(aﬂ).
Suppose we keep a table containing the following information: the cost ma-
trix, the supplies and demands for the actual instance of the transportation
problem and the actual values of the dual variables («, 3). These can all be
kept compactly as shown below.

[e3 a
2 6
5 6 5 2) 8 4
10 6
12,1011 11| /11|12
3 4
3 4 5/5 4 3
1| 10
6 8|10 1 4 3
B 0 0 1 0 1] 0
b 5 4 3 4 5| 5

The cost matrix can be found in the upper left part of the diagram. Each
cell corresponding to an entry in the matrix is divided into an upper and a
lower part. In the lower part we have specified the cost ¢;; of sending one unit
from plant ¢ to retailer j. No numbers are specified in the upper halves of each
cell at this point (see below). The values of the supplies and demands are
specified as the vectors a (in the rightmost column) and b (in the bottom row
of the diagram). There is also a column which specifies the initial value of the
a vector and a row specifying the initial value of the § vector. These have
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been calculated according to Step 1 of the primal-dual algorithm. Finally,
shaded cells indicate the set Z.7.

Equipped with such a diagram we may first find a feasible flow x which
may or may not be maximum in the current admissible network, e.g. by a
greedy approach. The search for a new augmenting path with respect to x can
also be modeled by adding a small amount of information to the diagram.
Namely, we show labels which indicate how a search might progress. We
start by labelling those rows i < m for which b,(i) < a; by ‘s, +’. Then we
search for an augmenting (s,t)-path as follows (compare this with the proof
of Theorem 3.5.4):

If a row i’ is labelled then every column j’ for which the cell i'j" is
admissible (the corresponding arc is an arc of the admissible network)
may be labelled (capacity is oo here). We label such a column by ‘i, +’.
If a column j is already labelled and z;; > 0, then we may label the row
1 by ‘5,—".

If at some point we label a column j for which b,(j) < b; then we have
a breakthrough: an augmenting path corresponding to the labels we can
trace backwards from j has been found. In this case we augment the flow
as much as possible, delete all labels and start the labelling process again.
If no more rows or columns can be labelled, the process stops.

It is easy to see that the description above is merely a specification of the
Ford-Fulkerson algorithm on the residual network with respect to  and the
current admissible network.

When a maximum flow in J\f(m 3) has been found and it has a value less
than >, a;, the primal-dual algorithm updates the dual variables. Given
the labels above we can easily identify the sets I*, J* as the set of labeled
rows and columns and calculate the new dual variables (a*,3*) according
to (3.34). Note that in order to avoid fractional values of o*,3* it is more
convenient to use the following choice for the new dual variables a*, 8* (here
e is as defined in (3.33)). In Exercise 3.77 the reader is asked to show that
this choice for o*, §* still gives a feasible solution and one which has a higher
value for the objective function in (3.27).

«  Joi+2e itiel”
R P ificl—I*
(3.35)

g B ifjer
P78 if jeJ—J

Below we show a diagram representation of the algorithm on the example
above, starting from a maximum flow in the network ./\/'(%5). Recall that
shaded cells indicate the arcs of the current admissible network.
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1| 10| s,H

1,+

No augmenting path found so we make a dual change:

€1 = min{5-2-0,6-2-0,5-2-1,8-2-1,4-2-0} = 2
¢4 = min{6-1-0,8-1-0,10-1-1,4-1-1,3-1-0} = 2

2¢ = min {e1,€e4} = 2.

The new diagram, with updated dual variables and admissible arcs
indicated by shaded cells, together with the new labelling step is
shown below:

12,1011 11 11 12

3 4 5 5 4 3

6/ 8 10 1| a3 3| 10]s +

gl of of 1] -2| 1| o

b 5 4 3 4 5 5

1,+ 1, + 1,4+

breakthrough

Augment along each of the paths ssit3t and ssitgt by one unit along
each. After this columns 4, 5 and 6 can be labelled ‘4,+’ and now we
can send 5 units along ssstst and 4 units along ssytgt. After these aug-
mentations the next labelling step results in the following labels:
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@ a
4
1 L 4| 6| 4,-
56/ 5]/ 2 8]/ 4
4 2
10| 6| 3,-
12,1011 11 11 12
4 3| 4
sl 4 5/ 5/ 4/ 3
5/ | 4
6/ 8 10 1| al 3| 3| 10] s+

2,4 1,4+ 4,4+ 4,4+ 4.+

No augmenting path found so we make a dual change:

€ = min{5-4-0} =1
€2 = 12-10-0 =2
€4 =6-30=3

2¢ = min {e1, 62,64} = 1.

a  a
4
P ) 5| 6| 4,-
5|76/ 5|/ 2/ 8 4
4 2
11 6
121011 111112
4 3| 4
3|74/ 5/ 5 4/ 3
5/ | 4 4
6/ 8 1001/ 4|/ 3 10]s, +
gl of 1| of -3| of -1
b| 5| a| 3| a| 5| 5

1,4+ 1,4+ 4+ 4+ 4.+

breakthrough

Now we can augment by one unit along the path ssstss1t1t.

o  a
1 1| 3 1 51 6
5 6/ 5]/ 2 8]/ 4
4 2
11| 6
12 10 11 11 11 12
4 3| 4
3|/ 4 5/ 5 4/ 3
1/ |5/ 4 41 10
6|/ 810/ 1| 4l 3
Bl of -1 of -3| of -1
b| 5| a| 3| a| 5| 5

157
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A feasible solution to (3.26) has been found. Control for optimality:

m,n

> i =5+5+6+4+40+22+12+1+20+12 = 127
i=1,j+1

> aiai+ ) Bibj =30+66+12+40 —4— 12 — 5 = 127.

i=1 j=1

Above we have illustrated the primal-dual algorithm when applied to the
transportation problem. We would like to stress that this approach is quite
general. It works for any linear programming problem and its dual, provided
that both problems have feasible solutions. We refer the reader to the book by
Papadimitriou and Steiglitz [600] for an excellent account of the primal-dual
algorithm approach.

3.13 Exercises

Unless otherwise stated, all numerical data in the exercises below are integers.

3.1. Find a feasible flow in the network N of Figure 3.21.

Figure 3.21 A network N with balance vector b specified at each vertex. All lower
bounds and costs are zero and capacities are shown on the arcs.

3.2. Suppose the network N' = (V, A,l,u,b,c) has some 2-cycle iji for which
cij # —cji. Show how to transform N into another network N’ without 2-
cycles such that every feasible flow in A/ corresponds to a feasible flow in N’
of the same cost. What is the complexity of this transformation?

3.3. Prove Lemma 3.2.1 (a).
3.4. Prove Lemma 3.2.2.
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3.5. Prove Lemma 3.2.3. In particular, argue why we need to take l;s = M rather
than l;s = 0.

3.6. Prove Lemma 3.2.4.
3.7. (4) Fast decomposition of flows. Prove Lemma 3.3.2.

3.8. Decomposing an eulerian directed multigraph into arc-disjoint cy-
cles. Prove that the arc set of every eulerian directed multigraph can be
decomposed into arc-disjoint cycles. Hint: form a circulation in an appropri-
ate network and apply Theorem 3.3.1.

3.9. Find the residual network corresponding to the network and flow indicated
in Figure 3.22.

(6,7,9)

Figure 3.22 A network with a flow z. The notation for the arcs are (I, z,u).

3.10. Find the balance vector b, for the flow = in Figure 3.22.

3.11. Eliminating lower bounds on arcs in maximum flow problems. Show
how to reduce the maximum (s,t)-flow problem in a network A with some
non-zero lower bounds on the arcs to the maximum (s’,#')-flow problem in a
network A with source s’ and sink ¢’ and all lower bounds equal to zero.

3.12. Let z be a flow in N = (V, A,l = 0,u,c) and let f(W) be a cycle flow of
value § in N'(z). Show that the flow z* = = & f(W) has the same balance
vector as x in A. Show also that the cost of z* is given by ¢Ta + cT f(W).

3.13. Prove that the flow T defined in the proof of Theorem 3.4.3 is a feasible flow
in NV (z).

3.14. Let z be a feasible flow in N' = (V, A, = 0,u, c) and let y be a feasible flow in
N (z). Show that N (z @ y) = N(z)(y), where N(z)(y) denotes the residual
network of N(z) with respect to y. That is, show that the two networks
contain the same arcs and with the same residual capacities.

3.15. An alternative decomposition of a flow. Consider the proof of Theorem
3.3.1 and suppose that, instead of taking p = min{b, (o), —bz(ix),d}, we let
1 = 9. What kind of decomposition into path and cycle flows will we get and
what is the bound on their number?
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3.16.

3.17.

3. Flows in Networks

Structure of minimum (s, t)-cuts. Decide which of the following is true

or false. In each case either give a counter-example or a proof of correctness.

(a) If all arcs have different capacities, then there is a unique minimum
(s, t)-cut.

(b) If we multiply the capacity of each arc by a constant k, then the structure
(as subset of the vertices) of the minimum (s, t)-cuts is unchanged.

(¢) If we add a constant k to the capacity of each arc, then the structure (as
subset of the vertices) of the minimum (s, t)-cuts is unchanged.

(4+) The Ford-Fulkerson algorithm may never terminate if capaci-
ties are real numbers.

Figure 3.23 A bad network for the generic Ford-Fulkerson algorithm. All arcs
except the three in the middle have capacity r + 2. Those in the middle have
capacities 1,7, 7%, where 7 is the golden ratio.

3.18.

3.19.

3.20.

3.21.

Let A be the network in Figure 3.23. Here 7 is the golden ratio, i.e. 7% = 1—r.

Observe that r"*2 =" — "l forn =1,2,....

(a) Show that the value of a maximum flow in A is 1 +r + 7% = 2.

(b) Devise an infinite sequence of augmentations along properly chosen aug-
menting paths in the current residual network so that the flow value will
converge towards 1 + 222 r* = 2. This shows that, when the capaci-
ties are non-rational numbers, the Ford-Fulkerson algorithm may never
terminate. Hint: first augment by one unit and then by 7* units in the
ith augmentation step, ¢ > 2, along an appropriately chosen augmenting
path.

(+) Prove that the Ford-Fulkerson algorithm will always terminate if all
capacities are rational numbers.

Let S be a totally unimodular p X ¢ matrix and [ the p X p identity matrix.
Show that the matrix [S I] is also totally unimodular.

Exact distance labels give a height function for the preflow-push
algorithm. Let A be a network with source s and sink ¢ and let = be a
preflow in N such that there is no (s,t)-path in N'(z). Prove that if we let
h(7) equal the distance from i to ¢ in N'(z) for i € V — s and h(s) = n, then
we obtain a height function.

Bad performance of the preflow-push algorithm. Give an example
which shows that the preflow-push algorithm may use many applications of
push and lift without sending any extra flow into ¢ or back to s.
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3.24.

3.25.
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Eliminating some useless work in the preflow-push algorithm. Let
N = (V, Al =0,u) be a network with source s and sink ¢. Suppose that we
execute the generic preflow-push algorithm on N. Let h be a height function
with respect to N and x. We say that h has a hole at position ¢ + 1, for
some 7 < n at some point in the execution of the algorithm if at that time
the following holds:

[{v: h(v) =4} > 0 for every j < i and

{v:h(v)=1i+1} =0.

Let A’ be defined as follows:

R (v) =h(@)if h(v) € {1,2,...,i}U{n,n+1,...,2n — 1}
K(v)=n+1ifi< h(v) <n.

(a) Prove that b is a height function, that is, (3.14) is satisfied.

(b) Describe how to implement this modification of the height function ef-
ficiently so that it may be used as a subroutine in the preflow-push
algorithm.

(¢) Explain why changing the height function as above when a hole is de-
tected may help speed up the preflow-push algorithm.

Using the height function to detect a minimum cut after termi-
nation of the preflow-push algorithm. Suppose z is a maximum (s, t)-
flow that been found by executing the preflow-push algorithm on a network
N = (V,A,l = 0,u). Describe a method to detect a minimum (s, t)-cut in
O(n) steps using the values of the height function upon termination of the
algorithm.

(+) Re-optimizing a maximum (s,t)-flow. Suppose z is a maximum

flow in a network ' = (V, A,l = 0, u). Show how to re-optimize z (that is, to

change it to a feasible flow of maximum value) in each of the following cases:

(a) Increase the capacity of one arc by k units. Show that the new optimal
solution can be found in time O(km).

(b) Decrease the capacity of one arc by k units. Show that new optimal
solution can be found in time O(km). Hint: use Theorem 3.3.1.

(+) Pulling and pushing flow, the MKM-algorithm. The purpose of
this exercise is to introduce another, very efficient, method for finding a block-
ing (s, t)-flow in a layered network due to Malhotra, Kumar and Maheshwari
[544]. Let L = (V =VoUViU... UV,, A1 = 0,u) be a layered network with
Vo = {s} and Vi, = {t}. Let y be a feasible (s,t)-flow which is not blocking
in L. For each vertex i € V — {s,t} let o, B;, p; be defined as follows:

Q; = Z u]-i — 'yji (336)

Ji€A

Bi = Z Ui — Yij (337)
ijEA

pi = min{a, B:}. (3.38)

Let
ps = Z Usj — Ysj, Pt = Z Ujt — Yjt- (3-39)
sjeEA JteA

Finally let p = min;ev{p;}.
Suppose that p > 0 and let i € V be chosen such that p = p;.
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3.26.

3.

(a)

()

(d)

Flows in Networks

Prove that it is possible to send an additional amount of p units from i
to t (called pushing from ¢ to t) and p units of flow from s to i in £
(called pulling from s to 3). Hint: use that the network is layered.

The observation above leads to the following algorithm A4 for finding a
blocking flow in a layered network. Below the p-values always refer to
the current flow.

The MKM-algorithm

1. Start with the zero flow y = 0 and calculate p; for all i € V. If some
i € V has p; = 0 then go to Step 6;

2. Choose ¢ such that p; = p;

3. Push p units of flow from i to ¢ and pull p units from s to ;

4. Delete all arcs which are saturated with respect to the new flow. If
this results in some vertex of in- or out-degree zero, then also delete
that vertex and all incident arcs. Continue this until no more arcs
can be deleted;

5. Calculate p; for all vertices in the current layered network. If p; > 0
for all vertices then go to Step 2. Otherwise go to Step 6.

6. If ps =0 or p; = 0, then halt;

7. If there is a vertex i with p; = 0, then delete all such vertices and
their incident arcs;

8. Go to Step 5.

Prove that the algorithm above correctly determines a blocking flow in
the input layered network L.

The complexity of A depends on how we perform the different steps,
especially Step 3. Suppose we apply the following rule for performing
Step 3. We always push/pull p units one layer at a time. If j is the
current vertex from (to) which we wish to send flow to (from) the next
(previous) layer, then we always fill an arc with tail (head) j completely
if there is still enough flow left and then continue to fill the next arc as
much as possible.

Argue that, using the rule above, we can implement the algorithm to
run in O(n?) time. Hint: at least one vertex will be deleted between
two consecutive applications of Step 3. Furthermore, one can keep the
p-values effectively updated (explain how).

Illustrate the algorithm on the layered network in Figure 3.10.

Finding maximum (s, t)-flows by scaling. Let A" = (V, A,l =0, u) be a
network with source s and sink ¢ and let U denote the maximum capacity of
an arc in NV.

(a)
(b)

()

(—) Prove that the capacity of a minimum (s, t)-cut is at most U|A|.
Let C be a constant and let x be a feasible (s, t)-flow in /. Show that in
time O(]A|) one can find an augmenting path of capacity at least C, or
detect that no such path exists in A'(x). Hint: consider the subnetwork
of N(z) containing only arcs whose capacity is at least C.

Consider the following algorithm:

Max-flow by scaling
1. U :=max{u;; : ij € A};
2. x5 := 0 for every ij € A;
3. C:=2lle2Ul
4. while C > 1 do
5 while A(z) contains an augmenting path of capacity at least C
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do augment z along P;

6. C:=C/2

7. return x
Prove that the algorithm correctly determines a maximum flow in the
input network N.
Argue that every time Step 4 is performed the residual capacity of every
minimum (s, t)-cut is at most 2C|A].
Argue that the number of augmentations performed in Step 5 is at most
O(]A|) before Step 6 is executed again.
Conclude that Max-flow by scaling can be implemented so that its
complexity becomes O(]A|? log U). Compare this complexity to that of
other flow algorithms in this chapter.

3.27. Show how to find a maximum (s, t)-flow in the network of Figure 3.24 using

(a)
(b)
(¢)
(d)
()

The Ford-Fulkerson method.

Dinic’s algorithm.

The preflow-push algorithm.

The MKM-algorithm described in Exercise 3.25.
The scaling algorithm described in Exercise 3.26.

Figure 3.24 A network with lower bounds and cost equal to zero on all arcs and
capacities as indicated on the arcs.

3.28. (4+) Rounding a real-valued flow. Let N' = (V, A,l,u) be a network
with source s and sink ¢ and all data on the arcs non-negative integers (note
that some of the lower bounds may be non-zero). Suppose z is a real-valued
feasible flow in A such that z;; is a non-integer for at least one arc.

3.29.

3.30.

(a)
(b)
()

Prove that there exists a feasible integer flow z’ in A/ with the property
that |zs; — 2i;] < 1 for every arc ij € A.

Suppose now that |z| is an integer. Prove that there exists an integer
feasible flow z” in A such that |2 = |z|.

Describe algorithms to find the flows z’,z” above. What is the best
complexity you can achieve?

Finding a feasible circulation. Turn the proof of Theorem 3.8.2 into a
polynomial algorithm which either finds a feasible circulation, or a proof that
none exists. What is the complexity of the algorithm?

Residual networks of networks with non-zero lower bounds. Show
how to modify the definition of z & Z in order to obtain an analogue of
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3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3. Flows in Networks

Theorem 3.4.2 for the case of networks where some lower bounds are non-
Zero.

Show that a feasible circulation (if one exists) can always be found by just
one max flow calculation in a suitable network. Hint: transform the network
into an (s,t)-flow network with all lower bounds equal to zero.

(+) Flows with balance vectors within prescribed intervals. Let NV =
(V, A, l,u) be a network where V.= {1,2,...,n} and let a; < b;,i =1,2...,n
be integers. Prove that there exists a flow z in N which satisfies

lij <wzij <wy Vij € A (340)

a; <b (1) <b; VieV (3.41)
if and only if the following three conditions are satisfied:

Z a; <0 (3.42)

> bi>o0 (3.43)
i€V
uw(X,X) > (X, X) + max{a(X), —b(X)} VX CV, (3.44)

where a(X) = ).y ai
Hint: construct a network which has a feasible circulation if and only if (3.40)
and (3.41) holds. Then apply Theorem 3.8.2.

Submodularity of the capacity function for cuts. L(i N =(V, é, lu)
be a network with source s and sink ¢. Prove that, if (S,S) and (T,T) are
(s, t)-cuts, then

w(S,8) +u(T,T) >uw(SNT,SNT)+u(SUT,SUT).
Hint: consider the contribution of each arc in the network to the four cuts.

Show that, if (S,S) and (T,T) are minimum (s,t)-cuts, then so are (S N
T,SNT) and (SUT,SUT). Hint: use Exercise 3.33.

(+) Finding special minimum cuts. Suppose that z is a maximum (s, t)-
flow in a network A" = (V, A,l,u). Let

U = {i: there exists an (s,i)-path in N'(z)},
W ={j: there exists an (j,t)-path in N (z)}.

Prove that (U,U) and (W, W) are minimum (s, t)-cuts. Then prove that for
every minimum (s, t)-cut (S,7) we have U C S and W C T.

(+) Let x be an (s,t)-flow in a network ' = (V, A, [, ). Explain how to find
an augmenting path of maximum capacity in polynomial time. Hint: use a
variation of Dijkstra’s algorithm.

(+) Augmenting along maximum capacity augmenting paths. Show
that, if we always augment along an augmenting path with the maximum
residual capacity, then the Ford-Fulkerson algorithm becomes a polynomial
algorithm (Edmonds and Karp [216]). Hint: show that the number of aug-
mentations is O(mlogU), where U is the maximum capacity of an arc.
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. Converting a maximum preflow to a maximum (s, t)-flow. Let N' =
(V,A,l = 0,u) be a network with source s and sink ¢. A preflow z in NV is
maximum if |b;(¢)| equals the value of a maximum (s, t)-flow in N

(a) Let N =(V,A,l =0,u) be a network with source s and sink ¢ and let y
be a maximum preflow in A. Prove that there exists a maximum (s, t)-
flow x in N with the property that z;; < y;; for every arc ij € A. Hint:
use flow decomposition.

(b) How fast can you convert a maximum preflow to a maximum (s, ¢)-flow?

. (=) Prove Lemma 3.7.1.
. (=) Prove Lemma 3.7.6.

. Show that the complexity of Dinic’s algorithm for unit capacity networks

remains O(n%m) even if we allow the network to have 2-cycles. Hint: prove a
modified version of Lemma 3.7.3 and apply that as we applied Lemma 3.7.3
in the proof of Theorem 3.7.4.

. Elimination of 2-cycles from simple networks. Suppose that N =
(V,A,l = 0,u = 1) is a simple unit capacity network with source s, sink
t and that uvu is a 2-cycle in /. Show that we may always delete one of the
arcs uv or vu without affecting the value of a maximum (s, t)-flow in N.

. Prove Theorem 3.7.7. Hint: see the proof of Theorem 3.7.4.
. Show how to derive Theorem 3.8.4 from Lemma 3.2.2 and Theorem 3.8.2.

Scheduling jobs on identical machines. Let J be a set of jobs which are
to be processed on a set of identical machines (such as processors, airplanes,
trucks etc). Each job is processed by one machine. There is a fixed schedule
for the jobs, specifying that job j € J must start at time s; and finish at time
fj. Furthermore, there is a transition time t;; required to set up a machine
which has just performed job i to perform job j (e.g., jobs could be different
loads for trucks and ¢;; could be time to drive a truck from the position
of load 4 to that of load j). The goal is to find a feasible schedule for the
jobs which requires as few machines as possible. Show how to formulate this
problem as a minimum value (s, t)-flow problem.

(4+) Scheduling supervision of projects. This exercise deals with a prac-
tical problem concerning the assignment of students to various projects in
a course. All projects which are chosen by at least one student are to be
supervised by one or more qualified teachers. Each student is supervised by
one teacher only. There are n students, m different projects and t possible
supervisors for the projects.

Let b;, i = 1,2,...,m, denote the maximum number of students who may
choose the same project (they work alone and hence need individual super-
vision). For each project ¢, ¢ = 1,2,...,m, there is a subset A; C {1,...,t}
of the teachers who are capable of supervising the ith project. Finally each
teacher j, j = 1,2,...,t has an upper limit of k; on the number of students
(s)he can supervise.

Every student must be assigned exactly one project. We also assume that
each student has ranked the projects from 1 to m according to the order of
preference. Namely, the project the student would like best is ranked one.
Denote the rank of project j by student i by r;;.
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3.47.

3.48.

3.49.

3.50.
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The goal is to find an assignment p(1),p(2),...,p(n) of students to projects
(that is student 7 is assigned project p(i)) which respects the demands above
and at the same time minimizes the sum Y 7,0

(a) Show how to formulate the problem as a minimum cost flow problem.

(b) If we only wish to find a feasible assignment (i.e. one that does not violate
the demands above), then which is the fastest algorithm you can device?

(¢) Which minimum cost flow algorithm among those in Section 3.10 will
give the fastest algorithm for the problem when formulated as in question
(a)?

(d) Let p(1),p(2),...,p(n) be an optimal assignment of students to projects.
Suppose that before the actual supervision of the projects starts, some
supervisor j € {1,2,...,t} lowers his/her capacity for supervision from
k; to k; < kj.

Describe a fast algorithm which either proves that no feasible assignment
exists or changes the assignment p(1),p(2),...,p(n) to a new optimal
assignment p’(1),p'(2),...,p'(n) with respect to the new restrictions.

(e) Suppose now that the change in capacity only happens after the students
have started working on the projects. The goal now is to find a new
optimal and feasible solution or show that no feasible solution exists,
while at the same time rescheduling as few students as possible to new
projects (we assume that rescheduled students must start all over again).
Explain briefly how to solve this variant of the problem. Hint: devise
some measure of cost for rescheduling a student in a minimum cost flow
model.

(=) Let N = (V, A,1 = 0,u) be a network with source s and sink ¢ and let
N = (V,A',l' =0,v',c") be obtained from N by adding a new arc ts with
uts = o0 and ¢;s = —1 taking uj; = ugy; for all ij € A and ¢j; = 0 for all
ij € A. Prove that there is a 1-1 correspondence between the minimum cost
circulations in N’ and the maximum (s, t)-flows in N.

Let N = (V, A,1 =0, u,b,c) be a network with some arcs of infinite capacity

and some arcs of negative cost.

(i) Show that there exists a finite optimal solution to the minimum cost
flow problem (finding a feasible flow in N of minimum cost) if and only
if A" has no cycle C of negative cost such that all arcs of C have infinite
capacity. Hint: study the difference between an arbitrary feasible solution
and some fixed solution of finite cost.

(ii) Let K be the sum of all finite capacities and those b-values that are pos-
itive. Show that, if there exists a finite optimal solution to the minimum
cost flow problem for N/, then there exists one for which no arc has flow
value more than K. Hint: use flow decomposition.

Eliminating negative cost arcs from minimum cost flow problems.
Suppose N = (V, A,l = 0,u,b,c) contains an arc uv of negative cost, but
no cycle of infinite capacity and negative cost (see Exercise 3.48). Derive a
result similar to Lemma 3.2.1 which can be used to transform N into a new
network N'* in which all costs are non-negative and such that given any
feasible flow 2 in AT we can obtain a feasible flow = in A/ and find the
cost of x efficiently, given the cost of ™. Hint: reverse arcs of negative costs,
negate the costs of such arcs and update balance vectors.

Prove Theorem 3.10.6.
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Try to generalize the statement of Proposition 3.10.7 to the case when the
paths P, P’ do not necessarily have the same end vertices. Hint: consider the
network Ny obtained as in Lemma 3.2.2.

Show by an example that the cycle canceling algorithm may use 2(mUC)
augmentations before arriving at an optimal flow.

(=) Show how to reduce the problem of finding a matching in a bipartite
graph B = (X,Y, FE) which maximizes the number of edges incident vertices
in X to the problem of finding a maximum matching in a bipartite graph.

(4+) Prove that, if D is a k-regular semicomplete digraph on n vertices,
then D contains a spanning tournament 7" which is regular or almost regular
(JA°(T) — 6°(T)| < 1) depending on whether n is odd or even. Observe that
every regular tournament has an odd number of vertices (Bang-Jensen [47]).

(4+) Generalized matchings in undirected graphs. Let G = (V,E)
be an undirected graph. Recall that for any subset S C V we denote by
N¢(S) the set of vertices in V' — S which have at least one edge to S. Prove
that every graph G either has a vertex disjoint collection of edges e, ..., ek
and odd cycles Ci,...,C, covering V, or a set S C V with |Ng(S)| < |9]
and S is independent. Derive an algorithm from your proof which either
finds the desired generalized matching, or an independent subset S such that
|N(S)| < |S|. Hint: use Theorem 3.8.2 on an appropriate network.

Prove the following theorem due to Konig [499]. Every regular bipartite graph
has a perfect matching.

(—) 1-regular digraphs. Prove that, if D is a 1-regular digraph, then D is
precisely a collection of vertex disjoint cycles C4,...,Cy for some k > 1.

Cycle factors of directed pseudographs. Prove that Proposition 3.11.6
also holds for directed pseudographs provided we consider a loop as a cycle.

(+) Calculating the path-cycle covering number of a digraph. Show
how to find in time O(y/nm) the minimum integer k such that a given digraph
D has a path-cycle factor with k paths. Hint: use minimum value flows in an
appropriately constructed simple network.

(+) Path-cycle covering numbers of extensions of digraphs. Let R be
a digraph on r vertices, and let 1 < u1,l2 < ug,...,lr < u, be 2r non-negative
integers. Let I, denote an independent set on p vertices. Show how to find
min{pcc(R[Ip,, -, Ip,]) : I < pi < wiy i =1,..,7} in time O(n?). Hint:
generalize the network you used in Exercise 3.59 (Bang-Jensen and Gutin
[65, 365]).

Let k € Z,. Show that a directed graph D = (V, A) has a k-path-cycle factor
if and only if |{J, .y Nt(v)| > |X| -k and [ Upex N7 ()] > |X| = k.

Show how to decide in time O(y/nm) whether or not a given input digraph
D with special vertices x,y contains a 1-path-cycle factor such that the path
is a path between z and y.

Complete the proof of Theorem 3.11.11.
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3. Flows in Networks

Heaviest cycle subdigraphs in digraphs. Describe an O(n®) algorithm to
find, in a digraph with non-negative weights on the arcs, a cycle subdigraph
of maximum weight. Hint: use the same approach as in the proof of Theorem
3.11.11.

(4+) Prove Theorem 3.11.13 directly from Theorem 3.8.2. Show that your
proof implies the existence of an algorithm, which given a k-strong digraph
D and a subset X C V(D), either finds a collection of disjoint cycles covering
all the vertices of X, or an independent set X’ C X of size more than k.

Find a minimum cost Chinese postman walk in the digraph of Figure 3.25.

Figure 3.25 A digraph with weights on the arcs.

Show how to formulate the following problem as a flow problem. Given
two sequences of non-negative integers a1, az,...,a, and b1, b2, ..., b, decide
whether or not there exists a directed multigraph D = ({v1,v2,...,vn}, A)
such that d},(v;) = a; and d(v;) = b; for each i = 1,2,...,n. Hint: use
Theorem 3.11.5 or the proof idea of this theorem.

Prove Proposition 3.11.8.
Prove Proposition 3.11.10. Hint: use the same network as in Exercise 3.59.

Every regular directed multigraph has a cycle factor. Prove this claim.

Show how to reduce the case when Zzl a; # Z;:I b; to the case when the

equality holds for the transportation problem. Hint: introduce new plants or
retailers.

Prove Lemma 3.12.1.

Prove that Lemma 3.12.1 also holds when we consider the dual variables
a*, 8" which are updated as in (3.35).

(+) Show that by using appropriate data structures and by keeping labels
(used in previous searches for augmenting paths) until a new augmenting path
has been found (implying that the value of the current flow can be increased),
one can implement the primal-dual algorithm for the transportation problem
so that it runs in time O(M(n + m)?).

Solve the following assignment problem using the primal-dual method.
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Show that the buildup algorithm of Section 3.10 can be applied to solve the
assignment problem in time O(n®).

Show that if we update the dual variables according to (3.35) we still obtain
a feasible solution to (3.27) whose objective function value is strictly higher
than that of «, (.

The following table shows an instance of the transportation problem after
some iterations of the primal-dual method outlined in Section 3.12. Complete
the algorithm on this example.

a a
B 3 1 5 4
3 7 3 8 5
2 1
5 3
5 6 12 5 7 11
y 2 2 3
2 8 3 4 8 2
1
7 7
9 6 10 5 10 9
B 0 -2 1 -2 2 0
b 3 3 6 2 1 2

Tree solution to a flow problem. Let N' = (V,A,l = 0,u,b,c) be a
network with n vertices for which there exists a feasible flow and let D =
(V, A) be the underlying digraph of A/. Prove that there exists a feasible flow
z in N such that the number of arcs on which 0 < z;; < w;; is at most n — 1.
We call such a feasible flow a tree solution. Hint: show that, if C' is a cycle
in UG(D) where 0 < x;; < u;; for every arc on the cycle, then we can change
the current flow such that the resulting flow 2’ is either 0 or u;; for at least
one arc ij of C' and no new arc pg with 0 < x;,, < upq is created.

Let N = (V,A,l = 0,u,b,c) be a network with n vertices for which there
exists a feasible flow. Prove that there exists an optimal feasible flow which
is a tree solution.

Vertex potentials and flows. Let N' = (V, A,l = 0,u,b,c) be a network
and z a feasible flow in V. Prove that z is an optimal flow if and only if there
exists a function 7 : V—R such that ¢f; > 0 for every arc ij in N(x). Here
¢y = cij — (i) + w(j) is the reduced cost function and the costs in N (x)
are with respect to ¢™ instead of c. Hint: see Exercises 2.16-2.18.
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3. Flows in Networks

Complementary slackness conditions for optimality of a flow. Let
N = (V, Al =0,u,b,c) be a network and z a feasible flow in N. Prove that
z is an optimal flow if and only if there exists a function 7 : V—R such that
the following holds:

C?j >0 = Tij = 0 (3.45)
C?j <0 = Tij = Uij (346)
0< Tij; < Uij = ng =0. (347)

Here cj; = cij — w(i) + w(j) as above. Hint: use Exercise 3.81.

(+) A primal-dual algorithm for minimum cost flows. Let N/ =

(V,A,l = 0,u,c) be a network with source s and sink ¢ for which the value

of a maximum (s,t)-flow is K > 0. Let z be an optimal (feasible) (s, t)-flow

of value k < K and let 7 : V—R be chosen such that cj; > 0 for every arc
ij in N(x) (see Exercise 3.81). Define Ay as those arcs ij of N (z) for which
we have ¢; = 0 and let Ay be the subnetwork of A'(x) induced by the arcs

Of A().

(a) Show that if y is a feasible (s,t)-flow in Ny of value p then ' =z @ y is
an optimal (s, t)-flow of value k + p in N. Hint: verify that ¢f; > 0 holds
for every arc ij in N (z').

(b) Suppose y is a maximum (s,t)-flow in Ny, but ' = z @ y has value less
than K. Let S denote the set of vertices which are reachable from s in
No(y). Let €, €1, €2 be defined as follows. Here we let ¢; = co if there are
no arcs in the corresponding set, i = 1,2:

e1 = min{cj;|i € S,j € S,¢j; > 0 and x5 < ugj, }
€2 = min{—cfj|i € S,j € S,c}; <0 and z;; > 0}.

Let e = min{e1, e2}. Prove that € < co.

(c) Now define 7’ as follows: 7'(v) := w(v) + € if v € S and 7'(v) := 7w(v)
if v € S. Let A contain those arcs of A/(x') for which we have cfj/ =0
and let S’ denote the set of vertices which are reachable from s in N{.
Show that S is a proper subset of S’ and that cz‘j/ > 0 holds for all arcs
in M(z’). Hint: use Exercise 3.14.

(d) If t € S, then we can change 7’ as above (based on the set S’ rather
than S). Conclude that after at most n — 1 such updates of the vector
7', the current network A/ contains an (s, t)-path.

(e) Use the observations above to design an algorithm that finds a minimum
cost (s,t)-flow of value K in N by solving a sequence of maximum flow
problems. What is the complexity of this algorithm?



4. Classes of Digraphs

In this chapter we introduce several classes of digraphs. We study these,
along with the classes of digraphs defined already in Chapter 1, with respect
to their characterization, recognition and decomposition. We also consider
some basic properties of these classes. Further properties of the classes are
studied in the following chapters of this book.

We start this chapter by introducing Depth-First Search (DFS), an im-
portant technique in algorithms on graphs. This technique is used in this
chapter and some other chapters to design fast algorithms. In particular,
DFS is used in Section 4.2, where we describe a fast algorithm to find an
acyclic ordering in an acyclic digraph. In Section 4.3, we introduce and study
the transitive closure and a transitive reduction of a digraph. We use these
notions in Section 4.7. A linear time algorithm for finding strong components
of a digraph based on DFS is given in Section 4.4.

Several characterizations and a recognition algorithm for line digraphs are
given in Section 4.5. We investigate basic properties of de Bruijn and Kautz
digraphs and their generalizations in Section 4.6. These digraphs are extreme
or almost extreme with respect to their diameter and vertex-strong connectiv-
ity. Series-parallel digraphs are introduced and studied in Section 4.7. These
digraphs are of interest due to various applications such as scheduling. In the
study of series-parallel digraphs we use notions and results of Sections 4.3
and 4.5.

An interesting generalization of transitive digraphs, the class of quasi-
transitive digraphs, is considered in Section 4.8. The path-merging property
of digraphs which is quite important for investigation of some classes of di-
graphs including tournaments is introduced and studied in Section 4.9. Two
classes of path-mergeable digraphs, locally in-semicomplete and locally out-
semicomplete digraphs, both generalizing the class of tournaments, are de-
fined and investigated with respect to their basic properties in Section 4.10.
The intersection of these two classes forms the class of locally semicomplete
digraphs, which are studied in Section 4.11. There we give a very useful clas-
sification of locally semicomplete digraphs, which is applied in several proofs
in other chapters. A characterization of a special subclass of locally semicom-
plete digraphs, called round digraphs, is also proved.
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Three classes of totally decomposable digraphs forming important gener-
alizations of quasi-transitive digraphs as well as some other classes of digraphs
are studied in the above-mentioned sections. We investigate recognition of
these three classes in Section 4.12. Some properties of intersection digraphs
are given in Section 4.13. Planar digraphs are discussed in Section 4.14. The
last section is devoted to an application of digraphs to solving systems of
linear equations.

4.1 Depth-First Search

In this section we will introduce a simple, yet very important, technique in
algorithmic graph theory called depth-first search. While depth-first search
(DFS) has certain similarities with BFS (see Section 2.3.1), DFS and BFS
are quite different procedures, each with its own features.

Let D = (V, A) be a digraph. In DFS, we start from an arbitrary vertex
of D. At every stage of DFS, we visit some vertex x of D. If x has an
unvisited out-neighbour y, we visit the vertex y' . We call the arc zy a tree
arc. If x has no unvisited out-neighbour, we call z explored and return to
the predecessor pred(z) of z (the vertex from which we have moved to x).
If z does not have a predecessor, we find an unvisited vertex to ‘restart’ the
above procedure. If such a vertex does not exist, we stop.

In our formal description of DF'S, each vertex x of D gets two time-stamps:
tvisit(z) once x is visited and texpl(x) once z is declared explored.

DFS
Input: A digraph D = (V, A).
Output: pred(v), tvisit(v) and texpl(v) for every v € V.

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time := 0.
3. For each vertex v € V do: if tvisit(v) = 0 then perform DFS-PROC(v).

DFS-PROC(v):

1. Set time := time + 1, tvisit(v) := time.

2. For each u € N*(v) do: if tvisit(u) = 0 then pred(u) := v and perform
DFS-PROC(u).

3. Set time := time + 1, texpl(v) := time.

Clearly, the main body of the algorithm takes O(n) time. The total time
for executing the different calls of the procedure DFS-PROC is O(m) (as
> wey dT(x) = m by Proposition 1.2.1). As a result, the time complexity of
DFS is O(n + m).

LIf & has more than one unvisited out-neighbour, we choose y as an arbitrary
unvisited out-neighbour.
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Unlike BFS, in the end of DFS, the tree arcs may form a non-connected
spanning subdigraph F' of D (recall that we perform BFS from a prescribed
vertex). The arc set of F' is {(pred(v),v) : v € V, pred(v) # nil}. Since each
component of UG(F) is a tree, F' is a forest. We call F' a DFS forest; a
tree in F' is a DFS tree; the root of a DFS tree is some vertex v used in
Step 3 of the main body of DFS to initiate DFS-PROC. Clearly, the root r
of a DFS tree T is the only vertex of 7" whose in-degree is zero. According to
the above description of DFS every vertex in T' can be reached from r by a
path (hence T is an out-branching rooted at r in the subdigraph induced by
V(T)). We say that a vertex z in T is a descendant of another vertex y in
T (denoted by x > y) if y lies on the (r,x)-path in T. Note that in general
there may be many different DFS forests for a given digraph D.

It is convenient to classify the non-tree arcs of a digraph D = (V, A)
with respect to a given DFS forest of D. If we visit a vertex x and consider
an already visited out-neighbour y of x, then the following possibilities may
occur.

1. The vertex y is explored, i.e., texpl(y) # 0. This means that z and y
belong to different DF'S trees. In this case, the arc xy is a cross arc.

2. The vertex y is not explored. If x > y then zy is a backward arc. If
y = x then xy is a forward arc. If none of the above two variants occurs,
xy is (again) a cross arc.

We illustrate the DFS algorithm and the above classification of arcs in
Figure 4.1. The tree arcs are in bold. The non-tree arcs are labeled B,C or
F depending on whether they are backward, cross, or forward arcs. Every
vertex u is time-stamped by tvisit(u)/texpl(u) if one or both of them have
been changed from the initial value of zero.

Observe that, for every vertex v € V, we have tvisit(v) < texpl(v). There
is no pair u, v of vertices such that tvisit(u) = tvisit(v) or tvisit(u) = texpl(v)
or texpl(u) = texpl(v) due to the fact that before assigning any time to
tvisit(...) or texpl(...) the value of time is increased. We consider some
additional simple properties of DFS. We denote the interval from time ¢ to
time ¢’ > ¢ by [t,t'] and write I C I’ if the interval I is contained in the
interval I'.

Proposition 4.1.1 Let D = (V, A) and let the numbers tvisit(v), texpl(v),
v € V, be calculated using DFS. For every pair of vertices u and v, one of
the assertions below holds:

(1) The intervals [tvisit(u), texpl(u)] and [tvisit(v), texpl(v)] are disjoint;
(2) [tvisit(u), texpl(u)] C [tvisit(v), texpl(v)];
(3) [tvisit(v), texpl(v)] C [tvisit(u), texpl(w)].

Proof: Without loss of generality, we may assume that tvisit(u) < tvisit(v).
If texpl(u) < tvisit(v), then the first assertion is valid. So, assume that
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Figure 4.1 Some steps of DFS on a digraph starting from the vertex v.

texpl(u) > tvisit(v). This means that v was visited when u has been al-
ready visited but u was not explored yet. Thus, there is a directed path from
u to v in the DFS forest, implying that v > u. Since u cannot become ex-
plored when v is still unexplored, texpl(v) < texpl(u). This implies the third
assertion. a

This proposition implies immediately the following.

Corollary 4.1.2 For a pair x,y of distinct vertices of D, we have y > x if
and only if tvisit(z) < tvisit(y) < texpl(y) < texpl(z). O

Proposition 4.1.3 Let F' be a DFS forest of a digraph D = (V, A) and let
x, y be vertices in the same DFS tree T of F. Then y = z if and only if,
at the time tvisit(z), the vertex y can be reached from x along a path all of
whose internal vertices are unvisited.

Proof: Assume that y > x. Let z be an internal vertex of the (z,y)-path in
T. Thus, z > z. By Corollary 4.1.2, tvisit(x) < tvisit(z). Hence, z is unvisited
at time tvisit(z).

Suppose that y is reachable from x along a path P of unvisited vertices
at time tvisit(z), but y % x. We may assume that z = y5 (the predecessor
of y on P) is a descendant of x in T, that is, z > z holds. By Corollary 4.1.2,
texpl(z) < texpl(z). Since y is an out-neighbour of z, y is visited before z is
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explored. Hence, tvisit(y) < texpl(z). Clearly, tvisit(z) < tvisit(y). Therefore,
tvisit(z) < tvisit(y) < texpl(z). By Proposition 4.1.1, it means that the
interval [tvisit(y), texpl(y)] is contained in the interval [tvisit(z),texpl(x)].
By Corollary 4.1.2, we conclude that y > x; a contradiction. a

4.2 Acyclic Orderings of the Vertices in Acyclic
Digraphs

Acyclic digraphs play a very important role in both theory and applications
of digraphs (the reader will see this fact in this and the following chapters
of the book). Some basic properties of acyclic digraphs have been studied
in Section 1.4 where we showed that every acyclic digraph D has an acyclic
ordering of the vertices (Proposition 1.4.3). The purpose of this subsection is
to show how to find an acyclic ordering fast?.

Let D be an acyclic digraph and let vy, vs,...,v, be an ordering of the
vertices in D. We recall that this ordering is acyclic if the existence of an arc
v;v; in D implies ¢ < j. By Proposition 1.4.3 every acyclic digraph has an
acyclic ordering of its vertices. Now we demonstrate that using DFS one can
find an acyclic ordering of the vertices of D in (optimal) linear time.

Below we assume that the input to the DFS algorithm is an acyclic digraph
D = (V, A). In the formal description of DFS let us add the following: i :=
n+ 1 in the line 2 of the main body of DFS and ¢ := i — 1, v; := v in the last
line of DFS-PROC. We obtain the following algorithm which we denote by
DFSA):

DFSA(D)
Input: A digraph D = (V, A).
Output: An acyclic ordering vy, ...,v, of D.

1. For each v € V set pred(v) := nil, tvisit(v) := 0 and texpl(v) := 0.
2. Set time :=0,1:=n+ 1.
3. For each vertex v € V do: if tvisit(v) = 0 then perform DFSA-PROC(v).

DFSA-PROC (v)

1. Set time := time + 1, tvisit(v) := time.

2. For each u € NT(v) do: if tvisit(u) = 0 then pred(u) := v and perform
DFSA-PROC!(u).

3. Set time := time + 1, texpl(v) := time, i ;=1 — 1, v; := v.

2 Notice that in the majority of literature an acyclic ordering is called a topological
sorting. We feel that the name acyclic ordering is more appropriate, since no
topology is involved. Knuth [481] was the first to give a linear time algorithm for
topological sorting.
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Theorem 4.2.1 The algorithm DFSA correctly determines an acyclic order-
ing of any acyclic digraph in time O(n +m).

Proof: Since the algorithm is clearly linear (as DFS is linear), it suffices to
show that the ordering vy, ve, ..., v, is acyclic. Observe that according to our
algorithm

texpl(v;) > texpl(v;) if and only if 7 < j. (4.1)

Assume that D has an arc v,v, such that k& > s. Hence, texpl(vs) > texpl(vg).
The arc vgvs is not a cross arc, because if it were, then by Proposition 4.1.1
and Corollary 4.1.2, the intervals for vy and vs would not intersect, i.e., vy
would be visited and explored before v would be visited; this and (4.1) make
the existence of vivs impossible. The arc v,v; is not a forward arc, because if
it were, texpl(vs) would be smaller than texpl(vy). Therefore, vgvs must be
a backward arc, i.e., vy > vs. Thus, there is a (vs, vg)-path in D. This path
and the arc vpvs form a cycle, a contradiction. a

Figure 4.2 illustrates the result of applying DFSA to an acyclic digraph.
The resulting acyclic ordering is z, w, u,y, x, v.

In Section 4.4 we apply DFSA to an arbitrary not necessarily acyclic

digraph and see that the ordering vy, vs, ..., v, obtained by DFSA is very
useful to determine the strong components of a digraph.

T /a0 *C 2D C 23D
vy C5/6 D w890 C 10D w
Figure 4.2 The result of applying DFSA to an acyclic digraph

4.3 Transitive Digraphs, Transitive Closures and
Reductions

Recall that a digraph D is transitive if, for every pair zy and yz of arcs in D
with z # z, the arc xz is also in D. Transitive digraphs form the underlying
graph-theoretical model in a number of applications. For example, transitive
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oriented graphs correspond very naturally to partial orders (see Section 5.3
for some terminology on partial orders, the correspondence between transitive
oriented graphs and partial orders and some basic results). The aim of this
section is to give a brief overview of some properties of transitive digraphs as
well as transitive closures and reductions of digraphs.

Clearly, a strong digraph D is transitive if and only if D is complete®. We
have the following simple characterization of transitive digraphs; its proof is
left as Exercise 4.2.

Proposition 4.3.1 Let D be a digraph with an acyclic ordering D1, Ds, . . .,
D, of its strong components. The digraph D is transitive if and only if each of
D; is complete, the digraph H obtained from D by contraction of D1, ..., D,
followed by deletion of multiple arcs is a transitive oriented graph, and D =
H[D1,Ds,...,D,], where p=|V(H)|. ad

The transitive closure TC(D) of a digraph D is a digraph with
V(TC(D)) = V(D) and, for distinct vertices u,v, the arc wv € A(TC(D))
if and only if D has a (u,v)-path. Clearly, if D is strong then T'C(D) is
a complete digraph. The uniqueness of the transitive closure of an arbitrary
digraph is obvious. To compute the transitive closure of a digraph one can ob-
viously apply the Floyd-Warshall algorithm in Chapter 2. To obtain a faster
algorithm for the problem one can use the fact discovered by a number of re-
searchers (see, e.g., the paper [238] by Fisher and Meyer, or [286] by Furman)
that the transitive closure problem and the matrix multiplication problem
are closely related: there exists an O(n®)-algorithm, with a > 2, to compute
the transitive closure of a digraph of order n if and only if the product of
two boolean n x n matrices can be computed in O(n®) time. Coppersmith
and Winograd [168] showed that there exists an O(n?376)-algorithm for the
matrix multiplication. Goralcikova and Koubek [333] designed an O(nm.eq)-
algorithm to find the transitive closure of an acyclic digraph D with n vertices
and myeq arcs in the transitive reduction of D (the notion of transitive re-
duction is introduced below). This algorithm was also studied and improved
by Mehlhorn [561] and Simon [672].

An arc wv in a digraph D is redundant if there is a (u,v)-path in D
which does not contain the arc uv. A transitive reduction of a digraph
D is a spanning subdigraph H of D with no redundant arc such that the
transitive closures of D and H coincide. Not every digraph D has a unique
transitive reduction. Indeed, if D has a pair of hamiltonian cycles, then each
of these cycles is a transitive reduction of D. Below we show that a transitive
reduction of an acyclic digraph is unique, i.e., we may speak of the transitive
reduction of an acyclic digraph. The intersection of digraphs D,..., Dy
with the same vertex set V is the digraph H with vertex set V and arc set

3 By the definition of a transitive digraph, a 2-cycle zyz does not force a loop at
x and y.
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A(D1) N...N A(Dyg). Similarly one can define the union of digraphs with
the same vertex sets (see Section 1.3). Let S(D) be the set of all spanning
subdigraphs L of D for which TC(L) = TC(D).

Theorem 4.3.2 [5] For an acyclic digraph D, there exists a unique digraph
D’ with the property that TC(D') = TC(D) and every proper subdigraph
H of D' satisfies TC(H) # TC(D'). The digraph D’ is the intersection of
digraphs in S(D).

The proof of this theorem, which is due to Aho, Garey and Ullman, follows
from Lemmas 4.3.3 and 4.3.4.

Lemma 4.3.3 Let D and H be a pair of acyclic digraphs on the same vertex
set such that TC(D) = TC(H) and A(D) — A(H) # 0. Then, for every
e€ A(D)— A(H), we have TC(D —e) =TC(D).

Proof: Let e = xy € A(D) — A(H). Since e ¢ A(H), H must have an (x, y)-
path passing through some other vertex, say z. Hence, D has an (z, z)-path
P,. and a (z,y)-path P,,. If P,. contains e, then D has a (y, z)-path. The
existence of this path contradicts the existence of P,, and the hypothesis that
D is acyclic. Similarly, one can show that P,, does not contain e. Therefore,
D — e has an (x,y)-path. Hence, TC(D —e) = TC(D). O

Lemma 4.3.4 Let D be an acyclic digraph. Then the set S(D) is closed
under union and intersection.

Proof: Let G, H be a pair of digraphs in S(D). Since TC(G) = TC(H) =
TC(D), GU H is a subdigraph of TC(D). The transitivity of TC' (D) now
implies that TC'(G U H) is a subdigraph of TC'(D). Since G is a subdigraph
of GU H, we have TC(D) (= TC(G)) is a subdigraph of TC(G U H). Thus,
we conclude that TC(GU H) = TC(D) and GU H € §(D).

Now let eq,...,e, be the arcs of G — A(G N H). By repeated application
of Lemma 4.3.3, we obtain

TC(G—e1—e2—...—¢,) =TC(G).

This means that TC(GNH) =TC(G) =TC(D), hence GNH € S(D). O

Aho, Garey and Ullman [5] proved that there exists an O(n®)-algorithm,
with a > 2, to compute the transitive closure of an arbitrary digraph D of
order n if and only if a transitive reduction of D can be constructed in time
O(n®). Therefore, we have

Proposition 4.3.5 For an arbitrary digraph D, the transitive closure and a
transitive reduction can be computed in time O(n*37). ad
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Simon [673] described an O(n+m)-algorithm to find a transitive reduction
of a strong digraph D. The algorithm uses DF'S and two digraph transforma-
tions preserving T'C'(D). This means that to have a linear time algorithm for
finding transitive reductions of digraphs from a certain class D, it suffices to
design a linear time algorithm for the transitive reduction of strong compo-
nent digraphs of digraphs in D. (Recall that the strong component digraph
SC(D) of a digraph D is obtained by contracting every strong component
of D to a vertex followed by deletion of parallel arcs.) Such algorithms are
considered, e.g., in the paper [385] by Habib, Morvan and Rampon.

While Simon’s linear time algorithm in [673] finds a minimal subdigraph
D’ of a strong digraph D such that TC(D’) = TC(D), no polynomial algo-
rithm is known to find a subdigraph D" of a strong digraph D with minimum
number of arcs such that TC(D") = TC(D). This is not surprising due to the
fact that the corresponding optimization problem is ANP-hard. Indeed, the
problem to verify whether a strong digraph D of order n has a subdigraph
D" of size n such that TC(D") = TC(D) is equivalent to the hamiltonian
cycle problem, which is N"P-complete by Theorem 5.0.1.

A subdigraph D” of a digraph D with minimum number of arcs such
that TC(D") = TC(D) is sometimes called a minimum equivalent sub-
digraph of D. By the above discussion, we see that a minimum equivalent
subdigraph of an acyclic digraph is unique and can be found in polynomial
time. This means that the main difficulty of finding a minimum equivalent
subdigraph of an arbitrary digraph D lies in finding such subdigraphs for
the strong components of D. This issue is addressed in Section 6.11 for some
classes of digraphs studied in this chapter. For the classes in Section 6.11,
the minimum equivalent subdigraph problem is polynomial time solvable.

4.4 Strong Digraphs

In many problems on digraphs it suffices to consider the case of strong di-
graphs. For example, if we wish to find a cycle through a given vertex = in a
digraph D, we need only consider the strong component of D containing x.
Furthermore, certain properties, such as being hamiltonian, imply that the
digraph in question must be strong. The aim of this section is to develop a
fast algorithm for finding strong components in a digraph and in particular
to recognize strong digraphs.

Tarjan [688] was the first to obtain an O(n + m)-algorithm to compute
the strong components of a digraph. We start this section by presenting this
algorithm, then we discuss its complexity and prove its correctness. Our pre-
sentation is adapted from the book [169] by Cormen, Leiserson, and Rivest.
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SCA(D)
Input: A digraph D.
Output: The vertex sets of strong components of D.

1. Call DFSA(D) to compute the ‘acyclic’ ordering vy, va, ..., Up.

2. Compute the converse D’ of D.

3. Call DFS(D’), but in the main loop of DFS consider the vertices accord-
ing to the ordering vy, vs, ..., v,. In the process of DFS(D’) output the
vertices of each DFS tree as the vertices of a strong component of D.

Figure 4.3 illustrates the strong component algorithm (SCA). Clearly, the
complexity of SCA is O(n+m). It is more difficult to establish the correctness
of SCA. Several lemmas are needed.

(a) (b)

Figure 4.3 (a) A digraph D; the order of vertices found by DFSA is shown. (b)
The converse D’ of D; the bold arcs are the arcs of a DFS forest for D’.

The proof of our first lemma is simple and left as an exercise, Exercise
4.3.

Lemma 4.4.1 If a pair x,y of vertices belongs to the same strong component
S of a digraph D, then the vertices of every path between x and y are in S.
O

Lemma 4.4.2 In any execution of DFS on a digraph, all vertices of the same
strong component are placed in the same DFS tree.

Proof: Let S be a strong component of a digraph D, let r be the first vertex
of S visited by DFS and let « be another vertex of S. Consider the time
tvisit(r) of DFS. By Lemma 4.4.1, all vertices on an (r,z)-path belong to S
and apart from r are unvisited. Thus, by Proposition 4.1.3, = belongs to the
same DFS tree as r. O

In the rest of this section tvisit(u) and texpl(u) are the time-stamps cal-
culated during the first step of SCA (recall that these depends on the order in
which the DFS routine visits the vertices). The forefather ¢(u) of a vertex
u is the vertex w reachable from u such that texpl(w) is maximum.
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Since u is reachable from itself, we have
texpl(u) < texpl(¢(u)). (4.2)
Clearly, by the definition of forefather
if v is reachable from wu, then texpl(¢(v)) < texpl(¢(u)). (4.3)
The next lemma gives a justification for the term ‘forefather’.

Lemma 4.4.3 In any execution DFS on a digraph D, every vertex u € V(D)
is a descendant of its forefather ¢(u).

Proof: If ¢(u) = u, this lemma is trivially true. Thus, assume that ¢(u) # u
and consider the time tvisit(u) of DFS for D. Look at the status of ¢(u). The
vertex ¢(u) cannot be already explored as that would mean texpl(¢(u)) <
texpl(u), which is impossible. If ¢(u) is already visited but not explored, then,
by Corollary 4.1.2; u is a descendant of ¢(u) and the lemma is proved.

It remains to show that ¢(u) has been indeed visited before time tvisit(u).
Assume it is not true and consider a (u, ¢(u))-path P. If every vertex of P
except for u has not been visited yet (at the time tvisit(u)), then by Propo-
sition 4.1.3 ¢(u) is a descendant of u, i.e. texpl(¢(u)) < texpl(u), which is
impossible. Suppose now that there is a vertex z in P apart from u which
has been visited. Assume that = is the last such vertex in P (going from u
towards ¢(u)). Clearly, « has not been explored yet (as z dominates an unvis-
ited vertex). By Proposition 4.1.3 applied to P[z, ¢(u)], #(u) is a descendant
of z. Thus, texpl(¢(u)) < texpl(x), which contradicts the definition of ¢(u).

Thus, ¢(u) has been indeed visited before time tvisit(u), which completes
the proof of this lemma. a

Lemma 4.4.4 For every application of DFS to a digraph D and for every
u € V(D), the vertices u and ¢(u) belong to the same strong component of
D.

Proof: There is a (u, ¢(u))-path by the definition of forefather. The existence
of a path from ¢(u) to u follows from Lemma 4.4.3. O

Now we show a stronger version of Lemma 4.4.4.

Lemma 4.4.5 For every application of DFS to a digraph D and for every
pair u,v € V(D), the vertices u and v belong to the same strong component

of D if and only if p(u) = ¢(v).

Proof: If v and v belong to the same strong component of D, then every
vertex reachable from one of them is reachable from the other. Hence, ¢(u) =
¢(v). By Lemma 4.4.4, © and v belong to the same strong components as their
forefathers. Thus, ¢(u) = ¢(v) implies that v and v are in the same strong
component of D. a
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Theorem 4.4.6 The algorithm SCA correctly finds the strong components
of a digraph D.

Proof: We prove by induction on the number of DFS trees found in the
execution of DFS on D’ that the vertices of each of these trees induce a
strong component of D. Each step of the inductive argument proves that
the vertices of a DFS tree formed in D’ induce a strong component of D
provided the vertices of each of the previously formed DFS trees induce a
strong component of D. The basis for induction is trivial, since the first tree
obtained has no previous trees, and hence the assumption holds trivially.
Recall that by the description of SCA, in the second application of DFS, we
always start a new DFS tree from the vertex which currently has the highest
value of texpl among vertices not yet in the DFS forest under construction.

Consider a DFS tree T with root r produced in DFS(D’). By the defin-
ition of a forefather ¢(r) = r. Indeed, r is reachable from itself and has the
maximum texpl among the vertices reachable from r. Let S(r) = {v € V(D) :
¢(v) = r}. We now prove that

V(T) = S(r). (4.4)

By Lemmas 4.4.2 and 4.4.5, every vertex in S(r) is in the same DFS tree.
Since r € S(r) and r is the root of T, every vertex in S(r) belongs to T.
To complete the proof of (4.4), it remains to show that, if v € V(T'), then
u € S(r), namely, if texpl(¢(z)) # texpl(r), then x is not placed in T'. Suppose
that texpl(¢(x)) # texpl(r) for some vertex z. By induction hypothesis, we
may assume that texpl(¢(z)) < texpl(r), since otherwise x is placed in the
tree with root ¢(x) # r. If x was placed in T', then r would be reachable from
x. By (4.3) and ¢(r) = r, this would mean texpl(z) > texpl(¢(r)) = texpl(r),
a contradiction. O

4.5 Line Digraphs

For a directed pseudograph D, the line digraph @ = L(D) has vertex set
V(Q) = A(D) and arc set

A(Q) ={ab:a,b € V(Q), the head of a coincides with the tail of b}.

A directed pseudograph H is a line digraph if there is a directed pseudo-
graph D such that H = L(D). See Figure 4.4. Clearly, line digraphs do not
have parallel arcs; moreover, the line digraph L(D) has a loop at a vertex
a € A(D) if and only if a is a loop in D.

The following theorem provides a number of equivalent characterizations
of line digraphs. Of these characterizations, (ii) is due to Harary and Nor-
man [403], (iii) to Heuchenne [425], and (iv) and (v) to Richards [634]; con-
ditions (ii) and (iii) have each been rediscovered several times, see the survey
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Figure 4.4 A digraph H and its line digraph Q = L(H).

[419] by Beineke and Hemminger. The proof presented here is adapted from
[419]. For an n X n-matrix M = [m;], a row ¢ is orthogonal to a row j if
22:1 mrm;j = 0. One can give a similar definition of orthogonal columns.

Theorem 4.5.1 Let D be a directed pseudograph with vertez set {1,2,...,n}
and with no parallel arcs and let M = [my;] be its adjacency matriz (i.e., the
n x n-matriz such that m;; = 1, if ij € A(D), and m;; = 0, otherwise). Then
the following assertions are equivalent:

(i) D is a line digraph;

(#) there exist two partitions {A;}icr and {B;}ier of V(D) such that A(D) =
Uier4; x B;*;

(iii) if vw,vw and uz are arcs of D, then so is vx;

(iv) any two rows of M are either identical or orthogonal;

(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) < (ii), (ii)
= (iii), (iii) = (iv), (iv) < (v), (iv) = (ii).

(i) = (ii). Let D = L(H). For each v; € V(H), let A; and B; be the sets
of in-coming and out-going arcs at v;, respectively. Then the arc set of the
subdigraph of D induced by A; U B; equals A; x B;. If ab € A(D), then there
is an 4 such that a = v;v; and b = v;v;. Hence, ab € A; X B;. The result
follows.

(ii) = (i). Let @ be the directed pseudograph with ordered pairs (A;, B;)
as vertices, and with |A; N B;| arcs from (4, B;) to (4;, B;) for each i and
j (including ¢ = j). Let o;; be a bijection from A; N B; to this set of arcs
(from (4, B;) to (A;, B;)) of Q. Then the function ¢ defined on V(D) by
taking o to be 0;; on A;NB; is a well-defined function of V(D) into V(L(Q)),
since {A; N B;}; jer is a partition of V(D). Moreover, o is a bijection since
every o0;; is a bijection. Furthermore, it is not difficult to see that o is an
isomorphism from D to L(Q) (this is left as Exercise 4.4).

* Recall that X x Y = {(z,9) 1z € X,y € Y}.
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(i) = (iii). If vw, uw and ux are arcs of D, then there exist ¢, j such that
{u,v} C A; and {w,z} C B;. Hence, (v,z) € A; X Bj and vz € D.

(iii) = (iv). Assume that (iv) does no hold. This means that some rows,
say ¢ and j, are neither identical nor orthogonal. Then there exist k, h such
that m;; = mj, = 1 and my;, = 1,m;;, = 0 (or vice versa). Hence, ik, jk,ih
are in A(D) but jh is not. This contradicts (iii).

(iv) & (v). Both (iv) and (v) are equivalent to the statement:

for all 4, 7, h, k, if my, = my, = mjr, = 1, then mj, = 1.

(iv) = (ii). For each ¢ and j with m;; =1, let A;; = {h: my; = 1} and
B;; = {k: m;, = 1}. Then, by (iv), A;; is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas B;; is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
Thus, A'L'j X B'L'j - A(D), and moreover A(D) = U{Aw X Bij LMy = 1} By
the orthogonality condition, A;; and Ay are either equal or disjoint, as are
B;; and Byy,. For zero row vector 4 in M, let A;; be the set of vertices whose
row vector in M is the zero vector, and let B;; = (). Doing the same with the
zero column vectors of M completes the partition as in (ii). O

The characterizations (ii)-(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. This fact is obvious
regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to
construct a very effective polynomial algorithm. We actually design such an
algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam-
ple) just after Proposition 4.5.3. The criterion (iii) also provides the following
characterization of line digraphs in terms of forbidden induced subdigraphs.
Its proof is left as Exercise 4.5.

Corollary 4.5.2 A directed pseudograph D is a line digraph if and only if
D does not contain, as an induced subdigraph, any directed pseudograph that
can be obtained from one of the directed pseudographs in Figure 4.5 (dotted
arcs are missing) by adding zero or more arcs (other than the dotted ones).

Observe that the digraph of order 4 in Figure 4.5 corresponds to the
case of distinct vertices in Part (iii) of Theorem 4.5.1, and the two directed
pseudographs of order 2 correspond to the cases r = u # v = w and u = w #
v = x, respectively.

Clearly, Theorem 4.5.1 implies a set of characterizations of the line di-
graphs of digraphs (without parallel arcs and loops). This can be found in
[419]. Several characterizations of special classes of line digraphs and iterated
line digraphs can be found in surveys by Hemminger and Beineke [419] and
Prisner [614].

Many applications of line digraphs deal with the line digraphs of special
families of digraphs, for example regular digraphs, in general, and complete
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@~

Figure 4.5 Forbidden directed pseudographs.

digraphs, in particular, see e.g., the papers [207] by Du, Lyuu and Hsu and
[236] by Fiol, Yebra and Alegre. In Section 4.7, we need the following charac-
terization, due to Harary and Norman, of the line digraphs of acyclic directed
multigraphs. It is a specialization of Parts (i) and (ii) of Theorem 4.5.1. The
proof is left as (an easy) Exercise 4.6.

Proposition 4.5.3 [403] A digraph D is the line digraph of an acyclic di-
rected multigraph if and only if D is acyclic and there exist two partitions
{Ai}iGI and {Bi}iel Of V(D) such that A(D) = UiGIAi X Bl O

We will now show how Proposition 4.5.3 can be used to recognize very
effectively whether a given acyclic digraph R is the line digraph of another
acyclic directed multigraph H, i.e., R = L(H). The two procedures, which
we construct and illustrate by Figure 4.8 can actually be used to recognize
and represent (that is, to construct H such that R = L(H)) arbitrary line
digraphs (see Theorem 4.5.1(i) and (ii)).

We first use Proposition 4.5.3 to check whether H above exists. The follow-
ing procedure Check-H can be applied. Initially, all arcs and vertices of R are
not marked. At every iteration, we choose an arc uv in R, which is not marked
yet, and mark all vertices in N (u) by ‘B’, all vertices in N~ (v) by ‘A’ and all
arcs in (N~ (v), NT(u))g by ‘C. If (N~ (v), NT(u))r # N~ (v) x N*(u) or if
we mark a certain vertex or arc twice (starting from another arc v'v’) by the
same symbol, then this procedure stops as there is no H such that L(H) = R.
(We call these conditions obstructions.) If this procedure is performed to
the end (i.e. every vertex and arc received a mark), then such H exists. It is
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not difficult to see, using Proposition 4.5.3, that Check-H correctly verifies
whether H exists or not.

To illustrate Check-H, consider the digraph Ry of Figure 4.8(a). Suppose
that we choose the arc ab first. Then ab is marked, at the first iteration,
together with the arcs af and ag. The vertex a receives ‘A’, the vertices
b, f,g get ‘B’. Suppose that fi is chosen at the second iteration. Then the
arcs fh, fi,gh, gt are all marked at this iteration. The vertices f, g receive
‘A’, the vertices h,i ‘B’. Suppose that bc is chosen at the third iteration.
We see that this arc is the only arc marked at this iteration. The vertex b
receives ‘A’, the vertex ¢ ‘B’. Finally, say, ce is chosen. Then both c¢d and ce
are marked. The vertex ¢ gets ‘A’ the vertices d, e receive ‘B’. Thus, all arcs
became marked with no obstruction happened. This means that there exists
a digraph Hy such that Hy = L(Rp).

Suppose now that H does exist. The following procedure Build-H con-
structs such a directed multigraph H. By Proposition 4.5.3, if H exists,
then all arcs of R can be partitioned into arc sets of bipartite tournaments
with partite sets A; and B; and arc sets A; X B;. Let us denote these di-
graphs by T1,...,T). (They can be computed by Check-H if we mark every
(N~ (v), N*(u))g not only by ‘C’ but also by a second mark ‘i’ starting from
1 and increasing by 1 at each iteration of the procedure.) We construct H
as follows. The vertex set of H is {to,t1,...,tk,tx+1}- The arcs of H are
obtained by the following procedure. For each vertex v of R, we append one
arc a, to H according to the rules below:

(a) If dg(v) = 0, then a, := (to,tg+1);

(b) If dh(v) > 0,dg(v) = 0, then a, := (to,t;), where i is the index of T;
such that v € A;;

(c) If df(v) = 0,dp(v) > 0, then a, := (t;,tx41), where j is the index of T}
such that v € By;

(d) If df(v) > 0,dx(v) > 0, then a, := (t;,t;), where i and j are the indices
of T; and T} such that v € A; N B;.

It is straightforward to verify that R = L(H). Note that Build-H always
constructs H with only one vertex of in-degree zero and only one vertex of
out-degree zero.

To illustrate Build-H, consider Ry of Figure 4.8 once again. Earlier we
showed that there exists Hy such that Ryp = L(Hp). Now we will con-
struct Hy. The previous procedure applied to verify the existence of Hy
has implicitly constructed the digraphs T; = ({a, b, f, g}, {ab,af,ag}), To =
({f)ga h? i}’ {fh’ fiagh'a gi})’ T = ({b’ C}, {bc})’ T, = ({C7 d7 6}, {Cd7 ce}).
Thus, Hy has vertices tg,...,t5. Considering the vertices of Ry in the lex-
icographic order, we obtain the following arcs of Hy (in this order):

tot1, t1ts, tata, tats, tals, tito, t1tae, tats, tots.
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The directed multigraph Hy is depicted in Figure 4.8(c). It is easy to check
that RO = L(H())

The iterated line digraphs are defined recursively: L'(D) = L(D),
LKD) = L(L*(D)), k > 1. It is not difficult to prove by induction (Ex-
ercise 4.8) that L¥(D) is isomorphic to the digraph H, whose vertex set
consists of walks of D of length k and a vertex wvovy ... v (which is a walk
in D) dominates the vertex v1vs ... vgvE41 for every viq1 € V(D) such that
vpUgp+1 € A(D). New characterizations of line digraphs and iterated line di-
graphs are given by Liu and West [518].

The following proposition can be proved by induction on k > 1 (Exercise
4.10).

Proposition 4.5.4 Let D be a strong d-reqular digraph (d > 1) of order n
and diameter t. Then L¥(D) is of order d*n and diameter t + k. O

4.6 The de Bruijn and Kautz Digraphs and their
Generalizations

The following problem is of importance in network design. Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree at
most d such that diam(D) is as small as possible and the vertex-strong con-
nectivity (D) is as large as possible. So we have a 2-objective optimization
problem. For such a problem, in general, no solution can maximize/minimize
both objective functions. However, for this specific problem, there are solu-
tions, which (almost) maximize/minimize both objective functions. The aim
of this section is to introduce these solutions, the de Bruijn and Kautz di-
graphs, as well as some of their generalizations. For more information on the
above classes of digraphs, the reader may consult the survey [204] by Du, Cao
and Hsu. For applications of these digraphs in design of parallel architectures
and large packet radio networks, see e.g. the papers [113] by Bermond and
Hell, [114] by Bermond and Peyrat and [649] by Samatan and Pradhan.

Let V' be the set of vectors with ¢ coordinates, ¢ > 2, each taken
from {0,1,...,d — 1}, d > 2. The de Bruijn digraph Dg(d,t) is the di-
rected pseudograph with vertex set V' such that (z1,zo,...,z;) dominates
(y1,Y2,...,y) if and only if zo = y1,23 = yo,...,2 = yi—1. See Figure
4.6 (a). Let Dp(d,1) be the complete digraph of order d with loop at every
vertex.

These directed pseudographs are named after de Bruijn who was the
first to consider them in [185]. Clearly, Dg(d,t) has d' vertices and the
out-pseudodegree and in-pseudodegree of every vertex of Dg(d,t) equal d.
This directed pseudograph has no parallel arcs and contains a loop at every
vertex for which all coordinates are the same. It is natural to call Dg(d,t)
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Figure 4.6 (a) The de Bruijn digraph Dp(2,2); (b) The Kautz digraph D (2, 2).

d-pseudoregular (recall that in the definition of semi-degrees we do not
count loops).

Since Dg(d,t) has loops at some vertices, the vertex-strong connectivity
of Dp(d,t) is at most d — 1 (indeed, the loops can be deleted without the
vertex-strong connectivity being changed). Imase, Soneoka and Okada [444]
proved that Dg(d,t) is (d — 1)-strong, and moreover, for every pair x # y
of vertices there exist d — 1 internally disjoint (x,y)-paths of length at most
t + 1. To prove this result we will use the following two lemmas. The proof
of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 4.11.

Lemma 4.6.1 [236] Fort > 2, Dg(d,t) is the line digraph of Dp(d,t —1).
O

Lemma 4.6.2 Let x,y be distinct vertices of Dg(d,t) such that x—y. Then,
there are d—2 internally disjoint (x,y)-paths different from xy, each of length
at most t + 1.

Proof: Let z = (z1,z9,...,2;) and y = (x2,...,2y:). Consider the
walk Wy, given by Wy, = (21,2, ..., x¢), (z2,..., 21, k), (z3,..., 2, k, 22),. ..,
(k,xay...,2¢), (2, ..., x¢,yt), where k # 1, y;. For each k, every internal ver-
tex of W}, has coordinates forming the same multiset My, = {za,..., 2, k}.
Since for different k, the multisets M}, are different, the walks W}, are inter-
nally disjoint. Each of these walks is of length ¢ + 1. Therefore, by Propo-
sition 1.4.1, Dg(d,t) contains d — 2 internally disjoint (x,y)-paths Py with
A(Py) C A(Wy). Since k # x1,y;, we may form the paths Py such that none
of them coincides with zy. a

Theorem 4.6.3 [{44] For every pair x,y of distinct vertices of Dp(d,t),
there exist d — 1 internally disjoint (x,y)-paths, one of length at most t and
the others of length at most t + 1.
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Proof: By induction on ¢t > 1. Clearly, the claim holds for ¢ = 1 since

Dgp(d,1) contains, as spanning subdigraph, IH(d. For t > 2, by Lemma 4.6.1,
we have that
Dg(d,t) = L(Dg(d,t — 1)). (4.5)

Let 2,y be a pair of distinct vertices in Dg(d,t) and let e, e, be the arcs
of Dp(d,t —1) corresponding to vertices x,y due to (4.5). Let u be the head
of e, and let v be the tail of e,.

If w # v, by the induction hypothesis, Dp(d,t — 1) has d — 1 internally
disjoint (u,v)-paths, one of length at most ¢ — 1 and the others of length at
most ¢. The arcs of these paths together with arcs e, and e, correspond to
d — 1 internally disjoint (z,y)-paths in Dg(d,t), one of length at most ¢ and
the others of length at most ¢ + 1.

If w = v, we have x—y in Dg(d,t — 1). It suffices to apply Lemma 4.6.2
to see that there are d — 1 internally disjoint (z,y)-paths in Dg(d,t), one of
length one and the others of length at most ¢ + 1. a

By this theorem and Corollary 7.3.2, we conclude that x(Dp(d,t)) =
d—1. From Theorem 4.6.3 and Proposition 2.4.3, we obtain immediately the
following simple, yet important property.

Proposition 4.6.4 The de Bruijn digraph Dg(d,t) achieves the minimum
value t of diameter for directed pseudographs of order d* and mazimum out-
degree at most d. a

For ¢ > 2, the Kautz digraph Dg(d,t) is obtained from Dg(d + 1,t)
by deletion of all vertices of the form (z1,s,...,2:) such that x; = z;41

for some i. See Figure 4.6 (b). Define Dg(d, 1) :I?d—&-l- Clearly, Dk (d,t)
has no loops and is a d-regular digraph. Since we have d 4+ 1 choices for the
first coordinate of a vertex in Dg(d,t) and d choices for each of the other
coordinates, the order of Dy (d,t) is (d+1)d'~1 = d* + d'~L. It is easy to see
that Proposition 4.6.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 4.6.1 and 4.6.2. Their
proofs are left as Exercises 4.12 and 4.13.

Lemma 4.6.5 Fort > 2, the Kautz digraph Dk (d,t) is the line digraph of
Dg(d,t —1). O

Lemma 4.6.6 Let xy be an arc in Dk (d,t). There are d — 1 internally dis-
joint (x,y)-paths different from xy, one of length at most t+2 and the others
of length at most t + 1. ad

The following result due to Du, Cao and Hsu [204] shows that the Kautz
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex-
strong connectivity point of view. This theorem can be proved similarly to
Theorem 4.6.3 and is left as Exercise 4.14.
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Theorem 4.6.7 [204] Let x,y be distinct vertices of Di(d,t). Then there
are d internally disjoint (x,y)-paths in D (d,t), one of length at most t, one
of length at most t + 2 and the others of length at most t + 1. a

This theorem implies that Dg (d,t) is d-strong.

The de Bruijn digraphs were generalized independently by Imase and
Itoh [441] and Reddy, Pradhan and Kuhl [624] in the following way. We
can transform every vector (z1,za,...,x:) with coordinates from Z; =
{0,1,...,d — 1} into an integer from Zz = {0,1,...,d" — 1} using the poly-
nomial P(xy,Ta,...,7¢) = x1d' =t + 22d" =2 + ... + x4. It is easy to see that
this polynomial provides a bijection from Z! to Z:. Moreover, for i, j € Zgt,
i—j in Dp(d,t) if and only if j = di + k (mod d*) for some k € Z,.

Let d,n be two natural numbers such that d < n. The generalized de
Bruijn digraph Dg(d,n) is a directed pseudograph with vertex set Z,, and
arc set

{(i,di +k (modn)): i,k e Zy}.

For example, V(D¢ (2,5)) = {0,1,2,3,4} and A(Dg(2,5)) = {(0,0),(0, 1),
(1,2), (1,3), (2.4), (2,0), (3,1), (3,2), (4,3), (4,4)}.

Clearly, Dg(d,n) is d-pseudoregular. It is not difficult to show that
diam(D¢(d,n)) < [log,;n]. By Proposition 2.4.3, a digraph of maximum out-
degree at most d > 2 and order n has a diameter at least |logyn(d —1) +1].
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal
diameter. It was proved, by Imase, Soneoka and Okada [443], that Dg(d,n)
is (d — 1)-strong. It follows from these results that the generalized de Bruijn
digraphs have almost minimum diameter and almost maximum vertex-strong
connectivity.

The Kautz digraphs were generalized by Imase and Itoh [442]. Let n, d be
two natural numbers such that d < n. The Imase-Itoh digraph D;(d,n) is the
digraph with vertex set Z,, such that i—j if and only if j = —d(i+1)+k (mod
n) for some k € Z4. It has been shown (for a brief account, see the paper
[204]) by Du, Cao and Hsu, that D;(d,n) are of (almost) optimal diameter
and vertex-strong connectivity.

Du, Hsu and Hwang [206] suggested a concept of digraphs extending both
generalized the de Bruijn digraphs and the Imase-Ito digraphs. Let d,n be
two natural numbers such that d < n. Given ¢ € Z, — {0} and r € Z,,
consecutive-d digraph D(d, n, q,r) is the directed pseudograph with vertex
set Z, such that ¢—j if and only if j = qi + r + k (mod n) for some k € Z;.
Several results on diameter, vertex- and arc-strong connectivity and other
properties of consecutive-d digraphs are given in [204]. In Section 5.11, we
provide results on hamiltonicity of consecutive-d digraphs.
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4.7 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel
directed multigraphs. Vertex series-parallel digraphs were introduced by
Lawler [510], and Monma and Sidney [568] as a model for scheduling prob-
lems. While vertex series-parallel digraphs continue to play an important role
for the design of efficient algorithms in scheduling and sequencing problems,
they have been extensively studied in their own right as well as in relations
to other optimization problems (cf. the papers [36] by Baffi and Petreschi,
[116] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [633] by Rendl
and [682] by Steiner). Arc series-parallel directed multigraphs were intro-
duced even earlier (than vertex series-parallel digraphs) by Duffin [209] as a
mathematical model of electrical networks.

For an acyclic digraph D, let Fp (Ip) be the set of vertices of D of
out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first
introduce minimal vertex series-parallel (M VSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If D = (V, A),
H = (U,B) is a pair of MVSP digraphs (U NV = (), so are the acyclic
digraphs constructed by each of the following operations (see Figure 4.7):

(a) Parallel composition: P = (VUU, AU B);
(b) Series composition: S = (VUU,AUBU (Fp x Ig)).

It is interesting to note that we can embed every MVSP digraph D into
the Cartesian plane such that if vertices u,v have coordinates (z,,y,) and
(2, Y»), respectively, then there is a (u,v)-path in D if and only if =, < z,
and y, < y,. The proof of this non-difficult fact is given in the paper [726]
by Valdes, Tarjan, and Lawler; see Exercise 4.15. See also Figure 4.9.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if the
transitive reduction of D is an MVSP digraph (see Subsection 4.3 for the
definition of the transitive reduction). See Figure 4.8.

The following class of acyclic directed multigraphs, arc series-parallel
(ASP) directed multigraphs, is related to VSP digraphs. The digraph P,
is an ASP directed multigraph. If Dy, Dy is a pair of ASP directed multi-
graphs with V(D) N V(D3) = (), then so are acyclic directed multigraphs
constructed by each of the following operations (see Figure 4.10):

(a) Two-terminal parallel composition: Choose a vertex u; of out-degree
zero in D; and a vertex v; of in-degree zero in D; for ¢ = 1, 2. Identify u,
with ug and vy with wvo;

(b) Two-terminal series composition: Choose v € Fp, and v € Ip, and
identify u with v.
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=

oh

Figure 4.7 (De)construction of an MVSP digraph Ry by series and parallel
(de)compositions.

We refer the reader to the book [97] by Battista, Eades, Tamassia and
Tollis for several algorithms for drawing graphs nicely, in particular drawing
of ASP digraphs.

The next result shows a relation between the classes of digraphs intro-
duced above.



4.7 Series-Parallel Digraphs 193

(©)

Figure 4.8 Series-parallel directed multigraphs: (a) an MVSP digraph Ry, (b) a
VSP digraph R, (c¢) an AVSP directed multigraph Hp.

x

Figure 4.9 The MVSP digraph Ro of Figure 4.7 embedded into the Cartesian
plane such that for every (u,v)-path in Ry we have z, < z, and y, < y, (and vice
versa).

Theorem 4.7.1 An acyclic directed multigraph D with a unique vertex of
out-degree zero and a unique vertex of in-degree zero is ASP if and only if
L(D) is an MVSP digraph.

Proof: This can be proved easily by induction on |A(D)| using the following
two facts:

(i) L(P,) = Py, which is an MVSP digraph;
(ii) The line digraph of the two-terminal series (parallel) composition of D;
and Dy is the series (parallel) composition of L(D;) and L(Ds). O
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Figure 4.10 (De)construction of an ASP directed multigraph Ho by two-terminal
series and parallel (de)compositions.

It is easy to check that L(Hg) = Ry for directed multigraphs Hy and Ry
depicted in Figure 4.8. The following operations in a directed multigraph D
are called reductions:

(a) Series reduction: Replace a path uvw, where df(v) = dp(v) = 1 by
the arc uw;

(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just
one arc from u to v.

The following proposition due to Duffin (see also the paper [726] by
Valdes, Lawler and Tarjan) gives a characterization of ASP directed multi-
graphs. Its proof is left as Exercise 4.16.

Proposition 4.7.2 [209] A directed multigraph is ASP if and only if it can
be reduced to Ps by a sequence of series and parallel reductions. a

The reader is advised to apply a sequence of series and parallel reductions
to the directed multigraph Hj of Figure 4.8 to obtain a digraph isomorphic to
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B,. JFrom the algorithmic point of view, it is important that every sequence
of series and parallel reductions transforms a directed multigraph to the same
digraph. Indeed, this implies an obvious polynomial algorithm to verify if a
given directed multigraph is ASP. The proof of the following result, due to
Harary, Krarup and Schwenk, is left as Exercise 4.17.

Proposition 4.7.3 [401] For every acyclic directed multigraph D, the result
of application of series and parallel reductions until one can apply such re-
ductions is a unique digraph H. a

In [726], Valdes, Tarjan and Lawler showed how to construct a linear-
time algorithm to recognize ASP directed multigraphs, which is based on
Propositions 4.7.2 and 4.7.3. They also presented a more complicated linear-
time algorithm to recognize VSP digraphs. Since we are limited in space,
we will not discuss the details of the linear-time algorithms. Instead, we
will consider the following simplified polynomial algorithm to recognize VSP
digraphs.

VSP recognition algorithm:
Input: An acyclic digraph D.
Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.

2. Try to compute an acyclic directed multigraph H with |Iy| = |Fu| =1
such that L(H) = R. If there is no such H, then output NO.

3. Verify whether H is an ASP directed multigraph. If it is so, then YES,
otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES,
then, by Theorem 4.7.1, R is MVSP and thus D is VSP. If H is Step 2 is not
found, then, by Theorem 4.7.1, R is not MVSP implying that D is not VSP.
If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed
in polynomial time by Proposition 4.3.5. Step 2 can be implemented using
Procedure Build-H described in the end of Section 4.5. This procedure implies
that if there is an H such that L(H) = R, then there is such an H with
additional property that |Ig| = |Fg| = 1. The procedure is polynomial.
Finally, Step 3 is polynomial by the remark after Proposition 4.7.2.

4.8 Quasi-Transitive Digraphs
Quasi-transitive digraphs were introduced in Section 1.8. The aim of this

section is to derive a recursive characterization of quasi-transitive digraphs
which allows one to show that a number of problems for quasi-transitive
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digraphs including the longest path and cycle problems are polynomial time
solvable (see Theorem 5.10.2). The characterization implies that every quasi-
transitive digraph is totally ¥-decomposable, where ¥ is the union of all
transitive digraphs and all extended semicomplete digraphs. Our presentation
is based on [79].

Proposition 4.8.1 Let D be a quasi-transitive digraph. Suppose that P =
1% ... 2k 18 a minimal (x1,xy)-path. Then the subdigraph induced by V (P)
is a semicomplete digraph and xj—x; for every 2 < i+ 1 < j < k, unless
k =4, in which case the arc between x1 and xx may be absent.

Proof: The cases k = 2,3,4,5 are easily verified. As an example, let us
consider the case k¥ = 5. If x; and x; are adjacent and 2 < i+ 1 < j <5,
then x;—x; since P is minimal. Since D is quasi-transitive, z; and ;42
are adjacent for ¢ = 1,2,3. This and the minimality of P imply that
r3—x1,x4—To and rs—x3. From these arcs and the minimality of P we
conclude that x5—x;. Now the arcs z4z5 and x5x, imply that z4—z;. Sim-
ilarly, x5—x1—x2 implies z5—zo.

The proof for the case k > 6 is by induction on k with the case k = 5 as the
basis. By induction, each of D{{z1,22,...,z5_1}) and D{{zs, 3,...,zx}) is
a semicomplete digraph and x;—z; for any 1 < j —i < k — 2. Hence x3
dominates x; and xj; dominates x3 and the minimality of P implies that xj
dominates 1. O

Corollary 4.8.2 If a quasi-transitive digraph D has an (x,y)-path but x does
not dominate y, then either y—x, or there exist vertices u,v € V(D) —{z, y}
such that r—u—v—y and y—u—v—x.

Proof: This is easy to deduce by considering a minimal (z,y)-path and
applying Proposition 4.8.1. a

Lemma 4.8.3 Suppose that A and B are distinct strong components of a
quasi-transitive digraph D with at least one arc from A to B. Then A—B.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then for every choice of x € A and y € B there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 4.8.2 can hold and hence x—y. a

Lemma 4.8.4 [79] Let D be a strong quasi-transitive digraph on at least two
vertices. Then the following holds:

(a) UG(D) is disconnected;

(b) If S and S’ are two subdigraphs of D such that UG(S) and UG(S’) are
distinct connected components of UG(D), then either S—S’ or S'+—S,
or both S—S’ and S'—S in which case |V (S)| = |V(5')| = 1.
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Proof: The statement (b) can be easily verified from the definition of a
quasi-transitive digraph and the fact that S and S’ are completely adjacent
in D (Exercise 4.18). We prove (a) by induction on |V (D)|. Statement (a) is
trivially true when |V (D)| = 2 or 3. Assume that it holds when |V(D)| < n
where n > 3.

Suppose that there is a vertex z such that D — z is not strong. Then there
is an arc from (to) every terminal (initial) component of D — z to (from)
z. Since D is quasi-transitive, the last fact and Lemma 4.8.3 imply that
X—Y for every initial (terminal) strong component X (Y) of D — z. Similar
arguments show that each strong component of D — z either dominates some
terminal component or is dominated by some initial component of D — z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D — z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected and (a)
follows.

Assume that there is a vertex v such that D — v is strong. Since D is
strong, D contains an arc vw from v to D — v. By induction, UG(D — v) is
not connected. Let connected components S and S’ of UG(D — v) be chosen
such that w € S, S—S5" in D (here we use (b) and the fact that D — v is
strong). Then v is completely adjacent to S" in D (as v—w). Hence UG(S’)
is a connected component of UG (D) and the proof is complete. a

The following theorem completely characterizes quasi-transitive digraphs
in recursive sense (see also Figure 4.11).

Theorem 4.8.5 (Bang-Jensen and Huang) [79] Let D be a digraph
which is quasi-transitive.

(a) If D is not strong, then there exist a transitive oriented graph T with ver-
tices {uy,us,...,us} and strong quasi-transitive digraphs Hy, Ha, ..., H;
such that D = T[Hy,Ho,...,H;], where H; is substituted for u;, i =
1,2,...,t.

(b) If D is strong, then there exists a strong semicomplete digraph S with

vertices {v1,va, ..., vs} and quasi-transitive digraphs Q1,Qa, . .., Qs such
that Q; is either a vertex or is non-strong and D = S[Q1,Qa2,...,Qs],
where Q; is substituted for v;, i =1,2,...,s.

Proof: Suppose that D is not strong and let Hy, Ho, ..., H; be the strong
components of D. According to Lemma 4.8.3, if there is an arc between
H; and Hj, then either H;—H; or Hj—H;. Now if H;—H;— H;, then, by
quasi-transitivity, H;— H}y. So by contracting each H; to a vertex h;, we get
a transitive oriented graph T with vertices hq, ho,...,hs. This shows that
D =T[H, Hs,...,H.

Suppose now that D is strong. Let @Q1,Q2, ..., Qs be the subdigraphs of

D such that each UG(Q;) is a connected component of UG(D). According
to Lemma 4.8.4(a), each @; is either non-strong or just a single vertex. By




198 4. Classes of Digraphs

Figure 4.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs
between different boxed sets indicate that there is a complete domination in the
direction shown.

Lemma 4.8.4(b) we obtain a strong semicomplete digraph S if each Q; is
contracted to a vertex. This shows that D = S[@Q1,Q2,. .., Qs)- a

4.9 The Path-Merging Property and Path-Mergeable
Digraphs

A digraph D is path-mergeable, if for any choice of vertices x,y € V(D)
and any pair of internally disjoint (z, y)-paths P, @, there exists an (x, y)-path
R in D, such that V(R) = V(P)UV(Q). We will see, in several places of this
book, that the notion of a path-mergeable digraph is very useful for design
of algorithms and proofs of theorems. This makes it worth while studying
path-mergeable digraphs. The results presented in this section are adapted
from [50], where the study of path-mergeable digraphs was initiated by Bang-
Jensen.

We prove a characterization of path-mergeable digraphs, which implies
that path-mergeable digraphs can be recognized efficiently.

Theorem 4.9.1 A digraph D is path-mergeable if and only if for every
pair of distinct vertices x,y € V(D) and every pair P = zxy...x.y,
P =2y ...ysy, r,s > 1 of internally disjoint (x,y)-paths in D, either there
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U1 U2 u3 Uq us U6

Figure 4.12 A digraph which is path-mergeable. The fat arcs indicate the path
TUI ULV V2V3U3ULU5V4V5V6U6Y from x to y which is obtained by merging the two
(z, y)-paths zuirususuausuey and xv1v2V3V4V5V6Y.

exists an © € {1,...,r}, such that x;—y1, or there exists a j € {1,...,s},
such that y;—x;.

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s =
1, so suppose that r + s > 3. If there is no arc between {z1,...,z,} and
{y1,...,ys}, then clearly P, P’ cannot be merged into one path. Hence we
may assume without loss of generality that there is an arc z;y; for some
1,7, 1 <i<r1<j<s If 5 =1 then the claim follows. Otherwise apply
induction to the paths Pz, z;|y;, P’ [y1, y;].

The proof of ‘if” is left to the reader. It is similar to the proof of Proposition
4.9.3 below. a

The proof of the following result is left as Exercise 4.23.

Corollary 4.9.2 Path-mergeable digraphs can be recognized in polynomial
time. a

The next result shows that, if a digraph is path-mergeable, then the merg-
ing of paths can always be done in a particularly nice way.

Proposition 4.9.3 Let D be a digraph which is path-mergeable and let P =
xxy ... .2y, PP = ay1...ysy, r,s > 0 be internally disjoint (z,y)-paths in
D. The paths P and P’ can be merged into one (x,y)-path P* such that
vertices from P (respectively, P’) remain in the same order as on that path.
Furthermore the merging can be done in at most 2(r + s) steps.

Proof: We prove the result by induction on r + s. It is obvious if 7 = 0 or
s = 0, so suppose that r,s > 1. By Theorem 4.9.1 there exists an ¢ such that
either x;—vy or y;—x1. By scanning both paths forward one arc at a time, we
can find 7 in at most 2i steps; suppose without loss of generality x;—y;. By
applying the induction hypothesis to the paths P[z;, x|y and z; P’ [y1,ys]y,
we see that we can merge them into a single path @ in the required order-
preserving way in at most 2(r + s —i) steps. The required path P* is obtained
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by concatenating the paths x P[z1, x;] and @, and we have found it in at most
2(r + s) steps, as required. O

4.10 Locally In-Semicomplete and Locally
Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if,
for every vertex x of D, the in-neighbours (out-neighbours) of 2 induce a semi-
complete digraph. Clearly, the converse of a locally in-semicomplete digraph
is a locally out-semicomplete digraph and vice versa. A digraph D is locally
semicomplete if it is both locally in- and locally out-semicomplete. See
Figure 4.13. Clearly every semicomplete digraph is locally semicomplete. A
locally in-semicomplete digraph with no 2-cycle is a locally in-tournament
digraph. Similarly, one can define locally out-tournament digraphs and
locally tournament digraphs. For convenience, we will sometimes re-
fer to locally tournament digraphs as local tournaments and to locally
in-tournament (out-tournament) digraphs as local in-tournaments (local
out-tournaments).

N

(a) (b)

Figure 4.13 (a) A locally out-semicomplete digraph which is not locally in-
semicomplete; (b) A locally semicomplete digraph.

Proposition 4.10.1 by Bang-Jensen shows that locally in-semicomplete
and locally out-semicomplete digraphs form subclasses of the class of path-
mergeable digraphs. In particular, this means that every tournament is path-
mergeable. In many theorems and algorithms on tournaments this property
is of essential use. In some other cases, the very use of this property allows
one to simplify proofs of results on tournaments and their generalizations or
speed up algorithms on those digraphs.

Proposition 4.10.1 [50] Every locally in-semicomplete (out-semicomplete)
digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let P = y1ys . . . y,
Q = 7122 ...z be a pair of internally disjoint (x,y)-paths (i.e., y1 =21 =«
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and y, = 2; = y). We show that there exists an (x, y)-path R in D, such that
V(R) =V (P)UV(Q). Our claim is trivially true when |A(P)|+ |A(Q)] = 3.
Assume now that |A(P)| 4+ |A(Q)| > 4. Since D is out-semicomplete, either
Ya—29 Or zo—yo (or both) and the claim follows from Theorem 4.9.1.

The proposition holds for locally in-semicomplete digraphs as they are
the converses of locally out-semicomplete digraphs. ad

The path-mergeability can be generalized in a natural way as follows. A di-
graph D is in-path-mergeable if, for every vertex y € V(D) and every pair
P, @ of internally disjoint paths with common terminal vertex y, there is a
path R such that V(R) = V(P)UV(Q), the path R terminates at y and starts
at a vertex which is the initial vertex of either P or @ (or, possibly, both).
Observe that, in this definition, the initial vertices of paths P and ) may coin-
cide. Therefore, every in-path-mergeable digraph is path-mergeable. However,
it is easy to see that not every path-mergeable digraph is in-path-mergeable
(see Exercise 4.19). A digraph D is out-path-mergeable if the converse of D
is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)
digraph is locally in-semicomplete (locally out-semicomplete). The converse is
also true (hence this is another way of characterizing locally in-semicomplete
digraphs). The proof of Proposition 4.10.2 is left as Exercise 4.20.

Proposition 4.10.2 Every locally in-semicomplete (out-semicomplete, re-
spectively) digraph is in-path-mergeable (out-path-mergeable, respectively).
O

Some simple, yet very useful, properties of locally in-semicomplete di-
graphs are described in the following results (in [81], by Bang-Jensen, Huang
and Prisner, these results were proved for locally tournament digraphs only,
so the statements below are their slight generalizations first stated by Bang-
Jensen and Gutin [65]). Observe that a locally out-semicomplete digraph,
being the converse of a locally in-semicomplete digraph, has similar proper-
ties (see Exercise 4.26). The claim of Theorem 4.10.4 is illustrated in Figure
4.14.

Lemma 4.10.3 FEvery connected locally in-semicomplete digraph D has an
out-branching.

Proof: By Proposition 1.6.1, it suffices to prove that D has only one ini-
tial strong component. Assume that D has a pair D, Dy of initial strong
components (i.e. no arc enters Dy or Ds). Let y; € V(D;), i = 1,2, and let
P = zqx9 ... 2, be a shortest path between V(D;) and V(D3) in the underly-
ing graph G of D. Since no arc enters Dy or D, there is an index k < s such
that x1xs...x,_1 is a path in D, but zp—x;_1. Since D is in-semicomplete,
the vertices xx_o and x are adjacent. However, this contradicts the fact that
P is a shortest path between V(D;) and V(D3) in G. O
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Theorem 4.10.4 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertex a € A
dominates some vertexr in B, then a—B.
(i1) If D is connected, then SC(D) has an out-branching.

Proof: Let A and B be strong components of D for which there is an arc
(a,b) from A to B. Since B is strong, there is a (b',b)-path in B for every
b € V(B). By the definition of locally in-semicomplete digraphs and the fact
that there is no arc from B to A, we can conclude that a—b’. This proves (i).

Part (ii) follows from the fact that SC(D) is itself a locally in-tournament
digraph and Lemma 4.10.3. a

Figure 4.14 The strong decomposition of a non-strong locally in-semicomplete
digraph. The big circles indicate strong components and a fat arc from a component
A to a component B between two components indicates that there is at least one
vertex a € A such that a— B.

4.11 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [44].
As shown in several places in our book, this class of digraphs has many nice
properties in common with its proper subclass, semicomplete digraphs. The
main aim of this section is to obtain a classification of locally semicomplete
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digraphs first proved by Bang-Jensen, Guo, Gutin and Volkmann [55]. In
the process of deriving this classification, we will show several important
properties of locally semicomplete digraphs. We start our consideration from
round digraphs, a nice special class of locally semicomplete digraphs.

4.11.1 Round Digraphs

A digraph on n vertices is round if we can label its vertices vi,vs,..., v,
so that for each 4, we have N*(v;) = {vig1,...,Vipa+ ()} and N~ (v;) =
{Vica—(v)>--+>vi—1} (all subscripts are taken modulo n). We will refer to
the ordering vy, vs,...,v, as a round labelling of D. See Figure 4.15 for
an example of a round digraph. Observe that every strong round digraph
D is hamiltonian, since vivs...v,v; form a hamiltonian cycle, whenever
v1,V2,...,U, is a round labelling. Round digraphs form a subclass of lo-
cally semicomplete digraphs. We will see below that round digraphs play an
important role in the study of locally semicomplete digraphs.

R
Figure 4.15 A round digraph with a round labelling.

Proposition 4.11.1 [/38] Every round digraph is locally semicomplete.

Proof: Let D be a round digraph and let vy, vs, ..., v, be a round labelling of
D. Consider an arbitrary vertex, say v;. Let x,y be a pair of out-neighbours
of v;. We show that x and y are adjacent. Assume without loss of generality
that v;, z,y appear in that circular order in the round labelling. Since v;—y
and the in-neighbours of y appear consecutively preceding y, we must have
x—y. Thus the out-neighbours of v; are pairwise adjacent. Similarly, we can
show that the in-neighbours of v; are also pairwise adjacent. Therefore, D is
locally semicomplete. d

In the rest of this subsection, we will prove the following characterization
of round digraphs due to Huang [438]. This characterization generalizes the
corresponding characterizations of round local tournaments and tournaments,
due to Bang-Jensen [44] and Alspach and Tabib [22], respectively.
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Figure 4.16 Some forbidden digraphs in Huang’s characterization

An arc zy of a digraph D is ordinary if yx is not in D. A cycle or path
Q of a digraph D is ordinary if all arcs of ) are ordinary.
To prove Theorem 4.11.4 below, we need two lemmas due to Huang [438].

Lemma 4.11.2 Let D be a round digraph then the following is true:

(a) Every induced subdigraph of D is round.

(b) None of the digraphs in Figure 4.16 is an induced subdigraph of D.

(¢) For each x € V(D), the subdigraphs induced by N*(z) — N~ (z) and
N=(z) — N*(x) are transitive tournaments.

Proof: Exercise 4.29. O

Lemma 4.11.3 Let D be a round digraph. Then, for each vertex x of D, the
subdigraph induced by N (x) N N~ (x) contains no ordinary cycle.

Proof: Suppose the subdigraph induced by some N* ()N N~ (z) contains an
ordinary cycle C. Let v1,vs,...,v, be a round labelling of D. Without loss
of generality, assume that = v;. Then C' must contain an arc v;v; such that
vjv; € A(D) and ¢ > j. We have v; € N~ (v;) but v; € N~ (v;), contradicting
the assumption that vy, vs,..., v, is a round labelling of D. a

Theorem 4.11.4 (Huang) [438] A connected locally semicomplete digraph
D is round if and only if the following holds for each vertex x of D:

(a) Nt(z) — N~ (z) and N~ (z) — N (z) induce transitive tournaments and
(b) N*(z) N N~ (x) induces a (semicomplete) subdigraph containing no or-
dinary cycle.

Proof: The necessity follows from Lemmas 4.11.2(c) and 4.11.3. To prove
the sufficiency, we consider two cases.
Case 1: D has an ordinary cycle. We start by proving that D contains an
ordinary Hamilton cycle. Let C' = z1x5 ... 221 be a longest ordinary cycle
in D. Assume that k # n, the number of vertices in D. Since D is connected
there is a vertex v € V(D) — V(C) such that v is adjacent to some vertex of
C.

Suppose that there is an ordinary arc between v and some vertex, say
x1, of C. We may without loss of generality assume that the ordinary arc
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is z1v (indeed, if necessary, we may consider the converse of D instead of
D). The vertices v and x5 are adjacent since they are out-neighbours of z;.
The arc between v and x5 must be ordinary since D does not contain as
an induced subdigraph the digraph depicted in Figure 4.16 (a). Since C'is a
longest ordinary cycle, v cannot dominate x5. Thus, xor—v. Similarly, we can
prove that x;—wv for every i = 3,4,..., k. Hence, N~ (v) — NT(v) contains all
vertices of C, which contradicts the assumption that N~ (v) — Nt (v) induces
a transitive tournament.

Since there is no ordinary arc between v and C, we may assume that vziv
is a 2-cycle of D. Using the fact that D is locally semicomplete, it is easy to
derive that V(C) € N*(v) N N~ (v). This contradicts the assumption that
NT(v) N N~ (v) contains no ordinary cycle.

Thus, we have shown that D contains an ordinary Hamilton cycle. This
implies that NT(x) — N~ (z) # 0 for every x € V(D).

We apply the following algorithm to find a round labelling of D. Start with
an arbitrary vertex, say y;, and, for each i = 1,2,..., let y;4+1 be the vertex
of in-degree zero in the (transitive) tournament induced by N ¥ (y;) — N~ (y;).
Let y1, 92, ...,y be distinct vertices produced by the algorithm such that the
vertex w of in-degree zero in the tournament induced by N*(y,.) — N~ (y;)
is in {y1,92, -, Yr—2}-

We show that w = y;. If w = y; with j > 1, then {y;_1,y,}—v;.
Thus, yj—1 and y, are adjacent by an ordinary arc (since the digraph
in Figure 4.16(b) is forbidden). But either y;_i+—y, or y,—y;_1 contra-
dicts the fact that y; is the vertex of in-degree zero in the tournament in-
duced by N*(y;—1) — N~ (yj—1) or N*(y,.) — N~ (y,). Thus, w = y; and
C’' = y1y2 ... yry1 is an ordinary cycle.

We next show that » = n. Suppose r < n. Then, there is a vertex u,
which is not in C” and is adjacent to some y; of C’. Suppose first that u €
N7T(y;) — N~ (y;). Then, being out-neighbours of y;, the vertices y;1 and
u are adjacent. Since D contains no induced subdigraph isomorphic to the
digraph in Figure 4.16 (a) and y;11 is the vertex of in-degree zero in the
subdigraph induced by N (y;) — N~ (y;), we have u € NV (y;01) — N~ (yi41)-
This implies that w and y; 1o are adjacent. Similarly, we must have u €
Nt (yit2)— N~ (yi+2). Continuing this way, we see that u € N ¥ (yi)— N~ (yx)
for every k = 1,2,...,r. Hence, C’ is contained in the subdigraph induced
by N~ (u) — NT(u), a contradiction.

A similar argument applies for the case v € N~ (y;) — N+ (y;). So, we may
assume that u € N*(y;) NN~ (y;) and there is no ordinary arc between u and
C'. Using the fact that D is locally semicomplete, it is easy to see that C’
is contained in the subdigraph induced by Nt (u) N N~ (u), a contradiction.
Thus, r = n, i.e., the algorithm labels all vertices of D. To complete Case 1,
it suffices to prove that y1,ys, ..., y, is a round labelling. Suppose not. Then,
there are three vertices yq, ¥p, ¥ listed in the circular order in the labelling
such that, without loss of generality, we have
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Ya—Yc and Ya 7L>yb .

Assume that the tree vertices were chosen such that the number of vertices
from ¥, to y. in the circular order is as small as possible. This implies that
¢ =b+ 1. Since y, and y; are both in-neighbours of y., they are adjacent.
Thus, yp—y,. Since we also have y—y. (recall that y. € N*(y5) — N~ (yp)
by the definition of the labelling) and D contains no induced subdigraph
isomorphic to the digraph given in Figure 4.16 (a), ya—yc. S0, y. is not the
vertex of in-degree zero in the tournament induced by N7Vt (yp) — N~ (),
contradicting the choice of y..

Case 2: D contains no ordinary cycle. If D has no ordinary arc, D is
complete. Thus, any labelling of V(D) is round. So assume that D has an
ordinary arc. Since D has an ordinary arc, but has no ordinary cycle, we
claim that there is a vertex z; with

N7 (z1) = Nt(21) =0 and Nt (21) — N~ (21) # 0.

Indeed, let wow; be an ordinary arc in D. We may set z; = ws unless
N~ (wg) — NT(wy) # 0. In the last case there is an ordinary arc whose head
is wo. Let w3ws be such an arc. Again, either we may set z; = ws or there is
an ordinary arc wqws. Since D is finite and contains no ordinary cycle, the
above process cannot repeat vertices and hence terminates at some vertex w;
such that we may set z; = wj.

We apply the following algorithm to find a path in D. Begin with z;
and, for each i« = 1,2,..., let z;41 be the vertex of in-degree zero in the
(transitive) tournament induced by N T (z;) — N~ (2;) unless this set is empty.
Since D has no ordinary cycle, this produces a path P = z125...2 with
N7T(z5) — N~ (z5) = 0. Applying an argument similar to that used above, we
can show that z1, z9, ..., zs is a round labelling of the subdigraph induced by
V(P). Thus, if P contains all vertices of D, then a round labelling of D is
established. So assume that there is a vertex v not in P, which is adjacent
to some vertex of P. It is easy to see that there is no ordinary arc between v
and P. This implies that v € N*(2;) NN~ (z;) for each i =1,2,...,s. In fact,
it is not hard to see that the same is true for every vertex v € V(D) — V(P).
Therefore, if we apply the above algorithm starting from an appropriate (‘z1-
type’) vertex not in P, we obtain a new ordinary path @ and V(Q)NV (P) = 0.
By applying the above algorithm as many times as possible, we obtain a

collection of vertex-disjoint ordinary paths P* = zF28 . . zfnk, k=1,2,...,t.
Let zf‘H, ceey z;‘,‘; L , be the remaining vertices (these form a complete digraph).

It is easy to verify that labelling the vertices according to the ordering

yen, 20t

1 1 1 2 2 2 t+1 _t+1
)22 Y fmyy1

21020y By Bl B2r ey g e A1
results in a round labelling of D. In fact the proof above implies that if

we let D;, ¢ = 1,2,...,t + 1, be the subdigraph induced by the vertices
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10

Figure 4.17 An example of a round digraph containing 2-cycles. Undirected edges
are used to indicate 2-cycles and fat edges between two boxes indicate a complete
connection in both directions between the corresponding vertices.

with superscript ¢ above, then we have D :[H{Hl [D1,Da, ..., Dy, Diyq] (see
Figure 4.17). O

It is left as an exercise to show that this proof implies a polynomial algo-
rithm to decide whether a digraph D is round and to find a round labelling
of D if D is round.

Corollary 4.11.5 (Bang-Jensen) [/4] A connected local tournament D is
round if and only if, for each vertex x of D, N*(z) and N~ (z) induce tran-
sitive tournaments. a

4.11.2 Non-Strong Locally Semicomplete Digraphs

The most basic properties of strong components of a connected non-strong
locally semicomplete digraph are given in the following result, due to Bang-
Jensen.

Theorem 4.11.6 [/4] Let D be a connected locally semicomplete digraph
that is not strong. Then the following holds for D.

(a) If A and B are distinct strong components of D with at least one arc
between them, then either A—B or B—A.

(b) If A and B are strong components of D, such that A—B, then A and B
are semicomplete digraphs.

(¢) The strong components of D can be ordered in a unique way Dy, Da, ...,
D,, such that there are no arcs from D; to D; for j > i, and D; dominates
Diyq fori=1,2,...,p—1.
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Proof: Recall that a locally semicomplete digraph is a locally in-semicomplete
digraph as well as a locally out-semicomplete digraph. Part (a) of this theo-
rem follows immediately from Part (i) of Theorem 4.10.4 and its analogue for
locally out-semicomplete digraphs. Part (b) can be easily obtained from the
definition of a locally semicomplete digraph. Finally, Part (c) follows from the
fact proved in Theorem 4.10.4 (and its analogue for locally out-semicomplete
digraphs) that SC(D) has an out-branching and an in-branching. Indeed,
a digraph which is both out-branching and in-branching is merely a hamil-
tonian path. a

A locally semicomplete digraph D is round decomposable if there exists
a round local tournament R on r > 2 vertices such that D = R[Sy,...,S,],
where each S; is a strong semicomplete digraph. We call R[Sy,...,S5,] a
round decomposition of D. The following consequence of Theorem 4.11.6,
whose proof is left as Exercise 4.30, shows that connected, but not strongly
connected locally semicomplete digraphs are round decomposable.

Figure 4.18 A round decomposable locally semicomplete digraph D. The big cir-
cles indicate the sets that correspond to the sets Wi, Wa, ..., Ws in the decompo-
sition D = R[W1,Wa, ..., Wg], where R is the round locally semicomplete digraph
one obtains by replacing each circled set by one vertex. Fat arcs indicate that there
is a complete domination in the direction shown.

Corollary 4.11.7 [44] Every connected, but not strongly connected locally
semicomplete digraph D has a unique round decomposition R[D1, D, ..., D,],
where Dy, Do, ..., D, is the acyclic ordering of strong components of D and
R is the round local tournament containing no cycle which one obtains by
taking one vertex from each D;. a
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Now we describe another kind of decomposition theorem for locally semi-
complete digraphs due to Guo and Volkmann. The proof of this theorem is
left as Exercise 4.31. The statement of the theorem is illustrated in Figure
4.19.

Theorem 4.11.8 [3/9, 351] Let D be a connected locally semicomplete di-
graph that is not strong and let Dy, ..., D, be the acyclic ordering of strong
components of D. Then D can be decomposed into r > 2 induced subdigraphs
Dy, Di, ..., Dl as follows:

D/l = Dp7 )‘1 =D,
Aiv1 = min{ j | N*(D;) V(D)) # 0},
and D;+1 = D<V(D>\7+1) U V(DM+1+1) U---u V(DA7—1)>

The subdigraphs DY, D}, ... D! satisfy the properties below:

T

(a) D} consists of some strong components of D and is semicomplete for
i=1,2,....r

(b) Dj ., dominates the initial component of Dj and there exists no arc from
Dj to D, fori=1,2,...,r—1

(c) ifr > 3, then there is no arc between D} and D, fori, j satisfying |j—i| >
2. O

For a connected, but not strongly connected locally semicomplete digraph
D, the unique sequence Dj, D}, ..., D, defined in Theorem 4.11.8 is called
the semicomplete decomposition of D.

4.11.3 Strong Round Decomposable Locally Semicomplete
Digraphs

In the previous subsection we saw that every connected non-strong locally
semicomplete digraph is round decomposable. This property does not hold
for strong locally semicomplete digraphs (see Lemma 4.11.14). The follow-
ing assertions, due to Bang-Jensen, Guo, Gutin and Volkman, provide some
important properties concerning round decompositions of strong locally semi-
complete digraphs.

Proposition 4.11.9 [55] Let R[H1, Ha, ..., H,] be a round decomposition of
a strong locally semicomplete digraph D. Then, for every minimal separating
set S, there are two integers i and k > 0 such that S = V(H;)U...UV (H;k).

Proof: We will first prove that

if V(H;) NS #0, then V(H;) C S. (4.6)
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Figure 4.19 The semicomplete decomposition of a non-strong locally semicomplete
digraph with 16 strong components (numbered 1-16 corresponding to the acyclic
ordering). Each circle indicates a strong component and each box indicates a semi-
complete subdigraph formed by consecutive components all of which dominate the
first component in the previous layer. For clarity arcs inside components as well
as some arcs between components inside a semicomplete subdigraph D; (all going
from top to bottom) are omitted.

Assume that there exists H; such that V(H;,) NS # 0 # V(H;) — S.
Using this assumption we shall prove that D — S is strong, contradicting the
definition of S.

Let s’ € V(H;) N S. To show that D — S is strong, we consider a pair
of different vertices  and y of D — S and prove that D — S has an (z,y)-
path. Since S is a minimal separating set, D’ = D — (S — ') is strong.
Consider a shortest (z,y)-path P in D’ among all (z, y)-paths using at most
two vertices from each H;. The existence of such a path follows from the fact
that R is strong. Since the vertices of H; in D’ have the same in- and out-
neighbourhoods, P contains at most one vertex from H;, unless z,y € V(H;)
in which case P contains only these two vertices from H;. If s’ is not on
P, we are done. Thus, assume that s’ is on P. Then, since P is shortest
possible, neither x nor y belongs to H;. Now we can replace s’ with a vertex
in V(H;) — S. Therefore, D — S has an (x,y)-path, so (4.6) is proved.

Suppose that S consists of disjoint sets 71, ..., T, such that

T = V(HJZ) U...u V(Hji""ki) and (V(Hji—l) U V(szz+k7‘,+1)) ns=10

fori e {l,...,¢}. If £ > 2, then D —T; is strong and hence it follows from the
fact that R is round that H;,_; dominates Hj, 4,1 for every ¢ = 1,...,¢.
Therefore, D — S is strong; a contradiction. a

Corollary 4.11.10 [55] If a locally semicomplete digraph D is round decom-
posable, then it has a unique round decomposition D = R[Dy, Da, ..., D,].
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Proof: Suppose that D has two different round decompositions: D =
R[D:,...,Dy) and D = R'[Hq, ..., Hg).

By Corollary 4.11.7, we may assume that D is strong. By the definition
of a round decomposition, this implies that «, 8 > 3. Let S be a minimal
separating set of D. By Proposition 4.11.9, we may assume without loss of
generality that S = V(D;U...UD;) =V(H; U...UHj) for some 7 and j.
Since D — S is non-strong, by Corollary 4.11.7, D; 41 = Hj1,..., Do = Hg
(in particular, o —i = 3 — j). Now it suffices to prove that

Dy = Hy,...,D; = H; (in particular, i = j). (4.7)

If D(S) is non-strong, then (4.7) follows by Corollary 4.11.7. If D(S) is
strong, then first consider the case « = 3. Then S = V(Dy), because D — S is
non-strong and o = 3. Assuming that j > 1, we obtain that the subdigraph of
D induced by S has a strong round decomposition. This contradicts the fact
that R’ is a local tournament, since the in-neighbourhood of the vertex r7,

in R contains a cycle (where 7, corresponds to Hy,, p = 1,...,3). Therefore,
(4.7) is true for a = 3. If & > 3, then we can find a separating set in D(S)
and conclude by induction that (4.7) holds. O

Proposition 4.11.9 allows us to construct a polynomial algorithm for
checking whether a locally semicomplete digraph is round decomposable.

Proposition 4.11.11 [55] There exists a polynomial algorithm to decide
whether a given locally semicomplete digraph D has a round decomposition
and to find this decomposition if it exists.

Proof: We only give a sketch of such an algorithm. Find a minimal separating
set S in D starting with S’ = N (z) for a vertex z € V(D) and deleting
vertices from S’ until a minimal separating set is obtained. Construct the
strong components of D(S) and D — S and label these Dy, D3, ..., D,, where
Dy,...,Dp, p > 1, form an acyclic ordering of the strong components of
D(S) and Dpy1,..., D, form an acyclic ordering of the strong components
of D — S. For every pair D; and D; (1 <i# j < «), we check the following:
if there exist some arcs between D; and Dj, then either D;—D; or D;j—D;.
If we find a pair for which the above condition is false, then D is not round
decomposable. Otherwise, we form a digraph R = D{{z1, 22, ...,Zs}), where
x; € V(D) for i = 1,2,...,a. We check whether R is round using Corollary
4.11.5. If R is not round, then D is not round decomposable. Otherwise, D
is round decomposable and D = R[Ds,...,D,].
It is not difficult to verify that our algorithm is correct and polynomial.
O

4.11.4 Classification of Locally Semicomplete Digraphs

We start this subsection with a lemma on minimal separating sets of locally
semicomplete digraphs. It will be shown in Lemma 7.13.4 that for a strong
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locally semicomplete digraph D and a minimal separating set S in D, we
have that D — S is connected.

Lemma 4.11.12 [55] If a strong locally semicomplete digraph D is not semi-
complete, then there exists a minimal separating set S C V(D) such that
D — S is not semicomplete. Furthermore, if D1,D,,..., D, is the acyclic
ordering of the strong components of D and DY, D}, ..., D! is the semicom-
plete decomposition of D — S, then r > 3, D(S) is semicomplete and we have
Dp,—S—D;.

Proof: Suppose D — S is semicomplete for every minimal separating set S.
Then D — S is semicomplete for all separating sets S. Hence D is semicom-
plete, because any pair of non-adjacent vertices can be separated by some
separating set S. This proves the first claim of the lemma.

Let S be a minimal separating set such that D — S is not semicomplete.
Clearly, if » = 2 (in Theorem 4.11.8), then D — S is semicomplete. Thus,
r > 3. By the minimality of S every vertex s € S dominates a vertex in D
and is dominated by a vertex in D,,. Thus if some x € D, was dominated by
s € S, then, by the definition of a locally semicomplete digraph, we would
have Dy—D,, contradicting the fact that » > 3. Hence (using that D, is
strongly connected) we get that D,—S and similarly S+—D;. From the last
observation it follows that S is semicomplete. a

Now we consider strongly connected locally semicomplete digraphs which
are not semicomplete and not round decomposable. We first show that the
semicomplete decomposition of D—S has exactly three components, whenever
S is a minimal separating set such that D — S is not semicomplete.

Lemma 4.11.13 [55] Let D be a strong locally semicomplete digraph which
is not semicomplete. Fither D is round decomposable, or D has a minimal
separating set S such that the semicomplete decomposition of D — S has
exactly three components D1, D}, D5.

Proof: By Lemma 4.11.12, D has a minimal separating set S such that the
semicomplete decomposition of D — S has at least three components.

Assume now that the semicomplete decomposition of D — S has more
than three components D, ..., D, (r > 4). Let D1, Ds, ..., D, be the acyclic
ordering of strong components of D — S. According to Theorem 4.11.8 (c),
there is no arc between D; and Dj if [i — j| > 2. It follows from the definition
of a locally semicomplete digraph that

NTDj)nS =0 fori>3and N~ (D;)NS =0 for j <r—2. (4.8)

By Lemma 4.11.12, D(S) is semicomplete and S = N*(D,). Let Dp41, ...,
D, 44 be the acyclic ordering of the strong components of D(S). Using (4.8)
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and the assumption r > 4, it is easy to check that if there is an arc be-
tween D; and D; (1 < i # j < p+q), then D;—D; or D;—D,;. Let
R = D{{z1,29,...,2pyq}) with x; € V(D;) for ¢ = 1,2,...,p + q. Now
it suffices to prove that R is a round local tournament.

Since R is a subdigraph of D and no pair D;, D; induces a strong di-
graph, we see that R is a local tournament. By Corollary 4.11.7 each of
the subdigraphs R’ = R — {Zp41,...,%p+q}, B’ = R—V(R)NV(D]_,)
and R” = R — V(R) NV (D}) is round. Since N (v) N V(R) (as well as
N~ (v) NV(R)) is completely contained in one of the sets V(R'), V(R") and
V(R'") for every v € V(R), we see that R is round.

Thus if r > 4, then D is round decomposable. O

Our next result is a characterization of locally semicomplete digraphs
which are not semicomplete and not round decomposable. This character-
ization was proved for the first time by Guo in [341]. A weaker form was
obtained earlier by Bang-Jensen in [49]. Here we give the proof of this result
from [55].

Lemma 4.11.14 Let D be a strong locally semicomplete digraph which is not
semicomplete. Then D is not round decomposable if and only if the following
conditions are satisfied:

(a) There is a minimal separating set S such that D — S is not semicom-
plete and for each such S, D(S) is semicomplete and the semicomplete
decomposition of D — S has exactly three components D4, D}, D%;

(b) There are integers o, B, u,v with dg < a < f<p—1landp+1<pu<
v < p+ q such that

N~ (Do) NV (D,) #0 and N (Do) NV (D,) # 0,

or N™(D,)NV(Da)#0 and N*(D,)NV(Dg) # 0,

where Dy, Do, ...,Dy, and Dypi1,...,Dpq are the acyclic orderings the
strong components of D—S and D(S), respectively, and Dy, is the initial
component of Dj.

Proof: If D is round decomposable and satisfies (a), then we must have D =
R[D1, D, ..., Dpy4], where R is the digraph obtained from D by contracting
each D; into one vertex. This follows from Corollary 4.11.7 and the fact that
each of the digraphs D — S and D — V(D}) has a round decomposition that
agrees with this structure. Now it is easy to see that D does not satisfy (b).

Suppose now that D is not round decomposable. By Lemmas 4.11.12 and
4.11.13, D satisfies (a), so we only have to prove that it also satisfies (b).

If there are no arcs from S to Dj, then it is easy to see that D has a
round decomposition. If there exist components D), and D; with V(D;) C
V(D4), such that there are arcs in both directions between D,y; and D,
then D satisfies (b). So we can assume that for every pair of sets from the
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collection Dy, D, ..., Dpyq, either there are no arcs between these sets, or
one set completely dominates the other. Then, by Corollary 4.11.5, D is
round decomposable, with round decomposition D = R[D1, Da, ..., Dpy4] as

above, unless we have three subdigraphs X,Y,Z € {D1, Ds,...,D,14} such
that X—Y—Z—X and there exists a subdigraph W € {D1, D, ..., Dy} —
{X,Y, Z} such that either W—X,Y,Z or X,Y, Z—W.

One of the subdigraphs X,Y, Z, say without loss of generality X, is a
strong component of D(S). If we have V(Y') C S also, then V(Z) C V(D))
and W is either in D(S) or in D} (there are four possible positions for W
satisfying that either W—XY,Z or X,Y, Z—W). In each of these cases
it is easy to see that D satisfies (b). For example, if W is in D(S) and
W—X)Y, Z, then any arc from W to Z and from Z to X satisfies the first part
of (b). The proof is similar when V(Y') C V(D%). Hence we can assume that
V(Y) CV(Dy). If Z = D,, then W must be either in D(S) and X,Y, Z—W,
or V(W) C V(Dj) and W—X,Y, Z (which means that W = D; and Y = D;
for some Ay < i < j < p). In both cases it is easy to see that D satisfies (b).
The last case V(Y),V(Z) C V(D)) can be treated similarly. O

We can now state a classification of locally semicomplete digraphs.

Theorem 4.11.15 (Bang-Jensen, Guo, Gutin, Volkmann) [55] Let D
be a connected locally semicomplete digraph. Then exactly one of the following
possibilities holds.

(a) D is round decomposable with a unique round decomposition given by
D = R[D1, Da,...,D,], where R is a round local tournament on o > 2
vertices and D; is a strong semicomplete digraph fori=1,2,..., a;

(b) D is not round decomposable and not semicomplete and it has the struc-
ture as described in Lemma 4.11.1/;

(¢) D is a semicomplete digraph which is not round decomposable. a

We finish this section with the following useful proposition, whose proof
is left as Exercise 4.35.

Proposition 4.11.16 [55] Let D be a strong non-round decomposable locally
semicomplete digraph and let S be a minimal separating set of D such that
D — S is not semicomplete. Let Dq,...,D, be the acyclic ordering of the
strong components of D — S and Dpy1,...,Dpyq be the acyclic ordering of
the strong components of D{(S). Suppose that there is an arc s — v from S
to Dy with s € V(D;) and v € V(Dj), then

D;UD;11U...UDyy—D5—Dy, U...UDj.
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4.12 Totally &;-Decomposable Digraphs

Theorem 4.8.5 is a very important starting point for construction of poly-
nomial algorithms for hamiltonian paths and cycles in quasi-transitive di-
graphs (see Chapter 5) and solving more general problems in this class of
digraphs. This theorem shows that quasi-transitive digraphs are totally @-
decomposable, where @ is the union of extended semicomplete and transitive
digraphs. Since both extended semicomplete digraphs and transitive digraphs
are special subclasses of much wider classes of digraphs, it is natural to study
totally @-decomposable digraphs, where @ is a much more general class of
digraphs than the union of extended semicomplete and transitive digraphs.
However, our choice of candidates for the class @ should be restricted in such
a way that we can still construct polynomial algorithms for some important
problems such as the hamiltonian cycle problem using properties of digraphs
in @.

This idea was first used by Bang-Jensen and Gutin [62] to introduce the
following three classes of digraphs:

(a) @p is the union of all semicomplete multipartite digraphs, all connected
extended locally semicomplete digraphs and all acyclic digraphs,

(b) @4 is the union of all semicomplete bipartite digraphs, all connected ex-
tended locally semicomplete digraphs and all acyclic digraphs, and

(¢c) P is the union of all connected extended locally semicomplete digraphs
and all acyclic digraphs.

The aim of this section is to show that totally @;-decomposable digraphs
can be recognized in polynomial time for ¢ = 0,1,2. (If these recognition
problems were not polynomial, then the study of the properties of totally
&;-decomposable digraphs would be of much less interest.)

A set @ of digraphs is hereditary if D € @ implies that every induced
subdigraph of D is in @. Observe that every @;, i = 0, 1,2 is a hereditary set.

Lemma 4.12.1 Let @ be a hereditary set of digraphs. If a given digraph D
1s totally ®-decomposable, then every induced subdigraph D’ of D is totally
®-decomposable. In other words, total @-decomposability is a hereditary prop-
erty.

Proof: By induction on the number of vertices of D. The claim is obviously
true if D has less than 3 vertices.

If D € &, then our claim follows from the fact that @ is hereditary. So
we may assume that D = R[Hy,...,H,.], r > 2, where R € & and each of
Hi,..., H, is totally #-decomposable.

Let D’ be an induced subdigraph of D. If there is an index i so that
V(D'") C V(H;), then D’ is totally #-decomposable by induction. Otherwise,
D' = R'[T,...,T,v], where ' > 2 and R’ € @, is the subdigraph of R
induced by those vertices i of R, whose H; has a non-empty intersection with
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V(D') and the T;’s are the corresponding H;’s restricted to the vertices of
D'. Observe that R’ € @, since @ is hereditary. Moreover, by induction, each
T; is totally @-decomposable, hence so is D’. a

Lemma 4.12.2 There exists an O(mn + n?)-algorithm for checking if a di-
graph D with n vertices and m arcs has a decomposition D = R[H4, ..., H,],
r > 2, where H; is an arbitrary digraph and the digraph R is either acyclic
or semicomplete multipartite or semicomplete bipartite or connected extended
locally semicomplete.

Proof: If D is not connected and Ds,...,D. are its components, then D =
K [Dy,...,D.]. Hence, in the rest of the proof we may assume that D is
connected. We consider the different possibilities for R we are interested in,

one by one.

Check whether R can be acyclic: First find the strong components
Dy,...,Dg of D. If k = 1 then R cannot be acyclic and we can stop ver-
ifying that possibility. So suppose k£ > 2.

If we find two strong components D; and Dj; such that there is an arc
between them but there are non-adjacent vertices x € D; and y € D, then
we replace D; and D; by their union. This is justified because D; and D;
cannot be in different sets Hy; and H; in a possible decomposition. Repeat
this step but now check also the possibility for a pair D’ and D" of new
‘components’ to have arcs between D’ and D" in different directions. In the
last case we also replace D’ and D’ by their union. Continue this procedure
until all remaining sets satisfy that either there is no arc between them, or
there are all possible arcs from one to the other. Let Vq,...,V,, r > 1 denote
the distinct vertex sets of the obtained ‘components’. If » = 1, then we cannot
find an acyclic graph as R. Otherwise D = R[V4,...,V,],r > 2, and we obtain
R by taking one vertex from each V.

Check whether R can be a semicomplete multipartite digraph: Find
the connected components G1,...,G., ¢ > 1, of the complement of the un-
derlying graph UG(D) of D. If ¢ = 1, then R cannot be semicomplete mul-
tipartite. So we may assume that ¢ > 2 below. Let G; be the subgraph of
UG(D) induced by the vertices V; of the jth component G; of the comple-
ment of UG(D). Furthermore, let Gj1,...,Gjn,, n; > 1, be the connected
components of G;. Denote Vj, = V(Gj).

Starting with the collection W = {V1,..., V.}, we identify two of the sets
Vi and Vj if there exist Vi, and Vj, a € {1,...,n;}, b € {1,...,n;} such that
we have none of the possibilities Vio—Vjy, Vjp—Viq or Viq—Vj and Vip—Vi,.
Clearly the obtained set V; U V; induces a connected subdigraph of D. Let
Q1,...,Q, denote the sets obtained, by repeating this process until no more
changes occur. If » = 1, then R cannot be semicomplete multipartite. Other-
wise, R is the semicomplete multipartite digraph obtained by set-contracting
each connected component of @); into a vertex.
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Checking whether R can be a semicomplete bipartite digraph or a con-
nected extended locally semicomplete digraph is left as Exercise 4.38.

It is not difficult to see that, for every R being either acyclic or semicom-
plete multipartite, the procedures above can be realized as an O(nm + n?)-
algorithm. The same complexity is proved for semicomplete bipartite digraphs
and extended locally semicomplete digraphs in Exercise 4.38. ad

Theorem 4.12.3 [62] There exists an O(n*m~+n?)-algorithm for checking if
a digraph with n vertices and m arcs is totally @;-decomposable fori = 0,1, 2.

Proof: We describe a recursive algorithm to check @;-decomposability. We
have shown in Lemma 4.12.2 how to verify whether D = R[Hq,...,H,],
r > 2, where R is acyclic, semicomplete multipartite, semicomplete bipartite
or connected extended locally semicomplete. Whenever we find an R that
could be used, the algorithm checks total @;-decomposability of Hy,..., H,
in recursive calls.

Notice how the algorithm exploits the fact that total &;-decomposability
is a hereditary property (see Lemma 4.12.1): if some R is found appropriate,
then R can be used, because if D is totally &;-decomposable, then each of
Hy,...,H, (being an induced subdigraph of D) must also be totally &;-
decomposable. Since there are O(n) recursive calls, the complexity of the
algorithm is O(n?m + n?). O

4.13 Intersection Digraphs

Let U and V be sets and let F = {(S,,Ty) : Sv, Ty, C U and v € V} be
a family of ordered subsets of U (one for each v € V). The intersection
digraph corresponding to F is the digraph Dz = (V, A) such that vw € A
if and only if S, N T, # 0. The set U is called the universal set for Dr.
The above family of pairs form a representation of D. The concept of an
intersection digraph is a natural analogue of the notion of an intersection
graph and was introduced by Beineke and Zamfirescu [101] and Sen, Das,
Roy and West [661]. Since an arc is an ordered pair of vertices, every line
digraph L(D) is the intersection digraph of the family A(D’), where D’ is the
converse of D. It follows from the definition of an intersection digraph that
every digraph D is the intersection digraph of the family {(A™(v), A~ (v)) :
v € V(D)}, where AT (v) (A~ (v)) is the set of arcs leaving v (entering v).
Here the universal set is A(D).

Clearly, a digraph can be represented as the intersection digraph of various
families of ordered pairs. It is quite natural to ask how large the universal set
U has to be. For a digraph D the minimum number of elements in U such
that D = Dy for some family F of ordered pairs of subsets of U is called
the intersection number, in(D) of D. Sen, Das, Roy and West [661] prove
the following theorem for the intersection number of an arbitrary digraph D.
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For a digraph D = (V, A), a set B C A is one-way if there is a pair of sets
X,Y C V (called a generating pair) such that B = (X,Y)p, that is, B is
the set of arcs from X to Y.

Theorem 4.13.1 [661] The intersection number of a digraph D = (V, A)
equals the minimum number of one-way sets required to cover A.

Proof: Let Biy,...,B; be a minimum collection of one-way sets covering
A and let (X1,Y7),...,(Xk, Yr) be the corresponding generating pairs. Let
Sy={i: veX;},and T, ={i: v €Y;}. Then S, NT, # 0 if and only if
vw € A, showing that in(D) < k.

Now let U be a universal set of cardinality v = in(D) such that D has
a representation by a set of ordered pairs (S,,T,) of subsets of U. We may
assume that U = {1,2,...,u}. Define u one-way sets covering A as follows:
v € X; if and only if i € S, and v € Y; if and only if ¢ € T,,. Then vw € A if
and only if v € X;, w € Y] for some i. Thus, k < in(D). a

A subtree intersection digraph is a digraph representable as the inter-
section digraph of a family of ordered pairs of subtrees in an undirected tree.
A matching diagram digraph is digraph representable as the intersection
digraph of a family of ordered pairs of straight-line segments between two par-
allel lines. An interval digraph is a digraph representable as the intersection
digraph of a family of ordered pairs of closed intervals on the real line. Sub-
tree intersection digraphs, matching diagram digraphs and interval digraphs
are ‘directed’ analogues of chordal graphs, permutation graphs and interval
graphs, respectively, where subtrees, straight-line segments and real line in-
tervals are also used for representation (see the book [331] by Golumbic).
While chordal graphs form a special family of undirected graphs, Harary,
Kabell and McMorris showed that every digraph is a subtree intersection
digraph.

Proposition 4.13.2 [/00] Every digraph is a subtree intersection digraph.

Proof: Let D = (V, A) be an arbitrary digraph. Let G = (U, E), U = VU{x},
E = {{z,v} : v eV}, x ¢ V. Clearly, G is an undirected tree. Setting
Sy = G{{v}) and T, = G{{z} U{w : wv € A}) provides the required
representation. O

The following construction by Miiller shows that every interval digraph
is a matching diagram digraph [576]. Let {([av,by],[cv,ds] : v € V(D)}
be a representation of an interval digraph D. To obtain a representation
{(Sy,T,) : veV(D)} of D as a matching diagram digraph we set S, to be
the line segment between points (a,,0) and (b,, 1) in the plane, and T, to be
the line segment connecting the points (¢,, 1) and (d,, 0).

There are several characterizations of interval digraphs, see, e.g., the pa-
pers [650] by Sanyal and Sen and [736] by West. We restrict ourselves to just
one of them.
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Theorem 4.13.3 [661] A digraph D is an interval digraph if and only if
there exist independent row and column permutations of the adjacency matrix
M (D) of D which result in a matriz M’ satisfying the following property: the
zero entries of M’ can be labeled R or C such that every position above and
to the right of an R is an R and every position below and to the left of a C
is a C. ad

None of the characterizations given in [650, 736] implies a polynomial
algorithm to recognize interval digraphs. Miiller [576] obtained such an algo-
rithm. A polynomial algorithm is also given in [576] to recognize unit interval
digraphs, i.e., interval digraphs who have interval representations, where all
intervals are of the same length.

4.14 Planar Digraphs

We now discuss planar (di)graphs, i.e. (di)graphs that can be drawn without
crossings between (arcs) edges (except at endpoints). Clearly this property
does not depend on the orientation of the arcs and hence we can ignore the
orientation below when we give a formal definition. Furthermore, most of the
results and definitions in this section are for undirected graphs, but are valid
also for planar digraphs as far as their underlying graphs are concerned.

An undirected graph G = (V, E) is planar if there exists a mapping f
which maps G to R? in the following way:

Each vertex is mapped to a point in R? and distinct vertices are mapped
to distinct points.

Each edge uv € E is mapped to a simple (that is, not self-intersecting)
curve Cy, from f(u) to f(v) and no two curves corresponding to distinct
edges intersect, except possibly at their endpoints.

For algorithmic purposes as well as for arguing about planar graphs, it is
inconvenient to allow arbitrary curves in the embeddings of planar graphs.
A polygonal curve from u to v is a piecewise linear curve consisting of
finitely many lines such that the first line starts at u, the last line ends at v
and each other line starts at the last point of the previous line. Since we can
approximate any simple curve arbitrarily well by a polygonal curve we may
assume that the curves used in the embedding are always polygonal curves.

A planar graph G may have many different embeddings in the plane (each
embedding corresponds to a mapping f as above). Sometimes we wish to refer
to properties of a specific embedding f of G. In this case we say that G is
plane (that is, already embedded) with planar embedding f. A plane graph G
partitions R? into a finite number of (topologically) connected regions called
faces. Precisely one of these faces is unbounded and we call this the outer
face. It is easy to see that, for any fixed face F' of G, we may reembed G in
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R? in such a way that F becomes the outer face. The boundary of a face F'
is denoted by bd(F’) and we normally describe a face by listing the vertices in
clockwise order around the face (for the unbounded face this corresponds to
listing the vertices on the boundary in the anti-clockwise order). See Figure
4.20 for an illustration of the definitions.

4 4
(a) (b) (c)

Figure 4.20 (a) shows a non-planar embedding of a graph H; (b) shows a planar
embedding of H; (c) shows a planar embedding of H where all curves are polygonal.
With respect to the embedding in (c), the faces are 12341, 14561, 16321 and 36543.
The outer face is 36543.

Observe that, if we add the edge 25 to the graph H in Figure 4.20, then
the resulting graph, which is isomorphic to K3 3, is no longer planar. In fact
planar graphs have a famous characterization, due to Kuratowski:

Theorem 4.14.1 (Kuratowski’s theorem) [507] A graph has a planar
embedding if and only if it does not contain a subdivision® of K5 or K3 3. O

Based on this it is possible to show that planar graphs (and hence also
planar digraphs) can be recognized efficiently. In fact Hopcroft and Tarjan
[432] showed that it can be done in linear time and if the graph is planar,
one can find a planar embedding in the same time.

The following relation between the number of vertices, edges and faces in
a plane graph, known as Euler’s formula, is easy to prove by induction on
the number of faces.

Theorem 4.14.2 If G is a connected plane graph on n vertices and m edges,
then

n—m+¢=2,
where ¢ denotes the number of faces in the embedding on G. In particular
the number of faces is the same in every embedding of G. ad

5 A subdivision H’ of a graph H is any graph that can be obtained from H by
replacing each edge by a path all of whose internal vertices have degree 2 in H'.
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We leave it to the reader to derive the following easy consequence of
Theorem 4.14.2 (see Exercise 4.42):

Corollary 4.14.3 For every planar graph on n > 3 vertices and m edges we
have m < 3n — 6. O

If we allow multiple edges, then we cannot bound the number of edges
as we did above. However for planar digraphs we have the following easy
consequence:

Corollary 4.14.4 No planar digraph onn > 3 vertices has more than 6n—12
arcs. O

For much more information about drawings of graphs (in particular em-
beddings of planar graphs) we refer the reader to the recent book [97] by
Battista, Eades, Tamassia and Tollis. This book also contains a number of
results on how to use digraph techniques (in particular network flows) to
obtain nice drawings of (di)graphs.

4.15 Application: Gaussian Elimination

In many applications, such as modeling a problem by a system of differential
equations and then solving this system by numerical methods (cf. the book
[208] by Duff, Erisman and Reid), the final step of the solution of the problem
under consideration consists of solving a system of linear equations: Az = b,
where A = [a;;] is an n x n matrix of coefficients, b is a given vector of
dimension n and z is a vector of unknowns. In a considerable number of
applications the matrix A is sparse, i.e., most entries of A are zero. The
system Az = b is often solved by the Gaussian elimination method. To use
this method, the only requirement is that all diagonal elements a;; of matrix
A can be made by non-zero row and column permutations.

In many cases in practice, a sparse matrix A has some special structure,
which allows one to solve the system much faster than just using Gaussian
elimination directly. One of the most important such structures is block-
triangular structure. Let ni,ne,...,n; be natural numbers such that 1 <
ny < mg < ...<mnp=mnand let ng = 0. We call the submatrices A®) =
ai, j,], with n, 1 +1 <y, j, < nyp, the main (ny,...,np)-blocks (or just
main blocks). We say that A has (n4, ..., np)-block-triangular structure
(or just block-triangular structure) if all entries of A below the main blocks
are zero. (More precisely, one should call this structure upper block-triangular
[208], but since we do not consider lower block-triangular structure here, we
will omit the word ‘upper’.) The matrix

3241
5600
3079
0003
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has (3, 4)-block-triangular structure. See also Figure 4.21.

n-0

n_1

I

n-3

n_4

Figure 4.21 An (n1, n2,ns, n4)-block-triangular structure. White space consists of
entries equal zero.

If A has block-triangular structure, we solve first the system A®z®) =
b where 2(P) (b(P)) is the vector consisting of n,, last coordinates of z (b).
The values of coordinates of (), which we found, equal the values of the
corresponding unknowns in the system Az = b since in the last n, rows of A
all coefficients except for some in the last n, columns are zero. Taking into
consideration that the values of coordinates of () are already found, we can
compute the values of coordinates of (P~ using the block A~ Similarly,
using all blocks of A (in the decreasing order of their indices) we can compute
all coordinates in z.

However, quite often the block-triangular structure of A is hidden, i.e.
A has no block-triangular structure, but A can be transformed into a matrix
with block-triangular structure after certain permutations 7 and 7 of its
rows and columns, respectively. Here we are interested in using the Gaussian
elimination method and thus we assume that all diagonal entries of A are
non-zero (when it is possible, one can find permutations of rows and columns
of A, which bring non-zero diagonal to A using perfect matchings in bipartite
graphs, see [208]). Therefore, we do not wish to change the diagonal entries
of A. This can be achieved by using only simultaneous permutations of rows
and columns of A, i.e. 7 = 7.

To reveal hidden block-triangular structure of A, the following approach
can be used. Let us replace all non-zero entries of A by 1. We obtain matrix
B = [b;;], which can be viewed as the adjacency matrix of some directed
pseudograph D with vertex set {vq,...,v,}, i.e. bj; =1 if and only if v;—wv;
in D. (Clearly, D has no parallel arcs, but due to the assumption on the
diagonal elements it has a loop at every vertex.) Suppose that D is not
strong, D1, ..., D, is the acyclic ordering of the strong components of D (i.e.
there is no arc from D; to D; if j > i) and the vertices of D are ordered
Ur(1)> Ux(2)s - - - » Ur(n) SUch that
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V(Dz) = {Uﬂ(ni+l)7 Ur(n;+2)s - Uﬂ'(ni+1)}'

It is easy to see that B has (nq,...,n,)-block-triangular structure. This im-
plies that A has block-triangular structure. The above observation suggests
the following procedure to reveal hidden block-triangular structure of A.

1. Replace every non-zero entry of A by 1 to obtain a (0, 1)-matrix B.

2. Construct a directed pseudograph D with vertex set {v1,...,v,} such
that B is the adjacency matrix of D.

3. Find the strong components of D. If D is strong, then B (and thus A)
does not have hidden block-triangular structure®. If D is not strong, let
Dy,...,D, be the strong components of D (in acyclic order). Find a
permutation w on {1,...,n} such that

V(Dl) = {Uﬂ'(nri-l)’ Un(ng+2)y - - ?/UTF(’I'Li+1)}‘

This permutation reveals hidden block-triangular structure of B (and
thus A). Use 7 to permute rows and columns of A and coordinates of x
and b.

To perform Step 3 one may use Tarjan’s algorithm in Section 4.4.
We will illustrate the procedure above by the following example. Suppose
we wish to solve the system:

T + 323 + 8z4 = 2,
To + bzy =1,
2x1 + 2x9 + 43 + 924 = 6,
3xo + 224 = 3.

We first construct the matrix B and the directed pseudograph D. We
have V(D) = {v1, v, v2,v4} and

A(D) = {v1vs, v104, Vovy, V3V1, V3V2, U3V4, V4V2 } U {vu; 0 1 =1,2,3,4}.

The digraph D has strong components D) and D), which are subdigraphs
of D induced by {vy,v3} and {va, v4}, respectively. These components suggest
the following permutation 7, (i) = ¢ for ¢ = 1,4, 7(2) = 3 and 7(3) = 2, of
rows and columns of A as well as elements of x and b, the right-hand side.
As a result, we obtain the following:

x] + 35 + 8z =2,
2z + dah + 225 9z = 6,
ah + bz =1,

3k + 22} =3,

6 Provided we do not change the set of entries of the diagonal of A
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where z} = x; for i = 1,4, x, = z3 and x5 = z».
Solving the last two equations separately, we obtain z§ = 1, zj = 0.

Now

solving the first two equations, we see that z} = 2, x5, = 0. Hence,

33‘1:2, $2:1, 1'3:1'4:0.

A discussion on practical experience with revealing and exploiting block-
triangular structures is given in [208].

4.16 Exercises

4.1.

4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.

Let ¢(u) be the forefather of a vertex u as defined in Section 4.4. Combining
(4.2) and (4.3), prove that ¢(¢p(u)) = ¢(u).

Prove Proposition 4.3.1.

Prove Lemma 4.4.1.

In part (ii) = (i) of Theorem 4.5.1, prove that o(D) = L(Q).
Derive Corollary 4.5.2 from Theorem 4.5.1 (iii).

(—) Prove Proposition 4.5.3 using Theorem 4.5.1 (i) and (ii).

Prove the following simple properties of line digraphs:
(i) L(D) 2 P,— if and only if D & P,;
(i) L(D) = C,, if and only if D 2 C,,.

Let D be a digraph. Show by induction that L¥(D) is isomorphic to the
digraph H, whose vertex set consists of walks of D of length k£ and a vertex
Vo1 . .. v dominates the vertex viva ... vEVE4+1 for every vgy1 € V(D) such
that vgvey1 € A(D)

Using the results in Exercise 4.7, prove the following elementary properties
of iterated line digraphs: Let D be a digraph. Then

(i) LF(D) is a digraph with no arcs, for some k, if and only if D is acyclic;
(ii) if D has a pair of cycles joined by a path (possibly of length 0), then

lim ng = oo,
k— o0

where ny, is the order of L*(D);
(iii) if no pair of cycles of D is joined by a path, then for all sufficiently large
values of k, each connected component of L*(D) has at most one cycle.

Prove by induction on k£ > 1 Proposition 4.5.4.
Prove Lemma 4.6.1.
Prove Lemma 4.6.5.
Prove Lemma 4.6.6.

Prove Theorem 4.6.7.



4.15.

4.16.

4.17.
4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.
4.30.
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Upwards embeddings of MVSP digraphs. Prove that one can embed
every MVSP digraph D into the Cartesian plane such that, if vertices u,v
have coordinates (v, yu) and (x, yv), respectively, and there is a (u, v)-path
in D, then z, < z, and y, < y,. Hint: consider series composition and
parallel composition separately.

Prove Proposition 4.7.2. Hint: use induction on the number of reductions
applied for the ‘if’ part and the number of arcs for the ‘only if’ part.

Prove Proposition 4.7.3.

Prove part (b) of Lemma 4.8.4. Hint: if v and v are in S then there is a

path from u to v in UG(S). Similarly, if z and y are in S’. Use these paths
(corresponding to sequences of non-adjacent vertices in D) to show that if
zu and vy are arcs, then v = v and x = y must hold if D is quasi-transitive.

(—) Construct an infinite family of path-mergeable digraphs, which are not
in-path-mergeable.

Prove Proposition 4.10.2.

(—) Show that the following ‘claim’ is wrong. Let D be a locally in-
semicomplete digraph and let D contain internally disjoint paths Pi, P> such
that P; is an (x;,y)-path (¢ = 1,2) and 21 # x2. Then z; and z are adjacent.

Orientations of path-mergeable digraphs. Prove that every orientation
of a path-mergeable digraph is a path-mergeable oriented graph.

(4+) Prove Corollary 4.9.2.

Path-mergeable digraphs which are neither locally in-semicomplete
nor locally out-semicomplete. Show by a construction that there ex-
ists an infinite class of path-mergeable digraphs, none of which is locally
in-semicomplete or locally out-semicomplete. Then extend your construction
to arbitrary degrees of vertex-strong connectivity. Hint: consider extensions.

(—) Path-mergeable transitive digraphs. Prove that a transitive digraph
D = (V, A) is path-mergeable if and only if for every z,y € V and every pair
zuy, zvy of (z,y)-path of length 2 either u—wv or v—u holds.

Reformulate Lemma 4.10.3 and Theorem 4.10.4 for locally out-semicomplete
digraphs.

Orientations of locally in-semicomplete digraphs. Prove that every
orientation of a digraph which is locally in-semicomplete is a locally in-
tournament digraph.

Strong orientations of strong locally in-semicomplete digraphs.
Prove that every strong locally in-semicomplete digraph on at least 3 ver-
tices has a strong orientation.

Prove Lemma 4.11.2.
Prove Corollary 4.11.7.
Prove Theorem 4.11.8.
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4.32.

4.33.

4.34.

4.35.
4.36.

4.37.

4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

4. Classes of Digraphs

Recognition of round digraphs. Show that the proof of Theorem 4.11.4
implies a polynomial algorithm to decide whether a digraph D is round and
to find a round labelling of D (if D is round).

(+) Using Lemma 4.11.13, show that, if D is a non-round decomposable
locally semicomplete digraph, then the independence number of UG(D) is at
most two.

(—) Give an example of a locally semicomplete digraph on 4 vertices with
no 2-king.

Prove Proposition 4.11.16.

Prove the assertion stated in Exercise 4.33 using Lemma 4.11.14 and Propo-
sition 4.11.16.

Extending in-path-mergeability. Prove that, if P, @ are internally dis-
joint (z, z)- and (y, z)-paths in an extended locally in-semicomplete digraph
D and no vertex on P — z is similar to a vertex of () — z, then there is a path
R from either z or y to z in D such that V(R) = V(P) U V(Q).

Prove that there exists an O(mn +n?)-algorithm for checking if a digraph D
with n vertices and m arcs has a decomposition D = R[H1,...,H,]|, r > 2,
where H; is an arbitrary digraph and the digraph R is either semicomplete
bipartite or connected extended locally semicomplete.

(=) Let D be a connected digraph which is both quasi-transitive and locally
semicomplete. Prove that D is semicomplete.

(—) Let D be a connected digraph which is both quasi-transitive and locally
in-semicomplete. Prove that the diameter of UG(D) is at most 2.

(—) Prove that the intersection number in(D) < n for every digraph D of
order n. Show that this upper bound is sharp (Sen, Das, Roy and West [661]).

Prove Corollary 4.14.3. Hint: use that each edge is on the boundary of pre-
cisely two faces and that each face has at least 3 edges.

(—) Check which of the following 4 x 4-matrices A = [a;;] have hidden block-

triangular structure (the entries not specified equal zero). Only simultaneous

permutations of rows and columns are allowed.

(a) a1, =i+ 1fori=1,2,3 az = as; = for i = 2,3, and as; = 2 for
1=2,3,4;

(b) a12 = a21 = 14 = Q41 = Q34 = A43 = 2 and Qi; = 1 fOI‘ = 172,3,4.



5. Hamiltonicity and Related Problems

In this chapter we will consider the hamiltonian path and cycle problems for
digraphs as well as some related problems such as the longest path and cycle
problems and the minimum path factor problem. We describe and prove a
number of results in the area as well as formulate several open questions.

We recall that a k-path factor of a digraph D is a collection of k vertex-
disjoint paths covering V(D). Recall that the minimum positive integer k
such that D has a k-path factor is the path covering number of D, denoted
by pc(D). A pe(D)-path factor of D is also called a minimum path factor
of D. Recall also that a digraph is traceable if it contains a hamiltonian path.

For arbitrary digraphs the hamiltonian path and hamiltonian cycle prob-
lems are very difficult and both are N'P-complete (see, e.g. the book [303]
by Garey and Johnson). For convenience of later referencing we state these
results as theorems.

Theorem 5.0.1 The problem to check whether a given digraph has a hamil-
tonian cycle is N'P-complete. ad

Theorem 5.0.2 The problem to check whether a given digraph has a hamil-
tonian path is N'P-complete. a

It is worthwhile mentioning that the hamiltonian cycle and path problems
are N'P-complete even for some special classes of digraphs. Garey, Johnson
and Tarjan showed [305] that the problem remains NP-complete even for
planar 3-regular digraphs. It follows easily from Theorems 5.0.1 and 5.0.2
that the problem to determine the minimum path factor as well as the longest
path and cycle problems are A/P-hard as optimization problems for arbitrary
digraphs. This is also true for several special classes of digraphs. However,
for some important special classes of digraphs these problems are polynomial
time solvable. One such class is the class of acyclic digraphs (see Theorem
2.3.5 and Section 5.3). The reader will see in this chapter that many more
such classes can be found.

In Section 5.1, some powerful necessary conditions, due to Gutin and Yeo,
are considered for a digraph to be hamiltonian. These conditions can be used
for the hamiltonian path problem due to the following simple observation:
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Proposition 5.0.3 A digraph D has a Hamilton path if and only if the di-
graph D*, obtained from D by adding a new vertex x* such that x* dominates
every vertex of D and is dominated by every vertex of D, is hamiltonian. O

In Section 5.2 we prove that the path covering number of an arbitrary
digraph is never more than its independence number. In Section 5.3 we show
that the minimum path factor problem for acyclic digraphs can be solved
quite efficiently. Furthermore, we show that algorithms for finding minimum
path factors in acyclic digraphs are useful in a number of applications.

In Section 5.4, we obtain necessary and sufficient conditions by Bang-
Jensen for a path-mergeable digraph to be hamiltonian. Since locally in-
semicomplete and out-semicomplete digraphs are proper subclasses (see
Proposition 4.10.1) of path-mergeable digraphs, we may use these condi-
tions, in Section 5.5, to derive a characterization of hamiltonian locally in-
semicomplete and out-semicomplete digraphs. As corollaries, we obtain the
corresponding results for locally semicomplete digraphs. Digraphs with re-
stricted degrees are considered in Section 5.6. There, a number of degree-
related sufficient conditions for a digraph to be hamiltonian are described. In
that section, we also consider a recently introduced and powerful proof tech-
nique, called multi-insertion, that can be applied to prove many theorems on
hamiltonian digraphs.

In the last decade quite a number of papers were devoted to studying the
structure of longest cycles and paths of semicomplete multipartite digraphs.
In Section 5.7, we consider the most important results obtained in this area
so far including some striking results by Yeo. The proofs in that section
provide further illustrations of the multi-insertion technique. In Section 5.8,
we discuss generalizations of characterizations of hamiltonian and traceable
extended semicomplete digraphs to extended locally semicomplete digraphs.

Sections 5.9 and 5.10 are devoted to quasi-transitive digraphs. We present
two interesting methods to tackle the hamiltonian path and cycle problems,
and the longest path and cycle problems, respectively, in this class of di-
graphs. The second method by Bang-Jensen and Gutin allows one to find
even vertex-heaviest paths and cycles in quasi-transitive digraphs in polyno-
mial time (where the weights are on the vertices). The last section is devoted
to results on hamiltonian paths and cycles in some classes of digraphs not con-
sidered in the previous sections. The proof of Theorem 5.11.2 by Thomassen
illustrates how the properties of tournaments can be used to prove results on
more general digraphs.

For additional information on hamiltonian and traceable digraphs, see
e.g. the surveys [61, 66] by Bang-Jensen and Gutin, [126] by Bondy, [368] by
Gutin and [728, 729] by Volkmann.
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5.1 Necessary Conditions for Hamiltonicity of Digraphs

An obvious condition for a digraph to be hamiltonian is to be strong. Another
obvious and, yet, quite powerful necessary condition for a digraph to be
hamiltonian is the existence of a cycle factor!. Both conditions can be verified
in polynomial time (see Sections 4.4 and 3.11.4). The purpose of this section is
to describe a series of more powerful conditions, called k-quasi-hamiltonicity,
which were recently introduced by Gutin and Yeo in [379]. An equivalent
form of 1-quasi-hamiltonicity, pseudo-hamiltonicity, was actually investigated
earlier by Babel and Woeginger in [35] for undirected graphs.

We prove that every (k + 1)-quasi-hamiltonian digraph is also k-quasi-
hamiltonian (however, there are digraphs which are k-quasi-hamiltonian, but
not (k + 1)-quasi-hamiltonian). We introduce an algorithm that checks k-
quasi-hamiltonicity of a given digraph with n vertices and m arcs in time
O(nm*). Hence, these conditions can be efficiently verified for small values
of k. Thus, they can be incorporated in software systems which investigate
properties of digraphs (or graphs); one such system is described by Delorme,
Ordaz and Quiroz in [189]. We prove that (n — 1)-quasi-hamiltonicity coin-
cides with hamiltonicity and 1-quasi-hamiltonicity is equivalent to pseudo-
hamiltonicity.

5.1.1 Path-Contraction

In this section we consider, for technical reasons, directed multigraphs. We use
a variation of the operation of contraction of a set of vertices in a directed
multigraph. This operation is called path-contraction and is defined as
follows. Let P be an (z,y)-path in a directed multigraph D = (V, A). Then
D//P stands for the directed multigraph with vertex set V(D//P) = V' U
{z} = V(P), where z ¢ V, and pup,/p(uv) = pp(uwv), pp, p(uz) = pp(ux),
ppy/p(zv) = pp(yv) for all distinct u,v € V' — V(P). In other words, D//P
is obtained from D by deleting all vertices of P and adding a new vertex
z such that every arc with head x (tail y) and tail (head) in V — V(P)
becomes an arc with head (tail) z and the same tail (head). Observe that
a path-contraction in a digraph results in a digraph (no parallel arcs arise).
We will often consider path-contractions of paths of length one, i.e. arcs e.
Clearly, a directed multigraph D has a k-cycle (k > 3) through an arc e if
and only if D//e has a cycle through z. Observe that the obvious analogue of
path-contraction for undirected multigraphs does not have this nice property
which is of use in this section. The difference between (ordinary) contraction
(which is also called set-contraction) and path-contraction is reflected in
Figure 5.1.

! Higgkvist [387] posed a problem to find classes of digraphs for which strong
connectivity and the existence of a cycle factor are sufficient for hamiltonicity.
In this chapter we consider some classes with this property.
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o
c c
D/{x,u,v,y} D//P, P = zuvy

Figure 5.1 The two different kinds of contraction, set-contraction and path-
contraction. The integers 2 and 3 indicate the number of corresponding parallel
arcs.

As for set-contraction, for vertex-disjoint paths Pj, Py, ..., P; in D, the
path-contraction D//{Py,..., P;} is defined as the directed multigraph
(...((D//P1)]]Py)...)]]Py; clearly, the result does not depend on the order
of Pl,PQ, . ,Pt.

5.1.2 Quasi-Hamiltonicity

The results in the remainder of this section are due to Gutin and Yeo. Let
D = (V, A) be a directed multigraph. Let QH;(D) = (V, A1) be the directed
multigraph with arc set

Ay ={e€ A: eis contained in a cycle factor of D}.

For k > 2, QH(D) = (V, Ag) is the directed multigraph with arc set Ay =
{e € A: QHy_1(D//e) is strong}. For k > 1, a directed multigraph D is
k-quasi-hamiltonian, if QHy (D) is strong. We assume (by definition) that
every directed multigraph is 0-quasi-hamiltonian. The quasi-hamiltonicity
number of a directed multigraph D of order n, qhn(D), is the maximum
integer k(< m) such that D is k-quasi-hamiltonian.

Figure 5.2 illustrates the notion of quasi-hamiltonicity. The directed multi-
graph H is 0-quasi-hamiltonian, but not 1-quasi-hamiltonian (QH;(H) =
H —{(3,4),(4,3)} is not strong). Hence, ghn(H) = 0. The directed multi-
graph D is 1-quasi-hamiltonian as QH;(D) = D is strong (every arc of D
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belongs to a cycle factor of D). However, D is not 2-quasi-hamiltonian since
QHy(D) is not strong (indeed, QH1(D//(3,4)) = QH;1(L) is not strong).
Thus, ghn(D) = 1.

1 2 1 2 1./_\ 2

H D L

Figure 5.2 Digraphs.

We start with some basic facts on k-quasi-hamiltonicity.

Proposition 5.1.1 [379] Let D be a directed multigraph of order n(> 2) and
let k € {2,3,...,n—1}. Then A(QH(D)) C A(QHy_1(D)). In particular,
if D is k-quasi-hamiltonian, it is (k — 1)-quasi-hamiltonian.

Proof: We prove the claim by induction on k. Let e € A(QH2(D)). Thus,
QH,(D//e) is strong which, in particular, means that D//e has a cycle factor.
Hence, e € A(QH1(D)). Let now k > 3 and let e € A(QH(D)). Then,
QHy_1(D//e) is strong. By the induction hypothesis, QHy_2(D//e) is also
strong. Hence, e € A(QH_1(D)). O

Theorem 5.1.2 [379] A directed multigraph is hamiltonian if and only if it
is (n — 1)-quasi-hamiltonian.

Proof: Clearly every hamiltonian directed multigraph of order 2 is 1-quasi-
hamiltonian. Now assume that all hamiltonian directed multigraphs of order
n — 1 are (n — 2)-quasi-hamiltonian, and let D be a hamiltonian digraph of
order n. Whenever we contract an arc belonging to a hamiltonian cycle we
obtain a hamiltonian digraph of order n — 1, which therefore is (n — 2)-quasi-
hamiltonian. Hence, every arc on a Hamilton cycle lies in QH,,_1(D), which
implies that QH,,—1(D) is strong, i.e. D is (n — 1)-quasi-hamiltonian. Thus,
the ‘only if” part is proved.

We prove the ‘if’ part. Let D be a directed multigraph, such that
QH,,_1(D) is strong. Let ey be an arc in QH,,_1 (D). Since QH,,_2(D//e1) is
strong there exists an arc es in QH,,_2(D//e1). Since QH,,_3((D//e1)//e2)
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is strong there exists an arc eg in QH,_3((D/e1)//e2). Continuing this pro-
cedure we obtain arcs ej,es,...,e,_s, such that the directed multigraph

QH,((((D//e1)//e2)...)//en—2) is strong. Let
D' =(((D//ex)//e2) )] [en-2,

and observe that, since QH;(D’) is strong and D’ has order 2, D’ must be
hamiltonian. By inserting the arcs ej,es, ..., e,_2 into a Hamilton cycle in
D', we obtain a Hamilton cycle in D. O

We leave the proof of the following theorem as a non-trivial exercise (Ex-
ercise 5.1).

Theorem 5.1.3 [379] For every k > 0, there exists a digraph D such that
ghn(D) = k < n. O

5.1.3 Pseudo-Hamiltonicity and 1-Quasi-Hamiltonicity

For a positive integer h, a sequence of vertices Q = v1vs ... vp,v1 in a directed
multigraph D of order n is an h-pseudo-hamiltonian walk if every vertex
of D appears h times in the sequence v1vs...vp, and v;v;41 € A(D) for
every i = 1,2,...,hn (Uppy1 = v1). A directed multigraph D possessing
such a sequence is called h-pseudo-hamiltonian and the minimum A for
which D is h-pseudo-hamiltonian is the pseudo-hamiltonicity number
ph(D) of D. If D has no h-pseudo-hamiltonian walk for any positive integer
h, then ph(D) = oo. A directed multigraph D is pseudo-hamiltonian if
ph(D) < oo.

For example, in Figure 5.2, the digraph D is 2-pseudo-hamiltonian:
1212345656431 is a 2-pseudo-hamiltonian walk of D. This digraph is not
1-pseudo-hamiltonian as D is not hamiltonian. Thus, ph(D) = 2. It is not
difficult to see that the digraph H in Figure 5.2 is not pseudo-hamiltonian. We
have already seen that D is 1-quasi-hamiltonian, but H is not. The above
conclusions on pseudo-hamiltonicity of D and H can actually be obtained
from Theorem 5.1.5.

Lemma 5.1.4 follows from the fact that every regular directed multigraph
has a cycle factor (see Exercise 3.70), which implies that every h-regular
directed multigraph can be decomposed into h cycle factors.

Lemma 5.1.4 Every arc of a reqular directed multigraph is included in a

cycle factor. ad

Theorem 5.1.5 [379] A directed multigraph is pseudo-hamiltonian if and
only if it is 1-quasi-hamiltonian.
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Proof: Let D be a pseudo-hamiltonian directed multigraph, let @ be an
h-pseudo-hamiltonian walk in D, and let A(Q) = (viva,v2Vs3, ..., Vpn—1Vhn,
Vpnv1) be the sequence of arcs in Q. Construct a new directed multigraph
H(D,Q) from D by replacing, for every pair x,y with pup(zy) > 0, all arcs
from z to y in D by ¢(> 0) parallel arcs from z to y, where ¢ is the number
of appearances of xy in A(Q). By the definition of an h-pseudo-hamiltonian
walk, H(D, @) is an h-regular directed multigraph. Thus, by Lemma 5.1.4,
every arc zy in H(D,Q) is in a cycle factor. Therefore, pup(p gy(zy) > 0
implies pgm, (p)(ry) > 0. Since H(D, Q) is strong, we obtain that QH;(D)
is also strong, i.e. D is 1-quasi-hamiltonian.

Now let D be a 1-quasi-hamiltonian directed multigraph, i.e. QH1(D) is
strong. For each arc e in QH; (D) let F,. be a cycle factor in D including e.
Let D' = Ucc a(Qu, (D)) Fe- As the union of cycle factors, D’ is regular. Since
QH, (D) is strong, D’ is also strong. Therefore, D’ has a eulerian trail, which
corresponds to a pseudo-hamiltonian walk in D. a

The following theorem provides a sharp upper bound for the pseudo-
hamiltonicity number of a digraph.

Theorem 5.1.6 [379] For a pseudo-hamiltonian digraph D, ph(D) < (n —
1)/2. For every integer n > 3, there exists a digraph H,, of order n such that

ph(Hy,) = [(n—1)/2].

Proof: Exercise 5.2. O

5.1.4 Algorithms for Pseudo- and Quasi-Hamiltonicity

It is easy to check whether a digraph is 1-quasi-hamiltonian (i.e., by Theorem
5.1.5 is pseudo-hamiltonian). Indeed, checking whether Q H; (D) is strong can
be done in time O(n + m) (see Section 4.4). Hence, it suffices to show how
to verify for each arc zy if this arc is on some cycle factor. We can merely
replace xy by a path xzy, where z is not in D, and check whether the new
digraph has a cycle factor. This can be done in time O(y/nm) by Corollary
3.11.7. Thus, we obtain the total time of O(y/nm?). This complexity bound
was improved by Gutin and Yeo [379] as follows.

Theorem 5.1.7 We can check whether a directed multigraph D is pseudo-
hamiltonian in O(nm) time.

Proof: Exercise 5.3. O

The following theorem implies that one can check k-quasi-hamiltonicity
for a constant k£ in polynomial time.

Theorem 5.1.8 [379] In O(nmF) time, one can check if a directed multi-
graph is k-quasi-hamiltonian.
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Proof: In this proof, we describe an algorithm A that, in time T'(k), checks
whether a directed multigraph D is k-quasi-hamiltonian. We will show that
T(k) = O(nm*).

If k£ = 1, the algorithm A uses the algorithm B of Theorem 5.1.7. Thus,
T(1) = O(nm). If k > 2 then, for each arc e in D, A verifies whether D//e
is (k — 1)-quasi-hamiltonian. The algorithm A forms QHy (D) from all arcs
e such that D//e is (k — 1)-quasi-hamiltonian. Finally, A checks whether
QH(D) is strong (in time O(m)). This implies that, for k& > 2,

T(k) < mT(k — 1) + O(m).

Since T'(1) = O(nm), we obtain that T'(k) = O(nmF). O

5.2 Path Covering Number

The following attainable lower bound for the path covering number of a
digraph D is quite trivial: pcc(D) < pc(D). We will see later in this chapter
that pcec(D) = pe(D) for acyclic digraphs and semicomplete multipartite
digraphs D. The aim of this short section is to obtain a less trivial attainable
upper bound for pc(D). This bound is of use in several applications (see, e.g.,
Section 5.3).

Recall that the independence number a(D) of a digraph D is the cardi-
nality of a maximum independent set of vertices of D (a set X C V(D) is
independent if no pair of vertices in X is adjacent). Rédei’s theorem (Theo-
rem 1.4.5) can be rephrased as saying that every digraph with independence
number 1 has a hamiltonian path and hence path covering number equal 1.
Gallai and Milgram generalized this as follows.

Theorem 5.2.1 (Gallai-Milgram theorem) [298] For every digraph D,
pe(D) < a(D).

This theorem is an immediate consequence of the following lemma by
Bondy [126]:

Lemma 5.2.2 Let D be a digraph and let P = PyUP,U...UPs be an s-path
factor of D. Let i(P) (t(P)) denote the set of initial (terminal) vertices of the
paths in P. Suppose that s > a(D). Then there exists an (s — 1)-path factor
P’ of D such that i(P") C i(P) and t(P") C t(P).

Proof: The proof is by induction on n, the order of D. The case n = 1
holds vacuously. Let P be as described in the lemma. Let the path P; in P
be denoted by xj17jo ... 25, j = 1,2,...,5. Since s > a(D) the subdigraph
D(i(P)) must contain an arc xy1z,1 for some k # j (1 <k,j <'s).

If 7, = 1, then we can replace Py, P; by the path x3; P; and obtain the
desired path factor. So suppose that r, > 1. Now consider D* = D — xy; and
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the path factor P* which we obtain from P by deleting xy; from the path Pj.
Clearly o(D*) < a(D) and we have i(P*) = i(P) — xx1 + T2, t(P*) = t(P).
Thus it follows by the induction hypothesis that D* has an (s—1)-path factor
Q such that t(Q) C t(P*), i(Q) C i(P*).

If 22 € i(Q), let Q, be the path of Q whose initial vertex is zx2. Replacing
Q, with x;1Q, we obtain a path factor in D with the desired properties. So
suppose that xjo is not an initial vertex of any of the paths in Q. Then x;;
must belong to i(Q) and we obtain the desired path factor by replacing the
path @, of Q which starts at ;; by the path z,1Q,. a

The following theorem due to Erdds and Szekeres [596] follows easily from
Theorem 5.2.1.

Theorem 5.2.3 Let n,p,q be positive integers with n > pq, and let I =
(i1,12,...,1in) be a sequence of n distinct integers. Then there exists either
a decreasing subsequence of I with more than p integers or an increasing
subsequence of I with more than q integers.

Proof: Let D = (V, A) be the digraph with V' = {iy,ia,...,i,} and A =
{imir : m < k and i, < ir}. Observe the obvious correspondence between
independent sets of D and decreasing subsequences of I (respectively, paths
of D and increasing subsequences of I). Let 7 = P; U ... U P; be a minimal
path factor of D. By Theorem 5.2.1, s < a(D). Hence, a(D)-max;_, |P;| >
n > pq. Thus, either (D) > p, i.e., there exists a decreasing subsequence
with a(D) > p integers, or max;_, |P;| > g, i.e., there exists an increasing
subsequence with more than ¢ integers. a

Very recently, the following improvement on Theorem 5.2.1 in the case of
strong digraphs was proved by Thomassé. This was originally conjectured by
Las Vergnas (see [107]).

Theorem 5.2.4 [695] If a digraph D is strong, then pc(D) < max{a(D) —
1,1}.
Las Vergnas (see [106]) proved the following generalization of Theorem

5.2.1.

Theorem 5.2.5 FEvery digraph D of finite out-radius has an out-branching
with at most a(D) wvertices of out-degree zero. O

Theorem 5.2.5 implies Theorem 5.2.1 (Exercise 5.7).

5.3 Path Factors of Acyclic Digraphs with Applications

For acyclic digraphs it turns out that the minimum path factor problem can
be solved quite efficiently. This is important since this problem has many
practical applications. One such example is as follows.
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A news agency wishes to cover a set of events F1, Es, ..., E, which take
place within the coming week starting at a prescribed time T;. For each event
FE; its duration time ¢; and geographical site O; is known. The news agency
wishes to cover each of these events by having one reporter present for the
full duration of the event. At the same time it wishes to use as few reporters
as possible. Assuming that the travel time ¢;; from O; to O; is known for
each 1 < 4,5 < n, we can model this problem as follows. Form a digraph
D = (V, A) by letting V = {vy,va,...,v,} and for every choice of i # j put
an arc from v; to vy if Tj > T; + ¢; + t4;. It is easy to see that D is acyclic.
Furthermore, if the events can be covered by k reporters then D has a k-path
factor (just follow the routes travelled by the reporters). It is also easy to see
that the converse also holds. Hence having an algorithm for the minimum
path factor problem for acyclic digraphs will provide a solution to this and a
large number of similar problems (such as airline and tanker scheduling, see
Exercise 5.8).

Clearly, pc(D) = pce(D) for every acyclic digraph D. Using flows in
networks, we can effectively find a pcc(D)-path-cycle factor in any digraph D
(see Exercises 3.59 and 3.7). Since a k-path-cycle factor in an acyclic digraph
has no cycles, this implies that the minimum path factor problem for acyclic
digraphs is easy (at least from an algorithmic point of view).

Theorem 5.3.1 For acyclic digraphs the minimum path factor problem is
solvable in time O(y/nm). O

Another application of the path covering number of acyclic digraphs is
for partial orders. A partial order consists of a set X and a binary relation
* <’ which is transitive (that is, z < y,y < z implies z < z). Let P = (X, <)
be a partial order. Two elements =,y € X are comparable if either x < y
or y < z holds. Otherwise x and y are incomparable. A chain in P is
a totally ordered subset Y of X, that is, all elements in Y are pairwise
comparable. An antichain on P is a subset Z of X, no two elements of
which are comparable. Dilworth proved the following famous min-max result
relating chains to antichains:

Theorem 5.3.2 (Dilworth’s theorem) [193] Let P = (X, <) be a partial
order. Then the minimum number of chains needed to cover X equals the
mazimum number of elements in an antichain.

Proof: Given P = (X, <), let D = (X, A) be the digraph such that zy € A
for z # y € X if and only if z < y. Clearly, D is transitive. Furthermore,
a path (an independent set) in D corresponds to a chain (antichain) in P.
We need to show that pc(D) = a(D). By Theorem 5.2.1, pc(D) < «a(D).
Let F = PLUP,U...U P, be a minimum path factor of D. By transitivity
of D, each V(P;) induces a complete subgraph in UG(D). Hence, a(D) =
a(UG(D)) < k = pe(D). Thus, pe(D) = a(D). O
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The last theorem can obviously be reformulated as follows: a(D) = pc(D)
for every transitive oriented graph D. We conclude this section with an ex-
tension of the analogous result to extended semicomplete digraphs. Lemma
5.3.3 will be used in Section 6.11.

Lemma 5.3.3 Let D be an acyclic extended semicomplete digraph with
a(D) = k, then the following holds:

(a) pc(D) = k.

(b) One can obtain a minimum path factor of D as follows: choose a longest
path P in D, remove V(P) and continue recursively.

(c) One can find a minimum path factor using the greedy algorithm in (b) in
total time O(nlogn) (using the adjacency matriz).

Proof: By Theorem 5.2.1 pc(D) < k. On the other hand no path can contain
two vertices from the same independent set as that would imply that D
contains a cycle. Hence pc(D) = k. To prove (b), let P be a longest path
of D. By the argument above a(D — P) > k — 1. On the other hand D can
be written as D = S[K,,, Ka,,- .., Ka,], where S is a semicomplete digraph
and s = [V(S)|. By Rédei’s theorem (Theorem 1.4.5), S has a hamiltonian
path P’. In D this path corresponds to a path ) which contains precisely
one vertex from each maximal independent set. Hence @ is a longest path
in D by the remark above and we have a(D — Q) = k — 1. Now the second
claim follows by induction on k. The third claim follows from the description
of procedure MergeHamPathTour in Section 1.9.1, assuming that we have an
adjacency matrix representation of D. Note that we delete the paths as we
find them and hence the total complexity is still O(nlogn). ad

5.4 Hamilton Paths and Cycles in Path-Mergeable
Digraphs

The class of path-mergeable digraphs was introduced in Section 4.9, where
some of its properties were studied. In this section, we prove a characteriza-
tion of hamiltonian path-mergeable digraphs due to Bang-Jensen [50].

We begin with a simple lemma which forms the basis for the proof of
Theorem 5.4.2. For a cycle C', a C-bypass is a path of length at least two
with both end-vertices on C' and no other vertices on C.

Lemma 5.4.1 [50] Let D be a path-mergeable digraph and let C' be a cycle in
D. If D has a C-bypass P, then there exists a cycle in D containing precisely
the vertices V(C) UV (P).

Proof: Let P be an (x, y)-path. Then the paths P and C[z,y] can be merged
into one (z,y)-path R, which together with Cly, z] forms the desired cycle.
O
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Theorem 5.4.2 (Bang-Jensen) [50] A path-mergeable digraph D of order
n > 2 is hamiltonian if and only if D is strong and UG (D) is 2-connected.

Proof: ‘Only if’ is obvious; we prove ‘if’. Suppose that D is strong, UG(D)
is 2-connected and D is not hamiltonian. Let C' = ujus ... upu; be a longest
cycle in D. Observe that, by Lemma 5.4.1, there is no C-bypass. For each
i€{1,...,p} let X; (respectively Y;) be the set of vertices of D — V(C') that
can be reached from wu; (respectively, from which u; can be reached) by a
path in D — (V(C) — u;). Since D is strong,

X1U...UX, =11 U...UY,=V(D)-V(C).

Since there is no C-bypass, every path starting at a vertex in X; and ending
at a vertex in C must end at u;. Thus, X; C Y;. Similarly, ¥; C X, and,
hence, X; = Y;. Since there is no C-bypass, the sets X; are disjoint. Since
we assumed that D is not hamiltonian, at least one of these sets, say X1, is
non-empty. Since UG(D) is 2-connected, there is an arc with one end-vertex
in X; and the other in V(D) — (X1 Uuq), and no matter what its orientation
is, this implies that there is a C-bypass, a contradiction. a

Using the proof of this theorem, Lemma 5.4.1 and Proposition 4.9.3, it is
not difficult to show the following (Exercise 5.10):

Corollary 5.4.3 [50] There is an O(nm)-algorithm to decide whether a
given strong path-mergeable digraph has a hamiltonian cycle and find one
if it exists.

Clearly, Theorem 5.4.2 and Corollary 5.4.3 imply an obvious characteriza-
tion of longest cycles in path-mergeable digraphs and a polynomial algorithm
to find a longest cycle. Neither a characterization nor the complexity of the
hamiltonian path problem for path-mergeable digraphs is currently known.
The following problem was posed by Bang-Jensen and Gutin:

Problem 5.4.4 [65] Characterize traceable path-mergeable digraphs. Is there
a polynomial algorithm to decide whether a path-mergeable digraph is trace-
able?

For a related result, see Proposition 6.3.2. This result may be considered
as a characterization of traceable path-mergeable digraphs. However, this
characterization seems of not much value from the complexity point of view.

5.5 Hamilton Paths and Cycles in Locally
In-Semicomplete Digraphs

According to Proposition 4.10.1, every locally in-semicomplete digraph is
path-mergeable. By Exercise 5.12, every strong locally in-semicomplete di-
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graph has a 2-connected underlying graph. Thus, Theorem 5.4.2 implies the
following characterization of hamiltonian locally in-semicomplete digraphs?.

Theorem 5.5.1 (Bang-Jensen, Huang and Prisner) [81] A locally in-
semicomplete digraph D of order n > 2 is hamiltonian if and only if D is
strong. O

This theorem generalizes Camion’s theorem on strong tournaments (The-
orem 1.5.2). Bang-Jensen and Hell [75] showed that for the class of locally
in-semicomplete digraphs Corollary 5.4.3 can be improved to the following
result.

Theorem 5.5.2 [75] There is an O(m + nlogn)-algorithm for finding a
hamiltonian cycle in a strong locally in-semicomplete digraph.

In Section 5.4, we remarked that the Hamilton path problem for path-
mergeable digraphs is unsolved so far. For a subclass of this class, locally
in-semicomplete digraphs, an elegant characterization, due to Bang-Jensen,
Huang and Prisner, exists.

Theorem 5.5.3 [81] A locally in-semicomplete digraph is traceable if and
only if it contains an in-branching.

Proof: Since a Hamilton path is an in-branching, it suffices to show that
every locally in-semicomplete digraph D with an in-branching 7" is traceable.
We prove this claim by induction on the number b of vertices of T" of in-degree
Zero.

For b = 1, the claim is trivial. Let b > 2. Consider a pair of vertices x,y
of in-degree zero in T'. By the definition of an in-branching there is a vertex
z in T such that T contains both (z,z)-path P and (y, z)-path (. Assume
that the only common vertex of P and @ is z.

By Proposition 4.10.2, there is a path R in D that starts at  or y and
terminates at z and V(R) = V(P) UV (Q). Using this path, we may replace
T with an in-branching with b — 1 vertices of in-degree zero and apply the
induction hypothesis of the claim. ad

Clearly, Theorem 5.5.3 implies that a locally out-semicomplete digraph is
traceable if and only if it contains an out-branching. By Proposition 1.6.1,
we have the following:

Corollary 5.5.4 A locally in-semicomplete digraph is traceable if and only
if it contains only one terminal strong component. a

2 Actually, this characterization, as well as the other results of this section, were
originally proved only for oriented graphs. However, as can be seen from Exercises
4.27 and 4.28, the results for oriented graphs immediately imply the results of
this section.
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Using Corollary 5.5.4, Bang-Jensen and Hell [75] proved the following:

Theorem 5.5.5 A longest path in a locally in-semicomplete digraph D can
be found in time O(m + nlogn). O

Corollary 5.5.4 and Lemma 4.10.3 imply the following:

Corollary 5.5.6 (Bang-Jensen) [/4] A locally semicomplete digraph has
a hamiltonian path if and only if it is connected. ad

Notice that there is a nice direct proof of this corollary (using Proposition
4.10.2), which is analogous to the classical proof of Rédei’s theorem displayed
in procedure HamPathTour in Section 1.9.1. See Exercise 5.14.

5.6 Hamilton Cycles and Paths in Degree-Constrained
Digraphs

In Subsection 5.6.1 we formulate certain sufficient degree-constrained condi-
tions for hamiltonicity of digraphs. Several of these conditions do not follow
from the others, i.e. there are certain digraphs that can be proved to be
hamiltonian using some condition but none of the others. (The reader will be
asked to show this in the exercises.)

In Subsection 5.6.3 we provide proofs to some of these conditions to illus-
trate the power of a recently introduced approach, which we call the multi-
insertion technique. (This technique can be traced back to Ainouche [9] for
undirected graphs and to Bang-Jensen [48] for digraphs, see also the paper
[68] by Bang-Jensen, Gutin and Huang). The technique itself is introduced
in Subsection 5.6.2. The strength of the multi-insertion technique lies in the
fact that we can prove the existence of a hamiltonian cycle without actually
exhibiting it. Moreover, our hamiltonian cycles may have quite a complicated
structure. For example, compare the hamiltonian cycles in the proof of The-
orem 5.6.1 to the hamiltonian paths constructed in the inductive proof of
Theorem 1.4.5. The multi-insertion technique is used in some other parts of
this book, see e.g. Section 5.7.

Let z,y be a pair of distinct vertices in a digraph D. The pair {z,y} is
dominated by a vertex z if z—x and z—uy; in this case we say that the
pair {x,y} is dominated. Likewise, {z,y} dominates a vertex z if x—z
and y—z; we call the pair {z,y} dominating.

5.6.1 Sufficient Conditions

Considering the converse digraph and using Theorem 5.5.1, we see that a
locally out-semicomplete digraph is hamiltonian if and only if it is strong.
This can be generalized as follows. We prove Theorem 5.6.1 in Subsection
5.6.3.
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Theorem 5.6.1 (Bang-Jensen, Gutin and Li) [69] Let D be a strong di-
graph of order n > 2. Suppose that, for every dominated pair of non-adjacent
vertices {x,y}, either d(z) > n and d(y) > n—1 ord(z) > n—1 and d(y) > n.
Then D is hamiltonian.

The following example shows the sharpness of the conditions of Theorem
5.6.1 (and Theorem 5.6.5), see Figure 5.3. Let G and H be two disjoint
transitive tournaments such that |V (G)| > 2, |V (H)| > 2. Let w be the vertex
of out-degree 0 in G and w’ the vertex of in-degree 0 in H. Form a new digraph
by identifying w and w’ to one vertex z. Add four new vertices z,y,u,v
and the arcs {xv,yv,uz,uy} U {zz, zz,yz,2y} U {rg : r € {x,y,v},g9 €
V(G) —w}U{hs : h e V(H)—w,s € {u,x,y}}. Denote the resulting
digraph by Q,, where n is the order of @,. It is easy to check that @,
is strong and non-hamiltonian (Exercise 5.17). Also z,y is the only pair of
non-adjacent vertices which is dominating (dominated, respectively). An easy
computation shows that

d() = dy) =n — 1 = d*(2) +d"(y) = d"(2) + d* ().

G—-w H—w'

Figure 5.3 The digraph @,. The two unoriented edges denote 2-cycles.

Combining Theorem 5.6.1 with Proposition 5.0.3 one can obtain sufficient
conditions for a digraph to be traceable (see also Exercise 5.16). Theorem
5.6.1 also has the following immediate corollaries.

Corollary 5.6.2 (Ghouila-Houri) [315] If the degree of every vertex in a
strong digraph D of order n is at least n, then D is hamiltonian. ad

Corollary 5.6.3 Let D be a digraph of order n. If the minimum semi-degree
of D, §°(D) > n/2, then D is hamiltonian. O

It turns out that even a slight relaxation of Corollary 5.6.3 brings in non-
hamiltonian digraphs. In particular, Darbinyan [177] proved the following:
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Proposition 5.6.4 Let D be a digraph of even order n > 4 such that the
degree of every vertex of D is at least n — 1 and 6°(D) > n/2 — 1. Then
either D is hamiltonian or D belongs to a non-empty finite family of non-
hamiltonian digraphs. a

By Theorem 5.5.1, a locally semicomplete digraph is hamiltonian if and
only if it is strong [44]. This result was generalized by Bang-Jensen, Gutin
and Li [69] as follows.

Theorem 5.6.5 Let D be a strong digraph of order n. Suppose that D sat-
isfies min{d* (z) + d~(y), d~(z) + d*(y)} > n for every pair of dominating
non-adjacent and every pair of dominated non-adjacent vertices {x,y}. Then
D is hamiltonian.

We prove this theorem in Subsection 5.6.3. Theorem 5.6.5 implies Corol-
lary 5.6.3 as well as the following theorem by Woodall [739]:

Corollary 5.6.6 Let D be a digraph of ordern > 2. If d*(z) +d~(y) > n
for all pairs of vertices x and y such that there is no arc from x to y, then
D is hamiltonian. ad

The following theorem generalizes Corollaries 5.6.2, 5.6.3 and 5.6.6. The
inequality of Theorem 5.6.7 is best possible: Consider K, _5 (n > 5) and fix
a vertex u in this digraph. Construct the digraph H,, by adding to K,_2 a

pair v, w of vertices such that both v and w dominate every vertex in K, _o
and are dominated by only u, see Figure 5.4. It is easy to see that H, is
strong and non-hamiltonian (H,, — u is not traceable). However, v, w is the
only pair of non-adjacent vertices in H,, and d(v) + d(w) = 2n — 2.

Figure 5.4 The digraph H,.

Theorem 5.6.7 (Meyniel’s theorem) [56/] Let D be a strong digraph of
order n > 2. If d(z) + d(y) > 2n — 1 for all pairs of non-adjacent vertices in
D, then D is hamiltonian. a
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Short proofs of Meyniel’s theorem were given by Overbeck-Larisch [597]
and Bondy and Thomassen [128]. The second proof is slightly simpler than
the first one and can also be found in the book [735] by West (see Theorem
8.4.38). Using Proposition 5.0.3 one can easily see that replacing 2n — 1 by
2n — 3 in Meyniel’s theorem we obtain sufficient conditions for traceability.
(Note that for traceability we do not require strong connectivity.) Darbinyan
[180] proved that by weakening the degree condition in Meyniel’s theorem
only by one, we obtain a stronger result:

Theorem 5.6.8 [180] Let D be a digraph of order n > 3. If d(x) + d(y) >
2n — 2 for all pairs of non-adjacent vertices in D, then D contains a hamil-
tonian path in which the initial vertex dominates the terminal vertez. a

Berman and Liu [111] extended Theorem 5.6.7 as formulated below. For
a digraph D of order n, a set M C V(D) is Meyniel if d(z) +d(y) > 2n—1
for every pair x,y of non-adjacent vertices in M. The proof of Theorem 5.6.9
in [111] is based on the multi-insertion technique.

Theorem 5.6.9 [111] Let M be a Meyniel set of vertices of a strong digraph
D of order n > 2. Then D has a cycle containing all vertices of M. ad

Another extension of Meyniel’s theorem was given by Heydemann [428].

Theorem 5.6.10 [/28] Let h be a non-negative integer and let D be a strong

digraph of order n > 2 such that, for every pair of non-adjacent vertices x

and y, we have d(x) +d(y) > 2n —2h+1. Then D contains a cycle of length
n—1

greater than or equal to [375 1]+ 1. O

Manoussakis [547] proved the following sufficient condition that involves
triples rather than pairs of vertices. Notice that Theorem 5.6.11 does not
imply either of Theorems 5.6.1, 5.6.5 and 5.6.7 [69].

Theorem 5.6.11 [5/7] Suppose that a strong digraph D of order n > 2
satisfies the following conditions: for every triple x,y,z € V(D) such that x
and y are non-adjacent
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Then D is hamiltonian. O

The next theorem resembles both Theorem 5.6.5 and Theorem 5.6.7. How-
ever, Theorem 5.6.12 does not imply any of these theorems. The sharpness of
the inequality of Theorem 5.6.12 can be seen from the digraph H,, introduced
before Theorem 5.6.7.
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Theorem 5.6.12 (Zhao and Meng) [758] Let D be a strong digraph of
order n > 2. If

d¥ (@) +d(y) +d (u) +d (v) >2n—1

for every pair x,y of dominating vertices and every pair u,v of dominated
vertices, then D is hamiltonian. a

Theorems 5.6.5 and 5.6.12 suggest that the following conjecture by Bang-
Jensen, Gutin and Li, may be true.

Conjecture 5.6.13 [69] Let D be a strong digraph of order n > 2. Suppose
that d(z)+d(y) > 2n—1 for every pair of dominating non-adjacent and every
pair of dominated non-adjacent vertices {x,y}. Then D is hamiltonian.

Bang-Jensen, Guo and Yeo [57] proved that, if we replace the degree
condition d(z) + d(y) > 2n — 1 with d(z) + d(y) > 2n — 4 in Conjecture
5.6.13, then D is hamiltonian. They also provided additional support for
Conjecture 5.6.13 by showing that every digraph satisfying the condition of
Conjecture 5.6.13 has a cycle factor.

Perhaps Conjecture 5.6.13 can even be generalized to the following which

was conjectured by Bang-Jensen, Gutin and Li:

Conjecture 5.6.14 [69] Let D be a strong digraph of order n > 2. Suppose
that, for every pair of dominated non-adjacent vertices {x,y}, d(x) +d(y) >
2n — 1. Then D is hamiltonian.

Let F be the digraph obtained from the complete digraph IH(”_g by
adding three new vertices {z, y, z} and the following arcs {zy, yz,yz, zy, zz }U

{zu,uz,yu: u € V(I?n—?»)}, see Figure 5.5. Clearly F is strongly connected
and the underlying undirected graph of F' is 2-connected. However, F' is not
hamiltonian as all hamiltonian paths in F'— x start at z, but  does not dom-
inate z. The only pairs of non-adjacent vertices in D are z and any vertex

u € V(Kn-3) and here we have d(z) + d(u) = 2n — 2. Thus both conjectures
above would be the best possible.

One of the oldest conjectures in the area of hamiltonian digraphs is the
following conjecture by Nash-Williams.

Conjecture 5.6.15 [586, 587] Let D be a digraph of order n > 3 satisfying
the following conditions:

(i) For every positive integer k less than (n— 1)/2, the number of vertices of
out-degree less than or equal to k is less than k.

(i) The number of vertices of out-degree less than or equal to (n — 1)/2 is
less than or equal to (n —1)/2.
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Figure 5.5 The digraph F'.

(#ii) For every positive integer k less than (n — 1)/2, the number of vertices
of in-degree less than or equal to k is less than k.

(iv) The number of vertices of in-degree less than or equal to (n—1)/2 is less
than or equal to (n —1)/2.

Then D is hamiltonian.

Conjecture 5.6.15 seems to be very difficult (see comments by Nash-
Williams in [587, 588]). This conjecture was inspired by the corresponding
theorem by Pésa [610] on undirected graphs. Pdsa’s result implies that the as-
sertion of this conjecture is true at least for symmetric digraphs, i.e. digraphs
D such that zy € A(D) implies yz € A(D).

One may also try to obtain digraph analogues of various other sufficient
degree conditions for graphs, such as Chvatal’s theorem [159], which asserts
that, if the degree sequence d; < dy < ... < d, of an undirected graph
satisfies the condition dy < k < §=d,,_x > n — k for each k, then the graph
is hamiltonian. Similarly, one may ask whether every strong digraph whose
non-decreasing degree sequence d; < dy < ... < d,, satisfies the following
condition is hamiltonian:

dip <2k <n=dp,_ >2(n—k), k=1,2,...,n— 1 (5.1)

For a digraph D we can obtain the non-decreasing out-degree and in-
degree sequences: d;r < d; <...<df and dy <d; <...<d;, (orderings
of vertices of D in these two sequences are usually different). Using the two
sequences, one may suggest conditions similar to (5.1):

dggk<g;»d;_kzn—kand
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d,;gk<g;sd;_kzn—k, 1<k<(n—1)/2

It is not difficult to construct an infinite family of non-hamiltonian strong
digraphs that satisfy both (5.1) and (5.2) (Exercise 5.25). However, if we
‘mix’ the out-degrees with the in-degrees in (5.2), we obtain the following
conjecture due to Nash-Williams:

Conjecture 5.6.16 [588] If the non-decreasing out-degree and in-degree se-
quences of a strong digraph D satisfy the conditions

d;gk<g:d;kzn—kand

d;§k<g:>d;kzn—k, 1<k<(n-1)/2

then D s hamiltonian.

One may expect that for oriented graphs (i.e., digraphs with no 2-cycles)
a result much stronger than Corollary 5.6.3 holds. Higgkvist [387] proved
the following theorem and made a much stronger conjecture. Notice that
Higgkvist [387] constructed non-hamiltonian oriented graphs D with §°(D) >
n/3 (these oriented graphs do not even contain cycle factors).

Theorem 5.6.17 [387] Let D be an oriented graph of order n and let
§°(D) > (3 — 27 '®)n. Then D is hamiltonian. O

Conjecture 5.6.18 [387] Let D be an oriented graph of order n and let
dt(D) > (3n —2)/8. Then D is hamiltonian.

Jackson conjectured that for regular oriented graphs an even stronger
assertion holds.

Conjecture 5.6.19 [449] Every k-regular oriented graph of order at most
4k + 1, where k # 2, contains a Hamilton cycle.

5.6.2 The Multi-Insertion Technique

Let P = ujus...us be a path in a digraph D and let Q = viva...v; be a
path in D—V(P). The path P can be inserted into @ if there is a subscript
i€ {1,2,...,t — 1} such that v;—u; and us—v;+1. Indeed, in this case the
path @ can be extended to a new (v1, v¢)-path Q[vy, v;]PQ[v;t1, v¢]. The path
P can be multi-inserted into @ if there are integers i; = 1 < iy < ... <
im = s+1 such that, for every k = 2,3, ...,m, the subpath Plu;,_,,u;, —1] can
be inserted into Q. The sequence of subpaths Plu;,_,,u;,—1], k = 2,...,m,
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is a multi-insertion partition of P. Similar definitions can be given for the
case when () is a cycle.

The complexity of algorithms in this subsection is measured in terms of
the number of queries to the adjacency matrix of a digraph. In this subsection
we prove several simple results, which are very useful while applying the
multi-insertion technique. Some of these results are used in this section, others
will be applied in other parts of this book. The following lemma is a simple
extension of a lemma by Bang-Jensen, Gutin and Li [69].

Lemma 5.6.20 Let P be a path in D and let Q = vivs...v be a path (a
cycle, respectively) in D—V (P). If P can be multi-inserted into Q, then there
is a (v1,vt)-path R (a cycle, respectively) in D so that V(R) = V(P)UuV(Q).
Given a multi-insertion partition of P, the path R can be found in time

oV (PIIV(Q)D)-

Proof: We consider only the case when @) is a path, as the other case (Q is a
cycle) can be proved analogously. Let P = ujus ... us. Suppose that integers
i1=1<1dy <...< iy = s+ 1 are such that the subpaths Plu;, _,,u;, 1],
k=2,3,...,m, form a multi-insertion partition of P.

We proceed by induction on m. If m = 2 then the claim is obvious, hence
assume that m > 3. Let zy € A(Q) be such that the subpath Plu;,,u;,—1]
can be inserted between x and y on Q). Choose r as large as possible such that
u;,—1—y. Clearly, Plu;,,u;, —1] can be inserted into Q to give a (v1,v:)-path
Q*. Thus, if r = m we are done. Otherwise apply the induction hypothesis
to the paths Plu;,_,us] and Q* (observe that by the choice of r none of the
subpaths of the multi-insertion partition of Plu;, ,us] can be inserted between
x and y in @, and thus every such subpath can be inserted into Q*).

If we postpone the actual construction of R till we have found a new
multi-insertion partition M of P and all (distinct) pairs of vertices between
which the subpaths of M can be inserted, then the complexity claim of this
lemma follows easily. a

The next two corollaries due to Bang-Jensen, Gutin and Huang, respec-
tively, Yeo can easily be proved using Lemma 5.6.20; their proofs are left as
an easy exercise (Exercise 5.21).

Corollary 5.6.21 [68] Let D be a digraph. Suppose that P = ujus ... u, is a
path in D and C' is a cycle in D — P. Suppose that for eachi=1,2,...,r—1,
either the arc u;u;4+1 or the vertex u; can be inserted into C, and, in addition,
assume that u, can be inserted into C. Then D contains a cycle Z with the
vertex set V(P)UV(C) and Z can be constructed in time O(|V (P)||[V(C)]).

O

Corollary 5.6.22 [7/4] Let D be a digraph. Suppose that P = ujusg ... u, s
a path in D and C is a cycle in D — P. Suppose also that for each odd index
1 the arc u;u;y1 can be inserted into C, and if r is odd, u, can be inserted
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into C. Then D contains a cycle Z with the vertex set V(P)UV(C) and Z
can be constructed in time O(|V(P)||V(C))). O

Corollary 5.6.23 [68] Let D be a digraph. Suppose that C' is a cycle of even
length in D and Q is a cycle in D — C'. Suppose also that for each arc uv of
C either the arc uv or the vertexr u can be inserted into Q. Then D contains
a cycle Z with the vertex set V(Q)UV(C) and Z can be constructed in time

OV @IV

Proof: If there is a vertex x on C that can be inserted into @ then apply
Corollary 5.6.21 to Clz™t,z] and Q. Otherwise, all the arcs of C can be in-
serted into @ and we can apply Corollary 5.6.22 to Cly™,y] and @, where y
is any vertex of C. a

5.6.3 Proofs of Theorems 5.6.1 and 5.6.5

The following lemma is a slight modification of a lemma by Bondy and
Thomassen [128]; its proof is not too difficult and is left as an exercise to
the reader (Exercise 5.18).

Lemma 5.6.24 Let Q = v1vs...v; be a path in D and let w,w’ be vertices
of V(D) = V(Q) (possibly w =w'). If there do not exist consecutive vertices
Vi, Vit1 on Q such that v;w, w'viy1 are arcs of D, then dé(w)+d5(w’) < t+¢,
where & = 1 if vy—w and 0, otherwise. a

In the special case when w’ = w above, we get the following interpretation
of the statement of Lemma 5.6.24.

Lemma 5.6.25 Let Q = v1vs...v; be a pathin D, and letw € V(D)-V(Q).
If w cannot be inserted into Q, then dg(w) < t+ 1. If, in addition, vy does
not dominate w, then dgo(w) < t. m|

Let C be a cycle in D. Recall that an (x,y)-path P is a C-bypass if
|[V(P)| >3,z #yand V(P)NV(C) = {z,y}. The length of the path C[z,y]
is the gap of P with respect to C.

Proof of Theorem 5.6.1: Assume that D is non-hamiltonian and C' =
T1T2 ... T,x1 1S a longest cycle in D. We first show that D contains a C-
bypass. Assume D does not have one. Since D is strong, D must contain a
cycle Z such that |V(Z) N V(C)| = 1. Without loss of generality, we may
assume that V(Z)NV(C) = {x1}. Let z be the successor of 21 on Z. Since D
has no C-bypass, z and x2 are non-adjacent. Since z and x5 are a dominated
pair, d(z) + d(z2) > 2n — 1. On the other hand, since D has no C-bypass, we
have do_y, (2) = dz—s, (x2) = 0 and |({#, 22},y) U (v, {z, z2})| < 2 for every
ye V(D) — (V(C)uV(Z)). Thus, d(z) + d(xz2) < 2(n — 1); a contradiction.
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Let P = ujusg...us be a C-bypass (s > 3). Without loss of generality,
let uy = x1, us = Ty41, 0 < v < m. Suppose also that the gap v of P is
minimum among the gaps of all C-bypasses.

Since C is a longest cycle of D, v > 2. Let C' = Clzg,2,], C" =
Clzy41,21], R= D —V(C), and let z; be any vertex in C’ such that z;—x;.
Let also x be an arbitrary vertex in C”.

We first prove that

dc//(xj) > |V(C”)| + 2. (53)

Since C is a longest cycle and P has the minimum gap with respect to C',
uz is not adjacent to any vertex on C’, and there is no vertex y € V(R) —{uz}
such that either us—y—xy or xp—y—us. Therefore,

dor(ax) + des (us) < 2(V(C')] — 1) (5.4)

and

dr(zk) + dr(u2) <2(n—m —1). (5.5)

By the maximality of C, us cannot be inserted into C”, so by Lemma
5.6.25,

der(uz) < [V(C")[+ 1. (5.6)

The fact that the pair of non-adjacent vertices {x;,us} is dominated by
x1 along with (5.4), (5.5) and (5.6), implies that

2n — 1 < d(zj) + d(u2) < dew(z;) + 2n —|V(C")| - 3.
This implies (5.3).

By (5.3) and Lemma 5.6.25, z2 can be inserted into C”. Since C' is a
longest cycle, it follows from Lemma 5.6.20 that there exists 8 € {3,...,7}
so that the subpath C|zs, x3_1] can be multi-inserted into C”, but Clzs, zg]
cannot. In particular, zg cannot be inserted into C”. Thus, by (5.3) and
Lemma 5.6.25, 21 does not dominate x5 and dev (z5) < |V(C”)|. This along
with (5.4)-(5.6) gives d(zg) + d(uz) < 2n — 3. Since ugz forms a dominated
pair with xo, we have that d(ugz) > n — 1. Hence,

d(zg) <n—2. (5.7)

By the definition of multi-insertion, there are a € {2,3,...,8 — 1} and
i € {y+1,...,m} such that x;,—z, and zg_1—x;41. Observe that the
pair {xg,x;41} is dominated by zg_1. Thus, by (5.7) and the assumption
of the theorem, either xg—x;y1 or x;41—xg. If x3—x;41, then the path
Plzy, 5] can be multi-inserted into C” which contradicts our assumption.
Hence, x;11—x3. Considering the pair 23, x; 12, we conclude analogously that
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z;+2—xg. Continuing this process, we finally conclude that z;—zg, contra-
dicting the conclusion above that the arc x1x3 does not exist. a

Proof of Theorem 5.6.5: Assume that D is not hamiltonian and C' =
T1Tg ... T,y is a longest cycle in D. Set R = D — V(C'). We first prove that
D has a C-bypass with 3 vertices.

Since D is strong, there is a vertex y in R and a vertex x in C such
that y—=z. If y dominates every vertex on C, then C' is not a longest cycle,
since a path P from a vertex z; on C to y such that V(P) NV (C) = {z;}
together with the arc y—a;11 and the path Clx;y1,z;] form a longer cycle
in D. Hence, either there exists a vertex z,, € V(C) such that z,—y—xz, 1,
in which case we have the desired bypass, or there exists a vertex x; €
V(C) so that y and x; are non-adjacent, but y—z,41. Since the pair {y, z;}
dominates xj11, d*(z;) + d~(y) > n. This implies the existence of a vertex
z € V(D) — {xj,zj41,y} such that x;—z—y. Since C is a longest cycle,
z € V(C). So, B = zyx;j1 is the desired bypass.

Without loss of generality, assume that z = x; and the gap j of B with
respect to C' is minimum among the gaps of all C-bypasses with three vertices.
Clearly, j > 2.

Let C" = Clza,z;] and C” = Clzjt1,21]. Since C is a longest cycle,
C' cannot be multi-inserted into C”. It follows from Lemma 5.6.24 that
d& () + dgn(x2) < |V(C")| + 1. By Lemma 5.6.25 and the maximality
of C, der(y) < |V(C")| 4+ 1. Analogously to the way we derived (5.4) in the
previous proof, we get that dr(y) + df(z;) + dp(72) < 2(n—m —1). Clearly,
d&i(x;) +dg(22) < 2|V(C)| — 2. Since der (y) = 0, the last four inequalities
imply

d(y) +d (z;) +d (z2) < 2n —2. (5.8)

Since y is adjacent to neither z2 nor z;, the assumption of the theorem
implies that d* (y) + d~ (z2) > n and d™ (y) + d* (x;) > n, which contradicts
(5.8). a

5.7 Longest Paths and Cycles in Semicomplete
Multipartite Digraphs

While both Hamilton path and Hamilton cycle problems are polynomial time
solvable for semicomplete multipartite digraphs (the latter was a difficult
open problem for a while and was proved recently by Bang-Jensen, Gutin and
Yeo [72] using several deep results on cycles and paths in semicomplete mul-
tipartite digraphs, see also [746]), only a characterization of traceable semi-
complete multipartite digraphs is known. In Subsection 5.7.1, we give basic
results on hamiltonian and longest paths and cycles in semicomplete multi-
partite digraphs. Several results of Subsection 5.7.1 are proved in Subsection
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5.7.3 using the most important assertion of Subsection 5.7.2. In Subsection
5.7.4, we formulate perhaps the most important known result on Hamilton
cycles in semicomplete multipartite digraphs, Yeo’s Irreducible Cycle Sub-
digraph Theorem, and prove some interesting consequences of this powerful
result. Due to the space limit our treatment of hamiltonian semicomplete
multipartite digraphs is certainly restricted. The reader can find more infor-
mation on the topic in the survey papers [65, 66] by Bang-Jensen and Gutin
[368] by Gutin and [728] by Volkmann, the theses [345, 362, 692, 745], by
Guo, Gutin, Tewes and Yeo respectively and the papers cited there.

5.7.1 Basic Results

We start by considering the longest path problem for semicomplete multipar-
tite digraphs. The following characterization is proved in Subsection 5.7.3.

Theorem 5.7.1 (Gutin) [358, 363] A semicomplete multipartite digraph
D is traceable if and only if it contains a 1-path-cycle factor. One can verify

whether D is traceable and find a hamiltonian path in D (if any) in time
O(n?%).

This theorem can be reformulated as pc(D) = 1 if and only if pce(D) = 1
for a semicomplete multipartite digraph D. Using the result of Exercise 3.59,
the last statement can be easily extended to the following result by Gutin:

Theorem 5.7.2 [362] For a semicomplete multipartite digraph D, pc(D) =
pce(D). The path covering number of D can be found in time O(n*?). a

The non-complexity part of the next result by Gutin follows from Theorem
5.7.1. The complexity part is a simple consequence of Theorem 3.11.11.

Theorem 5.7.3 [363] Let D be a semicomplete multipartite digraph of order
n.

(a) Let F be a I-path-cycle subdigraph with maximum number of vertices in
D. Then D contains a path P such that V(P) = V(F).
(b) A longest path in D can be constructed in time O(n?).
O

We see from Theorem 5.7.1 that the hamiltonian path problem for semi-
complete multipartite digraphs turns out to be relatively simple. The hamil-
tonian cycle problem for this class of digraphs seems to be much more difficult.
One could guess that similarly to Theorem 5.7.1, a semicomplete multipar-
tite digraph is hamiltonian if and only if it is strong and has a cycle factor.
Even though these two conditions (strong connectivity and the existence of a
cycle factor) are sufficient for semicomplete bipartite digraphs and extended
semicomplete digraphs (see Theorems 5.7.4 and 5.7.5), they are not sufficient



252 5. Hamiltonicity and Related Problems

for semicomplete k-partite digraphs (k > 3) (see, e.g., an example later in
this subsection). The following characterization was obtained independently
by Gutin [353] and Héggkvist and Manoussakis [389].

Theorem 5.7.4 A semicomplete bipartite digraph D is hamiltonian if and
only if D is strong and contains a cycle factor. One can check whether D

is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n?%).

Some sufficient conditions for the existence of a hamiltonian cycle in a
bipartite tournament are described in the survey paper [368] by Gutin.

Theorem 5.7.5 [359] An extended semicomplete digraph D is hamiltonian
if and only if D is strong and contains a cycle factor. One can check whether

D is hamiltonian and construct a Hamilton cycle of D (if one exists) in time
O(n?%).

These two theorems can be generalized as follows.

Theorem 5.7.6 (Gutin) /357, 362] Let D be strong semicomplete bipartite
digraph. The length of a longest cycle in D is equal to the number of vertices
in a cycle subdigraph of D of maximum order. One can find a longest cycle
in D in time O(n®).

Theorem 5.7.7 [362] Let D be a strong extended semicomplete digraph and
let F be a cycle subdigraph of D. Then D has a cycle C which contains all
vertices of F. The cycle C can be found in time O(n3). In particular, if F is
mazimum, then V(C) = V(F), i.e., C is a longest cycle of D.

Proofs of the last two theorems are given in Subsection 5.7.3. One can see
that the statement of Theorem 5.7.7 is stronger than Theorem 5.7.6. In fact,
the analogue of Theorem 5.7.7 for semicomplete bipartite digraphs does not
hold [362], see Exercise 5.29. The following strengthening of Theorem 5.7.7
is proved in [82]:

Theorem 5.7.8 (Bang-Jensen, Huang and Yeo) [82] Let D = (V, A)
be a strong extended semicomplete digraph with decomposition given by D =
[H1, Ha, ..., H], where s = |S| and every V(H;) is a mazimal independent
set in V. Let m;, 1 = 1,2,...,s, denote the mazimum number of vertices
from H; which are contained in a cycle subdigraph of D. Then every longest
cycle of D contains precisely m; vertices from each H;, i =1,2,...,t. a

One may ask whether there is any degree of strong connectivity, which
together with a cycle factor is sufficient to guarantee a hamiltonian cycle
in a semicomplete multipartite digraph (or a multipartite tournament). The
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answer is negative. In fact, there is no s such that every s-strong multipartite
tournament with a cycle factor has a Hamilton cycle. Figure 5.6 shows a non-
hamiltonian multipartite tournament 7" which is s-strong (s is the number of
vertices in each of the sets A, B,C, D and X, Y, Z), and has a cycle factor. We
leave it to the reader to verify that there is no Hamilton cycle in T' (Exercise
5.28).

Figure 5.6 An s-strong non-hamiltonian multipartite tournament 7" with a cycle
factor. Each of the sets A, B,C,D and X,Y,Z induces an independent set with
exactly s vertices. All arcs between two sets have the direction shown.

We conclude the description of basic results on hamiltonian semicomplete
digraphs by the following important result which we mentioned above.

Theorem 5.7.9 (Bang-Jensen, Gutin and Yeo) [72] One can verify
whether a semicomplete multipartite digraph D has a hamiltonian cycle and
find one (if it exists) in time O(n"). O

Very recently Yeo [746] proved that the problem can be solved in time
O(nd).

5.7.2 The Good Cycle Factor Theorem

The purpose of this subsection, based on the paper [68] by Bang-Jensen,
Gutin and Huang, is to prove some sufficient conditions for a semicomplete
multipartite digraph to be hamiltonian.

Let F = C1 U5 be a cycle factor or a 1-path-cycle factor in a digraph
D, where C is a cycle or a path in D and Cs is a cycle. A vertex v €
V(C;) is called out-singular (in-singular) with respect to C3_; if v=C3_;
(C3_;=v); v is singular with respect to C3_; if it is either out-singular or
in-singular with respect to Cs_;.
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Lemma 5.7.10 [68] Let Q U C be a cycle factor in a semicomplete multi-
partite digraph D. Suppose that the cycle @Q has no singular vertices (with
respect to C') and D has no hamiltonian cycle, then for every arc xy of Q
either the arc xy itself can be inserted into C, or both vertices x and y can
be inserted into C.

Proof: Assume without loss of generality that there is some arc xy on @
such that neither  nor zy can be inserted into C. Since D is a semicom-
plete multipartite digraph and x is non-singular and cannot be inserted into
C, there exists a vertex v on C which is not adjacent to x and v~ —z—v™.
Furthermore, v is adjacent to y since x and y are adjacent. Since zy can-
not be inserted into C, we have v—y. Then D contains a Hamilton cycle
Qly, z]Cv™, v}y, which contradicts the assumption. O

Lemma 5.7.11 [68] Let D be a semicomplete multipartite digraph contain-
ing a cycle factor C1 U Cs such that C; has no singular vertices with respect
to C3_;, for both i = 1,2; then D is hamiltonian. Given Cy and C3, a hamil-
tonian cycle in D can be found in time O(|V(C1)||[V(C5)]).

Proof: If at least one of the cycles C, Cs is even, then by Corollary 5.6.23 and
Lemma 5.7.10 we can find a Hamilton cycle in D in time O(|V(C4)||V (C2))).
Thus, assume that both of C7, Cs are odd cycles. If some vertex in C; can be
inserted into C3_; for some ¢ = 1 or 2, then by Corollary 5.6.21 and Lemma
5.7.10, we can construct a Hamilton cycle in D in time O(|V(C1)||V(C2)]).
Thus, we may also assume that no vertex in C; can be inserted into C3_; for
both i = 1,2. So, by Lemma 5.7.10, every arc of C; can be inserted into Cs_;.

Now we show that either D is hamiltonian or we may assume that every
arc of C; can be inserted between two different pairs of vertices in Csz_;
(i = 1,2). Consider an arc z1x2 of C;. Since both x; and x2 are non-singular
and cannot be inserted into Cs, there exist vertices vy and vs on Cy such that
v; is not adjacent to x; and v;—>xi—>vi+7 i =1,2. If vy—z9, then we obtain
a Hamilton cycle. So we may assume that the only arc between x5 and vy is
Tov1. For the same reason, we may assume that v, dominates x; but is not
dominated by x;. Now the arc xjz2 can be inserted between v; and v; and
between vy and vy .

Hence, z1x9 cannot be inserted between two pairs of vertices only in the
case that v] = vy and v; = vy . We show that in this case D is hamiltonian.
Construct, at first, a cycle C* = C}[ze,71]Ca[v], vy |2 which contains all
the vertices of D but vy ,v;. The arc v; v; can be inserted into C;, by the
remark at the beginning of the proof. But v; v; cannot be inserted between
21 and 2, since v; does not dominate o and v; = v; is not dominated by
x1. Hence, the arc v v; can be inserted into C* to give a hamiltonian cycle
of D. This completes the proof that either D is hamiltonian or every arc on
C; can be inserted between two different pairs of vertices in Cs_;.

Assume without loss of generality that the length of Cs is not greater
than that of Cy. Then Cy has two arcs z;y; (¢ = 1,2) that can be inserted
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between the same pair u, v of vertices in Cs. Since C1 is odd, one of the paths
Q = Cily;, 23] and Cy[ys, =7 ] has odd length. Without loss of generality,
suppose that @ is odd. Obviously, C* = Cs[v, u]Cy[z2,y1]v is a cycle of D.
By the fact shown above each arc of the path @ can be inserted into Cs
between a pair of vertices different from w,v. Therefore, each arc of Q) can
be inserted into C*. Hence, by Corollary 5.6.22 we conclude that D has a
hamiltonian cycle H. It is not difficult to verify that H can be found in time

O(IV(C)IIV(C)I).- o

Let D be a semicomplete multipartite digraph and let C U C’ be a cycle
subdigraph of D. We write that C~>C" if C' contains singular vertices with
respect to C’ and they all are out-singular, and C” has singular vertices with
respect to C and they all are in-singular. A cycle factor F = C;UC2U...UCY
is good if for every pair 4, j, 1 <14 < j < t, neither C;~>C; nor Cj~>C;.

Since this definition and the proof of Lemma 5.7.12 are quite important,
we illustrate them in Figure 5.7. Observe that if C,C" are a pair of disjoint
cycles in a semicomplete multipartite digraph D, then (up to switching the
role of the two cycles) at least one of the following four cases apply (see Figure
5.7):

(a) Every vertex on C has an arc to and from C".

(b) There exist vertices x € V(C),y € V(C') such that 2=V (C’) and
y=V(C), or V(C")=z and V(C)=y.

(c) C contains distinct vertices x,y such that =V (C") and V(C")=y.

(d) C~=>C".

The alternatives (a)-(c) are covered by the definition of a good cycle factor
(for cycle factors containing only two cycles); the alternative (d) is not.

GO OO RO OO
(a) (b) (c) (d)

Figure 5.7 The four possible situations (up to switching the role of the two cycles or
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite
digraph. In (a) every vertex on C has arcs to and from C’. In (b)-(d) a fat arc
indicates that all arcs go in the direction shown from or to the specified vertex (i.e.
in (b) all arcs between z and C’ leave ).

The following lemma gives the main result for a good cycle factor con-
taining two cycles.

Lemma 5.7.12 [68] If D is a semicomplete multipartite digraph containing
a good factor Cy U Cs, then D is hamiltonian. A Hamilton cycle in D can be
constructed in time O(|V(C1)||V(C2)]).
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Proof: The first case is that at least one of the cycles C; and C3 has no
singular vertices (Situation (a) in Figure 5.7). If both C1, Cs have no singular
vertices then D is hamiltonian by Lemma 5.7.11 and we can find a Hamilton
cycle in D in time O(|V(C1)||[V(C2)]|). Assume now that only one of them has
no singular vertices. Suppose without loss of generality that C; contains an
out-singular vertex x and C5 has no singular vertices. Since C5 contains no
singular vertices, C has at least one vertex which is not out-singular. Suppose
that = € V(C}) was chosen such that 2™ is not out-singular. Hence there is
a vertex y on Cy dominating x ™. If z—y, then y can be inserted into C; and
hence, by Lemma 5.7.10 and Corollary 5.6.21, D is hamiltonian (consider
Csly™t,y] and Cy). Otherwise, z is not adjacent to y. In this case, z—y™ and
D has the hamiltonian cycle Cy[z, 2]Cs[y™, y]z. The above arguments can
be easily converted into an O(|V(C1)||V(C2)|)-algorithm.

Consider the second case: each of Cy, C5 has singular vertices with respect
to the other cycle. Assume without loss of generality that C7 has an out-
singular vertex x;. If C5 also contains an out-singular vertex zo (Situation
(b) in Figure 5.7), then z; is not adjacent to x5 and z;—z3_; for bothi = 1, 2.
Hence D is hamiltonian. If 'y contains no out-singular vertices then it has in-
singular vertices. Since C1UC} is a good factor, Cy contains both out-singular
and in-singular vertices (Situation (c) in Figure 5.7). Since both C; and Cs
have in-singular vertices, the digraph D’ obtained from D by reversing the
orientations of the arcs of D has two cycles C7 and C} containing out-singular
vertices. We conclude that D’ (and hence D) is hamiltonian. Again, the above
arguments can be converted into an O(|V (C4)||V (Cs)|)-algorithm. O

The main result on good cycle factors is the following theorem by Bang-
Jensen, Gutin and Huang. This theorem can be proved by induction on ¢, the
number of cycles in a good cycle factor. We leave the details to the reader
(see Exercise 5.39).

Theorem 5.7.13 (Bang-Jensen, Gutin and Huang) [68] If D is a
strong semicomplete multipartite digraph containing a good cycle factor F =
C1UCyU...UC (t > 1), then D is hamiltonian. Furthermore, given F one
can find a hamiltonian cycle in D in time O(n?). O

5.7.3 Consequences of Lemma 5.7.12

In this subsection mostly based on [68], we will show that several important
results on semicomplete multipartite digraphs are consequences of Lemma
5.7.12.

Proof of Theorem 5.7.1: It is sufficient to prove that if P is a path and
C is a cycle of D such that V(P)NV(C) = 0, then D has a path P’ with
V(P') = V(P)UV(C). Let P and C be such a pair, and let u be the initial and
v the terminal vertex of P. If w is non-singular or in-singular with respect
to C, then obviously the path P’ exists. Similarly if v is non-singular or
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out-singular with respect to C. Assume now that wu is out-singular and v is
in-singular with respect to C.

Add a new vertex w to D and the arcs zw, for all z # w and the arc wu to
obtain the semicomplete multipartite digraph D’. Then w forms a cycle C’
with P in D’ and C U (" is a good cycle factor of D’. Therefore, by Lemma
5.7.12, D’ has a hamiltonian cycle. Then D contains a hamiltonian path.

It is easy to see that the proof above supplies a recursive O(n?)-algorithm
for finding a hamiltonian path in D given a 1-path-cycle factor F. Thus,
the complexity result of this theorem is due to the fact that we can either
construct a 1-path-cycle factor in a digraph or discover that it does not exist
in time O(n?%): see Exercise 3.59. O

To obtain the rest of the proofs in this subsection, we need the following:

Lemma 5.7.14 [68] Let D be a strong semicomplete multipartite digraph
containing a cycle subdigraph F = C1 U Co U ... U C; such that for every
pair i,j (1 <i < j <t) C;=C; or C;=C; holds. Then D has a cycle C
of length at least |V (F)| and one can find C in time O(n?) for a given F.
If D is an extended semicomplete digraph, then we can choose C such that

V(F) CV(C).

Proof: Define a tournament T'(F) as follows: {C1,...,C:} forms the vertex
set of T(F) and C;—C; in T(F) if and only if C;=C; in D. Let H be the
subdigraph of D induced by the vertices of F and let W be a partite set of
D having a representative in Cf.

First consider the case that T'(F) is strong. Then it has a hamiltonian
cycle. Without loss of generality assume that C1Cs...C;Cy is a hamil-
tonian cycle in T(F). If each of C; (i = 1,2,...,t) has a vertex from W
then for every ¢ = 1,2,...,t choose any vertex w; of V(C;) N W. Then
Ciwi, wy |Calwa, wy ] ... Cilwy, wy Jwy is a hamiltonian cycle in H. If there
exists a cycle C; containing no vertices of W, then we may assume (shifting
the cyclic order if needed) that C; has no vertices from W. Obviously, H has
a hamiltonian path starting at a vertex w € WNV(Cy) and finishing at some
vertex v of Cy. Since v—w, H is hamiltonian.

Now consider the case where T'(F) is not strong. Replacing in F every
collection X of cycles which induce a strong component in T'(F) by a hamil-
tonian cycle in the subdigraph induced by X, we obtain a new cycle subdi-
graph £ of D such that T'(£) has no cycles. The subdigraph T'(£) contains
a unique hamiltonian path Z, 75 ... Z,, where Z; is a cycle of L. Since D is
strong there exists a path P in D with the first vertex in Z, and the last
vertex in Z; (1 < ¢ < s) and the other vertices not in £. Assume that ¢
is as small as possible. Then we can replace the cycles Z,,...,Z, by a cycle
consisting of all the vertices of PUZ,U...UZ; except maybe one and derive a
new cycle subdigraph with less cycles. Continuing in this manner, we obtain
finally a single cycle.
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In the case of an extended semicomplete digraph D, if D{V(F)) is not
strong, then T(F) is not strong. Also, C;=-C; implies that C;—C;. This,
combined with the above argument on semicomplete multipartite digraphs,
allows one to construct a cycle C such that V(F) C V(C).

Using the above proof together with an O(n?)-algorithm for constructing
a hamiltonian cycle in a strong tournament (see Theorem 5.5.2 or Exercise
5.15) and obvious data structures one can obtain an O(n?)-algorithm. O

Lemma 5.7.15 [68] Let C U C' be a cycle factor in a strong semicom-
plete multipartite digraph D of order n. Then D has a cycle Z of length
at least n — 1 containing all vertices of C. The cycle Z can be found in time

o(v(e)V(eID-

Proof: Suppose that the (existence) claim is not true. By Lemma 5.7.12, this
means that each of C' and C’ has singular vertices with respect to the other
cycle, and all singular vertices on one cycle are out-singular and all singular
vertices on the other cycle are in-singular. Assume without loss of generality
that C' has only out-singular vertices with respect to C’. Since D is strong
C has a non-singular vertex x. Furthermore we can choose x such that its
predecessor £~ on C' is singular. Let y be some vertex of C’ such that y—ux.
If 2~ is adjacent to yT, the successor of y on C’, then D has a hamiltonian
cycle. Otherwise 2~ —% T and D has a cycle of length n — 1 containing all
vertices of C'. The complexity result easily follows from the above arguments.

O

The next two results due to Gutin are easy corollaries of Lemma 5.7.15:

Corollary 5.7.16 [353] Let CUC" be a cycle factor in a strong semicomplete

bipartite digraph D. Then D has a hamiltonian cycle Z. The cycle Z can be
found in time O(|V(C)||[V(C")]).

Proof: Since D is bipartite, it cannot have a cycle of length n — 1. a

Corollary 5.7.17 [359] Let C U C’ be a cycle factor in a strong extended
semicomplete digraph D. Then D has a hamiltonian cycle Z. The cycle Z
can be found in time O(|V(C)||[V(C")]).

Proof: If C and C’ have a pair z,y of non-adjacent vertices (z € V(C), y €
V(C")) then obviously z—y™*, y—azT and D has a Hamilton cycle that can
be found in time O(|V(C)|V(C")|). Assuming that any pair of vertices from
C and C' is adjacent, we complete the proof as in Lemma 5.7.15. a

Corollaries 5.7.16 and 5.7.17 imply immediately the following useful result.

Proposition 5.7.18 If F = C;UCyU... UCY is a cycle factor in a digraph
which is either semicomplete bipartite or extended semicomplete and there is
no F' = C1UCyU... UC] such that for everyi=1,2,...,k, V(C;) C V(C})
for some j € {1,2,,...,7}, then without loss of generality C;=C}; for every
1< ].
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Lemma 5.7.15 implies immediately the following result first proved by
Ayel (see [449]).

Corollary 5.7.19 If C is a longest cycle in a strong semicomplete multipar-
tite digraph D, then D — V(C) is acyclic. a

Proof of Theorem 5.7.6: Let F = C; U...UC; be a cycle subdigraph of
maximum order in a strong semicomplete bipartite digraph D. We construct
a semicomplete digraph S, a generalization of the tournament 7" in Lemma
5.7.14, as follows. The vertices of S are the cycles in F, C;—C); in S if and
only if there is an arc from C; to C; in D. Cycles of length two in S indicate
what cycles in F can be merged together by Corollary 5.7.16. Therefore, we
can merge cycles in F till S becomes oriented, i.e. without 2-cycles. Now we
can apply Lemma 5.7.14.

Complexity details are left to the reader. a

Proof of Theorem 5.7.7: The proof is similar to that of Theorem 5.7.6,
applying Corollary 5.7.17 instead of Corollary 5.7.16. Details are left to the
reader as Exercise 5.35. a

5.7.4 Yeo’s Irreducible Cycle Subdigraph Theorem and its
Applications

While Lemma 5.7.12 is strong enough to imply short proofs of results on
longest cycles in some special families of semicomplete multipartite digraphs
such as semicomplete bipartite graphs and extended semicomplete digraphs,
this lemma does not appear strong enough to be used in proofs of longest cycle
structure results for other families of semicomplete multipartite digraphs.
In this subsection based on Yeo’s paper [744], we formulate the very deep
theorem of Yeo on irreducible cycle subdigraphs in semicomplete multipartite
digraphs, the main theorem in [744], that is more powerful than Lemma
5.7.12. We give a proof of the main lemma (Lemma 5.7.20) in the original
proof of Yeo’s theorem, but do not provide the rest of the lemmas since these
would require significant space. We provide short proofs of some important
consequences of this theorem.

Recall that for two subdigraphs X,Y of D, a path P is an (X,Y)-path
if P starts at a vertex x € V(X), terminates at a vertex y € V(Y) and
V(P)N (V(X)UV(Y)) = {z,y}.

Lemma 5.7.20 [744] Let D be a semicomplete multipartite digraph, and let
C1 and Cy be a pair of disjoint cycles in D, such that C1~>C5 and C1AC5.
Assume that there is no cycle in D, with vertex set V(C1)UV (Cy). Then there
exists a unique partite set V of D such that for every (V(Cs),V(C))-path
P starting at vertex u and terminating at vertex v either {ua, 1151} CVor

there exists a cycle C* in D, with V(C*) =V (C1) UV (Cy) UV (P).
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Proof: Since C1~>Cy and C1AC5, there is a vertex z € V(Cy), with
x=C3 and x7#4C,. Let V be the partite set containing the vertex z. Let
y € V(C3) be chosen such that y~—azT. Then y € V, since otherwise
C = Caly,y~|CizT, 2]y is a cycle with V(C) = V(Cy) U V(Cy). We will
now show the following assertion:

V(Cy)=y. (5.9)

Label the vertices in C5 such that Co = y1y2 ... ymy1, where y; = y, and
assume that (5.9) is not true, i.e. V/(C})#y;. Define the statements oy and
Bk as follows.

ag: The vertex yr € V and V(Cy)#Ayg, for every k=1,3,5,..., K.
Br: The arc yryrr1 can be inserted into Cylz™,z], for every k =
1,3,5,..., K.

We will now show that ax and Bx are true for every odd K, with 1 <
K < m. Clearly a; holds, so if we prove the following two implications, we
are done by induction.

ak and Si_o imply Si (when K =1, ai implies Sk ): If we can insert yx
into C1, then it can be inserted into Cy [z, z], since yx cannot be inserted
between z and z* (by ag, yx € V). Also, by Bk _2 and Corollary 5.6.22
we can insert the path Ca[y1, yx] into the cycle Cy [z, 2]Ca [y, ym]z ™. So
we may assume that yx cannot be inserted into C. Since C1#4Ayk, there
must be a zx € V(C1) such that zx € V and zl_(ﬂyKHz?}. Now y?}ﬂzK,
since there otherwise would be a cycle, C = Calyf, yx|Ci 2, 2K ]y, in
D with V(C) = V(Cy) UV (Cs). Thus yryj; can be inserted between 23
and zg, which implies that yKyf{ can be inserted into Cy[zT, ], since
h Ao (R 2V).

ax—9 and B _o imply ag: yx € V, since otherwise by Sx_5 and Corollary
5.6.22 we can insert the path P = y1y2...yx—1 into the cycle

Cl [erv x}CQ[yKv ym}xJr

and obtain a cycle in D with vertex set V/(C1) U V(Cy2).
If V(C1)=yx, then 2z _,—yx, where zx_o was defined when we proved

Br_2. When we defined zx_ o, we found that y}_Q—wK_g. The cycle

C = Cilzr—2, 25 _5|C2yk, i 52K —2

has V(C) = V(Cy) UV(Cs), a contradiction. This completes the proof
that ag holds.

Since Y, can be inserted into C; (namely between z and z 1), Corollary
5.6.22 implies that we can insert the path Cs[y1, ¥ into Cy to obtain a new
cycle in D with vertex set V(Cy) U V(Cy). This is a contradiction, which
implies that (5.9).
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Let ut = uf, and v~ = vg, . To complete the proof of this lemma it
suffices to consider the following two cases.

Case 1: {ut,v=} NV = 0. The cycle
C* = Cl [x"',v_]Cg[y,u]P[u;ml;]Cl [v7x]02[u+7y_}x+

has V(C*) = V(C1) UV(Cy) UV (P).

Case 2: The vertices ut and v~ are in different partite sets.
We claim that D contains a cycle C*, with V(C*) = V(P)UV(Cy) UV (Cy).
Assume that C* does not exist. According to Case 1, we have that either u™ €
V orv™ € V, but not both. Now we may assume that u™—wv ™, since otherwise
C* = Ci[v,v7]Cafut, ug,]P would have V(C*) = V(P) U V(Cy) U V(Cy).
Now according to Case 1, used for the path P’ = uTv~, we have that either
ut™ € V or v~ € V, but not both, since either u* € V or v~ € V.
Continuing this process and using the fact that D has no cycle with vertex

set V(P)UV (C1)UV (Cy) we obtain that u™—v ™, utT—v~ 7, ... which clearly
is impossible since C has an out-singular vertex with respect to Cy. This is
a contradiction, and thus C* exists. a

Lemma 5.7.20 and several other results in [744] imply the following pow-
erful theorem. Notice that, in fact, Yeo [744] proved three sets of properties
of irreducible subdigraph. We include only the two most important ones.

Theorem 5.7.21 (Yeo’s irreducible cycle subdigraph theorem) [7/4]
Let D be a semicomplete multipartite digraph with partite sets Vi, Va, ..., V..
Let X C V(D) and let F be a cycle subdigraph of D consisting of t cycles
that covers X, such that t is minimum. Then the following holds.

(a) We can label the cycles C1,Cy, ..., Cy of F, such that C;~>C;, whenever

1<i<j<t.
(b) Assume that C1,Cs,...,Cy are ordered as stated in (a), then there are
cycles Cpy, Cryy oo, Cp, (N0 =1, Ny = t), and integers q1,qa, ..., qm €

{1,2,...,c}, such that the following is true. For every (C;,C;)-path P
starting at u and terminating at v with V(P) NV (F) = {u,v} and 1 <
i < j <t, there exists an integer k € {1,2,...,m}, such that np_1 <1i <
J<nyg and{ua,va}gﬂkﬂX. O

By a careful analysis of the complete proof of Theorem 5.7.21 in [745] one
can obtain the following;:

Theorem 5.7.22 [7/5] Let D be a semicomplete multipartite digraph, and
let X C V(D) be arbitrary. Let F be a cycle subdigraph of D that covers
X. Then in O(|V(D)|?) time we can find a new cycle subdigraph, F', of D,
that covers X, such that F' has the properties (a) and (b) given in Theorem
5.7.21. Furthermore we can find F', such that for every cycle C' in F, the
vertices X NV(C) are included in some cycle of F'. O
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Theorems 5.7.21 and 5.7.22 are very important starting points of [72],
where polynomial solvability of the Hamilton cycle problem for semicomplete
multipartite digraphs is established. We will prove some important conse-
quences of Theorem 5.7.21 and state several more of them.

Theorem 5.7.23 [7/4] Every regular semicomplete multipartite digraph is
hamiltonian.

Proof: Let D be a regular semicomplete multipartite digraph. By Exercise
3.70, D contains a cycle factor F = C;UC5U...UC;. We may assume that F
is chosen, such that ¢ is minimum. If £ = 1 then D is hamiltonian, so assume
that ¢t > 1.

Let X = V(D). Let Cy,,Chp,y,...,Cp,, and ¢q1,4q2,...,qm be defined as
in Theorem 5.7.21. Let yz € A(D) be an arc from y € V(C;), with i €
{2,3,...,t} to x € V(C4). Part (b) of Theorem 5.7.21 implies that 2, y™ €
V,,- Now we define the two distinct arcs a1 (yz) = zyt and as(yz) = z7y.
By Theorem 5.7.21, a1 (yx) and as(yz) are arcs in D. Indeed, x and y* (2~
and y) are adjacent. If y*—z then y*+ € V,,, which is impossible.

If y'2' and yx are distinct arcs from V(D) — V(Cy) to V(C1), then we see
that a1 (yx), az(yx), a1(y'z’) and az(y'z’) are four distinct arcs from V(Cy)
to V(D) —V(C4). We have now shown that the number of arcs leaving V(C1)
is at least twice as large as the number of arcs entering V' (C4). However this
contradicts the fact that D is an eulerian digraph (see Corollary 1.6.4). O

Theorem 5.7.24 (Yeo) [744] Let D be a (|k/2] + 1)-strong semicomplete
multipartite digraph, and let X be an arbitrary set of vertices in D such that
X includes at most k vertices from each partite set of D. If there is a cycle
subdigraph F = C1 U...UCy, which covers X, then there is a cycle C in D,
such that X C V(C).

Proof: We may clearly assume that F has the properties described in The-
orem 5.7.21, and t > 2, since otherwise we are done. Let Cy,,,Chp,,...,Chp,,
and ¢1,¢2,-..,qm be defined as in Theorem 5.7.21. Since X contains at
most k vertices from each partite set, we have that min{|V,, N V(Cy) N
X,|Ve NV(Cry) N X|} = r < |k/2]. Assume without loss of generality
that |V, NV(Cy,) N X| =r. Since D is (| k/2] + 1)-strong we get that there
exists a (V(Cy,) — (Vo NV(Cp,) N X)), V(Cy) U ... UV(Cpy—1))-path in
D—(Vy,NV(Cp)NX)™, P =py...p;. Assume that p; € V(C;) (1 <i < nq).
By Theorem 5.7.21, the (C,,,C;)-path P contradicts the minimality of F,
since ng <1 < ny andpi"ngﬁVql. a

A family of semicomplete multipartite digraphs described in [744] shows
that one cannot weaken the value |k/2] + 1 of strong connectivity in this
theorem. Using the fact that every k-strong digraph of independence number
at most k has a cycle factor (see Proposition 3.11.12) and applying Theorem
5.7.24, we obtain the following two corollaries:
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Corollary 5.7.25 [744] If a k-strong semicomplete multipartite digraph D
has at most k vertices in each partite set, then D contains a Hamilton cycle.
O

Corollary 5.7.26 [7/4] A k-strong semicomplete multipartite digraph has a
cycle through any set of k vertices. a

Theorem 5.7.23 was generalized by Yeo [748] as follows (its proof also
uses Theorem 5.7.21). Let 4;(D) = max{|d*(z) — d~(x)| : = € V(D)} and
ig(D) = AY(D) — §°(D) for a digraph D (the two parameters are called the
local irregularity and the global irregularity, respectively, of D [748]).
Clearly, 4;(D) < i4(D) for every digraph D.

Theorem 5.7.27 [7/8] Let D be a semicomplete c-partite digraph of order n

with partite sets of cardinalities ny,no, ..., n. such that n; < ngy < ... < ng.
Ifig(D) < (n—mne—1 —2n.)/2+1 or iy(D) < min{n — 3n.+1,(n — ne_1 —
2n.)/2 + 1}, then D is hamiltonian. O

The result of this theorem is best possible in a sense: Yeo [748] constructed
an infinite family D of non-hamiltonian semicomplete multipartite digraphs
such that every D € D has (D) = ig(D) = (n —ne—1 —2n.+1)/24+1 <
n—3n. + 2.

Another generalization of Theorem 5.7.23, whose proof is based on The-
orem 5.7.21, was obtained by Guo, Tewes, Volkmann and Yeo [348]. For a
digraph D and a positive integer k, define

f(D,k) = > (d¥(x) — k) + > (k —d~(2)).

zeV(D),dt (z)>k zeV(D),d~ (z)<k

Theorem 7.5.3 in Ore’s book [595] on the existence of a perfect matching in
a bipartite graph can easily be transformed into a sufficient condition for a
digraph to contain a cycle factor. This condition is as follows. If, for a digraph
D and positive integer k, we have f(D, k) < k—1, then D has a cycle factor.
For a positive integer k& > 2, let G}, be a semicomplete 3-partite digraph with
the partite sets Vi = {z}, Vo = {y1,y2,. .., Uk—1}, and V3 = {z1,29,..., 21}
and arc set

{yz,xz,zy,yv: y € Va,z € V3,0 € V53 — 21} U {z12}.

The digraph G}/ is the converse of Gj. We observe that f(G},k) = k — 1
(Exercise 5.43), but G}, is not hamiltonian, as a hamiltonian cycle would
contain the arc zz; and every second vertex on the cycle would belong to the
partite set V3. Since z has no in-neighbour in V3 — z1, this is not possible.
Clearly, G/ is not hamiltonian either.

Theorem 5.7.28 [3/8] Let D be a semicomplete multipartite digraph such
that f(D,k) < k —1 for some positive integer k. If D is not isomorphic to
G, or G, then D is Hamiltonian. O
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The authors of [348] introduced the following family of semicomplete mul-
tipartite digraphs. Let D be a semicomplete multipartite digraph with par-
tite sets Vi, Va, ..., Vi. If min{|(z;, V;)|, |(Vj, i)} = 3|V;| for every ver-
tex x; € V; and for every 1 < i,j < k, j # i, then D is called a
semi-partitioncomplete digraph. Several sufficient conditions to guar-
antee hamiltonicity of semi-partitioncomplete digraphs were derived in [348].
In particular, the following result was proved.

Theorem 5.7.29 If a strong semi-partitioncomplete digraph D of order n
has less than n/2 vertices in every partite set, then D is hamiltonian. a

5.8 Longest Paths and Cycles in Extended Locally
Semicomplete Digraphs

(From Section 5.5, we know that characterizations of hamiltonian and trace-
able locally semicomplete digraphs are practically the same as those of semi-
complete digraphs: every strong locally semicomplete digraph is hamiltonian
and every connected locally semicomplete digraph is traceable. In the pre-
vious section, we derived characterizations of hamiltonian and traceable ex-
tended semicomplete digraphs. The reader may suspect that similar charac-
terizations hold for extended locally semicomplete digraphs. This is indeed
true. Moreover, the hamiltonicity characterization can be generalized even
to extended locally in-semicomplete digraphs. However, the traceability one
does not hold for extended locally in-semicomplete digraphs. In this section
we briefly consider these characterizations and their generalizations to the
longest path and cycle problems. We start from the following characteriza-
tion by Bang-Jensen and Gutin [62].

Theorem 5.8.1 An extended locally semicomplete digraph is hamiltonian if
and only if it is strongly connected and has a cycle factor. Given a cycle factor
of a strong extended locally semicomplete digraph D, a hamiltonian cycle of
D can be found in time O(n?), where n is the number of vertices in D. O

This theorem can be generalized to extended locally in-semicomplete di-
graphs [59]. Theorem 5.8.2, whose proof is left as Exercise 5.44, shows that
extended locally semicomplete digraphs are still ‘nicer’ with respect to the
longest cycle than semicomplete bipartite digraphs (see the remark after The-
orem 5.7.7).

Theorem 5.8.2 [62] Let D be a strongly connected extended locally semi-
complete digraph. Given a cycle subdigraph F = Cy U ... U Cy of D of
mazimum order, one can find a (longest) cycle C of D such that V(C) =
V(C) U...UV(Cy) in time O(n?). O
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Theorem 5.8.3 [62] A connected extended locally semicomplete digraph D
has a hamiltonian path if and only if it contains a 1-path-cycle factor. Given
a 1-path-cycle factor of D, one can construct a hamiltonian path of D in time

O(n?).

Proof: Exercise 5.45. O

Figure 5.8 The digraph L.

Unlike Theorem 5.8.1, Theorem 5.8.3 cannot be generalized to extended
locally in-semicomplete digraphs as one can see from the following example
[59]. The extended locally in-semicomplete digraph L in Figure 5.8 contains
a 1-path-cycle factor consisting of path 1234 and cycle 565 (and even an in-
branching rooted in the vertex 6), but has no hamiltonian path. It is natural
to pose the following problem:

Problem 5.8.4 [65]

(a) Find a characterization of traceable extended locally in-semicomplete di-
graphs.

(b) Establish the complexity of the problem of deciding whether an extended
locally in-semicomplete digraph has a hamiltonian path.

Theorem 5.8.3 can easily be generalized to longest paths.

Theorem 5.8.5 [62] The order of a longest path in an extended locally semi-
complete digraph D equals to the mazimum order of a 1-path-cycle subdigraph
of D. Moreover, given a 1-path-cycle subdigraph F of an extended locally
semicomplete digraph D, a path P such that V(P) = V(F) can be found in
time O(n?). O

5.9 Hamilton Paths and Cycles in Quasi-Transitive
Digraphs

The methods developed in [79] by Bang-Jensen and Huang and [365] by Gutin
to characterize hamiltonian and traceable quasi-transitive digraphs as well as
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to construct polynomial algorithms for verifying the existence of Hamilton
paths and cycles in quasi-transitive digraphs can be easily generalized to
much wider classes of digraphs [65]. Thus, in this section, along with quasi-
transitive digraphs, we consider totally #-decomposable digraphs for various
sets @ of digraphs.

By Theorem 4.8.5, every strong quasi-transitive digraph D has a decom-
position D = S[Q1,Qa2,...,Qs], where S is a strong semicomplete digraph,
s=|V(5)|,and each Q;, 7 =1,2,...,s, is either just a single vertex or a non-
strong quasi-transitive digraph. Also, a non-strong quasi-transitive digraph
D with at least two vertices has a decomposition D = T[Hy, Ha, ..., H],
where T is a transitive oriented graph, t = |V(T)|, and every H; is a strong
semicomplete digraph. These decompositions are called canonical decomposi-
tions. The following characterization of hamiltonian quasi-transitive digraphs
is due to Bang-Jensen and Huang [79].

Theorem 5.9.1 [79] A strong quasi-transitive digraph D with canonical de-
composition D = S[Q1, Qa, ..., Qs| is hamiltonian if and only if it has a cycle
factor F such that no cycle of F is a cycle of some Q;.

Proof: Clearly, a Hamilton cycle in D crosses every ;. Thus, it suffices to
show that, if D has a cycle factor F such that no cycle of F is a cycle of some
Q;, then D is hamiltonian. Observe that V(Q;) N F is a path factor F; of Q;
forevery:=1,2,...,s. Foreveryi=1,2,...,s, delete the arcs between end-
vertices of all paths in F; except for the paths themselves, and then perform
the operation of path-contraction for all paths in F;. As a result, one obtains
an extended semicomplete digraph S’ (since S is semicomplete). Clearly, S’
is strong and has a cycle factor. Hence, by Theorem 5.7.5, S’ has a Hamilton
cycle C. After replacing every vertex of S’ with the corresponding path from
F, we obtain a Hamilton cycle in D. O

Similarly to Theorem 5.9.1, one can prove the following characterization
of traceable quasi-transitive digraphs (see Exercise 5.47).

Theorem 5.9.2 [79] A quasi-transitive digraph D with at least two vertices

and with canonical decomposition D = R[G1,Ga,...,G,] is traceable if and
only if it has a 1-path-cycle factor F such that no cycle or path of F is
completely in some D(V(G;)). O

It appears that Theorems 5.9.1 and 5.9.2 do not imply polynomial al-
gorithms to verify hamiltonicity and traceability, respectively (see Exercise
5.46). The following characterization of hamiltonian quasi-transitive digraphs
is given implicitly in the paper [365] by Gutin:

Theorem 5.9.3 (Gutin) [365] Let D be a strong quasi-transitive digraph
with canonical decomposition D = S[Q1,Q2,...,Qs]. Let ny,...,ns be the
orders of the digraphs Q1,Qo,...,Qs, respectively. Then D is hamiltonian

if and only if the extended semicomplete digraph S" = S[Kn,, Knyy- -, Kn_]
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has a cycle subdigraph which covers at least pc(Q;) vertices of Fnj for every
j=1,2,...,s.

Proof: Suppose that D has a Hamilton cycle H. For every j = 1,2,...,s,
V(Q;)NH is a k;-path factor F; of ;. By the definition of the path covering
number, we have k; > pc(Q;). For every j = 1,2,...,s, the deletion of the
arcs between end-vertices of all paths in F; except for the paths themselves,
and then path-contraction of all paths in F; transforms H into a cycle of S’
having at least pc(Q;) vertices of ?nj for every j =1,2,...s.

Suppose now that S’ has a cycle subdigraph £ containing p; > pc(@Q,)
vertices of ?n,- for every j = 1,2,...s. Since S’ is a strong extended semicom-
plete digraph, by Theorem 5.7.7, S’ has a cycle C such that V(C) = V(£).
Clearly, every @; has a p;-path factor F;. Replacing, for every j =1,2,...s,
the p; vertices of Fnj in C with the paths of F;, we obtain a hamiltonian
cycle in D. a

Theorem 5.9.3 can be used to show that the Hamilton cycle problem for
quasi-transitive digraphs is polynomial time solvable.

Theorem 5.9.4 (Gutin) [365] There is an O(n*) algorithm which, given a
quasi-transitive digraph D, either returns a hamiltonian cycle in D or verifies
that no such cycle exists. a

The approach used in the proofs of Theorems 5.9.3 and 5.9.4 in [365]
can be generalized to a much wider class of digraphs as was observed by
Bang-Jensen and Gutin [65]. We follow the main ideas of [65].

Theorem 5.9.5 Let @ be an extension-closed set of digraphs, i.e. %t = &,
including the trivial digraph K1 on one vertex. Suppose that for every digraph
H € ¢ we have pcc(H) = pc(H). Let D be a totally $-decomposable digraph.
Then, given a total @-decomposition of D, the path covering number of D can
be calculated and a minimum path factor found in time O(n*).

Proof: We prove this theorem by induction on n. For n = 1 the claim is
trivial.

Let D be a totally #-decomposable digraph and let D = R[Hq, ..., H,]
be a $-decomposition of D such that R € &, r = |[V(R)| and every H; (of
order n;) is totally @-decomposable. A pc(D)-path factor of D restricted to
every H; corresponds to a disjoint collection of some p; paths covering V (H,).
Hence, we have pc(H;) < p; < n;. Therefore, arguing similarly to that in the
proof of Theorem 5.9.3, we obtain

pe(D) = min{pc(R[K,,,..., K, ]): pc(H;) <p; <mn;, i=1,...,r}

Since @ is extension-closed, and since, for every digraph @ € @, pc(Q) =
pce(Q), we obtain
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pe(D) = min{pcc(R[K,,,..., K, ]): pe(H;) <p; <n; i=1,...,7}.

(5.10)
By the result of Exercise 3.60, given the lower and upper bounds pc(H;)
and n; (1 =1,...,7), we can find the minimum in (5.10) and thus pc(D) in

time O(n?). Let T(n) be the time needed to find the path covering number
of a totally #-decomposable digraph of order n. Then, by (5.10),

T(n) = O(n®) + Z T(n).

Furthermore, T'(1) = O(1). Hence T'(n) = O(n?). O

Recall (see Section 4.12) that @y (P2) is the family of all semicomplete
multipartite, extended locally semicomplete and acyclic digraphs (semicom-
plete bipartite, extended locally semicomplete and acyclic digraphs). Clearly,
both families of digraphs are extension-closed. As we know, pc(D) = pce(D)
for every semicomplete multipartite digraph D (see Theorem 5.7.2), for every
extended locally semicomplete digraph D (by Theorem 5.8.3) and every
acyclic digraph D (which is trivial). Notice that one can check whether a
digraph D is totally @¢-decomposable (totally ®o-decomposable) and, if this
is the case, find a total ®y-decomposition (@a-decomposition) in time O(n?)
(see Section 4.12). Therefore, Theorem 5.9.5 implies the following theorem
by Bang-Jensen and Gutin:

Theorem 5.9.6 [66] The path covering number of a totally $o-decomposable
digraph can be calculated in time O(n*). ad

Corollary 5.9.7 [66] One can verify whether a totally ®o-decomposable di-
graph is hamiltonian in time O(n*).

Proof: Let D = R[Hy,...,H,], r = |R|, be a decomposition of a strong
digraph D (r > 2). Then, D is hamiltonian if and only if the following family
S of digraphs contains a hamiltonian digraph:

S = {R[Fpl,...,KpT] s pe(Hy) <p <|V(Hy)|, i=1,...,r}

Now suppose that D is a totally @5-decomposable digraph. Then, every
digraph of the form R[K,,,..., K, ] is in 3. We know (see Theorems 5.7.4
and 5.8.1) that every digraph in @5 is hamiltonian if and only if it is strong
and contains a cycle factor. Thus, all we need is to verify whether there is a
digraph in § containing a cycle factor. It is easily seen that there is a digraph
in S containing a cycle factor if and only if there is a circulation in the network
formed from R by adding lower bounds pc(H;) and upper bounds |V (H;)|

to the vertex v; of R for every ¢ = 1,...,r. Since the lower bounds can be
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found in time O(n?) (see Theorem 5.9.5) and the existence of a circulation
checked in time O(n?) (see Exercise 3.31), we obtain the required complexity

O(n?). O

Since every quasi-transitive digraph is totally @s-decomposable this theo-
rem immediately implies Theorem 5.9.4. Note that the minimum path factors
in Theorem 5.9.5 can be found in time O(n?*). Also, a hamiltonian cycle in
a hamiltonian totally ®s-decomposable digraph can be constructed in time

O(n%).

5.10 Vertex-Heaviest Paths and Cycles in
Quasi-Transitive Digraphs

The approach described in the previous section seems to be of not sufficient
power to allow us to construct polynomial time algorithms for longest paths
and cycles in quasi-transitive digraphs and their generalizations. A more pow-
erful method that leads to such algorithms was first suggested by Bang-Jensen
and Gutin [63]. In this section, we describe the method in [63].

(From now on, assume that every digraph D we consider has non-negative
weights w(.) on the vertices. Recall that the (vertex-)weight w(H) of a sub-
digraph of D is the sum of the weights of its vertices. For a positive integer
k, the symbol wy (D) denotes the weight of a heaviest k-path subdigraph of
D, i.e. one with the maximum weight among all k-path subdigraphs. For
convenience we define wy(D) = 0. We consider the following problem which
we call the HPS problem. Given a digraph D on n vertices, find a heaviest
k-path subdigraph of D for every k =1,2,...,n.

Theorem 5.10.1 [63] Let ¢ be a set of digraphs including the digraph on
one vertex. Suppose that & = &°*t and, for every D € & on n vertices,

W41 (D) — wk(D) S wk(D) — wk_l(D), (511)

where k = 1,2,...,n — 1. If there is a constant s > 2 so that, for every
L € &, the HPS problem can be solved in time O(|V(L)|*), then, for every
totally @-decomposable digraph D, the HPS problem can be solved in time
O(|V(D)|**1), provided we are given a total ®-decomposition of D.

Proof: Let D = R[Hy,...,H,] be a decomposition of D, where R € &
and H; is totally @-decomposable and has n; vertices (i = 1,...,7). Set
Dy = R[Ey,...,E,], where E; is the digraph with n; vertices and no arcs.
Assign new weights to the vertices of Dy as follows. The ith vertex of Ej is
assigned the weight

{Dij :’(UZ(HJ) —wi,l(Hj), ]: 1,...77"; Z: 17...,7Lj.
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We show that, given solutions of the HPS problem for Hy,..., H, and Dy,
one can easily construct a solution of the HPS problem for D. This will lead
to a recursive algorithm as desired.

Let Fj, be a heaviest k-path subdigraph of Dy and let m; be the number
of vertices in Fj, which belong to E; (j = 1,...,7). By (5.11), w;; > wy;
whenever ¢ > i. Therefore, using that all vertices in E; are similar, we can
always change the vertices of Fj, so that Fj, contains precisely the first m;
vertices of Ej for each j = 1,...,r. Assume now that this is the case. Now,
for each j =1,...,7, replace the vertices of E; in F} by a heaviest m;-path
subdigraph of H;. This replacement provides a k-path subdigraph 7j of D.
It is easy to check that

W(Fy) = Z Z@ij = Zwm (H;) = w(Tz) < wip(D).

So, the weight of a heaviest k-path subdigraph of Dy is at most wy (D).
Analogously, starting with a heaviest k-path subdigraph of D, one can prove
that the weight of a heaviest k-path subdigraph of Dy is at least wy (D).
Therefore, 7y, is a heaviest k-path subdigraph of D.

The arguments above lead to the following recursive algorithm called
Anps.

1. Use the total &-decomposition of D to find the decomposition D =
R[Hy,..., H,].

2. Solve the HPS problem for Hy, ..., H, using Ayxps.

3. Form Dy (with the weights w;;) and solve the HPS problem for Dy using
an O(|V(D)|?)-time algorithm. Change the solutions Fj, (if it is neces-
sary) so that each of F, contains the first vertices of E; without ‘blanks’,
foreach j=1,...,r.

4. Using the solutions obtained in Step 2, transform every Fj into a k-path
subdigraph 7; of D as in the discussion above.

It is easy to check that the complexity of Algorithm Ayps is O(|D]*+1).
O

Using Theorem 5.10.1, we will prove the following:

Theorem 5.10.2 (Bang-Jensen and Gutin) [63] For a quasi-transitive
digraph D on n wvertices, the following two problems can be solved in time

O(n):

(a) For every k =1,2,...,n, find a heaviest k-path subdigraph of D.
(b) Find a heaviest cycle of D.

Let ¥ be the class of all transitive oriented graphs and all extended semi-
complete digraphs. It follows from Theorem 4.8.5 that every quasi-transitive
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digraph is totally ¥-decomposable. Thus, to prove the first part of Theorem
5.10.2, it suffices to show that every digraph D € ¥ satisfies the conditions
of Theorem 5.10.1 with s = 4.

Proof of Part (a) of Theorem 5.10.2: Consider a digraph D € ¥*** on
n vertices. We show that D satisfies the conditions of Theorem 5.10.1 with
s = 4. A total ¥-decomposition of D can be found in O(n?), see Section
4.12. For a non-negative integer k, let w} (D) denote the weight of a heaviest
k-path-cycle subdigraph of D.

Let D’ be the digraph obtained from D by the vertex splitting procedure.
In other words, we replace every vertex v of D by the arc v’v” such that v”
dominates a vertex v’ if and only if v—u. Also, we define w(v'v") = w(v) for
every v € V(D) and w(v"u') = 0 for every pair u, v of distinct vertices of D.
Construct a network Np as follows. Add a pair s, t of new vertices to D’. For
each vertex v of D, we add the arcs (s,v’) and (v”,t) to D’. Assign capacity
one to each arc of Np. Finally, assign cost zero to every arc adjacent to either
s or t and cost ¢(a) = —w(a) for each arc a € A(D").

By Exercise 3.64, we can find a maximum weight cycle subdigraph £ in
D’ in time O(n?). Since s and t cannot be on any cycle in Np, the digraph £
corresponds to the minimum cost circulation fy in Np (see Theorem 3.3.1).
Starting from f and using the buildup algorithm introduced in Section 3.10
we can construct, in time O(n?), minimum cost flows fi,..., f, of values
1,...,n in Np. By Theorem 3.3.1, every fi is the sum of k& flows of value
1 along paths from the source s to the sink ¢ and a number of cycle flows.
Hence, fi provides a collection Fy of k paths and a number of cycles such
that the paths and the cycles have no common vertices, except the source
and the sink of the network. Moreover, by the definition of Np, none of the
cycles contain the source or the sink. It follows from the definition of Np and
the fact that fi is a minimum cost flow in Np that the paths and the cycles
in {Q — {s,t} : Q € Fi} form a heaviest k-path-cycle subdigraph L in D.
In particular, ¢(fi) = —w}, (D) for every k=1,...,n.

If D is an extended semicomplete digraph then, by Theorem 5.7.1, for
every k =1,...,n, we can construct a k-path subdigraph Qy, so that V(Qy) =
V(Lg). If D is acyclic then just let Qi = L. Obviously, Qy is a heaviest k-
path subdigraph of D. Note that Qi,...,Q, can be found in time O(n?).

Since wi(D) = wi(D) = —c(fx), it follows from Proposition 3.10.7 that
(5.11) holds.
The proof of the complexity bound O(n?®) is left as Exercise 5.50. O

Proof of Part (b) of Theorem 5.10.2: Let D be a strong quasi-transitive
digraph on n > 2 vertices and let D = R[H;, ..., H,], where R is semicom-
plete, Hy, ..., H, are quasi-transitive digraphs and » > 2. (If D is not strong,
then we consider the strong components of D one by one.) We claim that D
has a heaviest cycle C' containing vertices from more than one of the digraphs
Hy,...,H,. Indeed, let C’ be a heaviest cycle of D completely contained in
a H;. Since D is strong, there is a path in D, of length at least 2, starting
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at a vertex x of C’, terminating at a vertex y of C’ and containing no other
vertices from H;. Hence, by the definition of R[H;,..., H,], there is a path
of length at least 2, starting at x, terminating at the successor 2’ of = (in
C") and containing no other vertices from H;. Clearly, the last path and C’
minus the arc (z,2’) form a cycle as desired.

Now it is easy to see the correctness of the following algorithm for finding
a heaviest cycle of D. Note that our approach finds a heaviest cycle C' which
contains vertices from at least two H;’s. By the remark above this is also a
heaviest cycle of D.

1. Solve the HPS problem for Hy, ..., H, using Algorithm Ayps.

2. Form D, with the weights w;;, as in the proof of Theorem 5.10.1, and
the network Np,.

3. Construct a minimum cost circulation fy in Np,. Deleting the source and
sink of Np,, form a heaviest cycle subdigraph Z of Dj.

4. Using Theorem 5.7.7, construct a heaviest cycle C' of Dy by merging the
cycles in Z.

5. Using the solutions of Step 1 and the cycle C, form a heaviest cycle of D
(analogously to what we did in the proof of Theorem 5.10.1).

The proof that the complexity bound is O(n®) is left as Exercise 5.50. O

Theorem 5.10.2 implies the following:

Corollary 5.10.3 [63] For a quasi-transitive digraph D on n wvertices, the
following problems can be solved in time O(n®).

(a) Find a longest path of D.

(b) Find a longest cycle of D.

(¢) For a set X C V(D), check if D contains a cycle through X and construct
one (if it exists).

Proof: Exercise 5.51. O

Theorem 5.10.2 can be generalized to the following result by Bang-Jensen
and Gutin (see the definitions of @;-decomposable digraphs in Section 4.12):

Theorem 5.10.4 [62] Let D be a digraph of order m with non-negative
weights on the vertices. Then

(a) If D is totally ®o-decomposable, then for allk = 1,...,n, some mazimum
weight k-path subdigraphs of D can be found in time O(n®).

(b) If D is totally Po-decomposable and X C V(D), then we can check if D
has a path covering all the vertices of X and find one (if it exists) in time
O(nd).

(¢) If D is totally $o-decomposable, then a mazimum weight cycle of D can
be found in time O(n®).

(d) If D is totally ®o-decomposable and X C V (D), then a cycle of D con-
taining all vertices of X can be found in time O(n®) (if it exists).
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(e) If D is totally ®1-decomposable, then a longest cycle of D can be found
in time O(n®).
O

5.11 Hamilton Paths and Cycles in Various Classes of
Digraphs

Grotschel and Harary [336] showed that only very few bridgeless graphs have
the property that every strong orientation is hamiltonian.

Theorem 5.11.1 [336] Let G be a bridgeless graph. If G is neither a cycle
nor a complete graph, then G contains a strong non-hamiltonian orientation.
O

However, there are quite a number of graphs with the property that every
strong orientation is traceable.

Theorem 5.11.2 (Thomassen) [699] Let G be a 2-edge-connected undi-
rected graph such that every connected component of G is either bipartite
or an odd cycle of length at least 5. Also assume that G has at most one
non-bipartite component. Then every strong orientation of G is traceable.

To prove Theorem 5.11.2, we need the following lemma whose proof is left
as Exercise 5.49.

Lemma 5.11.3 Let L be the complement of an odd cycle ujus . .. usgr1u1,
k > 2, and let F be an orientation of L. Then, there arei # j € {1,2,...,2k+
1} such that UUjUip1 OT Ujp1U;U; 18 a path in F. O

Proof of Theorem 5.11.2: Let G1,...,G, be bipartite connected com-
ponents of G such that A;, B; are partite sets of G;, i = 1,...,r. Let
Z = ujus ... Ugp1u1 be the odd cycle in G, if one exists.

Let H be a strong orientation of G. Define a partition A, B of V(G) as
follows. Let A* = A;U...UA, and B* = By U...UB,. If Z does not exist
(in G), then A = A*, B = B*. Otherwise, by Lemma 5.11.3, without loss of
generality, we have that there exists a j such that u;u;us is a directed path
in H. Let A= A*U {U3,u5, R ,u2k+1}, B=B*U {’LLQ,U4, S ,UQk} U {ul}
By this construction, H(A) is a tournament and H (B) is either a tournament
(if Z does not exist) or H has a path zzy such that z,y € B and 2y ¢ G(B).

We now show that H has a cycle C including all vertices of A. If H(A)
is strong, then C' exists by Camion’s theorem (see Theorem 1.5.2). If H(A)
is not strong, then there is a shortest path P in H from the terminal strong
component of H(A) to its initial strong component. Let P start at u and
terminate at w. (Clearly, P does not have vertices other than v and w in
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these two components.) It is easy to check that H((A — V(P)) U {u,w}) has
a hamiltonian (w,w)-path Q. The paths P and @ form a cycle containing A.
Let C be a longest cycle containing A.

If H—-V(C) is a tournament, then some vertex of C' dominates a vertex v
of the initial strong component of H — V(C'). The tournament H — V(C') has
a hamiltonian path starting at v; this path can be extended to a hamiltonian
path in H. Thus, we may assume that H — V(C) is not a tournament. In
particular, x,y € V(H) — V(C). Let C = v1vz...v,v1. We consider two
cases.

Case 1: z € V(C). We first prove that C contains vertices v;, v;+; such
that v; dominates one of x,y and v;;; is dominated by the other one and
1 < j <m— 1. Since G has no triangles, each of z* and 2~ is adjacent to at
least one of x,y. By the maximality of C, if 2T and y are adjacent, we must
have zt—y and then z, 2T is the desired pair. Hence, we may assume that
27T is adjacent to z and, hence, either z, 2T is the desired pair or z*—x. Now
considering z~ one can prove that either 2™, z is the desired pair or 27, 2"
is the desired pair.

Among all pairs v;,v;4; satisfying the above property choose one such
that j is the smallest possible. We may assume (by interchanging x and y if
needed) that v;—z and y—wv;1;. We show that j = 1. Assume that j > 1.
Because of the minimality of j, x is not dominated by v;;s when 1 < s < j
and because of the maximality of C', x does not dominate v;;. Hence, x is
not adjacent to v;41. Similarly, we can see that y is not adjacent to vi4;_1
and none of the vertices v;,,, 1 < s < j, is dominated by y. Since G has no
triangle, 7 > 3 and v;41—y and £—v;;_1; a contradiction to the minimality
of j. Thus, we may assume that v;—z, y—v;y1.

We add to the oriented graph H—V (C) the arc yz obtaining a tournament
T. Let v be a vertex in the initial strong component of 7' dominated by a
vertex v in C. By Camion’s theorem, 7' has a hamiltonian path P starting
at v and terminating at some vertex w. If yx is not on P, then Clu™t,u]P
is a hamiltonian path of H. If yx is on P, then Plv,y|C[vi41, v;|Plz, w] is a
hamiltonian path of H.

Case 2: z g V(C). If H—V(C) is strong, then we consider any arc of
H between x and C (such an arc exists as the degree of x in G equals 2). If
this arc starts (terminates) at x, we add to H — V(C) the arc zy (yz) and
consider a hamiltonian cycle in the resulting tournament. Using this together
with C and the arc between z and C, it is easy to find a hamiltonian path
in H.

So we assume that H — V(C) is not strong. Let Hi, Ho, ..., H, be an
acyclic ordering of strong components of H — V' (C'). We may assume without
loss of generality (consider the converse of H if needed) that at most one of
x,y belongs to V(H;). Clearly, some vertex v in H; is dominated by a vertex
in C. We can find a hamiltonian path in H as in the case when H — V(C)
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is a tournament unless for some i, V(H;) = {z} and V(H;+1) = {y} or
V(H;-1) = {y}. But this is impossible due to the existence of zzy. O

In this theorem it is important that G does not contain a 3-cycle. Indeed,
let M be a multipartite tournament consisting of a strong tournament 7'
with fixed vertex y and triple x1,x2, 3 of independent vertices such that
N*t(z;) = {y} for every i = 1,2, 3. Since |[N T ({x1, 22, 23})| < 2 (see Exercise
3.61), M has no 1-path-cycle factor. (Recall that a multipartite tournament
is traceable if and only if it has a 1-path-cycle factor, see Theorem 5.7.1.)
However, Thomassen [699] remarks that Theorem 5.11.2 is perhaps far from
being the best possible. He claims that by using the method of the proof
of this theorem, it is not difficult to show that any strong orientation of a
graph, whose complement is a disjoint union of two 5-cycles and independent
vertices, has a hamiltonian path.

Problem 5.11.4 Find a non-trivial extension of Theorem 5.11.2.

We recall that a digraph D is unilateral if for every pair z,y of distinct
vertices of D there is a path between x and y (not necessarily both (x, y)-path
and (y, x)-path). For some of the graphs in Theorem 5.11.2 not only all strong
orientations are traceable, but also all unilateral ones satisfy this property.
This was shown by Fink and Lesniak-Foster in the following theorem.

Theorem 5.11.5 [235] Let G be a graph and let F = Q1 U...UQy be a path
subgraph of G in which every path Q; is of length 1 or 2. Then an orientation
of G — Uk_| E(Q;) is traceable if and only if it is unilateral. a

Erdds and Trotter [223] investigated when the Cartesian product of two
directed cycles is hamiltonian. They proved the following (below ged means
the greatest common divisor):

Theorem 5.11.6 Let d = ged(k,m). The Cartesian product Cr x C,, is
hamiltonian if and only if d > 2 and there exist positive integers dy,ds such
that di + d2 = d and ged(k, d1) = ged(m, ds) = 1. O

For a generalization of Theorem 5.11.6, see Theorem 10.10.5.

In Section 4.6, we introduced de Bruijn digraphs Dp(d, t), Kautz digraphs
Dk (d,t) as well as their generalizations: Dg(d,n), Dr(d,n), D(d,n,q,r).
(The digraphs D(d, n,1,r) are special circulant digraphs.) The consecutive-d
digraphs D(d,n,q,r) are the most general among the digraphs listed above.
Thus, we restrict our attention to these digraphs. Du, Hsu and Hwang [206]
proved the following result for digraphs D(d, n,q,7).

Theorem 5.11.7 If ged(n,q) > 2, or ged(n,q) = 1 and ¢ > 5, then
D(d,n,q,r) is hamiltonian. O
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Hwang [439] as well as Du and Hsu [205] characterized hamiltonian di-
graphs D(d, n,q,r) for ged(n,q) =1 and d =1 (d = 2, respectively). Chang,
Hwang and Tong [143] showed that every digraph D(4, n, g, r) is hamiltonian.
They also gave examples of digraphs D(3,n, ¢, r), which are not hamiltonian
[142].

We finish this chapter by the following result by Cooper, Frieze and Mol-
loy. For a fixed integer r and a property P, we say that almost all r-regular
digraphs satisfy P if the fraction of r-regular digraphs of order n with P
(among all r-regular digraphs of order n) tends to 1 when n—oo.

Theorem 5.11.8 [167] For a fized integer r > 3, almost all r-regular di-
graphs are hamiltonian. ad

It is easy to show that almost all 1-regular digraphs are non-hamiltonian
(Exercise 5.54). The fact that almost all 2-regular digraphs have no hamil-
tonian cycle follows directly from the fact that the expected number of hamil-
tonian cycles in a randomly and uniformly chosen 2-regular digraph tends to
zero (for details see Section 3 of Chapter 4 in the book [14] by Alon and
Spencer).

5.12 Exercises

5.1. (+) Let Gi be an undirected graph with vertex set X UZ UY, where X =
{z1,22,...,z}, Y ={y1,92,...,yk+1} and Z = {z1, 22, ..., 2k11}, and edge
set

{zv: z€X,0eYUZ}U{yizi: i=1,2,...,k+1}.

Let Dy, :c?k. Prove that ghn(Dy) = k (Gutin and Yeo [379]).

5.2. Prove Theorem 5.1.6.

5.3. Prove Theorem 5.1.7.

5.4. Let a digraph Z have V(Z) = {1,2,...,6} and A(Z) = {ij: j—i=2o0r3
(mod) 6}. Find qhn(Z). Is Z hamiltonian?

5.5. (4) Prove without using Theorem 5.2.1 that every acyclic digraph D has an
a(D)-path factor. Hint: use Theorem 3.8.2.

5.6. A refinement of the Gallai-Milgram theorem. We say that a path P
from z to y is end-extendable if there exists another path P’ such that
P = P'[x,y]. If no such path P’ exists then P is non-end-extendable.
Prove the following slight strengthening of the Gallai-Milgram theorem.

Proposition 5.12.1 FEvery digraph D with independence number a(D) = «
has a path factor Py, Ps,..., P, t < «, such that P1 is a non-end-extendable
path in D and P; is a non-end-extendable path in D —V (P1)U... UV (P;_1)
for2 <i<t.

Hint: show how to modify a given path factor into one with the property
above.
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Show that Theorem 5.2.5 implies Theorem 5.2.1.

Scheduling airplanes. An airport has a certain number of runways that
can be used for landing of airplanes. How would you schedule airplanes to use
the minimum number of the runways (in order to possibly have some spare
ones permanently ready for emergency landings) if every use of a runway can
be determined as a fixed time interval ?

(—) Show by examples that property (1) and (2) of Lemma 5.3.3 need not
hold for arbitrary acyclic digraphs.

Using the proof of Theorem 5.4.2, Lemma 5.4.1 and Proposition 4.9.3, prove
Corollary 5.4.3.

Prove Theorem 5.2.4 for path-mergeable digraphs.

Prove that every strong locally in-semicomplete digraph has a 2-connected
underlying graph.

Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian cycle if and only if it is strong (Bang-Jensen [44]).

Give a direct proof of the following result. A locally semicomplete digraph
has a hamiltonian path if and only if it is connected (Bang-Jensen [44]). Hint:
use Lemma 4.10.2.

Give a direct proof of the following result. One can find a longest cycle is a
semicomplete digraph in time O(n”) (Manoussakis [546]).

(—) Using Proposition 5.0.3 and Theorem 5.6.1 prove the following:

Proposition 5.12.2 Let D be a digraph of order n. Suppose that, for every
dominated pair of non-adjacent vertices {x,y}, either d(z) > n—1 and d(y) >
n—2ord(xz) >n—2and d(y) >n—1. Then D is traceable.

Prove that the digraph @, introduced before Theorem 5.6.1 is strong and
non-hamiltonian.

Prove Lemma 5.6.24.

Find an infinite family of hamiltonian digraphs that satisfy the conditions
of both Theorem 5.6.1 and Theorem 5.6.5, but do not satisfy the conditions
of Theorem 5.6.7 and are neither locally out-semicomplete nor locally in-
semicomplete (Bang-Jensen, Gutin and Li [69]).

Find an infinite family of hamiltonian digraphs that satisfy the conditions
of Theorem 5.6.12, but do not satisfy the conditions of Theorem 5.6.7 (Zhao
and Meng [758]).

Prove Corollaries 5.6.21 and 5.6.22.

Using Meyniel’s theorem, prove that if a strong digraph D has at least n? —
3n + 5 arcs, then D is hamiltonian (Lewin [514]).

Prove that every digraph with more than (n— 1)? arcs is hamiltonian (Lewin
[514]).

Prove that, if the minimum semi-degree of a digraph D of order n is at least
(n+1)/2, then every arc of D is contained in a Hamilton cycle of D.
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5.25.

5.26.

5.27.

5.28.
5.29.

5.30.

5.31.

5.32.

5.33.
5.34.

5.35.
5.36.

5. Hamiltonicity and Related Problems

Construct an infinite family of non-hamiltonian strong digraphs that satisfy
both (5.1) and (5.2) (Bermond and Thomassen [115]).

Prove that every vertex of a semicomplete multipartite digraph D belongs to
a longest path in D (Volkmann [729]).

(4+) Give a direct proof of the first (non-algorithmic) part of Theorem 5.7.1
(Gutin [358, 363)).

Show that the multipartite tournament in Figure 5.6 is non-hamiltonian.

Show that the analogue of Theorem 5.7.7 for semicomplete bipartite digraphs
does not hold, i.e., there are a strong semicomplete bipartite digraph D and
a maximum cycle subdigraph F in D such that D(V(F)) is not hamiltonian
(Gutin [362]).

An oriented graph D = (V, A) is an arc-locally tournament digraph if it

has the following two properties:

(i) Whenever z,y are distinct vertices and there exists an arc uv € A such
that zu,yv € A, there is at least one arc between x and y in D.

(ii) Whenever z,y are distinct vertices and there exists an arc zw € A such
that zx,wy € A, there is at least one arc between z and y in D.

Prove that, if D = (V, A) is a connected arc-local tournament digraph and C

is a cycle, then every vertex of V — C' is adjacent to a vertex of C.

(+) Hamiltonian paths and cycles in arc-locally tournament di-
graphs. Prove the following two theorems by Bang-Jensen [48]:

Theorem 5.12.3 An arc-locally tournament digraph is hamiltonian if and
only if it is strong and has a cycle factor.

Theorem 5.12.4 A connected arc-locally tournament digraph is traceable if
and only if it has a 1-path-cycle factor.

Hint: use Exercise 5.30 and study the structure of the arcs between disjoint
cycles.

(=) Arc-local tournament digraphs were defined above. Prove that every
bipartite tournament is an arc-local tournament digraph.

Prove Theorem 5.7.13 by induction on t.

By inspecting all intermediate steps in the proof of Corollary 5.7.16, show
that the following statement holds. Let D be a bipartite digraph obtained
by taking two disjoint even cycles C' = wiuz...uskx—1u2xcu1 and Z =
V1V2 . .. V2,—102,v1 and adding an arc between vg;—1 and ug; and between
vo; and wgj—1 (in any direction, possibly one in each direction) for all
i=1,2,...,kand j=1,2,...,r. D is hamiltonian if and only if it is strong.
Moreover, if D is strong, then, given cycles C' and Z as above, a hamiltonian
cycle of D can be found in time O(|V(C)||V(Z)|) (Gutin [362]).

Prove Theorem 5.7.7.

Prove the following generalization of Lemma 5.7.15. If a strong semicomplete
multipartite digraph D has a cycle subdigraph F = C1 U...UCy with p(< n)
vertices, then, for every i, D has a cycle of length at least p — ¢t + 1 covering
all vertices of C; (Bang-Jensen, Gutin and Huang [68]).
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Construct an infinite family of semicomplete multipartite digraphs showing
that the result of Exercise 5.36 is best possible (Bang-Jensen, Gutin and
Huang [68]).

Using the result of Exercise 5.36, prove that every strong semicomplete mul-
tipartite digraph D with 1-path-cycle subdigraph F = PUCi U ... UC; of
order p has a path of length at least p — ¢t — 1 starting at the initial vertex of
P (Bang-Jensen, Gutin and Huang [68]).

Prove Theorem 5.7.13.

Prove the following proposition. Let D be a strong semicomplete multipartite
digraph of order n and let r be the cardinality of minimum partite set of
D. If for each pair of dominated non-adjacent vertices z,y, d(x) + d(y) >
min{2(n — r) + 3,2n — 1}, then D is hamiltonian (Zhou and Zhang [760]).

(—)Prove that every oriented graph of minimum in-degree and out-degree
k > 2, on at most 2k + 2 vertices, is a multipartite tournament with at most
two vertices in each partite set.

Prove the following theorem due to Jackson:

Theorem 5.12.5 [/49] Every oriented graph of minimum in-degree and out-
degree k > 2, on at most 2k + 2 vertices, is hamiltonian.

(=) Check that f(G}, k) = k — 1, where the digraph G}, and the function f
are introduced after Theorem 5.7.27.

Prove Theorem 5.8.2.

Characterization of traceable extended locally semicomplete di-
graphs. Prove Theorem 5.8.3.

(=) Prove that the following problem is A'P-complete: Given a digraph
D = (V,A) and a partition V = Vi U... UV, check whether D has a
cycle factor C; U ... U Cj such that no cycle C; is contained in a set V},
i=1,2,....,p.

Hint: consider an arbitrary vertex z in D and let Vi = V(D) —{z}, Vo = {z}.

(—) Characterization of traceable quasi-transitive digraphs. Prove
Theorem 5.9.2 using Theorem 5.7.1.
Hint: see the proof of Theorem 5.9.1.

(—) Another characterization of traceable quasi-transitive digraphs.
Formulate and prove a characterization of traceable quasi-transitive digraphs
similar to Theorem 5.9.3.

Prove Lemma 5.11.3.
Prove the complexity bound for both parts of Theorem 5.10.2.
(—) Deduce the results of Corollary 5.10.3 from Theorem 5.10.2.

Prove that if D is a strong oriented graph of order at least three and D does
not contain, as induced subdigraph, any digraph in Figure 5.9, then D is
hamiltonian (Kemnitz and Greger [477]).

Hint : show that D is locally out-semicomplete and use the characterization
of hamiltonian locally out-semicomplete digraphs (Gutin and Yeo [380]).
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5. Hamiltonicity and Related Problems

Figure 5.9 Forbidden digraphs. Unoriented arcs can be oriented arbitrarily.

5.53.

5.54.
5.55.

5.56.

5.57.

A counterexample to a conjecture from [477]. Consider the tournament
D with V(D) = {z1, %2, x3, x4, x5} and

A(D) = {w122, T273, T34, TaT5, T5T1, T123, T2 T4, T3T5, TaT1, T5T2 |
and any 2-strong tournament 7', containing three vertices yi1, y2, y3 such that

{y1y2, y2ys, ysy1 } S A(T).

Let us construct an oriented graph T with vertex set V(D) U V(T) and arc
set
A(D)UA(T) U {y1x2, Tay1, y2T2, TalY2, Y3Ta, T2Y3 }.
Prove that
(a) T™ is strong.
(b) T* does not contain, as induced subdigraph, any orientation of K 3.
(c¢) For every vertex v in T, T*(N(v)) is strong.
(d) T is not hamiltonian.
(Gutin and Yeo [380])

(—) Prove that almost all 1-regular digraphs are non-hamiltonian.

Connected (g, f)-factors in some semicomplete multipartite di-
graphs. Given a digraph D and two positive integers f(z),g(z) for every
x € V(D), a subgraph H of D is called a (g, f)-factor if g(z) < d};(z) =
di(z) < f(z) for every x € V(D). If f(z) = g(xz) = 1 for every z, then a
connected (g, f)-factor is a hamiltonian cycle. Prove the following result by
Gutin [370]:

Theorem 5.12.6 Let D be a semicomplete bipartite digraph or an extended
locally in-semicomplete digraph. Then D has a connected (g, f)-factor if and
only if D is strongly connected and contains a (g, f)-factor. One can check
whether D has a connected (g, f)-factor in O(n®) time. O

Connected (g, f)-factors in quasi-transitive digraphs. The additional
terminology used in this exercise are introduced in the previous exercise.
Prove the following assertion. The connected (g, f)-factor problem is polyno-
mial time solvable for quasi-transitive digraphs (Gutin [370]).

Let G be the complete graph on 5 vertices with one edge deleted. Find a
strong orientation of G which is not hamiltonian.
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In this chapter we discuss results which in one way or another generalize the
notion of hamiltonicity. As can be seen from the content of the chapter, there
are quite a number of such topics. In fact many more could be added, but we
feel that the ones included here are representative.

We start by studying hamiltonian paths with one or more end vertices
prescribed, that is, we study paths which start in a prescribed vertex, paths
which connect two prescribed vertices and finally paths which start and end in
prescribed vertices. Not surprisingly, the level of difficulty of these problems
increase when we fix more and more end vertices. Even for tournaments the
last problem is still not completely solved.

The next topic is pancyclicity, which may be seen as a generalization
of hamiltonicity. We first study digraphs of order n which have cycles of
all lengths from 3 to n and subsequently digraphs in which every vertex is
in a k-cycle for every k € {3,4,...,n}. After that we discuss briefly arc-
pancyclicity where we want cycles of all possible lengths from 3 to n through
each arc. These problems are very hard and almost all known results deal with
tournaments, generalizations of tournaments or digraphs which are almost
complete.

Another topic covered is hamiltonian cycles which either avoid or contain
certain prescribed arcs. These problems are very difficult even for tourna-
ments. As we will show in Section 6.7, some of these results imply that the
problem of deciding the existence of a hamiltonian cycle in a digraph ob-
tained from a semicomplete digraph by adding just a few new vertices and
some arcs is already very difficult. In fact the problem is highly non-trivial
even if we add just one extra vertex. We also discuss various results concern-
ing arc-disjoint hamiltonian paths and cycles, in particular the conjecture
by Kelly that the arcs of every regular tournament can be decomposed into
arc-disjoint hamiltonian cycles.

We then move on to orientations of hamiltonian cycles. We discuss in
some detail one of the main tools in a recent proof by Havet and Thomassé
of the deep result that every tournament on at least 8 vertices contains every
orientation of a hamiltonian undirected path.

After this we briefly discuss another relative of the hamiltonian cycle
problem: the problem of finding a set of few cycles that cover all vertices of a
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digraph. We study both the case when these cycles are allowed to intersect,
pairwise but only in a path, and the case when we want the cycles to be
disjoint.

The last two sections deal with applications. First we show that for every
strong digraph D belonging to one of several classes of generalizations of
tournaments, one can find a spanning subgraph which is strongly connected
and has the minimum number of arcs among all such subdigraphs of D in
polynomial time. For general digraphs this problem is NP-complete since
it generalizes the hamiltonian cycle problem. Finally we address the TSP
problem and show that some widely used heuristics for the problem find tours
which are better than a fraction (depending on n) of all possible tours, thus
indicating that the solutions they find may be expected to be of reasonable
quality.

6.1 Hamiltonian Paths with a Prescribed End-Vertex

We begin with hamiltonian paths starting or ending at a prescribed vertex.
Besides being of independent interest, results of this type are also useful in
connection with results on hamiltonian paths with both end vertices pre-
scribed (but not necessarily the direction of the path).

To get a feeling for arguing with extended tournament structure, we start
with the following easy result.

Proposition 6.1.1 Suppose that a strong extended tournament D has an
(z,y)-path P such that D — P has a cycle factor. Then D has a hamiltonian
path starting at x and a hamiltonian path ending at y.

Proof: Choose a path P’ starting at x as long as possible so that D — P’
has a factor which consists of minimal number of cycles Cy, Cs, ..., Cy. Then,
by Proposition 5.7.18, we may assume that C;=C; when i < j. Let P/ =
Uiz . .. u, where uy = x. If ¢ # 0, then, by the assumption on P/, u, is
completely dominated by Cj. Since D is strong, there is an arc from P’ to
C1. Let u; be the vertex of P’ with largest index ¢ < 7 such that there is an
arc u;z from u; to Cq. Let 2~ be the predecessor of z on C. Since u; 1 has no
arc to C'1, we obtain z~—wu;41. Here we used the property that nonadjacent
vertices of an extended semicomplete digraph are similar (defined in Chapter
1). Hence C[z,27] can be inserted between u; and u;41, contradicting the
choice of P’. So ¢ =0 and P’ is a hamiltonian path starting at x. A similar
argument can be applied to show that D has a hamiltonian path ending at
Y. O

The following result, due to Bang-Jensen and Gutin, shows that, for di-
graphs that are either semicomplete bipartite or extended locally semicom-
plete, there is a nice necessary and sufficient condition for the existence of a
hamiltonian path starting at a prescribed vertex.
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Theorem 6.1.2 [66] Let D = (V, A) be a digraph which is either semicom-
plete bipartite or extended locally out-semicomplete and let x € V. Then D
has a hamiltonian path starting at x if and only if D contains a 1-path-cycle
factor F of D such that the path of F starts at x, and, for every vertex y of
V —{x}, there is an (x,y)-path* in D. Moreover, if D has a hamiltonian path
starting at x, then, given a I1-path-cycle factor F of D such that the path of
F starts at x, the desired hamiltonian path can be found in time O(n?).

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose
that F = PUC1U...UC} is a 1-path-cycle factor of D that consists of a path
P starting at = and cycles C;, i = 1,...,t. Suppose also that every vertex
of D is reachable from z. Then, without loss of generality, there is a vertex
of P that dominates a vertex of Cy. Let P = z122...2p, C1 = y1¥2. .. Yg¥1,
where ¢ = z1 and zp—vys for some k € {1,2,...,p}, s € {1,2,...,q}. We
show how to find a new path starting at = which contains all the vertices of
V(P)UV(C). Repeating this process we obtain the desired path. Clearly,
we may assume that k& < p and that x, has no arc to V/(C1).

Assume first that D is an extended locally out-semicomplete digraph. If P
has a vertex z; which is similar to a vertex y; in C1, then ;y;+1,y;xi41 € A
and using these arcs we see that Plx1,;]C[yj41,y;]P[®it1,xp] is a path
starting from x and containing all the vertices of P U C;. If P has no vertex
that is similar to a vertex in C7, then we can apply the result of Exercise
4.37 to Plzy, x,] and x;C1[ys, ys—1] and merge these two paths into a path
R starting from z;, and containing all the vertices of Pz, x,] U Cq. Now,
Plz1,zr—1]R is a path starting at « and containing all the vertices of PUC}.

Suppose now that D is semicomplete bipartite. Then either ys_1—xk 1,
which implies that Plz1,2x]|C1[ys, ys—1]P[xk+1,Tp) is a path starting at =
and covering all the vertices of P U Cq, or xx41—Yys—1. In the latter case,
we consider the arc between 492 and ys—o. If ys_o—zr12 we can construct
the desired path, otherwise we continue to consider arcs between zj3 and
ys—3 and so on. If we do not construct the desired path in this way, then we
find that the last vertex of P dominates a vertex in C7, contradicting our
assumption above.

Using the process above and breadth-first search, one can construct an
O(n?)-algorithm for finding the desired hamiltonian path starting at z. O

Just as the problem of finding a minimum path factor generalizes the
hamiltonian path problem, we may generalize the problem of finding a hamil-
tonian path starting at a certain vertex to the problem of finding a path factor
with as few paths as possible such that one of these paths starts at a specified
vertex . We say that a path factor starts at « if one of its paths starts at
x and denote by pc, (D) the minimum number of paths in a path factor that

! This is equivalent to saying that D has an out-branching with root .
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starts at . The problem of finding a path factor with pc, (D) paths which
starts at « in a digraph D is called the PFx problem?.

Let @1 be the union of all semicomplete bipartite, extended locally semi-
complete and acyclic digraphs. Using an approach similar to that taken in
Section 5.10, Bang-Jensen and Gutin proved the following.

Theorem 6.1.3 [66] Let D be a totally ®1-decomposable digraph. Then the
PFz problem for D can be solved in time O(|V (D)|*). O

6.2 Weakly Hamiltonian-Connected Digraphs

Recall that an [z,y]-path in a digraph D = (V,A) is a path which ei-
ther starts at x and ends at y or oppositely. We say that D is weakly
hamiltonian-connected if it has a hamiltonian [z, y]-path (also called an
[z, y]-hamiltonian path) for every choice of distinct vertices =,y € V. Ob-
viously deciding whether a digraph contains an [z, y]-hamiltonian path for
some x, y is not easier than determining whether D has any hamiltonian path
and hence for general digraphs this is an A'P-complete problem by Theorem
5.0.2 (see also Exercise 6.3). In this section we discuss various results that
have been obtained for generalizations of tournaments. All of these results
imply polynomial algorithms for finding the desired paths.

6.2.1 Results for Extended Tournaments

We start with a theorem due to Thomassen [698] which has been generalized
to several classes of generalizations of tournaments as will be seen in the
following subsections.

Theorem 6.2.1 [698] Let D = (V,A) be a tournament and let x1,z2 be
distinct vertices of D. Then D has an [x1,xa]-hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1,xo belongs to the initial strong com-
ponent of D or none of x1,xs belongs to the terminal strong component
(or both).

(b) D is strong and fori=1 or 2, D — x; is not strong and x3_; belongs to
neither the initial nor the terminal strong component of D — x;.

(¢) D is isomorphic to one of the two tournaments in Figure 6.1 (possibly
after interchanging the names of x1 and x2).

The following easy corollary is left as Exercise 6.4:

2 Observe that pc, (D) < pc(D) 4+ 1 holds for every digraph D.



6.2 Weakly Hamiltonian-Connected Digraphs 285

7|

Figure 6.1 The exceptional tournaments in Theorem 6.2.1. The edge between x;
and x2 can be oriented arbitrarily.

Corollary 6.2.2 [698] Let D be a strong tournament and let z,y, z be dis-
tinct vertices of D. Then D has a hamiltonian path connecting two of the
vertices in the set {x,y, z}. 0

Thomassen [698] used a nice trick in his proof of Theorem 6.2.1 by using
Corollary 6.2.2 in the induction proof. We will give his proof below.

Proof of Theorem 6.2.1: Let z1, x5 be distinct vertices in a tournament
D. Tt is easy to check that if any of (a)-(c) holds, then there is no [z1, 23]
hamiltonian path in D.

Suppose now that none of (a)-(c) hold. We prove by induction on n that D
has an [z1, 23]-hamiltonian path. This is easy to show when n < 4 so assume
now that n > 5 and consider the induction step with the obvious induction
hypothesis. If D is not strong then let Dy, Do, ..., Dg, s > 2 be the acyclic
ordering of the strong components of D. Since (a) does not hold, we may
assume without loss of generality that 1 € V(D;) and z3 € V(D). Observe
that D; has a hamiltonian path P; starting at x; (Exercise 6.1) and D, has
a hamiltonian path P; ending at xo. Let P; be a hamiltonian path in D; for
eachi=2,3,...,s—1. Then PP, ... Ps_1 Ps is an (x1, x2)-hamiltonian path.

If D — z; is not strong for ¢ = 1 or 2, then we may assume without loss
of generality that i = 1. Let D1, ..., D}, p > 2 be the acyclic ordering of the
strong components of D — x;. Since (b) does not hold we may assume, by
considering the converse of D if necessary, that x5 belongs to D;. Let y be
any out-neighbour of z1 in Dj. Our argument for the previous case implies
that there is a (y, x2)-hamiltonian path P in D — x4, implying that z1 P is an
(1, x2)-hamiltonian path in D. Hence we may assume that D — z; is strong
fori=1,2.

If D — {x1,22} is not strong, then it is easy to prove that D has an
(x;, x3—;)-hamiltonian path for ¢ = 1,2 (Exercise 6.2). Hence we only need
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to consider the case when D’ = D — {x1, 22} is strong. Let ujug ... un_ouy
be a hamiltonian cycle of D’. By considering the converse if necessary, we
may assume that z; dominates u;. Then D has an (z1, z2)-hamiltonian path
unless x5 dominates u,,_o so we may assume that is the case. By the same
argument we see that either the desired path exists or 1 dominates u,,_3 and
9 dominates u,_4. Now it is easy to see that either the desired path exists,
or n — 2 is even and we have x1—{uy,us, ..., up—3}, To—=>{ug, ug, ..., up_a}.
If 21 or zo dominates any vertex other than those described above, then by
repeating the argument above we see that either the desired path exists or
{1,292}V (C), which is impossible since D is strong. Hence we may assume
that

{u2au47 D] 7un—2}’_) 1 |—>{U1,U3, s 7un—3}7

{u,us,y ..., up_3— oo —{ug, ug,..., up_2} (6.1)

If n = 6, then using that (c) does not hold, it is easy to see that the desired
path exists. So we may assume that n > 8. By induction, the theorem and
hence also Corollary 6.2.2 holds for all tournaments on n — 2 vertices. Thus
D’ has a hamiltonian path P which starts and ends in the set {uq,us, us}
and by (6.1), P can be extended to an (x1, z2)-hamiltonian path of D. O

We now turn to extended tournaments. An extended tournament D does
not always have a hamiltonian path, but, as we saw in Theorem 5.7.1, it
does when the following obviously necessary condition is satisfied: there is
a l-path-cycle factor in D. Thus if we are looking for a sufficient condition
for the existence of an [z, y]-hamiltonian path, we must require the existence
on an [z,y]-path P such that D — P has a cycle factor (this includes the
case when P is already hamiltonian). Checking for such a path factor in an
arbitrary digraph can be done in polynomial time using flows, see Exercise
3.62.

The next result is similar to the structure we found in the last part of the
proof of Theorem 6.2.1.

Lemma 6.2.3 [67] Suppose that D is a strong extended tournament con-
taining two adjacent vertices x and y such that D — {x,y} has a hamil-
tonian cycle C' but D has no hamiltonian [z, y]-path. Then C is an even
cycle, NY(z) NV (C) = N~ (y) nV(C), N~ (z) nV(C) = Nt (y) nV(C),
and the neighbours of x alternate between in-neighbours and out-neighbours
around C.

Proof: Exercise 6.5. O

Bang-Jensen, Gutin and Huang obtained the following characterization
for the existence of an [z, y]-hamiltonian path in an extended tournament.
Note the strong similarity with Theorem 6.2.1.
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Theorem 6.2.4 [67] Let D be an extended tournament and x1,x2 be distinct
vertices of D. Then D has an [x1, x2|-hamiltonian path if and only if D has
an [z1, x2)-path P such that D — P has a cycle factor and D does not satisfy
any of the conditions below:

(a) D is not strong and either the initial or the terminal component of D
(or both) contains none of x1 and xo;

(b) D is strong and the following holds fori =1 ori = 2: D—x; is not strong
and either x3_; belongs to neither the initial nor the terminal component
of D—x;, or x3_; does belong to the initial (terminal) component of D—x;
but there is no (x3—;, x;)-path ((x;,x5_;)-path) P' such that D — P’ has
a cycle factor.

(¢) D,D — x1, and D — x2 are all strong and D is isomorphic to one of the
tournaments in Figure 6.1. a

The proof of this theorem in [67] is constructive and implies the following
result (the proof is much more involved than that of Theorem 6.2.1). We point
out that the proof in [67] makes explicit use of the fact that the digraphs have
no 2-cycles. Hence the proof is only valid for extended tournaments and not
for general extended semicomplete digraphs, for which the problem is still
open.

Theorem 6.2.5 [67] There exists an O(y/nm) algorithm to decide if a given
extended tournament has a hamiltonian path connecting two specified vertices
x and y. Furthermore, within the same time bound a hamiltonian [x,y]-path
can be found if it exists. a

Theorem 6.2.4 implies the following characterization of extended tourna-
ments which are weakly hamiltonian-connected (see Exercise 6.7).

Theorem 6.2.6 [67] Let D be an extended tournament. Then D is weakly
hamiltonian-connected if and only if it satisfies each of the conditions below.

(a) D is strongly connected.

(b) For every pair of distinct vertices x and y of D, there is an [z, y]-path
P such that D — P has a cycle factor.

(¢) For each vertex x of D, D — x has at most two strong components and
if D — x is not strong, then for each verter y in the initial (respectively
terminal) strong component, there is a (y, z)-path (respectively an (z,y)-
path) P’ such that D — P’ has a cycle factor.

(d) D is not isomorphic to any of the two tournaments in Figure 6.1. O

The following result generalizes Corollary 6.2.2. Note that we must assume
the existence of the paths described below in order to have any chance of
having a hamiltonian path with end vertices in the set {z,y,z}. The proof
below illustrates how to argue with extended tournament structure.
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Corollary 6.2.7 [67] Let x,y and z be three vertices of a strong extended
tournament D. Suppose that, for every choice of distinct vertices u,v €
{z,y,2}, there is a [u,v]-path P in D so that D — P has a cycle factor.
Then there is a hamiltonian path connecting two of the vertices in {x,y,z}.

Proof: If both D — z and D — y are strong, then, by Theorem 6.2.4, either
D has a hamiltonian path connecting z and y, or D is isomorphic to one
of the tournaments in Figure 6.1, in which case there is a hamiltonian path
connecting x and z. There is a similar argument if both D — x and D — z,
or D —y and D — z are strong. So, without loss of generality, assume that
neither D — x nor D — y is strong. Let S1,S53,...,5; be an acyclic ordering
of the strong components of D — z. Note that S; has an arc to z, since D is
strong.

Suppose first that y € V(S;) for some 1 < i < t. We show that this implies
that D — y is strong, contradicting our assumption. Consider an [z, y]-path
P and a cycle factor F of D — P. It is easy to see that P cannot contain
any vertex of S;y1,...,S;. Hence each of these strong components contains a
cycle factor consisting of those cycles from F that are in S; for j =¢+1,...,¢t.
In particular (since it contains a cycle), each S; has size at least 3 for j =
i+1,...,t. It also follows from the existence of P and F that every vertex in
S; is dominated by at least one vertex from U = V(S1)U...UV(S;—1). Indeed,
if some vertex z € V(S;) is not dominated by any vertex from U, then using
that S,=S5, for all 1 < r < p <t we get that z is similar to all vertices in
U. However, this contradicts the existence of P and F. Now it is easy to see
that D —y is strong since every vertex of S; — y is dominated by some vertex
from V(S1)U...UV(S;—1) and dominates a vertex in V(S;41)U...UV(S).
Hence we may assume that y belongs to S or S;.

By considering the converse of D if necessary, we may assume that y €
V(S1). By Theorem 6.2.4(b) we may assume that there is no (y, z)-path W
such that D — W has a cycle factor. Thus it follows from the assumption of
the corollary that there is an (x, y)-path P’ = vjvy ... v, v1 = z,v, = y such
that D — P’ has a cycle factor F’. Since P’ — z is contained in S, we can
argue as above that each S;, ¢ > 1, has a cycle factor (inherited from F') and
hence each S; contains a hamiltonian cycle C;, by Theorem 5.7.7.

Note that every vertex of S; which is not on P’ belongs to some cycle
of F' that lies entirely inside S;. Hence, if » = 2 (that is, P’ is just the
arc z—y), then it follows from Proposition 6.1.1 (which is also valid when
the path in question has length zero) that S; contains a hamiltonian path
starting at y. This path can easily be extended to a (y, z)-hamiltonian path
in D, since each S;, ¢ > 1, is hamiltonian. Thus we may assume that r > 3.

If 51—y is strong then D—y is strong, contradicting our assumption above.
Let T1,T5,...,Ts, s > 2, be an acyclic ordering of the strong components of
S1 —y. Note that each V(T;) is either covered by some cycles from the cycle
factor 7' of D — P’ and hence T; has a hamiltonian cycle (by Theorem
5.7.5), or is covered by a subpath of P’[vs,v,_1] and some cycles (possibly
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zero) from F’ and hence T; has a hamiltonian path (by Theorem 5.7.1). Note
also that there is at least one arc from y to 77 and at least one arc from T}
to y. If T} contains a portion of P’[vg, v,._1], then it is clear that T} contains
vo. But then D — y is strong since x—wq, contradicting our assumption. So
T contains no vertices of P’[v1,v,_1] and hence, by the remark above, T}
has a hamiltonian cycle to which there is at least one arc from y. Using the
structure derived above, it is easy to show that D has a (y,z)-hamiltonian
path (Exercise 6.6). O

It can be seen from the results above that, when we consider weak
hamiltonian-connectedness, extended tournaments have a structure which is
closely related to that of tournaments. To see that Theorem 6.2.4 does not
extend to general multipartite tournaments, consider the multipartite tour-
nament D obtained from a hamiltonian bipartite tournament B with classes
X and Y, by adding two new vertices = and y along with the following arcs:
all arcs from = to X and from Y to z, all arcs from y to Y and X to y and an
arc between x and y in any direction. It is easy to see that D satisfies none
of the conditions (a)-(c) in Theorem 6.2.4, yet there can be no hamiltonian
path with end vertices x and y in D because any such path would contain a
hamiltonian path of B starting and ending in X or starting and ending in Y.
Such a path cannot exist for parity reasons (| X| = |Y]). Note also that we can
choose B so that the resulting multipartite tournament is highly connected.

Bang-Jensen and Manoussakis [86] characterized weakly hamiltonian-
connected bipartite tournaments. In particular, they proved a necessary and
sufficient condition for the existence of an [z, y]-hamiltonian path in a bipar-
tite tournament. The statement of this characterization turns out to be quite
similar to that of Theorem 6.2.4. The only difference between the statements
of these two characterizations is in Condition (c): in the characterization for
bipartite tournaments the set of forbidden digraphs is absolutely different
and moreover infinite.

6.2.2 Results for Locally Semicomplete Digraphs

Our next goal is to describe the solution of the [z, y]-hamiltonian path prob-
lem for locally semicomplete digraphs. Notice that this solution also covers
the case of semicomplete digraphs and so, in particular, it generalizes Theo-
rem 6.2.1 to semicomplete digraphs.

We start by establishing notation for some special locally semicomplete
digraphs. Up to isomorphism there is a unique strong tournament with four
vertices. We denote this by T}. It has the following vertices and arcs:

V(T}) = {a1,a2,a3,a4}, A(Ty) = {a1a2, azaz, azas, asar, aras, azay}.

The semicomplete digraphs T2, T, and Ty are obtained from T} by adding
some arcs, namely:
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A(T}) = A(T}) U {aza1, asas},

A(T}) = A(Ty) U {agar }, A(T) = A(Ty) U{ara4}.

Let 7, = {T}, T2, T3, T} Tt is easy to see that every digraph of 7; has a
unique hamiltonian cycle and has no hamiltonian path between two vertices
which are not consecutive on this hamiltonian cycle (such two vertices are
called opposite).

Let T be the set of semicomplete digraphs with the vertex set {x1, z2, a1,
ag,as, a4}, each member D of Tg has a cycle ajazasasa; and the digraph
D{{a1,az,as,a4}) is isomorphic to one member of 7y, in addition, z; —
{a1,a3} — z3_; — {ag,a4} — z; for i = 1 or i = 2. It is straightforward
to verify that 7 contains only two tournaments (denoted by T¢§ and Tg'),
namely the ones shown in Figure 6.1, and that |Zg| = 11. Since none of the
digraphs of 74 has a hamiltonian path connecting any two opposite vertices,
no digraph of 74 has a hamiltonian path between 1 and xs.

For every even integer m > 4 there is only one 2-strong, 2-regular locally
semicomplete digraph on m vertices, namely the second power C2, of an
m-~cycle (Exercise 6.8). We define

T* ={ C? | mis even and m > 4}.

It is not difficult to prove that every digraph of 7* has a unique hamil-
tonian cycle and is not weakly hamiltonian-connected (Exercise 6.9, see
also [47]). For instance, if the unique hamiltonian cycle of C_"g is denoted
by ujusuzususuguy, then uiususu; and usugsugus are two cycles of 6_"62 and
there is no hamiltonian path between any two vertices of {uq,us,us} or of
{ug, ug, ug}.

Let T be the digraph consisting of C2 together with two new vertices z;
and xo such that z1 — {uy,us,us} — xo — {ua, ug, ug} — 1. Furthermore,
T2 (T3, respectively) is defined as the digraph obtained from 7§ by adding
the arc x129 (the arcs x1x2 and zo1, respectively). Let Ty = {T¢, T2, T3 }.
It is easy to see that every element of 7g is a 3-strong locally semicomplete
digraph and has no hamiltonian path between x; and zs.

Before we present the main result, we state the following two lemmas that
were used in the proof of Theorem 6.2.10 by Bang-Jensen, Guo and Volkmann
in [56]. The first lemma generalizes the structure found in the last part of the
proof of Theorem 6.2.1.
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Lemma 6.2.8 [56] Let D be a strong locally semicomplete digraph on n > 4
vertices and 1,29 two distinct vertices of D. If D — {x1,x2} is strong, and
Nt (z1)NNT(x3) #0 or N~ (x1) N N~ (x2) # 0, then D has a hamiltonian
path connecting x1 and xs.

Proof: Exercise 6.10. O

Another useful ingredient in the proof of Theorem 6.2.10 is the following
linking result. An odd chain is the second power, Py, 41 for some k > 1, of
a path on an odd number of vertices.

Lemma 6.2.9 [56] Let D be a connected, locally semicompletedigraph with
p > 4 strong components and acyclic ordering D1, Ds, ..., Dy, of these. Suppose
that V(D1) = {u1} and V(D,) = {v1} and that D — x is connected for
every vertex x. Then for every choice of ug € V(D3) and vy € V(D,_1), D
has two vertex disjoint paths Py from wus to v1 and P» from wuy to v with
V(PL)UV(P) =V (D) if and only if D is not an odd chain from uy to v;.

Proof: If D is an odd chain, it is easy to see that D has no two vertex disjoint
(ui, v3—;)-path for i = 1,2 (Exercise 6.11). We prove by induction on p that
the converse is true as well. Suppose that D is not an odd chain from u; to
v1. Since the subdigraph D — z is connected for every vertex z, [INT(D;)| > 2
for all i < p—2 and [N~ (D;)| > 2 for all j > 3. If p = 4, then it is not
difficult see that D has two vertex disjoint paths P; from us to vy and Ps
from w; to ve with V(P) UV (P) = V(D) (Exercise 6.13). If p = 5, it is
also not difficult to check that D has the desired paths, unless D is a chain
on five vertices. So we assume that p > 6. Now we consider the digraph D’,
which is obtained from D by deleting the vertex sets {uy,v1}, V(Ds — ug)
and V(Dp_l — ’02).

Using the assumption on D, it is not difficult to show that D’ is a con-
nected, but not strongly connected locally semicompletedigraph with the
acyclic ordering {us}, D3, D4, ..., Dp_o, {v2} of its strong components. Fur-
thermore, for every vertex y of D’, the subdigraph D’ — y is still connected.
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of D, 5. Note
that there is a (uy,u)-hamiltonian path P in D{{uy,u} UV (D3 — ug)) and
similarly there is a (v, v1)-hamiltonian path @ in D{{v,v1} UV (Dp_1 — v2)).
Hence if D’ has disjoint (us,v)-, (u, vs)-paths which cover all vertices of D',
then D has the desired paths. So we can assume D’ has no such paths. By
induction, D’ is an odd chain from us to vy. Now using that D is not an odd
chain from wu; to vy it is easy to see that D has the desired paths. We leave
the details to the reader. ad

A weaker version of Lemma 6.2.9 was proved in [47, Theorem 4.5].

Below we give a characterization, due to Bang-Jensen, Guo and Volkmann
for the existence of an [z, y]-hamiltonian path in a locally semicomplete di-
graph. Note again the similarity to Theorem 6.2.1.
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Theorem 6.2.10 [56] Let D be a connected locally semicomplete digraph
on n vertices and x1 and xo be two distinct vertices of D. Then D has no
hamiltonian [x1,x2]-path if and only if one of the following conditions is
satisfied:

(1) D is not strong and either the initial or the terminal component of D (or
both) contains none of x1,xs.
(2) D is strongly connected, but not 2-strong,
(2.1) thereis ani € {1,2} such that D—x; is not strong and x3_; belongs
to neither the initial nor the terminal component of D — x;;
(2.2) D — 21 and D — xo are strong, s is a separating vertex of D,
D1, Dy, ...,D, is the acyclic ordering of the strong components of
D —s, z; € V(Do) and x3—; € V(Dg) with a < 3 — 2. Further-
more, V(Dgt1) U V(Dgt2) U ... UV (Dg_1) contains a separating
vertex of D, or D' = D(V(Dy) UV (Dq41) U...UV(Dg)) is an odd
chain from x; to xs_; with N~ (Da42) N V(D — V(D)) = 0 and
Nt (Dg_o)NV(D -V (D)) =0.
(3) D is 2-strong and is isomorphic to Tz or to one member of Te UTgUT*
and T1,T2 are the corresponding vertices in the definitions. ad

As an easy consequence of Theorem 6.2.10, we obtain a characterization
of weakly hamiltonian-connected locally semicomplete digraphs. The proof is
left to the interested reader as Exercise 6.12.

Theorem 6.2.11 [56] A locally semicomplete digraph D with at least three
vertices is weakly hamiltonian—connected if and only if it satisfies (a), (b) and
(c) below:

(a) D is strong,

(b) the subdigraph D — x has at most two components for each vertex x of
D,

(¢) D is not isomorphic to any member of T U Tg U T ™. a

6.3 Hamiltonian-Connected Digraphs

We now turn to hamiltonian paths with specified initial and terminal vertices.
An (z,y)-hamiltonian path is a hamiltonian path from z to y. Clearly,
asking for such a path in an arbitrary digraph is an even stronger require-
ment than asking for an [z,y]-hamiltonian path®. A digraph D = (V, A)
is hamiltonian-connected if D has an (z,y)-hamiltonian path for every
choice of distinct vertices z,y € V.

3 We know of no class of digraphs for which the [z, y]-hamiltonian path problem is
polynomially solvable, but the (z,y)-hamiltonian path problem is NP-complete.
For arbitrary digraphs they are equivalent from a complexity point of view (see
Exercise 6.3).
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No characterization for the existence of an (z,y)-hamiltonian path is
known even for the case of tournaments*. Note however, that we sketch a
polynomial algorithm for the problem in the next section, so in the algorith-
mic sense a good characterization does exist. The following very important
partial result due to Thomassen will be used in the algorithm of the next
section.

Theorem 6.3.1 (Thomassen) [698] Let D = (V, A) be a 2-strong semi-
complete digraph with distinct vertices x,y. Then D contains an (z,y)-
hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x,y)-paths each of length at least
two,
(b) D contains a vertex z which is dominated by every vertex of V. —x and D
contains two internally disjoint (x,y)-paths each of length at least two.
O

In his proof Thomassen explicitly uses the fact that the digraph is allowed
to have cycles of length 2. This simplifies the proof (which is still far from
trivial), since one can use contraction to reduce to a smaller instance and
then use induction.

An important ingredient in the proof of Theorem 6.3.1 as well as in several
other proofs concerning the existence of an (x, y)-hamiltonian path in a semi-
complete digraph D is to prove that D contains a spanning acyclic graph in
which x can reach all other vertices and y can be reached by all other vertices.
The reason for this can be seen from the following result which generalizes
an observation by Thomassen in [698].

Proposition 6.3.2 [50] Let D be a path-mergeable digraph. Then D has a
hamiltonian (x,y)-path if and only if D contains a spanning acyclic digraph
H in which d;(z) = dj;(y) = 0 and such that, for every vertex z € V(D), H
contains an (x, z)-path and a (z,y)-path.

Proof: Exercise 6.15. O

Theorem 6.3.1 and Menger’s theorem (see Theorem 7.3.1) immediately
imply the following result. For another nice consequence see Exercise 6.16.

Theorem 6.3.3 [698] If a semicomplete digraph D is j-strong, then D is
hamiltonian-connected. a

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices z,y for which there is no (z,y)-hamiltonian path
[698]. Hence, from a connectivity point of view, Theorem 6.3.3 is the best
possible.

4 By this we mean a structural characterization involving only conditions that can
be checked in polynomial time.
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Theorem 6.3.3 is a very important result with several consequences.
Thomassen has shown in several papers how to use Theorem 6.3.3 to ob-
tain results on spanning collections of paths and cycles in semicomplete di-
graphs. See e.g. the papers [699, 701] by Thomassen and also Section 6.7.
The following extension of Theorem 6.3.3 to extended tournaments has been
conjectured by Bang-Jensen, Gutin and Huang;:

Conjecture 6.3.4 [67] If D is a 4-strong extended tournament with an
(x,y)-path P such that D — P has a cycle factor, then D has an (x,y)-
hamiltonian path.

Extending Theorem 6.3.3 to locally semicomplete digraphs, Guo [342]
proved the following:

Theorem 6.3.5 (Guo) [342] Let D be a 2-strong locally semicomplete di-
graph and let x,y be two distinct vertices of D. Then D contains a hamil-
tonian path from x to y if (a) or (b) below is satisfied.

(a) There are three internally disjoint (x,y)-paths in D, each of which is of
length at least 2 and D is not isomorphic to any of the digraphs Ty and
T2 (see the definition in the preceding section,).

(b) The digraph D has two internally disjoint (x,y)-paths Py, Py, each of
which is of length at least 2 and a path P which either starts at x, or
ends at y and has only x or y in common with Py, Py such that V(D) =
V(P1)UV(Py) UV (P). Furthermore, for any vertex z ¢ V(P1) UV (P,),
z has a neighbour on Py — {x,y} if and only if it has a neighbour on
P, — {xz,y}. O

Since neither of the two exceptions in (a) is 4-strong, Theorem 6.3.5 im-
plies the following:

Corollary 6.3.6 [342] If a locally semicomplete digraph is 4-strong, then it
is hamiltonian-connected. ad

In [341] Guo used Theorem 6.3.5 to give a complete characterization of
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo-
cally tournament digraphs with no hamiltonian path from x to y for specified
vertices x and y. In particular this characterization shows that there exist in-
finitely many 3-strongly connected digraphs which are locally tournament di-
graphs (but not semicomplete digraphs) and are not hamiltonian-connected.
Thus, as far as this problem is concerned, it is not only the subclass of semi-
complete digraphs which contain difficult instances within the class of locally
semicomplete digraphs. It should be noted that Guo’s proof does not rely on
Theorem 6.3.3. However, due to the non-semicomplete exceptions mentioned
above, it seems unlikely that a much simpler proof of Corollary 6.3.6 can be
found using Theorem 6.3.3 and Theorem 4.11.15.

Not surprisingly, there are also several results, such as the following by
Lewin, on hamiltonian-connectivity in digraphs with many arcs.
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Theorem 6.3.7 [514] Every digraph on n > 3 vertices and at least (n —
1)2 4+ 1 arcs is hamiltonian-connected. ad

If a digraph D is hamiltonian-connected, then D is also hamiltonian (since
every arc is in a hamiltonian cycle). The next result, due to Bermond, shows
that we only need a slight strengthening of the degree condition in Theorem
5.6.3 to get a sufficient condition for strong hamiltonian-connectivity.

Theorem 6.3.8 [108] Every digraph D on n vertices which satisfies §°(D) >
"TH s hamiltonian-connected. O

If we just ask for weak hamiltonian-connectness then Overbeck-Larisch
showed that we can replace the condition on the semi-degrees by a condition
on the degrees:

Theorem 6.3.9 [597] Every 2-strong digraph on n vertices and minimum
degree at least n + 1 is weakly hamiltonian-connected. a

Thomassen asked whether all 3-strong digraphs D = (V, A) on n vertices
with dt(z) + d=(z) > n+ 1 for all x € V are necessarily hamiltonian-
connected. However, this is not the case, as was shown by Darbinyan [179].

6.4 Finding a Hamiltonian (x,y)-Path in a
Semicomplete Digraph

In this section we discuss algorithmic aspects of the (z,y)-hamiltonian path
problem for semicomplete digraphs. The main result is the following by Bang-
Jensen, Manoussakis and Thomassen:

Theorem 6.4.1 [87] The (x,y)-hamiltonian path problem is polynomially
solvable for semicomplete digraphs. ad

We will not give the proof of this difficult result here, but rather outline
the most interesting ingredients in the non-trivial proof in [87]. As usual, we
will always use n to denote the number of vertices of the digraph in question.

The first lemma is quite simple to prove, but it turns out to be very useful
for the design of the algorithm of Theorem 6.4.1.

If x,w, z are distinct vertices of a digraph D, then we use the notation
Qz,z, Q. to denote two disjoint paths such that the first path is an (x, 2)-
path, the second path has terminal vertex w, and V(Q, .) UV (Q. ) = V(D).
Similarly Q. , and @, denote two disjoint paths, such that the first path is
a (z, z)-path, the second path has initial vertex w, and V(Q, ) UV (Quw,.) =
V(D).

Lemma 6.4.2 [87] Let x,w, z be distinct vertices in a semicomplete digraph
T, such that there exist internally disjoint (x,w)-, (x,z)-paths P1, Py in T.
Let R=T -V (P)UV(P).
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(a) There are either Qg u, Q.. or Qu ., Q. w in T, unless there is no arc
from Ry to V(P1) UV (P,) — x, where R, is the terminal component of
T(R).

(b) In the case when there is an arc from Ry to V(P1) UV (P2) — z we can
find one of the pairs of paths, such that the path with only one end vertex
specified has length at least one, unless V(P1) UV (P2) = {w,x, z}.

(¢) Moreover there is an O(n?) algorithm to find one of the pairs of paths
above if they exist.

Proof: If R = () then both pairs of paths exist. Hence we may assume that
R # . Assume there is an arc uv where u € Ry and v € (V(P) UV (P2)) — .
Assume without loss of generality that v € P;. Since u € R;, T(R) has a
hamiltonian path @ ending at u and starting at some vertex y. By Proposition
4.10.2, the semicomplete digraph T(R UV (P;) — ) has a hamiltonian path
starting either at y or the successor of x on P; and ending in w. This path
together with P, forms the desired pair of paths Q ., Q. . This proves (a).
It is easy to verify (b) by the same argument. As the strong components of
T(R) and a hamiltonian cycle in each of them can be found in O(n?) time
(Theorem 5.5.2), we can find Q and Q -, Q. in O(n?) time. |

We point out that the proof above shows that Lemma 6.4.2 is valid also
for digraphs that are locally in-semicomplete.

The following lemma allows one to use symmetry and thereby reduces the
number of cases to consider when looking for an (z,y)-hamiltonian path.

Lemma 6.4.3 Let T be a semicomplete digraph and x,y vertices of T, such
that there exist 2 internally disjoint (x,y)-paths and an (z,y)-separator {u, v}
i T. Suppose that u,v do not induce a 2-cycle, say, v/u. Let T' denote the
semicomplete digraph obtained from T, by adding the arc v—u. Then T has
an (z,y)-hamiltonian path if and only if T' has an (x,y)-hamiltonian path.

Proof: Exercise 6.18. O

The next result shows that either T is 2-strong or we can reduce the
problem to smaller instances.

Lemma 6.4.4 [87] If T is not 2-strong then either the desired path exists in
T, or we can reduce the problem to one or two smaller problems, such that
in the latter case the total size of the subproblems is at most n + 1. ad

We now outline the major steps of the algorithm in [87] for the (z,y)-
hamiltonian path problem. First we make some assumptions which do not
change the problem.

We assume that there is no arc from = to y and that neither z nor y are
contained in a 2-cycle (if there is such a cycle containing z (y), then delete
the arc entering x (leaving y)). It is easy to see that the new semicomplete
digraph has an (z, y)-hamiltonian path if and only if the original digraph has
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one. So we assume that the input is a semicomplete digraph 7" which has
the form above. In order to refer to smaller versions of the same problem we
refer to the problem as the hamiltonian problem. Note that by Lemma
6.4.4 we may assume that 7" is 2-strong (otherwise we just consider smaller
subproblems).

With the assumptions above it follows from Theorem 6.3.1 that, if there
are three internally disjoint (x,y)-paths in T, then the desired hamiltonian
path exists. Thus, by Lemma 6.4.4, the interesting part is when 7T is 2-strong
and there are two but not three internally disjoint (z,y)-paths. By Menger’s
theorem (which we study in Chapter 7) we may thus assume that there exists
an (z,y)-separator of size two in T.

The next theorem by Bang-Jensen, Manoussakis and Thomassen gener-
alizes Theorem 6.3.1. It is very important for the proof of Theorem 6.4.1,
because it corresponds to a case when no reduction is possible (see the de-
scription of the algorithm below) and hence one has to prove the existence
of the desired path directly. Recall that for specified distinct vertices s, ¢, an
(s,t)-separator is a subset S C V — {s,t} such that D — .S has no (s, t)-path.
An (s, t)-separator is trivial if either s has out-degree zero or ¢ has in-degree
zero in D — S.

Theorem 6.4.5 [87] Let T be a 2-strong semicomplete digraph on at least 10
vertices and let x,y be vertices of T' such that y—x. Suppose that T —x,T —vy
are both 2-strong. If all (x,y)-separators consisting of two vertices (if any
exist) are trivial, then T has an (z,y)-hamiltonian path. ad

Besides the results mentioned above the algorithm uses the following re-
sults:

Lemma 6.4.6 [87] Suppose T is 2-strong and there exists a non-trivial sep-
arator {u,v} of x,y. Let A, B denote a partition of T — {u,v} such that
y€ Az € B and A—B. Let T' = T{(AU {u,v}), T" = T(BU{u,v}). We
can reduce the hamiltonian problem to at most four hamiltonian problems
such that one has size max{|A|,|B|} + 2 or max{|A|,|B|} + 3 and the others
(if any) have size at most min{|A|, |B|} + 3. O

Lemma 6.4.7 [87] Suppose that T is 2-strong, n > 6, and all (z,y)-
separators of size 2 x,y are trivial. If T — x or T —y is not 2-strong, then
either the desired path exists in T, or we can reduce the problem to one or
two smaller problems, such that in the latter case, the total size of the sub-
problems is at most n + 2. a

The hamiltonian algorithm

1. If n <9, then settle the problem in constant time.
2. If T is not 2-strong, then using Lemma 6.4.4 we settle the problem, or
reduce to smaller instances of the hamiltonian problem.
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3. If there are no (z,y)-separators of size 2, then T has the desired path,
by Theorem 6.3.1.

4. If all (x,y)-separators of size 2 are trivial, we check if T'— x and T — y
are 2-strong. Then we settle or reduce the problem using Theorem 6.4.5
or Lemma 6.4.7.

5. Let {u,v} be a non-trivial (z,y)-separator and let A, B form a partition
of T —{u,v}, such that y € A,x € B and A—B. (Such a partition can be
found in time O(n?), by letting B be the vertices which in T — {u, v} can
be reached from x by a directed path and then taking A = V—B—{u,v}.)
Also, if necessary, add an arc to make u,v induce a 2-cycle. This does
not change the problem, by Lemma 6.4.3.

6. Use the algorithmic version of Lemma 6.4.2 to find Q 4, Q. o Q4 v,
Q o inT" =T(BU{u,v}), and use an analogous algorithm to find @,
Qu,. or Quy, Qu, in T" = T(AU {u,v}). These paths exist, since T is
2-strong, and the paths with one end vertex unspecified can be chosen
of length at least one, since A, B both have size at least 2 (here we used
that {u,v} is a non-trivial separator).

7. If these paths match then T has the desired (x,y)-hamiltonian path. So
suppose (by renaming u, v if necessary) that we find Q 4, Q. , in 7" and
Qu,y7 Qv,‘ in 7",

8. Using Lemma 6.4.6 we can now reduce the problem to smaller instances
of the hamiltonian problem.

In Step 7 we say that the two sets of paths in 7" and 7’ match if the
following holds: the paths are P; from x to w and P, from p to z in T and
Ry from r to y and Ry from s to ¢ in 7" where {w, z} = {r, s} = {u,v} and
w = s and z = r. In this case the path P; Ro P, R; is the desired hamiltonian
path since g—p by the definition of B in Step 5.

The complexity of the algorithm outlined above is O(n®) (in fact, it is
O(n?*¢) for every € > 0). No attempt was made in [87] to improve the
complexity, but it seems quite difficult to improve it very much.

It is interesting to note that the algorithm described above cannot be
easily modified to solve the problem of finding the longest path with specified
initial and terminal vertex in a semicomplete digraph. In several places we
explicitly use that we are searching for a hamiltonian path. There also does
not seem to be any simple reduction of this problem to the problem of deciding
the existence of a hamiltonian path from x to y.

Conjecture 6.4.8 [65] There exists a polynomial algorithm which, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest

(l‘, y) _path'

Note that, if we ask for the longest [z, y]-path in a tournament, then this
can be answered using Theorem 6.2.1 (see Exercise 6.19).
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Conjecture 6.4.9 [65] There exists a polynomial algorithm which, given
a digraph D that is either extended semicomplete or locally semicomplete,
and two distinct vertices x and y of D, decides whether D has an (z,y)-
hamiltonian path and finds such a path if one exists.

6.5 Pancyclicity of Digraphs

A digraph D of order n is pancyclic if it has cycles of all lengths 3.4, ..., n.
We say that D is vertex-pancyclic if for any v € V(D) and any k €
{3,4,...,n} there is a cycle of length k containing v. We also say that D
is (vertex-)m-pancyclic if D contains a k-cycle (every vertex of D is on
a k-cycle) for each k = m,m + 1,...,n. Note that some early papers on
pancyclicity in digraphs require that D is (vertex-)2-pancyclic in order to be
(vertex-)pancyclic (see e.g. the survey [115] by Bermond and Thomassen). We
feel that this definition is too restrictive, since often one can prove pancyclicity
results for much broader classes of digraphs when the 2-cycle is omitted from
the requirement.

6.5.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs
The following claim is due to Alon and Gutin:

Lemma 6.5.1 [11] Every directed graph D = (V, A) on n vertices for which
8%(D) > n/2 + 1 is vertez-2-pancyclic.

Proof: Let v € V be arbitrary. By Corollary 5.6.3 there is a Hamilton cycle
ULUSD - . . Up_1u1 in D — v. If there is no cycle of length k& through v then
for every i, INT(v) N {u;}| + [N~ (v) N {ujtrr—2}| <1, where the indices are
computed modulo n — 1. By summing over all values of 7, 1 <i <n —1, we
conclude that [N~ (v)|+ |NT(v)] < n — 1, contradicting the assumption that
all in-degrees and out-degrees exceed n/2. ad

Thomassen [696] proved that just by adding one to the degree condition
for hamiltonicity in Theorem 5.6.7 one obtains cycles of all possible lengths
in the digraphs satisfying the degree condition.

Theorem 6.5.2 [696] Let D be a strong digraph on n wvertices such that
d(z) + d(y) > 2n whenever x and y are nonadjacent. Then either D has
cycles of all lengths 2,3,...,n, or D is a tournament (in which case it has

cycles of all lengths 3,4,...,n) or n is even and D is isomorphic to [H(%

n
’2

O

The following example from [696] shows that 2n cannot be replaced by
2n — 1 in Theorem 6.5.2. For some m < n let D, ,, = (V, A) be the digraph
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with vertices V = {v1,vs,...,v,} and arcs A = {vv;li < jori=j+ 1} —
{viVigm-1|1 < i < n—m-+1}. We leave it as Exercise 6.20 to show that D,, ,,,
is strong, has no m-cycle and if m > (n+1)/2, then D, ,, satisfies Meyniel’s
condition for hamiltonicity (Theorem 5.6.7). In [176] Darbinyan characterizes
those digraphs which satisfy Meyniel’s condition, but are not pancyclic.

Theorem 6.5.2 extends Moon’s theorem (Theorem 1.5.1) and Corollaries
5.6.2 and 5.6.6. However, as pointed out by Bermond and Thomassen in
[115], Theorem 6.5.2 does not imply Meyniel’s theorem (Theorem 5.6.7). The
following result is due to Haggkvist:

Theorem 6.5.3 [391] Every hamiltonian digraph on n vertices and at least
1

sn(n+1) — 1 arcs is pancyclic. O
Song [679] generalized the result of Jackson given in Theorem 5.12.5 and
proved the following theorem.

Theorem 6.5.4 [679] Let D = (V, A) be an oriented graph onn > 9 vertices
with minimum degree n — 2. Suppose that D satisfies the following property:

ryg€ A=d(z)+d (y) >n-3. (6.2)
Then D is pancyclic. ad

Song [679] pointed out that, if the minimum degree condition in Theorem
6.5.4 is relaxed, then it is no longer guaranteed that D is hamiltonian.

Using Theorem 6.5.4 and Theorem 10.7.3, Bang-Jensen and Guo proved
that under the same conditions as in Theorem 6.5.4 the digraph is in fact
vertex-pancyclic.

Theorem 6.5.5 [5/] Let D be an oriented graph on n > 9 wvertices and
suppose that D satisfies the conditions in Theorem 6.5.4. Then D is vertex
pancyclic. a

It should be noted that every digraph which satisfies the condition of
Theorem 6.5.4 is a multipartite tournament with independence number at
most 2.

There are several other results on pancyclicity of digraphs with large
minimum degrees, see e.g. the papers [174, 175, 178] by Darbinyan.

6.5.2 Pancyclicity in Extended Semicomplete and
Quasi-Transitive Digraphs

In this subsection we show how to use the close relationship between the class
of quasi-transitive digraphs and the class of extended semicomplete digraphs
to derive results on pancyclic and vertex-pancyclic quasi-transitive digraphs
from analogous results for extended semicomplete digraphs.
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A digraph D is triangular with partition Vj, V1, V5, if the vertex set of
D can be partitioned into three disjoint sets Vp, V1, Vo with Vo—Vi—Vo=V,.
Note that this is equivalent to saying that D = C5[D(Vy), D(V;), D(V3)].

Gutin [367] characterized pancyclic and vertex-pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
D = Co[K,,, K,,] with at least 3 vertices is pancyclic since all cycles are
of even length. Hence we must assume that there are at least 3 partite sets
in order to get a pancyclic extended semicomplete digraph. It is also easy
to see that the (unique) strong 3-partite extended semicomplete digraph on
4 vertices is not pancyclic (since it has no 4-cycle). These observations and
the following theorem completely characterize pancyclic and vertex-pancyclic
extended semicomplete digraphs.

Theorem 6.5.6 [367] Let D be a hamiltonian extended semicomplete di-
graph of order n > 5 with k partite sets (k > 3). Then

1. (a) D ‘s pancyclic if and only if D is not triangular with a partition
Vo, Vi, Vo, two of which induce digraphs with no arcs, such that either
[Vo| = [Vi| = |Va] or no D(V;) (i =0,1,2) contains a path of length 2.

2. (b) D is vertex-pancyclic if and only if it is pancyclic and either k > 3
or k =3 and D contains two cycles Z,Z’ of length 2 such that Z U Z'
has vertices in the three partite sets. a

It is not difficult to see that Theorem 6.5.6 extends Theorem 1.5.1, since
no semicomplete digraph on n > 5 vertices satisfies any of the exceptions
from (a) and (b).

The next two lemmas by Bang-Jensen and Huang [79] concern cycles
in triangular digraphs. They are used in the proof of Theorem 6.5.9 which
characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 6.5.7 [79] Suppose that D is a triangular digraph with a partition
Vo, V1, Vo and suppose that D is hamiltonian. If D(Vi) contains an arc xy
and D(Va) contains an arc uwv, then every vertex of Vo U {z,y,u,v} is on
cycles of lengths 3,4, ...,n.

Proof: Let C' be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D’ from D in the following way. For each of i = 0,1, 2, first
path-contract® each maximal subpath of C' which is contained in D(V;) and
then delete the remaining arcs of D(V;). It is clear that D’ is a subdigraph of
D, and in this process, C is changed to a hamiltonian cycle C’ of D’. Hence D’
is also triangular with a partition V{j, V/, V5 such that |Vj| = |V{| = |V5| =r,
for some r (the last fact follows from the existence of a hamiltonian cycle in
D’). Then each vertex of D is on a cycle of length k with 3r < k < |V(D)]
(to see this, just use suitable pieces of the r subpaths of C in each V;).

5 Recall the definition of path-contraction from Subsection 5.1.1.
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Now we may assume that r > 2 and we show that each vertex of V;, U
{z,y,u,v} is on a cycle of length k with 3 < k < 3r—1. To see this, we modify
D’ to another digraph D" as follows. If x and y are in distinct maximal
subpaths P, P, of C'in D(V}), then we add (in D) an arc from the vertex to
which P, was contracted to the vertex to which P, was contracted. If x and
y are in the same maximal subpath P of C in D(V7), then we add (in D’) an
arc from the vertex to which P was contracted to an arbitrary other vertex of
V{. For the vertices v and v we make a similar modification. Hence we obtain
a digraph D" which is isomorphic to a subdigraph of D. The digraph D" is
also triangular with a partition V', V{’, V4’ such that |Vy'| = |[V{'| = |[V5'| = r.
Moreover D”(V}') contains an arc z’y’ and D"”(V4’) contains an arc u/v’. Tt
is clear now that each vertex of Vi’ U {z/,y’, v/, v’} is on a cycle of length k
where 3 < k < 3r — 1. Using the same structure as for these cycles we can
see that in D each vertex of Vo U {z,y,u,v} is on a cycle of length k& with
3<k<3r—1. a

Lemma 6.5.8 [79] Suppose that D is a triangular digraph with a partition
Vo, V1,Va and D has a hamiltonian cycle C. If D{Vy) contains an arc of C
and a path P of length 2, then every vertex of V1 UVa UV (P) is on cycles of
lengths 3,4, ... ,n.

Proof: Exercise 6.24. O

It is easy to check that a strong quasi-transitive digraph on 4 vertices is
pancyclic if and only if it is a semicomplete digraph. For n > 5 we have the
following characterization due to Bang-Jensen and Huang:

Theorem 6.5.9 [79] Let D = (V, A) be a hamiltonian quasi-transitive di-
graph on n > 5 vertices.

1. (a) D is pancyclic if and only if it is not triangular with a partition
Vo, V1, Va, two of which induce digraphs with no arcs, such that either
[Vo| = V4| = |Val, or no D(V;) (i =0,1,2) contains a path of length 2.

2. (b) D is not vertex-pancyclic if and only if D is not pancyclic or D is
triangular with a partition Vy, V1, Vo such that one of the following occurs:

(b1) |V1| = |Val, both D{Vi) and D{(Vs) have no arcs, and there exists a
vertex x € Vy such that x is not contained in any path of length 2 in
D(Vp) (in which case x is not contained in a cycle of length 5).

(b2) one of D(V1) and D{Va) has no arcs and the other contains no path of
length 2, and there exists a vertex x € Vy such that x is not contained
in any path of length 1 in D(Vy) (in which case x is not contained in
a cycle of length 5).

Proof: To see the necessity of the condition in (a), suppose that D is trian-
gular with a partition Vj, V1, Vo, two of which induce digraphs with no arcs.
If |Vo| = |Vi| = |Vz], then D contains no cycle of length n — 1. If no D(V;)
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(i =0,1,2) contains a directed path of length 2, then D contains no cycle of
length 5.

Now we prove the sufficiency of the condition in (a). According to Theo-
rem 4.8.5, there exists a semicomplete digraph T" on k vertices for some k > 3
such that D is obtained from T by substituting a quasi-transitive digraph H,
for each vertex v € V(T) (here H, is non-strong if it has more than one
vertex). Let C' be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D’ from D in the following way: for each H,,v € V(T), first
path-contract each maximal subpath of C' which is contained in H, and then
delete the remaining arcs of H,. In this process C is changed to a hamiltonian
cycle C’ of D'.

Suppose D is not pancyclic. Then it is easy to see that D’ is not pancyclic.
By Theorem 6.5.6, D’ is triangular with a partition V, V{,Vy. Let V; C V be
obtained from V/, i = 0,1, 2, by substituting back all vertices on contracted
subpaths of C. Then D is triangular with partition V{, V7, Vo. Moreover each
D(V;) is covered by r disjoint subpaths of C for some 7.

By Lemma 6.5.7, two of Vg, Vi, Vs, say Vi and Vs, induce subdigraphs
with no arcs in D. If |Vy| = |Vi| = |V2| we have the first exception in (a).
Hence we may assume that |Vo| > |Vi| = |Va]. Then D(Vp) contains an arc of
C. From Lemma 6.5.8, we see that D(V,) contains no path of length 2. This
completes the proof of (a).

The proof of (b) is left to the reader as Exercise 6.25. O

6.5.3 Pancyclic and Vertex-Pancyclic Locally Semicomplete
Digraphs

We saw in the last subsection how the structure theorem for quasi-transitive
digraphs (i.e., Theorem 4.8.5) was helpful in finding a characterization for
(vertex-)pancyclic quasi-transitive digraphs. Now we show that the structure
theorem for locally semicomplete digraphs (Theorem 4.11.15) is also very
useful for finding a characterization of those locally semicomplete digraphs
which are (vertex-)pancyclic. Our first goal (Lemma 6.5.13) is a characteri-
zation of those round decomposable locally semicomplete digraphs which are
(vertex-)pancyclic.

Lemma 6.5.10 Let R be a strong round local tournament and let C' be a
shortest cycle of R and suppose C' has k > 3 vertices. Then for every round
labelling vy, v1,...,vn—1 of R such that vo € V(C) there exist indices 0 <
a1 < ag <...<agp—1 <n sothat C'= vV, Vq, - .- Va,_,00-

Proof: Let C' be a shortest cycle and let £ = vy, v1,...,v,-1 be a round
labelling of R so that vy € V(C). If the claim is not true, then there exists a
number 2 <1 < k —1 so that C = vgvg,Va, - . - Va,_, V0, Where 0 < ag < ... <
a;—1 and a; < a;_1. Now the fact that £ is a round labelling of R implies
that v;_1—wvg, contradicting the fact that C' is a shortest cycle. a
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Recall that the girth g(D) of a digraph is the length of a shortest cycle in
D = (V, A). For a vertex v € V we let g, (D) denote the length of a shortest
cycle in D that contains v. The next lemma shows that every round local
tournament R is g(R)-pancyclic.

Lemma 6.5.11 A strong round local tournament digraph R on r wvertices
has cycles of length k,k+ 1,...,r, where k = g(R).

Proof: By Lemma 6.5.10 we may assume that R contains a cycle of the
form wv;, v;,...05, v, , where 0 = 41 < iy < ... < i < r. Because D is strong,
v;,,, dominates all the vertices v;,, 41,...,,,,, for m = 1,2,..., k. Now it is
easy to see that D has cycles of lengths k,k + 1,...,7 through the vertices

Uiy s Vigy ooy Ugy, - O

There is also a very nice structure on cycles through a given vertex in a
round local tournament digraph. We leave the proof as Exercise 6.26.

Lemma 6.5.12 If a strong round locally tournament digraph with r vertices
has a cycle of length k through a vertex v, then it has cycles of all lengths
k,k+1,...,r through v. a

Lemma 6.5.13 [55] Let D be a strongly connected round decomposable lo-
cally semicomplete digraph with round decomposition D = R[S, ...,Sy]. Let
V(R) = {r1,72,...,7rp}, wherer; is the vertex of R corresponding to S;. Then

(1) D is pancyclic if and only if either the girth of R is 3 or g(R) <
maxj<;<p |V(Sl)| + 1.

(2) D is vertexz-pancyclic if and only if, for eachi =1,...,p, either g,,(R) = 3
or gr,(R) < [V(S)] + 1.

Proof: As each S; is semicomplete, it has a hamiltonian path P;. Further-
more, since R is a strong locally semicomplete digraph, it is hamiltonian by
Theorem 5.5.1. Thus, starting from a p-cycle with one vertex from each Sj,
we can get cycles of all lengths p+1,p+2, ..., n, by taking appropriate pieces
of hamiltonian paths Pi, Ps,..., P, in Si1,...,S,. Thus, if g(R) = 3 then D
is pancyclic by Lemma 6.5.11. If g(R) < maxi<i<, |V(S;)| + 1, then D is
pancyclic by Lemma 6.5.11 and the fact that (by Moon’s theorem) every S;
has cycles of lengths 3,4,...,|V(S;)]. If g(R) > 3 and, for every i = 1,...,r,
g(R) > |V(S;)| + 1, then D is not pancyclic since it has no (g(R) — 1)-cycle.
The second part of the lemma can be proved analogously by first proving

that for each i = 1,2,...,p, every vertex in S; is on cycles of all lengths
9r,(R),9r,(R) 4+ 1,...,n (using Lemma 6.5.12) and then applying Theorem
1.5.1. O

The main part of the characterization of (vertex-)pancyclic locally semi-
complete digraphs is to prove the following lemma (recall Theorem 4.11.15).
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Lemma 6.5.14 [55] Let D be a strong locally semicomplete digraph on n
vertices which is not round decomposable. Then D is vertex-pancyclic.

Proof: If D is semicomplete, then the claim follows from Moon’s theorem. So
we assume that D is not semicomplete. Thus, D has the structure described
in Lemma 4.11.14.

Let S be a minimal separating set of D such that D — S is not semi-
complete and let Dy, D, ..., D, be the acyclic ordering of the strong compo-
nents of D — S. Since the subdigraph D(S) is semicomplete, it has a unique
acyclic ordering Dj41, ..., Dptq With ¢ > 1 of its strong components. Recall-
ing Lemma 4.11.14 (a), the semicomplete decomposition of D — S contains
exactly three components D}, D5, D5. Recall that the index of the initial
component of D} is Ay. From Theorem 4.11.8 and Lemma 4.11.12, we see
that D) = D} = S = D; and there is no arc between D} and Dj.

We first consider the spanning subdigraph D* of D which is obtained by
deleting all the arcs between S and D). By Lemma 4.11.14, D* is a round
decomposable locally semicompletedigraph and D* = R*[Dy, Ds, ..., Dpy4l,
where R* is the round locally semicomplete digraph obtained from D* by
contracting each D; to one vertex (or, equivalently, R* is the digraph obtained
by keeping an arbitrary vertex from each D; and deleting the rest). It can
be checked easily that g,(R*) < 5 for every v € V(R*). Thus D* is vertex
5-pancyclic by the remark in the proof of Lemma 6.5.13 (in the case when
n = 4, D is easily seen to be vertex-pancyclic so we may assume n > 5). Thus,
it remains to show that every vertex of D lies on a 3-cycle and a 4-cycle.

We define

t =max{ i |NT(S)NV(D;) # 0, s <i < p},

A=V(Dy,)U...uV(Dy),
t'=min{ j [INT(D;) NV (D3) #0.p+1<j<p+q}
and B=V(Dy)U..UV(Dpiq).

It follows from Proposition 4.11.16 that B—Dj—A.

Since we have S—Dj—D,,—D{—S, every vertex of S is in a 4-cycle
and since we have B—Dj— A— DS, each vertex of V(D) UAUV(D]) is
contained in a 4-cycle.

By the definition of ¢’ and A, there is an arc sa from Dy to A. It follows
from Lemma 4.11.14 (b) that there is an arc a’s’ from A to B. Let v € V(D})
and w € V(D}) be arbitrarily chosen. Then savs and s'wa’s’ are 3-cycles.

Suppose D} contains a vertex x that is not in A, then A—z. We also have
x,s' € N*(a’) and this implies that x—s’. From this we get that z— Dy, in
particular, x—s. Hence zsaz is a 3-cycle and xvsaz is a 4-cycle. Thus, there
only remains to show that every vertex of S U A is contained in a 3-cycle.

Let u be a vertex of S and let D, be the strong component containing w.
If Dy has at least three vertices, then u lies on a 3-cycle by Theorem 1.5.1.
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So we assume |V (Dy)| < 2. If £ < ¢/, then u and o' are adjacent because
Dy dominates the vertex s’ of B. If £ > t/, then either u = s or s — u (if
V(D¢) = {s, u}, then usu is a 2-cycle) and hence u, a are adjacent. Therefore,
in any case, u is adjacent to one of {a,a’}. Assume without loss of generality
that @ and u are adjacent. If © — a, then uwavu is a 3-cycle. If a — u, then
uwau is a 3-cycle because of D — A. Hence, every vertex of S has the
desired property.

Finally, we note that S’ = N*(Dj}) is a subset of V(D)) and it is also a
minimal separating set of D. Furthermore, D — S’ is not semicomplete. From
the proof above, every vertex of S’ is also in a 3-cycle. So the proof of the
theorem is completed by the fact that A C 5. O

Combining Lemmas 6.5.13 and 6.5.14 we have the following characteriza-
tion of pancyclic and vertex-pancyclic locally semicomplete digraphs due to
Bang-Jensen, Guo, Gutin and Volkmann:

Theorem 6.5.15 [55] A strong locally semicomplete digraph D is pancyclic
if and only if it is not of the form D = R[Sy, ..., S,], where R is a round local
tournament digraph on p vertices with g(R) > max{2, |V (S1)|,...,|V(Sp)|} +
1. D is vertez-pancyclic if and only if D is not of the form D = R[S1,...,Sp),
where R is a round local tournament digraph with g,.(R) > max{2, |V (S;)|}+
1 for some i € {1,...,p}, where r; is the vertex of R corresponding to S;. O

6.5.4 Further Pancyclicity Results

To characterize pancyclic locally in-semicomplete digraphs seems a much
harder problem than that of characterizing pancyclic locally semicomplete
digraphs. Tewes [692] studied this problem and obtained several partial re-
sults of which we will state a few below.

Theorem 6.5.16 [692, Theorem 4.4] Let D be a locally in-tournament di-
graph on n wvertices and let 3 < k < n be an integer such that 6~ (D) >

% - % Furthermore, let D be strong if k > 26— (D) + 2. Then D has a
cycle of length k. For k > «/n + 1 this bound is sharp. a

Let the function f(k) be defined as follows for fixed n:

n+1 k=1 i
+ &= if k is even
f(k) {n;ﬂ + 525 if & is odd.

Theorem 6.5.17 [692, Theorem 4.13] Let D be a strongly connected locally
in-tournament digraph on n vertices such that §— (D) > f(k) for some integer

3<k<+n+1. Then D has cycles of all lengths k,k+1,...,n. a
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Since every regular tournament is strong (Exercise 6.23) it is also pancyclic
by Moon’s theorem. Note that by Theorem 5.7.23, every regular multipartite
tournament is hamiltonian. This motivated Volkmann to make the following
conjecture.

Conjecture 6.5.18 [728] Every regular p-partite tournament with p > 4 is
pancyclic.

Note that in the 3-partite tournament D = Ci (K1, K, K] all cycles
have length some multiple of 3. Hence the condition p > 4 above is necessary.

For p > 5 Conjecture 6.5.18 follows from the following stronger result due
to Yeo [747] (For an outline of Yeo’s proof see [728]).

Theorem 6.5.19 [7/7] Every regular multipartite tournament with at least
5 partite sets is verter-pancyclic. O

Using a probabilistic approach, Yeo [749] also proved that all, except pos-
sibly a finite number of exceptions, regular 4-partite tournaments are vertex-
pancyclic (in particular, every regular 4-partite tournament on at least 488
vertices is vertex-pancyclic). The infinite family of regular and non-pancyclic
3-partite tournaments described above shows that no such result holds for
3-partite tournaments.

Clearly, the results above give strong support for the following conjecture
by Yeo:

Conjecture 6.5.20 [7/9] If a 4-partite tournament is regular, then it is
vertez-pancyclic.

We conjecture that the only non-vertex-pancyclic regular 3-partite tour-
naments are the triangular ones:

Conjecture 6.5.21 Every regular semicomplete 3-partite digraph D which
is not of the form D = C3[Ky, K, K] for any k is vertex-pancyclic.

There are also many results on sufficient conditions in terms of the num-
ber of arcs for a digraph to contain a cycle of length precisely k. We refer
the reader to the survey of Bermond and Thomassen [115] for a number of
references to such results.

Recall that for a given directed pseudograph D = (V, A), the line digraph
L(D) of D has vertex set A and a—a’ is an arc in L(D) precisely when the
head of a equals the tail of a’ in D (note that a loop in D gives rise to a
loop in L(D)). Let D = (V, A) be a directed pseudograph; D is pancircular
if it contains a closed trail of length ¢ for every ¢ € {3,4,...,|A|}. Due to a
natural bijection between the set of closed trails in D and the set of cycles
in L(D), we obtain the following:

Proposition 6.5.22 L(D) is pancyclic if and only if D is pancircular. O
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Imori, Matsumoto and Yamada [445], who introduced the notion of pan-
circularity, proved the following theorem.

Theorem 6.5.23 Let D be a regular and pancircular directed pseudograph.
Then, L(D) is also regular and pancircular. O

This theorem was used in [445] to show that de Bruijn digraphs are pan-
cyclic and pancircular.

Theorem 6.5.24 [//5] FEvery de Bruijn digraph Dg(d,t) is pancyclic and
pancircular.

Proof: de Bruijn digraphs Dg(d,t) were introduced for d > 2 and ¢t > 1. Let
Dg(d,0) be the directed pseudograph consisting of a singular vertex and d
loops. Clearly, Dgp(d,1) = L(Dg(d,0)). Since

Dg(d,t+1) = L(Dg(d,t)) (6.3)

for t > 1 by Proposition 4.6.1, we conclude that (6.3) holds for all ¢ > 0. We
prove the theorem by induction on ¢ > 0. Clearly, Dg(d,0) is pancyclic and
pancircular. Assume that Dp(d,t) is pancyclic and pancircular. By Theorem
6.5.23, L(Dp(d,t)) is pancircular. By Proposition 6.5.22, L(Dg(d,t)) is pan-
cyclic. By (6.3), Dp(d,t 4+ 1) = L(Dg(d,t)). Thus, Dp(d,t + 1) is pancyclic
and pancircular. a

6.5.5 Cycle Extendability in Digraphs

The following definitions are due to Hendry [420]. A non-hamiltonian cycle
C in a digraph D is extendable if there is some cycle ¢’ with V(C’) =
V(C)U{y} for some vertex y € V-V (C). A digraph D which has at least one
cycle is cycle extendable if every non-hamiltonian cycle of D is extendable.
Clearly a cycle extendable digraph is pancyclic if and only if it contains a
3-cycle and vertex-pancyclic if and only if every vertex is in a 3-cycle.

The following is an easy consequence of the proof of Theorem 1.5.1:

Theorem 6.5.25 [571] A strong tournament T = (V, A) is cycle extendable
unless V' can be partitioned into sets U, W, Z such that W—U—Z and T(U)
18 strong. a

Hendry [420] studied cycle extendability in digraphs with many arcs and
obtained the next two results.

Theorem 6.5.26 [420] Every strong digraph on n vertices and at least n® —
3n + 5 arcs is cycle extendable. a
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Hendry showed that digraphs may have very large in- and out-degree and
still not be cycle extendable. This contrasts to the situation for undirected
graphs. Hendry has shown in [421, Corollary 8] that, apart from certain excep-
tions, every graph satisfying Dirac’s condition for hamiltonicity (d(z) > n/2
for every vertex [198]) is also cycle extendable (with the obvious analogous
definition of cycle extendability for undirected graphs). The main result of
[420] is the following.

Theorem 6.5.27 [/20] Let D be a digraph on n > 7 wvertices such that
6%(D) > 223 Then D is cycle extendable unless n = 3r for some r and
D contains F,, as a spanning subdigraph and D is a spanning subdigraph of

G,,. See Figure 6.2 for the definition of F,,G,,. ad
Fsp, Gsr

Figure 6.2 The digraphs F),, and G,. All arcs indicate complete domination in the
direction shown.

6.6 Arc-Pancyclicity

A digraph D of order n is arc-k-cyclic for some k € {3,4,...,n} if each arc of
D is contained in a cycle of length k. A digraph D = (V, A) is arc-pancyclic
if it is arc-k-cyclic for every k = 3,4,...,n. Demanding that a digraph is
arc-pancyclic is a very strong requirement, since in particular every arc must
be in a hamiltonian cycle. Hence it is not surprising that most results on arc-
pancyclic digraphs are for tournaments and generalizations of tournaments.
However, Moon proved that almost all tournaments are arc-3-cyclic [571], so
for tournaments this is not such a hard requirement, in particular in the light
of Theorem 6.6.1 below.

Tian, Wu and Zhang characterized all tournaments that are arc-3-cyclic
but not arc-pancyclic. See Figure 6.3 for the definition of the classes Dg, Ds.

Theorem 6.6.1 [718] An arc-3-cyclic tournament is arc-pancyclic unless it
belongs to one of the families Dg, Dy (in which case the arc yx does not belong
to a hamiltonian cycle). O
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Ds Dg

Figure 6.3 The two families of non-arc-pancyclic arc-3-cyclic tournaments. Each
of the sets U and W induce an arc-3-cyclic tournament. All edges that are not
already oriented may be oriented arbitrarily, but all arcs between U and W have
the same direction.

It is not difficult to derive the following two corollaries from this result:

Corollary 6.6.2 [718] At most one arc of every arc-3-cyclic tournament is
not in cycles of all lengths 3,4, ..., n.

Proof: Exercise 6.31. O

Corollary 6.6.3 [7/1] A tournament is arc-pancyclic if and only if it is arc-
3-cyclic and arc-n-cyclic.

Proof: Exercise 6.32. a
The following result due to Alspach is also an easy corollary:
Corollary 6.6.4 [19] Every regular tournament is arc-pancyclic. a

Finally, observe that since each tournament in the infinite family Dg is
2-strong and the arc yz is not in any hamiltonian cycle we have the following
result due to Thomassen:

Theorem 6.6.5 [698] There exist infinitely many 2-strong tournaments con-
taining an arc which is not in any hamiltonian cycle. a
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In [341, 343] Guo studied arc-pancyclic locally tournament digraphs and
obtained several results which generalize those above. In particular he made
the important observation that one can in fact get a more general result by
studying paths from x to y for all such pairs where the arc zy is not present
rather than just those for which the arc yz is present (which is the case for
tournaments of course).

Theorem 6.6.6 [3/3] Let D be an arc-3-cyclic local tournament and let z,y
be distinct vertices such that there is no arc from x to y. Then D contains
an (x,y)-path of length k for every k such that 2 < k < n —1 unless D is
isomorphic to one of the local tournaments Tg, Tg (from Section 6.2) or D
belongs to one of the families Dg or Dg, possibly with the arc from y to x
missing. a

The proofs of Theorems 6.6.1 and 6.6.6 are very technical and consist of
a long case analysis. Hence it makes no sense to give any of these proofs here.
However, we will finish the section with a proof of the following partial result
which Guo used in his proof of Theorem 6.6.6.

Theorem 6.6.7 [3/3] Let D be a connected, arc-3-cyclic local tournament
which is not 2-strong. Then D is isomorphic to Cs[Ty, Ty, {s}] where T; is
an arc-3-cyclic tournament for i = 1,2 and s is a vertex. Furthermore, D is
arc-pancyclic.

Proof: First observe that D is strongly connected since it is connected
and arc-3-cyclic. Since D is not 2-strong, it has a separating vertex s. Let
T1,T5s, ..., Ty denote the acyclic ordering of the strong components of D — s.
If there is an arc xs from V(T1) to s, then no arc from z to V(T3) can be in
a 3-cycle. Hence we must have s—V (T7) and similarly V(T )—s. Since D is
arc-3-cyclic, each of 71,7}, must be an arc-3-cyclic tournament.

If k > 3 then for every vertex u € V(Tz), either no arc from V(71) to u
or no arc from u to V(T3) can be in a 3-cycle, contradicting our assumption.
Thus we must have k = 2 and we have proved that D = C5[Ty, Ty, {s}].

It remains to prove that D is arc-pancyclic. Since 77 and 75 have hamil-
tonian paths, it is easy to see that each arc which does not belong to either
Ty or Ty is on cycles of all possible lengths. So we just have to consider arcs
inside Ty, . If |[V(T1)| = |V(T)| = 1 there is nothing more to prove. So
suppose without loss of generality that |V (T1)| > 3. Let ujus . .. upug, v > 3,
be a hamiltonian cycle of T;. Let u;u; be an arbitrary arc of T7. If T} — u; is
strong, then T} — u; has a hamiltonian cycle and hence 7T} has a hamiltonian
path starting with the arc u;u;. Using this and a hamiltonian path in 75 we
can easily obtain cycles of all lengths 3,4, ...,n through w;u; in D. Suppose
now that 77 — w; is not strong. Then T7 — u; satisfies the assumption of the
theorem, so by induction it has the same structure as D and u; must belong
to the initial component of T} — u;. Hence again we find a hamiltonian path
starting with the arc u;u; in 77 and finish as above.
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Similarly, if |V (T3)| > 3 the same proof as above can be applied to every
arc of T5. Thus we have shown that D is arc-pancyclic. a

It is interesting to note that the problem of characterizing arc-pancyclic
semicomplete digraphs is still open and seems quite difficult. A partial result
was obtained by Darrah, Liu and Zhang [181].

6.7 Hamiltonian Cycles Containing or Avoiding
Prescribed Arcs

We now turn our attention to hamiltonian cycles in digraphs with the ex-
tra condition that these cycles must either contain or avoid all arcs from a
prescribed subset A’ of the arcs. Not surprisingly, problems of this type are
quite difficult even for semicomplete digraphs. If we have no restriction on the
size of A’, then we may easily formulate the hamiltonian cycle problem for
arbitrary digraphs as an avoiding problem for semicomplete digraphs. Hence
the avoiding problem without any restrictions is certainly N P-complete. Be-
low, we study both types of problems from a connectivity as well as from a
complexity point of view. We also show that when the number of arcs to be
avoided respectively, contained in a hamiltonian cycle is some constant, then,
from a complexity point of view, the avoiding version is no harder than the
containing version. Finally, we show that for digraphs which can be obtained
from a semicomplete digraph by adding a few new vertices and some arcs,
the hamiltonian cycle problem is very hard and even if we just added one
new vertex, the problem is highly non-trivial.

6.7.1 Hamiltonian Cycles Containing Prescribed Arcs

We start by studying the problem of finding a hamiltonian cycle that contains
certain prescribed arcs eq, ea, . . ., . This problem, which we call the k-HCA
problem, is clearly very hard for general digraphs. We show below that
even for semicomplete digraphs this is a difficult problem. For & = 1 the
k-HCA problem is a special case of the (x,y)-hamiltonian path problem and
it follows from the result in Section 6.4 that there is a polynomial algorithm
to decide the existence of a hamiltonian cycle containing one prescribed arc
in a semicomplete digraph.

Based on the evidence from Theorem 6.4.1, Bang-Jensen, Manoussakis
and Thomassen raised the following conjecture. As mentioned above, when
k =1 the conjecture follows from Theorem 6.4.1.

Conjecture 6.7.1 [87] For each fixed k, the k-HCA problem is polynomially
solvable for semicomplete digraphs.

When k = 2 the problem already seems very difficult. This is interesting,
especially in view of the discussion below concerning hamiltonian cycles in
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digraphs obtained from semicomplete digraphs by adding a few new vertices.
Bang-Jensen and Thomassen proved that when k is not fixed the k-HCA
problem becomes N'P-complete even for tournaments [89]. The proof of this
result in [89] contains an interesting idea which was generalized by Bang-
Jensen and Gutin in [60]. Consider a digraph D containing a set W of k
vertices such that D — W is semicomplete. Construct a new semicomplete
digraph Dy as follows. First, split every vertex w € W into two vertices
w1, wo such that all arcs entering w now enter wy and all arcs leaving w now
leave wq. Add all possible arcs from vertices of index 1 to vertices of index 2
(whenever the arcs in the opposite direction are not already present). Add all
edges between vertices of the same index and orient them randomly. Finally,
add all arcs of the kind w;z and zws, where w € W and z € V(D) — W. See
Figure 6.4. It is easy to show that the following holds:

w

S

D Dy

Figure 6.4 The construction of Dy from D and W. The fat arc from Wi to Wa
indicates that all arcs not already going from W2 to Wi (as copies of arcs in D) go
in the direction shown. The four other fat arcs indicate that all possible arcs are
present in the direction shown.

Proposition 6.7.2 [60] Let W be a set of k wvertices of a digraph D such
that D — W is a semicomplete digraph. Then D has a cycle of length ¢ > k
containing all vertices of W, if and only if the semicomplete digraph Dy has
a cycle of length ¢ + k through the arcs {wiwy : w € W}.

Proof: Exercise 6.36. O

Let D = (V,A) be a semicomplete digraph and A" = {ujvy,...,urvr}
be a subset of A. Let D’ be the digraph obtained from D by replacing each
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arc u;v; € A’ by a path w;w;v;, i = 1,2,...,k, where w; is a new vertex.
Then every cycle C' in D that uses all arcs in A’ corresponds to a cycle C’
in D’ which contains all vertices of W = {wj,ws,...,wg} and conversely.

This observation and Proposition 6.7.2 allows us to study cycles through a
specified set W of vertices in digraphs D such that D — W is semicomplete
instead of studying cycles containing k = |W| fixed arcs in semicomplete
digraphs.

Note that, if k is not fixed, then it is N"P-complete to decide the existence
of a cycle through k given vertices in a digraph which can be obtained from a
semicomplete digraph by adding k new vertices and some arcs. Indeed, take
k = |V(D)|, then this is the Hamilton cycle problem for general digraphs.
This proves that the k&-HCA is N"P-complete for semicomplete digraphs.

Now we can reformulate Conjecture 6.7.1 to the following equivalent state-
ment:

Conjecture 6.7.3 [60] Let k be a fixed natural number. There exists a poly-
nomaal algorithm to decide if there is a hamiltonian cycle in a given digraph
D which is obtained from a semicomplete digraph by adding at most k new
vertices and some arcs.

The truth of this conjecture when k = 1 follows from Proposition 6.7.2
and Theorem 6.4.1. Surprisingly, when |W| = 2 the problem already seems
very difficult (recall from Section 6.4 and the remark above that even the
case |W| =1 is highly non-trivial).

We conclude this subsection with some results on the k-HCA problem
for highly connected tournaments. Thomassen [701] obtained the following
theorem for tournaments with large strong connectivity (the function f(k) is
defined recursively by f(1) =1 and f(k) = 2(k — 1)f(k — 1) + 3 for k > 2).
The proof is by induction on k and uses Theorem 6.3.3 to establish the case
k =1 (this is another illustration of the importance of Theorem 6.3.3).

Theorem 6.7.4 [701] If {x1,y1, ..., Tk, Yr} 1S a set of distinct vertices in an
h(k)-strong tournament T, where h(k) = f(5k)+12k+9, then T has a k-path
factor Py U P, U ... U Py, such that P; is an (z;,y;)-path fori=1,.. k. O

Theorem 6.7.4 implies the following;:

Theorem 6.7.5 [701] If a1, ..., a) are arcs with no common head or tail in
an h(k)-strong tournament T, then T has a hamiltonian cycle containing
ai, ..., ax in that cyclic order. a

Combining the ideas of avoiding and containing, Thomassen proved the
following:

Theorem 6.7.6 [701] For any set Ay of at most k arcs in an h(k)-strong
tournament T and for any set As of at most k independent arcs of T — Ay,
the digraph T — Ay has a hamiltonian cycle containing all arcs of As. ad
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6.7.2 Avoiding Prescribed Arcs with a Hamiltonian Cycle

How many arcs can we delete from a strong tournament and still have a
hamiltonian cycle no matter what set of arcs is deleted? This is a difficult
question, but it is easy to see that for some tournaments the answer is that
even one missing arc may destroy all hamiltonian cycles. If some vertex has
in- or out-degree 1, then deleting that arc clearly suffices to destroy all hamil-
tonian cycles. On the other hand, it is also easy to construct for every p an
infinite set S of strong tournaments in which §°(T) > p for every T € S and
yet there is some arc of T which is on every hamiltonian cycle of T' (see Ex-
ercise 6.35). It follows from Theorem 6.7.7 below that all such tournaments
are strong but not 2-strong.

We can generalize the question to k-strong tournaments and again it is
obvious that if some vertex v has in- or out-degree k (this is the smallest
possible by the connectivity assumption), then deleting all k arcs out of or
into v, we can obtain a digraph with no hamiltonian cycle. Thomassen [699]
conjectured that in a k-strong tournament, k is the minimum number of arcs
one can delete in order to destroy all hamiltonian cycles. The next theorem
due to Fraisse and Thomassen answers this in the affirmative.

Theorem 6.7.7 [249] For every k-strong tournament D = (V, A) and every
set A" C A such that |A| < k—1, there is a hamiltonian cycle C in D—A’. O

The proof is long and non-trivial; in particular it uses Theorem 6.3.3.
Below we describe a stronger result due to Bang-Jensen, Gutin and Yeo [71].
The authors proved Theorem 6.7.8 using results on irreducible cycle factors in
multipartite tournaments, in particular Yeo’s irreducible cycle factor theorem
(Theorem 5.7.21). This is just one more illustration of the power of Theorem
5.7.21.

Theorem 6.7.8 [71] Let T = (V, A) be a k-strong tournament on n vertices,
and let X1,Xo,...,X, (p > 1) be a partition of V' such that 1 < |X;| <
| Xao| <...<|X,|. Let D be the digraph obtained from T by deleting all arcs
which have both head and tail in the same X; (i.e. D =T —UY_| A(T(X;))).
If|1X,) < n/2 and k > | X,|+ 372! || X:]/2], then D is hamiltonian. In other
words, T has a hamiltonian cycle which avoids all arcs with both head and
tail in some X;. O

We will not give the proof here since it is quite technical, but we give
the main idea of the proof. The first observation is that D is a multipartite
tournament, which follows from the way we constructed it. Our goal is to
apply Theorem 5.7.21 to D. Hence we need to establish that D is strong (see
Exercise 6.40) and has a cycle factor (Exercise 6.41). Now we can apply The-
orem 5.7.21 to prove that every irreducible cycle factor in D is a hamiltonian
cycle. This last step is non-trivial (Exercise 6.42).

The following result shows that the bound for k£ in Theorem 6.7.8 is sharp:
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Theorem 6.7.9 [71] Let 2 <1y <1y < ... <7, be arbitrary integers. Then
there exists a tournament T and a collection X1, X, ..., X, of disjoint sets of
vertices in T such that

(a) T is (ry — 1+ 30— [r:/2] )-strong;
(b) |AX'/L|:7”z fori:1727"'7p;
(¢) D=T—U_|A(T(X;)) is not hamiltonian. O

In fact, the paper [71] is concerned with aspects of the following more
general problem:

Problem 6.7.10 [71] Which sets B of edges of the complete graph K, have
the property that every k-strong orientation of K, induces a hamiltonian
digraph on K, — B?

The Fraisse-Thomassen theorem says that this is the case whenever B con-
tains at most k—1 edges. Theorem 6.7.8 says that a union of disjoint cliques of
sizes ri,...,rp has the property whenever 22:1 [7:i/2] + maxi<;<i{[r:/2]} <
k. By Theorem 6.7.9, this is the best possible result for unions of cliques.

Let us show that Theorem 6.7.8 implies Theorem 6.7.7. Let T be a k-
strong tournament on n vertices and let A’ = {ey,eq,...,ex_1} be a given
set of k — 1 arcs of T. In UG(T) these arcs induce a number of connected
components X, X,...,X;,, 1 < p < k— 1. Denote by a;, 1 = 1,2,...,p
the number of arcs form A’ which join two vertices from X;. Then we have
P jai=k—1and |X;| <a;+1,i=1,2,...,p. We may assume that the
numbering is chosen so that | X;| < |X,| < ... <|X,|. Note that | X,| < k <
n/2. Furthermore, since each a; > 1 we also have |X,| < (k—1)—(p—1)+1 =
k —p+ 1. Now we can make the following calculation:

0+ 31 = el 4 3 B

< 1By 1530 )

i=1

<Tg T D)

Now it follows from Theorem 6.7.8 that T has a hamiltonian cycle which
avoids every arc with both head and tail in some X; and in particular it
avoids all arcs in A’. This shows that Theorem 6.7.8 implies Theorem 6.7.7.
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Note that if A’ induces a tree and possibly some disjoint edges in UG(T),
then Theorem 6.7.8 is no stronger than Theorem 6.7.7. This can be seen
from the fact that in this case we have equality everywhere in the calculation
above. In all other cases Theorem 6.7.8 provides a stronger bound.

In relation to Problem 6.7.10, it seems natural to investigate bounds for
k in different cases of the set B. In particular, what are sharp bounds for &
when B is a spanning forest of K,, consisting of m disjoint paths containing
r1, ..., T Vertices, respectively 7 The same question can be asked if we replace
‘paths’ by ‘stars’ or by ‘cycles’ (in the last case ‘spanning forest’ should also
be replaced by ‘spanning cycle subdigraph’).

How easy is it to decide given a semicomplete digraph D = (V, A) and
a subset A’ C A whether D has a hamiltonian cycle C' which avoids all
arcs of A’? As we mentioned earlier, this problem is NP-complete if we
pose no restriction on the arcs in A’. In thecase when A’ is precisely the
set of those arcs that lie inside the sets of some partition X7, Xo,..., X, of
V', then the existence of C' can be decided in polynomial time. This follows
from the fact that D(A — A’) is a semicomplete multipartite digraph and, by
Theorem 5.7.9, the hamiltonian cycle problem is polynomially solvable for
semicomplete multipartite digraphs. The same argument also covers the case
when k£ =1 in the conjecture below.

Conjecture 6.7.11 For every k there exists a polynomial algorithm which,
for a given semicomplete digraph D = (V, A) and a subset A’ C A such that
|A’| = k, decides whether D has a hamiltonian cycle that avoids all arcs in
A

At first glance, cycles that avoid certain arcs seem to have very little to do
with cycles that contain certain specified arcs. Hence, somewhat surprisingly,
if Conjecture 6.7.1 is true, then so is® Conjecture 6.7.11.

Suppose that Conjecture 6.7.1 is true. Then it follows from the discussion
of Subsection 6.7.1 that also Conjecture 6.7.3 holds. Hence, for fixed k, there
is a polynomial algorithm Ay, which, given a digraph D = (V, A) and a subset
W C V for which D — W is semicomplete and |W| < k, decides whether or
not D has a hamiltonian cycle. Let k be fixed and D be a semicomplete
digraph and let A’ |A’| <k, be a prescribed set of arcs in D. Let W be the
set of all vertices such that at least one arc of A’ has head or tail in W. Then
|W| < 2|A’| and D has a hamiltonian cycle avoiding all arcs in A’ if and only
if the digraph D — A’ has a hamiltonian cycle. By the remark above we can
test this using the polynomial algorithm A,., where r = |WW|.

6.7.3 Hamiltonian Cycles Avoiding Arcs in 2-Cycles

Recall from Chapter 4 that we call an arc xy ordinary if it is not contained in
a 2-cycle. Deciding whether a given digraph has a hamiltonian cycle C' such

5 We thank Thomassen for pointing out this consequence to us (private commu-
nication, August 1999).
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that all arcs of C are ordinary is of course an N"P-complete problem since the
hamiltonian cycle problem for oriented graphs is A"P-complete. This implies
that the problem is AP-complete even for semicomplete digraphs.

Tuza [724] studied this problem for semicomplete digraphs and posed the
following conjecture:

Conjecture 6.7.12 [724] Let s be a positive integer and suppose that D =
(V, A) is a semicomplete digraph such that for every Y C V, |Y]| < s, the
induced semicomplete digraph D(V —Y) is strong and has at least one or-
dinary arc. Then there exists a hamiltonian cycle in T which has at least s
ordinary arcs.

The following result shows that it is enough to prove that there is a cycle
of length at least s + 1 with this property.

Proposition 6.7.13 [724] If a strong semicomplete digraph T has a cycle
of length at least s + 1 which contains at least s ordinary arcs, then T has a
hamiltonian cycle with at least s ordinary arcs.

Tuza has proved the existence of such a cycle for s = 1,2, see [724]. Tt is
easy to see that s+ 1 cannot be replaced by s in Proposition 6.7.13 (Exercise
6.43).

6.8 Arc-Disjoint Hamiltonian Paths and Cycles

From Euler’s theorem (Theorem 1.6.3) one easily derives the following result
attributed to Veblen in [115] (see also Exercise 6.44).

Theorem 6.8.1 The arcs of a digraph can be partitioned into cycles if and
only if, for each vertex x, we have d*(z) = d~ (z). O

The proof of the following strengthening of Theorem 6.8.1 for regular
digraphs by Kotzig is left as FExercise 6.46.

Theorem 6.8.2 [503] If D is a regular digraph, then the arc set of D can
be partitioned into cycle factors. a

We now consider decompositions of the arc set of a digraph into hamil-
tonian cycles. Deciding whether such a decomposition exists for an arbitrary
digraph is an extremely hard problem. Even for complete digraphs this is
non-trivial. It is an old result due to Walecki (see [20]) that the edge set
of the complete undirected graph K, has a decomposition into hamiltonian
cycles if and only if n is odd (if n is even then each vertex has odd degree
and no decomposition can exist). Using this result we easily conclude that

the arc set of K, can be decomposed into hamiltonian cycles when n is odd.
However for even n another approach is needed by the remark above.
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It is easy to check that the arcs of K4 cannot be decomposed into hamil-
tonian cycles. Indeed, without loss of generality, the first cycle in such a

decomposition is 12341 where the vertices of IH{4 are labeled 1,2,3,4. After re-
moving these arcs one obtains a strong semicomplete digraph with a unique
hamiltonian cycle 14321 and hence the desired decomposition cannot exist.

With a little more effort one can also prove that the arc set of I?G cannot
be decomposed into 5 hamiltonian cycles (Exercise 6.45). On the other hand
Tillson proved that for all other values of n such a decomposition does indeed
exist.

Theorem 6.8.3 (Tillson’s decomposition theorem) [719] The arcs of

K, can be decomposed into hamiltonian cycles if and only if n # 4, 6. ad

Theorem 6.8.3 will be used in Section 6.12. Answering a question of
Alspach, Bermond and Sotteau, Ng [591] extended Theorem 6.8.3 to the
following:

,,,,,

hamiltonian cycles if and only if (r,s) # (4,1) and (r,s) # (6,1). O

The following conjecture, due to Kelly (see [571]), is probably one of the
best known conjectures in tournament theory:

Conjecture 6.8.5 (Kelly’s conjecture) The arcs of a reqular tournament
of order n can be partitioned into (n — 1)/2 hamiltonian cycles.

This conjecture was verified for n < 9 by Alspach [115, page 28]. Jack-
son [449] proved that every regular tournament of order at least 5 contains
a hamiltonian cycle C' and a hamiltonian path arc-disjoint from C. Zhang
proved in [754] that there are always two arc-disjoint hamiltonian cycles for
n > 5. A digraph D is almost regular if A°(D) — §°(D) < 1. Thomassen
[699] proved the following:

Theorem 6.8.6 [699] Every regular or almost regular tournament of order
n has at least |1/n/1000] arc-disjoint hamiltonian cycles. O

This result was improved by Haggkvist to the following:

Theorem 6.8.7 [387] There is a positive constant ¢ (in fact ¢ > 2718) such
that every regular tournament of order m contains at least cn arc-disjoint
hamiltonian cycles. ad

Thomassen [703] proved that the arcs of every regular tournament of order
n can be covered by 12n hamiltonian cycles.
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So far the Kelly conjecture remains unsettled as far as a published proof
goes. Thus it remains a serious challenge to find a proof of this long standing
and very interesting conjecture.

For further results on decompositions into hamiltonian cycles we refer the
reader to the paper [20] by Alspach, Bermond and Sotteau and the paper
[592] by Neg.

Let T be the tournament on n = 4m+2 vertices obtained from two regular
tournaments 77 and Ts, each on 2m + 1 vertices, by adding all arcs from the
vertices of Ty to Ty (i.e. V(T1)—V (T3) in T'). Clearly T is not strong and so
has no hamiltonian cycle. The minimum in-degree and minimum out-degree
of T'is m which is about %. Bollobas and Haggkvist [123] showed that if we
increase the minimum in- and out-degree slightly, then, not only do we obtain
many arc-disjoint hamiltonian cycles, we also obtain a very structured set of
such cycles.

Theorem 6.8.8 [123] For every ¢ > 0 and every natural number k there is
a natural number n(e, k) with the following property. If T is a tournament of
order n > n(e, k) such that 6°(T) > (3 + €)n, then T contains the kth power
of a hamiltonian cycle. O

It is easy to prove that every tournament on n vertices with minimum in-
and out degree at least 7 is strongly connected (see Exercise 1.36).

We now turn our attention to other results concerning arc-disjoint hamil-
tonian paths and cycles in tournaments. Thomassen [699] completely char-
acterized tournaments having at least two arc-disjoint hamiltonian paths. A
tournament is almost transitive if it is obtained from a transitive tourna-
ment with acyclic ordering uq,us, . .., u, (i.e. u;—u; forall 1 <i < j <n) by
reversing the arc uyu,. Let T be a non-strong tournament with the acyclic
ordering 11,715, ..., T} of its strong components. Two components T;,T;4+1
are called consecutive for 1 =1,2,...,k— 1.

Theorem 6.8.9 [699] A tournament T fails to have two arc-disjoint hamil-
tonian paths if and only if T has a strong component which is an almost
transitive tournament of odd order or T has two consecutive strong compo-
nents of order 1. ad

Deciding whether a given tournament 7' has a hamiltonian path P and
a hamiltonian cycle C' such that P and C' are arc-disjoint seems to be a
difficult problem. Thomassen found the following partial solution involving
arc-3-cyclic tournaments:

Theorem 6.8.10 [699] Let T be an arc-3-cyclic tournament of order at least
3. Then T has a hamiltonian path P and a hamiltonian cycle arc-disjoint
from P, unless T is a 3-cycle or the tournament of order 5 obtained from a
3-cycle by adding two vertices x,y and the arc xy and letting y (respectively
x) dominate (respectively, be dominated by) the vertices of the 3-cycle. a
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It is easy to see that regular tournaments are arc-3-cyclic (Exercise 6.47).
Hence Theorem 6.8.10 generalizes the result of Jackson above. But Theorem
6.8.10 goes much further since, as we mentioned in Section 6.6, almost all
tournaments satisfy the assumption of the theorem (see [571]). The following
conjecture in some sense generalizing Kelly’s conjecture was proposed by
Thomassen:

Conjecture 6.8.11 [699] For any € > 0 almost all tournaments of order n
have | (0.5 — e)n] arc-disjoint hamiltonian cycles.

Erdds (see [699]) raised the following problem:

Problem 6.8.12 Do almost all tournaments have 5°(T) arc-disjoint hamil-
tonian cycles?

As we mentioned in the beginning of Section 6.7 there is no degree con-
dition which guarantees that a strong tournament contains two arc-disjoint
hamiltonian cycles. In fact one can easily show that even high arc-strong con-
nectivity does not exclude the existence of one arc which is in all hamiltonian
cycles (see Exercise 6.35). Thomassen posed the following conjecture.

Conjecture 6.8.13 [699] For each integer k > 2 there exists an integer a(k)
such that every a(k)-strong tournament has k arc-disjoint hamiltonian cycles.

Thomassen [699] showed by an example that «(2) > 2 and conjectured that
«(2) = 3. His example also shows that « is not bounded by any linear func-
tion.

6.9 Oriented Hamiltonian Paths and Cycles

Since every tournament has a hamiltonian directed path, it is natural to
ask whether every tournament contains every orientation of a hamiltonian
undirected path. This is not true, as one can see from the examples in Figure
6.5.

Figure 6.5 The unique tournaments with no anti-directed hamiltonian path.
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A path is anti-directed if the orientation of each arc on the path is op-
posite to that of its predecessor. The reader can easily verify that none of the
three tournaments in Figure 6.5 contains an anti-directed hamiltonian path
(Exercise 6.48). Griinbaum [340] proved that, except for the three tourna-
ments of Figure 6.5, every tournament contains an anti-directed hamiltonian
path. Rosenfeld [644] strengthened this to the following statement:

Theorem 6.9.1 [6/4] In a tournament on at least 9 vertices, every vertex
is the origin of an anti-directed hamiltonian path. a

Rosenfeld conjectured that there exists a natural number N such that
every tournament on at least NN vertices contains every orientation of a
hamiltonian undirected path. Griinbaum’s examples show that we must have
N > 8. Rosenfeld’s conjecture has been studied extensively and many partial
results were obtained until it was proved by Thomason [694] (see also The-
orem 6.9.3). We will mention one of these partial results here (see also the
papers [21] by Alspach and Rosenfeld and [683] by Straight).

Forcade found the following beautiful result which generalizes Redei’s
theorem for tournaments whose number of vertices is a power of two.

Theorem 6.9.2 [2/4] If T is a tournament on n = 27 wvertices for some
r, then for every orientation P of a path on n wvertices, T contains an odd
number of occurrences of P. ad

Thomason [694] proved Rosenfeld’s conjecture by showing that N is less
than 2128, He also conjectured that N = 8 should be the right number. This
was confirmed very recently by Havet and Thomassé [408].

Theorem 6.9.3 (Havet-Thomassé theorem) [/08] Every tournament on
at least 8 vertices contains every orientation of a hamiltonian path. a

The proof of Theorem 6.9.3 in [408] is very long (involving a lot of cases),
but it uses a very nice partial result which we shall describe below. First
we need some new notation. Let P = ujus...u, be an oriented path. The
vertex uy (uy) is the origin (terminus) of P. An interval of P is a maximal
subpath P’ = P[u;,u;]” such that P’ is a directed path (i.e. either a (u;,u;)-
path or a (uj,u;)-path). See an illustration in Figure 6.6. The intervals are
labeled Iy, Iz, ..., Iy(py starting from u;. The length ¢;(P) of the ith interval
is the number of arcs in the directed subpath corresponding to I;. If the
first interval of P is directed out of up, then P is an out-path, otherwise
P is an in-path. Now we can describe any oriented path P by a signed
sequence sgn(P)(l1,La,. .., Lypy), where sgn(P) is ‘4’ is P is an out-path
and otherwise sgn(P) is ‘—’. We also use the notation *P to denote the
subpath Plug, u,].

7 We use the same notation here as for directed paths, i.e. Plus, uj] = wittiqr ... uy
when ¢ < j.
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Figure 6.6 An oriented path with intervals [1, 3], [3, 6], [6, 7], [7, 8], [8, 10], [10, 11],
11, 12].

For every set X C V in a tournament T' = (V, A), we define the sets
RT(X) (R (X)) to be those vertices that can be reached from (can reach)
the set X by a directed path. By definition X C RT(X)NR™(X). A vertex u
is an out-generator (in-generator) of T if Rt (u) =V (R~ (u) = V). Recall
that by Theorem 1.4.5, every tournament 7" has at least one out-generator
and at least one in-generator. In fact, by Proposition 4.10.2, a vertex is an
out-generator (in-generator) if and only if it is the initial (terminal) vertex
of at least one hamiltonian path in 7'

The next result, due to Havet and Thomassé, deals with oriented paths
covering all but one vertex in a tournament. It plays an important role in the
proof of Theorem 6.9.3 in [408].

Theorem 6.9.4 [{08] Let T = (V,A) be a tournament on n + 1 vertices.
Then

(1) For every out-path P on n vertices and every choice of distinct vertices
z,y such that |RT({z,y})| > (1(P) + 1, either x or y is an origin of (a
copy of) P in T.

(2) For every in-path P on n vertices and every choice of distinct vertices
z,y such that |R~({z,y})| > €1(P) + 1, either x or y is an origin of (a
copy of) P in T.

The following is an easy corollary of Theorem 6.9.4. We state it now since
we shall use it in the inductive proof below.

Corollary 6.9.5 [694] Every tournament T on n vertices contains every
oriented path P on n—1 vertices. Moreover, every subset of ¢1(P)+1 vertices
contains an origin of P. In particular, there are at least two distinct origins
of PinT. ad

Proof of Theorem 6.9.4: (We follow the proof in [408]). The proof is by
induction on n and clearly holds for n = 1. Now suppose that the theorem
holds for all tournaments on at most n vertices. It suffices to prove (1) since
(2) can be reduced to (1) by considering the converses of T and P.

Let P = wjus...u, be given and let x,y be distinct vertices such that
|RT({z,y})| > ¢1(P) + 1. We may assume that z—y and hence RT(x) =
R*({z,y}). We consider two cases.
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Case 1 ¢1(P) > 2: If [N (x)| > 2, let z € N*(z) be an out-generator of
T(R"(x) — z) and let t € NT(x) be distinct from z. By the definition of z
we have that |RF__({t,2})| = |R*(z)] — 1 > £;(*P). Note that *P is an
out-path, since ¢;(P) > 1. By the induction hypothesis, either z or ¢ is the
origin of *P in T — z, implying that x is an origin of P in T.

Thus we may assume that N (x) = {y}. Since |RT ({z,y})| > (1 (P)+1 >
3 we see that N*(y) # (. Let ¢ be an out-generator of T(N*(y)). Then ¢
is also an out-generator of T(R*({z,y}) —y), ¢—z and |R*T'7y({x,q})| =
|[RT({z,y})| — 1 > £1(*P). By induction, either z or ¢ is the origin of *P in
T — y and since x has no out-neighbour in 7' — y it must be ¢ that is the
origin. Now we see that y is the origin of P in T.
Case 2 £1(P) = 1: We consider first the subcase when [Nt (z)| > 2. Let
X := Ry __(NT(z)) and consider the partition (X,Y,{z}) of V, where Y =
V — X — z. By the definition of these sets we have Yi—x, X—Y and y € X.
If | X| > £o(P) + 1, then we claim that z is an origin of P in T'; indeed, let
p € NT(x) be an in-generator of T(X) and take u € NT(x) — p. By the
induction hypothesis, either p or u is an origin of *P in T'— z and hence z is
an origin of P in T

So we may assume that |X| < ¢3(P). Note that ¢3(P) < n — 2 holds
always (remember we count arcs). Hence |Y| > 1, since T has n + 1 vertices.
Let s be an in-generator of T(Y). Since d*(z) > 1 and X—Y we have
Ry_,(s) =V —y. Let w € Y — s be arbitrary. By the induction hypothesis
either w or s is an origin of *P in T'— y and hence y is an origin of P in T.

Now consider the case when Nt (z) = {y}. Suppose first that [N;__(y)| >
n — 2. By induction, Theorem 6.9.4 and hence Corollary 6.9.5 holds for 7' —
{z,y}. Thus some vertex in N (y) is an origin of **P. Hence z is an origin
of Pin T (using —y and an arc into y from the origin of «P in T — {z,y}).
So we may assume that [NT(y)| > 2. Let U = Ry, (NT(y)) and W =
V —U — {z,y}. Then W—{z,y} and U—=W U {x}. If |U| > ¢2(P) + 1, then
by the same proof as we used above (beginning of Case 2), we get that y
is an origin of P. So suppose |U| < ¢3(P). This implies in particular that
6(P) 2 [NT(y)] = 2.

If [W| > 2 then we let w € W be an in-generator of T — {x,y} and take
w’ € W —w arbitrary. By induction either w or w’ is an origin of the in-path
xx P (recall that £5(P) > 2 and hence *+P is an in-path). Thus using the arc
zy and an arc into y from the origin of *«xP in W we see that x is the origin of
P. Finally consider the case when |[W| =1 (note that |[W|=n—-1-|U| > 1,
since |U| < £3(P) < n —2). Then |U| = n — 2 and ¢3(P) = n — 2 (since we
assumed above that f2(P) > |U]). Thus %P is a directed in-path. Using that
y is an in-generator of T'— x, we get that x is an origin of P. This completes
the proof of the theorem. a

If the path in Theorem 6.9.4 has n+1 vertices instead of n, then the state-
ment is no longer true. However, the exceptions (to the n+1,n+ 1 version of
Theorem 6.9.4) can be characterized [408] and based on this characterization
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Havet and Thomassé were able to prove that the tournaments in Figure 6.5
are indeed the only tournaments that do not contain every orientation of a
hamiltonian path.

In [408] Havet and Thomassé also proved the following nice result which
is of independent interest.

Proposition 6.9.6 [/08] Let P be an out-path on ny vertices and Q an in-
path on ng vertices. Let T = (V, A) be a tournament on n = ny +na vertices.
If x € V is the origin of a copy of P and of @ in T, then we may choose
copies of P and Q such that V(P)NV(Q) = {z} and x is the origin of both
copies.

How easy is it to find an occurrence of a prescribed orientation of a hamil-
tonian path P in a tournament? If P is a directed path, then this can be done
in time® O(nlogn) (see Section 1.9.1). Some patterns can be found faster;
Bampis, Hell, Manoussakis and Rosenfeld [42] showed that one can find an
anti-directed hamiltonian path in O(n) time. This is the best possible as
shown in [415]. The following somewhat surprising result by Hell and Rosen-
feld shows that finding distinct patterns requires quite different complexities:

Theorem 6.9.7 [/15] For every 0 < « < 1 there exists an orientation P of
a path on n vertices so that every algorithm which checks for an occurrence
of P in a tournament T with n vertices must make 2(nlog®n) references to
the adjacency matrix of T in the worst case. ad

Based on Theorem 6.9.3 Havet proved the following result:

Theorem 6.9.8 [/05] There is an O(n?) algorithm that takes as input a
tournament on n > 8 vertices and an oriented path P on at most n vertices
and returns an occurrence of P in T. a

It is not known whether there are orientations of paths that in the worst
case need 2(n'T¢) references (for some € > 0) to the adjacency matrix to be
found in a tournament. By this we mean that in some cases one needs that
many steps to either find the desired path or conclude that no such path
exists.

Instead of considering orientations of hamiltonian paths in tournaments,
one may just as well consider orientations of hamiltonian cycles in tourna-
ments. However, one particular cycle, namely the directed hamiltonian cycle,
can only be found in strong tournaments. Rosenfeld [645] conjectured that
the directed hamiltonian cycle is the only orientation of a hamiltonian cy-
cle that can be avoided by tournaments on arbitrarily many vertices. This
conjecture was settled by Thomason who proved the following:

8 We remind the reader that in measuring the complexity, we only count how many
times we have to ask about the orientation of a given arc.
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Theorem 6.9.9 [69/] Every tournament on n > 2128 yertices contains every
oriented cycle of length n except possibly the directed hamiltonian cycle.

Thomason also conjectured that the correct value of the lower bound on n
is 9. One easily obtains a tournament with 8 vertices having no anti-directed
hamiltonian cycle by adding a new vertex v to the tournament on 7 vertices
in Figure 6.5 and joining v arbitrarily to the other 7 vertices. Hence 9 would
be best possible if true.

Using the methods developed in [408] along with a number of new ideas,
Havet [406] proved the following result. Recall that every strong tournament
has a hamiltonian cycle.

Theorem 6.9.10 [406] Every tournament T on m > 68 wvertices contains
every oriented cycle of length n, except possibly the directed hamiltonian cycle.
O

Not surprisingly, if a digraph is almost complete, then it will contain all
orientations of a hamiltonian undirected path. The following result is due to
Heydemann, Sotteau and Thomassen:

Theorem 6.9.11 [{27] Let D be a digraph on n vertices and at least (n —
1)(n —2) + 3 arcs and let C be an arbitrary orientation of a cycle of length
n. Then D contains a copy of C, except for the case when D is not strong
and C' is a directed hamiltonian cycle. ad

6.10 Covering All Vertices of a Digraph by Few Cycles

Now we discuss another analogue of the hamiltonian cycle problem, namely
that of covering the vertices of a digraph with few cycles. In some cases
we insist that these are disjoint and that there is a prescribed number of
cycles, whereas in other cases we allow the cycles to intersect, but only in a
prescribed pattern.

6.10.1 Cycle Factors with a Fixed Number of Cycles

Two cycles X, Y in a digraph D = (V, A) are complementary if V(X) N
V(Y)=0and V(X)UV(Y) =V, that is, these cycles form a 2-cycle factor
in D.

Since every strong tournament has a hamiltonian cycle, a tournament T’
contains a 2-cycle factor if and only if T can be partitioned into two strong
subtournaments. Thomassen posed the following problem which generalizes
the problem of the existence of a 2-cycle factor in a tournament.
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Problem 6.10.1 (Thomassen) [629] Is it true that for all natural num-
bers r, s, there exists a natural number f(r,s) with the following property:
except for finitely many exceptions for each r,s, every f(r,s)-strong tourna-
ment T can be partitioned into an r-strong tournament Ty and an s-strong
tournament Ty ?

Considering the case 7 = s = 1, Reid proved the following (see also
Exercise 6.52):

Theorem 6.10.2 [629] Every 2-strong tournament on at least 8 vertices has
a 2-cycle factor consisting of a 3-cycle and an (n — 3)-cycle.

This was extended by Song to all pairs of cycle lengths k,n — k, where
k = 3,4,...,n — 3 [678]. It follows from these results that f(1,1) = 2. It
is worth noticing that the problem of determining the analogue f/(1,1) of
f(1,1) for semicomplete digraphs is open. Since every 3-strong semicomplete
digraph contains a spanning 2-strong tournament (Proposition 7.14.5), we
obtain that 2 < f/(1,1) < 3 holds for semicomplete digraphs.

There are a number of results on 2-cycle factors in bipartite tournaments.
One of these is the following due to Song:

Theorem 6.10.3 [677] Let R be a bipartite tournament with 2k + 1 vertices
in each partite set (k > 4). If every vertex of R has out-degree and in-degree
at least k, then for any verter x in R, R contains a 2-cycle factor CUC" such

that C' includes x_and the length of C' is at most 6 unless R is isomorphic to
C4[Kk+1,Kk+1,Kk,Kk]. O

For further results on 2-cycle factors in semicomplete bipartite digraphs
see e.g. the paper [757] by Zhang and Wang and [756] by Zhang, Manoussakis
and Song.

It seems that the problem deciding the existence of a 2-cycle factor in
semicomplete p-partite digraphs with p > 3 is quite difficult and we do not
know any non-trivial partial results about that. The following conjecture has
been proposed by Volkmann. For a semicomplete multipartite digraph D with
p partite sets V1, Vs, ..., V,, the independence number a(D) is equal to the
size of a largest set among the V;’s.

Conjecture 6.10.4 [728] Let D be a p-partite tournament with partite sets
Vi,Va,..,V, and let « = (D). If D is (o + 1)-strong, then D has a 2-cycle
factor, unless D is a member of a finite family of multipartite tournaments.

In fact Conjecture 6.10.4 is just one instance of the following meta-
conjecture due to Volkmann (private communication, 1997). Several results
which hold for k-strong tournaments should also hold for every semicomplete
multipartite digraph D provided that D is («(D) + k — 1)-strong. One in-
stance where this is known to be true is for the hamiltonian cycle problem
(see Theorem 5.7.25).
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An obvious necessary condition for a digraph D to contain a 2-cycle factor
is that the girth of D is at most n/2. The second power D = C_"QZICJr1 of an
odd cycle has girth £+ 1 and D is a 2-strong locally semicomplete digraph.
This shows that Theorem 6.10.2 cannot be extended to locally semicomplete
digraphs. Confirming a conjecture by Bang-Jensen [47],Guo and Volkmann
proved that powers of odd cycles are the only exceptions when n > 8.

Theorem 6.10.5 [351] Let D be a 2-strong locally semicomplete digraph on
n > 8 vertices. Then D has a 2-cycle factor such that both cycles have length
at least 3 if and only if D is not the second power of an odd cycle. a

Guo and Volkmann have shown that, although Theorem 6.10.2 cannot be
extended to locally semicomplete digraphs, there is still enough structure to
allow 2-cycle factors with many different lengths. We refer the reader to [352]
for details.

The next conjecture by Bang-Jensen, Guo and Yeo goes further than
Problem 6.10.1. It may be seen as a first step towards studying partitions
into subtournaments containing prescribed vertices in highly connected tour-
naments.

Conjecture 6.10.6 [58] For all natural numbers r, s there exists a natural
number g(r, s) such that the following is true with no more than finitely many
exceptions for each choice of r,s: for every tournament T which is g(r,s)-
strong and every choice of distinct vertices x,y € V(T), there exist vertex-
disjoint subtournaments Ty, T, of T such that V(T) =V (T,) UV (T,), Ty is
r-strong, T, is s-strong and x € V(T,), y € V(T).

Note that it is easy to decide in polynomial time whether a tournament
T contains two disjoint cycles C, and Cy such that x € V(C;) and y €
V(Cy). This follows from the fact that, by Moon’s theorem, every strongly
connected tournament is vertex-pancyclic. Hence C, and Cy exist if and
only if T contains disjoint 3-cycles, one containing x and the other y. It
follows from this that every 4-strong tournament contains cycles C,,C, as
above. Bang-Jensen, Guo and Yeo proved that this already holds for 3-strong
tournaments and an infinite family of 2-strong counter examples was given
[58]. Hence ¢(1,1) = 3.

The existence of a 2-cycle factor such that each cycle contains a prescribed
vertex and has a prescribed length in a bipartite graph has been studied in
the papers [516, 733] by Little, Teo and Wang.

We now turn to cycle factors with more than two cycles. Bollobds (see
[678]) posed the following problem:

Problem 6.10.7 Let k be a positive integer. What is the least integer g(k)
so that all but a finite number of g(k)-strong tournaments contain a k-cycle
factor?
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Chen, Gould and Li [147] answered this problem by proving that g(k) <
3k2 4+ k. In relation to Problem 6.10.7 Song made the following much stronger
conjecture:

Conjecture 6.10.8 [678] For any k integers ny,na,...,ng with n; > 3 for
i1 =1,2,....k and me n; = n, all but a finite number of k-strong tourna-
ments on n vertices contain a k-cycle factor such that the k cycles have the
lengths ny,na, ..., Nk, respectively.

If, instead of tournaments, we consider digraphs which are almost com-
plete, then, by the following result, due to Amar and Raspaud, we may almost
completely specify the lengths of the cycles in a cycle factor.

Theorem 6.10.9 [24] Let D be a strong digraph on n vertices and at least
(n—1)(n—2) + 3 arcs. For every partition n = ny +ng + ... + ny such that
n; >3,i=1,2,...,k, D contains a k-cycle factor C1 UCs U ... UCy such
that C; has length n; fori=1,2,..., k except in two cases:

n=26,n =ngs =3 and a(D) =3, or
n=9,n; =ny=n3=23 and (D) = 4. ]

6.10.2 The Effect of a(D) on Spanning Configurations of Paths
and Cycles

Since semicomplete digraphs have a lot of structure, it is natural to believe
that some of this structure is present in digraphs with small independence
number, in particular for digraphs of independence number two.

Two cycles C,C’ are consistent if they are either disjoint or their in-
tersection is a subpath in both cycles. Chen and Manalastras proved the
following:

Theorem 6.10.10 [146] If D is strong and o(D) < 2, then D is either
hamiltonian or it has a pair of consistent cycles which is spanning. a

Bondy [125] gave a short proof of this theorem based on Lemma 5.2.2.

In Chapter 7 we introduce the concept of an ear decomposition of a strong
digraph. Using this concept we see that, if D has a pair of consistent cycles
C, C" which are spanning and not disjoint, then these along with all remaining
arcs of D (not on C,C") form an ear decomposition with precisely two non-
trivial ears. Clearly the converse also holds.

Theorem 6.10.10 immediately implies the following result, which implies
Theorem 5.2.4 in the case a(D) = 2:

Corollary 6.10.11 [146] If D is strong and o(D) < 2, then D is traceable.
O
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It is tempting to ask whether one can generalize Corollary 6.10.11 to the
statement that every k-strong digraph D with a(D) < k 4 1 is traceable.
However, the example in Figure 6.7 by Bondy [125] shows that such a gener-
alization is not possible. See Conjecture 12.6.2 for a weaker conjecture which
may still be true.

N\

Figure 6.7 A 2-strong digraph D with a(D) = 3 and no hamiltonian path. The
vertical edges correspond to directed 2-cycles.

Note that, if a digraph D = (V, A) has a hamiltonian path, then pc(D —
X) < |X|+1 for every X C V (see also Proposition 1.4.6). In the digraph
in Figure 6.7 we have pc(D — X) = 3 = |X| + 1 when X consists of the two
left vertices. Hence, the example in Figure 6.7 also shows that the condition
above is not always sufficient to guarantee a hamiltonian path in a digraph.

Gallai posed the following conjecture. For o = 2 the conjecture follows
from Theorem 6.10.10.

Conjecture 6.10.12 [296] Every strong digraph D has a spanning collection
of a(D) not necessarily disjoint cycles.

The cyclomatic number of an (un)directed graph D = (V, A) is the
parameter |A| — |V| + ¢(D), where ¢(D) denotes the number of connected
components of UG(D). A digraph is cyclic if every vertex belongs to a cycle.

The following conjecture, which Bondy [125] attributes to Chen and Man-
alastras [146], generalizes Gallai’s conjecture above and Theorem 5.2.4:

Conjecture 6.10.13 [125, 146] Every strong digraph D contains a cyclic
spanning subdigraph with cyclomatic number at most a(D).

The example below due to Favaron (see [125]) shows that one cannot hope
to find, for every strong digraph D, a strong spanning subdigraph of D with
cyclomatic number at most «(D). Let r > 2 and take r copies Ty, T3, ..., T,
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of the strong tournament on four vertices. Let the vertices be labelled so that
the unique hamiltonian cycle in the ith copy is w;x;v;yu;, ¢ = 1,2,...,7.
Let D, be the digraph obtained from the disjoint union of T}, T5, ..., T, by
adding the arcs u;u;41 and v;1qv; for all odd 7, respectively, u;11u; and v;v;41
for all even 4, 1 <4 < r. Then D, is strong, a(D) = r and it can be shown
that D, has no strong spanning subdigraph with cyclomatic number less than
2r — 1 (Exercise 6.53). Moreover, every cyclic spanning subdigraph of D with
cyclomatic number r consists of r disjoint 4-cycles.

6.11 Minimum Strong Spanning Subdigraphs

We consider the following problem, which we call the MSSS problem (MSSS
stands for Minimum Spanning Strong Subdigraph): given a strongly con-
nected digraph D, find a strongly connected spanning subdigraph D’ of
D such that D’ has as few arcs as possible. This problem, which gener-
alizes the hamiltonian cycle problem and hence is AP-hard, is of prac-
tical interest and has been studied extensively in the literature, see e.g.
[5, 317, 434, 478, 479, 673]. We will address this problem again in Section
7.16, where we also discuss the related problem for higher connectivities.

Since the MSSS problem is A'P-hard, it is natural to study the problem
under certain extra assumptions. In order to find classes of digraphs for which
we can solve the MSSS problem in polynomial time, we have to consider
classes of digraphs for which we can solve the hamiltonian cycle problem
in polynomial time. This follows from the fact that the hamiltonian cycle
problem can be solved in polynomial time if we can solve the MSSS problem
in polynomial time.

6.11.1 A Lower Bound for General Digraphs

Recall that pce(D), the path-cycle covering number of D, is the smallest
(positive) number of paths in a k-path-cycle factor of D. Define, for every
digraph D, the number pec* (D) by

0 if D has a cycle factor
pee(D) otherwise.

pee’(D) = {

Proposition 6.11.1 For every strongly connected digraph D = (V, A) of
order n, every spanning strong subdigraph of D has at least n+pcc*(D) arcs.

Proof: Let D be strong and let D’ be a spanning strong subdigraph with
n—+k arcs. We may assume (by deleting some arcs if necessary) that no proper
subdigraph of D’ is spanning and strong. It is easy to prove, by induction on
k, that D’ can be decomposed into a cycle Py = C and k arc-disjoint paths
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or cycles Pi, P, ..., Py with the following properties (here D; denotes the
digraph with vertices | J;_, V(P;) and arcs? J;_, A(F;)):

1. For each i = 1,...k, if P; is a cycle, then it has precisely one vertex
in common with V(D;_1). Otherwise the end-vertices of P; are distinct
vertices of V(D;_1) and no other vertex of P; belongs to V(D;_1).

k
2. Uj:O A(Pj) = A(D').

By the minimality assumption on D', each P; has length at least two.
It follows that D has a k-path-cycle factor consisting of C' and k paths P/,
i =1,2,...,k, where P/ is the path one obtains from P; by removing the
vertices it has in common with V(D;_1) (defined above). It follows that

pcec*(D) < k. O

We prove in the next subsection that the inequality of Proposition 6.11.1
is in fact an equality for extended semicomplete digraphs. It was shown in [90]
that this is also the case for semicomplete bipartite digraphs. The inequality
of Proposition 6.11.1 is not always an equality for general semicomplete mul-
tipartite digraphs, as such digraphs can have a cycle factor and still not be
hamiltonian (see Section 5.7).

Figure 6.8 A quasi-transitive digraph D with pcc*(D) = 0 and no hamiltonian
cycle.

Even for quasi-transitive digraphs strict inequality may hold in Proposi-
tion 6.11.1. The quasi-transitive digraph D in Figure 6.8 has a cycle factor
consisting of two 3-cycles and hence pec*(D) = 0, but D is not hamiltonian
and it is easy to see that the minimum spanning strong subdigraph has 7
arcs.

6.11.2 The MSSS Problem for Extended Semicomplete Digraphs

The next result by Bang-Jensen and Yeo shows that the inequality in Propo-
sition 6.11.1 is actually an equality for digraphs that are extensions of a

9 This coincides with the definition of an ear decomposition in Section 7.2.



6.11 Minimum Strong Spanning Subdigraphs 333

semicomplete digraph. The main tool in the proof below is the character-
ization of the longest cycle in an extended semicomplete digraph given in
Theorem 5.7.8.

Theorem 6.11.2 [90] Let D = (V, A) be a strong extended semicomplete
digraph_and let D = (V, A) be a minimum strong spanning subdigraph of D.
Then |A] = n + pec*(D).

Proof: (Sketch) Let D = S[Hy, Hs, ..., Hy], s = |V(S5)|, be a strong extended
semicomplete digraph, where the decomposition is such that S is semicom-
plete. For each i« = 1,2,...,s we let m; denote the maximum number of
vertices from H; that can be covered by any cycle subdigraph of D. Let C
be a longest cycle of D. By Theorem 5.7.8, C' contains precisely m; vertices
from H; for each ¢ = 1,2,...,s. If D is hamiltonian, then pcc*(D) = 0 and
there is nothing to prove. Hence we may assume below that pec*(D) > 0. By
Corollary 5.7.19, the extended semicomplete digraph D’ = D — C is acyclic.
Let £k = «(D’). By Lemma 5.3.3, D’ has a path-factor Py UP, U ... U Py
where P is a longest path in D’, P, is a longest path in D’ — P; and so on.

Start by letting H :=(V(C), A(C)). Since P; is a longest path in D', its
initial (terminal) vertex z (y) has no arc entering (going out) in D’. Thus,
since D is strong there exist arcs wx,yv such that w,v are vertices of H.
Change H by adding the vertices of P and all arcs of P along with the arcs
ux,yv to H. Now consider the path P5 in D’ — P;. Using that P» is a longest
path in D’ — P;, we again conclude that there must exist an arc from V(H)
to the initial vertex of P, and an arc from the terminal vertex of P, to H.
Now it is easy to see how to continue and end up with a subdigraph H which
is strong, spanning and has n + k arcs.

It remains to prove that this is optimal. By the remark above pcc* (D) > 0,
so by Proposition 6.11.1 it suffices to prove that k = pce(D). Let p = pce(D)
and let Ry, Ra,...,R,, Q be an arbitrary p-path-cycle factor of D where Q
consists of one or more cycles and R; is a path for ¢ = 1,2,...,p. If some
R; contains two vertices from the same H;, then we can replace it with a
new path R, and a cycle C; (Exercise 6.54). Doing this for all the paths
Ry, Ry, ..., R, until none of these contains two independent vertices we end
up with a collection of paths R}, Ry, ..., R, where R} is the result of remov-
ing zero or more cycles from D{R;)!°. Now consider the cycle subdigraph Q'
we obtain by taking Q and all the cycles we extracted above. By the defini-
tion of m;, Q' contains at most m; vertices from H;. Thus a(D -V (Q')) > k
and since no R, contains two independent vertices, it follows that p > k must
hold. a

Corollary 6.11.3 [90] The minimum spanning strong subdigraph of a strong
extended semicomplete digraph can be found in time O(n?2).

Proof: Exercise 6.55. a
10 Observe that by the definition of p, no R} is empty.
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6.11.3 The MSSS Problem for Quasi-Transitive Digraphs

We first give a lower bound for the number of arcs in any minimum span-
ning strong subdigraph of an arbitrary given strong quasi-transitive digraph.
This bound can be calculated in polynomial time using Gutin’s algorithm for
finding a hamiltonian cycle in a quasi-transitive digraph (Theorem 5.9.4) as
well as the algorithm of Theorem 5.9.5. We prove that this lower bound is
also attainable for quasi-transitive digraphs. The proof of this uses Theorem
5.7.8.

Definition 6.11.4 Let D be a strong quasi-transitive digraph and define
pc*(D) by pc*(D) = 0 if D is hamiltonian and pc*(D) = pc(D) otherwise.

Lemma 6.11.5 For every strongly connected quasi-transitive digraph D,
every spanning strong subdigraph of D has at least n 4+ pc* (D) arcs.

Proof: Exercise 6.57. O

In fact Lemma 6.11.5 holds for arbitrary digraphs. This is not in contradic-
tion with Theorem 6.11.2 since pec* (D) = pc* (D) for every strong extended
semicomplete multipartite digraph by Theorems 5.7.2 and 5.7.5. Below we
characterize the optimal solution to the MSSS problem for quasi-transitive
digraphs and show that the problem is polynomially solvable.

Theorem 6.11.6 [82]/ Every minimum spanning strong subdigraph of a
quasi-transitive digraph has precisely n 4+ pc*(D) arcs. Furthermore, we can
find a minimum spanning strong subdigraph in time O(n*).

Proof: Let D = S[Wq,Wa,..., W], s = |S| > 2, be the decomposition of
a strong quasi-transitive digraph D according to Theorem 4.8.5. Using the
algorithm of Theorem 5.9.4 we can check whether D is hamiltonian and find
a hamiltonian cycle if one exists. If D is hamiltonian, then any hamiltonian
cycle is the optimal spanning strong subdigraph. Suppose below that D is
not hamiltonian. Then in particular we have pc*(D) = pc(D) by Definition
6.11.4.

Let Dy = S[Hy, Hs,...,H| be the extended semicomplete digraph one
obtains by deleting all arcs inside each W; (that is, |V (H;)| = |V(W;)| and
H; is obtained from W; by deleting all arcs).

For each i = 1,2,...,s, let m; denote the maximum number of vertices
which can be covered in H; by any cycle subdigraph of Dj. According to
Theorem 5.7.8 every longest cycle C' in Dy contains exactly m; vertices from
H;,i=1,2,...,s. By Theorem 5.7.8 we can find C in time O(n?). Let

k = max{pc(W;) —m; :i=1,2,...,5s}. (6.4)

Note that by Theorem 5.9.3, £k > 1 since D has no hamiltonian cycle.
Let m} = max{pc(W;),m;}, i = 1,2,...,s and define the extended semi-
complete subdigraph D* of D by D* = S[H;,H5,...,H}], where H} is an
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independent set containing m; vertices for ¢ =1,2...,s. Since vertices inside
an independent set of D have the same in- and out-neighbours, we may think
of C as a longest cycle in D* (i.e. C contains precisely m, vertices from H},
i=1,2,...,s). By Corollary 5.7.19, D* — C is acyclic and by Lemma 5.3.3,
D* — C can be covered by k paths P}, P35, ..., P} such that P is a longest
path in D* — (V(P*)U...UV(Pr)) fori=1,2,... k.

It follows from the proof of Theorem 6.11.2 that we can glue P} onto C
and then P; onto the resulting graph etc., until we obtain a spanning strong
subdigraph D** of D* with |V*| 4+ k arcs.

Now we obtain a spanning strong subdigraph of the quasi-transitive di-
graph D as follows. Since m} > pc(W;) for i = 1,2,...,s, each W; contains
a collection of ¢; = m] paths F;1, Pja, ..., Pj, such that these paths cover all
vertices of W;. Such a collection of paths can easily be constructed from a
given collection of pc(W;) paths which cover V(W;). Let 1,22, ..., 24, be
the vertex set of H, i = 1,2,...,s. Replace z;; in D** by the path P;; for
each j=1,2,...,t;,i=1,2,...,s. We obtain a spanning strong subdigraph
D’ of D. The number of arcs in D’ is

ADY) = S (Wil = md) + (V7] + )
= (0= V) + (V] + 4)

It remains to argue that D’ is the smallest possible. By Lemma 6.11.5, it
suffices to prove that pc*(D) > k.

Since this part is similar to the proof of Theorem 6.11.2 we only sketch
how to prove it. Let P;, P,..., P. be an optimal path cover of D. Path-
contract all subpaths that lie inside some W; and let Pj,..., P, denote the
resulting paths. Delete all arcs that still remain inside each W; after this
contraction. That way we obtain a path cover of an extended semicomplete
digraph which we may consider as a subdigraph of Dj.

As in the proof of Theorem 6.11.2 we can continue replacing paths in
the current collection by a cycle or a path until every path in the current
collection contains at most one vertex from H;. Let P/, Py ... P! be the
final collection after removing all such cycles. Using an argument analogous
to the last part of the proof of Theorem 6.11.2, we now conclude that r > k
implying that the subdigraph D’ is optimal. ad

6.11.4 The MSSS Problem for Decomposable Digraphs

In fact the proof of Theorem 6.11.6 is valid for a much larger class of digraphs
as we show below. For every natural number ¢, let ¥; be the class of all
digraphs for which a minimum path-factor can be found in polynomial time
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O(nt). For every natural number ¢, let £2; be the class of all digraphs of the
form D = S[Hy, Hs, ..., Hs], s =|S| > 2, where S is a strong semicomplete
digraph and H; € ¥4, i =1,2,...,s. By Theorem 5.9.5 the class {24 contains
all quasi-transitive digraphs.

The next result is an extension of Theorem 5.9.3 to a much larger class
of digraphs.

Theorem 6.11.7 Let t be a natural number and let D be a strong digraph
from the class £2; with decomposition D = S[Wy,Wa, ..., W], where s = |S],
W; €Wy, i =1,2,...,5 and S is a strong semicomplete digraph. Let Dy =
S[Hy, Hs,...,H| be the extended semicomplete digraph obtained by deleting
all arcs inside each Wy (that is, |V (H;)| = |V(W;)|). Then D is hamiltonian
if and only if Do has a cycle subdigraph which covers at least pc(W;) vertices
of Hy,i=1,2,...5.

Proof: Exercise 6.58. O

Gutin’s approach to solving the hamiltonian cycle problem for quasi-
transitive digraphs can be extended to a proof of the following result.

Theorem 6.11.8 For every natural number t, the hamiltonian cycle problem
is solvable in time O(n™*{3t}) for digraphs that belong to £2;.

Proof: Exercise 6.59. O

Let D = S[Hy, Ha, ..., H,] be a digraph in §2;. To find a minimum strong
spanning subdigraph in D, let D’ be the extended semicomplete digraph
obtained from D by deleting all arcs within each H; for ¢ = 1,2,...,s. By
Theorem 5.7.7, we can find a longest cycle C' in D’. Let m; = |V (H;)NV(C)]
fori=1,2,...,s and let

k = max{pc(H;) —m;: i=1,2,...,s}.

Using a proof analogous to that of Theorem 6.11.6, we can show that the
minimum strong spanning subdigraph of D contains n + k arcs when k > 1
and is a hamiltonian cycle when k& < 0. Combining this with Theorems 6.11.7
and 6.11.8 we obtain the following result:

Theorem 6.11.9 For every natural number t, the MSSS problem is solvable
in time O(n™>{3th) for all digraphs in £2;. a

We close this section with the following conjecture by Bang-Jensen and
Yeo:

Conjecture 6.11.10 [90] There exists a polynomial algorithm for the MSSS
problem in the case of semicomplete multipartite digraphs.
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6.12 Application: Domination Number of TSP
Heuristics

The (asymmetric) travelling salesman problem (TSP) is formulated in Section
1.9. Here, the word asymmetric simply refers to the fact that in a 2-cycle the
costs of the two arcs may be different.

A heuristic for an optimization problem R is an algorithm which given
an instance R of R finds some solution s to R for which there is generally
no guarantee on the quality of s compared to an optimal solution s* to R.
So for the TSP problem a heuristic is any algorithm which returns some

permutation of the vertices of the input complete graph IH(n For more on
heuristics see Section 12.8.

An equivalent of the following notion of the domination number of an
algorithm was introduced by Glover and Punnen [320]. The domination
number, domn(A,n), of a heuristic A for the TSP is the maximum integer
d = d(n) such that, for every instance Z of the TSP on n cities, A produces
a tour 7" which is not worse than at least d tours in Z including T itself.
Clearly, every exact TSP algorithm has domination number (n — 1)!. Thus,
the domination number of an algorithm close to (n — 1)! may be taken as an
indication that the algorithm is of high quality.

Glover and Punnen [320] asked whether there exists an algorithm .A
whose running time is polynomial in n and which has domination number
domn(A,n) > n!/p for some p being a constant or even polynomial in n.
They conjectured that, unless P = NP, the answer to this question is nega-
tive. In [381], Gutin and Yeo proved that the answer to the Glover-Punnen
question is, in fact, positive. They showed the existence of such an algorithm
for p = n—1. The proof of the main result in [381] (see Theorem 6.12.1) uses
Tillson’s Theorem 6.8.3.

Using Theorem 6.12.1, Punnen and Kabadi [615] proved that several well-
known and widely used TSP construction heuristics, such as various vertex
insertion algorithms and Karp’s cycle patching algorithm, have domination
number at least (n — 2)!.

In this section, we prove Theorem 6.12.1 and the Punnen-Kabadi result
on vertex insertion algorithms, Theorem 6.12.2.

Let ([H(n,c) denote a complete digraph on n vertices whose arcs are
weighted according to a weight function c. The total cost of all Hamilton

cycles in ([?n,c) is denoted by o(n,c). Denote the sum of the costs of all
arcs in ([H(n,c) by c([H(n) The average cost of a Hamilton cycle in
(IH{n,c) is denoted by 7(n,c). As every arc of K is contained in (n —2)!
Hamilton cycles, 7(n,c) = o(n,c)/(n—1)! = (n — 2)‘C(I?n)/(n — 1)1, hence,
T(n,c) = c([?n)/(n — 1). This formula can also be shown using linearity of
expectation (see [14]). Recall that by a tour we mean a Hamilton cycle in
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]?’n. An automorphism of a digraph D is a bijection ¢ : V(D)—V (D) such
that zy € A(D) if and only if ¢(z)¢(y) € A(D).

Theorem 6.12.1 [381] Let H be a tour in IH{n such that ¢(H) < 7(n,c). If

n # 6, then there are at least (n—2)! tours in Kn whose cost is at least c(H).

Proof: The result is trivial for n = 2, 3. If n = 4, the result follows from the

simple fact that the most expensive tour T in IH{n has cost ¢(T) > c¢(H).
Assume that n > 5 and n # 6. Let D; = {C1,...,C,,—1} be a decom-

position of the arcs of IH(,L into tours (such a decomposition exists by The-
orem 6.8.3). Given a tour T in [, clearly there is an automorphism of
K, that maps C; into T'. Therefore, if we consider D; together with the
decompositions (Dy, ..., D(5,—1y1) of K, obtained from D; using all automor-
phisms of [?n which map the vertex 1 into itself, we will have every tour
of K, in one of the D;’s. Moreover, every tour is in exactly n — 1 of the
decompositions Dy, Ds, ..., D,_1y (by mapping a tour C; into a tour Cj
(4,7 € {1,2,...,n — 1}) we fix the automorphism).

Choose the most expensive tour in each of D; and form a set £ from
all distinct tours obtained in this manner. Clearly, || > (n — 2)l. As
Z?;ll c(C;) = c(Kn), every tour T' of &€ has cost ¢(T') > 7(n,c). There-
fore, ¢(H) < ¢(T) for every T € €. O

Vertex insertion algorithms for the TSP work as follows. First, we find

some ordering vy, ..., v, of vertices of ([H(n, ¢). Then, we perform n — 1 steps.
On the first step we form the cycle v1v9v1. On step k, 2 < k < n — 1, given
the k-cycle vy (1)vr(2)--Ur(k)Vr(1) from the previous step, we find jo, which
minimizes the expression

(U (j)Uh41) + (Vk41Vn(j41)) = (Vn()Vr(j+1));

1 <j <k, and insert vg41 between vy (j,) and vy (j,41) forming a (k+1)-cycle.
The fastest such algorithm is the random insertion algorithm, in which the
initial vertex ordering is random (see the paper [319] by Glover, Gutin, Yeo
and Zverovich for computational experiments with this and other heuristics
for the (asymmetric) TSP).
Now we can prove the Punnen-Kabadi result:

Theorem 6.12.2 [615] Let H,, be a tour constructed by a vertex insertion
algorithm A for the TSP on (K, c). Then ¢(Hy) < 7(n,c).

Proof: We prove this result by induction on n. The theorem is trivially true
for n = 2. Let Hy—1 = Vr(1)Vr(2)--Un(n—1)Vx(1) be the cycle constructed in
Step n — 2 of the algorithm and assume that in Step n — 1, it was decided to
insert vy, between vy (;,) and vy (j,41) in order to obtain H,,. Then, we have
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c(Hp) = c(Hn-1) + c(Vn(jo)vn) + c(0nvr(jo+1)) = (Vn (o) Un(o+1))
n—1
— (1) Yn + nYmr(i - (i)Y (e
< o(Hy 1)+ iz [c(Vr(i)Vn) C(Unzi(lﬂ)) (U (i) Vn(i41))]
- Uny 5 - - H,_
(1) + (V= vp,vp) + c(;:n_‘l/ ) — c(Hp—1)
< (n—=2)r(n—1,¢) + c(V — v, vn) + c(vn, V — vyp)
B n—1
_ C([H(n _Un> + C(V — Un, Un) + c(”nv V- Un)
N n—1
_ (Kn)
T on-—1
= 7(n,c),
where 7(n — 1,¢) is the average cost of a tour in I?n —Up,. O

Theorems 6.12.1 and 6.12.2 imply the following result by Punnen and
Kabadi:

Theorem 6.12.3 [615] For every vertex insertion algorithm A we have
domn(A,n) > (n—2).. O

6.13 Exercises

6.1.

6.2.

6.3.

6.4.
6.5.
6.6.
6.7.

(—) Prove that a strong semicomplete digraph D has a hamiltonian path
starting at x for every z € V(D).

Prove that, if D is a strong semicomplete digraph with distinct vertices x,y
such that D — z and D — y are strong but D — {z,y} is not strong, then D
has an (z,y)-hamiltonian path and a (y, z)-hamiltonian path.

(—) Prove that, from a complexity point of view, the hamiltonian path prob-
lem, the [z,y]-hamiltonian path problem and the (z,y)-hamiltonian path
problem are all equivalent. That is, each of them can be reduced in polyno-
mial time to each of the two others.

Derive Corollary 6.2.2 from Theorem 6.2.1.

Prove Lemma 6.2.3.

Prove the last claim in the proof of Corollary 6.2.7.
Derive Theorem 6.2.6 from Theorem 6.2.4.
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6.22.

6.23.
6.24.

6.25.

6. Hamiltonian Refinements

2-regular 2-strong locally semicomplete digraphs. Prove that for every
n > 5 there exists (up to isomorphism) precisely one 2-strong and 2-regular

locally semicomplete digraph, namely the second power C_’E of an n-cycle.

Prove that, if D is the second power of an even cycle, then D contains a unique
hamiltonian cycle. Next, prove that D is not weakly hamiltonian-connected.

Prove Lemma 6.2.8.

Prove that if D is the second power ]322k+1 of an odd path P = ujus ... u2k+1,
then there is no pair of disjoint (u1, uak)-, (u2, uzk+1)-paths in D.

Prove Theorem 6.2.11.

Suppose D = (V, A) is a non-strong locally semicomplete digraph with strong
decomposition D1, D2, D3, D4 such that D — x is connected for every x € V.
Let u; € V(D;) be specified for each i = 1,2,3,4. Prove that D contains
disjoint (w1, us3)-,(u2, us)-paths P, Q so that V =V (P)U V(Q).

(+) Prove the following. Let T be a 2-strong semicomplete digraph and z,y
vertices of T, such that T'—z and T — y are both 2-strong, x4y, and neither
z nor y is contained in a 2-cycle. If T' — {x,y} is not 2-strong then T has
an (z,y)-hamiltonian path.Hint: consider a minimal separator of the form

{’LL, Qﬁ',y}
(4+) Prove Proposition 6.3.2.

(—) Hamiltonian cycles containing a prescribed arc in semicomplete
digraphs. Use Theorem 6.3.1 to show that every 3-strong semicomplete di-
graph D = (V, A) has a cycle containing the arc a for any prescribed arc
a€ A.

(++) Prove Theorem 6.4.5.
Prove Lemma 6.4.3.

Longest [z, y]-paths in tournaments. Find a characterization for the
length of a longest [z, y]-path in a tournament. Hint: use Theorem 6.2.1.

Non-pancyclic digraphs satisfying Meyniel’s condition. Prove that if
m > (n+1)/2, then the digraph D, ., described after Theorem 6.5.2 satisfies
Meyniel’s condition for hamiltonicity but has no m-cycle.

Pancyclic digraphs satisfying Woodall’s condition for hamiltonicity.
Prove that, if D satisfies the condition in Corollary 5.6.6, then either D is
pancyclic, or n is even and D =Kz n. Hint: use Theorem 6.5.2.

Prove the following result due to Overbeck-Larisch [598]. If a digraph D =

(V, A) satisfies d(z) + d(y) > 2n + 1 for every pair of non-adjacent vertices
z,y € V, then D is pancyclic. Hint: use Theorem 6.5.2.

(—) Prove that every regular tournament is strong.

(+) Prove Lemma 6.5.8. Hint: use a similar approach as that taken in the
proof of Lemma 6.5.7.

(+) Vertex-pancyclic quasi-transitive digraphs. Prove part (b) of The-
orem 6.5.9. Hint: use a similar approach as taken in the proof of (a) to reduce
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the problem to one for extended semicomplete digraphs and then apply The-
orem 6.5.6.

Prove Lemma 6.5.12. Hint: consider a shortest cycle through v (which by the
assumption has length at most k).

[420] Prove the following: let C' = vivsz ... vgv1 be a non-extendable cycle in a

digraph D = (V, A) on n vertices where 2 <k <n—1andletu e V-V (C).

Then

(a) for every 1 <i <k, D contains at most one of the arcs v;u and uvi41.

) [(w, VN +|(V(C), u)| < F,

(c) forevery 1 <i <k, |(vs;, V=V(O)|+ |(V =V(C),vit1)] <n —k, and
) if vi1u,uviy1 € A, thenfor 1 <h<i—2ori+1<h <k, D contains

at most one of the arcs vpv; and v;vp41 and hence |(vi, V(C) — v;)| +

I(V(C) = vi,vi)| < k.

Cycle extendable regular tournaments. Characterize these.

Cycle extendable locally semicomplete digraphs. Characterize cycle
extendable locally semicomplete digraphs.

(+) Weakly cycle extendable digraphs. Call a digraph D weakly cycle
extendable if every cycle C' which is not a longest cycle of D is contained
in some larger cycle C’, i.e. V(C) C V(C"). For each of the following classes
characterize weakly cycle extendable digraphs:

e Extended semicomplete digraphs.

e Path-mergeable digraphs.

e In-semicomplete digraphs.

Prove Corollary 6.6.2.
Prove Corollary 6.6.3.

(4+) A bipartite digraph D = (V, A) on an even number n of vertices is even
(vertex-)pancyclic if it has cycles of all lengths 4,6, 8, ..., n (through every
vertex v € V). Prove the following theorem due to Zhang [755]:

Theorem 6.13.1 A bipartite tournament D is even vertex-pancyclic if and
only if D is hamiltonian and is not isomorphic to Cy [K%,K%,K

K]

)

Extend Theorem 6.13.1 to semicomplete bipartite digraphs (Gutin [367]).

For every p > 1, construct an infinite family S of strong tournaments which
satisfy that §°(T) > p for each T € S and there is some arc a € A(T) which
belongs to every hamiltonian cycle of T. Extend your construction to work
also for arbitrary high arc-strong connectivity.

Prove Proposition 6.7.2.

(+) Hamiltonian cycles in almost acyclic digraphs. Prove that for
every fixed k there is a polynomial algorithm to decide whether there is a
hamiltonian cycle in a given digraph D, which is obtained from an acyclic
digraph H = (V, A) by adding a set S of k new vertices and some arcs of
the form st where s € S and t € V U S. Hint: use the fact that the k-path
problem is polynomial for acyclic digraphs (see Theorem 9.2.14).
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6.49.
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Let D be constructed as in Exercise 6.37. Show that, if k is not fixed (that
is, k is part of the input), then the problem above is N'P-complete.

Let T be a tournament, let Y1, Y2, ...,Ys (s > 1) be disjoint sets of vertices in
T and let = and y be arbitrary distinct vertices in V(T') — (Y1UY2U...UY5).
Prove that, if there exist k disjoint (x, y)-paths in T', then there exist at least
k=37 1Y:il/2] disjoint (z,y)-paths in T — Uj_; A(T(Y3)).

(+) Let X1, Xo,...,Xp and D be defined as in Theorem 6.7.8. Prove that D

is strong. Hint: first prove the following two claims and then combine them

into a proof that D is strong:

(a) fz € X;andy € X; (1 <i# j <l), then there are || X;|/2]+]|X,|/2]+
[1X:]/2] disjoint (x,y)-paths in D ;.

(b) If z,y € X; (z # y), then there are |X;| disjoint (z,y)-paths in D;.
Furthermore there is an (z,y)-path in D (Bang-Jensen, Gutin and Yeo

[71]).

(4) Prove that the digraph D in Theorem 6.7.8 has a cycle factor [71]. Hint:
let D' be obtained from D by the vertex-splitting technique (Section 3.2).
Form a network from D’ by putting lower bound 1 on arcs of the kind vivs,
v € V(D) and zero elsewhere. Put capacity 1 on arcs of the kind v,vs and co
on all other arcs. Now apply Theorem 3.8.2 and deduce the result from the
structure one can derive using a presumed bad cut (S, S).

(4+) Prove that the digraph D in Theorem 6.7.8 is hamiltonian [71]. Hint:
consider any irreducible factor. Apply Theorem 5.7.21 and conclude that the
cycle factor is a hamiltonian cycle.

Show by an example that s+ 1 cannot be replaced by s in Proposition 6.7.13.
Show that Theorem 6.8.1 follows from Theorem 1.6.3.

Prove that the arcs of [?6 cannot be decomposed into 5 hamiltonian cycles.
(—) Prove Theorem 6.8.2. Hint: use Exercise 3.70.

(—) Prove that every regular tournament is arc-3-cyclic. Show that this is
not always true for regular semicomplete digraphs.

(—) Verify that none of the three tournaments in Figure 6.5 contain an anti-
directed hamiltonian path.

Prove Theorem 6.8.9.

Orientations of paths in strong tournaments. Prove the following state-
ment. Let T" be a strong tournament on n vertices and P an out-path on n—1
vertices. Then

(a) every vertex of T except possibly one is an origin of P and

(b) if ¢1(P) > 2, then every vertex of out-degree at least 2 is an origin of P.

Orientations of paths in 2-strong tournaments. Let T" be a 2-strong
tournament on n vertices and let P be an oriented path on n — 1 vertices.
Prove that every vertex of T is an origin of P.

Show that there is only one 2-strong tournament on 7 vertices which has no
2-cycle factor.
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Let D, be the digraph which is defined in the end of Subsection 6.10.2.
Show that every strong spanning subdigraph of D, has cyclomatic number
at least 2r — 1. Next show that every cyclic spanning subdigraph of D, with
cyclomatic number 7 is an r-cycle factor in which all cycles are 4-cycles.

Prove that if a path P in an extended semicomplete digraph D contains two
vertices from an independent set I of D, then there exists a path P’ and a
cycle C' in D with V(P) = V(P )uV(C").

First derive a direct O(n®) algorithm from the proof of Theorem 6.11.2. Then
show ((4) exercise) how to improve this to O(n?°) starting from a pce(D)-
path-cycle factor.

Show that the proof of Theorem 6.11.6 can be turned into an O(n?) algo-
rithm for finding a minimum strong spanning subdigraph of a quasi-transitive
digraph.

(4+) Prove Lemma 6.11.5. Hint: consider the way we argued in the proof of
Proposition 6.11.1.

(+) Prove Theorem 6.11.7. Hint: use the same approach as in the proof of
Theorem 5.9.1.

(+) Prove Theorem 6.11.8. Hint: use the same approach as in the proof of
Theorem 5.9.4.






7. Global Connectivity

The concept of connectivity is one of the most fundamental concepts in (di-
rected) graph theory. There are numerous practical problems which can be
formulated as connectivity problems for digraphs and hence a significant part
of this theory is also important from a practical point of view. Results on con-
nectivity are often quite difficult and a deep insight may be required before
one can obtain results in the area. The purpose of this chapter is to con-
vey some of that insight by illustrating several important topics as well as
techniques that have been successful in solving global connectivity problems.
Several of these problems, such as the connectivity augmentation problems in
Sections 7.6 and 7.7, are of significant practical interest. Because of the very
large number of important results on connectivity, we will devote this chapter
as well as Chapters 8 and 9 to this area. This chapter will mainly deal with
global connectivity aspects. That is, the directed multigraph in question is
k-(arc)-strong for some k > 0, or we want to make it k-(arc)-strong by adding
new arcs.

We will often consider directed multigraphs rather than directed graphs,
since several results on arc-strong connectivity hold for this larger class and
also it becomes easier to prove many results. However, when we consider
vertex-strong connectivity, multiple arcs play no role and then we may as-
sume that we are considering digraphs. Note that, unless we explicitly say
otherwise, we will assume that we are working with a directed graph (i.e
there are no multiple arcs).

After introducing some new terminology and an efficient way of repre-
senting a directed multigraph as a network we proceed to ear-decompositions
of strong directed multigraphs. We show how to use this useful concept to
obtain short proofs of several basic connectivity results. Then we state and
prove Menger’s theorem which is one of the most fundamental results in
graph theory. Based on Menger’s theorem, we describe various algorithms to
determine the arc-strong and vertex-strong connectivity of a directed multi-
graph. In Section 7.5 we introduce the operation of splitting off a pair of
arcs incident with a vertex. We prove Mader’s splitting theorem which allows
one to give inductive proofs for several important results on directed multi-
graphs. Using Mader’s theorem we describe a solution due to Frank for the
problem of finding a minimum set of new arcs to add to a directed multigraph
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such that the result is a k-arc-strong multigraph. In Section 7.7 we describe
a solution by Frank and Jordan of the analogous problem for vertex-strong
connectivity.

Another way of increasing the arc-strong or vertex-strong connectivity of
a digraph is by reversing the orientation of certain arcs. In Section 7.9 we
discuss this approach and describe an interesting result for semicomplete di-
graphs by Bang-Jensen and Jordan. In Section 7.10 we study the structure of
directed multigraphs which are k-(arc)-strong but removing any arc destroys
that property. We prove deep results by Mader on the structure of such di-
rected multigraphs. Section 7.11 deals with digraphs which are k-strong but
no vertex can be deleted without decreasing the vertex-strong connectivity.
In Section 7.12 we briefly discuss directed multigraphs for which the degree
of arc-strong connectivity is as large as possible, that is, equal to the mini-
mum degree. In Section 7.13 we show that decomposable digraphs have an
interesting connectivity structure.

In Section 7.14 we study an interesting problem due to Jackson and
Thomassen concerning the existence of highly connected orientations of di-
graphs with high connectivity. We show that such orientations exist in the
case of locally semicomplete digraphs and quasi-transitive digraphs. In Sec-
tion 7.15 we give a proof due to Lovész of the Lucchesi-Younger theorem con-
cerning arc-disjoint dicuts in directed multigraphs. Finally, in Section 7.16
we consider the problem of finding a small spanning subdigraph of a directed
multigraph D with the same degree of arc-strong, respectively vertex strong,
connectivity as D.

7.1 Additional Notation and Preliminaries

Let D = (V,A) be a directed multigraph and let X, Y C V be subsets
of V. We denote by d*(X,Y’) the number of arcs with tail in X — Y and
head in ¥ — X, i.e dT(X,Y) = |(X — Y)Y — X)p|. Furthermore we let
d(X,Y)=d"(X,Y)+d"(Y,X). Hence we have d™ (X) = d"(X,V — X) and
d~(X)=d"(V—-X,X). An arc zy leaves aset X if z € X andy € V — X.
The sets X,Y are intersecting if each of the sets X — Y, X NY)Y — X is
non-empty. If also V — (X UY) # (), then X and Y are crossing.

Let F be a family of subsets of a set S. We call a set A € F a member of
F. The family F is an intersecting family (a crossing family) if A, B € F
implies AU B, AN B € F whenever A, B are intersecting (crossing) members
of F. A family F of subsets of a set S is laminar if it contains no two
intersecting members. That is, if A, B € F and AN B # () then either A C B
or B C A holds. A family of sets is cross-free if it contains no two crossing
members.

For an arbitrary directed multigraph D = (V, A) and vertices z,y € V we
denote by A(z,y) (k(x,y)) the maximum number of arc-disjoint (internally
disjoint) (z,y)-paths in D. The numbers \(z,y), x(x,y) are called the local



7.1 Additional Notation and Preliminaries 347

arc-strong connectivity, respectively, the local vertex-strong connec-
tivity from z to y. Furthermore we let

N(D) = min \(z,y)

z,ycV
/ .

k' (D) = Join. k(z,y). (7.1)
Analogously to the way we defined a cut with respect to an (s,t)-flow
in Chapter 3 we define an (s,t)-cut to be a set of arcs of the form (U,U),
where U = V — U and s € U,t € U. Recall that an (s,t)-separator is a
subset X C V(D) — {s,t} with the property that D — X has no (s, t)-path.
We also say that X separates s from ¢t. Thus a separator of D is a set of
vertices S such that S is an (s, t)-separator for some pair s,t € V(D) (recall
the definition of a separator from Subsection 1.5). A minimum separator

of D is a minimum cardinality separator X of D.

The following simple observation plays a central role in many proofs of
connectivity results.

Proposition 7.1.1 Let D = (V, A) be a directed multigraph and let X,Y be
subsets of V. Then the following holds:

dH(X)+dT(Y)=dH(XUY)+d" (X NY)+d(X,Y)
d(X)+d (Y)=d (XUY)+d (XNY)+d(X,Y). (7.2)

Furthermore, if d~ (X NY) =dT (X NY), then we also have

dP(X)+d (Y)=d" (X -Y)+d" (Y - X) +¢
A (X)+d (Y)=d (X -Y)+d (Y — X) +e, (7.3)

where e =d(X NY,V — (X UY)).

Proof: Each of these equalities can easily be proved by considering the con-
tribution of the different kinds of arcs that are counted on at least one side
of the equality. For example Figure 7.1 shows the possible edges contributing
to at least one side of the first equality. a

A set function f on a groundset S is submodular if f(X) + f(Y) >
FIXUY)+ f(XNY) for all XY C S. The next corollary which follows
directly from Proposition 7.1.1 is very useful, as we shall see many times in
this chapter.

Corollary 7.1.2 For an arbitrary directed multigraph D, d}dB are sub-
modular functions on V(D). 0

Recall that for a proper subset X of V(D) we denote by NT(X) the set of
out-neighbours of X. The next result shows that the functions |[N~|,|N 7|
are also submodular.
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Figure 7.1 The various types of arcs contributing to the out-degrees of the sets
XY, XNY and X UY.

Proposition 7.1.3 Let D = (V, A) be a digraph and let X,Y be subsets of
V. Then the following holds:

INT(X)| + [NT(Y)

| > NT(XNY)|+|NT(XUY)|
INT(X)[+ N7 (Y)]

|
IN“(XNY)|+ [N~ (XUY).

Proof: These inequalities can easily be checked by considering the contribu-
tions of the different kind of neighbours of the sets X, Y, X NY and X UY
(Exercise 7.1). O

7.1.1 The Network Representation of a Directed Multigraph

In many proofs and algorithms concerning directed multigraphs, it is con-
venient to think of a directed multigraph as a (flow) network. Here we will
formalize this and prove an elementary result which will be applied in later
sections.

Definition 7.1.4 Let D = (V, A) be a directed multigraph. The network
representation of D, denoted N (D), is the following network: N(D) =
(V,A' £ = 0,u) where A’ contains the arc ij precisely when D contains at
least one arc from i to j. For every arcij € A’ w;; is equal to the number of
arcs from i to j in D. See Figure 7.2.

The next lemma shows a useful connection between arc-disjoint paths in

D and flows in N'(D).

Lemma 7.1.5 Let D = (V, A) be a directed multigraph and let s,t be distinct
vertices of V.. Then A(s,t) equals the value of a mazimum (s,t)-flow in N'(D).

Proof: Let Pi,..., P, be a collection of pairwise arc-disjoint (s, t)-paths in
D. These paths may use different copies of an arc between the same two
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D N(D)

Figure 7.2 A directed multigraph D and its network representation N (D). Num-
bers on arcs indicate capacity in (D).

vertices ¢ and j, but, since the paths are arc-disjoint, in total they use no
more than w;; copies of the arc ij. Hence we can construct a feasible (s,t)-
flow of value r in N (D) just by sending one unit of flow along each of the
paths P, ..., P,.. Conversely, if x is any integral (s, t)-flow of value k in N'(D)
(recall Theorem 3.5.5), then by Theorem 3.3.1, x can be decomposed into k
(s,t)-path-flows f(Py),..., f(Px) of value 1 (those that have a higher value
r > 1 can be replaced by r (s,t)-path-flows of value 1 along the same path)
and some cycle flows. By the capacity constraint on the arcs, at most u;; of
these path flows use the arc ij. Hence we can replace the arcs used by each
f(P;) by arcs in D in such a way that we obtain k arc-disjoint (s,¢)-paths in
D. This completes the proof of the lemma. a

7.2 Ear Decompositions

In this section we study the structure of strongly connected digraphs by
introducing the concept of an ear decomposition (see Figure 7.3) and derive
a number of interesting results from this definition. Among other things, we
reprove some of the results from Chapter 1.

Definition 7.2.1 An ear decomposition of a directed multigraph D =
(V, A) with at least two vertices is a sequence € = {Py, P1, Pa, ..., P}, where
P, is a cycle! and each P; is a path or a cycle with the following properties:

(a) P; and P; are arc-disjoint when i # j.

! Some authors take Py to be just a vertex, but it is easy to see that the two
definitions are equivalent for strong directed multigraphs with at least one arc.
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(b) For each i = 1,...t: If P; is a cycle, then it has precisely one vertex
in common with V(D;_1). Otherwise the end-vertices of P; are distinct
vertices of V(D;—1) and no other vertex of P; belongs to V(Di,l). Here
D; denotes the digraph with vertices J;_o V (P;) and arcs | J;—o A(P;).

¢

(c) Uj—o A(F;) = A.

Each P;, 0 < ¢ <t is called an ear of £. The number of ears in £

is the number t + 1. An ear P; is trivial if |A(P;)| = 1. All other ears are
non-trivial.

Figure 7.3 An ear decomposition & = {Fo, P1,...,Ps} of a digraph. The num-
ber on each arc indicates the number of the ear to which it belongs. The ears
Po, P1, P2, Ps are non-trivial and the ears Py, Ps, Ps are trivial.

Theorem 7.2.2 Let D be a directed multigraph with at least two vertices.
Then D is strong if and only if it has an ear decomposition. Furthermore, if
D is strong, then every cycle C of D can be used as starting cycle Py for an
ear decomposition of D.

Proof: We may assume that |V (D)| > 3 since otherwise the claim is trivial.
Suppose first that D has an ear decomposition & = {Py, Py, Ps, ..., P;}. Note
that the digraph P, is strong. Now it is easy to prove, by induction on the
number of ears in &£, that D is strong. If D; is strong, then D, is also strong
since it is obtained by adding a path with two end-vertices x,y in D; or a
cycle having a common vertex with D;.

Conversely, assume that D is strong and let C' = wjusy...u, (u1 = u,) be
a cycle of D. Let Py := C, i := 0 and execute Phases 1 and 2 below:

Phase 1:

1. If every vertex of V(D) is in V(D;), then go to Phase 2.

2. Let ¢ := i+ 1 and let u be a vertex not in V(D;_1) such that there is
some arc zu from V(D;_1) to u.

3. Let P; be a shortest path from u to V(D;_1).
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4. Take xP; as the next ear and repeat Phase 1.
Phase 2:

1. For each remaining arc vw of D which was not included in A(D;) (i is
the counter above) do the following:

2. Let i :== i+ 1 and let P; = vw (that is, include all these arcs as trivial
ears).

To see that the algorithm above finds an ear decomposition of D, it suffices
to check that we can always find an arc zu and a path from u to V(D;) as
claimed in Phase 1. This follows easily from the fact that D is strong. a

There are several interesting consequences of Theorem 7.2.2 and its proof.

Corollary 7.2.3 FEvery ear-decomposition of a strong digraph on n vertices
and m arcs has m —n + 1 ears.

Proof: Exercise 7.2. O

Corollary 7.2.4 FEvery strong directed multigraph D on n vertices contains
a spanning strong subgraph with at most 2n — 2 arcs. Furthermore, there are
directed multigraphs for which every spanning strong subgraph has at least
2n — 2 arcs.

Proof: First observe that we can remove all trivial ears in any ear decomposi-
tion of D without destroying strong connectivity. Thus it suffices to estimate
the number of arcs in the non-trivial ears. Let £ = Py, Py,..., P, Pry1,..., P
be an ear decomposition of D where Py, Py,..., P, are the non-trivial ears.
Let P/ be the path P, — V(D;_1). Since each P;, i = 1,2,...,r adds at least
one new vertex, there can be no more than n— |V (Py)| of these. Each new ear
P; adds |V(P/)| + 1 new arcs and hence we can make the following estimate:

[A(D,) = [V(Po)| + Z(IV(P{)I +1)

V(P + 7+ Z(\V(P{)I)

=n+r

<n+n-—|V(F)]

< on -2, (7.4)
where equality only holds if |V (FPy)| = 2 and each P;, ¢ = 1,2,...,r, has

length 2. To see that the estimate 2n—2 is best possible, it suffices to consider
the complete biorientation of a path on n vertices. a

Corollary 7.2.5 There is a linear algorithm to find an ear decomposition of
a strong directed multigraph D.
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Proof: This can be seen from the proof of Theorem 7.2.2. The proof itself is
algorithmic and it is not too hard to see that if we use breadth first search
(see Section 2.3.1) together with a suitable data structure to find the path
from w to V(D;_1), then we can obtain a linear algorithm. Details are left to
the interested reader as Exercise 7.21. ad

Corollary 7.2.6 It is an N'P-complete problem to decide whether a given
digraph D has an ear decomposition with at most r non-trivial ears. It is
NP-complete to decide if a given digraph D has an ear decomposition with
at most q arcs in the non-trivial ears.

Proof: Note that in both cases the numbers r (respectively ¢) are assumed
to be part of the input to the problem. A strong digraph D has an ear
decomposition with only one non-trivial ear (respectively, precisely n arcs in
the non-trivial ears) if and only if D has a Hamilton cycle. Hence both claims
follow from Theorem 5.0.1. a

The next two Corollaries were proved in Chapter 1, but we reprove them
here to illustrate an application of ear-decompositions. Recall that a bridge
of an undirected graph G is an edge e such that G — e is not connected.

Corollary 7.2.7 [637] A strong digraph D contains a spanning oriented sub-
graph which is strong if and only if UG(D) has no bridge.

Proof: If UG(D) has a bridge, xy, then D contains the 2-cycle zyz, since
D is strong. Observe that no matter which of these two arcs we delete we
obtain a non-strong digraph. Suppose conversely that UG(D) has no bridge.
Consider again the proof of Theorem 7.2.2. If we can always choose the path
from u to V(D;_1) in such a way that it does not end in z, or contains at
least one inner vertex, then it follows from the fact that we use shortest paths
that no ear P;, i > 1 contains a 2-cycle. In the remaining case, the only path
from u to V(D;_1) is the arc uz and hence the 2-cycle zux is a bridge in
UG(D). It remains to avoid using a 2-cycle as starting point (that is, as the
cycle Py). This can be done, unless all cycles in D are 2-cycles. If this is the
case then UG(D) is a tree and every edge of UG(D) is a bridge, contradicting
the assumption. a

Corollary 7.2.8 [120] A mized graph M has a strong orientation if and only
if M is strongly connected and has no bridge.

Proof: This follows from Corollary 7.2.7, since we may associate with any
mixed graph M = (V, A, E) the directed graph D one obtains by replacing
each edge in M by a 2-cycle. Clearly deleting an arc of a 2-cycle in D corre-
sponds to orienting the corresponding edge in M. a
Ear decompositions of undirected graphs can be similarly defined. These
play an important role in many proofs on undirected graphs, in particular in
Matching Theory; see e.g. the book by Lovdsz and Plummer [525].
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7.3 Menger’s Theorem

The following theorem, due to Menger [562], is one of the most fundamental
results in graph theory.

Theorem 7.3.1 (Menger’s theorem) [562] Let D be a directed multigraph
and let u,v € V(D) be a pair of distinct vertices. Then the following holds:

(a) The mazimum number of arc-disjoint (u,v)-paths equals the minimum
number of arcs covering all (u,v)-paths and this minimum is attained for
some (u,v)-cut (X, X).

(b) If the arc uwv is not in A(D), then the maximum number of internally
disjoint (u,v)-paths equals the minimum number of vertices in a (u,v)-
separator.

Proof: First let us see that version (b) involving vertex disjoint paths can
be easily derived from the arc-disjoint version (a). First recall that multiple
arcs play no role in questions regarding (internally) vertex disjoint paths and
hence we can assume that the directed multigraph in question is actually a
digraph. Given a digraph D = (V, A) and u,v € V construct the digraph
Dgr by the vertex splitting procedure (see Section 3.2.4). Now it is easy to
check that arc-disjoint (us,v;)-paths in Dgr correspond to internally disjoint
(u,v)-paths in D (if an (us, v¢)-path in Dgr contains the vertex x; (zs) for
some x # u,v, then it must also contain x4 (x;)). Furthermore, for any set of
£ arcs that cover all (ug,v;)-paths in Dgr, there exists a set of £ arcs of the

form wiwl, ..., wiw’ with the same property and such a set corresponds to
an (u,v)-separator X = {w!, ..., w*} in D. Hence it suffices to prove (a).

Because of the similarity between Menger’s theorem (in the form (a)) and
the Max-flow Min-cut theorem (Theorem 3.5.3), it is not very surprising that
we can prove Menger’s theorem in version (a) using Theorem 3.5.3. We did
part of the work already in Section 7.1.1 where we showed that A(u,v) equals
the value of a maximum (u,v)-flow in A (D). Similarly it is easy to see that
every (u,v)-cut (X, X) in D corresponds to a (u,v)-cut (X, X) in N (D) of
capacity |(X, X)| and conversely. Now (a) follows from Theorem 3.5.3. O

As we shall see in Exercise 7.16, for networks where all capacities are
integers, we can also derive the Max-flow Min-cut theorem from Menger’s
theorem.

In order to illustrate the use of submodularity in proofs concerning con-
nectivity for digraphs we will give a second proof of Theorem 7.3.1 (a) due to
Frank [260] (note that this proof requires no prerequisites other than Propo-
sition 7.1.1):

Second proof of Menger’s theorem part (a):

Clearly the maximum number of arc-disjoint (s,t)-paths can be no more
than the minimum size of an (s, t)-cut.

The proof of the other direction is by induction on the number of arcs in
D. Let k denote the size of a minimum (s, ¢)-cut. The base case is when D has
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precisely k arcs. Then these all go from s to ¢ and thus D has k arc-disjoint
(s,t)-paths. Hence we can proceed to the induction step. Call a vertex set
U tight if s € U,t ¢ U and d*(U) = k. If some arc zy does not leave any
tight set, then we can remove it without creating an (s, t)-cut of size (k — 1)
and the result follows by induction. Hence we can assume that every arc in
D leaves a tight set.

Claim: If X and Y are tight sets, then so are X NY and X UY.

To see this we use the submodularity of d*. First note that each of X NY
and X UY contains s and none of them contains ¢. Hence, by our assumption,
they both have degree at least k in D. Now using (7.2) we conclude

E+k=d"(X)+d"(Y)>d"(XUY)+d"(XNY)>k+k (7.5)

by the remark above. It follows that each of X UY and X NY is tight and
the claim is proved.

If every arc in D is of the from st, then we are done, so we may assume
that D has an arc su where u # t. Let T be the union of all tight sets that
do not contain u. Then T # (), since the arc su leaves a tight set. By the
claim, T is also tight. Now consider the set T'U{u}. If there is no arc from u
to V =T, then d (T U {u}) < k — 1, a contradiction since T'U {u} contains
s but not ¢. Hence there must be some v € V — T — w such that uv € A(D).
Now let D’ be the directed multigraph we obtain from D by replacing the
two arcs su,uv by the arc sv. Suppose D’ contains an (s,t)-cut of size less
than k. That means that some set X containing s but not ¢ has out-degree
at most k — 1 in D’. Since d},(X) > k it is easy to see that we must have
s,v € X and u ¢ X. Hence df,(X) = k and now we get a contradiction to the
definition of T' (since we know that v &€ T). Thus every (s,t)-cut in D’ has
size at least k. Since D’ has fewer arcs than D it follows by induction that
D’ contains k arc-disjoint (s, t)-paths. At most one of these can use the new
arc sv (in which case we can replace this arc by the two we deleted). Thus it
follows that D also has k arc-disjoint (s, t)-paths. O

Corollary 7.3.2 Let D = (V, A) be a directed multigraph. Then the following
holds:

(a) D is k-arc-strong if and only if it contains k-arc-disjoint (s,t)-paths for
every choice of distinct vertices s,t € V.

(b) D is k-strong if and only if |V(D)| > k+ 1 and D contains k internally
vertex disjoint (s,t)-paths for every choice of distinct vertices s,t € V.

Proof: Recall that, by definition, a directed multigraph D = (V, A) is k-arc-
strong if and only if D — A’ is strong for every A’ C A with |A’| < k—1. Now
we see that (a) follows immediately from Theorem 7.3.1(a). To prove (b) we
argue as follows: By definition (see Chapter 1) D is k-strong if and only if
|[V(D)| > k+1 and D — X is strong for every X C V such that | X| <k — 1.



7.4 Application: Determining Arc- and Vertex-Strong Connectivity 355

Suppose that D has at least k 4 1 vertices but is not k-strong. Then we can
find a subset X C V of size at most k& — 1 such that D — X is not strong.
Let Dy,...,D,, r > 2 be any acyclic ordering of the strong components in
D — X. Taking s € V(D,) and t € V(Dy) it follows that there is no arc from
s to t and that X is an (s, t)-separator of size less than k. Now it follows from
Theorem 7.3.1(b) that D does not contain k internally vertex disjoint paths
from s to .

Suppose conversely that there exists s,t € V(D) such that there are no
k internally disjoint (s,t)-paths in D. If there is no arc from s to ¢, then it
follows from Theorem 7.3.1(b) that D contains an (s, t)-separator X of size
less than k. Then D — X is not strong and, by definition, D is not k-strong.
Hence we may assume that there is an arc st in D. Let r be the number of
arcs from s to t in D (i.e. u(s,t) = r). If r > k, then k of these arcs form
the desired (s,t)-paths, so by our assumption on s,t we have r < k. Now
consider the digraph D’ obtained from D by removing all arcs from s to ¢. In
D’ there can be no k —r internally disjoint (s,t)-paths (since otherwise these
together with the r arcs from s to ¢t would give a collection of k internally
disjoint (s, t)-paths). Thus, by Theorem 7.3.1(b), there exists a set X' C V
of size less than k — r which forms an (s, t)-separator in D’.

Let A, B denote a partition of V' — X’ in such a way that s € B, t € A
and there is no arc from B to A in D’. Since |V| > k + 1, at least one of the
sets A, B contains more than one vertex. Without loss of generality we may
assume that A contains a vertex v distinct from ¢. Now we see that X’ U {t}
is an (s, v)-separator of size less than k —r 4+ 1 < k in D and there is no
arc from s to v in D. Applying Theorem 7.3.1(b) to this pair we conclude as
above that D is not k-strong. ad

Recall the numbers X' (D), x'(D) which were defined in (7.1).

Corollary 7.3.3 Let D be a directed multigraph. The number X' (D) equals
the mazimum number k for which D is k-arc-strong. The number &' (D) equals

the mazimum number k for which k <|V| —1 and D is k-strong. Hence we
have N (D) = A(D) and x'(D) = k(D). O

7.4 Application: Determining Arc- and Vertex-Strong
Connectivity

In applications it is often important to be able to calculate the degree of
arc-strong or vertex-strong connectivity of a directed multigraph. We can re-
duce the problem of finding kp(x,y) to that of finding the local arc-strong
connectivity from x, to y; in the digraph Dgr which we obtain by applying
the vertex splitting procedure to D (see the proof of Theorem 7.3.2). Thus
it is sufficient to consider arc-strong connectivity. It follows from Menger’s
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theorem and Lemma 7.1.5 that A(D) can be found using O(n?) flow calcula-
tions. Namely, determine A(z,y) for all choices of z,y € V(D). However, as
we shall see below we can actually find A(D) with just O(n) flow calculations.
For a similar result see Exercise 7.7.

Proposition 7.4.1 [654] For any directed multigraph D = (V, A) with V =
{v1,v2,...,0,} the arc-strong connectivity of D satisfies

A(D) = min {A(v1,v2), ..., A(Vn-1,0n), A(Vn,v1)}.

Proof: Let k = A(D). By (7.1) and Corollary 7.3.3, A(D) is no more than the
minimum of the numbers A(vy,v2), ..., A(Vn—1,n), A(vn, v1). Hence it suffices
to prove that k = A(v;,v;41) for some i = 1,2,...,n (where v,41 = v1). By
Corollary 7.3.3 and Theorem 7.3.1, some X C V has out-degree k. If there is
an index ¢ < n — 1 such that v; € X and v;4; € V — X, then, by Menger’s
theorem, A(v;,v;+1) < k and the claim follows. If no such index exists, then
we must have X = {v,,v,41,...,v,} for some 1 < r < n. Now we get by
Menger’s theorem that A(v,,v1) < k and the proof is complete. a

Combining this with Lemma 7.1.5, we get the following result due to
Schnorr [654]:

Corollary 7.4.2 We can calculate the arc-strong connectivity of a directed
multigraph by O(n) mazimum flow calculations in N (D). O

If D has no multiple arcs, then its network representation A'(D) has all
capacities equal to 1 and it follows from Theorem 3.7.4 that we can find a
maximum flow in A'(D) in time O(n?m) and hence we can calculate A(D)
in time O(n3m).

Esfahanian and Hakimi [224] showed that the bound, n, on the number of
max-flow calculations that is needed can be improved by a factor of at least
2.

Note that, if we are only interested in deciding whether A(D) > k for
some value of k£ which is not too big compared to m, then it may be better
to use the simple labelling algorithm of Ford and Fulkerson (see Chapter 3).
In that case it is sufficient to check for flows of value at least k, which can be
done with k flow-augmenting paths and hence in time O(km) per choice of
source and terminal. Thus the overall complexity of finding A(D) is O(knm)
(see also the book by Even [229]). This can be improved slightly; see the
paper [295] by Galil. For other connectivity algorithms based on flows, see
e.g. [228, 232].

One may ask if there is a way of deciding whether a given directed multi-
graph D is k-(arc)-strong without using flows. Extending work by Linial,
Lovész and Wigderson [515] (see also [523]), Cheriyan and Reif [150] gave
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Monte-Carlo and Las Vegas? type algorithms for k-strong connectivity in di-
graphs. Both algorithms in [150] are based on a characterization of k-strong
digraphs via certain embeddings in the Euclidean space R¥~!. The algorithms
are faster than the algorithms described above, but the price is the chance
of an error (for the Monte Carlo algorithm), respectively only the expected
running time can be given (for the Las Vegas Algorithm). We refer the reader
to [150] for details.

The currently fastest algorithm to determine the arc-strong connectivity
uses matroid intersection (see Section 12.7 for the definition of the matroid
intersection problem) and is due to Gabow [287]. This algorithm finds the arc-
strong connectivity of a digraph D in time O(X\(D)mlog (n?/m)). It is based
on Edmonds’ branching theorem (Theorem 9.5.1). In Chapter 9 we discuss the
relation between arc-strong connectivity and arc-disjoint branchings, which
is used in Gabow’s algorithm. Gabow’s approach also works very efficiently
for the case when we want to decide if A\(D) > k for some number k.

The currently fastest algorithm to determine k(D) is due to Henzinger,
Rao and Gabow [422]. This algorithm is based on flows and combines ideas
from [228, 232, 295, 398]. The complexity of the algorithm is O(min{x (D)3 +
n, k(D)n}m).

For undirected graphs Ibaraki and Nagamochi [579] found a very elegant
and effective way to calculate the edge-connectivity without using flow algo-
rithms. We describe their method briefly below (see also [269, 580]).

A maximum adjacency ordering of an undirected graph G = (V, E)
is an ordering vy, va, . .., v, of its vertices, satisfying the following property

d(vig1, Vi) > d(v;, Vi) for i =1,2,...,n,i < j <n, (7.6)

where V; = {v1,v2,...,v;} and d(X,Y’) denotes the number of edges with
one end in X — Y and the other in Y — X.

Theorem 7.4.3 [579]

(a) Given any undirected graph G on n wvertices, one can find a mazimum
adjacency ordering of G starting at a prescribed vertez vy in time O(n +
m).

(b) For every mazimum adjacency ordering vi,vsa,...,v, of G we have
AMVn—1,05) = dg(vy).

Corollary 7.4.4 [579] There is an O(nm + n?) algorithm to determine the
edge-connectivity of a graph with n vertices and m edges.

2 A Monte-Carlo algorithm always terminates, but may make an error with some
small probability, whereas a Las Vegas algorithm may (with some small proba-
bility) never terminate, but if it does, then the answer it provides is correct; see
the book [134] by Brassard and Bratley.
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Proof: This is an easy consequence of (b) and the fact that for every choice
of z,y € V(G):
AG) = min{A(z,y), A(G/{z,y})}, (7.7)

where G/{z,y} is the graph we obtain from G by contracting the set {z, y}.
The equality (7.7) follows from the fact that A(G) equals the size of a mini-
mum cut (X,V — X) in G. If this cut separates x,y, then A\(G) = A(z,y) by
Menger’s theorem, and otherwise X is still a cut in G/{z,y}, implying that
AMG) = MG /{x,y}) (contractions do not decrease edge-connectivity). Hence
we can start from an arbitrary maximum adjacency ordering vy, vs, ..., Up.
This gives us A(vp—1, Up). Save this number, contract {v,,—1,v,} and continue
with a maximum adjacency ordering of G/{v,_1,v,}. The edge-connectivity
of G is the minimum of the numbers saved. We leave the remaining details
to the interested reader (see also the paper [581] by Nagamochi and Ibaraki).

O

D D/{z,y}

Figure 7.4 A digraph D with A\(D) =0, A(z,y) =2 and \(D/{z,y}) = 1.

It is an interesting open problem whether some similar kind of ordering
can be used to find the arc-strong connectivity of a directed multigraph.
Note that (7.7) does not hold for arbitrary directed multigraphs. To see this
consider Figure 7.4.

7.5 The Splitting off Operation

In Frank’s proof of Menger’s theorem in Section 7.3, we saw how one could ap-
ply the idea of replacing two arcs incident to some vertex by one and thereby
apply induction. In this section we shall see yet another indication that this
type of operation can be very useful. We consider a directed multigraph D
with a special vertex s. We always assume that

ah(s) = dp(s). (7.8)



7.5 The Splitting off Operation 359

To emphasize that s is a special vertex we specify D as D = (V 4 s, A) or
D = (V+s,EUF) where F is the set of arcs with one end-vertex in s
(s € V and ENF = (). Furthermore we will assume that the local arc-strong
connectivity between every pair z, y of vertices in V' is at least k. By Menger’s
theorem this is equivalent to

At (U),d"(U) >k forall §£UC V. (7.9)

Whenever a digraph D = (V + s, A) satisfies (7.9) for some k we say that
D is k-arc-strong in V.

We counsider the operation of replacing a pair (us, sv) of arcs incident with
s by one new arc uv. The operation of performing this replacement is called
splitting off or just splitting the pair (us,sv) and the resulting directed
multigraph is denoted by D,,. The splitting of a pair (us, sv) is admissible
if (7.9) holds in D,,,. If this is the case we will also say that the pair (us, sv)
is an admissible pair (or an admissible splitting).

A set 0 # X C V is k-in-critical (k-out-critical) if d~(X) = k
(dT(X) = k). When we do not want to specify whether X is k-in-critical
or k-out-critical, we say that X is k-critical.

The following useful lemma is due to Frank:

Lemma 7.5.1 [258] If X and Y are intersecting k-critical sets then one of
the following holds:

(a) X UY is k-critical,
(b) Y — X is k-critical and (X NY,V +s— (X UY)) =0.

Proof: We consider three cases:
Case 1: X UY # V and X,Y are either both k-out-critical or both
k-in-critical.

Assume that X,Y are both k-out-critical. It follows from (7.9) that
dH(X UY),d"(X NY) > k. Using the submodularity of d};, we obtain:

k+k=d"(X)+d"(Y)
>dH(XUY)+dT(XNY)
> k+k, (7.10)

and from this we get that X UY is k-critical and hence (a) holds. The same
conclusion is reached if X,Y are both k-in-critical.
Case 2: X UY =V and X,Y are either both k-out-critical or both
k-in-critical.

We will assume that X, Y are both k-out-critical, the proof is analogous in
the other case. Let S = V+s—X and T = V+s—Y. Thend (S) =d (T) =k
and SNT = {s}. Since S—T =Y —-X and T — S = X —Y we get from (7.9)
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that d= (S —T),d= (T — S) > k. Since d=(s) = d¥(s), we can apply (7.3) and
obtain:

k+k=d (S)+d (T)
=d(S-T)+d (T -8)+d(SNT,V+s—(SUT))
>k+k+dV -51T), (7.11)

from which we see that Y — X = S—T is k-in-critical and that d(SNT,V +s—
(SUT)) =0. Since XNY =V+4+s—(SUT) and V+s—(XUY) = {s} = SNT
we also see that d(X NY,V +s— (X UY)) =0. Thus (b) holds.
Case 3: One of X,Y is k-in-critical and the other is k-out-critical.
We consider the case when X is k-in-critical and Y is k-out-critical, the
other case is analogous. Let Z = V+s—X. Then we have d*(Y) = d* (Z) = Fk,
YNZ=Y-XandYUZ =V+s—(X-Y).Hencedt(YNZ) =d*(Y-X) > k
and dt*(YUZ)=d (V4+s—(YUZ))=d (X -Y) > k. Now we can apply
(7.2) and we get

k+k=d"(Y)+d"(2)
=d(YNZ)+d (YUZ)+d(Y,Z)
>k+k+d(Y,Z), (7.12)

implying that d™(Y — X) = d"(Y N Z) = k and that d(Y,Z) = 0. Since
Z-Y=V+s—(XUY)and Y — Z = X NY, the last equality shows that
dXNY,V+s—(XUY))=0. Thus (b) holds. O

We are now ready to prove the following important result by Mader.

Theorem 7.5.2 (Mader’s directed splitting theorem) [537] Suppose
that D = (V + s, E U F) satisfies (7.9) and that d*(s) = d=(s). Then for
every arc sv there is an arc us such that the pair (us,sv) is an admissible
splitting.

Proof: The proof we give is due to Frank [258]. First note that a pair (us, sv)
can be split off preserving (7.9) if and only if there is no k-critical set which
contains both u and v. Hence if there is no k-critical set containing v, then
we are done. If X and Y are intersecting k-critical sets containing v, then
only alternative (i) can hold in Lemma 7.5.1, because the existence of the
arc sv implies that d(V+s— (X UY),XNY) > 1. Hence the union T of all
k-critical sets containing v is also k-critical. If we can find an in-neighbour u
of sin V —T, then we are done, since by the choice of T, there is no k-critical
set which contains u and v. So suppose that all in-neighbours of s are in 7'
If T is k-out-critical then
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d~(V-=T)=d"(T) —d™(T,s) +d"(s,V = T)
<k-—(d(s)—d"(s)+1)
=k—1,

since s has no in-neighbour in V' — 7" and sv is an arc from s to T' (we also
used d~(s) = d*(s)). This contradicts (7.9) so we cannot have that T is
k-out-critical. But if T is k-in-critical, then

dY(V —T)=d (T +s)=d (T)—d*(s,T) +d*(V - T, s)
<k—1+0<k,

a contradiction again. Hence we have shown that (us, sv) is an admissible
pair and the proof is complete. a

Figure 7.5 A digraph D = (V + s, A) which is 2-arc-strong in V' and has no
admissible splitting at s. Note that d~(s) =2 # 1 = d* (s).

Note that the assumption that d~(s) = d*(s) in Theorem 7.5.2 cannot
be removed. Figure 7.5 shows an example of a digraph D = (V + s, A) with
no admissible splitting at s.

Corollary 7.5.3 Suppose that D = (V + s, E + F) satisfies (7.9) and that
dt(s) = d=(s). Then there exists a pairing ((u1s,5v1),..., (U8, sv,.)), 7 =
d=(s), of the arcs entering s with the arcs leaving s such that replacing all
arcs incident with s by the arcs uivy, ..., uv, and then deleting s, we obtain
a k-arc-strong directed multigraph D’'. ad

See Figure 7.6 for an example of a complete splitting in a digraph.

Frank and Jackson showed that for eulerian directed multigraphs one can
get a stronger result. Namely, it is possible to split off all arcs incident with
the special vertex s in such a way that all local arc-strong connectivities
within V' are preserved.
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Figure 7.6 A digraph D = (V + s, A) which is 2-arc-strong in V. A complete
splitting of the arcs is shown in the right figure after removal of s. The set X shows
that we cannot split off both of the pairs (as, sb), (cs, sa), since that would leave X
with out-degree one.

Theorem 7.5.4 [257, 451] Let D = (V + s, A) be an eulerian directed
multigraph. Then for every arc us € A there exists an arc sv € A such that
Ap,, (@, y) = Ap(x,y) for allx,y € V. O

A similar result concerning local connectivity preserving splittings holds
for general undirected graphs. This very powerful result was proved by Mader
[536]. Such a similarity between eulerian digraphs and general undirected
graphs with respect to certain properties seems to be quite common. To
say it popularly: Eulerian digraphs often behave like undirected graphs. For
another example of this phenomenon see Section 9.7.2.

Bang-Jensen, Frank and Jackson showed that it is possible to give a com-
mon generalization of Theorem 7.5.4 and Mader’s directed splitting theorem
(Theorem 7.5.2) to mixed graphs. Since the statement of this result is rather
technical, we refer the interested reader to the paper [53].

It was pointed out by Enni in [218] that Theorem 7.5.4 cannot be extended
to arbitrary digraphs, not even if one only wants to preserve the minimum
of A(z,y) and A(y, z). For two other generalizations of Theorem 7.5.2 see the
papers [684] by Su and [288] by Gabow and Jordan.

7.6 Increasing the Arc-Strong Connectivity Optimally

We will consider the following problem. Given a directed multigraph D =
(V, E)) which is not k-arc-strong, find a minimum cardinality set of new arcs
F to add to D such that the resulting directed multigraph D" = (V, E U
F) is k-arc-strong. This D’ is called an optimal augmentation of D. We
will present a solution to this problem due to Frank [258]. Frank solved the
problem by supplying a min-max formula for the minimum number of new
arcs as well as a polynomial algorithm to find such a minimum set of new
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arcs. First let us make the simple observation that such a set F' indeed exists,
since we may just add k parallel arcs in both directions between a fixed vertex
v € V and all other vertices in V' (it is easy to see that the resulting directed
multigraph will be k-arc-strong).

Definition 7.6.1 Let D = (V, A) be a directed multigraph. Then (D) is
the smallest integer v such that

> (k—d (X)) <7 and
X, eF

X, eF
for every subpartition F = {Xq,..., Xs} of Vwith0 C X; CV,i=1,...,t.

We call v4(D) the subpartition lower bound for arc-strong con-
nectivity. By Menger’s theorem, D is k-arc-strong if and only if v, (D) < 0.
Indeed, if D is k-arc-strong, then d*(X),d™(X) > k holds for all proper
subsets of V' and hence we see that v (D) < 0. Conversely, if D is not k-arc-
strong, then let X be a set with d~ (X)) < k. Take F = {X}, then we see that
(D) > k —d~(X) > 0.

Lemma 7.6.2 [258] Let D = (V, A) be a directed multigraph and let k be
a positive integer such that v, (D) > 0. Then D can be extended to a new
directed multigraph D' = (V + s, AU F'), where F consists of v,(D) arcs
whose head is s and v, (D) arcs of whose tail is s such that (7.9) holds in D’.

Proof: We will show that, starting from D, it is possible to add (D) arcs
from V to s so that the resulting graph satisfies

dt(X) >k forall 0 #X CV. (7.13)

Then it will follow analogously (by considering the converse of D) that it is
also possible to add (D) new arcs from s to V' so that the resulting graph
satisfies

d (X)>k forall 0#XCV. (7.14)

First add k parallel arcs from v to s for every v € V. This will certainly
make the resulting directed multigraph satisfy (7.13). Now delete as many
new arcs as possible until removing any further arc would result in a digraph
where (7.13) no longer holds (that is, every remaining new arc vs leaves a
k-out-critical set). Let D denote the current directed multigraph after this
deletion phase and let S be the set of vertices v which have an arc to s in
D. Let F = {Xi,...,X,} be a family of k-out-critical sets such that every
v € S is contained in some member X; of F and assume that F has as few
members as possible with respect to this property. Clearly this choice implies
that either F is a subpartition of V', or there is a pair of intersecting sets
X,L', Xj in F.
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Case 1: F is a subpartition of V.
Then we have

= Z(dg(xi) +d}(Xi,s))
= > dh(Xa) +d5(s),
i=1

implying that d(s) = S (k= djh(Xy) < yx(D), by the definition of
k(D).

Case 2: Some pair X;, X; € F is intersecting.

If X;, X, are crossing, then the submodularity of dE and (7.9) imply
that X; U X; is also k-out-critical and hence we could replace the two sets
X, X; by the set X; U X; in F, contradicting the choice of F. Hence we
must have X; UX; =V and F = {X1, Xo}, where without loss of generality
i=1,j=2Let X=V-X;=Xo—-Xjand Y =V — Xy = X; — X,. Then
dp(X) =d}(X1) and d5(Y) = df(X2) and hence we get

V(D) = (k= dp(X)) + (k= dp(Y))
=k —d5(X1)+k—d5H(Xs)
>k —df(X1) +k —d5(X2) +d5(s)

=dp(s),
since X1, X, are k-out-critical in D. Thus d(s) < k(D) as claimed. O

Theorem 7.6.3 (Frank’s arc-strong connectivity augmentation the-
orem) [258] Let D = (V, A) be a directed multigraph and k a positive integer
such that v, (D) > 0. The minimum number of new arcs that must be added
to D in order to give a k-arc-strong directed multigraph D' = (V;AU F)
equals v (D).

Proof: To see that we must use at least v, (D) arcs, it suffices to observe
that if X and Y are disjoint sets then no new arc can increase the out-degree
(in-degree) of both sets. Hence a subpartition F realizing the value of ~j in
Definition 7.6.1 is a certificate that we must use at least (D) new arcs.
To prove the other direction we use Mader’s splitting theorem and Lemma
7.6.2. According to this lemma we can extend D to a new directed multigraph
D by adding a new vertex s and (D) arcs from V to s and from s to V.
Note that we may not need (D) arcs in both directions, but we will need
it in one of the directions by our remark in the beginning of the proof. In
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the case where fewer arcs are needed, say from V to s, we add arbitrary arcs
from V to s so that the resulting number becomes (D).

Now it follows from Corollary 7.5.3 that all arcs incident with s can be
split off without violating (7.9). This means that, if we remove s, then the
resulting directed multigraph D’ is k-arc-strong. a

See Figure 7.7 for an example illustrating the theorem.

£ NP,

D D’

e

Figure 7.7 A digraph D with y2(D) = 5. The big circles indicate a subpartition
which realizes v2(D). The right part of the figure shows an optimal 2-arc-strong
augmentation D’ of D obtained by adding 5 new arcs. Compare this with Figure
7.6. Here the digraph in the right part is the same as the augmented digraph D’.

The reader may have noticed that in the proof of Lemma 7.6.2, we never
used exactly how we obtained the minimal set of arcs from V to s so that
(7.13) held. The proof is valid for every such set of arcs that is minimal with
respect to deletion of arcs. This means in particular that we can use a greedy
approach to find such a set of arcs starting from the configuration with &
parallel arcs from every vertex v € V to s. This gives rise to the following
algorithm, by Frank [258], for augmenting the arc-strong connectivity opti-
mally to k for any directed multigraph D which is not already k-arc-strong:

Frank’s arc-strong connectivity augmentation algorithm

Input: A directed multigraph D = (V, A) and a natural number k such that
Yk (D) > 0.

Output: A k-arc-strong optimal augmentation D* of D.

1. Let vy,v2...,v, be a fixed ordering of V' and let s be a new vertex.

2. Add k parallel arcs from v; to s and from s to v; for each i = 1,2,...,n.

3. Starting from ¢ := 1, remove as many arcs from v; to s as possible without
violating (7.13); If ¢ < n then let ¢ := i + 1 and repeat this step;
Let v~ denote the number of remaining arcs from V' to s in the resulting
directed multigraph.

4. Starting from i := 1, remove as many arcs from s to v; as possible without
violating (7.14); If i < n then i := ¢ + 1 and repeat this step;
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Let 4T denote the number of remaining arcs from s to V in the resulting
directed multigraph.

5. Let v = max{y~,yT}. If v~ < ~T, then add v+ — v~ arcs from v; to s;
If v+ < 47, then add v~ — 4T arcs from s to v;.

6. Let D’ denote the current directed multigraph. In D’ we have d ), (s) =
d},(s) and (7.9) holds. Split off all arcs incident with s in D’ by applying
Theorem 7.5.2 v times. Let D* denote the resulting directed multigraph.

7. Return D*.

Using flows this algorithm can be implemented as a polynomial algorithm
for augmenting the arc-strong connectivity of a given directed multigraph
[258]. See Exercises 7.28 and 7.30.

Frank [258] pointed out that his algorithm also works for the so-called
vertex-weighted arc-strong connectivity augmentation problem.
Here there are weights ¢(v) on the vertices and the cost of adding an arc
from u to v is equal to c(u) + ¢(v). The only change needed in the al-
gorithm above is that now the ordering of the vertices should be so that
c(v1) < e(va) < ... < c(vy). The reason why this greedy approach works
is outlined in [258] and comes from the fact that a certain polymatroidal
structure is present [258, 274].

If instead we allow weights on the arcs and ask for a minimum weight
(rather than just minimum cardinality) set of new arcs to add to D in order
to obtain a k-arc-strong directed multigraph D’, then we have the weighted
arc-strong connectivity augmentation problem.

Theorem 7.6.4 The weighted arc-strong connectivity augmentation problem

is N'P-hard.

Proof: We show that the Hamilton cycle problem can be reduced to the
weighted arc-strong connectivity augmentation problem in polynomial time.
This will imply the claim by Theorem 5.0.1.

Let D = (V,A) be a digraph on n vertices V' = {1,2,...,n}. Define

weights ¢(ij) on the arcs of the complete digraph K, with vertex set V as
follows:

= {1 Hed a0

Let Dy = (V,0) (that is, the digraph on V with no arcs). Since every vertex
of a strong digraph is the tail of at least one arc, we need at least n arcs to
make Dy strong. Now it is easy to see that Dy can be made strongly connected
using arcs with total weight at most n if and only if D has a Hamilton cycle.
Thus we have reduced the Hamilton cycle problem to the weighted arc-strong
connectivity augmentation problem. Clearly our reduction can be carried out
in polynomial time. d
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We complete this section with an interesting result by Cheng and Jordan.
It implies that the so-called successive augmentation property holds for
arc-strong connectivity.

Theorem 7.6.5 [148] Let D be a directed multigraph with A(D) = £. Then

there exists an infinite sequence D = Dy, Dy, Ds, ... of directed multigraphs
such that, for every i >0, D;11 is a superdigraph of D;, V(D;) = V(D) and
D; is an optimal (£ + i)-arc-strong augmentation of D. O

It is shown by an example in [148] that a similar property does not hold
for the vertex-strong connectivity augmentation problem which we consider
below.

7.7 Increasing the Vertex-Strong Connectivity
Optimally

We now turn to the vertex-strong connectivity augmentation problem:
given a digraph D = (V, A) on at least k + 1 vertices, find a smallest set F
of new arcs for which D' = (V; AU F) is k-strong.

Note that when it comes to studying vertex-strong connectivity, multiple
arcs play no role and hence we shall always consider digraphs (knowing that
our results extend to directed multigraphs). In particular, in this section
d},(v) = [N (v)| for any vertex v in a digraph D.

Let us first observe that, even if we do not allow multiple arcs, we cannot
bound the number of arcs we need to add to make a digraph D k-strong
by some function of (D) (recall Definition 7.6.1). To see this, it suffices
to note that there are k-arc-strong digraphs which are not k-strong and one
can construct such digraphs where the number of new arcs one needs to add
in order to obtain a k-strong superdigraph is arbitrarily high (see Exercise
7.31).

Suppose X is a set of vertices in a digraph D such that NT[X] # V
and |[NT(X)| < k (recall that N*[X] = X UNT(X)). Then it follows from
Menger’s theorem that D is not k-strong because the set N7 (X) separates
every vertex in X from every vertex in V — N*[X]. Furthermore, in order
to obtain a k-strong digraph by adding arcs to D we must add at least
k —|NT(X)| new arcs with tail in X and head in V — N*[X].

Similarly to the definition of v (D) in Definition 7.6.1 we can define v} (D)
as follows:

Definition 7.7.1 Let D = (V, A) be a directed graph. Then v} (D) is the
smallest integer v such that
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Sk~ INT(X)]) < 7 and
XeF—

Yo (k= INTOO) <,

XeFt

for every choice of subpartitions F~,FT of V with the property that every
X € F~ satisfies N™[X] #V and every X € F* satisfies NT[X] # V.

As with arc-strong connectivity it is not hard to see that v (D) is a lower
bound for the number of new arcs we must add to D to obtain a k-strong
digraph. This follows from the fact that the sets in 7~ are disjoint and hence
no new arc can increase the in-neighbourhoods (out-neighbourhoods) of two
sets from F~ (F*1). We call the number ~; (D) the subpartition lower
bound for vertex-strong connectivity.

Let ay(D) denote the minimum number of new arcs that must be added
to a digraph D = (V, A) in order to obtain a k-strong digraph. It is easy to
see that ax(D) is well-defined provided that D has at least k+ 1 vertices. We
also call ai(D) the k-strong augmentation number of D.

7.7.1 One-Way Pairs

First we point out that for vertex-strong connectivity augmentation, the sub-
partition lower bound is no longer sufficient, that is, it may not be possible to
make D k-strong by adding v} (D) arcs. An example illustrating this is given
in Figure 7.8(a). Here k = 2 and it is not difficult to check that v} (D) = 2.
However, it is not possible to make D 2-strong by adding just two new arcs.
In order to explain this, we need a few new definitions. Let X, Y be disjoint
non-empty proper subsets of V. The ordered pair (X,Y) is a one-way pair
in D = (V, A) if D has no arc with tail in X and head in Y (that is, Y=2X).
This definition is due to Frank and Jordén [272]. For such a pair (X,Y) we
refer to X (V') as the tail (head) of the pair. Let h(X,Y) = |[V—-X-Y|. The
deficiency of a one-way pair (X,Y’) with respect to k-strong connectivity is

Nk(X,Y) = max{0,k — h(X,Y)}. (7.16)

For instance, if NT[X] # V then the pair (X,V — NT[X]) is a one-way
pair with deficiency ni(X,V — NT[X]) = max{0,k — [NT(X)|}. One-way
pairs are closely related to k-strong connectivity.

Lemma 7.7.2 [272] A digraph D = (V, A) is k-strong if and only if we have
h(X,Y) >k for every one-way pair (X,Y) in D.
Proof: Suppose first that D is k-strong. By Corollary 7.3.2, there are k

internally disjoint (s, t)-paths for every choice of distinct vertices s,t € V.
Now let (X,Y) be a one-way pair and take s € X,t € Y. For every collection
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Figure 7.8 An example, due to Jordan [468, Figure 3.9.1], showing that the subpar-
tition lower bound is not always attainable. The desired connectivity is kK = 2 and
the value v5(D) is 2 and it is realized by the subpartitions {{d}, {e}}, {{a}, {f}},
respectively (see (a)). Part (b) shows three pairwise independent one-way pairs
(T, Hv), (T2, H2), (T3, H3) (tails are indicated by boxes). This shows that as(D) >
3. In fact a2(D) = 3, since adding the arcs af, ed, da will result in a 2-strong digraph.

of the k internally disjoint paths from s to ¢, each such path must use a vertex
in V— X —Y and hence h(X,Y) > k. Conversely, assume that h(X,Y) > k
for every one-way pair (X,Y). Let S be a minimal separator of D. By the
definition of a separator, V — S can be divided into two sets X,Y so that
there is no arc from X to Y in D — S (namely let s,t be separated by S
and let X denote those vertices that can be reached from s in D — S and
Y=V -X-29). Thus (X,Y) is a one-way pair and h(X,Y) = |S| showing
that |S| > k and hence D is k-strong. O

Two one-way pairs (X,Y), (X’,Y”’) are independent if either their heads
or their tails are disjoint. Hence one-way pairs that contribute to the sums in
Definition 7.7.1 are always independent since either all heads or all tails are
disjoint for those pairs. As we saw in Figure 7.8, the sum of deficiencies over
one way pairs for which either all tails are disjoint or all heads are disjoint
does not always provide the right lower bound for the number of new arcs
needed in order to make the digraph k-strong.

By Lemma 7.7.2, in order to obtain a k-strong superdigraph of D, we
must add enough new arcs to eliminate all one-way pairs with 7, (X,Y) > 0
(we must add at least 1, (X,Y) arcs from X to Y). Clearly, if (X,Y), (X', Y”)
are independent one-way pairs, then no new edge can decrease both 7y (X,Y)
and 7 (X', Y”’). This shows that, if F is any family of pairwise independent
one-way pairs in D, then we must add at least

m(F) = > mX)Y) (7.17)
(X, Y)eF

new arcs to D in order to obtain a k-strong digraph. We call the number 7y (F)
the deficiency of F. Now consider Figure 7.8(b). Here we have indicated one-
way pairs (T}, H;), ¢ = 1,2,3. These are pairwise independent and have total
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deficiency 3. Thus it follows from our arguments above that we need at least
3 new arcs to make D k-strong. In fact 3 arcs are sufficient in this case as
pointed out in the caption of the figure.

7.7.2 Optimal k-Strong Augmentation

The following theorem, due to Frank and Jordan, shows that the maximum
deficiency over families of independent one-way pairs gives the right lower
bound for the vertex-strong connectivity augmentation problem.

Theorem 7.7.3 (The Frank-Jorddn vertex-strong connectivity aug-
mentation theorem) [272] For every digraph D on at least k + 1 vertices
we have

ar(D) = max {ni(F) : F is a family of independent one-way pairs in D}.
(7.18)

In Section 7.8 we will show how to derive Theorem 7.7.3 from a more
general result concerning a generalization of arc-connectivity augmentation.

Theorem 7.7.4 [272] There exists a polynomial algorithm which, given a
digraph D = (V, A) and a natural number k, finds a minimum cardinality set
F of new arcs to add to D so that the resulting graph is k-strong. ad

This algorithm relies on Theorem 7.7.3 and the ellipsoid method3and
hence it is not a combinatorial algorithm. In [273] a combinatorial polynomial
algorithm was found for fixed k. It is beyond the scope of this book to describe
any of these algorithms here. The combinatorial algorithm in [273] relies on
a detailed study of the structure of one-way pairs. We refer to the proof of
Lemma 7.10.6 for an example of a proof that uses the structure of one-way
pairs.

Although we may have ax(D) > v; (D) as we saw in Figure 7.8, Frank
and Jorddn proved (see below) that the difference cannot be arbitrary large.
A family F of independent one-way pairs is subpartition-type if either all
the tails in F are pairwise disjoint, or all the heads in F are pairwise disjoint.
It is easy to see that if F is subpartition-type, then ng(F) < 75 (D).

Proposition 7.7.5 [273] For any digraph D = (V, A) and any target con-
nectivity k there exists a family F of independent one-way pairs such that the
deficiency, ni(F), of F equals ax (D) and F is either subpartition-type or the
disjoint union of two families of subpartition-type. Thus ar(D) < 2v; (D).

The next result shows that if we need to add many arcs to D (in terms
of k) to make it k-strong, then the subpartition lower bound is attainable.

3 For a thorough treatment of the ellipsoid method and its consequences for Com-
binatorial Optimization, see the book [339] by Grotschel, Lovasz and Schrijver.
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Proposition 7.7.6 [275] If F is a family of independent one-way pairs and
ne(F) > 2k% —1, then F is subpartition-type. Hence if ap(D) > 2k* —1, then
Vi(D) = ax(D).

Now let us consider the special case of the vertex-strong connectivity
augmentation problem when we want to increase k(D) from k to k + 1. The
following result is due to Frank and Jordén:

Theorem 7.7.7 [273] If k(D) = k and ag41(D) > 2k + 2, then ap41(D) =
WZ+1(D)~

Frank and Jordan also showed that when we augment the connectivity by
just one, then we can restrict the structure of the set of new arcs.

Theorem 7.7.8 [272] If k(D) = k, then D can be optimally augmented to
a (k 4 1)-strong digraph by adding disjoint cycles and paths. In particular if
D is a k-strong and k-regular digraph, then there are disjoint cycles covering
V' whose addition to D gives a (k + 1)-strong and (k + 1)-regular digraph.

It is instructive to compare this result with Theorem 7.10.7.

Recently, Frank has shown that the problem of augmenting the connec-
tivity by one can be solved in polynomial time without using the ellipsoid
method.

Theorem 7.7.9 [266] There exists a combinatorial polynomial algorithm for
increasing the vertex-strong connectivity of a digraph by one.

7.7.3 Special Classes of Digraphs

For general digraphs one cannot say much about the structure of families
of independent one-way pairs, but as we are going to see, there are (non-
trivial) classes of digraphs for which nice structure can be found and hence
a good estimate on the value of a;(D) can be given. The first result, due to
Masuzawa, Hagihara and Tokura, deals with in-branchings.

Theorem 7.7.10 [555] Let B = (V, A) be an in-branching. Then ay(B) is
given by

ar(B) = > max{0,k —d(v)}.

veV
O

The proof of this result in [555] is long, but Frank and Jordén found a short
proof based on Theorem 7.7.3, see [273].

For an arbitrary digraph we define 1, =, n: T by
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N (D) =Y max{0,k —d~(v)}, (7.19)
veV

ny (D) = Z max{0, k —d*(v)}. (7.20)
veV

Frank made the following conjecture, which would imply that we have
ar(D) = v,(D) for every acyclic digraph D:

Conjecture 7.7.11 [261] For any acyclic digraph D on at least k+1 vertices
ax(D) = max{n~(D),nxT(D)}.

A partial result was obtained by Frank and Jordén in [273].

Lemma 7.7.12 [273] Let D = (V,A) be an acyclic digraph for which
ar(D) = vi(D). Then ax(D) = max{n.~ (D), ne* (D)}.

Proof: Since ay(D) = 75 (D) there exists some family F of independent
one-way pairs with n,(F) = ax(D) such that all tails, or all heads, in F
are pairwise disjoint. By considering the converse of D if necessary, we may
assume that the tails {77, ...,T;} of F are pairwise disjoint.

Because D is acyclic, the subgraph induced by T; is acyclic for each i =
1,2,...,t. Hence each T; contains a vertex x; of out-degree zero in D(T;).
Thus N*(z;) € N*(T;) and hence k —d*(z;) > k— N (T;)| > k—h(T;, H;)
for each 1 = 1,2,...,t. Now we obtain

showing that ay(D) = nx*(D). 0

Bang-Jensen made the following conjecture at a meeting in Budapest in
1994:

Conjecture 7.7.13 For every semicomplete digraph D on at least k + 1
vertices
k(k+1)

5

If true this would be the best possible since a transitive tournament 7'
on n > k + 1 vertices needs this many arcs. To see this it suffices to observe
that, if v1,v9,...,v, is the unique acyclic ordering of the vertices in 7', then
the first k£ vertices need k,k — 1,...,2,1 new arcs entering them in order to
satisfy the condition that the in-degree is at least k. It is not difficult to check

ak(D) S
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(Exercise 7.20) that one can always make a transitive tournament k-strong
by adding @ new arcs. The following partial result follows from the work

of Frank and Jordédn [273]:

Proposition 7.7.14 For ecvery semicomplete digraph D on at least k + 1
vertices we have ax(D) < k2.

Proof: We prove this by showing that if D is an r-strong semicomplete
digraph which has at least r + 2 vertices, then we need at most 2r + 1 new
arcs to make it (r + 1)-strong. This will imply that we need at most k? arcs
to make any semicomplete digraph k-strong.

Suppose first that D is not strongly connected. Since every semicomplete
digraph has a Hamilton path (by Theorem 1.4.5), it follows that we can make
D strong by adding one arc.

Suppose now that r > 1 and that there is some r-strong semicomplete
digraph D for which we need at least 2r + 2 arcs to obtain an (r + 1)-strong
semicomplete digraph from D. Thus a,41(D) > 2r + 2 and then we conclude
from Theorem 7.7.7 that a,1(D) = v;,;(D). Hence, by the definition of
Yi41(D), there exist 2r + 2 pairwise disjoint sets X1, Xo,..., Xo,12, such
that either each of these has |[NT(X;)| = r or each has [N~ (X;)| = r. By
considering the converse of D if necessary, we may assume that |[NT(X;)| = r
for each X;. Let X’ be obtained by taking one vertex x; from each X; and
let D' = D(X'). Since D’ is semicomplete and has 2r + 2 vertices, it is easy
to see that some x; has at least r + 1 out-neighbours in D’. However each of
these contributes to | N}, (X;)|, contradiction. O

7.7.4 Splittings Preserving k-Strong Connectivity

In Section 7.5 we saw that, with respect to arc-strong connectivity, it is
always possible to split off all arcs incident to a vertex v without decreasing
the arc-strong connectivity of the resulting directed multigraph provided that
d*(v) = d~(v). To see that this does not extend to vertex-strong connectivity,
consider the digraph D in Figure 7.8. If we add a new vertex s and arcs
ds, es, sa, sf, then we obtain a 2-strong digraph D’. However, it follows from
the fact that as(D) = 3 (as we argued previously, see Figure 7.8) that there
cannot exist a complete splitting off at s in D’ such that the resulting digraph
(after removing s) is 2-strong.

Below we prove a splitting result for vertex-strong connectivity, due to
Frank and Jordan. We do this to illustrate some of the proof techniques that
can be used in this area. The reader will notice that they are different from the
arc-strong connectivity proofs, although they do have common ingredients.

An arc a in a k-strong digraph D is k-critical if it cannot be deleted
without destroying the property of D being k-strong. Note that if an arc is
k-critical then it enters a set X with |[N5(X)| =k and |[N,_ (X)|=k—1
and leaves a set Y with [N} (Y)| =k and [N _ (V)| =k — 1.
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A subset U C V in a k-strong digraph D = (V, A) is out-tight (in-tight)
if |V —U|>k+1and [NS(U)| =k (|N5(U)| = k).

Lemma 7.7.15 [84] Let D = (V, A) be a k-strong digraph and let e = xy be
a k-critical arc in D. Then there exists a unique minimal out-tight set K in
D — e and a unique minimal in-tight set B in D —e. There is no arc from K
to B in D — e, and in addition, (D — e) + f is k-strong for any arc f = uv
withu € K and v € B.

Proof: Since e is k-critical, k(D —e) = k — 1. Suppose that there exist two
different minimal out-tight sets K7 and Ko in D —e. Let H; =V — K; —
N} (K1) and Hy = V — Ko — Nj,__(K>3). Then (K1, H;) and (Ka, Ho)
are one-way pairs in D — e with hp_.(K;, H;) = k — 1, ¢ = 1,2. Since we
can make D — e k-strong by adding the arc e, these one-way pairs cannot
be independent. This implies that * € K; N Ky and y € Hy N Hs. Thus
in D — e we have N, __(y) € V — K; U K,. Hence, by Menger’s theorem,
|V —(K1UK>3)| >k and [NT (K1 NKy)|,INT(KiUK>2)| > k—1, since D—e
is (k — 1)-strong. Thus, using Proposition 7.1.3 and the fact that D — e is
(k — 1)-strong,

k—1+k—1=|N}_(K1)|+|Np_(K>)
> [N (K N KS)| + NS (K UK)]
>k—14+k—1.

This gives [INT(K; N K3)| = k — 1, contradicting the minimality of K. The
uniqueness of B follows similarly.

To see the second statement, observe that for any out-tight set L and the
unique minimal out-tight set K we have K C L and B C (V — L — NT(L)).
(In particular, KN B = {).) Hence, adding any arc from K to B will eliminate
all one-way pairs (X,Y) with h(X,Y) =k — 1. O

The following splitting result for vertex-strong connectivity is due to
Frank and Jordan:

Theorem 7.7.16 [271] Let D = (V + s, AU F) be a k-strong digraph for
which INT(s)| = [N~ (s)| =d > 2k — 1 holds and every arc e incident with s
is k-critical. Then the arcs incident to s can be split off completely such that
the resulting digraph D’ obtained by deleting s is k-strong. a

Proof: If k = 1, then d(s) = d},(s), since D has no multiple arcs, and the
claim follows from Theorem 7.5.2. Hence we may assume that k& > 2.

Let N=(s) = {u1,...,uq} and N*(s) = {v1,...,vq}. Since each arc inci-
dent with s is k-critical, it follows from Lemma 7.7.15 that there exist unique
out-tight sets O1, 0, ... 04 and unique in-tight sets I, I, ..., I3 such that
u; € O; and O; is the unique minimal out-tight set in D — u;s, respectively,
v; € I; and I; is the unique minimal in-tight set in D — sv;, for i =1,2,...,d.
We claim that O;NO0; =0 for1 <i<j<dand ;NI; =0forl1 <i<j<d.
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Suppose this is not true. Then without loss of generality O; NO; # 0 for some
1 # j. Note that wu,s is the only arc from O, to sin D for r = 1,2, ..., d, since
O, has only k—1 out-neighbours in D —w,s. Hence it follows that u; € O; —0;
and u; € O; — O; and O; N O; has no arc to s. Since [N~ (s)| > 2k —1 >k
(because k > 2), we have [V —(O;UQO;)| > k—1. This and Menger’s theorem
imply that |Nj__(0; N O;)|,|Nj_,(O; UO;)| > k — 1. However, applying
Proposition 7.1.3 to O;,0; in D — s (which is (k — 1)-strong) we conclude

(k—1)+ (k= 1) = [Nj_(0:)| + [NS_,(O;)]
> |Nj_ (0N O;)| + INS_(0: U0y (7.21)
> (k—1)+ (k—1).

It follows from (7.21) that [N}, (O;N0O;)| =k — 1 and since O; N O; has no
arc to s we get the contradiction [N (0;N0O;)| = k— 1. Thus we have shown
that O1,0a, ... 04 are disjoint and similarly I, I, ..., I; are all disjoint.

This implies that v;(D — s) > d = 2k — 1 and hence, by Theorem 7.7.7
ax(D — s) =5 (D — s). Since D is k-strong it follows that v} (D — s) cannot
be greater than d, since the d arcs to and from s eliminate all sets with fewer
than k neighbours. Thus ay (D —s) = d. It remains to prove that we can make
D — s k-strong by adding a set of d arcs which form a pairing of {uy,...,uq}
with {v1,...,vq}.

Let F be any optimal augmenting set consisting of d arcs so that adding
these arcs to D — s results in a k-strong digraph D*. Then F' must contain
exactly one arc whose tail is in O; and exactly one arc whose head is in I,
1=1,2,...,d, since O1,0s,...04 are disjoint and I, I, ..., I are disjoint.
This gives a pairing (O1, Ir1)),- - -, (O, Irx()), Where 7 is a permutation of
{1,2,...,d}. Note that the set O; = V — (O; U N7_.(0,)) is in-tight in
D — s. Let e; be the unique arc in F' which has tail in O; and head in I ).
Then e; must have its head in O; (because after adding F, O; has an in-
neighbour in O;). Then the minimality of I (;y and Proposition 7.1.3 implies
that Iy C O;.

Clearly the arc e; is k-critical in D*, since it is the only arc from F' which
leaves O;. Thus, by Lemma 7.7.15, there is a unique minimal out-tight set
O containing the tail of e; and a unique minimal in-tight set I containing
the head of e; in D* — e;. We claim that O = O; and I = I;). Clearly
O; is out-tight in D* — e;, so O C O;. If we do not have equality, then this
would contradict the minimality of O; in D — u;s (here we used that s has
precisely one in-neighbour in O;). Now it follows from Lemma 7.7.15 that
we can replace the arc e; by any arc from O; to I(;), in particular, the arc
UiVx(;), and still have an optimal augmenting set F’. This shows that we can
replace the arcs in F' one by one, until we get the optimal augmenting set
F* = {u1vrq1y, ..., uqvr(py} and the proof is complete. O



376 7. Global Connectivity

For further results on splittings that preserve vertex-strong connectivity
the reader is referred to the papers [271, 272] by Frank and Jordén, the paper
[467] by Jorddn and Jordan’s PhD thesis [468].

7.8 A Generalization of Arc-Strong Connectivity

Below we show how to reduce the vertex-strong connectivity augmentation
to a generalization of the arc-strong connectivity augmentation problem.

Let D = (V, A) be a directed multigraph with two specified (not necessar-
ily disjoint) subsets S, T of vertices. We say that D is k-(S, T)-arc-strong
if there are k arc-disjoint (s,t)-paths in D for every choice of s € St € T
Thus if S =T =V this corresponds to D being k-arc-strong.

Recall that in the proof of Menger’s theorem (Theorem 7.3.1) we re-
duced local vertex-strong connectivity to local arc-strong connectivity via
the vertex-splitting technique (recall Figure 3.4). It follows from the proof of
Theorem 7.3.1 that a digraph D = (V, A) is k-strong if and only if Dgrp is
k-(S,T)-arc-strong, where S = {vs : v € V},T = {v; : v € V}. Two subsets
X,Y are (S,T)-independent if XNY NT =0, or S C XUY. A fam-
ily F of subsets of V is (S, T)-independent if the sets in F are pairwise
(S, T)-independent. A set X C V is essential if X N T # () and S — X # 0.

Frank and Jorddn [272] characterized the size of a minimum cardinality
set of new arcs to add to a digraph D = (V, A) with specified subsets S, C V
in order to make the resulting digraph k-(S, T')-arc-strong.

Theorem 7.8.1 [272] Let D = (V, A) be a digraph with a pair of non-empty
(not necessarily disjoint) subsets S,T C V. Then D can be made k-(S,T)-
arc-strong by adding at most v arcs with tails in S and heads in T if and only
if

S (k- d(2)) <+ (7.22)

ZeH
holds for every (S, T)-independent family H of essential subsets of V. a

To see that we really need to consider deficiencies of (S, T)-independent
families (and not just a kind of subpartition lower bound), consider the di-
graph with four vertices {s1,s2,%1,t2} and no arcs. If we take £ = 1, then
it is easy to see that, if we can add arcs from S to T only, we need four
arcs s;t;, 1,j = 1,2 to obtain a 1-(S, T')-arc-strong digraph. The only (S, T)-
independent family with four members is {{s;,¢;} : 4,5 = 1,2}.

So far no combinatorial polynomial algorithm is known for the (S,T)-
arc-strong connectivity augmentation problem for general k. For k¥ = 1 Enni
described such an algorithm in [219].

Theorem 7.8.1 is not only a generalization of the arc-strong connectivity
augmentation result in Theorem 7.6.3 (and hence implies Theorem 7.6.3 as
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can be verified by solving Exercise 7.39). Theorem 7.8.1 also implies Theorem
7.7.3 as we shall see below.

Proof of Theorem 7.7.3 [273]:

Let D = (V,A) be a digraph with x(D) < k which we want to make
k-strong. We first construct the digraph D" = (S U T, A’) by the vertex
splitting procedure (splitting each v into v, v, see Figure 3.4). By the remark
in the beginning of this section D’ is I-(S,T)-arc-strong if and only if D
is I-strong. Let g s7(D’) denote the k-(S,T)-arc-strong connectivity
augmentation number of D', that is, the minimum number of new arcs
with tails in S and heads in T, one has to add to Dgr in order to make it k-
(S, T)-arc-strong. Furthermore let 1 (D) (ng,s,r(D’)) denote the maximum
deficiency, with respect to k, over all independent families of one-way pairs
in D (respectively, (S, T)-independent families of essential sets in D).

From the construction of D’ and the proof of Theorem 7.3.1, it follows
easily that, if F' is a new set of arcs all with tails in S and heads in T" such
that adding F' to D’ makes the resulting digraph k-(S,T)-arc-strong, then
the corresponding set of arcs added to D will result in a k-strong digraph.
Hence we have

a;g(D) S 7]€’S7T(Dl). (723)
Below we will demonstrate that ngx(D) > nis7(D’). We show that

there is some family F’ of (S,T)-independent essential sets with deficiency
Ne,s,7(F') = ni,s,7(D’) from which we can construct an independent fam-
ily F of one-way pairs in D with nx(F) = ngsr(F'). For this choose
F' =A{Z,...,Z.} with deficiency ng,s1(D’) to satisfy the following prop-

erty:

|F'| is minimal and with respect to this Z(\T — Zj| + 1SN Zj]) is maximal.
j=1

(7.24)
Claim A: For every Z; € F' there is no arc from S — Z; to T N Z;.
Proof of Claim A: Suppose there is some j with 1 < j < r for which there
is an arc st from S—Z; to TNZ;. If [T'NZ;| > 2, then replacing Z; by Z; —t
we obtain a new (5,T)-independent family F” of essential sets and since
d5,(t) = 1 it follows that the deficiency of F” is at least that of 7. But now
F" contradicts the choice of F' so as to satisfy (7.24). Hence T'N Z; = {t}.
Since v, € T dominates v, € S for each v € V, we have |S — Z;| > 2, (as
otherwise d~(Z;) > |T|—1 = |V|—1 > k and we could have deleted Z; from
F' without decreasing the deficiency, contradicting (7.24)). Now replace Z;
by Z; U{s} in F'. The new family F* still consists of essential sets and has
at least the same deficiency. This contradiction to (7.24) completes the proof
of the claim. O

Note that by Claim A,
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dp(Z;) = {vi 1 v & Z; and v, € Z;}]. (7.25)

Claim B: For every Z; € F’ there is some v € V so that both v, and v,
belong to Z;.

Proof Claim B: Suppose some Z; does not satisfy this property. Choose
vs & Zj so that v, € Z;. It S — Z; # {v,}, then replace Z; by Z; U {s} in F'.
The new family F* still consists of essential sets and has at least the same
deficiency. This contradicts (7.24). Hence we may assume that S — Z; =
{vs}. By the assumption that Z; does not contain any pair v,, v, we get
that TN Z; = {v;} and as above we see that Z; can be deleted from F’,
contradicting (7.24). 0

Now we can finish the proof of Theorem 7.7.3: Let
Xj={veV:iv¢Z;},Y;={veV:iv,e Zjand v, € Z;},1 < j <.

It follows from the fact that each Z; is essential and Claim B that X;,Y; # 0.
Furthermore, by Claim A, (X;,Y;) is a one-way pair and, by (7.25), it has

deficiency k — dp,,(Z;). Let
F={(X1,Y1),..., (X, Y)}.

Since F' is (S, T)-independent, F consists of independent one-way pairs and
by the remark above, the deficiency of F equals ny s r(D’). This shows that
N, (D) > ni,s,7(D"). Combining this with (7.23), we get

ni,s,7(D") < ni(D) < ar(D) < v, s,7(D").

By Theorem 7.8.1 equality holds everywhere and Theorem 7.7.3 follows. O

7.9 Arc Reversals and Vertex-Strong Connectivity

Suppose now that we want to increase the vertex-strong connectivity of a
digraph by re-orienting arcs rather than adding new ones. This gives rise to
the following problem.

Problem 7.9.1 Given natural number k and a digraph D = (V, A) on at
least k + 1 wvertices, find a minimum set F C A of arcs in D such that the
digraph D' obtained from D by reversing every arc in F is k-strong.

If such a subset exists, then we let ri(D) = |F|, where F is a minimum
cardinality subset of A, whose reversal makes the resulting digraph k-strong.
Otherwise we let 7, (D) = oco.

For arbitrary digraphs it is not clear how we can decide whether such a
reversal even exists, let alone find an optimal one (unless we try all possibili-
ties which clearly requires exponential time). Indeed, this seems to be a very
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difficult problem (see also Conjecture 8.6.7). Clearly, if r(D) < oo, then we
have

ak(D) S Tk(D), (726)

since, instead of reversing in D we may add exactly those new arcs we would
obtain by reversing and keep the original ones.

We will now show that for semicomplete digraphs D, the function ry (D)
behaves nicely.

Lemma 7.9.2 [8/] If a semicomplete digraph D has at least 2k + 1 vertices
then r(D) is finite and is bounded by a function depending only on k.

Proof: To see this it suffices to use the following two simple observations,
the proofs of which are left to the reader as Exercises 7.26 and 7.36.

(a) If D is a k-strong digraph and D’ is obtained from D by adding a new
vertex x and arcs from x to every vertex in a set X of k distinct vertices
of D and arcs from every vertex of a set Y of k distinct vertices of D to
x, then D’ is also k-strong.

(b) If T is a semicomplete digraph on at least 4k —1 vertices, then T' contains
a vertex with in-degree and out-degree at least k.

By observations (a) and (b), for every semicomplete digraph T', r(T) <
r(T") for some subgraph T" of T with |V (T")| < 4k — 2. Continue removing
vertices as long as we can find a vertex of in- and out-degree at least k,
or the current graph has 2k + 1 vertices. When this process stops we have
2k +1 < |V(T")| < 4k — 2 in the current semicomplete digraph 7. Then
we can make T” k-strong by reversing some arcs and add back each of the
removed vertices in the reverse order of the deletion. This provides a simple
upper bound for r(T) (and hence for ax(T)) as a function of k: we need to

(4k—3)

4k—2
reverse at most (F=2(4k=3)

1 arcs. O

Note that the process above may not lead to an optimal reversal for the
original semicomplete digraph(in terms of the number of arcs to reverse), not
even if we reverse optimally in T (see also Exercise 7.40). Bang-Jensen and
Jordén showed that, somewhat surprisingly, as soon as the number of vertices
in the given semicomplete digraph D is sufficiently high (depending only on
k), the minimum number of arcs in D we need to reverse in order to achieve
a k-strong semicomplete digraph equals the minimum number of new arcs we
need to add to D to obtain a k-strong semicomplete digraph.

Theorem 7.9.3 [84] If D is a semicomplete digraph on at least 3k — 1 ver-
tices for some k > 2 then a(D) = ri(D).

The idea is to show that ri(D) < ax(D), by demonstrating that a certain
optimal augmenting set F' of D has the property that, if we reverse the
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existing (opposite) arcs of F' in D, then we obtain a k-strong semicomplete
digraph. As we point out later, even for semicomplete digraphs, it is by no
means the case that just an arbitrary optimal augmenting set will have this
property. It was shown in [84] that 3k —1 is the best possible for semicomplete
digraphs. However, in the case when D is tournament, the question as to
whether or not the bound is best possible was left open and the following
conjecture was implicitly formulated.

Conjecture 7.9.4 [84] For every tournament D on at least 2k + 1 vertices,
we have ag(D) = ri(D).

One may argue that perhaps if we restrict ourselves to only adding arcs
between adjacent vertices, then we could have ay(D) = r(D) for arbitrary
digraphs D, provided both numbers are finite and the number of vertices in
D is large enough. This is not true, however, as can be seen from the following
example:

VA4 V4

T1 T2

x z

Figure 7.9 A digraph with a2(D) = 1 and r2(D) = 2. The digraphs T1 and T are
2-strong. Fat arcs between sets of vertices indicate that all arcs between these sets
are present and have the direction shown.

Let Th and T3 be disjoint 2-strong digraphs, let u € V(T1), v € V(13) be
fixed vertices and let D be the digraph obtained from T; and T, by adding
new vertices x,y, z and the following arcs (see Figure 7.9):

{r—y:reV()}U{y—s:seV(Tr)}U{s—r:se€ V(Ty),r € V(T})} U
{r—z:reV(T1) —u}U{s—z:5 € V(Ilz) —v}U{z—u,z—v, z—z}
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It is not difficult to see that as(D) = 1 and that any arc whose addition to
D results in a 2-strong digraph has tail x and head in 75 U z. On the other
hand it is also easy to see that ro(D) > 2 (Exercise 7.34). This example can
be modified to work for any k > 1 (Exercise 7.35).

If we add arcs to the digraph D described above without increasing the
number of out-neighbours of x and of z, we can construct a semicomplete
digraph D’ of any given size for which zz is an optimal augmentation but
reversing xz does not make D’ 2-strong.This — and similar constructions for
higher connectivity — show that even for semicomplete digraphs we cannot
reverse along an arbitrary optimal augmenting set for k£ > 2.

The following conjecture which is stronger than Conjecture 7.7.13 was
made by Bang-Jensen at a meeting in Budapest in 1994. Again the transitive
tournament on n > 2k + 1 vertices shows that the bound would be best
possible if true.

Conjecture 7.9.5 For every tournament T on n vertices and every positive
k(

integer k such that n > 2k + 1 we have ri(T) < k%l)

The problem of determining the optimal number of arcs to be reversed to
make an arbitrary digraph k-arc-strong was shown by Frank to be polynomi-
ally solvable in [254]. We will return to this in Section 8.8.4, where we shall
see how to solve this problem using submodular flows.

We complete this section with the following useful observation, which we
use in Section 7.14.

Lemma 7.9.6 [44, 3/4] Let D = (V, A) be a k-strong digraph and let xy be
an arc of D. If D has at least (k 4+ 1)-internally disjoint (x,y)-paths each of
length at least 2, then the digraph D' obtained from D by replacing the arc
xy by the arc yx (or just deleting xy if yr € A) is k-strong. Furthermore, if
D’ is not (k + 1)-strong, then every minimum separating set S’ of D' is also
separating in D.

Proof: Suppose that D’ is not (k+1)-strong. Let S’ be a minimum separator
of D'. Then |S’| < k and there is some pair a,b of vertices separated by S in
D’. Tt follows from the assumption on x(zx,y) that either S’ N {z,y} # 0, or
S’ does not separate x,y. From this we get that {a,b} # {z,y} and that a,b
are also separated by S’ in D. This shows that every minimum separating
set of D’ is also separating in D. Since D is k-strong we have |S’| = k and
hence D’ is k-strong. O

7.10 Minimally k-(Arc)-Strong Directed Multigraphs

A directed multigraph D = (V, A) is minimally k-(arc)-strong if D is k-
(arc)-strong, but for every arc e € A, D — e is not k-(arc)-strong. From an
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application point of view it is very important to be able to identify a small
subgraph of a k-(arc)-strong directed multigraph which is spanning and still
k-(arc)-strong. The reason for this could be as follows. If many arcs of D
are redundant, then it may make sense to discard these. If one is writing
an algorithm for finding a certain structure that is based on k-(arc)-strong
connectivity, then working with the smaller subgraph could speed up the
algorithm, especially if k is relatively small compared to n.

Note however that, if we are given a k-(arc)-strong directed multigraph
D = (V,A) and ask for the smallest number of arcs in a spanning k-(arc)-
strong subgraph of D, then this is an NP-hard problem. Indeed, a strong
digraph D on n vertices has a strong spanning subgraph on n arcs if and only
if D has a hamiltonian cycle. Hence, we must settle for finding spanning sub-
graphs with relatively few arcs. Since every k-arc-strong directed multigraph
on n vertices has at least kn arcs, the proof of Theorem 7.10.1 together with
Exercise 9.27 implies that there is a polynomial algorithm to find a spanning
k-arc-strong subgraph with no more than twice the optimum number of arcs.
We discuss this topic in more detail in Section 7.16.

7.10.1 Minimally k-Arc-Strong Directed Multigraphs

We present some important degree results by Mader [535]. Combining these
results with Theorem 7.5.2 we obtain a construction method (also due to
Mader) to generate all k-arc-strong directed multigraphs. We start with a
result by Dalmazzo which gives an upper bound on the number of arcs in
any minimally k-arc-strong directed multigraph of order n.

Theorem 7.10.1 [172] A minimally k-arc-strong directed multigraph has at
most 2k(n — 1) arcs and this is the best possible.

Proof: Let D = (V, A) be k-arc-strong and let s be a fixed vertex of V. By
Corollary 7.3.2 d¥(U),d™ (U) > k for every §) ## U C V. Hence, by Edmonds’
branching theorem (Theorem 9.5.1), D contains k arc-disjoint in-branchings
Fgy,...,Fg, rooted at s and k arc-disjoint out-branchings F;rl, Cey F:rk
rooted at s. Let A" = A(Fy;)U...UA(F_}) UA(F)u. .. UA(F;Fk) and let
D' = (V,A"). Then D’ is k-arc-strong and has at most 2k(n — 1) arcs. Thus
if D is minimally k-arc-strong, then A = A’. To see that this bound cannot
be sharpened it suffices to consider the directed multigraph obtained from a
tree T (as an undirected graph) and replacing each edge uv of T by k arcs
from u to v and k arcs from v to u. O

It it easy to see that, if D = (V, A) is minimally k-arc-strong, then every
arc uv leaves a k-out-critical set* and enters a k-in-critical set. Applying
(7.2) we obtain Lemma 7.10.2 below which implies that every arc uv leaves

4 Recall that this means that there is some X C V such that v € X,v € V - X
and d™(X) = k.
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precisely one minimal k-out-critical set X, and enters precisely one minimal
k-in-critical set Y,,. Here minimal means with respect to inclusion.

Lemma 7.10.2 If XY are crossing k-in-critical sets in D, then X NY and
X UY are also k-in-critical sets and d(X,Y) = 0.

Proof: Suppose X, Y are crossing and k-in-critical. Using (7.2) we get

k+k=d (X)+d (V)
=d (XUY)+d (XNY)+d(X,Y)
> k+F,

implying that X NY and X NY are both k-in-critical and d(X,Y) =0. O

Intuitively, Lemma 7.10.2 implies that minimally k-arc-strong directed
multigraphs have vertices of small in-degree and vertices small out-degree.
The next result by Mader shows that this is indeed the case. In fact, a much
stronger statement holds.

Theorem 7.10.3 [585] Every minimally k-arc-strong directed multigraph
has at least two vertices x,y with d*(z) =d~ (z) =d* (y) =d~ (y) = k.

Proof: We give a proof due to Frank [260]. Let R be a family of k-in-critical
sets with the property that

every arc in D enters at least one member of R. (7.27)

By our remark above such a family exists since D is minimally k-arc-strong.
Our first goal is to make R cross-free (that is, we want to replace R
by a new family R* of k-in-critical sets such that R* still satisfies (7.27)
and no two members of R* are crossing). To do this we apply the so-called
uncrossing technique which is quite useful in several proofs. If there are
crossing members X, Y in R, then by Lemma 7.10.2, XNY and XUY are k-in-
critical and d(X,Y) = 0. Hence every arc entering X or Y also enters X UY,
or X NY. Thus we can replace the sets X, Y by XNY, X UY in R (we only
add sets if they are not already there). Since | XNY |2 +|XUY|? > | X|2+|Y|?
and the number of sets in R does not increase, we will end up with a family R
which is cross-free. Note that we could have obtained such a family directly by
choosing the members in R as the unique minimal k-in-critical sets entered by
the arcs of A. However, this choice would make the proof more complicated,
since we lose the freedom of just working with a cross-free family satisfying
(7.27). We shall use this freedom in Case 2 below. Assume below that

R is cross-free. (7.28)

Now the trick is to consider an arbitrary fixed vertex s and show that
V' — s contains a vertex with in-degree and out-degree k. This will imply the
theorem.
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Let s be fixed and define the families S and U as follows

S={XeR:s¢X}, U={V-X:s5€ X R} (7.29)

Let £L=L(R)=SUU.

Claim A: The family £ is laminar.

Proof of Claim A: We must show that no two members of £ are inter-
secting. Suppose X,Y € L are intersecting. Then X and Y cannot both be
from & since then they are crossing and this contradicts (7.28). Similarly X
and Y cannot both be from U, since then V — X,V — Y are crossing mem-
bers of R, a contradiction again. Finally, if X € S and Y € U, then X and
V —Y are crossing members of R, contradicting (7.28). This proves that £
is laminar. ad

By the choice of S and U/ we have the following property:

Every arc either enters a member of S or leaves a member of ¢ (or both).
(7.30)
Suppose R is chosen such that (7.27) and (7.28) hold and furthermore

Z | X | is minimal. (7.31)
XeL
To complete the proof of the theorem we consider two cases.

Case 1 Every member of £ has size one:

Let X ={z e V-s:{z}eStand Y ={y e V-s:{y} € U}
Then X cannot be empty, since every arc leaving s enters X. Similarly Y is
non-empty. Now if X N'Y = (), then there can be no arc leaving X, by the
definition of X and (7.30). However d*(X) > k, since D is k-arc-strong and
hence we have shown that X N'Y # (). Let ¢ be any element in X NY, then
we have dt(t) = d~(t) = k.

Case 2 Some member Z of £ has size at least two:

Choose Z such that |Z] is minimal among all members of £ of size at
least two.

Note that, if we consider the converse D* of D and let R* = {V — X :
X € R} and then define 8*,U* as we defined S and U from R, then S* =U
and U* = S. Furthermore, the corresponding family £* satisfies (7.30) and
(7.31). This shows that we may assume without loss of generality that Z € S.
We claim that

the directed multigraph D(Z) is strongly connected. (7.32)

Suppose this is not the case and let Z1, Zs be a partition of Z with the
property that there are no arcs from Z; to Z;. Then we have k < d~(Z;) <
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d=(Z) = k, implying that Z; is k-in-critical and that every arc that enters
Z also enters Z1. Let R = R —{Z} +{Z1}, &' =S —{Z} + {Z1} and let
L'=8"UU. Then L' still satisfies (7.30) and

> IXI< Y IXI.

XeL XeL

However, this contradicts the choice of R. Thus we have shown that D(Z) is
strongly connected. This establishes (7.32).

We return to the proof of the theorem. Let
A={zeZ:{z} eS},B={z€ Z:{z} eU}.

If AN B # 0 then any vertex t € AN B has d*(t) = d~(t) and we are done.
Suppose AN B = (. Then we claim that

A=0. (7.33)

Suppose A # (). By the choice of R so that L satisfies (7.31), we cannot
leave out any set without violating (7.30). Hence we cannot have A = Z, be-
cause then we could leave out Z without violating (7.30). Now (7.32) implies
that there is an arc uv from A to Z — A. Since L satisfies (7.30), the arc
uv either enters some member of S or leaves a member of Y. If it enters a
member M of S, then by the definition of A, M cannot be of size one. On
the other hand, by the fact that £ is laminar and the minimality of Z, M
also cannot have size at least two. Hence uv must leave a member W of U.
Since we have assumed A N B = (), this must be a set of size more than one.
Using that £ is laminar it follows that W C Z, contradicting the choice of
Z. Hence we must have A = () and (7.33) is established. Next we claim that

B=2Z. (7.34)

Since A = () and Z is minimal among all members of £ of size at least
2, every arc with both ends in Z must leave a member of B (using the same
arguments as above). Hence B # () and we must have B = Z, since otherwise
(7.32) would imply the existence of an arc from Z — B to B, contradicting
what we just concluded.

Now we are ready to complete the proof of the theorem. Since B = Z,
every vertex in Z has out-degree k. Thus we have

klZ| = dt(v)

veZ
=d"(Z) + |A(D(Z))]
> k+[A(D(Z))|
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=k+(>_d (v)—d (2)

vEZ
=2 d W
vEZ
> k|Z|.
Hence equality holds everywhere, in particular, every vertex in Z has in-
and out-degree k. ad
2 2 2
° 1 3 4 3
1 \/
1 1
1

Figure 7.10 A construction of a 2-arc-strong directed multigraph starting from a
single vertex.

Using Theorem 7.5.3 and Theorem 7.10.3 one can obtain the following
complete characterization of k-arc-strong directed multigraphs, due to Mader
[537].

Theorem 7.10.4 [537] A directed multigraph D is k-arc-strong if and only
if it can be obtained starting from a single vertex by applying the following
two operations (in any order):

Operation A: Add a new arc connecting existing vertices.
Operation B: Choose k distinct arcs ujivy, . ..upvr and replace these by 2k
new arcs uiS,...,us, svi,...,Svy, where s is a new vertez.

Proof: Clearly Operation A preserves the property of being k-arc-strong. To
see that this also holds for Operation B we apply Menger’s theorem. Suppose
D is k-arc-strong and D’ is obtained from D by one application of Operation
B but D’ is not k-arc-strong. Let U C V(D’) be some subset such that
d},(U) <k — 1. Then we must have U # {s} and U # V (D), since clearly s
has in- and out-degree k in D’. Now it is easy to see that the corresponding set
U —s has out-degree less than k in D, a contradiction. From these observations
it is easy to prove by induction on the number of vertices that every directed
multigraph that can be constructed via operations A and B is k-arc-strong.
Here we assume by definition that every directed pseudograph having just
one vertex is k-arc-strong.

The other direction can be proved using induction on the number of arcs.
If D is k-arc-strong and not minimally k-arc-strong, then we can remove an
arc and apply induction. Otherwise it follows from Theorem 7.10.3 that D
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contains a vertex s such that d*(s) = d=(s) = k. According to Theorem 7.5.3

this vertex and the 2k arcs incident with it can be replaced by k new arcs

in such a way that the resulting directed multigraph D’ is k-arc-strong. By

induction D’ can be constructed via operations A and B. Since we can go

from D’ back to D by using operation B once, D can be constructed using

operations A and B. O
See Figure 7.10 for an illustration of the theorem.

7.10.2 Minimally k-Strong Digraphs

In this section D = (V, A) is always a digraph (i.e. no multiple arcs) and
hence we know that d*(v) = |N*(v)| for each v € V.

We saw in the last section that every minimally k-arc-strong directed
multigraph has at least two vertices with in- and out-degree equal to k.
Mader conjectures that this is also the case for vertex-strong connectivity in
digraphs.

Conjecture 7.10.5 [538] Every minimally k-strong digraph contains at least
two vertices such that both have in- and out-degree k.

This conjecture is still open and seems very difficult. For k = 1 the truth
of Conjecture 7.10.5 follows from Theorem 7.10.3. Mader [541] has proved
the conjecture for k£ = 2. For all other values of k the conjecture is open.
Examples by Mader [535] show that one cannot replace two by three in the
conjecture.

Recall (from Subsection 7.7.4) that an arc e of a k-strong digraph is k-
critical if D — e is not k-strong. By Lemma 7.7.2, for each k-critical arc uv we
can associate sets Ty, Hyy such that (T, Hyy) is a one-way pair in D — uv
and h(T,y, Hyy) = k—1. This one-way pair may not be unique, but below we
always assume that we have chosen a fixed one-way pair for each k-critical
arc in D. Compare this with Lemma 7.7.15.

Lemma 7.10.6 Let D = (V, A) be a k-strong digraph. Then the following is
true:

(a) If D has two k-critical arcs uz,uy, such that d*(u) > k+1, then |Ty,| >
|Hyzl-
(b) If D has two k-critical arcs xu, yu, such that d=(u) > k+1, then |Hy,| >

Proof: Since (b) follows from (a) by considering the converse of D, it suffices
to prove (a). Hence we assume that uz,uy are k-critical arcs of D and that
d*t(u) > k+1. Let (Tuy, Huz), (Tuy, Huy) be the pairs associated with uz, uy
above. Note that these are not one-way pairs in D, since there is a (unique)
arc, namely ux (uy) which goes from Ty (Tuy) t0 Huz (Huy). Let also Syz =
V= (Tue UHyz) and Syy =V — (Tyy U Hyy). Then |Sys| = [Suy| = k—1 and
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11 11
. !
: \‘— w : ~
,,,,,,,,,,,, ol Yy | Y
(& JER PR G -1 ¢
S’u,z a N e | T I a e
! z
Tuy Suy 3 Huy Tuy Huy
(A) (B)

Figure 7.11 Illustration of the proof of Lemma 7.10.6. Part (A) illustrates the case
when Hy, N Hyy # 0. Part (B) illustrates the case when Hy, N Hyy = 0. The first
row of each 3 x 3 diagram corresponds to the set T’,. The first column corresponds
to Tuy and so on. The positions of x,y indicate that they can be in either of the
two neighbouring cells. The numbers a, b, ¢, d, e denote the cardinality of the sets
corresponding to their cell.

x € Hyy — Hyy,y € Hyy — Hyp. It will be useful to study Figure 7.11 while
reading the proof.

Let a, b, c,d, e be defined as in Figure 7.11. Since each of the sets Sy, Suy
has size k — 1 we see that

a+b+2c+d+e=2k—2. (7.35)

We claim that Hy, N Hy, = (. Suppose this is not the case and let
z € Hy, N Hy,, be arbitrarily chosen. Now it follows from the fact that
(Tyzy Hyz) is a one-way pair in D — ux and (Tyy, Hy,y) is a one-way pair in
D —uy, that the set C7, indicated by the line I in Figure 7.11, separates u from
zin D. Hence c+d+e > k, since D is k-strong. Now (7.35) implies that the
set Cpy, indicated by the line II, has size at most k& — 2. Since d*(u) > k+1
and v has precisely two arcs, namely ux,uy out of T,z N1y, in D — Cyy,
we see that there is some out-neighbour w of v inside T\, N T},,. But now
it is easy to see that Cjy U {u} separates w from z, contradicting that D is
k-strong. Hence we have shown that H,, N Hyy = 0.

To complete the proof, we only need to show that a > d. Suppose this
is not the case. Then in particular d > 1 and the size of the set Cyy is at
most |Syy| +a —d < k — 2. Thus as above we can argue that u has an out-
neighbour w inside Ty, N Ty Now Crr U {u} separates w from z in D, a
contradiction. a
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An anti-directed trail is the digraph T one obtains from a closed undi-
rected trail T" of even length by fixing a traversal of T' and orienting the edges
so that every second vertex v has in-degree zero when we consider just the
two arcs between v and its successor and predecessor on 7. We denote the
anti-directed trail T by T = v101V203 . .. U,Uv1, where U; indicates that the
vertex v; is dominated by both its successor and its predecessor on the trail
T. A vertex which dominates (is dominated by) both its successor and its
predecessor on T is a source (sink) of 7. Note that if a vertex v is repeated
on T then v may be both a source and a sink. An anti-directed cycle is
an anti-directed trail in which no vertex occurs twice (that is, the underlying
graph is just a cycle). See Figure 7.12 for an illustration of the definitions.

U1 U1
Vo2 = U3
V3 V2

Figure 7.12 An anti-directed trail v101v2U2v3U3v1 on 6 vertices. The vertex va = U3
is both a source and a sink of 7. Note that T contains no anti-directed cycle.

Now we can prove the following important result due to Mader:

Theorem 7.10.7 [588] Let D be a k-strong digraph containing an anti-
directed trail T = v101v20s . . . 0. 0,.v1. Then at least one of the following holds:

(a) Some arc e € A(T) is not k-critical in D.

(b) Some source v; of T has out-degree k in D.

(c) Some sink v; of T has in-degree k in D.

Proof: If (b) or (c) holds there is nothing to prove so suppose that d* (v;) >
k + 1 for each source and d~(v;) > k + 1 for each sink of T. We shall prove
that (a) holds.

Suppose to the contrary that every arc e on T is k-critical. Applying
Lemma 7.10.6 (a) to the arcs v17,., v101, we obtain [Ty, 5,| > |Hy, 5, |- Similarly,
we get from Lemma 7.10.6 (b) that |Hy,5,| > |Ty,s5, |- Repeating this argument
around the trail we reach the following contradiction

‘Tﬂlf)r‘ > |HU1171| > |Tv2171‘ > |H712172| > > |Hvr17r| > |TU117T|'
Hence we have shown that (a) holds. O

The following is an easy consequence (see Exercise 7.48).
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Corollary 7.10.8 [538] Every minimally k-strong digraph contains a vertex
x of in-degree k, or a vertex y of out-degree k. a

Using Theorem 7.10.7, Mader proved the following much stronger state-
ment.

Theorem 7.10.9 [5/1] Every minimally k-strong digraph contains at least
k + 1 vertices of out-degree k and at least k + 1 vertices of in-degree k. 0O

Theorem 7.10.7 has many other nice consequences. Here is one for undirected
graphs.

Corollary 7.10.10 [533] Let C be a cycle of a k-connected undirected graph
G. Then either C' contains an edge e which can be removed without decreasing
the connectivity of G, or some vertex v € V(C) has degree k in G.

Proof: To see this, it suffices to consider the complete biorientation D of G
and notice that D — xy is k-strong if and only if D — {zy,yx} is k-strong
(Exercise 7.25) which happens if and only if G — e is k-connected, where
e = xy. Next, observe that in D, the cycle C either corresponds to one anti-
directed trail C’, obtained by alternating the orientation on the arcs taken
twice around the cycle C, when |C] is odd, or to two anti-directed cycles
C’,C" when |C| is even. Now the claim follows from Theorem 7.10.7. O

One reason why Corollary 7.10.10 is important is the following easy con-
sequence concerning augmentations of undirected graphs, which was pointed
out by Jordan.

Corollary 7.10.11 [469] Let G = (V,E) be an undirected graph which is
k-connected, but not (k + 1)-connected. Then every minimal set of edges F
which augments the connectivity of G to (k + 1) induces a forest. a

For directed graphs one obtains the following result, due to Jordén, on
augmentations from k-strong to (k + 1)-strong connectivity. Compare this
with Theorem 7.7.8.

Corollary 7.10.12 [467] Let D = (V, A) be a directed graph which is k-
strong, but not (k + 1)-strong and let F' be a minimal set of new arcs, whose
addition to D gives a (k4 1)-strong digraph. Then the digraph induced by the
arcs in F contains no anti-directed trail. ad

One can also apply Theorem 7.10.7 to questions like: how many arcs can
be deleted from a k-strong digraph, so that it still remains (k—1)-strong [540]
(for undirected graphs see [122]). One easy consequence is the following.

Corollary 7.10.13 [540] If D = (V, A) is minimally k-strong and D’ =
(V, A" is a spanning (k — 1)-strong subgraph of D, then the difference Dy =
(V,A— A’) contains no anti-directed trail.
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Proof: Suppose T = v101v203 . .. Up0,01 is an anti-directed trail in Dy. Since
D is minimally k-strong, (a) cannot hold in Theorem 7.10.7. Suppose without
loss of generality that (b) holds, then some source v; has dj, (v;) = k. However,
since d%(vi) = 2, this implies that d},(v;) = k — 2, contradicting the fact
that D" is (k — 1)-strong. O

Theorem 7.10.7 has many other important applications. We illustrate one
such application in Section 7.16. We finish this section with a conjecture by
Mader.

Conjecture 7.10.14 [540] Every minimally k-strong digraph on n vertices
contains at least Z—;]f + k wvertices with out-degree equal to k.

Mader has proved [540, page 437] that there are at least %, /%45 such

vertices. For more on the topic see the very informative survey [540] by Mader.

7.11 Critically k-Strong Digraphs

In this section we always consider directed graphs (no multiple arcs). A vertex
v of a digraph D is critical if k(D — v) < x(D). The goal of this section is
to illustrate some conditions under which we can always find a non-critical
vertex in a digraph D. First observe that there can be no function f(k) with
the property that every k-strong digraph D with at least f(k) vertices has
a vertex v such that D — v is still k-strong. This is not even the case for
tournaments. To see this consider the example due to Thomassen (private
communication, 1985) in Figure 7.13.

The example in Figure 7.13 can easily be generalized to arbitrary degrees
of vertex-strong connectivity, by replacing each of the tournaments on seven
vertices (right and left side of the figure) by the kth power of a (2k + 1)-cycle
and replacing the three long paths by k long paths starting at the top k&
vertices in the left copy and ending at the top k vertices in the right copy.

Below we discuss some results by Mader on sufficient conditions for a
k-strong digraph to contain a non-critical vertex.

Definition 7.11.1 Let D have k(D) = k. A fragment in D is a subset
X C V with the property that either INT(X)| =k and X UNT(X) #V, or
INT(X)|=k and X UN—(X) £ V.

Thus a fragment X corresponds to a one-way pair (X,Y) with h(X,Y) =
k. Mader proved the following important result:

Theorem 7.11.2 [539] Every critically k-strong digraph contains a fragment
of size at most k.
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Figure 7.13 A family 7 of 3-strong tournaments (the three paths from left to
right can be arbitrary long). The big arc indicates that all arcs not explicitly shown
go from right to left. It can be verified (Exercise 7.46) that each tournament in 7°
is 3-strong and has the property that every vertex other than x,y is critical. Thus
after removing at most two vertices we obtain a 3-strong tournament in which every
vertex is critical.

This was conjectured by Hamidoune [394, Conjecture 4.8.3] who also con-
jectured the next two results, both of which are easy consequences of Theorem
7.11.2.

Corollary 7.11.3 [539] Every critically k-strong digraph contains a vertex
x with in-degree, or out-degree less than 2k.

Proof: Let D = (V, A) be a critically k-strong digraph. By Theorem 7.11.2,
D contains a fragment X with | X| < k. By considering the converse of D if
necessary, we may assume that [N*(X)| = k. We prove that every vertex of
X has out-degree at most 2k —1. Let z € X be arbitrary. Note that every out-
neighbour of x outside X contributes to |NT(X)]|, implying that there are at
most k of these. Now the claim follows from the fact that d} (x) () <k-1.

O

We leave the proof of the next easy consequence as Exercise 7.41.

Corollary 7.11.4 [539] Every critically k-strong oriented graph contains a
verter x with in-degree, or out-degree less than L%J O

7.12 Arc-Strong Connectivity and Minimum Degree

Let D = (V, A) be a digraph and let §(v) = min{d™ (v),d™(v)} for v € V.

Obviously, the highest arc-strong connectivity a digraph can possibly have
is 6°(D). It is not easy to classify those digraphs for which the equality A\(D) =
d%(D) actually holds. However, since we can calculate A\(D) in polynomial
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time (see Subsection 7.4), it is easy to verify whether a given digraph D
satisfies A\(D) = 6°(D).

In this section we will give two sufficient conditions for this equality. The
first result is due to Dankelmann and Volkmann.

Theorem 7.12.1 [173] Let D = (V, A) be a directed graph on n vertices
without multiple arcs and let v1,va, ..., v, be ordered so that §(vy) > §(ve) >
oo > 0(vy) = 6%(D). If $°(D) > |n/2], or 6°(D) < [n/2] and there exists a
k, 1 <k <%D) such that

k
> (6(vi) + 8(vnti—so(p)-1)) = k(n —2) +28°(D) — 1,

then A\(D) = §°(D).

Theorem 7.12.1 implies the following result by Xu which is a generaliza-
tion of a result for undirected graphs in [329].

Corollary 7.12.2 [7/2] Let D be a digraph on n vertices. If there are |n/2|
disjoint pairs of vertices (v;,w;) with

0(v;) +0(w;) >n foralli=1,2,...,|n/2],
then \(D) = §°(D).

For further results on the relation between A(D) and §°(D) see [38, 173].

7.13 Connectivity Properties of Special Classes of
Digraphs

In this section we describe a few results on the connectivity of various classes
of digraphs introduced in Section 1.8 and Chapter 4. Some of these results
will be used in other sections and chapters in this book.

The next lemma implies that almost all minimally k-strong decomposable
digraphs are subdigraphs of extensions of digraphs.

Lemma 7.13.1 [52] Let D = F[S1,852,...,Sy]| where F' is a strong digraph
on f > 2 wvertices and each S; is a digraph with n; vertices and let Dy =
FIK,, , Kp,,-.. ,an] be the digraph obtained from D by deleting every arc
which lies inside some S; (recall that Fm is the digraph on n; vertices and
no arcs). Let S be a minimal (with respect to inclusion) separating set of Dy.

Then S is also a separating set of D, unless each of the following holds:

(a) S=V(S1)UV(Sy)...UV(SF)\V(S;) for someie€ {1,2,...,f}, and
(b) D(S;) is a strong digraph, and
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Figure 7.14 A 2-strong digraph D with decomposition D = Q[H1, H2, Hs, Ha).
Fat arcs indicate that all possible arcs are present and have the direction shown.

The right figure shows the 2-strong digraph Dy = Q[K2, K3, K3, K 3] obtained from
D by deleting all arcs inside each H;.

(C) D = CQ[S, Sl]

In particular, if F' has at least three vertices, then D is k-strong if and only
if Do is k-strong.

Proof: Let S be a minimal separating set of Dy and assume S is not sep-
arating in D. It is easy to see that, if x and y with x,y € S belong to
different S;, then D — S has an (x,y)-path if and only if Dy — S has such
a path. Thus, since S is separating in Dy but not in D, we must have
S = V(S1)UV(Sy)...UV(S¢) \ V(S;) for some ¢ € {1,2,..., f}. Note
that here we used the minimality of S to get that SN S; = () for some j.
Now it follows trivially that D(S;) must be a strong digraph, since D — S is
strong and the minimality of S implies that D = C5[S,S;] (if some S; C S
does not have arcs in both directions to S;, then S — §; is also separating,
contradicting the choice of \S). ad

See Figure 7.14 for an example illustrating the lemma.
Combining Lemma 7.13.1 with Theorem 4.8.5 we obtain.

Corollary 7.13.2 If D is a k-strong quasi-transitive digraph with decompo-
sition D = Q[Wh,...,Wq|], then the digraph Dy = Q[K w,|, .. ’F‘W\Q\l]
(that is, the digraph obtained by deleting all arcs inside each W) is also k-
strong. O

Another easy consequence of Lemma 7.13.1 is the following result by
Bang-Jensen, Gutin and Yeo:
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Lemma 7.13.3 [70] Suppose that D is a digraph which can be decomposed
as D = F[S1, Sa, ..., Sf], where f = |[V(F)| > 2, and let Dy = D — U{zl{uv :
u,v € V(S;)}. Then D is strong if and only if Dy is strong.

Here is a useful observation on locally semicomplete digraphs due to Bang-
Jensen. The proof is left as Exercise 7.38.

Lemma 7.13.4 [44] Let D be a strong locally semicomplete digraph and let
S be a minimal (not necessarily minimum) separating set of D. Then D — S
is connected. a

Lemma 7.13.5 Let D = (V, A) be a k-strong digraph and let D' be obtained
from D by adding a new set of vertices X and joining each vertex of X to
V in such a way that [N, (v)|, [Ny, (v)| > k+ 1 for each v € X. Then D' is
k-strong. If D’ is not also (k+ 1)-strong, then every minimum separating set
of D' is also a minimum separating set of D.

Proof: Suppose D’ is not (k+ 1)-strong and let S’ be a minimum separating
set of D’. Then |S'| < k. Let S = S’ NV(D). Since every vertex of X — 5’
has an in-neighbour and an out-neighbour in V' — S we get that D — S is
not strong and hence S = S’ must hold and S’ is also separating in D. This
implies that |S’| = k, D’ is k-strong and every minimum separating set of D’
is also a minimum separating set of D. ad

7.14 Highly Connected Orientations of Digraphs

We saw in Corollary 7.2.7 that every strong digraph without a bridge has
a strong orientation. In this section we investigate how much of the degree
of arc-strong or vertex-strong connectivity of a digraph D comes from its 2-
cycles. More precisely, suppose we must delete one arc of every 2-cycle (thus
obtaining an orientation of D), can we always maintain a high arc-strong,
respectively vertex-strong, connectivity if the starting digraph has high arc-
strong, respectively vertex-strong, connectivity? It is not difficult to see that
we may not be able to preserve the same degree of arc-strong, respectively
vertex-strong, connectivity, not even if D is semicomplete. See Figure 7.15
for an example. So the question is whether there exist functions f(k), g(k)
with the property that every f(k)-strong ((g(k)-arc-strong) digraph contains
a spanning k-strong (k-arc-strong) subgraph without cycles of length 2.

Let us first consider arc-strong connectivity. Note that every k-arc-strong
oriented graph D must have UG(D) 2k-edge-connected. In particular, if G

is an undirected graph with edge-connectivity \(G) = 2k — 1 and G is the
complete biorientation of G, then D does not contain a spanning k-arc-strong
subgraph. Hence the following result due to Jackson and Thomassen implies
that g(k) = 2k and this is the best possible by the remark above.
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Figure 7.15 A 2-strong semicomplete digraph which has no 2-arc-strong spanning
subtournament. Undirected edges correspond to directed 2-cycles.

Theorem 7.14.1 [/51, 708] Every 2k-arc-strong digraph has a k-arc-strong
orientation. a

Since we may convert a digraph to a mixed graph by replacing each 2-cycle
with an undirected edge, Theorem 7.14.1 follows from Theorem 8.9.1.

The vertex-strong connectivity case seems much harder. Jackson and
Thomassen posed the following conjecture (see [708]):

Conjecture 7.14.2 Fvery 2k-strong digraph has a k-strong orientation.

If true this would be the best possible (meaning that we cannot weaken
the vertex-strong connectivity demand by one, without adding further re-
quirements). To see this let G be the k’th power of an undirected cycle
C = vjvy...v9:v1 on 2r, v > k vertices. It is not difficult to prove that
G is 2k-connected and that the only separating sets of size 2k in G are those
obtained by taking two sets of k consecutive vertices on C', each separated
by at least one vertex on both sides. From this it follows that, if we add
the diagonals v1v,41, V20,49, .. ., UrUg-, then we obtain a (2k + 1)-connected
graph H. Now let D be the complete biorientation of H. Then x(D) = 2k+1
and it is clear that D cannot have a (k + 1)-strong orientation, since UG(D)
is not 2(k 4 1)-edge-connected. See Figure 7.16 and Exercise 7.43.

Note that, if an oriented graph D is k-strong, then UG(D) is k-connected
and 2k-edge-connected. However, the converse is not true, that is, it is not
enough to require that D is k-strong and that UG(D) is 2k-edge-connected
in order to guarantee that D has a k-strong orientation. The semicomplete
digraph in Figure 7.15 shows this and the example can be generalized to an ar-
bitrary odd number of vertices by taking the second power on an odd cycle C
and orienting the original edges as in Figure 7.15. This shows that Conjecture
8.6.7 can neither be extended to mixed graphs, nor to digraphs. Another ex-
ample, due to Alon and Ziegler [708, page 406]-showing that UG(D) may be
k-connected and 2k-edge-connected and still D has no k-strong orientation—is
obtained from the complete biorientation of the graph constructed by taking
two large complete graphs G, G2 sharing just one vertex v and adding k — 1
independent edges with one end in V/(G1) — v and the other in V(G3) — v.
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Figure 7.16 A T-connected 7-regular graph obtained from the third power of a
10-cycle by adding longest diagonals

Very little progress has been made on Conjecture 7.14.2 and it is not even
known if there is some function f(k) so that every f(k)-strong digraph has a
k-strong orientation. Below we shall describe some results on special classes
of digraphs.

Using the structure theorem (Theorem 4.11.15) for locally semicomplete
digraphs Guo proved that every (2k —1)-strong locally semicomplete digraph
which is not semicomplete can be oriented as a k-strong local tournament.

This was improved by Huang [437] who proved that the following much
stronger statement holds:

Theorem 7.14.3 [/37] Every k-strong locally semicomplete digraph which
is not semicomplete can be oriented as a k-strong local tournament. a

Bang-Jensen and Thomassen [44] proved that for semicomplete digraphs
the function f(k) indeed exists. The value of this function was later improved
by Guo.

Theorem 7.14.4 [3/4] For every natural number k, every (3k—2)-strong lo-
cally semicomplete digraph has an orientation as a k-strong local tournament
digraph.

We will not prove the bound 3k — 2 here, but instead give the proof by Bang-
Jensen and Thomassen that f(k) < 5k for semicomplete digraphs. That proof
illustrates the main ideas and Guo’s proof is a refinement of the proof we give.
Note that by Theorem 7.14.3 it is enough to consider semicomplete digraphs.

We prove by induction on k that every 5k-strong semicomplete digraph
D contains a spanning k-strong tournament. The case k£ = 1 is easy, since
by Theorem 1.5.1, every strong semicomplete digraph has a Hamilton cycle.
Let C be a Hamilton cycle in D. For every 2-cycle of D delete an arbitrary
arc of that 2-cycle, unless one of its arcs is used by C. In the latter case
we delete one arc of the 2-cycle so as to preserve C. We obtain a spanning
strong tournament 7' of D. Note that the case k = 1 also follows easily from
Corollary 7.2.7.
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Suppose we have proved the statement for all » < k — 1, that is, every 5r-
strong semicomplete digraph contains a spanning r-strong tournament. Let
D be a 5k-strong semicomplete digraph and suppose D does not contain a
spanning k-strong tournament. We derive a contradiction to this assumption.
First observe that we must have |V(D)| > 5k + 2 since otherwise D is the
complete digraph on 5k + 1 vertices and this clearly contains a k-connected
spanning tournament.

By induction D contains a (k — 1)-strong spanning tournament. Let T be
chosen among all (k — 1)-strong spanning tournaments of D such that the
following holds:

(i) The number s of separating sets of size k — 1 in 7' is minimum over all
k — 1-strong spanning subtournaments of D.

(ii) T has a separating set S of size k — 1 such that the number m of strong
components of 7' — S is minimum taken over all separating sets of size
kE—1ofT.

Let S be some separating set of T such that T'— S has precisely m strong
components T1, ..., T, (written in the unique acyclic order). Let U = V(T)U
UV (Tp—1) and W = V(T,,). Since D is 5k-strong it follows easily from
Menger’s theorem (Corollary 7.3.2) that in D there are 5k internally disjoint
paths from W to U (see Exercise 7.19). At most k& — 1 of these can pass
through S. Thus in D — S there are at least 4k 4+ 1 arcs from W to U. Let
U cU (W' C W) be those vertices v of U (W) for which some arc in D
from W to U has v as its head (tail). Since D — S has at least 4k + 3 vertices,
either U or W has size at least 2k + 2. Using this and the fact that D — S
has 4k + 1-internally disjoint (w, u)-paths for every choice of u € U,w € W,
we get from Corollary 7.3.2 that either |U’| > 2k + 1 or |W’| > 2k + 1. By
considering the converse of D if necessary, we may assume |U’| > 2k + 1.

The digraph T(U’) is a tournament on at least 2k + 1 vertices and hence
it has a vertex x with at least k out-neighbours in U’. Let y be a vertex in
W' such that yx is an arc of D (y exists since z € U’). In T we have the
arc zy (since every vertex in U dominates every vertex in W) and since x
has out-degree at least k in T(U’), there are at least k (z,y)-paths of length
2 in T. Let T” be the spanning tournament in D that we obtain from T" by
replacing the arc zy by the arc yx. Applying Lemma 7.9.6 we get that T’
has no more than s minimum separating sets. However, it is easy to see that
T’ — S is either strong (if x € V(T1)), or it has fewer strong components than
T — S and hence we obtain a contradiction to the choice of T according to

(), (i) 0
It can be seen by inspecting Guo’s proof in [344] that (3k — 2)-strong

connectivity is the best bound one can prove using his approach. However,
at least for k = 2 this is not sharp when we have more than 2k vertices:

Proposition 7.14.5 [83] Every 3-strong semicomplete digraph on at least 5
vertices contains a spanning 2-strong tournament. O
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u@

T H

Figure 7.17 A k-strong semicomplete digraph D. All arcs between H and T go
from H to T, except the 2-cycle zyxr shown as an edge. All other arcs not shown
are in 2-cycles. A, B, C represent arbitrary complete digraphs on at least one vertex
each. The set C has k — 3 vertices and hence k is defined as |C| + 3. The one-way
pair T, H (in D — xy) shows that we cannot delete xy and the one-way pair (1", H')
with T = AU{y,t}, H = BU {h,z} shows that we cannot delete yz.

It is perhaps worthwhile to notice that it does not seem easy to con-
struct k-strong semicomplete digraphs with many vertices such that both
arcs of some 2-cycle are critical with respect to k-strong connectivity (that
is, deleting any of these arcs, the digraph is no longer k-strong). In order
to obtain such a semicomplete digraph we must construct it so that we can
prove that it is k-strong and that some 2-cycle zyx has the property that
none of D — {zy} and D — {yx} is k-strong. Here the concept of one-way
pairs and Lemma 7.7.2 is a useful tool. Suppose that none of D — {zy} and
D — {yx} are k-strong. Then each of these must be (k — 1)-strong and there
must exist one-way pairs (11, Hy), (T, Hz) in D — xy, respectively D — yx
with h(Tl,Hl) = h(TQ,HQ) =k—1landz e T N Hz,y € Ty N Hy. Based
on these findings one can construct a semicomplete digraph with the desired
property. See Figure 7.17. We leave it to the reader to verify that D is indeed
k-strong (Exercise 7.42).

Let us call a 2-cycle zyx in a semicomplete digraph D critical if we
cannot delete any of the arcs xy,yr without decreasing the vertex-strong
connectivity of D.

Problem 7.14.6 Investigate the structure of the critical 2-cycles in semi-
complete digraphs.
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As an illustration of the usefulness of the structural characterization of
quasi-transitive digraphs in Theorem 4.8.5 we show how Theorem 7.14.4 im-
plies the same statement for quasi-transitive digraphs.

Corollary 7.14.7 For every natural number k, every (3k — 2)-strong quasi-
transitive digraph has an orientation as a k-strong quasi-transitive digraph.

Proof: Let D be a (3k — 2)-strong quasi-transitive digraph and let D =
QWh,....W,], ¢ = |Q|, be a decomposition of D according to Theorem
4.8.5. By Corollary 7.13.2, the digraph Dy obtained from D by deleting all
arcs inside each W; is also (3k — 2)-strong. By Theorem 4.8.5, if @ con-
tains a 2-cycle g;q;q;, then each of W;, W; have size one. Now let H be a
semicomplete digraph obtained from Dy by adding an arbitrary arc between
every pair of vertices inside each V(W;). Clearly H is (at least) (3k — 2)-
strong and hence, by Theorem 7.14.4, it contains a spanning k-connected
tournament 7' (which is obtained from H by deleting one arc from every
2-cycle, that is, T is an orientation of H). By the way we constructed H,
we have T' = Q'[T1,...,Tq| for some choice of tournaments T1,...,Tjg on
|Whl,...,|Wq| vertices respectively. Here @’ is a spanning tournament in
Q. Applying Corollary 7.13.2 to T' = Q'[T1,...,Ty], we get that the quasi-
transitive digraph D’ = Q'[Kw,|, ..., Kw,|] is k-strong and by the remark
above on 2-cycles in @ we see that D’ is a spanning subgraph of D. It is
easy to see that, if we delete an arc from every 2-cycle of a quasi-transitive
digraph, then the result is a quasi-transitive digraph. Let W/ be obtained
from W; by deleting one arc from every 2-cycle in W; for i = 1,2,..., W,.
Now we see that D" = Q'[W{, W3, ..., W,] is the desired k-strong orientation
of D. a

Note that it also follows from the proof above that every (3k — 2)-strong
quasi-transitive digraph contains a spanning k-strong extended tournament.

7.15 Packing Cuts

In this section we consider directed multigraphs. Let D = (V, A) be a directed
multigraph which is connected, but not strongly connected. A directed cut
(or just a dicut) in D is a set of arcs of the form (X,V — X), where X is a
non-empty proper subset of V' such that there are no arcs from V' — X to X
(i.e. (V — X, X) is a one-way pair with h(X,V — X) = 0). Two directed cuts
are arc-disjoint if they do not share an arc. Note that two dicuts (X,V — X)
and (Y,V —Y) may be arc-disjoint but still X NY # (. As an example
consider a directed path zixs...xg. Here {({z1,..., 2} {®iy1, ..., 2x}) :
1 <4i<k-—1}is afamily of k — 1 arc-disjoint cuts (each having precisely one
arc). Clearly these cuts overlap considerably when we consider their vertex
sets. For simplicity we will sometimes denote a dicut (X, V — X) just by the
set X.
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A dijoin is a subset A’ C A which covers all dicuts. Define 2(D) and
7(D) as follows

2(D) = the maximum number of arc-disjoint dicuts in D.
7(D) = min {|A| : A’ is a dijoin}. (7.36)

Suppose D = (V, A) is connected but not strongly connected. Then it is
clear that we can obtain a strong directed multigraph by contracting certain
arcs. It is also clear that, if we contract an arc a which is not an arc of a
dicut (X,V —X), then in the resulting directed multigraph D’ = (V’, A’), the
corresponding pair (X', V' — X’) is still a dicut. On the other hand, if A’ is a
dijoin and we contract all arcs of A’, then the resulting directed multigraph
is strong. Let p(D) denote the minimum number of arcs whose contraction in
D leads to a strong directed multigraph. Then it follows from the discussion
above that

(D) < p(D) < 7(D). (7.37)

Note that, if D is a directed (x,y)-path on r vertices, then a1(D) = 1,
since we may add a new arc yx and get a strong digraph. However, in order
to obtain a strong directed multigraph by contracting arcs, we must contract
r — 1 arcs, showing that p(D) = r — 1. This proves that p(D) and a;(D) may
be arbitrarily far apart.

Let D be a directed multigraph. Recall that the operation of subdividing
an arc consists of replacing the arc xy in question by the path xuy of length
two, where u is a new vertex. If several arcs are subdivided, then all the new
vertices (used to subdivide these arcs) are distinct.

Lemma 7.15.1 Let D = (V, A) be a directed multigraph and let D’ be ob-
tained from D by subdividing each arc once. If D has k arc-disjoint dicuts,
then D' has 2k arc-disjoint dicuts.

Proof: Let D' = (V', A’) be obtained from D by subdividing each arc once.
Let X1,..., X\ be chosen such that the dicuts (X1, V —X1),..., (Xk, V—X})
are arc-disjoint in D. For each dicut (X;,V — X;) we denote by X/ the set we
obtain in D’ by taking the union of X; and the new vertices that subdivide
the arcs leaving X;. Now it is easy to see that each of the dicuts (X;,V’ —
X1), (X, V' =X)), ..., (X, V' = Xy), (X, V' — X},) are arc-disjoint. O

The next theorem, due to Lucchesi and Younger shows that in fact equal-
ity holds everywhere in (7.37).

Theorem 7.15.2 (the Lucchesi-Younger theorem) [528/ Let D =
(V, A) be a directed multigraph which is connected and either D has just one
vertex, or it is not strongly connected. Then (D) = (D).

Proof: We give a proof due to Lovéasz [521]. The proof is by induction on
the number of arcs in A. If A = ), then D has precisely one vertex and there
are no dicuts. Hence the statement of the theorem is vacuously true.
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Now let a € A be an arbitrary arc. Contract a and consider the resulting
directed multigraph D/a. Note that the dicuts of D/a are exactly those in
D which do not contain the arc a. By induction, 7(D/a) = £2(D/a). Hence if
2(D/a) < 2(D)—1, then we can cover all dicuts in D by 7(D/a)+1 < 2(D)
arcs and the theorem is proved. Hence we may assume that

2(D/a) = 12(D) for every arc a € A. (7.38)

By Lemma 7.15.1, if we subdivide all arcs in A, then the resulting digraph
has at least £2(D) + 1 arc-disjoint dicuts (with equality only if 2(D) = 1).
Hence, starting from D and subdividing arbitrary (not previously subdivided)
arcs, we will get a sequence of directed multigraphs Dy = D, Dy, ..., Dy,
where 2(D;) = 2(D) for each i < h — 1 and 2(Dy,) = 2(D) + 1. Let f be
the last arc we subdivided in this process and let H = D},_1. Now H contains
2(D) + 1 dicuts X1, Xa,..., Xop)+1 such that only two of them have an
arc in common and that arc is f.

Observe that H/f arises from G/f by subdivision. Hence, by the as-
sumption (7.38), 2(H/f) = £2(D) and so H contains 2(D) arc-disjoint di-
cuts Y1,Ys,...,Yop) none of which contains the arc f. This implies that
X1, Xo,..., Xo(D)+1, Y1, Y2,..., Yo(p) is a collection of 262(D) + 1 dicuts in
H such that no arc belongs to more than two of these. Thus the following
lemma will give us a contradiction, implying that (7.38) cannot hold and
hence the theorem follows.

Lemma 7.15.3 If a digraph D contains at most k arc-disjoint dicuts, and
C is any collection of dicuts in D such that no arc belongs to more than two
dicuts in C, then |C| < 2k.

Proof of Lemma 7.15.3: Call two dicuts (X,V — X), (Y,V —Y) crossing
if X and Y are crossing as sets. The first step is to uncross crossing dicuts in
the family.

It follows from (7.2) that, if (X,V—X), (Y,V=Y) are crossing dicuts, then
each of (XUY,V—(XUY)),(XNY,V—(XNY)) are dicuts and d(X,Y) = 0.
Furthermore, the dicuts (X UY,V — (X UY)) and (X NY,V — (X NY)) cover
each arc of D the same number of times as the dicuts (X,V —X), (Y, V -Y)
(here we used that d(X,Y) =0). Let ¢’ =C - {(X,V - X),(Y,/'V-Y)} +
{(XUY,V—-(XUY)),(XNY,V—-(XNY))}. Then C’ has the same property
as C that no arc covers more than two dicuts in C and furthermore we have

YoooxPrs Y 1zp (7.39)

(X,V—X)eC (Z,V—-2z)ec

because | X UY|? + [ X NY|> > |X|? 4+ |V|? when X,Y cross. Hence, if we
replace crossing dicuts pairwise as we did above, then we will eventually reach
a new family C* of size |C| such that the dicuts in C* are pairwise non-crossing
and no arc of D belongs to more than two dicuts in C*. Hence it suffices to
prove that C* contains at most 2k dicuts.
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Let C* = {Z1,Z2,...,Z]y[} and let Ai = (Z“V—ZL), 1= 1,27...,M be
the corresponding arc sets. Construct an undirected graph G(C*) = (V, E) as
follows: V' = {v1,va,...,vm} and there is an edge between v; and v; if and
only if A; N A; # 0. Since D contains at most k arc-disjoint dicuts, it follows
that G(C*) has at most k independent vertices. Hence it suffices to show that
G(C*) is a bipartite graph since then we get |C| = |C*| < 2k.

Let viv} ... viv] be an arbitrary cycle in G(C*). Note that the arc sets of
the corresponding dicuts Af, ..., A, must be different, since if (Z/,V — Z!) =
(Z,V —Z;) for some 1 <i < j < s, then every arc in (Z],V — Z]) is covered
twice (by (Z],V — Z]) and by (Z},V — Z})) and hence the vertices v;, v each
have degree one in G(C*), contradicting the fact that they are on a cycle.
Note also that if two dicuts (X,V — X) and (Y, V —Y) have X UY =V,
then they are arc-disjoint and hence are not adjacent in G(C*).

©)ec
Q) 66

Figure 7.18 Illustration of the definition of being to the right and left for cuts. In
the two situations in part (a) (part (b)) the dicut (X,V — X) is to the left (right)
of the dicut (Y, V —Y). In the right part of (a) we have X UY = V.

Since AjNAj, | # 0 fori=0,1,...,5—1, where Aj = A, it follows from
our remarks above that we have either Z] C Z; | or Z/, , C Z;. We prove
that the two possibilities occur alternatingly and hence s is even. Suppose
not, then without loss of generality we have Z C Z; C ZJ. Let us say that a
dicut A; is to the left of another dicut Aj if either Z] C Z}, or Z]UZ; =V
(which is equivalent to V' — Z! C Z}) and that A} is to the right of A
if Z; N Z; = 0 (which is equivalent to Z] C V — Z}), or Z] C Z] (which is
equivalent to V—Z! C V—Z;»). See Figure 7.18. Since C* contains no crossing
members, each A} # A’ is either to the right or to the left of A’. Since Aj
is to the right of A} and Aj, = A’ is to the left of A}, it follows that there
is some 2 < j < s — 1 such that A} is to the right of A} and A}, is to the
left of A’. Suppose first that Z; N Z] = (), then we cannot have Z},; C Z] as
A%,y and A’ have a common arc. So we must have Z; U Z7,, =V, but then

any arc a common to A’ and A, enters Z], contradicting that d~(Z]) = 0.
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Hence we must have Z] C Z}. The fact that A, A} | have a common arc a
(and hence either Z; C Z7,, or Z} | C Z}) implies that, by the choice of j,
we have Z} | C Z] C Z},,. But now the arc a belongs to three dicuts A7, A
and A; 11, a contradiction. This completes the proof of the lemma and, by
the remark above, also the proof of the theorem. a

Combining (7.37) and Theorem 7.15.2, we obtain:

Corollary 7.15.4 Let D be a non-strong directed multigraph whose under-
lying graph is connected. Then p(D) = 7(D), that is, D can be made strongly
connected by contracting T(D) arcs.

The proof of Theorem 7.15.2 is not constructive but using submodular
flows one can find a minimum dijoin A’ C A of D in polynomial time. See
Corollary 8.8.10.

7.16 Application: Small Certificates for k-(Arc)-Strong
Connectivity

We complete the chapter with a topic that is, of practical interest and at the
same time illustrates important applications of several of the concepts from
the chapter.

Let D = (V, A) be a directed multigraph which is k-(arc)-strong. What
is the cost (measured in the number of arcs, or the sum of arc costs if these
are present) of a minimum cost spanning subgraph D’ = (V, A’) of D such
that D’ is k-(arc)-strong? A spanning k-(arc)-strong subgraph D’ of D is
called a certificate for k-(arc)-strong connectivity of D. Finding an optimal
certificate (that i