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tIDELING OF PRIORITYLESS PRCCESSIMG IW AN INIFRLEAVED MEMORY

WITH A PERFECTLY INFORMED PRCCESSOR

A. Ivianyi and I. Kirtail

Une 581.327.2:62-501 .72

We consider a mathematical model of priorityless queue processigg under complete
information for the case of two gueues with customers of two types.
pruposed for designing a polynomial optimal algorithm. The service speed is in-

troduced, its existence is proved, and some bounds for the case of eyuiprobable
customers are given.

A method is

1. INTRODUCTION

In various applications, e.g., when modeling a paged virtval wemory [1-3] or an inter-
leaved computer memory [4, 5], it is useful to know the scrvive speed of priorityless quaue:

under complete information, since-this speed characterizes che limiting possibilities of the
service algorithms. :

In this article we first formulate the problem and then prove che existence of a paly-
nomial [6) algorithm to find the optimal service strategy. A measure of efficiency of the
optimal algoritom is proposed (its speed) and some bounds on =his specd are derived.

The problem arises in the analysis of interlzaved computer memories [7]
memory consists of two blocks with two programs executing concurroatliy. 1f the current cem-

rands require accessing different memory blocks. .y vau vbe executed concurreatly; if the
commands access the same block, they are executed sequentially.
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2. THE PROBLEM

Consider two naturalnumbers m, n and queues of customers of cwo types (0 and 1) Bm =
By oo by 2nd Cq = €3 --- cn, where bE{0, 1} and ¢re{0. 1) (L =1, w, J =1, n).
These queues are served under the aoljlouing restrictions.

- 4 REn P 3 i 0 o . .
1. Service occurs at the moments 1, f. + The duration of service is one time unit.
25

As long as there is at least one unserved customer, at least one customer is being

served at each moment of time.
momZnt ; ; . ;

3. The apoent when a customer x 1s served will be dencted by p(x). The service 1s so-
quential, i.e., 1 € i < k < m implies that u(bj) < pflbk) and 1 € J < 7 < n implies
that wlcj) € plep). '

h. Customers of the same type cannot be served simultaneously, i.e., bj = bk, bi = 2j,
cj = ez imply u(bj) = pibi?, p(bi) = plej), and pley) = pley), respectively.
Copstraints 1-4 imply that the following inscances of service are possible in the
first moment: a) bB:i ) €y} ) by and by tonly if by # ba); d) b, and ¢y (only i1f ¢y # by)

2) c1 and c2 (only if ¢y = c¢z). 1

1f tke custower indexes 1, 2,... characterize the unserved
customers, the same instances are possible at each moment in time.

Denote the service time of thequeues By, Cp with the algorithm A by T(Bm, Cn) . Then
the above conditions imply that (m + n)/Z € t(Bm, Cn) € m + n. 4An algoriﬁ\m which for any
pair By, Cp finds the minimum service time i

iPregarded as optimal (it is denoted by OPT).
The number of possible service strategies for a fixed pair 3p, Ca is finite: There are at =

five instances of service at each moment and the service time dces not exceed m + n, so thai
the number of possible strategies is at most 3™*0 and the minimum service time always can b

determined (e.g., by enumerating all the possible strategies). This means that the algorit!
OPT alwuys exisCs.
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From (17) and (9),

T(M, Ny <(L+d) hﬂﬂh+ﬂd - Mﬂd5ﬂ+ﬂn+hﬂn|ul+0|M|+n|. firg
My+N, My+Ny M+,
If now j = = in (18), we obtain
T(M; Ny hy(mi+ng) arj+ry|6;] + ny 5
Mi+N, M +N; ' M+, .
hyn|8;] hny
5]~ 0, <|eq].
M1+N; M‘H—N‘q

If i + », then €f -~ 0; since § is arbitrarily small, this gives U < L. QED.
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CHOOSING A MEMORY HIERARCHY CONFIGURATION

A. S. Yurchenko UDC 681.32: .2

An analytical model of the hierarchical memory in a modern computer is used to de-
termine an optimal memory hierarchy configuration. It is shown that necessary and

sufficient conditions are satisfied for minimizing the mean access time to the
hierarchical memory.

Modern computer architecture provides multilevel hierarchical memories which allow tha
centraP processor to access each of the memory levels.
cases 1s largely determined by the memory speed, i.e.,
access to memory.

The computer throughput in these
the mean time to process a sin:l.e
The mean access time depends on the size of each level in the memory hies
archy, on page size, and on the memory access cycle in each level of the hierarchy. .l

e atoa
computers manipulating large data files require memory devices with different specds &

correspondingly different costs. Such hierarchical memories are very coscly to instz.l,

and it is very important to assess their speeds already in the development stage. A ©nuTdec
of recent studies have assessed the efficiency of multilevel memories [1-6]
In this article, we propose a solution of the problem formulated in [5], viz.,

an optimal configuration of a hierarchical memory operating under the control of on
cessor.
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As.m and @ increase, the number of possible service-strategies increases'vcry Capiii-

and enumerative algorithms become unpracticable [8]. :Therefore we must determine whetln. -
problem of finding the minimum service time and the optimal service strategy is NP-complot,
[6, 8] and try to design a polynomial algorithm to solve this problem.

Let {g;, i = 1, m} and {nj, j =1, n} be sequences of independent random variables wi, -
take the values U and 1 with equal probabilities. Let Tpa(m, n) be the mathematical CxXpeta-
tion of the service time of the pair of queues (§j, nj) by the algorithm A. We deuote ('

ratio Talm, n)/{(m + n) by tal{m, n). This value may be interpreted as the mean ‘time to scr-.
one customer from tueues of length m and n.

In order to avoid using the queue lengths as parameters, we define for a nonnegative
real a

‘PA(G)"' l-im td(zl y) .

Yoo
E/y—-a )
This @a{x) is called the speed of the algorithm A for relative queue length a. The

speed may be interpreted as the mean time to serve one customer in long queues with a givean
length ratio a. We will show that Qoer(a)

exists for all o 2 U and obtain a bound for this
quantity.

3. DESIGN AND ANALYSIS OF A POLYNOMIAL OPTIMAL ALGORITHM

Consider the following algorithm DIN, which associates with every possible service stat.
some point in the Cartesian space; conversely, the point (i, j) (i =1, m; j = 1, n) corre-

sponds to a state in which byy.s.ybi, C1,.4.,cj have been served while bi+i,...,bmy €440ty
tp await service.

Step 1. Define a Cartesian coordinate system; to integer points on the x axis assign
the customers bj (i = 1, m) and to integer points on the y axis assign the customers Cj (j =
iy n)e Let L = U.

Step 2. To the point (0, 0) assign the service time tpyn(0, 0) 0.

Step 3. Repeat step 4 until the point (m, n) is assigned the service time T(Bp, Cqp).

Step 4.

Suppose that some points in the rectangle 7 with the services (0, 0), (m, 0},
(0, nY, and {(m, n) have already been assigned the corresponding service times 0, 1,..

.+ Then
points with service time v are determined by the following procedure.

V=g
)

The points (i, 0), (i, 1),...,(i, n) are called the colum i. 1In all the coluumslt),
1,+...,L sequentially find the top point P which has the service time v. Denote the polnt

above P by Q and the point above Q by R. Denote the point to the right of P by S, the point
above S by U, and finally the point to the right of S by T (Fig. 1).

A customer corresponding to the point X in By and C, will be denoted, respectively,_by
B(X) and C(X): =(X) is the service time of the point X, p is the set of points from 7 which
so far have not been assigned service times. The following relationships hold:

a) if Qe=p , then T{(Q):=v+i,
b) if Sep , then T(S):=v+i, ,
c) .if Rep and C(Q = C(R), then T(R):=v+i,
d) if Uep and C(Q) = B(S), then t(U):=v+i,
e) if Tep and B(S) = B(T), then t(I):=vHi,
f) if Sex, thenL:=1L + 1,

g) if Tex and B(S) = B(T), then L: =1 + 1.

For example, for Bs = 101000 and Cy = 1110 we obtain Fig. 2, which shows that t(Bg, Cu)
For this algorithm we have the following propositions.

THEOREM 1. For all pairs of queues By, Cp we have 1gpp(Bp, Cp) = TpIN(Bm, Cn) and the
algorithm DIN is polynomial.

5%

i}

THEOREM 2. 1If o 2 0, the limit
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TABLE 1

L3

A B & D E F G i I
A 33 5/16 316 /8 /16 1/32 /16 18 1132 /16
X .
B |2:2 ¢ 14 1/8 - - 116 1/8  1/4 1/16  14/8
]
XX
- s - = = == = 4
c 1:1 e 1/4 12 1/4
XX
a — m - - 9 i -
D |11 i 1/4 1/2 1/4
XX
. aa - - - b = A -—
E 2:0 XX 1/4 /2 1/4
XX '
g 1/4 - - - - = -
F |20 XY / 1/2 1/4
XY
G 2:0 i 12 12 - - a = = . -
XY
H |2:0 ) 142 12 - - - = - o=
b'6.4
I 2:0 YX 1/4 - /2 Y4 - - - - -

H: 27/668, I: 54/668. These stationary probabilities can be used to determine y.

AT
fo 8

. 3 © : m &
The third class includes "alternative'" algorithms {ALTk}, .1 with memory consisting
k — 1 pairs of locations and a counter. The algorithm also examines k pairs each time z=nd

services two elements if possible. If no two customers can be served, one customer is served
80 as to ensure that two customers will be served soon therecafter.

Let ay and Bt denote the number of served customers in t time units for the first
the seccnd queue, respectively.

be defined as ap — B¢,

P

L

Then the contents of the counter at time moment (t — 1) will

If these rules do not uniquely identify the queue from which one (or two) customers <an
be served, we try to serve the queues "uniformly" (so as to minimize la, — B¢l). When 3. —
By = 0, the first queue is served. i

If at least one of the queues contains fewer than k elements, the algorithm switches to
one-by-one service. In the extreme case, if there remain n + k — 1 elements for one-by-cne
service, they are ignored in the computation of Yy and we focus on the "main part'" of the ser-

vice procedure, which is again described by a homogeneous Markov chain.

For ALT!, the chain has two states, A and B.

In state A different elements are exz=ined
and both are served in one time unit. In state B identical elements are examined; one oI thez
(selected by the counter) is served and the contents of the counter is incremented by 1 iI
it was negative) or decremented by 1 (if it was nonnegative). The transition probabilirt:
matrix contains the elements 1/2; the solution of the system of equations is p(A) = 1/2, 7.3} =
1/2. Hence we obtain yarT: = 2/3.

For ALT2, the chain has 5 states. In state A identical elements occupy the second tlaces

and different elements occupy the first places. In state A both the first and the sececnl palr
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figuration of Fig. 2. Application
points. of the algorithum.

exists and depends only on a.

4. SPEED BOUNDS

For any pair of queues Bp, C, we have the inequality

‘f(Bm C-) =T (Bm ¢) +n,
&

2T *T ) = %
50 that T(m, n) = T(m, 0) + O(n), and or a = 0 we obtain t{m, n) = t(m, 0). Therei:ca £ =
a =0 it suffices to consider the service of one queue only. We get @(0)=2/3 and :iz=2 tri-..
bounds

1/2<popr () =2/3.

In what follows we assume that a = 1. Let Qall) =y,.

We will consider three classes of approximate algorithms.

The efficiency of these ali:-
rithms with the increase of their parameter k goes to yopr.

The first class includes the "simple"
the first k pairs of customers (by, 31,

next k pairs, and so on [n/k] times.
Q < k), then for simplicity these cust

algorithms {SIMK};al. The algorithm SIM¥ Servs
bz, €2,.44,bk, ck) in an optimal fashion, tren the

If at the end of the queues there remain Q pairsy (& 8

omers are served one by one, i.e., in 20 tize =aits.
i1t is easily seen that

tax (1, n) =3/4=0.75;
4[n/2]11/164+2(n—2[n/2]) )
2n ’
= 6[n/3]21/32%~2(n—-3[n/3])
2n

s 5 (1, n) -

tﬁl I (nl n)

Already with four pairs the service time of a group of pairs may be greater thaz the
number of zeros and ones in the group. Therefore from [4] we have

8[n/4}655/1024-F2(n-—4[n/é])
2n

From these equalities it follows that ygrM; = 3/4
21/32 % 0.656; ygyig, = 655/1024 = 0.639.,
consisting of k — | pairs of locationms.

and serves as many pairs as can be served

timally, then the first pair is served in

the memory, augmented with new pairs,
remain, they are served one by one.

a1 (n, )

= 0.75; ysiMz = 11/16 ¥ 0.678; wvgrv: =
The second class includes algorithms with =z=ory
The algorithm MEMk (k = 1, 2,...) examines » 2air:
optimally. 1If none of the pairs can be serisd oz~
two time units. The unserved pairs are sEsngd i
and k pairs are again examined. If fewer than x pair

In computing y, we can ignore the individually served customers, which gives yv=v. =
3/4 = 0.75; yMEM2 = 13/20 = 0.65; YMEMs = 371/594 % 0.624.

For example, the last result was observed in the following way. The execution

algorithm MEM3 is described by a homogeneous Markov chain with 9 state
6 elements are served;

are served.

th
s. In state A =11
'in state B, 4 elements are served, and in the other states 2

2 cle
~In states C and D different customers are served in one unit of time
states E, F, G, H, I identical elements are served in two units of time. The tramsi:zicn
probabilities for the algorithm MEM3 are given in Table 3.

Solving the corres

b IS T ¢!

=

s 23 in

ponding system of linear equations,

we obtain the following stzziocnzs-
probabilities: A: 200/668, B: 120/668, C: 52/668, D: 26/668, E: 27/668, F: 54/668, G: ' .3z
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TABLE 2

A {1:1 2:0 - - 2/4 1/4 1/4
B § i 131 N4 2/4 - - L
C 2:0 1:4 i/4 1/4 1/4 - 1/4
L ]
D 2:0 0:2 1/4 1/4 1/4 1/4 -
E 2:0 2:0 - - 1/2 - 1/2
consist of different elements; in state C one of the queues starts with different elem=nzs:,
while the other starts with identical elements, and the first elcments are jlpmriipals is 20

D both queues start with different elements, and the first elements are identical; iz szaze
all the elements are identical. Table 2 presents the transition probabilities.

The stationary state probabilities are the following: A: 165 Be 3165 C: 3/le, Za 17 °-
E: 1/4. Hence yarrz = 4/7 % 0.572, which leads to the following bound.

THEOREM 3. 1/2 € ygpr(1) < 4/7.
Note that for ALT3 we have 15 states and yapr3 = 9/16 & 0.567.

Our results may be interpreted in the following way. The criterion @ in the focm 1 ¢
represents a certain generalized "speed' of computer processing [9] expressed, say, iz natus
rai units of “number of executed operations per second."” If we can show that vanTl1) = 372,
this would imply that increasing the number t

of memory blocks from one to two doubles Ti2 pre-
cessing speed, whereas for @opr(4)>1/2, the speed will increase sublinearly.

APPENDIX

Proof of Thecorem 1. Optimality of the algorithm DIN is proved by inductien. Simza szzt
4 examines all the 5 possible cases, v is assigned to all the points with unit —minimal ser-
vice time. Now assume that v has been assigned to all the points for which the miniza. ser=
vice time is v (or at least to one point above these points). Since Step 4 examines all La:
5 possible instances of service, v + 1 is assigned to all the points for which the mizizal
service time is v + 1 [if there are still points with v under a point type P, it is poisiblie
that the service time v + 1 will not be assigned to some points under S, e.g-, the pecizt
(6, 0) in Fig. 2, but these points do not affect t(m, n)].

Noge that although the algorithm DIN determines the minimum service time, it do
provide a strategy for attaining this minimum. If in Step 4, together with tn2 sexv
v + 1 we also assign the coordinates of the point P to the points Q, R, s, T, €, theo

computed T we can use the point (m, n) to reconstruct a single optimal strategy, by ex:
only tpiny{(m, n) points.

€

W

Since the number of columns examined in each unit of time is at most dousled, in
v—th unit of time we examine at most 2v + 1 columns, i.e., at most 5(2v + 1) points.

for every pairt(Bp, Cp) for any algorithm A we have t(Bp, Cp) S m + n, the determinat:

m+n

T(Bm, Ch) involves examining at most 25(2v+1)=5(m+n)(m+n+2) points, i.e., if the size =7 =u

i .
problem is characterized as m + n = s and the complexity A(s) of the algorithz A 1is dailnes
as the maximum number of points combined, we have DIN(s) < 5s(s + 2) -

524




Proof of Theorem 2. 1If a = 0, the effect of the first queue may be ignored =

sod the sxis-
rence of the limit 4s directly obtained for the second queue. For a'> 0, the prazI is 52
on the following inequalities:

n

a) if k is a natural number, them

T(k, m, kn)<kT(m, n);

vl
b) if @ and b are nonnegative integers, then
. 0<T(m+a, ntv)<T(m, n)+atb. g2 )
Since the inequality 0.5 € 1(Bm, Cn)/(m + n) S 1 holds for all possible pairs 3z, Cx,
t(x, y) is bounded from above and from below, i.e., finite U and L exist in the fcr=
LY = lim ¢, 1), ‘1)
e
U D= Tim t(z,0). (1)
ook
Let U %L, i,e., U> L. We will show that U S L, so that U = L.
By (3), there exist sequences mi (i =1, 2,...) and nj (i =1, 2,...) such that
lim md/ni=a and lim *(m(, n,) = L. (3)
(== {=m=
By (4), there exist sequences Mj (j = 1, 2,...) and Nj (j = 1, 2,...) such that
lim My/Ny=c and lim 6(Mj, Ny) = U. (6)
jo=- jsu=
By (5), there exists a sequence gf (i = 1, 2,...) such that
my=n¢(a+e;) and lim e;=0. 7
f==es
By (6), there exists a sequence §j (3 = 1,2,se:) 8uch that
H;—Nj(d'l'&ﬂ and !im&,—o. {8)
-
By (3), for every & > 0 there is a threshold z such that
TGO < B8l Aozl O (9)
mg+ny 5 e v
Now let nj be a fixed number such that (9) holds for nj, ni+1y Then every Xj is unizguely
representable in the form .
N,—h,n¢+r, (0<I’3<l’li). (IG)
Let
Ny =hyn;, (1)
My=hjm; (12)
3 i ;
Now consider T(Mj, Nj)/(Mj + Nj). By (2) we obtain
T(M; N)<T (M, Np)F| M= |+ [N=N7], an
where from (10) and (11) we have
[Ny=Ng|=ry<n, (14)
and from (12), (7), (10), and (8) we have
| M~y | <hyni|8| +ar,+ hind e ] +1,181 (13)
From (11), (12), and (1) we obtain
T (M, Ni')=T (njmq, hyni) <T (mq, ni)- (15)
From (13), (14), (15), and (16) we get «
T(H,,N}) I'lj h,—n;léﬂ+ctr,+h,n;|a;[+r,[6,[+n¢ (] T)
—_— < T(m“ n;) + - .
H,-{-N, 3 ﬁf;-i-.l\r, M,‘+t\,
€25
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