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(Budapest, Hungary) JULY 14, 2010
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Abstract. Let n be a positive integer and X = [xij ]1≤i,j≤n be an n × n sized
matrix of independent random variables having joint uniform distribution

Pr{xij = k for 1 ≤ k ≤ n} =
1

n
(1 ≤ i, j ≤ n).

A realization M = [mij ] of X is called good, if its each row and each column
contains a permutation of the numbers 1, 2, . . . , n. We present and analyse
algorithms which decide whether a given realization is good.

1 Introduction

Some subsets of the elements of Latin squares [1, 8, 18, 19, 20, 33, 34, 41, 42], of
Sudoku squares [3, 10, 12, 15, 16, 17, 29, 30, 31, 35, 38, 42, 44, 46, 48, 49, 52], of
de Bruijn arrays [2, 5, 7, 13, 23, 25, 26, 27, 28, 36, 43, 51, 53] and gerechte designs,
connected with agricultural and industrial experiments [3, 4, 22] have to contain
different elements. The one dimensional special case is also studied is several papers
[9, 21, 24].

The testing of these matrices raises the following problem.
Let n (1 ≤ n) be integers and X = [xij ]1≤i≤m,1≤j≤n be an m × n sized matrix of

independent random variables having joint uniform distribution

Pr{xij = k for 1 ≤ k ≤ n} =
1
n

(1 ≤ i ≤ m, 1 ≤ j ≤ n). (1)

A realizationM = [mij ] of X is called good, if its each row and each column contain
different elements (in the case m = n a permutation of the numbers 1, 2, . . . , n. We
present and analyse algorithms which decide whether a given realization is good. If
the realization is good then the output of the algorithms is True, otherwise is False.

In Section 2 we analyse the running times of the algorithms testing the first row of
M in worst, best and expected cases. Section 3 contains an algorithm testing some
subsets of two and three dimensional matrices. In Section 4 the results are summarised,
while in Section 5 the pseudocodes of the investigated algorithms are presented.
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2 Test of random sequences

We start with the first step of the testing ofM: describe and analyse several algorithms
testing the first row of M. The inputs of these algorithms are n (the length of the
first row of M) and the elements of the first row m = (m11,m12, . . . , m1n). For the
simplicity we use the notation s = (s1, s2, . . . , sn). The output is always a logical
variable g (its value is True, if the input sequence is good, and False otherwise).

We will denote the binomial coefficient
(

n
k

)
by B(n, k) and the function log2 n by

lg n [14].
We characterise the running time of the algorithms by the number of necessary

assignments and comparisons and denote the running time of algorithm Alg by
Tworst(n, Alg), Tbest(n, Alg) and Texp(n, Alg) in the worst, best, resp. expected
case. The numbers of the corresponding assignments and comparisons are denoted by
A, resp. C.

Before the investigation of the concrete algorithms we formulate several lemmas.
The first lemma is the following version of the well-known Stirling’s formula.

Lemma 1 ([14]) If n ≥ 1 then

n! =
(n

e

)n√
2πneτ(n), (2)

where
1

12n + 1
< τ(n) <

1
12n

, (3)

and τn tends monotonically decreasing to zero when n tends to infinity.

Let ak(n) = ak and Si(n) = Si defined for any positive integer n as follows:

ak(n) = ak =
nk

k!
(k = 0, 1, 2, . . .), (4)

Si(n) = Si =
n−1∑

k=0

akki (i = 0, 1, 2, . . .). (5)

If in (5) k = i = 0, then ki = 0.
Solving a problem posed by S. Ramanujan [45] Gábor Szegő [47] proved the follo-

wing connection between en and S0.

Lemma 2 ([47]) The function σ(n) defined by

en

2
= S0 +

(
1
3

+ σ(n)
)

an =
n−1∑

k=0

nk

k!
+

(
1
3

+ σ(n)
)

an (n = 1, 2, . . .) (6)

and
σ(0) =

1
6
, (7)

tends monotonically decreasing to zero when n tends to ∞.
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The following lemma shows the connection among Si and S0, S1, . . . , Si−1.

Lemma 3 If i and n are positive integers, then

Si(n) = n

i−1∑

k=0

B(i− 1, k)Sk(n)− ni−1an−1 (8)

and
Si(n) = Θ(enni). (9)

Proof. Omitting the member belonging to the index k = 0 in Si, then simplifying by
k and using the substitution k − 1 = j we get

Si =
n−1∑

k=0

nk

k!
ki = n

n−1∑

k=1

nk−1

(k − 1)!
ki−1 = n

n−2∑

j=0

nj

j!
(j + 1)i−1. (10)

Completing the sum with the member belonging to index j = n− 1 results

Si = n

n−1∑

j=0

nj

j!
(j + 1)i−1 − nian−1. (11)

Now the application of the binomial theorem results (8).
According to (9) S0 = Θ(en), therefore using induction and (10) we get (9). ¥
In this paper we need only the simple form of S0, S1, S2 and S3 what is presented

in the next lemma.

Lemma 4 If n is a positive integer then

S0 =
en

2
− nn

n!

(
1
3

+ σ(n)
)

, (12)

S1 = nS0 − nan−1, S2 = S0(n2 + n)− 2n2an, (13)

and
S3 = S0(n3 + 3n2 + n)− (3n3 + 2n2)an. (14)

Proof. Expressing S0 from (6), and using recursively Lemma 3 for i = 1, 2 and 3 we
get the required formula for S0, S1, S2, and S3. ¥

We remark that (11) was proved by Balázs Novák in [40] directly.
We introduce also another useful function

Ri(n) =
n∑

k=1

pk(n)ki (i = 0, 1, 2, . . .), (15)

where pk(n) is the key probability of this paper, defined in [21] as

pk(n) = pk =
n

n

n− 1
n

· · · n− k + 1
n

k

n
=

n!k
(n− k)!nk+1

(k = 1, 2, . . . , n). (16)

The following lemma mirrors the connection between the function Ri(n) and the
functions S0, S1, . . . , Si+1.
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Lemma 5 If i and n are positive integers, then

Ri(n) =
n!

nn+1

i+1∑

l=0

(−1)l

(
i + 1

l

)
ni+1−lSl(n). (17)

Proof. Using (15) and (16) the substitution n− k = j results

Ri(n) =
n∑

k=1

n!ki+1

(n− k)!nk+1
=

n!
nn+1

n−1∑

j=0

nj(n− j)i+1

j!
. (18)

From here using the binomial theorem we get (2). ¥
In this paper we need only the following consequence of Lemma 5.

Lemma 6 If n is a positive integer, then

R0(n) = 1, R1(n) =
n!
nn

S0, (19)

and
R2(n) = 2n− n!

nn
S0. (20)

Proof. R0(n) = 0 follows from the definition of the probabilities pk(n). Substituting
i = 1 into (2) we get

R1(n) =
n!

nn+1


n2

n−1∑

j=0

nj

j!
− 2n

n−1∑

j=0

nj

j!
j +

n−1∑

j=0

nj

j!
j2


 . (21)

From here using (5) we get

R1(n) =
n!

nn+1
(n2S0 − 2nS1 + S2), (22)

and using (11) the required formula for R1(n).
Substituting i = 2 into () we get

R2(n) =
n!

nn+1


n3

n−1∑

j=0

nj

j!
− 3n2

n−1∑

j=0

nj

j!
j + 3n

n−1∑

j=0

nj

j!
j2 −

n−1∑

j=0

nj

j!
j3


 . (23)

From here using (5) we have

R2(n) =
n!

nn+1
(n3S0 − 3n2S1 + 3nS2 − S3), (24)

and using (13) and (14) the required formula for R2(n). ¥
The following lemma gives some further properties of R1(n).



Testing of random matrices 5

Lemma 7 If n is a positive integer, then

R1(n) =
n!
nn

S0 =
√

πn

2
− 1

3
+ κ(n), (25)

where

κ(n) =
√

πn

2

(
eτ(n) − 1− 2σ(n)eτ(n)

en

)
, (26)

and κ(n) tends monotonically decreasing to zero when n tends to infinity.

Proof. Substituting S0 according to (12) in the formula (20) for R1(n) we get

R1(n) =
n!
nn

[
en

2
− nn

n!

(
1
3

+ σ(n)
)]

= −1
3

+
n!
nn

(
en

2
− nn

n!
σ(n)

)
. (27)

Substitution of n! according to (2) (Stirling’s formula) and writing 1 + (eτ(n) − 1)
instead of eτ(n) results

R1(n) = −1
3

+
1
nn

(n

e

)n√
2πn

[
1 + (eτ(n) − 1)

] [
en

2
− σ(n)

]
. (28)

The product P of the expressions in the square brackets is

P =
en

2
+

en

2

(
eτ(n) − 1

)
− σ(n)eτ(n), (29)

therefore

R1(n) =
√

πn

2
− 1

3
+
√

2πn

en

[
en

2

(
eτ(n) − 1

)
− σ(n)eτ(n)

]
, (30)

implying

R1(n) =
√

πn

2
− 1

3
+

√
πn

2

(
eτ(n) − 1

)
−

√
πn

2
2σ(n)eτ(n)

en
. (31)

Let

κ1(n) =
√

πn

2
(eτ(n) − 1), κ2(n) =

√
πn

2
2σ(n)eτ(n)

en
, and κ(n) = κ1 + κ2, (32)

and

γ(n) =
κ(n + 1)

κ(n)
=

κ1(n + 1)− κ2(n + 1)
κ1(n)− κ2(n)

for n = 1, 2, . . . . (33)

Since all κ functions are positive for all positive integer n’s, therefore γ(n) < 1
for n ≥ 1 implies the monotonity of κ(n). Numerical results in Table 1 show that
γ(n) < 1 for n = 1, 2, . . . , 9, therefore it remained to show γ(n) < 1 for n ≥ 10.
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κ2(n) can be omitted from the nominator of (32). Since σ(n) and τ(n) are monotone
decreasing functions, and 0 < σ(5) < 0.0058, and 0 < eτ(5) < 1.02, and n2 < en for
n ≥ 10, therefore

2σ(n)eτ(n)

en
<

2 · 0.0058 · 1.02
en

<
0.012
n2

for n ≥ 10. (34)

Using (33), (34) and the Lagrange remainder of the Taylor series of the function
ex we have

γ(n) <

√
n + 1√

n

τ(n + 1) + τ2(ξn+1)
2

τ(n) + τ2(ξn)
2 − 0.012

n2

, (35)

where 0 < ξn+1 < n + 1 and 0 < ξn < n, therefore using Lemma 1 we get

γ(n) <

√
n + 1√

n

1
12(n+1)+1

1
12n + 1

2

(
1

12n

)2 − 0.012
n2

. (36)

Now multiplying the nominator and denominator of the right side of (??) by (12n)2

results

γ(n) =
√

n + 1√
n

12n·12n
12n+13

12n + 0.5− 1.728
=
√

n + 1√
n

12n

(12n− 1.228)
(
1 + 13

12n

) . (37)

Since

(12n− 1.228)
(

1 +
13
12n

)
< 12n + 11, (38)

(37) and (38) imply

γ(n) <

√
144n3 + 144n2

√
144n3 + 264n2

< 1, (39)

finishing the proof of the monotonity of κ(n). ¥
We remark, that the monotonity of κn was published in [24] without proof.

In the following seven analyses let n ≥ 1 and let x = (x1, x2, . . . , xn) be indepen-
dent random variables having uniform distribution on the set {1, 2, . . . , n}. The input
sequence of the algorithms is s = (s1, s2, . . . , sn) (a realization of x).

2.1 Running time of algorithm LINEAR

Linear writes zero into the elements of an n length vector v = (v1, v2, . . . , vn),
then investigates the elements of the realization s and if v[sk] > 0 (signalising a
repetition), then returns False, otherwise adds 1 to vk. If Linear does not find a
repetition among the elements of s then it returns finally True.

Linear needs assignments in lines 01, 03, and 08, and it needs comparisons in line
05. The number of assignments in lines 01 and 03 equals to n + 1 for arbitrary input
and varies between 1 and n in line 08. The number of comparisons in line 08 also varies
between 1 and n. Therefore the running time of Linear is Θ(n) in the best, worst
and expected case too. The following theorem gives a more precise characterisation
of the expected running time of Texp(n, Linear).
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Theorem 8 The expected running time of Linear is

Texp(n, Linear) = n +
√

2πn +
7
3
− 2

n!
nn

− 2κ(n), (40)

where κ(n) tends monotonically decreasing to zero when n tends to infinity.

Proof. Let

y(n) = y = max{k : 1 ≤ k ≤ n and s1, s2, . . . , sk are different} (41)

be a random variable characterising the maximal length of the prefix of s containing
different elements. Then

Pr{y = k} = pk(n) = pk (k = 1, 2, . . . , n), (42)

where pk(n) is the probability introduced in (16).
At first we compute the expected value of the necessary comparisons Cexp(n, Linear)

which for the simplicity will be denoted by C.
If y = k and 1 ≤ k ≤ n− 1, then Linear executes k + 1 comparisons, and only n

comparisons, if y = n, therefore

C =
n−1∑

k=1

pk(k + 1) + pnn =
n∑

k=1

pk(k + 1)− pn = 1− n!
nn

+
n∑

k=1

pkk, (43)

from where using Lemma (7) we receive

C = 1− n!
nn

+ R1(n) =
√

πn

2
+

2
3
− n!

nn
+ κ(n). (44)

Linear requires n + 1 assignments in lines 01 and 03, plus assignments in line
08. The expected number of assignments in line 08 is the same as Cexp(n, Linear).
Therefore

Texp(n, Linear) = n + 1 + 2Cexp(n, Linear). (45)

Substituting (44) into (45) results the required (40). ¥
The monotonity of κ(n) was proven in the proof of Lemma (7). We remark, that

(44) is equivalent with

C = 1− n!
nn

+ 1 +
n− 1

n
+

n− 1
n

n− 2
n

+ · · ·+ n− 1
n

n− 2
n

· · · 1
n

, (46)

demonstrating the close connection with the function

Q(n) = C − 1 +
n!
nn

, (47)

studied by several authors, e.g. in [6, 24, 32].
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n C
√

πn
2 + 2

3
n!
nn κ(n) δ(n) = κ(n)− n!

nn σ(n)
1 1.000000 1.919981 1.000000 0.080019 −0.919981 0.025808
2 2.000000 2.439121 0.500000 0.060879 −0.439121 0.013931
3 2.666667 2.837470 0.222222 0.051418 −0.170804 0.009504
4 3.125000 3.173295 0.093750 0.045455 −0.048295 0.007205
5 3.472000 3.469162 0.038400 0.041238 +0.002838 0.005799
6 3.759259 3.736647 0.015432 0.038045 +0.022612 0.004852
7 4.012019 3.982624 0.006120 0.035515 +0.029395 0.004170
8 4.242615 4.211574 0.002403 0.033444 +0.031040 0.003656
9 4.457379 4.426609 0.000937 0.031707 +0.030770 0.003255
10 4.659853 4.629994 0.000363 0.030222 +0.029859 0.002933

Table 1: Values of C,
√

πn/2+2/3, n!/nn, κ(n), δ(n), and σ(n) for n = 1, 2, . . . , 10

Table 1 shows the concrete values of the functions of the previous proof for 1 ≤
n ≤ 10. We can observe in Table 1 that δ(n) = κ(n)− n!

nn is increasing from n = 1 to
n = 8, but for larger n is decreasing. Taking into account

n!
nn

=
(n

e

)2

eτ(n)
√

2πneτn <

√
2πn

en
e1/(12n) <

2.7
√

n

en
<

0.012
n2

(48)

we can prove – using the same arguments as in the proof of Lemma 7 – the following
assertion.

Theorem 9 The expected running time of Linear is

Texp(n, Linear) = n +
√

2πn +
7
3

+ δ(n), (49)

where δ(n) tends to zero when n tends to infinity, further

δ(n + 1) > δ(n) for 1 ≤ n ≤ 7 and δ(n + 1) < δ(n) for n ≥ 8. (50)

If we wish to prove only the existence of some threshold index n0 having the
property that n ≥ n0 implies δ(n + 1) < δ(n), then we can use the following shorter
proof.

Using (44) and (47) we get

κ(n) = C(n)−
√

πn

2
− 2

3
− n!

nn
= Q(n)−

√
πn

2
+

1
3
. (51)

Substituting the power series

Q(n) =
√

πn

2
− 1

3
+

1
12

π

2n
− 14

135n
+

1
288

π

2n3
+ O(n−2) (52)
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of Q(n) cited by D. E. Knuth [32, Equation (25) on page 120] into (51) and using

1
nk/2

− 1
(n + 1)k/2

= Θ
(

1
n1+k/2

)
(53)

for k = 1, 2, 3 and 4 we get

κ(n)− κ(n + 1) =
√

π

12
√

2

(
1√
n
− 1√

n + 1

)
+ O(n−2), (54)

implying

κ(n)− κ(n + 1) =
√

π

12
√

2
1√

n
√

n + 1(
√

n +
√

n + 1)
+ O(n−2), (55)

guaranteeing the existence of the required n0.

2.2 Running time of algorithm BACKWARD

Backward compares the second (s2), third (s3), . . . , last (sn) element of the rea-
lization with the previous elements until the first collision or until the last pair of
elements.

Taking into account the number of the necessary comparisons in line 04 of Back-
ward, we get Cbest(n, Backward) = 1 = Θ(1), and Cworst(n, Backward) =
B(n, 2) = Θ(n2). The number of assignments is 1 in the best case (in line 01) and is
2 in the worst case (in lines 01 and in line 05). The expected number of assignments
is Aexp(n, Backward) = 1 + n!

nn , since only the good realizations require the second
assignment.

The next assertion gives the expected running time.

Theorem 10 The expected running time of the algorithm Backward is

Texp(n, Backward) = n +
√

πn

8
+

4
3
− α(n), (56)

where α(n) = κ(n)
2 + n!

nn
n+1

2 monotonically decreasing tends to zero when n tends to
∞.

Proof. Let y(n) as defined in (41), pk as defined in (16), and let

z = {q : 1 ≤ q ≤ k and s1, s2, . . . , sk are different and sk+1 = sq | y = k}, (57)

be a random variable characterising the index of the first repeated element of s.
Let

qi(k, n) = qi = Pr{z = i|y = k} (k = 1, 2, . . . , n; i = 1, 2, . . . k) (58)

and let Cexp(n, Backward) denoted by C.
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Backward executes B(k, 2) comparisons among the elements s1, s2, . . . , sk, and
sk+1 requires at least 1 and at most k comparisons (with exception of case k = n
when additional comparisons are not necessary). Therefore using the theorem of the
full probability we have

C =
n−1∑

k=1

pk

(
B(k, 2) +

k∑

i=1

iqi

)
+ pnB(n, 2), (59)

where
qi(n, k) = qi =

1
k

(i = 1, 2, . . . , k; k = 1, 2, . . . , n). (60)

Adding a new member to the first sum we get

C =
n∑

k=1

pk

(
B(k, 2) +

k∑

i=1

iqi

)
− pn

n∑

i=1

iqi. (61)

Using the uniform distribution (60) of z we can determine its contribution to C:

k∑

i=1

qii =
k∑

i=1

i

k
=

k + 1
2

. (62)

Substituting the contribution in (62) into (61), and taking into account Lemma 6 and
Lemma 7 we have

C =
1
2
R2(n)− 1

2
R0(n)− n!

nn

n + 1
2

. (63)

Now Lemma 6 and Lemma 7 result

C = n−
√

πn

8
+

2
3
− 1

2
κ(n)− n!

nn

n + 1
2

. (64)

Taking into account Aexp(n, Backward) = 1 + n!
nn − n!

nn
n+1

2 we get (56). ¥
The following Table 2 represents some concrete numerical results. It is worth to

remark that n!
nn

n+1
2 = Θ(n

√
n

en ), while κ(n) = Θ( 1√
n
), therefore κ(n) decreases much

slower than the other expression.

2.3 Running time of algorithm FORWARD

Forward compares the first (m1), second (m2), . . . , last but one (mn−1) element of
the realization with the next elements until the first collision or until the last pair of
elements.

Taking into account the number of the necessary comparisons in line 04 of For-
ward, we get Cbest(n, Forward) = 1 = Θ(1), and Cworst(n, Forward) = B(n, 2) =
Θ(n2).

The next assertion gives the expected running time.
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n C n−√
πn
8 + 2

3
n!
nn

n+1
2 κ(n) α(n) = κ(n)

2 + n!
nn

n+1
2

1 0.000000 1.040010 1.000000 0.080019 1.040010
2 1.000000 1.780440 0.750000 0.060879 0.780440
3 2.111111 2.581265 0.444444 0.051418 0.470154
4 3.156250 3.413353 0.234375 0.045455 0.257103
5 4.129600 4.265419 0.115200 0.041238 0.135819
6 5.058642 5.131677 0.054012 0.038045 0, 073035
7 5.966451 6.008688 0.024480 0.035515 0.042237
8 6.866676 6.894213 0.010815 0.033444 0.027536
9 7.766159 7.786695 0.004683 0.031707 0.020537
10 8.667896 8.685003 0.001996 0.030222 0.017107

Table 2: Values of n −
√

πn/8 + 2/3, n!
nn

n+1
2 , κ(n), and α(n) = κ(n)

2 + n!
nn

n+1
2 for

n = 1, 2, . . . , 10

Theorem 11 The expected running time of the algorithm Forward is

Texp(n, Forward) = n + Θ(
√

n). (65)

Proof. ... ¥

2.4 Running time of algorithm RANDOM

Random generates random pairs of elements and tests them until it finds two identical
elements or it tested all the possible pairs of s. It uses the procedure Ran(k) [14]
generating a random integer value distributed uniformly in the interval [1, k].

Random needs only 1 = Θ(1) time in the best case. In the worst case its running
time can be arbitrary large but the probability of a large running time is small.

Theorem 12 The expected running time of Random is

Texp(n, Random) = n + Θ(lg n). (66)

Proof. Algorithm Random can get two types of input: it gets a good input with
probability n!/nn and a bad input with probability (nn − n!)/nn.

In the case of a good input the algorithm needs n(n − 1)/2 different comparisons
to observe that the investigated input is good. Using the known solution of the cou-
pon collector’s problem (see [14, page 109–110] or [50]) the expected number of the
necessary comparisons is

Cexp,Random = n

B(n,2)∑

i=1

1
i

= Θ(n lg n). (67)
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If Random gets a bad input, then

∞∑

i=0

(
n− 1

n

)i

i = 1 +
n∑

i=1

(
1− 1

i

)
= n−Θ(lg n) (68)

is an upper bound of its expected running time, and so

Cexp(n, Random) =
n!
nn

B(n, 2)Θ(n lg n) +
nn − n!

nn
(n−Θ(n)) = nΘ(n). (69)

¥

2.5 Running time of algorithm TREE

Tree builds a random search tree from the elements of the realization and finishes
the construction of the tree if it finds the following element of the realization in the
tree (then the realization is not good) or it tested the last element too without a
collision (then the realization is good).

The worst case running time of Tree appears when the input contains different
elements in increasing or decreasing order. Then the result is Θ(n2). The best case is
when the first two elements of s are equal, so Cbest(n, Tree) = 1 = Θ(1).

Using the known fact that the expected height of a random search tree is Θ(lg n)
and Lemma 1 we can get that the order of the expected running time is

√
n log n.

Theorem 13 The expected running time of Tree is

Texp(n, Tree) = Θ(
√

n lg n). (70)

2.6 Running time of algorithm GARBAGE

This algorithm is similar to Linear, but it works without the setting zeros into the
elements of a vector requiring linear amount of time.

Beside the cycle variable i Garbage uses as working variable also a vector v =
(v1, v2, . . . , vn). Interesting is that v is used without initialisation, that is its initial
values can be arbitrary integer numbers.

Lemma 14 The expected running time of Garbage is

Texp(n, Garbage) = Θ(
√

n). (71)

2.7 Running time of algorithm BUCKET

Bucket divides the interval [1, n] into m =
√

n subintervals I1, I2, . . . , Im, where
Ij = [(j−1)m+1, jm], and sequentially puts the elements of s into the bucket Bj (we
use the word bucket due to some similarity to bucket sort [14]): if dsi/me = r, then
si belongs to Br). Bucket works until the first repetition (stopping with g = False,
or up to the processing of the last element sn (stopping with g = True).
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Bucket handles an array Q[1 : m, 1 : m] (where m = d√ne and puts the element
si into the rth row of Q, and it tests using linear search whether sj appeared earlier in
the corresponding bucket. The elements of the vector c = (c1, c2, . . . , cm) are counters,
where cj (1 ≤ j ≤ m)) shows the actual number of elements in Bj .

For the simplicity let us suppose that m is a positive integer and n = m2.
In the best case s1 = s2. Then Bucket executes 1 comparisons in line 08, m

assignments in line 04, and 1 assignment in line 01, 1 in line 02, 2 in line 06, and 1
in line 08, 11 and 12, therefore Tbest(n, Bucket) = m + 7 = Θ(

√
n). The worst case

appears, when the input is bad. Then each bucket requires 1 + 2 + · · · + m − 1 =
B(n−1, 2) comparisons in line 08, further 3m assignments in lines 06, and 12, totally
m2(m−1)

2 + 3m2 operations. Lines 01, 02, and 09 require 1 assignment per line, and

the assignment in line 04 is repeated m times. So Tworst(n, Bucket) = m2(m−1)
2 +

3m2 + m + 3 = Θ(n3/2).
In connection with the expected behaviour at first we show that the expected

number of elements in a bucket has a constant bound which is independent from n.

Lemma 15 Let bj (j = 1, 2, . . . , m) be a random variable characterising the number
of elements in the bucket Bj at the moment of the first repetition. Then

E{bj} =
√

π

2
− µ(n) for j = 1, 2, . . . , m, (72)

where

µ(n) =
1

3
√

n
− κ(n)√

n
, (73)

and µ(n) tends monotonically decreasing to zero when n tends to infinity.

Proof. Due to the symmetry it is sufficient to prove (73) for j = 1.
Let m be a positive integer and n = m2. Let y(n) = y be the random variable

defined in (41) and pk(n) be the probability defined in (16).
Let Ai(k) (i = 1, 2, . . . , n; k = 1, 2, . . . , n) be the event that at the condition

y = k the number i appears in s before the first repetition and Yi(k) be the indicator
of Ai(k). Then using the theorem of the full probability and the symmetry of the
buckets we have

E{b1} =
m∑

i=1

Yi(n) =
m∑

i=1

Pr{Ai(k)} = mPr{A1(k)} (74)

and

Pr{A1(k)} = Pr{1 ∈ {s1, s2, . . . , sk}|y = k} =
n∑

k=1

pk
k

n
=

1
n

n∑

k=1

pkk =
1
n

R1. (75)

Using Lemma (7) we get

E{b1} = m
1
n

R1 =
m

n

(√
πn

2
− 1

3
+ κ(n)

)
, (76)
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resulting (73) and (74).
We omit the proof of the monotonity of δ(n), since it is similar to the corresponding

part in the proof of Theorem 11. ¥
The following Table 3 shows some concrete values.

n E{b1}
√

π
2

1
3
√

n
κ(n)√

n
µ(n) = 1

3
√

n
− κ(n)√

n

1 1.000000 1.253314 0.333333 0.080019 0.253314
2 1.060660 1.253314 0.235702 0.043048 0.192654
3 1.090055 1.253314 0.192450 0.029686 0.162764
4 1.109375 1.253314 0.166667 0.022727 0.143940
5 1.122685 1.253314 0.149071 0.018442 0.130629
6 1.132763 1.253314 0.136083 0.015532 0.120551
7 1.147287 1.253314 0.125988 0.013423 0.112565
8 1.147287 1.253314 0.117851 0.011824 0.106027
9 1.152772 1.253314 0.111111 0.010569 0.100542
10 1.157462 1.253314 0.105409 0.009557 0.095852

Table 3: Values of E{b1},
√

π
2 , 1

3
√

n
, κ(n)√

n
, and µ(n) = 1

3
√

n
− κ(n)√

n
for n = 1, 2, . . . , 10

Lemma 16 Let fn be a random variable characterising the number of comparisons
executed in connection with the first repeated element. Then

E{fn} =
1
2

+
√

π

8
− η(n), (77)

where
η(n) =????, (78)

and η(n) tends monotonically decreasing to zero when n tends to infinity.

Proof. Let p(i, j, k) be the probability of the event that there are k different elements
before the first repetition the repeated element belongs to Bj and Bj contains i
elements in the moment of the first repetition. Then

P (i, j, k) =
(m

i

) (
n−m

k − i

)
k!

i

b
nk+i). (79)

Dividing the inner sum by
(n

k

)
we get the expected value of the square of a random

variable ξ having hipergeeometric distribution with parameters n, m, and k. It is
known that

E{ξ2} = (E{ξ})2 − V ar{ξ}, (80)

therefore
E{fn} =???, (81)
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=???, (82)

=
1
2

+
π

8
+??? (83)

We get the monotonity of η(n) as earlier. ¥

Theorem 17 The expected running time of Bucket is

Texp(n, Bucket =
(

1 + 3
√

π

2

)√
n + 2 + φ(n),

√
π

2
+ ρ(n) + E{fn}, (84)

where
φ(n) =, (85)

and φ(n) tends to zero when n tends to infinity.

Proof. Let s = (s1, s2, . . . , sn) be the input sequence of the algorithm Bucket.
Bucket processes the input sequence using m =

√
n buckets B1, B2, . . . , Bn: it

investigates the input elements sequentially and if the i-th input element si belongs
to the interval [(r − 1)m + 1, (r− 1)m + 2, . . . , rm], then it sequentially compares si

with the elements in the bucket Br and finishes, if it finds a collision, or puts si into
Br, if si differs from all elements in Br.

Let y(n) be the random variable, defined in (12), and p(k) the probability defined in
(13). Let bi be the random variable defined in Lemma 15, and Cj(n) (j = 1, 2, . . . , m)
be a random variable characterising the number of comparisons executed in Bj before
the processing of the first repeated element, , and C(n) a random variable characteri-
sing the number of necessary comparisons executed totally. Then due to the symmetry
we have

E{C(n)} = E





m∑

j=1

Cj(n)



 + E{f(n)} = mE{C1(n)}+ E{f(n)}. (86)

The probability of the event A(i1, i2, n, k) that the elements i1 and i2 (1 ≤ i1, i2 ≤
m) will be compared before the processing of the first repeated element at the condi-
tion that y = k and 2 ≤ k ≤ n equals to

Pr{A(i1, i2, n, k)|y = k and 2 ≤ k ≤ n} =

(
n− 2
k − 2

)

(n

k

) =
k(k − 1)
n(n− 1)

, (87)

Since there are
(

m
n

)
possible comparisons among the elements of the interval [1,m],

we have

E{C1(n)} =
n∑

k=1

pk
k(k − 1)
n(n− 1)

(m

2

)
=

m(m− 1)
2n(n− 1)

(
n∑

k=1

pkk2 −
n∑

k=1

pkk

)
, (88)
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from where using Lemma 6 and Lemma 7 we get

E{C1(n)} =
n−√n

2n2 − 2n
(R2 −R1) =

1
2n + 2

√
n

[
2n− 2

(√
πn

2
− 1

3
+ κ(n)

)]
. (89)

This equality implies

E{C1(n)} = 1− 1
n +

√
n

(√
n −

√
πn

2
+

1
3
− κ(n)

)
. (90)

As illustration we compute again some concrete values (see Table 4).

n E{C1(n)} a(n)
(√

n−√
πn
2 + 1

3 − κ(n)
) a(n)

n+
√

n
1− a(n)

n+
√

n

1 0.000000 1.000000 0.000000 0.000000
2 0.146447 2.914214 0.853553 0.146447
3 0.234805 3.620940 0.765195 0.234805
4 0.296875 4.218750 0.703125 0.296875
5 0.344054 4.746468 0.655946 0.344054
6 0.381716 5.224181 0.618284 0.381716
7 0.412810 5.663890 0.587190 0.412810
8 0.439120 6.073445 0.560880 0.439120
9 0.461807 6.458316 0.538193 0.461807
10 0.481663 6.822493 0.518337 0.481663

Table 4: Values of E{C1(n)}, √
πn
2 − 1

3 + κ(n), a(n) = 2n− 2(
√

πn
2 − 1

3 + κ(n)), and
a(n)

2n+2
√

n
for n = 1, 2, . . . , 10

From (83) taking into account (79) we get

E{C(n)} =
√

n− 1−
√

π

2
+

1√
n + 1

(
κ(n)−

√
π

2
− 4

3

)
+ E{f(n)}, (91)

and φ(n) tends to zero when n tends to infinity.
Bucket requires 2 assignments in lines 01 and 02,

√
n assignments in line 04,

R1(n) assignments in line 06, C + E{f(n)} assignments in line 08, 1 − pn expected
assignment in line 09 and 2R1 assignments in lines 11 and 12 before the first repeated
element, and 2E{f(n)} − 1 assignments after the first repeated element.

Therefore the expected number of assignments of Bucket is

Aexp(n, Bucket) = A = 2 + 3R1(n) + E{C(n)}+ 1− n!
nn

+ E{f(n)}. (92)

Substituting R1(n) and E{C(n)} we get

A = 3
(√

πn

2
− 1

3
+ κ(n)

)
+

(√
n− 1−

√
π

2

)
+ φ(n), (93)
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where

φ(n) =
2
3 + π

2 + κ(n)√
n + 1

+ 3 + E{f(n)} (94)

implying

A =
√

n

(
1 + 3

√
π

2

)
+ 1−

√
π

2
+

2
3 + π

2 + κ(n)√
n + 1

+ E{f(n)}. (95)

Summing up the expected number of comparisons in (84) and assignments in (88)
we get the final formula (77). ¥

3 Test of random arrays

Now let A = [1 : n, 1 : n] be a two-dimensional random array. The array A is
called good, if its all lines (rows and columns) contain a permutation of the elements
1, 2, . . . , n.

Theorem 18 The expected running time of Matrix is

Texp(n, Matrix) =
√

n−O(1) + λ(n), (96)

where λ(n) tends to zero when n tends to infinity.

Proof. The ??? ¥

4 Summary

Table 5 summarises the basic properties of the running times of the investigated
algorithms.

Index and Algorithm Tbest(n) Tworst(n) Texp(n)
1. Backward Θ(1) Θ(n2) Θ(n)
2. Forward Θ(1) Θ(n2) Θ(n)
3. Linear Θ(n) Θ(n) n + Θ(

√
n)

4. Random Θ(1) Θ(n2 lg n) Θ(n)
5. Tree Θ(1) Θ(n2) Θ(

√
n lg n)

6. Garbage Θ(1) Θ(n) Θ(
√

n)
7. Bucket Θ(

√
n) Θ(n

√
n) Θ(

√
n)

8. Matrix Θ(1) Θ(n
√

n) Θ(
√

n)

Table 5: The running times of the investigated algorithms in best, worst and expected
cases

We used in our calculations the RAM computation model [11, 14]. If the investi-
gated algorithms run on real computers then we have to take into account also the
limited capacity of the memory locations and the increasing execution time of the
elementary arithmetical and logical operations.
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5 Pseudocodes of the algorithms

The inputs of the following seven algorithms are n (the length of the sequence s) and
s = (s1, s2, . . . , sn), a sequence of nonnegative integers with 1 ≤ si ≤ n for 1 ≤ i ≤ n)
in all cases. The output is always a logical variable g (its value is True, if the input
sequence is good, and False otherwise).

The working variables are usually the cycle variables i and j.

5.1 Definition of algorithm Linear

Linear writes zero into the elements of an n length vector v = (v1, v2, . . . , vn), then
investigates the elements of the realization and if v[si] > 0 (signalising a repetition),
then stops, otherwise adds 1 to vk.

Linear(n, s)
01 g ← True
02 for i ← 1 to n
03 do v[i] ← 0
04 for i ← 1 to n
05 do if v[s[i]] > 0
06 then g ← False
07 return g
08 else v[s[i]] ← v[s[i]] + 1
09 return g

5.2 Definition of algorithm Backward

Backward compares the second (i2), third (i3), . . . , last (in) element of the reali-
zation s with the previous elements until the first collision or until the last pair of
elements.

Backward(n, s)
01 g ← True
02 for i ← 2 to n
03 do for j ← i− 1 downto 1
04 do if s[i] = s[j]
05 then g ← False
06 return g
07 return g

5.3 Definition of algorithm Forward

Forward compares the first (i1), second (i2), . . . , last but one (in−1) element of the
realization with the following elements until the first collision or until the last pair of
elements.

Forward(n, s)
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01 g ← True
02 for i ← 1 to n− 1
03 do for j ← i + 1 to n
04 do if s[i] = s[j]
05 then g ← False
06 return g
07 return g

5.4 Definition of algorithm Random

Random generates random pairs of elements and tests them until it finds two identical
elements or it tested all the possible pairs of s. It uses the procedure Ran(k) [14]
generating a random integer value distributed uniformly in the interval [1, k].

Random(n, s)

01 g ← True
02 while g = True
03 do i ← Ran(n2)
04 j ← (

Ran(n2 − 1) + j
)

(mod n2)
05 if si = sj

06 then g ← False
07 return g

5.5 Definition of algorithm Tree

Tree builds a random search tree from the elements of the realization and finishes
the construction of the tree if it finds the following element of the realization in the
tree (then the realization is not good) or it tested the last element too without a
collision (then the realization is good).

Tree(n, s)

01 g ← True
02 let s[1] be the root of a tree
03 for i ← 2 to n
04 if [s[i] is in the tree
05 then g ← False
06 return
07 else insert s[i] in the tree
08 return g

5.6 Definition of algorithm Garbage

This algorithm is similar to Linear, but it works without the setting zeros into the
elements of a vector requiring linear amount of time.
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Beside the cycle variable i Garbage uses as working variable also a vector v =
(v1, v2, . . . , vn). Interesting is that v is used without initialisation, that is its initial
values can be arbitrary integer numbers.

The algorithm Garbage was proposed by Gábor Monostori [37].

Garbage(n, s)
01 g ← True
02 for i ← 1 to n
03 do if v[s[i]] < i and s[v[s[i]]] = s[i]
04 then g ← False
05 return g
06 else v[s[i]] ← i
07 return g

5.7 Definition of algorithm Bucket

Bucket handles the array Q[1 : m, 1 : m] (where m = d√ne and puts the ele-
ment si into the rth row of Q, where r = dsi/me and it tests using linear search
whether sj appeared earlier in the corresponding row. The elements of the vector
c = (c1, c2, . . . , cm) are counters, where cj (1 ≤ j ≤ m) shows the number of elements
of the ith row.

For the simplicity we suppose that n is a square.

Bucket(n, s)
01 g ← True
02 m ← √

n
03 for j ← 1 to m
04 do c[j] ← 1
05 for i ← 1 to n
06 do r ← ds[i]/mem
07 for j ← 1 to c[r]− 1
08 do if s[i] = Q[r, j]
09 then g ← False
10 return g
11 else Q[r, c[r]] ← s[i]
12 c[r] ← c[r] + 1
13 return g

5.8 Definition of algorithm Matrix

Matrix is based on Bucket ???
For the simplicity let us suppose that n is a square.

Matrix(n,M)
01 g ← True
02 Bucket(n, r1)
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03 if g = False
04 then return g
05 for i ← 2 to n
06 do Bucket(n, ri)
07 if g = False
08 then return g
09 for j ← 1 to n
10 do Bucket(n, cj)
11 if g = False
12 then return g
13 return True
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[48] Thom D., SUDOKU ist NP-vollständig. PhD Dissertation. Stuttgart, 2007. ⇒
1

[49] Vaughan E. R., The complexity of constructing gerechte designs. Electron. J.
Combin., 16 (1) (2009), paper R15, pp. 8. MR2475538 (2009k:05041).
http://www.combinatorics.org/. ⇒1

[50] Wikipedia, Coupon collector’s problem.
http://en.wikipedia.org/wiki/Coupon collector%27s problem. ⇒11

[51] Xu X., Cao Y., Xu J.-M., and Wu Y., Feedback numbers of de Bruijn
digraphs. Comput. Math. Appl., 59 (4) (2010), 716–723. MR2575561
http://www.ccsenet.org/journal/index.php/jmr/article/viewFile/3732/3336 ⇒1

[52] Xu C., and Xu W., The model and algorithm to estimate the difficulty levels
of Sudoku puzzles. J. Math. Res., 11 (2) (2009), 43–46.
http://www.ccsenet.org/journal/index.php/jmr/article/viewFile/3732/3336 ⇒1

[53] Zhang W., Liu S., and Huang H., An efficient implementation algorithm for
generating de Bruijn sequences. Computer Standards & Interfaces, 31 (6) (2009),
1190–1191. http://www.sciencedirect.com/science/journal/0012365X ⇒1
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