$8^{\text {th }}$ Joint Conference on
Mathematics and Computer
Science, July 14-17, 2010,
Komárno, Slovakia

BALANCED
 RECONSTRUCTION OF
 MULTIGRAPHS

ANTAL IVÁNYI

Eötvös Loránd University,
Dept. of Computer Algebra
E-mail:
tony@compalg.inf.elte.hu
This presentation can be downloaded from
http://compalg.inf.elte.hu/~tony/MACS

1. PRESCRIBED OUT-DEGREES

Let a, b and n be integers with $\mathrm{b} \geq$ $a \geq 0$ and $n \geq 2$. An (a, b, n)tournament is defined as a loopless directed multigraph on \mathfrak{n} vertices, in which every pair of vertices is cennected with at least \mathbf{a} and at most \mathbf{b} arcs.

Theorem 1 (Landau, 1953) A sequince $\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)$ satisfying $0 \leq$ $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ is the outdegree sequence of some $(1,1, \mathfrak{n})$ tournament T if and only if

$$
\sum_{i=1}^{k} s_{i} \geq\binom{ n}{2}, \quad 1 \leq k \leq n
$$

with equality when $\mathrm{k}=\mathrm{n}$.

Theorem 2 (Landau, 1953) If i is a positive integer, then the sequence $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ satisfying $0 \leq$ $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ is the outdegree sequence of some ($\mathfrak{j}, \mathfrak{j}, \mathfrak{n}$)-tournament T if and only if

$$
\sum_{i=1}^{k} r_{i} \geq j\binom{n}{2}, \quad 1 \leq k \leq n,
$$

with equality when $\mathrm{k}=\mathrm{n}$.
These theorems allow to check the realisability of \mathbf{r} in linear time, but are not constructive. The following theorem requires more time to decide the existence, but allows the reconstruction in quadratic time.

Theorem 3 (Havel, 1955; Hakimi, 1962)
A sequence $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ satisfying
$0 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ is the outdegree sequence of some (1,1,n)tournament T if and only if the increasingly sorted version of the sequence $\quad\left(r_{1}, \ldots, r_{m}, r_{m+1}-1\right.$, $\left.r_{m+2}-1, r_{n-1}-1\right)$ is the outdegree sequence of some (1,1,n)tournament, where $m=r_{n}$.

Theorem 4 (Iványi, 2009) Let \mathbf{a}, b, $\mathrm{k}, \mathrm{n}, \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}$ be nonnegafive integers $\left(\mathrm{a} \leq \mathrm{b}, 0<\mathrm{b}, \mathrm{r}_{1} \leq\right.$ $r_{2} \leq \ldots \leq r_{n}$. Further let $L_{0}=0$,
and if $1 \leq \mathrm{k} \leq \mathrm{n}$, then let
$L_{k}=\max \left(L_{k-1}, b\binom{n}{2}-\sum_{i=1}^{k} r_{i}\right)$.
The sequence $\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)$ is the out-degree sequence of an ($\mathbf{a}, \mathrm{b}, \mathfrak{n}$)tournament T , if and only if

$$
\begin{gathered}
a\binom{k}{2} \leq \sum_{i=1}^{k} r_{i} \leq \\
\leq b\binom{n}{2}-L_{k}-(n-k) r_{i}(1 \leq k \leq n) .
\end{gathered}
$$

2. PRESCRIBED IN- AND OUT-DEGREES

Let $\mathrm{n} \geq 2$ be a positive integer and let $\mathcal{T}_{\mathfrak{n}}(\mathbf{r}, \mathbf{c})$ be the set of directed multigraphs on $\mathfrak{n}+1$ vertices having prescribed out-degrees $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and prescribed in-degrees $\mathbf{c}=\left(c_{1}, c_{2}\right.$, \ldots, c_{n}).
Let the element $m_{i j}$ of the matrix $M_{(n+1) \times(n+1)}$ denote the number of arcs directed from the vertex $\mathrm{V}_{\mathfrak{i}}$ to vertex V_{j}. We present an algorithm MiniMax constructing a directed multigraph $\mathrm{D} \in \mathcal{I}_{\mathfrak{n}}(\mathbf{r}, \mathbf{c})$ having the following properties:

- a) D has the prescribed in-degrees and out-degrees;
-b) D has the minimal value of $r_{n+1}+$ c_{n+1};
- c) D has the minimal value of $\max \left(m_{i j}+m_{j i}\right)$;
- d) D has the maximal value of $\min \left(m_{i j}+m_{j i}\right)$.

This algorithm is based on the algorithms due to Landau [7], Havel [4], Hakimi [2, 3], Ryser [10], and Iványi [6]. The algorithm generalizes the results due to Landau [7], Moon [9], Havel [4], Hakimi [2, 3], Meierlink and Volkman [8], Iványi [5, 6], Erdős, Miklós and Toroczkai [1], Ryser [10].

Let

$$
\sum_{i=1}^{n} r_{i}=R, \quad \text { and } \quad \sum_{i=1}^{n} c_{i}=C
$$

The sequences \mathbf{r} and \mathbf{c} are called balanced, if $R=C$. It is a natural observation, that a corresponding D exists only for balanced \mathbf{r} and \mathbf{c}.
Hakimi gave in 1965 a necessary and sufficient condition of the existence of a $(0, \infty, n)$-tournament having a prescribed out-degree sequence \mathbf{r} and indegree sequence \mathbf{c}.
Let's consider examples.

$\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{j}}$	SL	RO	HU	Sum
SL	-	6	0	6
RO	4	-	0	4
HU	0	0	-	0
Sum	$\mathbf{4}$	$\mathbf{6}$	0	-

Table 1: A simple example
Now $r_{1}+r_{2}=R=10$ and $c_{1}+c_{2}=$ $C=10, R=C$ and we have a unique solution without the third team.

$\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{j}}$	SL	RO	HU	Sum
SL	-	4	2	6
RO	4	-	0	4
HU	0	0	-	0
Sum	$\mathbf{4}$	$\mathbf{4}$	2	-

Table 2: An example with $\mathrm{C}<\mathrm{R}$
Now $r_{1}+r_{2}=R=10$, but $c_{1}+c_{2}=$ $C=8, R \neq C$ and we have NO solution without the third team. Choosing $r_{3}=0$ and $c_{3}=2$ we reach $R=C=10$ and get a unique solution.

$\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{j}}$	SL	RO	HU	Sum
SL	-	3	3	6
RO	4	-	0	4
HU	2	0	-	2
Sum	$\mathbf{6}$	$\mathbf{3}$	$1+2$	-

Table 3: Example with $C<R$, where r_{1} is too large
Now $R=10>9=C$. Choosing
$c_{3}=1$ and $r_{3}=0$ we get a balanced situation, but $\mathrm{r}_{1}>\mathrm{c}_{2}+\mathrm{c}_{3}$. Choosing $c_{3}=3$ helps in some sense: now $r_{1}=c_{2}+c_{3}$, but $c_{1}+c_{2}+c_{3}=12$ became too large. $r_{3}=2$ results a unique solution.
These examples show, that

$$
r_{i} \leq C-c_{i}(i=1,2, \ldots, n)
$$

is also a necessary condition of the existence of a tournament $T \in \mathcal{T}_{\mathfrak{n}}(\mathbf{r}, \mathbf{c})$.
Hakimi in 1965 [3] proved the following theorem.

Theorem 5 Let $\mathrm{n} \geq 2$ and the sequences \boldsymbol{r} and \boldsymbol{c} of nonnegative integers have the property $0<\mathrm{r}_{1}+$ $c_{1} \leq r_{2}+c_{2} \leq \cdots \leq r_{n}+c_{n}$. Then there exists a $T \in \mathbf{r}, \mathbf{c}$ toutnament if and only if the pair $(\boldsymbol{r}, \boldsymbol{c})$ balanced and

$$
\sum_{i=1}^{n}\left(r_{i}+c_{i}\right) \geq r_{n}+c_{n}
$$

If this necessary condition does not hold, then the following algorithm produces balanced ($\mathbf{r}^{\prime}, \mathbf{c}^{\prime}$) sequences.
$\operatorname{SEQUENCE}-\operatorname{AugmEnt}\left(\mathbf{n}, \mathbf{r}, \mathbf{c}, \mathbf{r}^{\prime}, \mathbf{c}^{\prime}\right)$
$01 \mathrm{R} \leftarrow 0$
$02 \mathrm{C} \leftarrow 0$
03 for $i \leftarrow 1$ to n
$04 \quad \mathrm{R} \leftarrow \mathrm{R}+\mathrm{r}_{\mathrm{i}}$
$05 \quad C \leftarrow C+c_{i}$
$06 r_{n+1} \leftarrow 0$
$07 \mathrm{c}_{\mathrm{n}+1} \leftarrow 0$
08 if $R>C$
09 then $c_{n+1} \leftarrow R-C$
$10 \quad C \leftarrow C+c_{n+1}$
11 if $C>R$
12 then $r_{n+1} \leftarrow C-R$
$13 \quad R \leftarrow R+r_{n+1}$
$14 \mathrm{r} \leftarrow 0$
15 for $i \leftarrow 1$ to n
16 if $r_{i}>C-c_{i}$
$17 \quad$ then $r \leftarrow \max \left(\mathrm{r}_{\mathrm{r}} \mathrm{r}_{\mathfrak{i}}-\left(\mathrm{C}-\mathrm{c}_{\mathfrak{i}}\right)\right)$
$18 r_{n+1} \leftarrow r_{n+1}+r$
$19 \mathrm{c}_{\mathrm{n}+1} \leftarrow \mathrm{c}_{\mathrm{n}+1}+\mathrm{r}$
$20 c \leftarrow 0$

21 for $i \leftarrow 1$ to n

$22 \quad$ if $c_{i}>R-r_{i}$
$23 \quad$ then $c \leftarrow \max \left(c, c_{i}-\left(R-r_{i}\right)\right)$
$24 \boldsymbol{c}_{\mathrm{n}+1} \leftarrow \mathrm{c}_{\mathrm{n}+1}+\mathrm{c}$
$25 r_{n+1} \leftarrow r_{n+1}+c$

Then a developed version of the algorithm MiniMax [6] results a multitournament D having properties a), b), c) and d).

References

[1] P. Erdős, I. Miklós, Z. Toroczkai, A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. Elec. J. Combin., 17 (1) (2010) Paper R66, 10 pages. $\Rightarrow 7$
[2] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math., 10 (1962) 496-506. $\Rightarrow 7$
[3] S. L. Hakimi, On the degrees of the vertices of a directed graph. J. Franklin Inst., 279 (1965) 290-308. $\Rightarrow 7$, 10
[4] V. Havel, A remark on the existence of finite graphs (Czech). C̆asopis Pĕst. Mat., 80 (1962) 477-480. $\Rightarrow 7$
[5] A. Iványi, Reconstruction of interval tournaments, Acta Univ. Sapientiae, Informatica, 1 (1) (2009) 71-88. $\Rightarrow 7$
[6] A. Iványi, Reconstruction of interval tournaments. II, Acta Univ. Sapientiae, Mathematica, 2 (1) (2010) 4771. \Rightarrow 7, 13
[7] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score sequence, Bull. Math. Biophys., 15 (1953) 143-148. \Rightarrow 7
[8] D. Meierling, L. Volkmann, A remark on degree sequences of multigraphs, Math. Methods Oper. Res., 69 (2) (2009) 369-374. $\Rightarrow 7$
[9] J. W. Moon, An extension of Landau's theorem on tournaments, Pacific J. Math., 13 (1963) 1343-1345. \Rightarrow 7
[10] H. J. Ryser, Matrices of zeros and ones in combinatorial mathematics. In Recent Advances in Matrix Theory, University of Wisconsin Press, Madison, 1964, pp. 103124. $\Rightarrow 7$

