8th Joint Conference on Mathematics and Computer Science, July 14–17, 2010, Komárno, Slovakia

BALANCED RECONSTRUCTION OF MULTIGRAPHS

ANTAL IVÁNYI

Eötvös Loránd University, Dept. of Computer Algebra

E-mail: tony@compalg.inf.elte.hu

This presentation can be downloaded from http://compalg.inf.elte.hu/~tony/MACS

1. PRESCRIBED OUT-DEGREES

Let a, b and n be integers with $b \ge a \ge 0$ and $n \ge 2$. An (a, b, n)-tournament is defined as a loopless directed multigraph on n vertices, in which every pair of vertices is cennected with at least a and at most b arcs.

Theorem 1 (Landau, 1953) A sequence $(r_1, r_2, ..., r_n)$ satisfying $0 \le r_1 \le r_2 \le \cdots \le r_n$ is the outdegree sequence of some (1, 1, n)-tournament T if and only if

$$\sum_{i=1}^{k} s_i \ge {\binom{n}{2}}, \quad 1 \le k \le n, \quad (1)$$

with equality when k = n.

2

Theorem 2 (Landau, 1953) If *i* is a positive integer, then the sequence $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n)$ satisfying $0 \leq$ $\mathbf{r}_1 \leq \mathbf{r}_2 \leq \cdots \leq \mathbf{r}_n$ is the outdegree sequence of some (j, j, n)-tournament T if and only if

$$\sum_{i=1}^{k} r_i \ge j \binom{n}{2}, \quad 1 \le k \le n,$$

with equality when k = n.

These theorems allow to check the realisability of \mathbf{r} in linear time, but are not constructive. The following theorem requires more time to decide the existence, but allows the reconstruction in quadratic time.

Theorem 3 (Havel, 1955; Hakimi, 1962) A sequence $(r_1, r_2, ..., r_n)$ satisfying $0 \le r_1 \le r_2 \le \cdots \le r_n$ is the outdegree sequence of some (1, 1, n)tournament T if and only if the increasingly sorted version of the sequence $(r_1, ..., r_m, r_{m+1} - 1, r_{m+2} - 1, r_{n-1} - 1)$ is the outdegree sequence of some (1, 1, n)tournament, where $m = r_n$.

Theorem 4 (Iványi, 2009) Let \mathfrak{a} , \mathfrak{b} , k, n, \mathfrak{r}_1 , \mathfrak{r}_2 , ..., \mathfrak{r}_n be nonnegative integers ($\mathfrak{a} \leq \mathfrak{b}, \mathfrak{0} < \mathfrak{b}, \mathfrak{r}_1 \leq$ $\mathfrak{r}_2 \leq \ldots \leq \mathfrak{r}_n$). Further let $L_0 = \mathfrak{0}$,

and if
$$1 \le k \le n$$
, then let
 $L_k = \max\left(L_{k-1}, b\binom{n}{2} - \sum_{i=1}^k r_i\right)$

The sequence $(r_1, r_2, ..., r_n)$ is the out-degree sequence of an (a, b, n)-tournament T, if and only if

$$\begin{split} a\binom{k}{2} &\leq \sum_{i=1}^{k} r_{i} \leq \\ &\leq b\binom{n}{2} - L_{k} - (n-k)r_{i} \ (1 \leq k \leq n). \end{split}$$

2. PRESCRIBED IN- AND OUT-DEGREES

6

Let $n \ge 2$ be a positive integer and let $\mathcal{T}_n(\mathbf{r}, \mathbf{c})$ be the set of directed multigraphs on n+1 vertices having prescribed out-degrees $\mathbf{r} = (r_1, r_2, \dots, r_n)$ and prescribed in-degrees $\mathbf{c} = (c_1, c_2, \dots, c_n)$.

Let the element \mathfrak{m}_{ij} of the matrix $M_{(n+1)\times(n+1)}$ denote the number of arcs directed from the vertex V_i to vertex V_j . We present an algorithm MINIMAX constructing a directed multigraph $D \in \mathcal{T}_n(\mathbf{r}, \mathbf{c})$ having the following properties:

• a) D has the prescribed in-degrees and out-degrees;

• b) D has the minimal value of $r_{n+1} + c_{n+1}$;

7

- c) D has the minimal value of $\max(\mathfrak{m}_{ij} + \mathfrak{m}_{ji});$
- d) D has the maximal value of $\min(\mathfrak{m}_{ij} + \mathfrak{m}_{ji})$.

This algorithm is based on the algorithms due to Landau [7], Havel [4], Hakimi [2, 3], Ryser [10], and Iványi [6]. The algorithm generalizes the results due to Landau [7], Moon [9], Havel [4], Hakimi [2, 3], Meierlink and Volkman [8], Iványi [5, 6], Erdős, Miklós and Toroczkai [1], Ryser [10].

Let
$$\sum_{i=1}^{n} r_i = R, \text{ and } \sum_{i=1}^{n} c_i = C.$$

8

The sequences \mathbf{r} and \mathbf{c} are called **ba**lanced, if $\mathbf{R} = \mathbf{C}$. It is a natural observation, that a corresponding \mathbf{D} exists only for balanced \mathbf{r} and \mathbf{c} .

Hakimi gave in 1965 a necessary and sufficient condition of the existence of a $(0, \infty, n)$ -tournament having a prescribed out-degree sequence \mathbf{r} and indegree sequence \mathbf{c} .

Let's consider examples.

T_i/T_j	SL	RO	HU	Sum
SL	—	6	0	6
RO	4	_	0	4
HU	0	0	—	0
Sum	4	6	0	_

Table 1: A simple example

Now $r_1 + r_2 = R = 10$ and $c_1 + c_2 = C = 10$, R = C and we have a unique solution without the third team.

$T_{\rm i}/T_{\rm j}$	SL	RO	HU	Sum
SL	_	4	2	6
RO	4	_	0	4
HU	0	0	—	0
Sum	4	4	2	_

Table 2: An example with $\mathsf{C} < \mathsf{R}$

Now $r_1+r_2 = R = 10$, but $c_1+c_2 = C = 8$, $R \neq C$ and we have NO solution without the third team. Choosing $r_3 = 0$ and $c_3 = 2$ we reach R = C = 10 and get a unique solution.

T_i/T_j	SL	RO	HU	Sum
SL	_	3	3	6
RO	4	—	0	4
HU	2	0	_	2
Sum	6	3	1+2	—

Table 3: Example with C < R, where r_1 is too large

Now R = 10 > 9 = C. Choosing $c_3 = 1$ and $r_3 = 0$ we get a balanced situation, but $r_1 > c_2 + c_3$. Choosing $c_3 = 3$ helps in some sense: now $r_1 = c_2 + c_3$, but $c_1 + c_2 + c_3 = 12$ became too large. $r_3 = 2$ results a unique solution.

These examples show, that

 $r_i \leq C - c_i \ (i = 1, 2, ..., n)$ is also a necessary condition of the existence of a tournament $T \in \mathcal{T}_n(\mathbf{r}, \mathbf{c})$.

Hakimi in 1965 [3] proved the following theorem.

10

Theorem 5 Let $n \ge 2$ and the sequences r and c of nonnegative integers have the property $0 < r_1 + c_1 \le r_2 + c_2 \le \cdots \le r_n + c_n$. Then there exists a $T \in \mathbf{r}, \mathbf{c}$ toutnament if and only if the pair (r, c) balanced and

$$\sum_{i=1}^{n} (r_i + c_i) \ge r_n + c_n.$$

If this necessary condition does not hold, then the following algorithm produces balanced $(\mathbf{r'}, \mathbf{c'})$ sequences.

SEQUENCE-AUGMENT(n, r, c, r', c')

$$\begin{array}{l} 01 \ \mathsf{R} \leftarrow \mathsf{0} \\ 02 \ \mathsf{C} \leftarrow \mathsf{0} \\ 03 \ \mathbf{for} \ \mathbf{i} \leftarrow \mathsf{1} \ \mathbf{to} \ \mathsf{n} \end{array}$$

```
04 \mathbf{R} \leftarrow \mathbf{R} + \mathbf{r_i}
05 \quad C \leftarrow C + c_i
06 r_{n+1} \leftarrow 0
07 c_{n+1} \leftarrow 0
08 if R > C
    then c_{n+1} \leftarrow R - C
09
     C \leftarrow C + c_{n+1}
10
11 if C > R
12 then r_{n+1} \leftarrow C - R
13
                   R \leftarrow R + r_{n+1}
14 \mathbf{r} \leftarrow \mathbf{0}
15 for i \leftarrow 1 to n
16 if r_i > C - c_i
17 then \mathbf{r} \leftarrow \max(\mathbf{r}, \mathbf{r}_i - (\mathbf{C} - \mathbf{c}_i))
18 r_{n+1} \leftarrow r_{n+1} + r
19 \mathbf{c_{n+1}} \leftarrow \mathbf{c_{n+1}} + \mathbf{r}
20 c \leftarrow 0
```

12

21 for
$$i \leftarrow 1$$
 to n
22 if $c_i > R - r_i$
23 then $c \leftarrow \max(c, c_i - (R - r_i))$
24 $c_{n+1} \leftarrow c_{n+1} + c$
25 $r_{n+1} \leftarrow r_{n+1} + c$

13

Then a developed version of the algorithm MINIMAX [6] results a multitournament D having properties a), b), c) and d).

References

- P. Erdős, I. Miklós, Z. Toroczkai, A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. *Elec. J. Combin.*, **17** (1) (2010) Paper R66, 10 pages. ⇒7
- [2] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math., **10** (1962) 496–506. \Rightarrow 7

- [3] S. L. Hakimi, On the degrees of the vertices of a directed graph. J. Franklin Inst., **279** (1965) 290–308. \Rightarrow 7, 10
- [4] V. Havel, A remark on the existence of finite graphs (Czech). *Časopis Pěst. Mat.*, **80** (1962) 477–480. \Rightarrow 7
- [5] A. Iványi, Reconstruction of interval tournaments, Acta Univ. Sapientiae, Informatica, 1 (1) (2009) 71–88. \Rightarrow 7
- [6] A. Iványi, Reconstruction of interval tournaments. II, Acta Univ. Sapientiae, Mathematica, 2 (1) (2010) 47– 71. \Rightarrow 7, 13
- [7] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score sequence, *Bull. Math. Biophys.*, **15** (1953) 143–148. \Rightarrow 7
- [8] D. Meierling, L. Volkmann, A remark on degree sequences of multigraphs, *Math. Methods Oper. Res.*, **69** (2) (2009) $369-374. \Rightarrow 7$
- [9] J. W. Moon, An extension of Landau's theorem on tournaments, *Pacific J. Math.*, **13** (1963) 1343–1345. \Rightarrow 7
- [10] H. J. Ryser, Matrices of zeros and ones in combinatorial mathematics. In *Recent Advances in Matrix Theory*, University of Wisconsin Press, Madison, 1964, pp. 103–124. ⇒7