
8 th International Conference on Applied Informatics
Eger, Hungary, January 27�30, 2010.

Quick testing of random sequences

Antal Iványia, Imre Kátaib

a Dept. of Computer Algebra of Eötvös Loránd University
e-mail: tony@compalg.inf.elte.hu

b Dept. of Computer Algebra of Eötvös Loránd University
e-mail:katai@compalg.inf.elte.hu

Abstract
Let ξ be a random integer sequence, having uniform distribution

P{ξ = (i1, i2, . . . , in) = 1/nn} for 1 6 i1, i2, . . . , in 6 n.

A realization (i1, i2, . . . , in) of ξ is called good, if its elements are di�erent. We
present seven algorithms which decide whether a given realization is good.
The investigated problem is connected with design of experiments [3, 13] and
with testing of the solutions of Latin [1, 4, 10, 11, 12, 18, 19, 21] and Sudoku
puzzles [2, 5, 7, 8, 9, 20, 22, 23, 24, 25, 27].

In this short paper (which contains the talk [15]) we have space only to
de�ne seven algorithms (using the pseudocode of [6]) and to summarize the
basic properties of their running times (see Table 1 at the end of the paper).
The proofs of the assertions can be found in [16].
Keywords: random sequences, e�cient algorithms
MSC: 68Q25

1. Algorithms
The inputs of the following seven algorithms are n (the length of the sequence

s) and s (= (s1, s2, . . . , sn): a sequence of nonnegative integers with 1 6 sj 6 n
for 1 6 j 6 n) in all cases. The output is always a logical variable g (its value is
True, if the input sequence is good, and False otherwise).

The working variables are usually the cycle variables i and j.

1.1. De�nition of the algorithm Forward
Forward compares the �rst (i1), second (i2), . . . , last but one (in−1) element

of the realization with the following elements until the �rst collision or until the
last pair of elements.

1



2

Forward(n, s)
01 g ← True
02 for i ← 1 to n− 1
03 do for j ← i + 1 to n
04 do if s[i] = s[j]
05 then g ← False
06 return g
07 return g

The number of the necessary comparisons in line 04 is
Cbest(n,Forward) = 1 = Θ(1) in the best case, and Cworst(n,Backward) =
n(n− 1)/2 = Θ(n2) in the worst case.

Using Lemma 1.1 [14, 17] one can show that the expected number of the neces-
sary comparisons is Cexp(n,Forward) = n = Θ(n).
Lemma 1.1. Let ηn be a random variable de�ned for n = 1, 2, . . . and k =
1, 2, . . . , n as

P (ηn = k) = P (i1, i2, . . . , ik are di�erent and
ik+1 = ij for some j, where 1 6 j 6 k).

Then
E(ηn) =

(πn

2

)1/2

− 1/3 + εn,

where εn tends to zero when n tends to in�nity.

1.2. De�nition of algorithm Backward
Backward compares the second (i2), third (i3), . . . , last (in) element of the

realization with the previous elements until the �rst collision or until the last pair
of elements.
Backward(n, s)
01 g ← True
02 for i ← 2 to n
03 do for j ← i− 1 downto 1
04 do if s[i] = s[j]
05 then g ← False
06 return g
07 return g

The number of the necessary comparisons in line 04 is
Cbest(n,Backward) = 1 = Θ(1) in the best case, and Cworst(n,Backward) =
n(n− 1)/2 = Θ(n2) in the worst case.

Using Lemma 1.1 one can show that the expected number of the necessary
comparisons is Cexp(n,Backward) = n = Θ(n).

Although the order of growth of the expected number of the necessary compa-
risons is the same for Forward and Backward, the concrete values are di�erent,
if n > 4.



3

1.3. De�nition of algorithm Linear
Linear writes zero into the elements of an n length vector v = (v1, v2, . . . , vn),

then investigates the elements of the realization and if v[si] > 0 (signalising a
repetition), then stops, otherwise adds 1 to vk.
Linear(n, s)
01 g ← True
02 for i ← 1 to n
03 do v[i] ← 0
04 for i ← 1 to n
05 do if v[s[i]] > 0
06 then g ← False
07 return g
08 else v[s[i]] ← v[s[i]] + 1
09 return g

Linear needs assignments in lines 03 and 08, and it needs comparisons in line
05. The number of assignments in line 03 is equals to n for arbitrary input and
varies between 1 and n in line 08. The number of c omparisons also varies between
1 and n in line 08. Therefore the running time of Random is Θ(n) in the best,
worst and expected case too.

1.4. De�nition of algorithm Random
Random generates random pairs of elements and tests them until it �nds two

identical elements or it tested all the possible pairs of s. It uses the procedure
Ran(k) [6] generating a random integer value distributed uniformly in the interval
[1, k].
Random(n, s)
01 g ← True
02 while g = True
03 do i ← Ran(n2)
04 j ← (

Ran(n2 − 1) + j
)

(mod n2)
05 if si = sj

06 then g ← False
07 return g

Random needs only 1 = Θ(1) time in the best case. In the worst case its
running time can be arbitrary large but the probability of a large running time is
small.

The problem of the expected case of Random is known as the coupon collector's
problem (see [6, page 109�110] or [26]).
Lemma 1.2. The expected running time of Random is

Cexp(n,Random) = Θ(n).



4

Proof. Algorithm Random can get two types of input: it gets a good input with
probability n!/nn and a bad input with probability (nn − n!)/nn.

In the case of a good input the algorithm needs n(n−1)/2) di�erent comparisons
to observe that the investigated input is good. According to the known solution of
the coupon collector's problem the expected number of the necessary comparisons
is

Cgood = n

n(n−1)/2∑

i=1

1
i

= Θ(n log n). (1.1)

If Random gets a bad input, then
∞∑

i=0

(
n− 1

n

)i

= 1 + n

is an upper bound of its expected running time, and so

Cexp(n,Random) 6 n =
n!
nn

Θ(n log n) +
nn − n!

nn
(1 + n) = Θ(n).

¤

1.5. De�nition of algorithm Tree
Tree builds a random search tree from the elements of the realization and

�nishes the construction of the tree if it �nds the following element of the realization
in the tree (then the realization is not good) or it tested the last element too without
a collision (then the realization is good).
Tree(n, s)
01 g ← True
02 let s[1] be the root of a tree
03 for i ← 2 to n
04 if [s[i] is in the tree
05 then g ← False
06 return
07 else insert s[i] in the tree
08 return g

The worst case running time of Tree appears when the input contains di�erent
elements in increasing or decreasing order. Then the result is Θ(n2). The best case
is when the �rst two elements of s are equal: tin this case Cbest(n,Tree) = 1 =
Θ(1).

Using the known fact that the expected height of a random search tree is
Θ(log n) and Lemma 1.1 we can get that the order of the expected running time is√

n log n.
Lemma 1.3. The expected running time of Tree is

Cexp(n,Tree) = Θ(
√

n log n).



5

1.6. De�nition of algorithm Garbage
This algorithm is similar to Linear, but it works without the setting zeros into

the elements of a vector requiring linear amount of time.
Beside the cycle variable i Garbage uses as working variable also a vector

v = (v1, v2, . . . , vn). Interesting is that v is used without initialization, that is its
initial values can be arbitrary integer numbers.
Garbage(n, s)
01 g ← True
02 for i ← 1 to n
03 do if v[s[i]] < i and s[v[s[i]]] = s[i]
04 then g ← False
05 return g
06 else v[s[i]] ← i
07 return g

Lemma 1.4. The expected running time of Garbage is
Cexp(n,Garbage) = Θ(

√
n).

1.7. De�nition of algorithm Modular
Modular handles the array Q[1 : m, 1 : m] (where m = d√ne and puts the

element si into the queue formed by the rth row of Q, where r = s[i] mod m and
it tests using linear search tests whether sj appeared earlier in the corresponding
queue. The elements of the vector c = (c0, c1, . . . , cm−1) are counters, where ci

(0 6 i 6 m− 1)) shows the number of elements of the ith queue.
For the simplicity let us suppose that n is a square.

Modular(n, s)
01 g ← True
02 m ← √

n
03 for j ← 1 to m
04 do c[j] ← 1
05 for i ← 1 to n
06 do r ← s[i]− bs[i]/mcm
07 for j ← 1 to c[r]− 1
08 do if s[i] = Q[r, j]
09 then g ← False
10 return g
11 else Q[r, c[r]] ← s[i]
12 c[r] ← c[r] + 1
13 return g

Lemma 1.5. The expected running time of Modular is
Cexp(n,Modular) = Θ(

√
n).

In the proof of this lemma central role plays Lemma 1.1.



6

1.8. Summary
Table 1 summarises the basic properties of the running times of the investigated

algorithms.

Index and Algorithm Tbest(n) Tworst(n) Texp(n)
1. Forward Θ(1) Θ(n2) Θ(n)
2. Backward Θ(1) Θ(n2) Θ(n)
3. Linear Θ(n) Θ(n) Θ(n)
4. Random Θ(1) Θ(n2 log n) Θ(n)
5. Tree Θ(1) Θ(n2) Θ(

√
n log n)

6. Garbage Θ(1) Θ(n) Θ(
√

n)
7. Modular Θ(1) Θ(n

√
n) Θ(

√
n)

Table 1: The running times of the investigated algorithms in best, worst and
expected cases

We used in our calculations the RAM computation model [6]. If the investiga-
ted algorithms run on real computers then we have to take into account also the
limited capacity of the memory locations and the increasing execution time of the
elementary arithmetical and logical operations.

Acknowledgements. The authors thank Tamás F. Móri, Péter Burcsi, and At-
tila Kiss, teachers of Eötvös Loránd University for the useful consultation.

The research was supported by the project TÁMOP-4.2.1.B-09/1/KMR�2010-
003 of Eötvös Loránd University.

References
[1] Adams, P., Bryant, D., Buchanan, M. Completing partial Latin squares with two

�lled rows and two �lled columns. Electron. J. Combin. Vol. 15, No. 1 (2008), Research
paper 56, 26 pp. MR2398848 (2009h:05035). http://www.combinatorics.org/.

[2] Bailey, R. A., Cameron, P. J., Connelly, R., Sudoku, gerechte
designs, resolutions, a�ne space, spreads, reguli, and Hamming codes.
Amer. Math. Monthly, Vol. 115, No. 5 (2008), 383�404. MR2408485.
http://www.math.cornell.edu/∼connelly/bcc_sudokupaper.pdf.

[3] Behrens, W. U. Feldversuchsanordnungen mit verbessertem Ausgleich der Bode-
nunterschiede, Zeitschrift für Landwirtschaftliches Versuchs- und Untersuchungswe-
sen, Vol. 2, (1956), 176�193.

[4] Buchanan, H. L. II, Ferencak, M. N. On completing Latin squares. J. Com-
bin. Math. Combin. Comput. Vol. 34 (2000), 129�132. MR1772791 (2001b:05042).
http://www.cs.elte.hu/ annalesm/



7

[5] Chen, Z., Heuristic reasoning on graph and game complexity of sudoku. 6 pages.
ARXIV, 2010. http://arxiv.org/PS_cache/arxiv/pdf/0903/0903.1659v1.pdf.

[6] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Introduction to
Algorithms. The MIT Press, 2009.

[7] Crook, J. F. A pencil-and-paper algorithm for solving Sudoku puzzles. No-
tices Amer. Math. Soc., Vol. 56 (2009), 460�468. MR2482305 (2010c:05022).
http://www.ams.org/notices/200904/tx090400460p.pdf

[8] Dahl, G. Permutation matrices related to Sudoku. Linear Al-
gebra Appl. Vol. 430 (2009), 2457�2463. MR2508304 (2010d:05022).
http://www.sciencedirect.com/science/journal/00243795

[9] Dénes, J., Keedwell, A. D., Latin Squares. New Developments in the Theory and
Applications. North-Holland, Amsterdam, 1991.

[10] Easton, T., Parker, R. G. On completing Latin squares. Discrete Appl. Math.
Vol. 113, No. 2-3 (2001), 167�181. MR1857774 (2002j:05029)

[11] Euler, R. On the completability of incomplete Latin squa-
res. European J. Combin. Vol. 31 (2010), 535�552. MR2565345.
http://www.sciencedirect.com/science/journal/01956698.

[12] Hajirasouliha, I., Jowhari, H., Kumar, R., Sundaram, R. On
completing Latin squares. Lecture Notes in Comput. Sci., Vol. 4393
(STACS2007), 524�535. Springer, Berlin, 2007. MR2362490 (2008k:68122).
http://www.springerlink.com/content/105633/.

[13] Heppes, A., Révész, P. A new generalization of the concept of latin squares and
orthogonal latin squares and its application to the design of experiments (in Hunga-
rian). Magyar Tud. Akad. Mat. Int. Közl. 1 (1956), 379�390.

[14] Iványi, A., Kátai, I., Estimates for speed of computers with interleaved memory
systems, Annales Univ. Sci. Budapest., Sectio Mathematica, Vol. 19 (1976), 159�164.

[15] Iványi, A., Kátai, I., Quick testing of random variables. In: Abstracts of ICAI'2010.
http://icai.ektf.hu/index.php?p=11.

[16] Iványi, A., Kátai, I., Testing of random matrices, Annales Univ. Sci. Budapest.,
Sectio Computatorica, submitted.

[17] Knuth, D. E., The Art of Computer Programming. Vol. 1. Fundamental Algorithms
(third edition). Addison�Wesley, 1997. MR0378456 (51 #14624).

[18] Kuhl, J. S., Denley, T. On a generalization of the Evans conjecture.
Discrete Math. Vol. 308, No. 20 (2008), 4763�4767. MR2438179 (2009i:05047).
http://www.sciencedirect.com/science/journal/0012365X.

[19] Kumar, S. R., Russell, A., Sundaram, R. Approximating Latin square ex-
tensions. Algorithmica Vol. 24, No. 2 (1999), 128�138. MR1678015 (99m:68088).
http://www.springerlink.com/content/1432-0541/.



8

[20] Lorch, J. Mutually orthogonal families of linear Sudoku soluti-
ons. J. Aust. Math. Soc. Vol. 87, No. 3 (2009), 409�420. MR2576574.
http://journals.cambridge.org/action/displayJournal?jid=JAZ.

[21] Öhman, L.-D. A note on completing Latin squares. Australas. J. Combin. Vol. 45
(2009), 117�123. MR2554529. http://ajc.maths.uq.edu.au/.

[22] Provan, J. S., Sudoku: strategy versus structure. Amer. Math. Monthly Vol. 116,
No. 8 (2009), 702�707. http://www.jstor.org/journals/00029890.html

[23] Sander, T. Sudoku graphs are integral. Electron. J. Combin. Vol. 16, No. 1 (2009),
Note 25, 7 pp. MR2529816. http://www.combinatorics.org/.

[24] Thom, D., SUDOKU ist NP-vollständig. PhD Dissertation. Stuttgart, 2007.

[25] Vaughan, E. R., The complexity of constructing gerechte designs. Electron. J.
Combin., Vol. 16 (2009), no. 1, paper R15, pp. 8. MR2475538 (2009k:05041).
http://www.combinatorics.org/.

[26] Wikipedia, Coupon collector's problem.
http://en.wikipedia.org/wiki/Coupon_collector%27s_problem.

[27] Xu, C., Xu, W., The model and algorithm to estimate the di�culty
levels of Sudoku puzzles. J. Math. Res., Vol. 11, No. 2 (2009), 43�46.
http://www.ccsenet.org/journal/index.php/jmr/article/viewFile/3732/3336

Antal Iványi
1117 Budapest, Pázmány Péter sétány 1/C
Imre Kátai
1117 Budapest, Pázmány Péter sétány 1/C


