
8th International Conference on
Applied Informatics

Eger, Hungary, January 30, 2010.

QUICK TESTING OF
RANDOM VARIABLES

Antal Iványi,a Imre Kátaia

a Eötvös Loránd University,
Dept. of Computer Algebra

E-mail: tony@compalg.inf.elte.hu
E-mail: katai@compalg.inf.elte.hu

This presentation can be
downloaded from

http://compalg.inf.elte.hu/∼tony/ICAI

http://compalg.inf.elte.hu/~tony/ICAI�


1. Introduction

Let ξ be a random integer vector, ha-
ving uniform distribution

P{ξ = (i1, i2, . . . , in) = 1/nn} for

1 ≤ i1, i2, . . . , in ≤ n.

A realization (i1, i2, . . . , in) of ξ is
called good, if its elements are diffe-
rent. We present five comparison-based
algorithms which decide whether a gi-
ven realization is good [1, 2, 3, 4, 5, 6,
7, 8].

2. Algorithms

The first algorithms are Forward
and Backward. These algorithms
are naive comparison-based ones.



Forward compares the first (i1),
second (i2), . . . , last but one (in−1)
element of the realization with the fol-
lowing elements until the first colli-
sion or until the last pair of elements.
Backward compares the second

(i2), third (i3), . . . , last (in) element
of the realization with the previous
elements until the first collision or un-
til the last pair of elements.
Linear writes zero into the elements

of an n length vector v = (v1, v2,

. . . , vn, then investigates the elements
of the realization and if ij = k, then
adds 1 to vk and tests wheatherer vk >

1 signalizing a repetition.



Tree builds a random search tree
from the elements of the realization
and finishes the construction of the
tree if it finds the following element
of the realization in the tree (then the
realization is not good) or it tested
the last element too without a colli-
sion (then the realization is good).
Finally Modular handles

m = d
√

(n)e queues and puts the
element ij into the i-th queue if ij gi-
ves a residue i mod m. Modular
tests wheather ij appeared earlier using
linear search only in the correspon-
ding queue.



3. Efficiency of the algorithms

Forward and Backward work
in best case (Θ(1) time, in worst case
inΘ(n2) time and in expected case in
Θ(n) time.
Linear works in Θ(n) time in all

cases.
In expected time Tree works in

Θ(log n
√

(n) time while Modular
is asypptotically optimal since it works
Θ(
√

n) time.



References

[1] Bailey, R. A., Cameron, P. J.,
Connelly, R., Sudoku, gerechte
designs, resolutions, affine space,
spreads, reguli, and Hamming co-
des. Amer. Math. Monthly, Vol.
115 (2008), no. 5, 383-404. ⇒2

[2] Behrens, W. U. Feldversuch-
sanordnungen mit verbessertem
Ausgleich der Bodenunterschiede,
Zeitschrift für Landwirtschaft-
liches Versuchs- und Untersu-
chungswesen, Vol. 2, (1956), no.
2, 176-193. ⇒2



[3] Crook, J. F. A pencil-and-
paper algorithm for solving Su-
doku puzzles. Notices Amer.
Math. Soc., Vol. 56 (2009), no. 4,
460-468. ⇒2

[4] Iványi, A., Kátai, I. Estimates
for speed of computers with in-
terleaved memory systems, Anna-
les Univ. Sci. Budapest., Sectio
Mathematica, Vol. 19 (1976), 159-
164. ⇒2

[5] Knuth, D. E., The Art of
Computer Programming. Vol. 1.
Fundamental Algorithms (third
edition). Addison–Wesley, 1997.
⇒2

http://compalg.inf.elte.hu/tanszek/index.php�
http://compalg.inf.elte.hu/tanszek/index.php�
http://www.cs.elte.hu/~annalesm/�
http://www-cs-faculty.stanford.edu/~uno/�


[6] Thom, D., SUDOKU ist NP-
vollstndig. PhD Dissertation.
Stuttgart, 2007. ⇒2

[7] Vaughan, E. R. The comple-
xity of constructing gerechte de-
signs. The Electronic Journal of
Combinatorics. ⇒2

[8] Xu, C., Xu, W., The model and
algorithm to estimate the difficulty
levels of Sudoku puzzles. J. Math.
Res., Vol. 11 (2009), no. 2, 43-46.
⇒2

http://www.combinatorics.org/�

