8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia 1

Super-d-complexity of finite words

Zoltan Kasa

Sapientia Hungarian University of Transylvania
Cluj-Tg. Mures—M. Ciuc
Department of Mathematics and Informatics, Tg. Mures/Marosvédsdrhely

kasa@ms.sapientia.ro

Abstract

For positive integer d special scattered subwords, named super-d-subwords, in which the
gaps are of length at least (d — 1), are defined. The super-d-complexity (the number of super-
d-subwords) is studied for rainbow words.

Subject Classifications: MSC2010: 68R15 CCS1998: G.2.1, F.2.2

1 Introduction

Sequences of characters called words or strings are widely studied in combinatorics, and used in
various fields of sciences (e.g. biology, chemistry, physics, social sciences etc.) [2, 3, 4, 8]. The
elements of a word are called letters. A contiguous part of a word (obtained by eliminating a prefix
or/and a suffix) is a subword or factor. If we eliminate arbitrary letters from a word, what is
obtained is a scattered subword. Special scattered subwords, in which the consecutive letters are at
distance at most d (d > 1) in the original word, are called d-subwords [5, 6]. In this paper we define
another kind of scattered subwords, in which the original distance between two letters which are
consecutive in the subword, is at least d (d > 1), these will be called super-d-subwords.

The complezity of a word is defined as the number of all its different subwords. Similar defini-
tions are for d-complexity and super-d-complexity.

Let ¥ be an alphabet, X" the set of all n-length words over X, ¥* the set of all finite word over
>, and d a positive integer.

Definition 1 Let n, d and s be positive integers, and u = x1xy...x, € X". A super-d-subword
of length s of u is defined as v = x;, i, ...x;, where

i1 > 1,

d<ijp1—i;<nforj=12...,5s-1,

s < M.

Definition 2 The super-d-complexity of a word is the number of all its different super-d-
subwords.

The super-2-subwords of the word abcdef are the following: a, ac, ad, ae, af, ace, acf, adf, b,
bd, be, bf, bdf, ¢, ce, cf, d, df, e, f, therefore the super-2-complexity of this word is 20.

2 Super-d-complexity of rainbow words

Words with different letters are called rainbow words. The super-d-complexity of an n-length rain-
bow word does not depends on what letters it contains, and is denoted by S(n, d).

Let us denote by by, 4(7) the number of super-d-subwords which begin in the position ¢ in an n-
length rainbow word. Using our previous example (abedef), we can see that bg 2(1) = 8, b 2(2) = 5,
b672(3) = 3, b672(4) = 2, b6,2(5) = 1, and b6,2(6) =1.

2 8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia

S

n 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1

2 3 2 2 2 2 2 2 2 2 2 2

3 7 4 3 3 3 3 3 3 3 3 3

4 15 7) 4 4 4 4 4 4 4 4

5 31 12 8 6 5)) 5)) 5

6 63 20 12 9 7 6 6 6 6 6 6

7| 12r 33 18 13 10 8 7 7 v 17 7

8| 255 54 27 18 14 11 9 8 8 8 8

9| 511 88 40 25 19 15 12 10 9 9 9
10 | 1023 143 59 35 25 20 16 13 11 10 10
11 | 2047 232 87 49 33 26 21 17 14 12 11
12 | 4095 376 128 68 44 33 27 22 18 15 13

Table 1: Values of S(n,d).
The following formula immediately results:
bp,a(i) = 14 b a(i4d) + b a(i+d+1) +- - -+ by a(n), (1)

forn>d,1<i<n-—d,

bn.a(1l) =1 for n < d.

The super-d-complexity of rainbow words can be computed by the formula:

S(n,d) = bnali). (2)
i=1
This can be expressed also as
S(n,d) = bra(l), (3)
k=1

because of the formula
S(n+1,d) = S(n,d) + bypy1,q4(1).

In the case d = 1 the complexity S(n, 1) can be computed easily: S(n,1) = 2" — 1. This is equal
to the n-complexity of n-length rainbow words.

3 Computing super-d-complexity

In this section we will present different methods to compute the super-d-complexity of rainbow
words.

3.1 Computing by recursive algorithm

From (1) for the computation of b, 4(7) the following algorithm results. The numbers b, 4(k) (k =
1,2,...) for a given n and d are obtained in the array b = (b1, bo,...). Initially all these elements
are equal to —1. The call for the given n and d and the desired i is:

8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia 3

for k—1ton
do bk — —1
B(n,d, 1)

The recursive algorithm is the following:

B(n,d,1)

1 p—1

2 fork—i+dton

3 do if b, = —1

4 then B(n,d, k)
5 p—p+bg

6 bi—p

7 return

If the call is B(8,2,1), the elements will be obtained in the following order: by = 1, bg = 1,
:3, b6:2, 53:8, b4=5, andb1:21.

S
ot

Lemma 3 b, (1) = F,,, where F,, is the nth Fibonacci number.

Proof. Let us consider a rainbow word aias . ..a, and let us count all its super-2-subwords which
begin with as. If we change as in a; in each super-2-subword which begin with as, we obtain
super-2-subwords too. If we add a; in front of each super-d-subword which begin with a3, we
obtain super-d-subwords too. Thus

bn’Q(l) = bn,LQ(l) + bnfg’g(l).

So b, 2(1) is a Fibonacci number, and because by 2(1) = 1, we obtain b, 2(1) = F,,. O

Theorem 4 S(n,2) = F,,1o — 1, where F,, is the nth Fibonacci number.

Proof. From (3) and Lemma 3:

S(n,2) = bra(1l) +ba2(1) +b32(1) +ba2(l) + -+ by2(1)
= Fh+kh++F,
= Fn+2 —1. O

If we denote by M,, 4 = by, 4(1), because of the formula

bn,a(1) = bp-1,a(1) + bp—a,a(1),
a generalized middle sequence [7] (see sequence A000930) will be obtained:

Myag=My_14+My_q4, forn>d>2, (4)
Moqg=0,Mg=1,..., Mg_14=1.

Let us name this sequence d-middle sequence. Because of the M, o = F;, equality, the d-middle
sequence can be considered as a generalization of the Fibonacci sequence.

The d-middle sequence defined in (4) is a little different from the generalization of the sequence
A000930 in [7] because of its initial values.

Then next algorithm computes M,, 4, by using an array Mg, My, ..., Mg_1 to store the necessary
previous elements:

4 8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia

MIDDLE(n, d)
1 MO —0

2 fori+—1tod—1

3 do M; — 1

4 fori—dton

5 do M; mod d + M(ifl) mod d T M(ifd) mod d
6 print M; mod 4

7 return

Using the generating function M,(z) = Z M,, 42", the following closed formula results:
n>0
z
Ma(z) = PR (5)
n
This can be used to compute the sum s, 4 = Z M; 4, which is the coefficient of 2"t in the
n=1

expansion of the function

P 1 24 z z

1—z—zd.1—z:l—z—zd+1—z—zd_l—z'

S0 $n.d = Mpi(a—1),a + Mnqg—1= Myyq4q— 1. Therefore
ZMi,d = M,1aqq—1. (6)
i=1

Theorem 5 S(n,d) = My,1qq4—1, wheren > d and M, q is the nth elements of d-middle sequence.

Proof. The proof is similar to that in Theorem 4 taking into account formula (6). O

3.2 Computing by mathematical formulas

Theorem 6 S(n,d) = Z (n —(d- 1)k>, forn >2,d>1.

= k+1
1
Proof. Let us consider the generating function G(z) = 15 14 z+ 22+ ---. Then, taking
—z
into account the formula (5) we obtain My(z) = 2G(z + 2%) = z + 2(z + 2%) + 2(z + 242 + - - +
2(z + 2%)" + .- . The general term in this expansion is equal to

i+l I; (;) Z(d—l)k7

and the coefficient of z"*! is equal to

The coeeficient of 2" is

8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia 5

By Theorem 5 S(n,d) = M,1q4,4 — 1, and an easy computation yields

St =30 ("4,

k>0 O
—(d—-1)k
Theorem 7 b,y 4(1) = Z <n (k)), form>1,d>1.
k>0
Proof. From b,,41,4(1) = My,41,4 and (7):
n—(d—1)k
bn—‘rl,d - Z (k)
k>0 O

3.3 Computing by graph algorithms

To compute the super-d-complexity of a rainbow word of length n, let us consider the word
ajas . ..a, and the correspondig digraph G = (V, E), with

V= {al,ag,. ..,an},

E={(aja;)|j—i>d,i=1,2,...,n,j=1,2,...,n}.

For n =6,d = 2 see Fig. 1.

The adjacency matrix A = (aij) 1= of the graph is defined by:

1, ifj—i>d,

aj :{ 0. otherwise, fori=1,2,...,n,7=1,2,...,n.

Because the graph has no directed cycles, the element in row i and column j in A* (where
AF = Ak A with A! = A) will represent the number of k-length directed paths from a; to a;. If
I is the identity matrix (with elements equal to 1 only on the first diagonal, and 0 otherwise), let
us define the matrix R = (74;):

R=IT+A+A*+ ...+ A" where A" = O (the null matrix).

The super-d-complexity of a rainbow word is then

n

S(?’l,d) = ZZTU‘.

i=1 j=1

Matrix R can be better computed using a variant of the well-known Warshall algorithm (see for
example [1]):

WARSHALL(A, n)

1 WA

2 fork«— 1ton

3 do fori<— 1ton

4 do for j— 1ton
5 do Wij = Wij + Wik Wk
6 return W

From W we obtain easily R =1+ W.
For example let us consider the graph in Fig. 1. The corresponding adjacency matrix is:

6 8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia

0 01 1 11

0 00111

0 00011

A_000001

0 000 OO0

0 00O OO

After applying the Warshall algorithm:

0 011 2 3 101 1 2 3
0 00 1 1 2 01 01 1 2
0 00011 0 01 011
W_000001’R_000101
0 00O OO 0 000 1O0
0 00O 0O 0 00 0 01

and then S(6,2) = 20, the sum of elements in R.

Figure 1: Graph for 2-subwords when n = 6.

The Warshall algorithm combined with the Latin square method can be used to obtain all
nontrivial (with length at least 2) super-d-subwords of a given n-length rainbow word ajas - - - ay,.
Let us consider a matrix 4 with the elements A;; which are set of strings. Initially this matrix is
defined as:

otherwise for i=1,2,...,n,j=12,...,n.

a;a;}, ifj—i>d,
Ay = { é’ s}
If A and B are sets of strings, AB will be formed by the set of concatenation of each string from
A with each string from B:
AB = {ab|a € A b B}.

If s = sysp---sp is a string, let us denote by ’s the string obtained from s by eliminating the
first character: 's = s953 - - - 5,. Let us denote by 'A;; the set A;; in which we eliminate from each
element the first character. In this case A is a matrix with elements 'A;;.

Starting with the matrix A defined as before, the algorithm to obtain all nontrivial super-d-
subwords is the following;:

WARSHALL-LATIN(A, n)

1 WA

2 fork«<— 1lton

3 do fori<— 1ton

4 do for j— 1ton

5 doifWi;g;é@andej#@

6 then Wij — Wij U Wik /ij
7 return W

8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia 7

The set of nontrivial super-d-subwords is U Wij.
i,j€{1,2,...,n}
For n = 8, d = 3 the initial matrix is:

0 0 0 {ad} {ae} {af} {ag} {ah}
00 0 0 {ve} {bf} {bg} {bh}
o 0 0 0 0 {cf} {cg} {ch}
o 0 0 0 0 0 {dg} {dh}
o0 0 0 0 0 0 {eh}
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The result of the algorithm in this case is:

O 0 0 {ad} {ae} {af} {ag,adg} {ah,adh,ach}
0 0 0 0 {ve} {bf} {bg} {bh, beh}
000 0 0 {cf} {cg} {ch}
o0 0 0 0 0 {dg} {dh}
o0 0 0 0 0 0 {eh}
oo 0 0 0 0 0 0

oo 0 0 0 0 0 0

o0 0 0 0 0 0 0

4 The general case

In the general case for any word w € ¥*, let us denote the super-d-complexity by S, (d). We have

W’” < Su(d) < S(juw|, d),

where |w| is the length of w. The minimal value is obtained for a trivial word w = a...a, and the
maximal one for a rainbow word.
The algorithm WARSHALL-LATIN can be used for nonrainbow words too, with the remark that

repeating subwords must be eliminated. For the word aabbbaaa and d = 3 the result is: aa, ab, aba,
ba.

>4 2 3 4 5 6 7 8 9 10 11
415 3 - - - - - - -
507 5 3 - - - - - -
6100 6 5 3 - - - - - -
7|14 7 6 5 3 - - - - -
8|19 10 6 6 5 3 - - - -
912 13 7 6 6 5 3 - - -

10(3 15 10 6 6 6 5 3 - -
1147 19 13 7 6 6 6 5 3 -
12(63 25 14 10 6 6 6 6 5 3

Table 2: Values of f(2,n,d).

Let us denote by f(m,n,d) the maximal value of the super-d-complexity of all words of length
n over an alphabet of m letters:

8 8th Joint Conf. on Math. and Comp. Sci., July 14-17, 2010, Komarno, Slovakia

f(m,n,d) = max, (Sw(d)).
m = |X|

For f(2,n,d) the following are true, and can be easily proved.
e f(2,n,n—1)=3forn>3.

e f(2,n,n—2)=05forn>4.

it {g—‘ <d <n—3then f(2,n,d) =6 for n > 6.

n—2

If n is even, then f (2,n, > =10 for n > 6.

If n is odd, then f (2, n, n;l) — 7 forn > 5.

For m = d = 2 the following conjecture is stated.

Conjecture 8 f(2,n,2) = f(2,n—1,2)+ f(2,n —2,2) — f(2,n —4,2) forn >T.

Acknowledgment

The European Union and the European Social Fund have provided financial support to the project
of this work under the grant agreement no. TAMOP-4.2.1./B-09/1/KMR~2010-0003.

References

[1] S. Baase, Computer algorithms: Introduction to design and analysis, Second edition, Addison—
Wesley, 1988.

[2] W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution, Akademie-Verlag, Berlin,
1982.

[3] C.Elzinga, S. Rahmann, H. Wung, Algorithms for subsequence combinatorics, Theor. Comput.
Sci., 409, 3 (2008) 394-404.

[4] C. H. Elzinga, Complexity of categorial time series, Sociological Methods & Research, 38, 3
(2010) 463-481.
http://home.fsw.vu.nl/ch.elzinga/Complexity %20Preliminary.pdf

[5] A. Ivdnyi, On the d-complexity of words, Annales Univ. Sci. Budapest., Sect. Computatorica,
8 (1987) 69-90.

[6] Z. Késa, On the d-complexity of strings, Pure Math. Appl., 9, 1-2 (1998) 119-128.

[7] N. J. A. Sloane, The on-line encyclopedia of integer sequences,
http://www.research.att.com/ "njas/sequences/.

[8] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, A. Bolshoy, Sequence complexity pro-
files of prokaryotic genomic sequences: A fast algorithm for calculating linguistic complexity,
Bioinformatics, 18, 5 (2002) 679-688.

