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Abstract

For positive integer d special scattered subwords, named super-d-subwords, in which the
gaps are of length at least (d− 1), are defined. The super-d-complexity (the number of super-
d-subwords) is studied for rainbow words.
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1 Introduction

Sequences of characters called words or strings are widely studied in combinatorics, and used in
various fields of sciences (e.g. biology, chemistry, physics, social sciences etc.) [2, 3, 4, 8]. The
elements of a word are called letters. A contiguous part of a word (obtained by eliminating a prefix
or/and a suffix) is a subword or factor. If we eliminate arbitrary letters from a word, what is
obtained is a scattered subword. Special scattered subwords, in which the consecutive letters are at
distance at most d (d ≥ 1) in the original word, are called d-subwords [5, 6]. In this paper we define
another kind of scattered subwords, in which the original distance between two letters which are
consecutive in the subword, is at least d (d ≥ 1), these will be called super-d-subwords.

The complexity of a word is defined as the number of all its different subwords. Similar defini-
tions are for d-complexity and super-d-complexity.

Let Σ be an alphabet, Σn the set of all n-length words over Σ, Σ∗ the set of all finite word over
Σ, and d a positive integer.

Definition 1 Let n, d and s be positive integers, and u = x1x2 . . . xn ∈ Σn. A super-d-subword
of length s of u is defined as v = xi1xi2 . . . xis

where
i1 ≥ 1,
d ≤ ij+1 − ij < n for j = 1, 2, . . . , s− 1,
is ≤ n.

Definition 2 The super-d-complexity of a word is the number of all its different super-d-
subwords.

The super-2-subwords of the word abcdef are the following: a, ac, ad, ae, af, ace, acf, adf, b,
bd, be, bf, bdf, c, ce, cf, d, df, e, f, therefore the super-2-complexity of this word is 20.

2 Super-d-complexity of rainbow words

Words with different letters are called rainbow words. The super-d-complexity of an n-length rain-
bow word does not depends on what letters it contains, and is denoted by S(n, d).

Let us denote by bn,d(i) the number of super-d-subwords which begin in the position i in an n-
length rainbow word. Using our previous example (abcdef ), we can see that b6,2(1) = 8, b6,2(2) = 5,
b6,2(3) = 3, b6,2(4) = 2, b6,2(5) = 1, and b6,2(6) = 1.
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HHHn
d 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
2 3 2 2 2 2 2 2 2 2 2 2
3 7 4 3 3 3 3 3 3 3 3 3
4 15 7 5 4 4 4 4 4 4 4 4
5 31 12 8 6 5 5 5 5 5 5 5
6 63 20 12 9 7 6 6 6 6 6 6
7 127 33 18 13 10 8 7 7 7 7 7
8 255 54 27 18 14 11 9 8 8 8 8
9 511 88 40 25 19 15 12 10 9 9 9

10 1023 143 59 35 25 20 16 13 11 10 10
11 2047 232 87 49 33 26 21 17 14 12 11
12 4095 376 128 68 44 33 27 22 18 15 13

Table 1: Values of S(n, d).

The following formula immediately results:

bn,d(i) = 1 + bn,d(i+d) + bn,d(i+d+1) +· · ·+ bn,d(n), (1)

for n > d, 1 ≤ i ≤ n− d,

bn,d(1) = 1 for n ≤ d.

The super-d-complexity of rainbow words can be computed by the formula:

S(n, d) =
n∑

i=1

bn,d(i). (2)

This can be expressed also as

S(n, d) =
n∑

k=1

bk,d(1), (3)

because of the formula
S(n + 1, d) = S(n, d) + bn+1,d(1).

In the case d = 1 the complexity S(n, 1) can be computed easily: S(n, 1) = 2n−1. This is equal
to the n-complexity of n-length rainbow words.

3 Computing super-d-complexity

In this section we will present different methods to compute the super-d-complexity of rainbow
words.

3.1 Computing by recursive algorithm

From (1) for the computation of bn,d(i) the following algorithm results. The numbers bn,d(k) (k =
1, 2, . . .) for a given n and d are obtained in the array b = (b1, b2, . . .). Initially all these elements
are equal to −1. The call for the given n and d and the desired i is:
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for k ← 1 to n
do bk ← −1

B(n, d, i)

The recursive algorithm is the following:

B(n, d, i)

1 p← 1
2 for k ← i + d to n
3 do if bk = −1
4 then B(n, d, k)
5 p← p + bk

6 bi ← p
7 return

If the call is B(8, 2, 1), the elements will be obtained in the following order: b7 = 1, b8 = 1,
b5 = 3, b6 = 2, b3 = 8, b4 = 5, and b1 = 21.

Lemma 3 bn,2(1) = Fn, where Fn is the nth Fibonacci number.

Proof. Let us consider a rainbow word a1a2 . . . an and let us count all its super-2-subwords which
begin with a2. If we change a2 in a1 in each super-2-subword which begin with a2, we obtain
super-2-subwords too. If we add a1 in front of each super-d-subword which begin with a3, we
obtain super-d-subwords too. Thus

bn,2(1) = bn−1,2(1) + bn−2,2(1).

So bn,2(1) is a Fibonacci number, and because b1,2(1) = 1, we obtain bn,2(1) = Fn. 2

Theorem 4 S(n, 2) = Fn+2 − 1, where Fn is the nth Fibonacci number.

Proof. From (3) and Lemma 3:

S(n, 2) = b1,2(1) + b2,2(1) + b3,2(1) + b4,2(1) + · · ·+ bn,2(1)
= F1 + F2 + · · ·+ Fn

= Fn+2 − 1. 2

If we denote by Mn,d = bn,d(1), because of the formula

bn,d(1) = bn−1,d(1) + bn−d,d(1),

a generalized middle sequence [7] (see sequence A000930) will be obtained:

Mn,d = Mn−1,d + Mn−d,d, for n ≥ d ≥ 2, (4)
M0,d = 0, M1,d = 1, . . . , Md−1,d = 1.

Let us name this sequence d-middle sequence. Because of the Mn,2 = Fn equality, the d-middle
sequence can be considered as a generalization of the Fibonacci sequence.

The d-middle sequence defined in (4) is a little different from the generalization of the sequence
A000930 in [7] because of its initial values.

Then next algorithm computes Mn,d, by using an array M0, M1, . . . ,Md−1 to store the necessary
previous elements:



4 8th Joint Conf. on Math. and Comp. Sci., July 14–17, 2010, Komárno, Slovakia

Middle(n, d)

1 M0 ← 0
2 for i← 1 to d− 1
3 do Mi ← 1
4 for i← d to n
5 do Mi mod d ←M(i−1) mod d + M(i−d) mod d

6 print Mi mod d

7 return

Using the generating function Md(z) =
∑
n≥0

Mn,dz
n, the following closed formula results:

Md(z) =
z

1− z − zd
. (5)

This can be used to compute the sum sn,d =
n∑

n=1

Mi,d, which is the coefficient of zn+d in the

expansion of the function

zd

1− z − zd
· 1

1− z
=

zd

1− z − zd
+

z

1− z − zd
− z

1− z
.

So sn.d = Mn+(d−1),d + Mn,d − 1 = Mn+d,d − 1. Therefore

n∑
i=1

Mi,d = Mn+d,d − 1. (6)

Theorem 5 S(n, d) = Mn+d,d−1, where n > d and Mn,d is the nth elements of d-middle sequence.

Proof. The proof is similar to that in Theorem 4 taking into account formula (6). 2

3.2 Computing by mathematical formulas

Theorem 6 S(n, d) =
∑
k≥0

(
n− (d− 1)k

k + 1

)
, for n ≥ 2, d ≥ 1.

Proof. Let us consider the generating function G(z) =
1

1− z
= 1 + z + z2 + · · · . Then, taking

into account the formula (5) we obtain Md(z) = zG(z + zd) = z + z(z + zd) + z(z + zd)2 + · · · +
z(z + zd)i + · · · . The general term in this expansion is equal to

zi+1
i∑

k=1

(
i

k

)
z(d−1)k,

and the coefficient of zn+1 is equal to ∑
k≥0

(
n− (d− 1)k

k

)
.

The coeeficient of zn+d is

Mn+d,d =
∑
k≥0

(
n + d− 1− (d− 1)k

k

)
. (7)
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By Theorem 5 S(n, d) = Mn+d,d − 1, and an easy computation yields

S(n, d) =
∑
k≥0

(
n− (d− 1)k

k + 1

)
.

2

Theorem 7 bn+1,d(1) =
∑
k≥0

(
n− (d− 1)k

k

)
, for n ≥ 1, d ≥ 1.

Proof. From bn+1,d(1) = Mn+1,d and (7):

bn+1,d =
∑
k≥0

(
n− (d− 1)k

k

)
.

2

3.3 Computing by graph algorithms

To compute the super-d-complexity of a rainbow word of length n, let us consider the word
a1a2 . . . an and the correspondig digraph G = (V,E), with

V =
{
a1, a2, . . . , an

}
,

E =
{

(ai, aj) | j − i ≥ d, i = 1, 2, . . . , n, j = 1, 2, . . . , n
}

.
For n = 6, d = 2 see Fig. 1.
The adjacency matrix A =

(
aij

)
i=1,n
j=1,n

of the graph is defined by:

aij =
{

1, if j − i ≥ d,
0, otherwise, for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

Because the graph has no directed cycles, the element in row i and column j in Ak (where
Ak = Ak−1A, with A1 = A) will represent the number of k-length directed paths from ai to aj . If
I is the identity matrix (with elements equal to 1 only on the first diagonal, and 0 otherwise), let
us define the matrix R = (rij):

R = I + A + A2 + · · ·+ Ak, where Ak+1 = O (the null matrix).

The super-d-complexity of a rainbow word is then

S(n, d) =
n∑

i=1

n∑
j=1

rij .

Matrix R can be better computed using a variant of the well-known Warshall algorithm (see for
example [1]):

Warshall(A, n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do wij ← wij + wikwkj

6 return W

From W we obtain easily R = I + W .
For example let us consider the graph in Fig. 1. The corresponding adjacency matrix is:
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A =


0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


After applying the Warshall algorithm:

W =


0 0 1 1 2 3
0 0 0 1 1 2
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 , R =


1 0 1 1 2 3
0 1 0 1 1 2
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


and then S(6, 2) = 20, the sum of elements in R.

a b c d e f

Figure 1: Graph for 2-subwords when n = 6.

The Warshall algorithm combined with the Latin square method can be used to obtain all
nontrivial (with length at least 2) super-d-subwords of a given n-length rainbow word a1a2 · · · an.
Let us consider a matrix A with the elements Aij which are set of strings. Initially this matrix is
defined as:

Aij =
{
{aiaj}, if j − i ≥ d,
∅, otherwise, for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

If A and B are sets of strings, AB will be formed by the set of concatenation of each string from
A with each string from B:

AB =
{
ab
∣∣ a ∈ A, b ∈ B

}
.

If s = s1s2 · · · sp is a string, let us denote by ′s the string obtained from s by eliminating the
first character: ′s = s2s3 · · · sp. Let us denote by ′Aij the set Aij in which we eliminate from each
element the first character. In this case ′A is a matrix with elements ′Aij .

Starting with the matrix A defined as before, the algorithm to obtain all nontrivial super-d-
subwords is the following:

Warshall-Latin(A, n)

1 W ← A
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n
5 do if Wik 6= ∅ and Wkj 6= ∅
6 then Wij ←Wij ∪Wik

′Wkj

7 return W
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The set of nontrivial super-d-subwords is
⋃

i,j∈{1,2,...,n}

Wij .

For n = 8, d = 3 the initial matrix is:

∅ ∅ ∅ {ad} {ae} {af} {ag} {ah}
∅ ∅ ∅ ∅ {be} {bf} {bg} {bh}
∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}
∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


.

The result of the algorithm in this case is:

∅ ∅ ∅ {ad} {ae} {af} {ag, adg} {ah, adh, aeh}
∅ ∅ ∅ ∅ {be} {bf} {bg} {bh, beh}
∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}
∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


.

4 The general case

In the general case for any word w ∈ Σ∗, let us denote the super-d-complexity by Sw(d). We have⌈
|w|
d

⌉
≤ Sw(d) ≤ S(|w|, d),

where |w| is the length of w. The minimal value is obtained for a trivial word w = a . . . a, and the
maximal one for a rainbow word.

The algorithm Warshall-Latin can be used for nonrainbow words too, with the remark that
repeating subwords must be eliminated. For the word aabbbaaa and d = 3 the result is: aa, ab, aba,
ba.

HHHn
d 2 3 4 5 6 7 8 9 10 11

3 3 - - - - - - - - -
4 5 3 - - - - - - - -
5 7 5 3 - - - - - - -
6 10 6 5 3 - - - - - -
7 14 7 6 5 3 - - - - -
8 19 10 6 6 5 3 - - - -
9 26 13 7 6 6 5 3 - - -

10 35 15 10 6 6 6 5 3 - -
11 47 19 13 7 6 6 6 5 3 -
12 63 25 14 10 6 6 6 6 5 3

Table 2: Values of f(2, n, d).

Let us denote by f(m, n, d) the maximal value of the super-d-complexity of all words of length
n over an alphabet of m letters:
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f(m, n, d) = max
w ∈ Σn

m = |Σ|

(
Sw(d)

)
.

For f(2, n, d) the following are true, and can be easily proved.

• f(2, n, n− 1) = 3 for n ≥ 3.
• f(2, n, n− 2) = 5 for n ≥ 4.

• If
⌈n

2

⌉
≤ d ≤ n− 3 then f(2, n, d) = 6 for n ≥ 6.

• If n is even, then f

(
2, n,

n− 2
2

)
= 10 for n ≥ 6.

• If n is odd, then f

(
2, n,

n− 1
2

)
− 7 for n ≥ 5.

For m = d = 2 the following conjecture is stated.

Conjecture 8 f(2, n, 2) = f(2, n− 1, 2) + f(2, n− 2, 2)− f(2, n− 4, 2) for n ≥ 7.
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