Super- d-complexity of finite words

Zoltán Kása
Sapientia Hungarian University of Transylvania
Cluj-Tg. Mureş-M. Ciuc
Department of Mathematics and Informatics, Tg. Mureş/Marosvásárhely
kasa@ms.sapientia.ro

Abstract

For positive integer d special scattered subwords, named super- d-subwords, in which the gaps are of length at least $(d-1)$, are defined. The super- d-complexity (the number of super-d-subwords) is studied for rainbow words.

Subject Classifications: MSC2010: 68R15 CCS1998: G.2.1, F.2.2

1 Introduction

Sequences of characters called words or strings are widely studied in combinatorics, and used in various fields of sciences (e.g. biology, chemistry, physics, social sciences etc.) [2, 3, 4, 8]. The elements of a word are called letters. A contiguous part of a word (obtained by eliminating a prefix or/and a suffix) is a subword or factor. If we eliminate arbitrary letters from a word, what is obtained is a scattered subword. Special scattered subwords, in which the consecutive letters are at distance at most $d(d \geq 1)$ in the original word, are called d-subwords $[5,6]$. In this paper we define another kind of scattered subwords, in which the original distance between two letters which are consecutive in the subword, is at least $d(d \geq 1)$, these will be called super- d-subwords.

The complexity of a word is defined as the number of all its different subwords. Similar definitions are for d-complexity and super- d-complexity.

Let Σ be an alphabet, Σ^{n} the set of all n-length words over Σ, Σ^{*} the set of all finite word over Σ, and d a positive integer.

Definition 1 Let n, d and s be positive integers, and $u=x_{1} x_{2} \ldots x_{n} \in \Sigma^{n}$. A super-d-subword of length s of u is defined as $v=x_{i_{1}} x_{i_{2}} \ldots x_{i_{s}}$ where
$i_{1} \geq 1$,
$d \leq i_{j+1}-i_{j}<n$ for $j=1,2, \ldots, s-1$,
$i_{s} \leq n$.
Definition 2 The super-d-complexity of a word is the number of all its different super-dsubwords.

The super-2-subwords of the word $a b c d e f$ are the following: $a, a c, a d$, $a e, a f, a c e, a c f, a d f, b$, $b d, b e, b f, b d f, c, c e, c f, d, d f, e, f$, therefore the super-2-complexity of this word is 20 .

2 Super- d-complexity of rainbow words

Words with different letters are called rainbow words. The super- d-complexity of an n-length rainbow word does not depends on what letters it contains, and is denoted by $S(n, d)$.

Let us denote by $b_{n, d}(i)$ the number of super- d-subwords which begin in the position i in an n length rainbow word. Using our previous example ($a b c d e f$), we can see that $b_{6,2}(1)=8, b_{6,2}(2)=5$, $b_{6,2}(3)=3, b_{6,2}(4)=2, b_{6,2}(5)=1$, and $b_{6,2}(6)=1$.

n	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1
2	3	2	2	2	2	2	2	2	2	2	2
3	7	4	3	3	3	3	3	3	3	3	3
4	15	7	5	4	4	4	4	4	4	4	4
5	31	12	8	6	5	5	5	5	5	5	5
6	63	20	12	9	7	6	6	6	6	6	6
7	127	33	18	13	10	8	7	7	7	7	7
8	255	54	27	18	14	11	9	8	8	8	8
9	511	88	40	25	19	15	12	10	9	9	9
10	1023	143	59	35	25	20	16	13	11	10	10
11	2047	232	87	49	33	26	21	17	14	12	11
12	4095	376	128	68	44	33	27	22	18	15	13

Table 1: Values of $S(n, d)$.

The following formula immediately results:

$$
\begin{equation*}
b_{n, d}(i)=1+b_{n, d}(i+d)+b_{n, d}(i+d+1)+\cdots+b_{n, d}(n), \tag{1}
\end{equation*}
$$

for $n>d, 1 \leq i \leq n-d$,

$$
b_{n, d}(1)=1 \text { for } n \leq d
$$

The super- d-complexity of rainbow words can be computed by the formula:

$$
\begin{equation*}
S(n, d)=\sum_{i=1}^{n} b_{n, d}(i) \tag{2}
\end{equation*}
$$

This can be expressed also as

$$
\begin{equation*}
S(n, d)=\sum_{k=1}^{n} b_{k, d}(1) \tag{3}
\end{equation*}
$$

because of the formula

$$
S(n+1, d)=S(n, d)+b_{n+1, d}(1) .
$$

In the case $d=1$ the complexity $S(n, 1)$ can be computed easily: $S(n, 1)=2^{n}-1$. This is equal to the n-complexity of n-length rainbow words.

3 Computing super- d-complexity

In this section we will present different methods to compute the super- d-complexity of rainbow words.

3.1 Computing by recursive algorithm

From (1) for the computation of $b_{n, d}(i)$ the following algorithm results. The numbers $b_{n, d}(k)(k=$ $1,2, \ldots)$ for a given n and d are obtained in the array $b=\left(b_{1}, b_{2}, \ldots\right)$. Initially all these elements are equal to -1 . The call for the given n and d and the desired i is:

for $k \leftarrow 1$ to n

do $b_{k} \leftarrow-1$
$\mathrm{B}(n, d, i)$

The recursive algorithm is the following:

```
\(\mathrm{B}(n, d, i)\)
    \(p \leftarrow 1\)
    for \(k \leftarrow i+d\) to \(n\)
        do if \(b_{k}=-1\)
            then \(\mathrm{B}(n, d, k)\)
        \(p \leftarrow p+b_{k}\)
    \(b_{i} \leftarrow p\)
    return
```

If the call is $B(8,2,1)$, the elements will be obtained in the following order: $b_{7}=1, b_{8}=1$, $b_{5}=3, b_{6}=2, b_{3}=8, b_{4}=5$, and $b_{1}=21$.

Lemma $3 b_{n, 2}(1)=F_{n}$, where F_{n} is the nth Fibonacci number.
Proof. Let us consider a rainbow word $a_{1} a_{2} \ldots a_{n}$ and let us count all its super-2-subwords which begin with a_{2}. If we change a_{2} in a_{1} in each super-2-subword which begin with a_{2}, we obtain super-2-subwords too. If we add a_{1} in front of each super- d-subword which begin with a_{3}, we obtain super- d-subwords too. Thus

$$
b_{n, 2}(1)=b_{n-1,2}(1)+b_{n-2,2}(1)
$$

So $b_{n, 2}(1)$ is a Fibonacci number, and because $b_{1,2}(1)=1$, we obtain $b_{n, 2}(1)=F_{n}$.
Theorem $4 S(n, 2)=F_{n+2}-1$, where F_{n} is the nth Fibonacci number.
Proof. From (3) and Lemma 3:

$$
\begin{aligned}
S(n, 2) & =b_{1,2}(1)+b_{2,2}(1)+b_{3,2}(1)+b_{4,2}(1)+\cdots+b_{n, 2}(1) \\
& =F_{1}+F_{2}+\cdots+F_{n} \\
& =F_{n+2}-1
\end{aligned}
$$

If we denote by $M_{n, d}=b_{n, d}(1)$, because of the formula

$$
b_{n, d}(1)=b_{n-1, d}(1)+b_{n-d, d}(1)
$$

a generalized middle sequence [7] (see sequence A000930) will be obtained:

$$
\begin{align*}
M_{n, d} & =M_{n-1, d}+M_{n-d, d}, \quad \text { for } n \geq d \geq 2 \tag{4}\\
M_{0, d} & =0, M_{1, d}=1, \ldots, M_{d-1, d}=1
\end{align*}
$$

Let us name this sequence d-middle sequence. Because of the $M_{n, 2}=F_{n}$ equality, the d-middle sequence can be considered as a generalization of the Fibonacci sequence.

The d-middle sequence defined in (4) is a little different from the generalization of the sequence A000930 in [7] because of its initial values.

Then next algorithm computes $M_{n, d}$, by using an array $M_{0}, M_{1}, \ldots, M_{d-1}$ to store the necessary previous elements:

```
\(\operatorname{MiddLE}(n, d)\)
    \(M_{0} \leftarrow 0\)
    for \(i \leftarrow 1\) to \(d-1\)
        do \(M_{i} \leftarrow 1\)
    for \(i \leftarrow d\) to \(n\)
        do \(M_{i \bmod d} \leftarrow M_{(i-1) \bmod d}+M_{(i-d) \bmod d}\)
        print \(M_{i \bmod d}\)
    return
```

Using the generating function $M_{d}(z)=\sum_{n \geq 0} M_{n, d} z^{n}$, the following closed formula results:

$$
\begin{equation*}
M_{d}(z)=\frac{z}{1-z-z^{d}} \tag{5}
\end{equation*}
$$

This can be used to compute the sum $s_{n, d}=\sum_{n=1}^{n} M_{i, d}$, which is the coefficient of z^{n+d} in the expansion of the function

$$
\frac{z^{d}}{1-z-z^{d}} \cdot \frac{1}{1-z}=\frac{z^{d}}{1-z-z^{d}}+\frac{z}{1-z-z^{d}}-\frac{z}{1-z} .
$$

So $s_{n . d}=M_{n+(d-1), d}+M_{n, d}-1=M_{n+d, d}-1$. Therefore

$$
\begin{equation*}
\sum_{i=1}^{n} M_{i, d}=M_{n+d, d}-1 \tag{6}
\end{equation*}
$$

Theorem $5 S(n, d)=M_{n+d, d}-1$, where $n>d$ and $M_{n, d}$ is the nth elements of d-middle sequence.
Proof. The proof is similar to that in Theorem 4 taking into account formula (6).

3.2 Computing by mathematical formulas

Theorem $6 S(n, d)=\sum_{k \geq 0}\binom{n-(d-1) k}{k+1}$, for $n \geq 2, d \geq 1$.
Proof. Let us consider the generating function $G(z)=\frac{1}{1-z}=1+z+z^{2}+\cdots$. Then, taking into account the formula (5) we obtain $M_{d}(z)=z G\left(z+z^{d}\right)=z+z\left(z+z^{d}\right)+z\left(z+z^{d}\right)^{2}+\cdots+$ $z\left(z+z^{d}\right)^{i}+\cdots$. The general term in this expansion is equal to

$$
z^{i+1} \sum_{k=1}^{i}\binom{i}{k} z^{(d-1) k}
$$

and the coefficient of z^{n+1} is equal to

$$
\sum_{k \geq 0}\binom{n-(d-1) k}{k}
$$

The coeeficient of z^{n+d} is

$$
\begin{equation*}
M_{n+d, d}=\sum_{k \geq 0}\binom{n+d-1-(d-1) k}{k} \tag{7}
\end{equation*}
$$

By Theorem $5 S(n, d)=M_{n+d, d}-1$, and an easy computation yields

$$
S(n, d)=\sum_{k \geq 0}\binom{n-(d-1) k}{k+1}
$$

Theorem $7 b_{n+1, d}(1)=\sum_{k \geq 0}\binom{n-(d-1) k}{k}$, for $n \geq 1, d \geq 1$.
Proof. From $b_{n+1, d}(1)=M_{n+1, d}$ and (7):

$$
b_{n+1, d}=\sum_{k \geq 0}\binom{n-(d-1) k}{k}
$$

3.3 Computing by graph algorithms

To compute the super- d-complexity of a rainbow word of length n, let us consider the word $a_{1} a_{2} \ldots a_{n}$ and the correspondig digraph $G=(V, E)$, with
$V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$,
$E=\left\{\left(a_{i}, a_{j}\right) \mid j-i \geq d, i=1,2, \ldots, n, j=1,2, \ldots, n\right\}$.
For $n=6, d=2$ see Fig. 1 .
The adjacency matrix $A=\left(a_{i j}\right)_{\substack{i=1, n \\ j=1, n}}$ of the graph is defined by:

$$
a_{i j}=\left\{\begin{array}{ll}
1, & \text { if } j-i \geq d, \\
0, & \text { otherwise, }
\end{array} \quad \text { for } i=1,2, \ldots, n, j=1,2, \ldots, n .\right.
$$

Because the graph has no directed cycles, the element in row i and column j in A^{k} (where $A^{k}=A^{k-1} A$, with $A^{1}=A$) will represent the number of k-length directed paths from a_{i} to a_{j}. If I is the identity matrix (with elements equal to 1 only on the first diagonal, and 0 otherwise), let us define the matrix $R=\left(r_{i j}\right)$:

$$
R=I+A+A^{2}+\cdots+A^{k}, \text { where } A^{k+1}=O(\text { the null matrix }) .
$$

The super- d-complexity of a rainbow word is then

$$
S(n, d)=\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i j} .
$$

Matrix R can be better computed using a variant of the well-known Warshall algorithm (see for example [1]):

```
\(\operatorname{Warshall}(A, n)\)
    \(W \leftarrow A\)
    for \(k \leftarrow 1\) to \(n\)
        do for \(i \leftarrow 1\) to \(n\)
            do for \(j \leftarrow 1\) to \(n\)
                do \(w_{i j} \leftarrow w_{i j}+w_{i k} w_{k j}\)
    return \(W\)
```

From W we obtain easily $R=I+W$.
For example let us consider the graph in Fig. 1. The corresponding adjacency matrix is:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

After applying the Warshall algorithm:

$$
W=\left(\begin{array}{cccccc}
0 & 0 & 1 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad R=\left(\begin{array}{cccccc}
1 & 0 & 1 & 1 & 2 & 3 \\
0 & 1 & 0 & 1 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and then $S(6,2)=20$, the sum of elements in R.

Figure 1: Graph for 2 -subwords when $n=6$.
The Warshall algorithm combined with the Latin square method can be used to obtain all nontrivial (with length at least 2) super- d-subwords of a given n-length rainbow word $a_{1} a_{2} \cdots a_{n}$. Let us consider a matrix \mathcal{A} with the elements $A_{i j}$ which are set of strings. Initially this matrix is defined as:

$$
A_{i j}=\left\{\begin{array}{ll}
\left\{a_{i} a_{j}\right\}, & \text { if } j-i \geq d, \\
\emptyset, & \text { otherwise },
\end{array} \quad \text { for } i=1,2, \ldots, n, j=1,2, \ldots, n\right.
$$

If \mathcal{A} and \mathcal{B} are sets of strings, $\mathcal{A B}$ will be formed by the set of concatenation of each string from \mathcal{A} with each string from \mathcal{B} :

$$
\mathcal{A B}=\{a b \mid a \in \mathcal{A}, b \in \mathcal{B}\} .
$$

If $s=s_{1} s_{2} \cdots s_{p}$ is a string, let us denote by 's the string obtained from s by eliminating the first character: ' $s=s_{2} s_{3} \cdots s_{p}$. Let us denote by ' $A_{i j}$ the set $A_{i j}$ in which we eliminate from each element the first character. In this case ${ }^{\prime} \mathcal{A}$ is a matrix with elements ' $A_{i j}$.

Starting with the matrix \mathcal{A} defined as before, the algorithm to obtain all nontrivial super- d subwords is the following:

```
\(\operatorname{Warshall-Latin}(\mathcal{A}, n)\)
\(\mathcal{W} \leftarrow \mathcal{A}\)
for \(k \leftarrow 1\) to \(n\)
    do for \(i \leftarrow 1\) to \(n\)
            do for \(j \leftarrow 1\) to \(n\)
                do if \(W_{i k} \neq \emptyset\) and \(W_{k j} \neq \emptyset\)
                    then \(W_{i j} \leftarrow W_{i j} \cup W_{i k}{ }^{\prime} W_{k j}\)
return \(\mathcal{W}\)
```

The set of nontrivial super- d-subwords is $\bigcup_{i, j \in\{1,2, \ldots, n\}} W_{i j}$.
For $n=8, d=3$ the initial matrix is:

$$
\left(\begin{array}{cccccccc}
\emptyset & \emptyset & \emptyset & \{a d\} & \{a e\} & \{a f\} & \{a g\} & \{a h\} \\
\emptyset & \emptyset & \emptyset & \emptyset & \{b e\} & \{b f\} & \{b g\} & \{b h\} \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{c f\} & \{c g\} & \{c h\} \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{d g\} & \{d h\} \\
\emptyset & \{e h\} \\
\emptyset & \emptyset \\
\emptyset & \emptyset \\
\emptyset & \emptyset
\end{array}\right)
$$

The result of the algorithm in this case is:

$$
\left(\begin{array}{cccccccc}
\emptyset & \emptyset & \emptyset & \{a d\} & \{a e\} & \{a f\} & \{a g, a d g\} & \{a h, a d h, a e h\} \\
\emptyset & \emptyset & \emptyset & \emptyset & \{b e\} & \{b f\} & \{b g\} & \{b h, b e h\} \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{c f\} & \{c g\} & \{c h\} \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \{d g\} & \{d h\} \\
\emptyset & \{e h\} \\
\emptyset & \emptyset \\
\emptyset & \emptyset \\
\emptyset & \emptyset
\end{array}\right)
$$

4 The general case

In the general case for any word $w \in \Sigma^{*}$, let us denote the super- d-complexity by $S_{w}(d)$. We have

$$
\left\lceil\frac{|w|}{d}\right\rceil \leq S_{w}(d) \leq S(|w|, d)
$$

where $|w|$ is the length of w. The minimal value is obtained for a trivial word $w=a \ldots a$, and the maximal one for a rainbow word.

The algorithm Warshall-Latin can be used for nonrainbow words too, with the remark that repeating subwords must be eliminated. For the word $a a b b b a a a$ and $d=3$ the result is: $a a, a b, a b a$, $b a$.

$n d$	2	3	4	5	6	7	8	9	10	11
3	3	-	-	-	-	-	-	-	-	-
4	5	3	-	-	-	-	-	-	-	-
5	7	5	3	-	-	-	-	-	-	-
6	10	6	5	3	-	-	-	-	-	-
7	14	7	6	5	3	-	-	-	-	-
8	19	10	6	6	5	3	-	-	-	-
9	26	13	7	6	6	5	3	-	-	-
10	35	15	10	6	6	6	5	3	-	-
11	47	19	13	7	6	6	6	5	3	-
12	63	25	14	10	6	6	6	6	5	3

Table 2: Values of $f(2, n, d)$.

Let us denote by $f(m, n, d)$ the maximal value of the super- d-complexity of all words of length n over an alphabet of m letters:

$$
f(m, n, d)=\max _{\substack{w \in \Sigma^{n} \\ m=|\Sigma|}}\left(S_{w}(d)\right)
$$

For $f(2, n, d)$ the following are true, and can be easily proved.

- $f(2, n, n-1)=3$ for $n \geq 3$.
- $f(2, n, n-2)=5$ for $n \geq 4$.
- If $\left\lceil\frac{n}{2}\right\rceil \leq d \leq n-3$ then $f(2, n, d)=6$ for $n \geq 6$.
- If n is even, then $f\left(2, n, \frac{n-2}{2}\right)=10$ for $n \geq 6$.
- If n is odd, then $f\left(2, n, \frac{n-1}{2}\right)-7$ for $n \geq 5$.

For $m=d=2$ the following conjecture is stated.
Conjecture $8 f(2, n, 2)=f(2, n-1,2)+f(2, n-2,2)-f(2, n-4,2)$ for $n \geq 7$.

Acknowledgment

The European Union and the European Social Fund have provided financial support to the project of this work under the grant agreement no. TÁMOP-4.2.1./B-09/1/KMR-2010-0003.

References

[1] S. Baase, Computer algorithms: Introduction to design and analysis, Second edition, AddisonWesley, 1988.
[2] W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution, Akademie-Verlag, Berlin, 1982.
[3] C. Elzinga, S. Rahmann, H. Wung, Algorithms for subsequence combinatorics, Theor. Comput. Sci., 409, 3 (2008) 394-404.
[4] C. H. Elzinga, Complexity of categorial time series, Sociological Methods \& Research, 38, 3 (2010) 463-481.
http://home.fsw.vu.nl/ch.elzinga/Complexity\ Preliminary.pdf
[5] A. Iványi, On the d-complexity of words, Annales Univ. Sci. Budapest., Sect. Computatorica, 8 (1987) 69-90.
[6] Z. Kása, On the d-complexity of strings, Pure Math. Appl., 9, 1-2 (1998) 119-128.
[7] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/.
[8] O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, A. Bolshoy, Sequence complexity profiles of prokaryotic genomic sequences: A fast algorithm for calculating linguistic complexity, Bioinformatics, 18, 5 (2002) 679-688.

