
Acta Univ. Sapientiae, Informatica, 2, 2 (2010) xx–yy

Testing of sequences by simulation

Antal Iványi
Eötvös Loránd University

Department of Computer Algebra
H-1117, Budapest, Hungary

Pázmány sétány 1/C
email: tony@compalg.inf.elte.hu

Balázs Novák
Eötvös Loránd University

Department of Computer Algebra
H-1117, Budapest, Hungary

Pázmány sétány 1/C
email: psziho@inf.elte.hu

Abstract. Let ξ be a random integer vector, having uniform distribution

P{ξ = (i1, i2, . . . , in) = 1/nn} for 1 ≤ i1, i2, . . . , in ≤ n.

A realization (i1, i2, . . . , in) of ξ is called good, if its elements are dif-
ferent. We present algorithms Linear, Backward, Forward, Tree,
Garbage, Bucket which decide whether a given realization is good.
We analyse the number of comparisons and running time of these algo-
rithms using simulation gathering data on all possible inputs for small
values of n and generating random inputs for large values of n.

1 Introduction

Let ξ be a random integer vector, having uniform distribution

P{ξ = (i1, i2, . . . , in)} = 1/nn

for 1 ≤ i1, i2, . . . , in ≤ n.

A realization (i1, i2, . . . , in) of ξ is called good, if its elements are different.
We present three typical algorithms which decide whether a given realization
is good.

Computing Classification System 1998: G.2.2. [Graph Theory]: Subtopic - Network
problems.
Mathematics Subject Classification 2010: 68M20
Key words and phrases: random sequences, analysis of algorithms, Latin squares, Sudoku
squares

1

http://compalg.inf.elte.hu/tanszek/index.php�
http://www.emte.ro/�
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1�
mailto:tony@compalg.inf.elte.hu�
http://compalg.inf.elte.hu/tanszek/index.php�
http://www.elte.hu/en�
http://compalg.inf.elte.hu/tanszek/index.php?angolul=1�
mailto:psziho@inf.elte.hu�


2 A. Iványi, B. Novák

This problem arises in connection with the design of agricultural [?, ?, ?, ?]
and industrial [?] experiments, with the testing of Latin [?, ?, ?, ?, ?, ?, ?,
?, ?, ?] and Sudoku [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?] squares, with genetic sequences and arrays
[?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?], with sociology [?], and also
with the analysis of the performance of computers with interleaved memory
[?, ?, ?, ?, ?, ?, ?].

Section 2 contains the pseudocodes of the investigated algorithms. In Section
3 the results of the simulation experiments and the basic theoretical results
are presented. Section ?? contains the summary of the paper.

Further simulation results are contained in [?]. The proofs of the lemmas
and theorems can be found in [?].

2 Pseudocodes of the algorithms

This section contains the pseudocodes of the investigated algorithms Linear,
Backward, and Bucket. The psudocode conventions described in the book
[?] written by Cormen, Leiserson and Rivest are used.

The inputs of the following seven algorithms are n (the length of the se-
quence s) and s = (s1, s2, . . . , sn), a sequence of nonnegative integers with
1 ≤ si ≤ n for 1 ≤ i ≤ n) in all cases. The output is always a logical variable
g (its value is True, if the input sequence is good, and False otherwise).

The working variables are usually the cycle variables i and j.

2.1 Definition of algorithm Linear

Linear writes zero into the elements of an n length vector v = (v1, v2,

. . . , vn), then investigates the elements of the realization and if v[si] > 0

(signalising a repetition), then stops, otherwise adds 1 to v[s[i]].

Linear(n, s)

01 g ← True
02 for i ← 1 to n

03 do v[i] ← 0

04 for i ← 1 to n

05 do if v[s[i]] > 0

06 then g ← False
07 return g

08 else v[s[i]] ← v[s[i]] + 1



Testing of sequences by simulation 3

09 return g

2.2 Definition of algorithm Backward

Backward compares the second (i2), third (i3), . . . , last (in) element of the
realization s with the previous elements until the first collision or until the
last pair of elements.
Backward(n, s)

01 g ← True
02 for i ← 2 to n

03 do for j ← i − 1 downto 1

04 do if s[i] = s[j]

05 then g ← False
06 return g

07 return g

2.3 Definition of algorithm Forward

Forward compares the first (s1), second (s2), . . . , last but one (sn-1) element
of the realization with the following elements until the first collision or until
the last pair of elements.

Forward(n, s)

01 g ← True
02 for i ← 1 to n − 1

03 do for j ← i + 1 to n

04 do if s[i] = s[j]

05 then g ← False
06 return g

07 return g

2.4 Definition of algorithm Tree

Tree builds a random search tree from the elements of the realization and
finishes the construction of the tree if it finds the following element of the
realization in the tree (then the realization is not good) or it tested the last
element too without a collision (then the realization is good).



4 A. Iványi, B. Novák

Tree(n, s)

01 g ← True
02 let s[1] be the root of a tree
03 for i ← 2 to n

04 if [s[i] is in the tree
05 then g ← False
06 return
07 else insert s[i] in the tree
08 return g

2.5 Definition of algorithm Garbage

This algorithm is similar to Linear, but it works without the setting zeros
into the elements of a vector requiring linear amount of time.

Beside the cycle variable i Garbage uses as working variable also a vector
v = (v1, v2, . . . , vn). Interesting is that v is used without initialisation, that is
its initial values can be arbitrary integer numbers.

The algorithm Garbage was proposed by Gábor Monostori [?].

Garbage(n, s)

01 g ← True
02 for i ← 1 to n

03 do if v[s[i]] < i and s[v[s[i]]] = s[i]

04 then g ← False
05 return g

06 else v[s[i]] ← i

07 return g

2.6 Definition of algorithm Bucket

Bucket handles the array Q[1 : m, 1 : m] (where m = d√ne and puts the
element si into the rth row of Q, where r = dsi/me and it tests using linear
search whether sj appeared earlier in the corresponding row. The elements of
the vector c = (c1, c2, . . . , cm) are counters, where cj (1 ≤ j ≤ m) shows the
number of elements of the ith row.

For the simplicity we suppose that n is a square.

Bucket(n, s)

01 g ← True
02 m ← √

n



Testing of sequences by simulation 5

03 for j ← 1 to m

04 do c[j] ← 1

05 for i ← 1 to n

06 do r ← ds[i]/mem
07 for j ← 1 to c[r] − 1

08 do if s[i] = Q[r, j]

09 then g ← False
10 return g

11 else Q[r, c[r]] ← s[i]

12 c[r] ← c[r] + 1

13 return g

3 Analysis of the algorithms

3.1 Analysis of algorithm Linear

The first algorithm is Linear. It writes zero into the elements of an n length
vector v = (v1, v2, . . . , vn), then investigates the elements of the realiza-
tion sequentially and if ij = k, then adds 1 to vk and tests whether vk > 0

signalizing a repetition.
In best case Linear executes only two comparisons, but the initialization of

the vector v requires Θ(n) assignments. It is called Linear, since its running
time is Θ(n) in best, worst and so also in expected case.

Theorem 1 The expected number Cexp(n, Linear) = CL of comparisons of
Linear is

CL = 1 −
n!

nn
+

n∑

k=1

n!k2

(n − k)!nk+1

=

√
πn

2
+

2

3
+ κ(n) −

n!

nn
,

where

κ(n) =
1

3
−

√
πn

2
+

n∑

k=1

n!k

(n − k)!nk+1

tends monotonically decreasing to zero when n tends to infinity. n!/nn also
tends monotonically decreasing to zero, but their difference δ(n) = κ(n) −

n!/nn is increasing for 1 ≤ n ≤ 8 and is decreasing for n ≥ 8.



6 A. Iványi, B. Novák

n CL
√

πn/2 + 2/3 n!/nn κ(n) δ(n)

1 1.000000 1.919981 1.000000 0.080019 −0.919981

2 2.000000 2.439121 0.500000 0.060879 −0.439121

3 2.666667 2.837470 0.222222 0.051418 −0.170804

4 3.125000 3.173295 0.093750 0.045455 −0.048295

5 3.472000 3.469162 0.038400 0.041238 +0.002838

6 3.759259 3.736647 0.015432 0.038045 +0.022612

7 4.012019 3.982624 0.006120 0.035515 +0.029395

8 4.242615 4.211574 0.002403 0.033444 +0.031040

9 4.457379 4.426609 0.000937 0.031707 +0.030770

10 4.659853 4.629994 0.000363 0.030222 +0.029859

Table 1: Values of CL,
√

πn/2 + 2/3, n!/nn, κ(n), and δ(n) = κ(n) − n!/nn

for n = 1, 2, . . . , 10

Theorem 2 The expected running time Texp(n, Linear) = TL of Linear is

TL = n +
√

2πn +
7

3
+ 2δ(n),

where

δ(n) = κ(n) −
n!

nn

tends to zero when n tends to infinity, further

δ(n + 1) > δ(n) for 1 ≤ n ≤ 7 and δ(n + 1) < δ(n) for n ≥ 8.

Table 1 shows some concrete values connected with algorithm Linear.

3.2 Analysis of algorithm Backward

The second algorithm is Backward. This algorithm is a naive comparison-
based one. Backward compares the second (i2), third (i3), . . . , last (in)

element of the realization with the previous elements until the first repetition
or until the last pair of elements.

The running time of Backward is constant in the best case, but it is
quadratic in the worst case.



Testing of sequences by simulation 7

Theorem 3 The expected number Cexp(n, Backward) = CB of comparisons
of the algorithm Backward is

CB = n +

√
πn

8
+

2

3
− α(n),

where α(n) = κ(n)/2 + (n!/nn)((n + 1)/2) monotonically decreasing tends to
zero when n tends to ∞.

Table 2 shows some concrete values characterizing algorithm Backward.

n CB n −
√

πn/8 + 2/3 (n!/nn)((n + 1)/2) κ(n) α(n)

1 0.000000 1.040010 1.000000 0.080019 1.040010

2 1.000000 1.780440 0.750000 0.060879 0.780440

3 2.111111 2.581265 0.444444 0.051418 0.470154

4 3.156250 3.413353 0.234375 0.045455 0.257103

5 4.129600 4.265419 0.115200 0.041238 0.135819

6 5.058642 5.131677 0.054012 0.038045 0, 073035

7 5.966451 6.008688 0.024480 0.035515 0.042237

8 6.866676 6.894213 0.010815 0.033444 0.027536

9 7.766159 7.786695 0.004683 0.031707 0.020537

10 8.667896 8.685003 0.001996 0.030222 0.017107

Table 2: Values of CB, n−
√

πn/8+2/3, (n!/nn)((n+1)/2), κ(n), and α(n) =

κ(n)/2 + (n!/nn)((n + 1)/2) for n = 1, 2, . . . , 10

The next assertion gives the expected running time of algorithm Back-
ward.

Theorem 4 The expected running time Texp(n, Backward) = TB of the al-
gorithm Backward is

TB = n +

√
πn

8
+

4

3
− α(n),

where α(n) = κ(n)/2 + (n!/nn)((n + 1)/2) monotonically decreasing tends to
zero when n tends to ∞.



8 A. Iványi, B. Novák

3.3 Analysis of algorithm Forward

Forward compares the first (s1), second (s2), . . . , last but one (sn-1) element
of the realization with the next elements until the first collision or until the
last pair of elements.

Taking into account the number of the necessary comparisons in line 04 of
Forward, we get Cbest(n, Forward) = 1 = Θ(1), and Cworst(n, Forward) =

B(n, 2) = Θ(n2).
The next assertion gives the expected running time.

Theorem 5 The expected running time Texp(n, Forward) = TF of the algo-
rithm Forward is

TF = n + Θ(
√

n). (1)

Although the basic characteristics of Forward and Backward are iden-
tical, as Table 3 shows, there is a small difference in the expected behaviour.

n number of sequences number of good sequences CF CW
2 4 2 1.000000 1.000000

3 27 6 2.111111 2.111111

4 256 24 3.203125 3.156250

5 3 125 120 4.264000 4.126960

6 46 656 720 5.342341 5.058642

7 823 543 5 040 6.326760 5.966451

8 16 777 216 40 320 7.342926 6.866676

9 387 420 489 362 880 8.354165 7.766159

Table 3: Values of n, the number of possible input sequences, number of good
sequences, expected number of comparisons of Forward (CF) and expected
number of comparisons of Backward (CW) for n = 2, 3, . . . , 9

3.4 Analysis of algorithm Tree

Tree builds a random search tree from the elements of the realization and
finishes the construction of the tree if it finds the following element of the
realization in the tree (then the realization is not good) or it tested the last
element too without a collision (then the realization is good).

The worst case running time of Tree appears when the input contains
different elements in increasing or decreasing order. Then the result is Θ(n2).



Testing of sequences by simulation 9

The best case is when the first two elements of s are equal, so Cbest(n, Tree) =

1 = Θ(1).
Using the known fact that the expected height of a random search tree is

Θ(lg n) we can get that the order of the expected running time is
√

n log n.

Theorem 6 The expected running time TT of Tree is

TT = Θ(
√

n lg n). (2)

Table 4 shows some results of the simulation experiments (the number of
random input sequences is 100 000 in all cases).

n number of good inputs number of comparisons number of assignments
1 100 000.000000 0.000000 1.000000

2 49 946.000000 1.000000 1.499460

3 22 243.000000 2.038960 1.889900

4 9 396.000000 2.921710 2.219390

5 3 723.000000 3.682710 2.511409

6 1 569.000000 4.352690 2.773160

7 620.000000 4.985280 3.021820

8 251.000000 5.590900 3.252989

9 104 6.148550 3.459510

10 33 6.704350 3.663749

11 17 7.271570 3.860450

12 3 7.779950 4.039530

13 3 8.314370 4.214370

14 0 8.824660 4.384480

15 2 9.302720 4.537880

16 0 9.840690 4.716760

17 0 10.287560 4.853530

18 0 10.719770 4.989370

19 0 11.242740 5.147560

20 0 11.689660 5.279180

Table 4: Values of n, number of good inputs, number of comparisons, number
of assignments for n = 1, 2, . . . , 10 (Number of comparisons of Linear)

Using the method of the smallest squares to find the parameters of the
formula a

√
n log2 n we received the following approximation formula for the



10 A. Iványi, B. Novák

expected number of comparisons:

Cexp(n, Tree) = 1.245754
√

n log2 n − 0.273588.

3.5 Analysis of algorithm Garbage

This algorithm is similar to Linear, but it works without the setting zeros
into the elements of a vector requiring linear amount of time.

Beside the cycle variable i Garbage uses as working variable also a vector
v = (v1, v2, . . . , vn). Interesting is that v is used without initialisation, that is
its initial values can be arbitrary integer numbers.

The worst case running time of Garbage appears when the input con-
tains different elements and the garbage in the memory does not help, but
even in this case Cworst(n, Garbage) = Θ(n). The best case is when the
first element is repeated in the input and the garbage helps to find a repe-
tition of the firs element of the input. Taking into account this case we get
Cbest(n, Garbage) = Θ(1).

According to the next assertion the expected running time is Θ(
√

n).

Lemma 7 The expected running time of Garbage is

Texp(n, Garbage) = Θ(
√

n). (3)

3.6 Analysis of algorithm Bucket

Algorithm Bucket divides the interval [1, n] into m = d√ne subintervals
I1, I2, . . . , Im, where Ik = [(k − 1)m + 1, km)], and assigns a bucket Bk to
interval Ik. Bucket sequentially puts the input elements ij into the corres-
ponding bucket: if ij belongs to the interval Ik then it checks whether ij is
contained in Bk or not. Bucket works up to the first repetition. (For the
simplicity we suppose that n = m2.)

In best case Bucket executes only 1 comparison, but the initialization of
the buckets requires Θ(

√
n) assignments, therefore the best running time is

also
√

n. The worst case appears when the input is a permutation. Then each
bucket requires Θ(n) comparisons, so the worst running time is Θ(n

√
n).

Lemma 8 Let bj (j = 1, 2, . . . , m) be a random variable characterising the
number of elements in the bucket Bj at the moment of the first repetition. Then

E{bj} =

√
π

2
− µ(n)



Testing of sequences by simulation 11

n E{b1}
√

π/2 1/(3
√

n) κ(n)/
√

n µ(n)

1 1.000000 1.253314 0.333333 0.080019 0.253314
2 1.060660 1.253314 0.235702 0.043048 0.192654
3 1.090055 1.253314 0.192450 0.029686 0.162764
4 1.109375 1.253314 0.166667 0.022727 0.143940
5 1.122685 1.253314 0.149071 0.018442 0.130629
6 1.132763 1.253314 0.136083 0.015532 0.120551
7 1.147287 1.253314 0.125988 0.013423 0.112565
8 1.147287 1.253314 0.117851 0.011824 0.106027
9 1.152772 1.253314 0.111111 0.010569 0.100542
10 1.157462 1.253314 0.105409 0.009557 0.095852

Table 5: Values of E{b1},
√

π/2, 1/(3
√

n), κ(n)/
√

n, and µ(n) = 1/(3
√

n) −

κ(n)/
√

n for n = 1, 2, . . . , 10

for j = 1, 2, . . . ,m, where

µ(n) =
1

3
√

n
−

κ(n)√
n

,

and µ(n) tends monotonically decreasing to zero when n tends to infinity.

Table 5 contains some concrete values connected with E{b1}.

Lemma 9 Let fn be a random variable characterising the number of compa-
risons executed in connection with the first repeated element. Then

E{fn} = 1 +

√
π

8
− η(n),

where

η(n) =
1
3

+
√
�
8

− κ(n)2√
n + 2

,

and η(n) tends monotonically decreasing to zero when n tends to infinity.

Theorem 10 The expected number Cexp(n, Bucket) = CB of comparisons
of algorithm Bucket in 1 bucket is

CB =
√

n +
1

3
−

√
π

8
+ ρ(n),



12 A. Iványi, B. Novák

where

ρ(n) =

5
6

−
√
9�
8

−
3�(n)
2√

n + 1

tends to zero when n and tends to infinity.


