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Abstract

An (n, d,a,b)-perfect array is a d-dimensional b1× b2×· · ·× bd sized n-ary periodic
array containing all possible a1 × a2 × · · · × ad sized n-ary array exactly once as
subarray. If a1 = a2 = · · · = ad and b1 = b2 = · · · = bd, then the notation (n, d, a, b)
and term double cube are used. If d ≥ 4, then the double cube is called double
hypercube. We prove the existence of (N, d, a, b)-perfect double cubes for arbitrary
d ≥ 1, a ≥ 2 and n ≥ 2, where N = kn with a suitable k ≥ 1. Further we illustrate
the main theorem constructing 4 and 5-dimensional hypercubes.

Keywords: De Bruijn arrays, perfect cubes, four- and five-dimensional perfect
arrays.

1 Introduction

Cyclic sequences in which every possible subsequence of fixed length occurs
exactly once have been studied for more than a hundred years. The problem
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later was extended to two- and more-dimensional arrays.

Let Z be the set of integers. For u, v ∈ Z we denote the set {j ∈
Z | u ≤ j ≤ v} by [u..v] and the set {j ∈ Z | j ≥ u} by [u..∞]. Let
d ∈ [1..∞], bi, ci, ji ∈ [1..∞] (i ∈ [1..d]) and ai ∈ [2..∞] (i ∈ [1..d]). Let
a = 〈a1, a2, . . . , ad〉, b = 〈b1, b2, . . . , bd〉, c = 〈c1, c2, . . . , cd〉, j = 〈j1, j2, . . . , jd〉.

A d-dimensional n-ary array A is a mapping A : [1..∞]d →
[0, n− 1]. If there exist a vector b and an array M such that

∀j ∈ [1..∞]d : A[j] = M [(j1 mod b1) + 1, (j2 mod b2) + 1, . . . , (jd mod bd) + 1],

then A is a b-periodic array and M is a period of A. The possible a-sized
subarrays of A are the a-periodic n-ary arrays.

Although our arrays are infinite we say that a b-periodic array is b-sized.

A d-dimensional b-periodic n-ary array A is called (n, d, a,b)-perfect, if
all possible n-ary arrays of size a appear in A exactly once as a subarray. Here
n is the alphabet size, d gives the number of dimensions of the ”window” (or
”pattern”) and the perfect array M , the vector a characterizes the size of the
window, and the vector b is the size of the perfect array M.

If b1 = b2 = · · · = bd, then the (n, d, a,b)-perfect array A is called sym-

metric. If A is symmetric and a1 = a2 = · · · = ad, then A is called doubly

symmetric. If A is doubly symmetric and d = 1, then A is called a double

sequence (here the size b1 means 1 × b1); d = 2, then A is called a double

square; d = 3, then A is called a double cube; d ≥ 4, then A is called a
double hypercube.

According to this definition, all perfect sequences are doubly symmetric.
In the case of symmetric arrays we use the notion (n, d, a, b) and in the case
of doubly symmetric arrays we use (n, d, a, b) instead of (n, d, a,b).

One-dimensional perfect arrays are often called de Bruijn or Good se-
quences. Two-dimensional perfect arrays are called also perfect maps or de
Bruijn tori.

Even de Bruijn sequences are useful in construction of perfect arrays when
the size of the alphabet is an even number and the window size is 2×2. If n is
an even integer then an (n, 1, 2, n2)-perfect sequence M = (m1,m2, . . . ,mn2)
is called even, if mi = x, mi+1 = y, x 6= y,mj = y and mj+1 = x imply j − i

is even.

The concept of perfectness can be extended to infinite arrays in various
ways. In growing arrays the window size is fixed, the alphabet size is in-
creasing and the prefixes grow in all d directions. In superperfect arrays

the alphabet size is perfect and the window size is growing.



2 Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a
pattern, the volume of M equals the number of the possible patterns. Since
each pattern—among others the pattern containing only zeros—can appear
only once, any size of M is greater then the corresponding size of the window.
So we have the following necessary condition [5,10,11]: If M is an (n, d, a,b)-
perfect array, then

|b| = n|a| (1)

and
bi > ai for i ∈ [1..d]. (2)

The first known result originates from Flye-Sainte [4] who in 1884 proved
the existence of (2, 1, a, 2a)-perfect sequences for all possible values of a and
gave an explicit formula for the number of (2, 1, a, 2a)-perfect sequences.

It is known [4] that in the one-dimensional case the necessary condition
(1) is sufficient too. There are many construction algorithms, like the ones of
Fan, Fan, Ma and Siu [3], Martin [13] or any algorithm for the construction
of directed Euler cycles . The most popular algorithm is probably due to H.
M. Martin. It has several implementations having different time complexity
[1,9,10].

N. Vörös [15] in 1984, Cummings and Wiedemann in 1986 [2] and Iványi in
1987 [6,10] proposed algorithms for n ≥ 3 to construct superperfect sequences.
It is known [6,10] that it does not exist superperfect sequence for n = 2. Iványi
and Tóth [11] and later Hurlbert and Isaak [5] provided a constructive proof
of the existence of even sequences. The conditions (1) and (2) are sufficient for
the existence of (2, 2, a,b)-perfect arrays [3]. Paterson in [14] supplied further
sufficient conditions.

Hurlbert and Isaak [5] gave a construction for one- and two-dimensional
growing arrays. Iványi [8] constructed (n, d, a,b)-perfect arrays for arbitrary
n ≥ 2, d ≥ 1 and a, but his arrays are rarely symmetric.

Different construction algorithms and other results concerning one- and
two-dimensional perfect arrays can be found in the fourth volume of The Art
of Computer Programming [12], e.g. a (2,1,5,32)-perfect array, a (2,2,2,4)-
perfect array and a (4,2,2,16)-perfect array.

3 Construction of hypercubes

In the talk—using the algorithms Cellular, Optimal-Martin, Even,
Mesh, Shift, Colour [7,8,9,10,11,12]—we prove the following theorem and



column/row 1 2 3 4

1 0 0 0 1

2 0 0 1 0

3 1 0 1 1

4 0 1 1 1

Table 1
A (2,2,4,4)-square

illustrate it by the construction of two hypercubes.

Theorem 3.1 If n ≥ 2, d ≥ 1, a ≥ 2, and b ≥ 2 satisfy 1 and

a) d | ad and (un)a
d/d ≥ nad − ad−1, then there exists a (un, d, a, (un)a

d/d)-
perfect array;

b) (vn)a
d

≥ nad−ad−1

, then there exists a
(

(vn)d, d, a, (vn)a
d

)

-perfect ar-

ray,where u and v are suitable positive integers.

At first we compute the minimal k, then construct an (n, d, a,b)-perfect
array, where

b = 〈na, na2−a, na3−a2 , . . . , nan−an−1

〉.

Finally we fill an empty hypercube with such prisms and using Colour

we get the requuired hypercube.

3.1 Construction of a 4-dimensional double hypercube

In 4 dimensions the smallest b’s satisfying (1) are b = 16 and b = 81. But we
do not know algorithm which can construct (2, 4, 2, 16)-perfect or (3, 4, 2, 81)-
perfect hypercube. The third chance is the (4, 4, 2, 256)-perfect hypercube.
Let n = 2 and a = 2. Cellular calculates N = 2, then calls Optmial-

Martin receiving the cellular (2, 1, 2, 4)-perfect sequence 00|11. Then Cellu-

lar calls Mesh which constructs the cellular (2, 2, 2, 4)-perfect square shown
in Table 1a.

Now Shift calls Optimal-Martin with n = 1 and a = 1 to get the shift
sizes for the layers of the (2, 3, 2,b)-perfect output P of Cellular, where
b = 〈4, 4, 16〉. Shift uses P as zeroth layer and the jth layer is generated by
cyclic shifting of the previous layer downwards by wi (div 4) and right by wi

(mod 4), where w = 〈0 15 14 13 1211 10 9 8 7 6 5 4 3 2 1〉. The layers of the
(2, 3, 2, 〈4 4 16〉)-perfect array are shown in Table 2.



Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0

1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1

0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0

Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0

0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1

0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0

Table 2
16 layers of the (2, 3, 2, 16)-perfect output of Shift

Up to this point the construction is the same as in [9], but now d = 4,
therefore we use Shift again to get a (2, 4, 2, 256)-perfect prism, then we fill
an empty 256× 256× 256× 256 cube with 4× 4× 16× 256-sized prisms and
finally colouring results the required 4-dimensional hypercube.

3.2 Construction of a 5-dimensional double hypercube

If d = 5, then a = 2, n = 25 and b = 232 satisfy (1), and 3 is the smallest
value of v, corresponding to part b) of Theorem 3.1. Therefore we start with a
(25, 5, 2, 232)-perfect prism and finish with a (215, 5, 2, 296)-perfect hypercube.

The remaining used auxiliary arrays for both construction and the con-
structed 256 × 256 × 256 × 256 sized (4, 4, 2, 256)-perfect double hypercube
can be found in [10] and its supplements.
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